Chapter 1 The Carbonic Anhydrases in Health and Disease

W. Richard Chegwidden

Abstract The zinc metalloenzyme carbonic anhydrase (CA; EC 4.2.1.1) catalyzes the reversible hydration of $CO₂$ and is expressed in human in 15 different isoforms— 12 active isozymes and three catalytically inactive isoforms. Since the enzyme is fundamental to many physiological processes, chiefly involving ion transport, pH regulation, and substrate provision for metabolism, it has been implicated in many diseases and disorders. Consequently, carbonic anhydrase inhibitors, such as the classical sulfonamide inhibitor acetazolamide, have long been employed therapeutically. Initially developed for congestive heart failure, acetazolamide was subsequently employed for many years in the treatment of glaucoma, and other conditions such as acute mountain sickness. Over recent years, however, the number of diseases, with pathologies involving carbonic anhydrase, has expanded enormously providing potential for novel therapies through the modification of carbonic anhydrase activity. These are highlighted in the following chapter. In particular, a wealth of evidence has linked carbonic anhydrase, particularly the carbonic anhydrase IX isozyme (CA IX), with cancer. Alongside this has been a complimentary development of novel methods of drug delivery targeting CA IX.

Keywords Carbonic anhydrase · CA inhibitors · Acetazolamide · Therapeutic target · Therapeutic application · Drug delivery systems

Carbonic anhydrase (CA) catalyzes the reversible hydration of carbon dioxide to bicarbonate ($CO_2 + H_2O \leftrightarrow HCO_3^- + H^+$), a reaction of such profound importance that the enzyme is seemingly ubiquitous in nature, being represented by seven distinct gene families— α , β , γ , δ , ζ , η , and θ —of which only the α -family is present in human. The human family comprises 12 active isozyme members that differ in tissue distribution, sub-cellular location, catalytic power and inhibitory characteristics (see Tables [1.1](#page-1-0) and [1.2\)](#page-2-0), and three isoforms, designated CA-related proteins (CA-RPs), that are inactive owing to the absence of one or more of the histidine residues that

LECOM, 1858 West Grandview Boulevard, Erie, PA 16509, USA e-mail: [wrchegwidden@lecom.edu;](mailto:wrchegwidden@lecom.edu) wrc.2417@gmail.com

© Springer Nature Switzerland AG 2021

W. R. Chegwidden (\boxtimes)

W. R. Chegwidden and N. D. Carter (eds.), *The Carbonic Anhydrases: Current and Emerging Therapeutic Targets*, Progress in Drug Research 75, https://doi.org/10.1007/978-3-030-79511-5_1

Isozyme	Sub-cellular location	Principal sites of tissue expression
CA _I	Cytoplasmic	Red blood cell, intestine, eye
CA II	Cytoplasmic	Ubiquitous (certain cells of virtually all tissues)
CA III	Cytoplasmic	Red muscle, white and brown adipose tissue
CA IV	Membrane-bound (extracellular)	Kidney, lung, pancreas, gut, brain, eye, probably universally present in capillary endothelium
CA VA	Mitochondrial	Liver
CA VB	Mitochondrial	Widespread
CA VI	Secreted	Salivary and mammary glands
CA VII	Cytoplasmic	CNS (lower expression widespread)
CA VIII ^a	Cytoplasmic	Brain, especially Purkinje cells of cerebellum, (lower expression widespread)
CA IX	Transmembrane (extra-cellular domain)	Various tumours, gastric mucosa
$CA X^a$	Cytoplasmic	Brain
CA XI ^a	Cytoplasmic	Brain (lower expression widespread)
CA XII	Transmembrane (extra-cellular domain)	Widespread, especially kidney, colon, prostate
CA XIII	Cytoplasmic	Kidney, brain, lung, gut, reproductive organs
CA XIV	Transmembrane (extra-cellular domain)	Widespread, especially kidney and heart

Table 1.1 Tissue distribution and sub-cellular location of human carbonic anhydrase isozymes

^aCA VIII, CA X and CA XI lack activity because of substitution of one or more of the histidine residues required to bind the catalytically essential zinc ion. Consequently they are commonly designated CA-related proteins (CA-RP VIII, CA-RP X and CA-RP XI). Although no definitive roles have been firmly established for any of these three CA-RP molecules, recent studies suggest a role for CA-RP VIII as an allosteric modulator in pain regulation, through the regulation of neuronal cytosolic calcium levels (Zhuang et al. [2015,](#page-11-0) [2018\)](#page-11-1)

N.B. CA XV is an additional catalytically active α-CA isozyme that is not expressed in human or chimpanzee (Hilvo et al. [2005\)](#page-8-0)

coordinate the catalytically active zinc ion in the active site (CA-RP VIII, CA-RP X, and CA-RP XI) [for recent reviews see Supuran and Nocentini [2019;](#page-10-0) Supuran and De Simone [2015\]](#page-10-1). A thirteenth active α -CA isozyme (CA XV) is not expressed in human or chimpanzee (Hilvo et al. [2005\)](#page-8-0).

The CA reaction is so fundamental that the active isozymes participate in a host of crucial physiological processes, variously involving H^+ , CO_2 , ion and water transport, pH regulation, and provision of bicarbonate as substrate for a range of metabolic reactions. Some of the major physiological functions of the carbonic anhydrase isozymes are summarized in Table [1.3.](#page-3-0)

150Z Y 11105				
Isozyme	Activity level	$\rm k_{cat}/K_M~(M^{-1}~s^{-1})^a$	Acetazolamide (Az) inhibition	K_I (Az) $(nM)^b$
CA I	Moderate	5.0×10^{7}	Moderate	250
CA II	High	1.5×10^{8}	Strong	12
CA III	Low	2.5×10^{5}	Weak	2×10^5
CA IV	High	5.1×10^{7}	Strong	74
CA VA	Moderate	2.9×10^{7}	Strong	63
CA VB	High	9.8×10^{7}	Strong	54
CA VI	Moderate	4.9×10^{7}	Strong	11
CA VII	High	8.3×10^{7}	Strong	2.5
CA IX	High	5.4×10^{7}	Strong	25
CA XII	Moderate	3.5×10^{7}	Strong	5.7
CA XIII	Moderate	1.1×10^{7}	Strong	16
CA XIV	Moderate	3.9×10^{7}	Strong	41

Table 1.2 CO₂-hydration activity and acetazolamide inhibition of human carbonic anhydrase isozymes

 a K_{cat}/K_M values are taken from Hilvo, Baranauskiene et al. [\(2008\)](#page-8-2)
^bK_I (Az) values are taken from Supuran et al. [\(2015\)](#page-10-2) and Hilvo, Innocenti et al. (2008) (human CA XIII)

The tight evolutionary conservation of the inactive CA isoforms (CA-RPs) strongly suggests that they also possess important physiological functions (Tashian et al. [2000\)](#page-10-3). In recent years, evidence has accumulated that indicates an important role for CA-RP VIII as an allosteric modulator in pain regulation through the regulation of neuronal cytosolic calcium levels (Zhuang et al. [2015,](#page-11-0) [2018\)](#page-11-1).

Reflecting this wide range of functions, CA isozymes have been implicated in many diseases and disorders (Table [1.4\)](#page-5-0). Consequently, CA inhibitors have, through the years, found therapeutic application in a wide and growing range of clinical conditions including acute mountain sickness (Swenson and Teppems [2007;](#page-10-4) Swenson [2014a;](#page-10-5) Lipman et al. [2019\)](#page-9-0), bipolar disorder (Hayes [1994\)](#page-8-3), chronic obstructive pulmonary disease (COPD) (Adamson and Swenson [2017;](#page-6-0) Van Berkel and Elefritz [2018\)](#page-11-2), glaucoma (Becker [1955;](#page-7-0) Masini et al. [2013\)](#page-9-1), gastric ulcer (Buzás and Supuran [2016\)](#page-7-1), macular edema (Cox et al. [1988;](#page-7-2) Wolfensberger [2017\)](#page-11-3), obesity (Scozzafava et al. [2013\)](#page-9-2), epilepsy (Aggerwal et al. [2013;](#page-7-3) Silberstein et al. [2005\)](#page-10-6), sleep apnea (Eskandari et al. [2014,](#page-8-4) [2018\)](#page-8-5), and migraine (Brandes et al. [2004;](#page-7-4) Silberstein et al. [2004;](#page-10-7) Silberstein [2017\)](#page-10-8). A vasodilatory effect of CA inhibitors has also been demonstrated (Swenson [2014b\)](#page-10-9), raising the possibility of a role for such agents in hypertensive-related diseases. This effect, along with a contribution to the maintenance of blood gas stability may, at least in part, account for the effectiveness of acetazolamide in the treatment of obstructive sleep apnea. In recent years, much attention has been given to the potential of CA inhibitors and CA-targeted drugs to treat cancer, and most recently, evidence has also accumulated suggesting possible roles for CA inhibitors in therapy for hemorrhagic stroke (Li et al. [2016\)](#page-9-3), protection

Function	CA isozymes principally involved ^c			
Respiration and Acid/Base Regulation				
Hydration of $CO2$ to $HCO3-$ in peripheral tissues	CA II (in red cells)			
Dehydration of HCO_3^- to CO_2 at lungs	CA IV (in capillary surfaces and pulmonary microvasculature)			
Elimination of H^+ in kidney	CA II			
Reabsorption of $HCO3$ ⁻ in kidney	CA IV, CA XII			
Vision				
Production of aqueous humour (ciliary body)	CA II, CA IV, CA XII			
Bone Developmentand Function				
Differentiation of osteoclasts	CA II			
Provision of H^+ in osteoclasts for bone resorption	CA II			
Metabolic Processes				
Provision of bicarbonate for gluconeogenesis and ureogenesis	CA _V			
Provision of bicarbonate for pyrimidine synthesis	CA II (possibly also CAV)			
Provision of bicarbonate for fatty acid synthesis	CA V (possibly also CAII)			
Insulin secretion (production of $HCO3$ ⁻ in pancreatic β cells)	CA V			
CSF Production				
Provision of H ⁺ and regulation of pH (choroid plexus)	CA II, CA XII			
Gustation and Olfaction				
Maintenance of appropriate CO ₂ levels	CA I, CA II, and/or CA IV			
Saliva Production				
Production of $HCO3-$ (acinar and ductal cells)	CA II			
G.L. Tract Protection				
Removal of acid from dental surfaces	CA VI			
Removal of acid from gastro-oesophageal mucosa	CA II, VI			
Gastric Acid Production				
Production of H ⁺ in stomach (parietal cells)	CA II			
Bile Production				
Provision of $HCO3-$ for bile (liver epithelial duct cells)	CA II			
Acidification of bile (gall bladder epithelium)	CA II, CA IV			

Table 1.3 Major physiological functions of the human carbonic anhydrase isozymes^{a,b}

(continued)

Function	CA isozymes principally involved ^c		
<i>Pancreatic Juice Production</i>			
Provision of $HCO3-$ in pancreas (epithelial duct cells)	CA II		
Reproductive System			
Regulation of pH and HCO_3 ⁻ content of seminal fluid	CA II, CA IV, CA XIII		
Muscle Function			
Protection as anti-oxidant against ROS	CA III		
Facilitated CO ₂ diffusion	CA II, III, Membrane-bound CA		
Buffering in SR $(H^+$ exchanged for Ca^{++})	Membrane-bound CA (CA IV?)		
<i>Oncogenesis</i>			
Regulation of the tumor microenvironment to facilitate tumor growth and metastasis	CA IX and XII		

Table 1.3 (continued)

 a^a Established and putative functions
 b^b This table is adapted from Chegwidden and Carter (2000)

 \textdegree Other CA isozymes may also play a part in several of the processes listed below, in addition to those indicated as being principally involved

against diabetic brain injury (Price et al. [2017\)](#page-9-4), and Alzheimer disease (Fossati et al. [2016\)](#page-8-6).

The CA inhibitor acetazolamide (DIAMOX) first reached the market almost 70 years ago (Maren [1952\)](#page-9-5). Initially developed as a diuretic for the treatment of congestive heart failure (Friedberg et al. [1953\)](#page-8-7), it was adopted soon afterwards for the treatment of glaucoma (Breinin and Görtz [1954;](#page-7-6) Becker [1954\)](#page-7-7), for which it remained central for several decades. The subsequent development of carbonic anhydrase inhibitors for topical application represented a major advance, since they obviated the undesirable systemic side effects frequently encountered with orally administered carbonic anhydrase inhibitors at the concentrations required to inhibit the enzyme activity in the ciliary processes (Talluto et al. [1997\)](#page-10-10).

In ophthalmology, whilst CA inhibitors have been employed for some time in topically-administered combination therapy for glaucoma (Supuran et al. [2019\)](#page-10-11), in recent years, they have also found use in the treatment of macular edema, secondary to a number of conditions such as retinitis pigmentosa and hereditary retinoschisis, and as a sequala of cataract and vitreoretinal surgery (Strong et al. [2017;](#page-10-12) Wolfensberger [1999\)](#page-11-4). In addition, the topical CA inhibitors dorzolamide (TRUSOPT) and brinzolamide (AZOPT) have been demonstrated to be effective in the treatment of chronic central serous retinopathy (CSCR) (Liew et al. [2020\)](#page-8-8) and infantile nystagmus syndrome (INS) (Hertle et al. [2015\)](#page-8-9), respectively.

In neurology, CA inhibitors are used for epilepsy (Aggerwal et al. [2013;](#page-7-3) Silberstein et al. [2005\)](#page-10-6) and for migraine (Silberstein et al. [2005;](#page-10-6) Silberstein [2017\)](#page-10-8), and to decrease CSF production in pseudotumor cerebri (Thurtell and Wall [2013\)](#page-11-5). There is now a

CA isozyme ^a	Associated diseases/disorders
CA I	Bipolar disorder (Hayes 1994; Song et al. 2015), Glaucoma (Maren 1987; Wistrand 2000), Retinal/cerebral edema (Gao et al. 2007),
CA II	Acute mountain sickness (Swenson and Teppems 2007; Swenson 2014a), Alzheimer disease (Jang et al. 2010; Provensi et al. 2019), COPD (Heming et al. 2012), Edema (Supuran 2008), Epilepsy (Aggerwal et al. 2013 ; Zavala-Tecuapetla et al. 2020), Pulmonary hypertension (Hudalla et al. 2019), Pseudotumor cerebri (Thurtell and Wall 2013), Sleep apnea (Wang et al. 2015)
CA III	Myasthenia gravis (Du et al. 2017), Oxidative stress (Zimmerman et al. 2014; Di Fiore et al. 2018)
CA IV	COPD (Heming et al. 2012), Glaucoma (Matsui et al. 1996), Retinitis pigmentosa (Datta et al. 2009), Stroke (Tang et al. 2006)
CA VA/CA VB	Alzheimer disease (Provensi et al. 2019), Obesity (Spencer et al. 1988; De Simone et al. 2008; De Simone and Supuran 2009)
CA VI	Cariogenesis (Kivelä et al. 1999)
CA VII	Epilepsy (Aggerwal et al. 2013; Zavala-Tecuapetla et al. 2020), Oxidative stress (Di Fiore et al. 2018)
CA IX	Cancer (Závada et al. 1993; Benej et al. 2014)
CA XII	Cancer (Benej et al. 2014; Pastorekova et al. 2006), Glaucoma (Liao et al. 2003)
CA XIV	Epilepsy (Aggerwal et al. 2013; Shah et al. 2005), Retinopathy (Ogilvie et al. 2007)

Table 1.4 Diseases and disorders associated with carbonic anhydrase isozymes

^a*Note* Other CA isozymes may also be implicated in several of these diseases/disorders, in addition to those specified above

growing evidence that CA inhibitors may afford a significant neuroprotective effect following both ischemic and hemorrhagic brain injury, inhibiting cerebral edema, reducing cellular levels of ROS, and improving nerve function (Li et al. [2016\)](#page-9-3). Furthermore, mitochondrial carbonic anhydrase, which is considered a major player in glucose-induced production of reactive oxygen species, has been identified as a potential target for the treatment of diabetic injury to the brain and possibly other insulin-insensitive tissues such as eye and kidney (Price et al. [2017;](#page-9-4) Salameh et al. [2016\)](#page-9-11).

There is also encouraging evidence, obtained through in vitro studies employing human neuronal and glial cell cultures, and in vivo studies employing a rodent AD model, suggesting that CA inhibition may become central to a new therapeutic strategy for Alzheimer disease and related cerebral amyloidosis (Fossati et al. [2016;](#page-8-6) Solesio et al. [2018\)](#page-10-18).

Possibly, the most significant advances in recent years have been in the association of carbonic anhydrase isozymes with cancer. Whilst both intracellular and extracellular isozymes have been demonstrated to play roles in tumorigenesis, the emergence of the cell surface isozyme CA IX as an attractive diagnostic and therapeutic biomarker for targeting a wide range of hypoxic, solid malignancies has generated the most interest and activity.

The inhibition of growth of human cancer cells by direct action of specific carbonic anhydrase inhibitors was first observed by Chegwidden and Spencer [\(1995,](#page-7-14) [2003;](#page-7-15) Chegwidden et al. [2000\)](#page-7-5) who subsequently reported similar inhibition, by carbonic anhydrase inhibitors, of solid human tumors xenografted into immunodeficient mice (Chegwidden and Linville [2007\)](#page-7-16). Carbonic anhydrase inhibitors were also shown to inhibit the invasion of renal cancer cells (Parkkila et al. [2000;](#page-9-12) Chegwidden et al. [2006\)](#page-7-17) from a range of human cell lines expressing different CA isozymes.

The discovery and characterization of carbonic anhydrase IX, a tumor-associated protein with a central carbonic anhydrase domain, initially designated MN protein, provided significant impetus to the investigation of the then putative role of carbonic anhydrase in cancer (Pastoreková et al. [1992;](#page-9-13) Pastorek et al. [1994\)](#page-9-14). Whilst many others have made notable contributions, the Pasteroková laboratory, where MN protein was first discovered and characterized, has remained central in this field of endeavor (Benej et al. [2014;](#page-7-13) Pastoreková and Gillies [2019\)](#page-9-15).

Although the expression of CA IX is almost negligible in normal tissues, where it is restricted to certain tissues of the GI tract and gall bladder epithelia, this isozyme is strongly over-expressed in numerous aggressive malignancies, such as renal, pancreatic, head and neck, ovarian, hepatocellular, lung (NSCLC), and several brain cancers, where, under the regulation of the hypoxia-induced HIF-1 transcription factor, it is a key player in the pH regulation required for cancer cell survival and growth (Pastoreková and Gillies [2019;](#page-9-15) Thiry et al. [2006;](#page-10-19) Lau et al. [2017\)](#page-8-16). Thus, this isozyme both provides a therapeutic target in its own right, and also serves as a biomarker for targeting with other cytotoxic agents, thereby avoiding off-target effects.

There are now multiple reports of successful inhibition, by CA inhibitors, of the growth of cultured cells and of xenografts, both derived from a range of human tumors. Several CA inhibitors, both small molecule drug conjugates (SMDCs) and CA IX-selective biological molecules, have entered preclinical or clinical trials for cancer treatment (Lau et al. [2017;](#page-8-16) Supuran [2017\)](#page-10-20). Among these, the sulfonamide inhibitor SLC-0111 has recently completed phase I clinical trials (Supuran [2017\)](#page-10-20).

Furthermore, there has also been a recent proliferation of activity in the application of novel nanoparticle drug delivery systems directed at CA IX (Kazokaite et al. [2017\)](#page-8-17), ranging from immuno-liposomes (Lin et al. [2017\)](#page-9-16) to "prickly" nanoparticles that destroy targeted cancer cells through physical nano-piercing (Zhang et al. [2017\)](#page-11-11).

References

Adamson R, Swenson ER (2017) Acetazolamide use in severe chronic obstructive pulmonary [disease. Pros and cons. Ann Am Thorac Soc 14\(7\):1086–1093.](https://doi.org/10.1513/AnnalsATS.201701-016FR) https://doi.org/10.1513/Annals ATS.201701-016FR

- Aggerwal M, Kondeti B, McKenna R (2013) Anticonvulsant/antiepileptic carbonic anhydrase inhibitors: a patent review. Expert Opin Ther Patents 23(6):717–724
- Becker B (1954) Decreases in intraocular pressure in man by a carbonic anhydrase inhibitor, diamox, [a preliminary report. Am J Ophthalmol 37\(1\):13–15.](https://doi.org/10.1016/0002-9394(54)92027-9) https://doi.org/10.1016/0002-9394(54)920 27-9
- Becker B (1955) Longterm acetazolamide (Diamox) administration in therapy of glaucoma. Arch Ophthalmol 54:187–192
- Benej M, Pastorekova S, Pastorek (2014) Carbonic anhydrase IX: regulation and role in cancer. In: Frost SC, McKenna R (eds) Carbonic anhydrase: mechanism, regulation, links to disease, [and industrial applications. J Subcell Biochem 75:199–219.](https://doi.org/10.1007/978-94-007-7359-2_11) https://doi.org/10.1007/978-94-007- 7359-2_11
- Brandes JL, Saper JR, Diamond M, Couch JR, Lewis DW, Schmitt J, Neto W, Schwabe S, Jacobs D (2004) Topiramate for migraine prevention: a randomized controlled trial. JAMA 291(8):965– 973. <https://doi.org/10.1001/jama.291.8.965>
- Breinin GM, Görtz H (1954) Carbonic anhydrase inhibitor acetazolamide (diamox): a new approach [to the therapy of glaucoma. AMA Arch Ophthalmol 52\(3\):333–348.](https://doi.org/10.1001/archopht.1954.00920050335001) https://doi.org/10.1001/arc hopht.1954.00920050335001
- Buzás GM, Supuran CT (2016) The history and rationale of using carbonic anhydrase inhibitors in the treatment of peptic ulcers. In memoriam Ioan Puşcaş (1932–2015). J Enzyme Inhib Med Chem 31(4):527–533
- Chegwidden WR, Carter ND (2000) Introduction to the carbonic anhydrases. In: Chegwidden WR, Carter ND, Edwards YH (eds) The carbonic anhydrases: new horizons. Birkhauser Verlag, Basel, pp 13–28
- Chegwidden WR, Dodgson SJ, Spencer IM (2000) The roles of carbonic anhydrase in biosynthetic processes, cell growth and cancer in animals. In: Chegwidden WR, Carter ND, Edwards YH (eds) The carbonic anhydrases: new horizons. Birkhauser Verlag, Basel, pp 343–363
- Chegwidden WR, Linville DG (2007) Growth inhibition of renal cell carcinoma by carbonic anhydrase inhibitors. J Amer Osteopath Assoc 107:356–357
- Chegwidden WR, Spencer IM (1995) Sulphonamide inhibitors of carbonic anhydrase inhibit the growth of human lymphoma cells in culture. Inflammopharmacology 3:231–239
- Chegwidden WR, Spencer IM (2003) Carbonic anhydrases in cell growth and cancer In: Scharrenberger C, Wittman-Liebold B (eds) Genes, gene families and isozymes. Moduzzi Editore SpA, Bologna, pp 189–197
- Chegwidden WR, Gandhi N, Linville DG, Martin A (2006) Inhibition of human renal cancer cell invasion by sulphonamides. J Amer Osteopath Assoc 106:503
- Cox SN, Hay E, Bird AC (1988) Treatment of chronic macula edema with acetazolamide. Arch Ophthalmol 106(9):1190–1195. <https://doi.org/10.1001/archopht.1988.01060140350030>
- Datta R, Waheed A, Bonapace G, Shah GN, Sly WS (2009) Pathogenesis of retinitis pigmentosa associated with apoptosis-induced mutations in carbonic anhydrase IV. Proc Natl Acad Sci USA 106:3437–3442
- De Simone G, Supuran CT (2009) Drug design of antiobesity carbonic anhydrase inhibitors. In: Supuran CT, Winum J-Y (eds) Drug design of zinc-enzyme inhibitors: functional, structural and disease applications. Wiley, Hoboken, NJ, pp 241–254
- De Simone G, Fiore A, Supuran CT (2008) Are carbonic anhydrase inhibitors suitable for obtaining antiobesity drugs? Curr Pharmaceut Des 14:655–660
- Di Fiore A, Monti DM, Scaloni A, De Simone G and Monti SM (2018) Protective role of carbonic anhydrases III and VII in cellular defense mechanisms upon redox unbalance. Oxid Med Cell Longev. Article ID 2018306, 9 p. <https://doi.org/10.1155/2018/2018.306>
- Du A, Huang S, Zhao X, Feng K, Zhang S, Huang J, Miao X, Baggi F, Ostrom RS, Zhang Y, Chen X, Xu C (2017) Suppression of CHRN endocytosis by carbonic anhydrase CAR3 in the pathogenesis of myasthenia gravis. Autophagy. <https://doi.org/10.1080/15548627.2017.1375633>
- Eskandari D, Zou D, Karimi M, Grote L, Hedner J (2014) Zonisamide reduces obstructive sleep [apnoea: a randomized placebo-controlled study. Eur Respir J 44:140–149.](https://doi.org/10.1183/09031936.00158413) https://doi.org/10. 1183/09031936.00158413
- Eskandari D, Zou D, Grote L, Hoff E, Hedner J (2018) Acetazolamide reduces blood pressure and sleep-disordered breathing in patients with hypertension and obstructive sleep apnea: a randomized controlled trial. J Clin Sleep Med 14(3):309–317
- Fossati S, Giannoni P, Solesio ME, Cocklin SL, Cabrera E, Ghiso J, Rostagno A (2016) The carbonic anhydrase inhibitor methazolamide prevents amyloid beta-induced mitochondrial dysfunction and caspase activation protecting neuronal and glial cells*in vitro* and in the mouse brain. Neurobiol Dis 86:29–40. <https://doi.org/10.1016/j.nbd.2015.11.006>
- Friedberg CK, Taymoor R, Minor JB, Halpern M (1953) The use of diamox, a carbonic anhydrase inhibitor, as an oral diuretic in patients with congestive heart failure. N Engl J Med 248(21):883– 889. <https://doi.org/10.1056/NEJM19530521482102>
- Gao BB, Clermont A, Rook S, Fonda SJ, Srinivasav VJ, Wojtkowski M, Fujimoto JG, Avery RL, Arrigg PG, Bursell S-E, Aiello LP, Feener EP (2007) Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation. Nat Med 13(2):181–188. <https://doi.org/10.1038/nm1534>
- Hayes SG (1994) Acetazolamide in bipolar affective disorders. Ann Clin Psychiatry 6(2):91–98. <https://doi.org/10.3109/10401239409148987>
- Heming N, Saïk U, Faisy C (2012) Acetazolamide: a second wind for a respiratory stimulant in the intensive care unit? Crit Care 16:318–323
- Hertle RW, Yang D, Adkinson T, Reed M (2015) Topical brinzolamide (Azopt) versus placebo in [the treatment of infantile nystagmus syndrome \(INS\). Br J Ophthalmol 99\(4\):471–476.](https://doi.org/10.1136/bjophthalmol-2014-305915) https:// doi.org/10.1136/bjophthalmol-2014-305915
- Hilvo M, Baranauskiene L, Salzano AM, Scaloni A, Matuli, D, Innocenti A, Scozzafava A, Monti SM, Di Fiore A, De Simone, Lindfors M, Jänis J, Valjakka J, Pastorekova S, Pastorek J, Kulomaa MS, Norlund HR, Supuran C, Parkkila S (2008) Biochemical characterization of CA IX, one of the most active carbonic anhydrase isozymes. J Biol Chem 283(41):27799–27809
- Hilvo M, Tolvanen M, Clark A, Shen B, Shah GN, Waheed A, Halmi HM, Hamalainen JM, Vihinen M, Sly WS, Parkkila S (2005) Characterization of CA XV, a new GPI-anchored form of carbonic anhydrase. Biochem J 392:83–92
- Hilvo M, Innocenti A, Monti SM, De Simone G, Supuran C, Parkkila S (2008) Recent advances in research on the most novel carbonic anhydrases. Curr Pharm Des 14:672–678
- Hudalla H, Michael Z, Christodoulou N, Willis GR, Fernandez-Gonzalez A, Filatava EJ, Dieffenbach P, Fredenburgh LE, Stearman RS, Geraci MW, Kourembanas S, Christou H (2019) Carbonic anhydrase inhibition ameliorates inflammation and experimental pulmonary hypertension. Am J Respir Cell Mol Biol 61(4):512–524
- Jang BG, Yun S-M, Ahn K, Song JH, Jo SA, Kim Y-Y, Kim DK, Park MH, Han C, Koh YH (2010) Plasma carbonic anhydrase II protein is elevated in Alzheimer's disease. J Alzheimers Dis 21(3):939–945. <https://doi.org/10.3233/JAD-2010-100384>
- Kazokaite J, Aspatwar A, Parkkila S, Matulis D (2017) An update on anticancer drug development and delivery targeting carbonic anhydrase IX. PeerJ 5:e4068. <https://doi.org/10.7717/peerj.4068>
- Kivelä J, Parkkila S, Parkkila AK, Rajaniemi H (1999) A low concentration of carbonic anhydrase isoenzyme VI in whole saliva is associated with caries prevalence. Caries Res 33:178–184
- Lau J, Lin K-S, Bénard F (2017) Past, present, and future: development of theranostic agents [targeting carbonic anhydrase IX. Theranostics 7\(17\):4322–4339.](https://doi.org/10.7150/thno.21848) https://doi.org/10.7150/thno. 21848
- Liao SY, Ivanov S, Ivanova A, Ghosh S, Cote MA, Keefe K, Cova-Prados M, Stanbridge EJ, Lerman MI (2003) Expression of cell surface transmembrane carbonic anhydrase genes *CA9* and *CA12* in the human eye: overexpression of *CA12* (CAXII) in glaucoma. J Med Genet 40:257–261
- Liew G, Ho I-V, Ong S, Gopinath B, Mitchell P (2020) Efficacy of topical carbonic anhydrase inhibitors in reducing duration of chronic central serous chorioretinopathy. Trans Vis Sci Tech 9(13):6–13. <https://doi.org/10.1167/tvst.9.13.6>
- Lin C, Wong BCK, Chen H, Bian Z, Zhang G, Zhang X, Riaz MK, Tyagi D, Lin G, Zhang Y, Wang J, Lu A, Yang Z (2017) Pulmonary delivery of triptolide-loaded liposomes decorated with [anti-carbonic anhydrase IX antibody for lung cancer therapy. Sci Rep 7\(1\):1097–1108.](https://doi.org/10.1038/s41598-017-00957-4) https:// doi.org/10.1038/s41598-017-00957-4
- Lipman GS, Jurkiewicz C, Winstead-Derlega C, Navylt A, Burns P, Walker A, Phillips C, Reilly A, Burnier A, Romero J, Warner K, Hackett P (2019) Day of ascent dosing of acetazolamide [for prevention of acute mountain sickness. High Alt Med Biol 20\(3\):271–278.](https://doi.org/10.1089/ham.2019.0007) https://doi.org/10. 1089/ham.2019.0007
- Li M, Wang W, Mai H, Zhang X, Wang J, Gao Y, Wang Y, Deng G, Zhou S, Chen Q, Wang X (2016) Methazolamide improves neurological behavior by inhibition of neuron apoptosis in subarachnoid hemorrhagic mice. Sci Rep 6:35055–35067. <https://doi.org/10.1038/srep35055>
- Maren TH (1987) Carbonic anhydrase: general perspectives and advances in glaucoma research. Drug Dev Res 10:255–276
- Maren TH (1952) Pharmacological and renal effects of diamox (6063), a new carbonic anhydrase inhibitor. Trans N Y Acad Sci 15(2):53. <https://doi.org/10.1111/j.2164-0947.1952.tb01153.x>
- Masini E, Carta F, Scozzafava A, Supuran CT (2013) Antiglaucoma carbonic anhydrase inhibitors: a patent review. Expert Opin Ther Pat 23:705–716
- Matsui H, Murakami M, Wynns GC, Conroy CW, Mead A, Maren TH, Sears ML (1996) Membrane carbonic anhydrase (IV) and ciliary epithelium carbonic anhydrase activity is present in the basolateral membranes of the non-pigmented ciliary epithelium of rabbit eyes. Exp Eye Res 62:409–417
- Ogilvie JM, Ohlemiller KK, Shah GN, Ulsamov B, Becker TA, Waheed A, Hennig AK, Lukasiewicz PD, Sly WS (2007) Carbonic anhydrase XIV deficiency produces a functional defect in the retinal light response. Proc Natl Acad Sci USA 104:8514–8519
- Parkkila S, Rajaniemi H, Parkkila A-K, Kivela J, Waheed A, Pastorekova S, Pastorek J, Sly WS (2000) Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells *in vitro*. Proc Natl Acad Sci USA 97:2220–2224
- Pastoreková S, Gillies R (2019) The role of carbonic anhydrase in cancer development: links to [hypoxia, acidosis and beyond. Cancer Metastasis Rev 38:65–77.](https://doi.org/10.1007/s10555-019-09799-0) https://doi.org/10.1007/s10555- 019-09799-0
- Pastoreková S, Závadová K, Koštál M, Babuošiková O, Závada J (1992) A novel quasi-viral agent, MaTu is a two-component system. Virology 187:620–626
- Pastorekova S, Parkkila S, Zavada J (2006) Tumor-associated carbonic anhydrases and their clinical significance. Adv Clin Chem 42:167–216
- Pastorek J, Pastoreková S, Callebaur I, Mornon JP, Zelnik V, Opavsky R, Zat'ovicová M, Liao S, Portelle D, Stanbridge EJ, Závada J, Burny A and Kettmann R (1994) Cloning and characterization of MN, a tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment Oncogene 9:2877–2888
- Price TO, Sheibani N, Shah GN (2017) Regulation of high glucose-induced apoptosis of brain pericytes by mitochondrial CA VA: a specific target for prevention of diabetic cerebrovas[cular pathology. Biochem Biophys Acta 1863\(4\):929–935.](https://doi.org/10.1016/jbbadis.2017.01.025) https://doi.org/10.1016/jbbadis.2017. 01.025
- Provensi P, Carta F, Nocentini A, Supuran CT, Casamenti F, Passani MB, Fossati S (2019) A new kid on the block? Carbonic anhydrases as possible new targets in Alzheimer's disease. Int J Mol Sci 20(19):4724–4740. <https://doi.org/10.3390/ijms20194724>
- Salameh TS, Shah GN, Price TO, Hayden MR, Banks WA (2016) Blood-brain barrier disruption and neurovascular unit dysfunction in diabetic mice: protection with the mitochondrial carbonic [anhydrase inhibitor topiramate. J Pharmacol Exp Ther 359:452–459.](https://doi.org/10.1124/jpet.116.237057) https://doi.org/10.1124/jpet. 116.237057
- Scozzafava A, Supuran CT, Carta F (2013) Antiobesity carbonic anhydrase inhibitors: a literature [and patent review. Expert Opin Ther Pat 23\(6\):725–735.](https://doi.org/10.1517/13543776.2013.790957) https://doi.org/10.1517/13543776.2013. 790957
- Shah GN, Ulsamov B, Waheed A, Becker T, Makani S, Svichar N, Chester M, Sly WS (2005) Carbonic anhydrase IV and XIV knockout mice: roles of the respective carbonic anhydrases in buffering the extracellular space in brain. Proc Natl Acad Sci USA 102:16771–16776
- Silberstein SB (2017) Topiramate in migraine prevention: a 2016 perspective. Headache 57(1):165– 178. <https://doi.org/10.1111/head.12997>
- Silberstein SD, Neto W, Schmitt J, Jacobs D (2004) Topiramate in migraine prevention: results of a large controlled trial. Arch Neurol 61(4):490–495. <https://doi.org/10.1001/archneur.61.4.490>
- Silberstein SB, Ben-Menachem E, Shank RP, Wiegand F (2005) Topiramate monotherapy in epilepsy and migraine. Clin Ther 27(2):154–165. <https://doi.org/10.1016/j.clinthera.2005.02.013>
- Solesio ME, Peixoto PM, Debure L, Madamba SM, de Leon MJ, Wisniewski T, Pavlov EV, Fossati S (2018) Carbonic anhydrase inhibition selectively prevents amyloid β neurovascular mitochondrial toxicity. Aging Cell 17:e12787. <https://doi.org/10.1111/acel.12787>
- Song YR, Wu B, Yang YT, Chen J, Zhang LJ, Zhang ZW, Shi HY, Huang CL, Pan JX, Xie P (2015) Specific alterations in plasma proteins during depressed, manic, and euthymic states of bipolar disorder Braz J Med Biol Res 48(11):973–982. <https://doi.org/10.1590/1414-431X20154550>
- Spencer IM, Hargreaves I, Chegwidden WR (1988) Carbonic anhydrase: a role in the control of fatty acid synthesis? Isozyme Bull 21:166
- Strong S, Liew G, Michaelides M (2017) Retinitis pigmentosa-associated cystoid macular oedma: [pathogenesis and avenues of intervention. Br J Ophthalmol 101:31–37.](https://doi.org/10.1136/brjophthalmol-2016-309376) https://doi.org/10.1136/ brjophthalmol-2016-309376
- Supuran CT (2008) Diuretics: from classical carbonic anhydrase inhibitors to novel applications of the sulfonamides. Curr Pharmaceut Des 14:641–648
- Supuran CT (2017) Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites 7:48–60. <https://doi.org/10.3390/metabo7030048>
- Supuran CT, De Simone G (eds) (2015) Carbonic anhydrases as biocatalysts. Elsevier B.V.
- Supuran CT, Nocentini A (eds) (2019) Carbonic anhydrases: biochemistry and pharmacology of an evergreen pharmaceutical target. Elsevier Inc.
- Supuran CT, Capasso C, De Simone G (2015b) Carbonic anhydrase II as target for drug design. In: Supuran CT, De Simone G (eds) Carbonic anhydrases as biocatalysts. Elsevier, B.V, pp 51–90
- Supuran CT, Altamimi ASA, Carta F (2019) Carbonic anhydrase inhibition and the management of glaucoma: a literature and patent review 2013–2019. Expert Opin Ther Pat 29(10):781–792. <https://doi.org/10.1080/13543776.2109.1679117>
- Swenson ER (2014a) Carbonic anhydrase inhibitors and high altitude illnesses. In: Frost SC, McKenna R (eds) Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications. Subcellular Biochem 75:361–386. [https://doi.org/10.1007/978-94-007-7359-2_18.](https://doi.org/10.1007/978-94-007-7359-2_18)
- Swenson ER (2014b) New insights into carbonic anhydrase inhibition, vasodilation, and treatment [of hypertensive-related diseases. Curr Hypertens Rep 16\(9\):467.](https://doi.org/10.1007/s11906-014-0467-3) https://doi.org/10.1007/s11906- 014-0467-3
- Swenson ER, Teppems LJ (2007) Prevention of acute mountain sickness by acetazolamide: as yet an unfinished story. J Appl Physiol 102:1305–1307
- Talluto DM, Wyse TB, Krupin T (1997) Topical carbonic anhydrase inhibitors. Curr Opin Ophthalmol 8(2):2–6. <https://doi.org/10.1097/00055735-199704000-00002>
- Tang Y, Xu H, Du X, Lit L, Walker W, Lu A, Ran R, Gregg JP, Reilly M, Pancioli A, Khoury JC, et al (2006) Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J Cereb Blood Flow Metab 26:1089–1102
- Tashian RE, Hewett-Emmett D, Carter N, Bergenhem NCH (2000) Carbonic anhydrase (CA)-related proteins (CA-RPs), and transmembrane proteins with CA or CA-RP domains In: Chegwidden WR, Carter, ND and Edwards, YH (eds) The carbonic anhydrases: new horizons. Birkhauser Verlag, Basel, pp 105–120
- Thiry A, Dogné J-M, Masareel B, Supuran CT (2006) Targeting tumor-associated carbonic anhy[drase IX in cancer therapy. Trends Pharmacol Sci 27911:566–573.](https://doi.org/10.1016/j.tips.2006.09.002) https://doi.org/10.1016/j.tips. 2006.09.002
- Thurtell MJ,Wall M (2013) Idiopathic intracranial hypertension (pseudotumor cerebri): recognition, treatment, and ongoing management. Curr Treat Options Neurol 15(1):1–12
- Van Berkel MA, Elefritz JL (2018) Evaluating off-label uses of acetazolamide. Am J Health Syst Pharm 75(8):524–531. <https://doi.org/10.2146/ajhp170279>
- Wang T, Eskandari D, Zou D, Grote L, Hedner J (2015) Increased carbonic anhydrase activity is [associated with sleep apnea severity and related hypoxemia. Sleep 38\(7\):1067–1073.](https://doi.org/10.5665/sleep.4814) https://doi. org/10.5665/sleep.4814
- Wistrand P (2000) Carbonic anhydrase inhibition in ophthalmology: carbonic anhydrases in cornea, lens, retina and lacrimal gland. In: Chegwidden WR, Carter, ND and Edwards, YH (eds) The carbonic anhydrases: new horizons. Birkhauser Verlag, Basel, pp 413–424
- Wolfensberger TJ (1999) The role of carbonic anhydrase inhibitors in the management of macular edema. Doc Ophthalmol 97(3–4):387–397. <https://doi.org/10.1023/a:1002143802926>
- [Wolfensberger TJ \(2017\) Macular edema—rationale for therapy. Dev Ophthalmol 58:74–86.](https://doi.org/10.1159/000455275) https:// doi.org/10.1159/000455275
- Závada J, Závadová Z, Pastoreková S, Ciampor F, Pastorek J, Zelnick V (1993) Expression of MaTu-MN protein in human cultures and in clinical specimens. Int J Cancer 54:268–274
- Zavala-Tecuapetla C, Cuellar-Herrera M, Luna-Munguia H (2020) Insights into potential targets [for therapeutic intervention in epilepsy. Int J Mol Sci 21:8473–8626.](https://doi.org/10.3390/ijms21228573) https://doi.org/10.3390/ijm s21228573
- Zhang H, Liu D, Wang L, Liu Z, Wu R, Janoniene A, Ma M, Pan, G, Baranauskiene L, Zhang L, Cui W, Petrikaite V, Matulis D, Zhao H, Pan J, Santos HA (2017) Microfluid encapsulation of prickly zinc-doped copper oxide nanoparticles with VD1142 modified spermine acetalated dextran for efficient cancer therapy. Adv Healthc Mater 6(11). <https://doi.org/10.1002/adhm.201601406>
- Zhuang GZ, Keeler B, Grant J, Bianchi L, Fu ES, Zhang YP, Erasso DM, Cui J-G, Wiltshire T, Li Q, Hao SKD, Candiotti K, Wishnek SM, Smith SB, Maixner W, Diatchenko L, Martin ER, Levitt RC (2015) Carbonic anhydrase-8 regulates inflammatory pain by inhibiting the ITPR1-cytosolic free calcium pathway. PLoS One 10(3):e0118273. <https://doi.org/10.1371/journal.pone.0118273>
- Zhuang GZ, Upadhyay U, Tong X, Kang Y, Erasso DM, Fu ES, Sarantopoulos KD, Martin ER, Wiltshire T, Diatchenko L, Smith SB, Maixner W, Levitt RC (2018) Human carbonic anhydrase-8 AAV8 gene therapy inhibits nerve growth factor signaling producing prolonged analgesia and anti-hyperalgesia in mice. Gene Ther 25(4):297–311. <https://doi.org/10.1038/s41434-018-0018-7>
- Zimmerman UJ, Wang P, Zhang X, Bogdanovich S, Forster R (2014) Anti-oxidative response of carbonic anhydrase III in skeletal muscle. IUBMB Life 56:343–347