
Xin He
En Shao
Guangming Tan (Eds.)

LN
CS

 1
26

39

17th IFIP WG 10.3 International Conference, NPC 2020
Zhengzhou, China, September 28–30, 2020
Revised Selected Papers

Network and
Parallel Computing

Lecture Notes in Computer Science 12639

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Xin He • En Shao • Guangming Tan (Eds.)

Network and
Parallel Computing
17th IFIP WG 10.3 International Conference, NPC 2020
Zhengzhou, China, September 28–30, 2020
Revised Selected Papers

123

Editors
Xin He
Institute of Computing Technology
Chinese Academy of Sciences
Beijing, China

En Shao
Institute of Computing Technology
Chinese Academy of Sciences
Beijing, China

Guangming Tan
Institute of Computing Technology
Chinese Academy of Sciences
Beijing, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-79477-4 ISBN 978-3-030-79478-1 (eBook)
https://doi.org/10.1007/978-3-030-79478-1

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© IFIP International Federation for Information Processing 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-79478-1

Preface

These proceedings contain the papers presented at the 17th IFIP International Con-
ference on Network and Parallel Computing (NPC 2020), held in Zhengzhou, Henan,
China, during September 28–30, 2020. The goal of the conference series is to establish
an international forum for engineers and scientists to present their excellent ideas and
experiences in system fields of distributed and parallel computing.

A total of 95 submissions were received in response to our call for papers. These
papers originated from Asia (China and Japan), Africa, and North America (USA).
Each submission was sent to at least three reviewers. Each paper was judged according
to its originality, innovation, readability, and relevance to the expected audience. Based
on the reviews received, 34 full papers (about 35%), comprising 12 papers published as
Special Issue papers in the International Journal of Parallel Programming and 22
papers published as LNCS proceedings, were retained. A number of strong papers that
could not be accepted to the full-paper track were considered for the short-paper track.
Finally, we selected seven short papers. These papers cover traditional areas of network
and parallel computing, including parallel applications, distributed algorithms, parallel
architectures, software environments, and distributed tools.

We share the view that, during the past decade, the tools and cultures of
high-performance computing and big data analytics are diverging to the detriment of
both, and the international community should find a unified path that can best serve the
needs of a broad spectrum of major application areas. Unlike other tools, which are
limited to particular scientific domains, computational modeling and data analytics are
applicable to all areas of science and engineering, as they breathe life into the
underlying mathematics of scientific models. We sincerely appreciate the work and
effort of the authors in preparing their submissions for review, and addressing the
reviewer’ comments before submitting the camera-ready copies of their accepted
papers, and attending the conference to present and discuss their work. We also want to
thank every member of the NPC 2020 Organizing Committee and Steering Committee
for their help in putting together such an exciting program. Finally, we thank all the
attendees.

September 2020 Xin He

Organization

General Co-chairs

Kemal Ebcioglu Global Supercomputing Corporation, USA
Zhiwei Xu Institute of Computing Technology, Chinese Academy

of Sciences, China

Program Co-chairs

Guang R. Gao University of Delaware, USA
Guangming Tan Institute of Computing Technology, Chinese Academy

of Sciences, China

Local Arrangements Co-chairs

Bohu Huang Xidian University, China
Xianyu Zuo Henan University, China

Publicity Co-chairs

Liang Yuan Institute of Computing Technology, Chinese Academy
of Sciences, China

Jiajia Li Pacific Northwest National Laboratory, USA
Qiguang Miao Xidian University, China
Stéphane Zuckerman Université de Cergy-Pontoise, France

Publication Chair

Xin He Institute of Computing Technology, Chinese Academy
of Sciences, China

Web Chair

En Shao Institute of Computing Technology, Chinese Academy
of Sciences, China

Steering Committee

Kemal Ebcioglu (Chair) Global Supercomputing, USA
Hai Jin (Vice Chair) HUST, China
Chen Ding University of Rochester, USA
Jack Dongarra University of Tennessee, USA

Guangrong Gao University of Delaware, USA
Jean-Luc Gaudiot UCI, USA
Tony Hey Science and Technology Facilities Council, UK
Guojie Li Institute of Computing Technology, Chinese Academy

of Sciences, China
Yoichi Muraoka Waseda University, Japan
Viktor Prasanna USC, USA
Daniel Reed University of Utah, USA
Weisong Shi Wayne State University, USA
Ninghui Sun Institute of Computing Technology, Chinese Academy

of Sciences, China
Zhiwei Xu Institute of Computing Technology, Chinese Academy

of Sciences, China

Program Committee

Quan Chen Shanghai Jiao Tong University, China
Lizhong Chen Oregon State University, USA
Huimin Cui Institute of Computing Technology, Chinese Academy

of Sciences, China
Dezun Dong NUDT, China
Guang R. Gao (Co-chair) University of Delaware, USA
Xin He Institute of Computing Technology, Chinese Academy

of Sciences, China
Bohu Huang Xidian University, China
Weile Jia University of California, Berkeley, USA
Keiji Kimura Waseda University, Japan
Dong Li University of California, Merced, USA
Jiajia Li Pacific Northwest National Laboratory, USA
Chao Li Shanghai Jiao Tong University, China
Weifeng Liu China University of Petroleum, China
Minutoli Marco Pacific Northwest National Laboratory, USA
Qiguang Miao Xidian University, China
Israt Nisa Ohio State University
Bin Ren The College of William & Mary, USA
En Shao Institute of Computing Technology, Chinese Academy

of Science, China
Shaden Smith Microsoft AI and Research, USA
Arthur Stoutchinin ST Microelectronics, France
Guangzhong Sun University of Science and Technology of China, China
Guangming Tan (Co-chair) Institute of Computing Technology, Chinese Academy

of Sciences, China
Dingwen Tao WSU, USA
Parimala Thulasiram University of Manitoba, Canada
Cornelis Vuik Delft University of Technology, the Netherlands
Bo Wu Colorado School of Mines, USA

viii Organization

Junmin Xiao Institute of Computing Technology, Chinese Academy
of Sciences, China

Xiaowen Xu IAPCM, China
Hailong Yang Beihang University, China
Zhibin Yu Shenzhen Institutes of Advanced Technology, China
Jidong Zhai Tsinghua University, China
Feng Zhang Renmin University of China, China
Tao Zhang Shanghai University, China
Weihua Zhang Fudan University, China
Mingzhe Zhang Institute of Computing Technology, Chinese Academy

of Sciences, China

Organization ix

Contents

Accelerator

Compiler-Assisted Operator Template Library for DNN Accelerators. 3
Jiansong Li, Wei Cao, Xiao Dong, Guangli Li, Xueying Wang, Lei Liu,
and Xiaobing Feng

A Dynamic Mapping Model for General CNN Accelerator
Based on FPGA . 17

Xiaoqiang Zhao, Jingfei Jiang, Zhe Han, Jinwei Xu, and Zhiqiang Liu

A Dynamic Protection Mechanism for GPU Memory Overflow 30
Yaning Yang, Xiaoqi Wang, and Shaoliang Peng

AI

MTLAT: A Multi-Task Learning Framework Based on Adversarial
Training for Chinese Cybersecurity NER . 43

Yaopeng Han, Zhigang Lu, Bo Jiang, Yuling Liu, Chen Zhang,
Zhengwei Jiang, and Ning Li

Learning-Based Evaluation of Routing Protocol in Vehicular Network
Using WEKA . 55

Amal Hadrich, Amel Meddeb Makhlouf, and Faouzi Zarai

Accelerating Large-Scale Deep Convolutional Neural Networks
on Multi-core Vector Accelerators . 68

Zhong Liu, Sheng Ma, Cheng Li, and Haiyan Chen

M-DRL: Deep Reinforcement Learning Based Coflow Traffic Scheduler
with MLFQ Threshold Adaption . 80

Tianba Chen, Wei Li, YuKang Sun, and Yunchun Li

A Close Look at Multi-tenant Parallel CNN Inference
for Autonomous Driving . 92

Yitong Huang, Yu Zhang, Boyuan Feng, Xing Guo, Yanyong Zhang,
and Yufei Ding

A Multi-model Super-Resolution Training and Reconstruction Framework . . . 105
Ninghui Yuan, Dunbo Zhang, Qiong Wang, and Li Shen

Deep Visible and Thermal Image Fusion with Cross-Modality Feature
Selection for Pedestrian Detection . 117

Mingyue Li, Zhenzhou Shao, Zhiping Shi, and Yong Guan

LCache: Machine Learning-Enabled Cache Management in Near-Data
Processing-Based Solid-State Disks . 128

Hui Sun, Shangshang Dai, Qiao Cui, and Jianzhong Huang

Security Situation Prediction of Network Based on Lstm Neural Network . . . 140
Liqiong Chen, Guoqing Fan, Kun Guo, and Junyan Zhao

Algorithm

Dynamic GMMU Bypass for Address Translation in Multi-GPU Systems . . . 147
Jinhui Wei, Jianzhuang Lu, Qi Yu, Chen Li, and Yunping Zhao

Parallel Fast DOA Estimation Algorithm Based on SML
and Membrane Computing . 159

Xiaofeng Bai, Huajun Song, and Changbo Xiang

Segmented Merge: A New Primitive for Parallel Sparse Matrix
Computations . 170

Haonan Ji, Shibo Lu, Kaixi Hou, Hao Wang, Weifeng Liu,
and Brian Vinter

A Hierarchical Model of Control Logic for Simplifying Complex Networks
Protocol Design . 182

Yi Yang, Wei Quan, Jinli Yan, Lu Tang, and Zhigang Sun

Architecture and Hardware

FPGA-Based Multi-precision Architecture for Accelerating Large-Scale
Floating-Point Matrix Computing . 191

Longlong Zhang, Yuanxi Peng, Xiao Hu, Ahui Huang, and Tian Tian

A Configurable Hardware Architecture for Runtime Application
of Network Calculus . 203

Xiao Hu and Zhonghai Lu

FEB3D: An Efficient FPGA-Accelerated Compression Framework
for Microscopy Images . 217

Wanqi Liu, Yewen Li, Dawei Zang, and Guangming Tan

NUMA-Aware Optimization of Sparse Matrix-Vector Multiplication
on ARMv8-Based Many-Core Architectures . 231

Xiaosong Yu, Huihui Ma, Zhengyu Qu, Jianbin Fang, and Weifeng Liu

xii Contents

CARAM: A Content-Aware Hybrid PCM/DRAM Main Memory
System Framework . 243

Yinjin Fu and Yang Wu

Big Data and Cloud

Optimization of RDMA-Based HDFS Data Distribution Mechanism 251
Xiao Zhang, Binbin Liu, Junhao Zhao, and Cong Dong

Reducing the Time of Live Container Migration in a Workflow 263
Zhanyuan Di, En Shao, and Mujun He

RDMA-Based Apache Storm for High-Performance Stream
Data Processing . 276

Ziyu Zhang, Zitan Liu, Qingcai Jiang, Zheng Wu, Junshi Chen,
and Hong An

Payment Behavior Prediction and Statistical Analysis for Shared
Parking Lots. 288

Qingyu Xu, Feng Zhang, Mingde Zhang, Jidong Zhai, Jiazao Lin,
Haidi Liu, and Xiaoyong Du

Edge Computing

Location-Based Service Recommendation for Cold-Start in Mobile Edge
Computing . 297

Mengshan Yu, Guisheng Fan, Huiqun Yu, and Liang Chen

An Adaptive Delay-Limited Offloading Scheme Based on Multi-round
Auction Model for Mobile Edge Computing. 310

Huamei Qi, Yiran Wang, Su Jiang, Chunmeng Yang, and Jia Wu

An Efficient Data Transmission Strategy for Edge-Computing-Based
Opportunistic Social Networks . 323

Jingwen Luo, Jia Wu, and Yuzhou Wu

Emering

Shadow Data: A Method to Optimize Incremental Synchronization
in Data Center . 339

Changjian Zhang, Deyu Qi, and Wenhao Huang

DROAllocator: A Dynamic Resource-Aware Operator
Allocation Framework in Distributed Streaming Processing 349

Fan Liu, Zongze Jin, Weimin Mu, Weilin Zhu, Yun Zhang,
and Weiping Wang

Contents xiii

A Medical Support System for Prostate Cancer Based on Ensemble Method
in Developing Countries . 361

QingHe Zhuang, Jia Wu, and GengHua Yu

The Entry-Extensible Cuckoo Filter . 373
Shuiying Yu, Sijie Wu, Hanhua Chen, and Hai Jin

Monitoring Memory Behaviors and Mitigating NUMA Drawbacks
on Tiered NVM Systems . 386

Shengjie Yang, Xinyu Li, Xinglei Dou, Xiaoli Gong, Hao Liu, Li Chen,
and Lei Liu

Network

TPL: A Novel Analysis and Optimization Model for RDMA
P2P Communication . 395

Zhen Du, Zhongqi An, and Jing Xing

Connectivity and Routing Algorithm of the Data Center Network HSDC 407
Hui Dong, Jianxi Fan, Baolei Cheng, Yan Wang, and Jingya Zhou

CCRP: Converging Credit-Based and Reactive Protocols in Datacenters. 420
Yang Bai, Dinghuang Hu, Dezun Dong, Shan Huang, and Xiangke Liao

Storage

CompressedCache: Enabling Storage Compression on Neuromorphic
Processor for Liquid State Machine . 437

Zhijie Yang, Rui Gong, Lianhua Qu, Ziyang Kang, Li Luo, Lei Wang,
and Weixia Xu

ODCP: Optimizing Data Caching and Placement in Distributed File System
Using Erasure Coding . 452

Shuhan Wu, Yunchun Li, Hailong Yang, Zerong Luan, and Wei Li

Towards Optimizing Deduplication on Persistent Memory 465
Yichen Li, Kewen He, Gang Wang, and Xiaoguang Liu

Author Index . 479

xiv Contents

Accelerator

Compiler-Assisted Operator Template
Library for DNN Accelerators

Jiansong Li1,2, Wei Cao1, Xiao Dong1,2, Guangli Li1,2, Xueying Wang1,2,
Lei Liu1(B), and Xiaobing Feng1,2(B)

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
{lijiansong,caowei,dongxiao,liguangli,wangxueying,liulei,fxb}@ict.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Despite many dedicated accelerators are gaining popular-
ity for their performance and energy efficiency in the deep neural net-
work (DNN) domain, high-level programming support for these accel-
erators remains thin. In contrast to existing researches targeting the
whole DNNs, we choose to dive into details and review this problem
from a finer-grained level, operators. Due to performance concerns, oper-
ator programmers may have to take hand-written assembly as their first
choice, which is error-prone and involves many programming chores. To
alleviate this problem, we propose TOpLib, a compiler-assisted template
library. By providing a unified user-view abstraction, TOpLib allows pro-
grammers to express computational kernels with high-level tensor prim-
itives, which will be automatically lowered into low-level intrinsic prim-
itives via expression templates. Moreover, considering memory manage-
ment is performance critical and the optimization strategy of expres-
sion template is limited to enumeration based rewriting rules, we imple-
ment TOpLib with a compiler-assisted approach. We address the memory
reuse challenges into the compiler, which allows TOpLib to make full use
of on-chip buffers and result in better performance. Experiments over 55
typical DNN operators demonstrate that TOpLib can generate scalable
code with performance faster than or on par with hand-written assembly
versions.

Keywords: DNN accelerators · Template library · Address space
management

1 Introduction

In recent years, many dedicated DNN accelerators are gaining popularity for
their energy and performance efficiency. They have been deployed in embedded
devices, servers and datacenters [1,12]. These accelerators focus on specific cus-
tomization for the computations of DNNs. Typically, DNNs are usually expressed
as computation graphs, where nodes represent basic operations (namely oper-
ators, e.g., convolution, pooling, activation), edges refer to data consumed or
produced by these operators. These operators can be offloaded to accelerators
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 3–16, 2021.
https://doi.org/10.1007/978-3-030-79478-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_1

4 J. Li et al.

to speed up computation. In this paper, we focus on the programming problems
puzzling the underlying operator programmers. Due to performance concerns,
they may have to take hand-written assembly as their first programming choice.
Coding a highly tuned operator kernel usually requires expert knowledge to
manage every hardware detail, which involves a plethora of low-level program-
ming chores. To illustrate, we use a simple feedforward MLP kernel with the
sigmoid activation function as an example. The main computations are as fol-
lows: y = ϕ(

∑n
i=1 wixi + b) = ϕ(wT x + b), where ϕ(x) = ex/(1 + ex). Figure 1a

shows the implementation of feedforward MLP kernel at Cambricon-ACC [15]
accelerator via hand-written assembly. For the sake of brevity, we omit the ker-
nel explanation details. But for now it suffices to see that even this trivial MLP
implementation involves many low-level programming chores. For example, the
vector-vector and matrix-vector instructions, e.g., VAV and MMV, usually need
special registers to store the memory address and the size of input data. Pro-
grammers have to manually allocate these registers and track the lifetime of each
memory blocks, which is burdensome and error-prone. Besides, these CISC style
instructions usually have special address alignment requirements, programmers
have to manually check the address alignment of each memory block. This kind
of low-level coding is very typical during the development of DNN operators.

To alleviate the low-level programming issues, we propose a compiler-assisted
template library for operator programmers, namely TOpLib (short for Tensor
Operator Library). TOpLib follows the philosophy of decoupling the program-
mers’ view from the diversity of underlying hardwares. It provides an user-view
abstraction for DNN accelerators. It uses C-like syntax as the surface language
to represent abstract data types and operations. In terms of implementation,
we can integrate the abstract data type and corresponding operations inside
compiler or wrap a template library that optimizes at compile-time. The former
may be straightforward and strong, but requires much engineering effort, posing
a great challenge to compiler maintainers. The latter would be much more eas-
ily achieved by taking use of the meta-programming technique called expression
template. But for the latter, the optimization strategy is limited to enumeration
based rewriting rules. In this paper, we propose a hybrid approach to implement
TOpLib. TOpLib relies on the meta-programming capability of the programming
language provided by the DNN accelerators, e.g., expression template and oper-
ator overloading. Considering the memory management is performance critical,
we use a compiler-assisted method to address the memory reuse challenges.

The rest of this paper proceeds as follows: Sect. 2 introduces the design prin-
ciples of TOpLib. The implementation details are presented in Sect. 3. Section 4
describes experiment results. Section 5 and 6 discuss the related work and con-
clude respectively.

2 Design

2.1 User-View Abstraction

For most reconfigurable DNN accelerators, there are at least three levels of mem-
ory hierarchy: off-chip memory (DRAM), on-chip scratchpad memory (SPM)

Compiler-Assisted Operator Template Library for DNN Accelerators 5

(a) MLP implementation via hand-
written assembly at Cambricon-ACC.

(b) MLP implementation via high-level tensor
algorithmic primitives of TOpLib.

Fig. 1. MLP implementation at Cambricon-ACC via hand-written assembly and
TOpLib’s high-level tensor algorithmic primitives. For (a), note the ISA-level descrip-
tion with careful on-chip buffer layout design, manual register allocation and intentional
memory address alignment checking.

and registers. Unlike the caches of CPUs, which are managed by the hardware
automatically and are invisible to programmers, the on-chip buffers of DNN
accelerators are usually explicitly managed by programmers due to performance
and power concerns. To simplify the programmability of DNN accelerators, we
hide the hardware execution details and expose the performance critical parts
to programmers.

Figure 2b shows View-ACC, an user-view abstraction for DNN accelerators.
View-ACC consists of computation cores and on-chip SPMs, connected with wide
buses to off-chip memory. Intuitively, the computation cores are responsible for
the execution of DNN primitive operations, which will be thoroughly discussed
in Sect. 2.3. The on-chip SPMs are abstractions for the on-chip buffers of DNN
accelerators. They are fast but with size limitation, and are visible to operator
programmers and compiler. They usually play the role of caching partial input
data and temporary computational results. While the off-chip DRAMs are large
but slow. They are used for the storage of large quantity DNN parameters and
input/output data required by operators. The communications between the on-
chip SPMs and the off-chip DRAMs are accomplished through explicit DMA
load and store instructions.

(a) Prototype architecture of
Cambricon-ACC [15].

(b) View-ACC: user-view abstraction
of DNN accelerators.

Fig. 2. The architectural details of Cambricon-ACC and its user-view abstraction. The
dashed arrow in (b) means there is a potential data-path between computation cores
and off-chip DRAM.

6 J. Li et al.

Let’s take Cambricon-ACC (Fig. 2a) as an example. Cambricon-ACC is a
prototype DNN accelerator, which is based on the Cambricon DNN ISA [15]. In
Cambricon-ACC, the off-chip DRAM is used for input and output data of DNN
workloads. While the on-chip SPMs for vector and matrix function units, which
are used for caching of neural and synapse data, can be treated as the on-chip
SPMs of View-ACC. The scalar, vector and matrix function unit in Cambricon-
ACC can be treated as the computation cores of View-ACC. Other architec-
tural components in Cambricon-ACC, e.g., reorder buffer, issue queue, fetch and
decode components can be regarded as hardware implementation details, which
are invisible to programmers. View-ACC hides the hardware execution details
and exposes the performance critical parts to the programmers. Programmers
can be released from the inner hardware execution details.

2.2 Memory Abstraction

Well-organized programs usually make frequent use of structs or classes. Array
of Structures (AoS) and Structure of Arrays (SoA) describe the common tech-
niques for organizing multiple structs/objects in memory [21]. In AoS, all fields
of a struct are stored together. In SoA, all values of a fields of a struct are stored
together. By our previous engineering efforts, we find that DNN operators are
usually implemented in the SoA fashion. SoA benefits from the on-chip buffer
utilization and is SIMD-friendly. However, in the DNN domain, the data par-
ticipating in computation is usually high dimensional, not a single flat array.
Therefore, we need a high-level type system with tensor as a first-class type.
Tensor is a mathematical concept, which generalizes vector and matrix to higher
ranks.

TOpLib represents tensor as the first-class type with address space specifier,
an element type and shapes. Taking the memory hierarchy of DNN accelerators
into consideration, TOpLib represents the hardware memory types by associ-
ating data with address spaces. All data will be expressed by aggregate type
Tensor. Its definition will be like this, Tensor <A, T, d0, d1, ..., dn−1>, where
A denotes the address space of data. For Cambricon-ACC, its value can be
NEURAL, SYNAPSE or DATA, which denotes the on-chip vector SPM, matrix
SPM and off-chip DRAM respectively; T describes the data type, its value can
be int, float, half (16-bit signed floats) and quantized non-floating-point val-
ues such as currently supported i8 (8-bit signed integers); di represents the i-th
dimension of the tensor. For a static tensor, the value of each dimension must
be a compile-time known integer. For example, a single 32 by 32 image with
3 channels of color values between 0 and 255 stored in the off-chip DRAM of
Cambricon-ACC, could be represented by Tensor <DATA, i8, 3, 32, 32>.

2.3 Computation Abstraction

Table 1 lists up the most relevant tensor primitives for typical DNN workloads.
To decouple the user-view from the diversity of underlying hardwares, TOpLib

Compiler-Assisted Operator Template Library for DNN Accelerators 7

Table 1. High-level algorithmic primitives and low-level instrinsic primitives.

High-level algorithmic primitives

[T]AS = map(f, [T]AS) Apply f to each element of given tensor

[T]AS = zip(f, [T]AS , [T]AS) Apply f to each pair of corresponding
elements of given two tensors

[T]AS1 = reduce(⊕, [T]AS0) Collapse given tensor with the associative
binary operator ⊕

[T]Ao
So

= conv([T]Av
Sv

, α1, [T]
Ah
Sh

, α2) Convolve input tensor v with range α1 and a
polynomial filter tensor h with range α2

[T]AS1 = pool([T]AS0 , α, ⊕) Combine adjacent elements of given tensor at
region α by a reduction operation ⊕

[T]ASc
= matmul([T]ASa

, [T]ASb
) Multiply two input 2-order tensors, i.e.,

matrices

[T]
Adst
Sdst

= load([T]Asrc
Ssrc

, size) Load size bytes of data from source tensor src

store([T]Asrc
Ssrc

, [T]
Adst
Sdst

, size) Store size bytes of data from source tensor src
into destination tensor dst

Low-level intrinsic primitives

map(f, p1, p0, n) Apply f to n elements starting at memory
position p0 and store results into p1

zip(f, p2, p0, p1, n) Apply f to binary element-wise pair of n
elements starting from p0 and p1 and store
results into p2

reduce(⊕, p1, p0, n) Collapse n elements starting from p0 with
associative binary operator ⊕ and store result
to p1

conv(po, no, pv, nv, α1, ph, nh, α2) Convolution: vα1 � hα2 → o

pool(p1, n1, p0, n0, α, ⊕) Pooling n0 elements starting from p0 at region
α by a reduction operation ⊕ and store the n1

results to p1

matmul(pa, na, pb, nb, pc, nc) Matrix multiplication: a ⊗ b → c

load(pdst, psrc, size) Load: pdst
size←−− psrc

store(psrc, pdst, size) Store: psrc
size−−→ pdst

defines two-level tensor primitives. Programmers express operators with high-
level tensor algorithmic primitives. And these algorithmic primitives will be
lowerred into low-level intrinsic primitives. The low-level intrinsic primitives are
listed at the bottom of Table 1. They are abstractions for the ISAs of DNN
accelerators, which present as compiler builtin functions.

High-Level Algorithmic Primitives. In Table 1, we write [T]AS for a tensor
of data type T with a shape S at the address space A. Primitives map and zip
are element-wise computational patterns. In the DNN domain, typical activation

8 J. Li et al.

Table 2. Breakdown of execution time for each high-level algorithmic primitives in
common DNN workloads. Note that primitive load and store is an abstraction for the
data movement between off-chip DRAMs and on-chip SPMs, we omit them for CPUs.

Workloads map zip reduce conv pool matmul

AlexNet [13] 13.26% 12.07% – 40.50% 3.39% 30.76%

GoogLeNet [22] 19.44% 17.30% – 37.16% 25.86% 0.24%

Inception-V3 [23] 9.75% 6.65% – 69.21% 14.08% 0.31%

MobileNetV1 [10] 21.05% 20.28% – 58.37% 0.28% –

ResNet50 [8] 18.06% 21.21% – 58.55% 1.83% 0.35%

SqueezeNet [11] 11.27% 3.45% – 63.37% 21.88% –

VGG16 [20] 6.02% – – 75.77% 5.26% 12.94%

K-NN [3] – – 99.73% – – –

SVM [9] 0.27% 0.14% 99.34% – – –

and normalization operators can be expressed with map and zip primitives. For
the reduce primitive, its operator ⊕ can be min, max or sum. Primitive conv
denotes convolution operation, which can be expressed with vα1 � hα2 . This
expression convolves an input image v with range α1 and a filter kernel h with
range α2. Primitive pool is a pooling operation. Its reduce operator ⊕ can be max,
average or min. The primitive matmul represents for the matrix multiplication
operation, which is usually used to express the inner product operations of fully
connected layers in DNNs. While primitives load and store are abstractions of
the data movement operations between the on-chip SPMs and off-chip DRAMs.

Low-Level Intrinsic Primitives. DNN accelerators usually provide SIMD
instructions to accelerate computations. These SIMD instructions usually have
the requirements of specific memory alignment and data layout. These low-level
intrinsic primitives present as compiler builtin functions (see Table 1 below).
Intrinsic primitives map and zip represent for element-wise instructions, such
as the ReLU activation and vector addition. The reduce intrinsic functions con-
sist of reduce min, max, sum. For Cambricon-ACC, the convolution, pooling
and matrix multiplication intrinsic primitives have specific data layout require-
ments. The data layout of their input filters must follow the NHWC (N: batch
size, H: height, W: width, C: channel) layout requirement. Primitives load and

store denote the DMA communications between the on-chip SPMs and off-chip
DRAM.

To demonstrate the representativeness of these high-level tensor primitives,
we select several common DNNs running with ImageNet [5] dataset and typical
ML workloads. We decompose their CPU execution time (Table 2). Obviously,
these high-level algorithmic primitives characterize the DNN workloads mainly.
Figure 1b shows the feedforward MLP operator kernel written by high-level algo-
rithmic primitives of TOpLib. In this case, binary arithmetic symbols, e.g., plus

Compiler-Assisted Operator Template Library for DNN Accelerators 9

and slash are syntactic sugars for element-wise addition and division zip prim-
itives. Compared with hand-written assembly version in Fig. 1a, MLP operator
written by high-level algorithmic primitives are more intuitive to understand.

(a) Expression tree of MLP kernel. (b) Low-level instrinsic functions after low-
ering from high-level algorithmic primitives.

Fig. 3. Tensor expression tree of the feedforward MLP operator and the low-level
instrinsic functions. In (b), tensor add and tensor div are the low-level zip prim-
itives; exp and scale add are the low-level map primitives.

3 Implementation

There are two ways to implement the tensor type system, i.e., integrate tensor
type and the corresponding operations inside compiler or wrap a template library
that optimizes at compile-time. The former is straightforward and strong, but
requires much engineering effort. The latter would be much more easily achieved
by taking use of the meta-programming technique called expression template.
But for the latter, the optimization strategy is limited to enumeration based
rewriting rules. Due to performance concerns, we implement TOpLib with a
hybrid approach.

3.1 Expression Template

We use expression template to implement the mappings between high-level algo-
rithmic primitives and low-level intrinsic primitives. Expression template is a
tricky implementation technique that uses the static evaluation abilities of com-
pilers together with templates to construct a static expression tree at compile
time [19,24]. Figure 3a shows expression tree of the feedforward MLP kernel. The
trick of expression template is done by letting operations and functions return
abstracted operation objects that contain all necessary information to con-
struct the expression tree, instead of calculating the result themselves. Through

10 J. Li et al.

the use of template meta-programming, it is even possible to manipulate the
expression tree at compile time to apply algebraic transformations (enumeration
based rewriting rules). For example, we define fst as a notational shorthand for
map(fst, x), where x is a n-order tensor, marked as [x0, x1, ..., xn−1], i.e., an
array of tuples. Function fst yields a tensor which is composed of the first com-
ponent of each tuple in x, i.e., fst(x) = [x(0)

0 , x
(0)
1 , ..., x

(0)
n−1]. Programmers wrote

such an algorithmic expression y = fst(reduce(+0, x)) 1©, where reduce operator
+0 means apply a reduction summation along the first dimension of the input
tensor x. TOpLib will transform this expression into y = reduce(+0, fst(x)) 2©.
Obviously, reduce operation +0 is more computation-intensive than the map
operation fst. Compared with expression 1©, the fst operation in 2© can filter
out input data of the reduce operation and maintain the original semantics. This
transformation can eliminate redundant computations, and thereby reducing the
overall cost.

3.2 Compiler-Assisted Optimizations

Considering the optimization strategy of expression template is limited to enu-
meration based rewriting rules, we conduct some compiler-assisted optimizations
to guarantee performance.

Algorithm 1. Address Space Inference Optimization
Input : K, kernel program of current DNN operator;
Output: M, a map of pointers in a specific address space;
for Each kind of address space ASi; do

GS = ∅; // Collect all pointers guaranteed in address space ASi

for Each pointer P used in kernel K; do
if P is guaranteed to point to ASi; then

GS.insert(P);

S = ∅; // Assume that all derived pointers point to ASi

for Each instruction I in K returning a pointer type; do
if I is derived from other pointers; then

S.insert(I);

// Iteratively prove that they are in address spaces other than ASi

bool changed = true;
while changed do

changed = false;
for Each instruction I in K that is GEP, bitcast or PHINode; do

for Each source Src of instruction I; do
if Src not in GS and Src not in S; then

S.remove(I);
changed = true;

M[ASi] = S ∪ GS;

return M;

Memory Address Space Inference. As shown in Fig. 3b, the memory address
space type qualifiers only apply to variable declarations, so compiler must infer
the address space of a pointer derived from a variable. Besides, knowing the
address space of memory accessing allows to emit faster load and store instruc-
tions. For example, a load from on-chip SPM is usually faster than the load from

Compiler-Assisted Operator Template Library for DNN Accelerators 11

off-chip memory. We address this challenge using a compiler-assisted optimiza-
tion pass (Algorithm 1). We implemente the address space inference through a
fixed-point data-flow analysis [16]. The compiler runs propagate on K for each
address space ASi. It first assumes all derived pointers (via pointer arithmetic)
point to ASi. Then, it iteratively reverts that assumption for pointers derived
from another one that is not guaranteed in ASi. finally, GS and S combined
contains all pointers in memory space ASi.

Algorithm 2. On-Chip Memory Reuse and Off-Chip Data Promotion
Input : K, kernel program of current DNN operator;
Output: P, a set of memory partitions to be created;
SB = ∅;// SB is a set of tensor memory blocks in K
for Each variable V in K; do

if GetDataType(V) is aggregate type then
Get address space and size of V;// record meta-data of current block
SB.insert(V);
Get live ranges of V by data flow analysis;

for Each kind of address space ASi; do
Build interference graph IG(V, E), where:
- V = { Bi′ ∈ SB | GetAddressSpace(Bi′)=ASi};
- E is an undirected edge connecting two memory blocks (Bs, Bt), if live ranges of Bs

and Bt overlap;
Coloring IG with greedy strategy;
for vertices in IG.V with the same color; do

Choose maximum size of colored memory blocks as current partition size;

Reallocate partitions P for memory blocks;
if V.size() != P.size() then

// reuse happens
Promote partial off-chip data into remaining on-chip memory;

return P;

Memory Allocator and Reuse Optimization. Consider the motivation
example in Fig. 4a, where memory blocks B1-B5 need to be allocated to a cer-
tain memory region. Assume the on-chip SPMs capacity of the DNN accelerator
is 256K. If compiler takes a naive linear allocator for these memory blocks, i.e.,
map each block to distinct memory locations (Fig. 4b), they will exceed the total
capacity of on-chip SPMs. A careful inspection of the original operator’s imple-
mentation reveals that memory block B2, B3 and B5 can in fact be shared,
leading to the allocation in Fig. 4d. We can automatically achieves this goal by
compiler static analysis without modifying the original kernel’s implementation.
Our memory reuse algorithm (Algorithm 2) is partially inspired by [14]. Firstly,
the compiler collects the meta-data information (including address space and
size) of tensor variables by statically walking through K. Then It gets the live
ranges of each tensor variable by data flow analysis. In this paper, we apply the
definition of liveness for arrays in [14] to the aggregate tensor data type. Simi-
larly, liveness analysis for tensors is conducted on the control flow graph (CFG)
of K. The liveness information for a tensor T can be computed on CFG of K by
applying the standard data-flow equations to the entry and exit of every basic
block (abbr. BB) B:

12 J. Li et al.

Fig. 4. A motivation example of on-chip scratch pad memory reuse.

INT (B) = (OUTT (B) − DEFT (B)) ∪ USET (B)
OUTT (B) = ∪S∈succ(B)INT (S)

(1)

where succ(B) denotes the set of all successor BBs of B in CFG of K. The
predicates, DEF and USE, local to a BB B for a tensor T are defined as fol-
lows: USET (B) returns true if some elements of T are read in B; DEFT (B)
returns true if T is killed in B. Figure 4c top shows the live ranges of tensor
variables B1-B5. Then compiler builds interference graph (IG). However, con-
sidering the memory hierarchies of DNN accelerators, we need to build IG for
different address space respectively, i.e., vertices in the same IG must have the
same address space specifier. Figure 4c bottom shows the IG of tensor variables
in address space NEURAL. Now compiler takes a greedy graph coloring strat-
egy [4] by clustering the memory blocks with non-overlapping live ranges. Mem-
ory blocks with the same color will be assigned to the same memory partition.
The size of each memory partition is calculated by choosing the maximum size
of colored memory blocks. Figure 4d shows the memory partitions after graph
coloring and there is 26K on-chip memory left. Compiler will try to promote
some off-chip data (including but not limited to local variable or stack data)
into this region. The promotion strategy can be performed by static analysis.

Table 3. Hardware specifications of experimental platform.

On-chip SPMs Off-chip DRAM Peak Performance Memory Bandwidth

Neural buffer: 512 KB
Synapse buffer: 1 MB

8 GB 0.5 TFLOPS 25.6 GB/s

Compiler-Assisted Operator Template Library for DNN Accelerators 13

4 Performance Evaluation

4.1 Benchmarks and Baselines

Our experiment is conducted on a prototype accelerator (Table 3). Its architec-
ture refers to the design of Cambricon-ACC [15]. We select 55 typical operators
from popular DNNs as our benchmarks. It covers some representative algorithms
used in DNNs, e.g., convolution (conv), fully connection (fc), pooling (pool),
scale, element-wise (ew), batch normalization (bn), local respond normaliza-
tion (lrn) and ReLU activation (relu). All these benchmarks can be expressed
with the high-level algorithmic primitives of TOpLib. To show the representa-
tiveness of our benchmarks, we have profiled the execution time of some popular
DNNs at Cambricon-ACC and decomposed their execution time into typical
layers (Fig. 5a). Finally, we extracted 55 most time-consuming operators with
typical real-world data scales1. We choose the highly tuned hand-written assem-
bly implementation of benchmarks as baselines. To show the quality of baselines,
we have drawn the roofline of the hand-written assembly implementation ver-
sions. From the roofline in Fig. 5b, we can see that these hand-written assembly
benchmarks saturate the peak performance of Cambricon-ACC in the terms of
FLOPS and memory bandwidth, confirming that our baselines are very tough to
beat.

(a) Breakdown of typical layers’ execution time for
common DNNs at Cambricon-ACC.

(b) Roofline of the hand-written
assembly implementation versions
at Cambricon-ACC.

Fig. 5. Layer-wise execution time breakdown of common DNNs and roofline of hand-
written assembly implementation of 55 operators at Cambricon-ACC.

1 Due to space limit, the detailed data scales are clearly listed in the anonymous github
repository: https://github.com/anonymous-0x00/npc20-benchmarks.

https://github.com/anonymous-0x00/npc20-benchmarks

14 J. Li et al.

(a) Average code length of TOpLib vs
hand-written assembly versions.

(b) TOpLib vs hand-written assem-
bly versions on scale, ew, bn and lrn
benchmarks.

(c) TOpLib vs hand-written assembly
versions on conv and fc benchmarks.

(d) TOpLib vs hand-written assembly
versions on pool and relu benchmarks.

Fig. 6. TOpLib implementation vs hand-written assembly versions on all 55 opera-
tors. For (b) (c) (d), the red bar is the normalized execution performance of TOpLib
implementation enabling the memory optimization passes, the gray bar disables them.
(Color figure online)

4.2 Experimental Results

Code Density. Code density is a meaningful metric to measure the simplic-
ity and ease of use. We compare code density of TOpLib implementation with
the hand-written assembly versions by manually counting the average lines of
code (LoC) for each type benchmarks (Fig. 6a). On average, the code length of
TOpLib implementation is about 4.9x, 5.8x, 4.3x, 3.8x, 2.7x, 4.4x, 4.8x and 4.6x
shorter than the hand-written assembly versions for conv, fc, pool, scale, ew,
relu, bn and lrn operators, respectively.

Execution Performance. Figure 6b, 6c and 6d shows the speedup of TOpLib
implementation against hand-written assembly versions. Compared to hand-
written assembly versions of all benchmarks, TOpLib achieves 91% on average
if we enable the memory optimization passes. However, if we disable them, the
execution performance would reduce to about 78% on average. That means mem-
ory optimization plays an important role for the producing of high-performance
code. Specifically, we find that zip-heavy operators (e.g., scale, ew, bn and lrn)
are compiler-friendly for the memory reuse optimization pass.

Compiler-Assisted Operator Template Library for DNN Accelerators 15

5 Related Work

This section summarizes the prior work on template library for DNN operators.
CUDA [2] or OpenCL [17] is a parallel programming model for GPUs, not for the
dedicated DNN accelerators. Eigen [7], Mshadow [6] and Cutlass [18] are linear
algebra libraries for CPUs or GPUs. The implementation of existing libraries
relies on the meta-programming capability of the C++ programming language,
e.g., expression template. They overlook the compiler-assisted optimizations.

6 Conclusion

In this paper, we present TOpLib, a compiler-assisted template library to allevi-
ate low-level programming chores of DNN accelerators. TOpLib provides a user-
view abstraction of DNN accelerators, which allows programmers to express
operators with high-level algorithmic primitives. We have detailed its design
principles and compiler-assisted optimizations. Experimental results show that
TOplib could succinctly express the typical DNN operators and produce code
that is comparable to hand-written assembly versions.

Acknowledgement. This work is supported by the National Key R&D Program
of China (under Grant No. 2017YFB1003103) and the Science Fund for Creative
Research Groups of the National Natural Science Foundation of China (under Grant
No. 61521092).

References

1. AnandTech: Cambricon, Makers of Huawei’s Kirin NPU IP (2018). https://www.
anandtech.com/show/12815/cambricon-makers-of-huaweis-kirin-npu-ip-build-a-
big-ai-chip-and-pcie-card

2. Cook, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with
GPUs, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2012)

3. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor.
13(1), 21–27 (2006)

4. Culberson, J.C.: Iterated greedy graph coloring and the difficulty landscape. Tech-
nical report (1992)

5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: CVPR 2009 (2009)

6. DMLC teams: mshadow (2018). https://github.com/dmlc/mshadow
7. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org
8. He, K., et al.: Deep residual learning for image recognition. CoRR abs/1512.03385

(2015)
9. Hearst, M.A.: Support vector machines. IEEE Intell. Syst. 13(4), 18–28 (1998)

10. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. CoRR abs/1704.04861 (2017)

11. Iandola, F.N., et al.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and <1 MB model size. CoRR abs/1602.07360 (2016)

https://www.anandtech.com/show/12815/cambricon-makers-of-huaweis-kirin-npu-ip-build-a-big-ai-chip-and-pcie-card
https://www.anandtech.com/show/12815/cambricon-makers-of-huaweis-kirin-npu-ip-build-a-big-ai-chip-and-pcie-card
https://www.anandtech.com/show/12815/cambricon-makers-of-huaweis-kirin-npu-ip-build-a-big-ai-chip-and-pcie-card
https://github.com/dmlc/mshadow
http://eigen.tuxfamily.org

16 J. Li et al.

12. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit.
In: ISCA 2017, pp. 1–12. ACM, New York (2017)

13. Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural net-
works. In: NIPS 2012, pp. 1097–1105. Curran Associates Inc., USA (2012)

14. Li, L., et al.: Memory coloring: a compiler approach for scratchpad memory man-
agement. In: PACT 2005, pp. 329–338, September 2005

15. Liu, S., et al.: Cambricon: an instruction set architecture for neural networks. In:
ISCA 2016, pp. 393–405 (2016)

16. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers Inc., San Francisco (1998)

17. Munshi, A., Gaster, B., Mattson, T.G., Fung, J., Ginsburg, D.: OpenCL Program-
ming Guide, 1st edn. Addison-Wesley Professional, Boston (2011)

18. NVIDIA teams: Cutlass (2017). https://github.com/NVIDIA/cutlass
19. Progsch, J., et al.: A new vectorization technique for expression templates in C++.

CoRR abs/1109.1264 (2011)
20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition (2014). https://arxiv.org/abs/1409.1556
21. Springer, M., Sun, Y., Masuhara, H.: Inner array inlining for structure of arrays

layout. In: PLDI, ARRAY 2018, pp. 50–58. ACM, New York (2018)
22. Szegedy, C., et al.: Going deeper with convolutions. In: Computer Vision and Pat-

tern Recognition (CVPR) (2015). http://arxiv.org/abs/1409.4842
23. Szegedy, C., et al.: Rethinking the inception architecture for computer vision.

CoRR abs/1512.00567 (2015)
24. Wu, J., et al.: GPUCC: an open-source GPGPU compiler. In: CGO 2016, pp.

105–116 (2016)

https://github.com/NVIDIA/cutlass
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.4842

A Dynamic Mapping Model for General
CNN Accelerator Based on FPGA

Xiaoqiang Zhao1, Jingfei Jiang1(B), Zhe Han1, Jinwei Xu1, and Zhiqiang Liu2

1 National Laboratory for Parallel and Distributed Processing,
National University of Defense Technology, Changsha, China

{zhaoxiaoqiang18,jingfeijiang,hanzhe18,xujinwei13}@nudt.edu.cn
2 Artificial Intelligence Research Center, National Innovation

Institute of Defense Technology, Beijing, China
liuzhiqiang@nudt.edu.cn

Abstract. As the application scenarios of convolutional neural network
(CNN) become more and more complex, the general CNN accelera-
tor based on matrix multiplication has become a new research focus.
The existing mapping methods for converting convolution calculation
into matrix multiplication need to be improved. This paper proposes a
new dynamic mapping model to improve the flexibility and versatility
of matrix multiplication. The dynamic mapping model implements two
algorithms: dynamic residue processing mapping algorithm (DRPMA)
and dilated convolution mapping algorithm (DCMA). The former can
dynamically adjust the mapping method according to the number of
output channels of the convolution layer, improve the utilization of the
multiply-accumulate (MAC) array. The latter extends the efficient sup-
port for Dilated CNNs. For demonstration, we implement an accelerator
with Verilog on Xilinx VC709 FPGA board and test some typical CNN
models. Experimental results show that the general accelerator achieves
high performance and energy efficiency.

Keywords: CNN · Matrix multiplication · Dynamic mapping model ·
FPGA

1 Introduction

In recent years, CNNs have become one of the most popular models in the
artificial intelligence and shown excellent results in many fields including image
classification [6,15], object recognition [3,13], video analysis [14,19], voice recog-
nition [1,4]. With the widespread application of CNNs, FPGA-based CNN accel-
erators [2,5,7–12,16–18,20,21] have become a new research focus. However, the

Supported by National Science and Technology Major Projects on Core Electronic
Devices, High-End Generic Chips and Basic Software under grant No. 2018ZX01028101
and National Natural Science Foundation of China Key Program No. 61732018.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 17–29, 2021.
https://doi.org/10.1007/978-3-030-79478-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_2

18 X. Zhao et al.

application scenarios of CNNs have become more and more complex. Deep CNNs
have appeared to improve the inference accuracy, Dilated CNNs have been used
in image segmentation, semantic segmentation to enlarger the receptive field.
Three-dimensional CNNs have been applied to video analysis. Researchers need
to balance the versatility and performance of accelerators to adapt to complex
application scenarios. The increase of CNN parameters and intermediate results
will exceed the storage capacity on the FPGA chip, making the accelerator design
lose the task-level and layer-level parallelism. It is necessary to improve the loop-
level and operation-level parallelism to increase accelerator performance. And the
application of dilated CNNs requires a more flexible accelerator architecture to
support dilated convolution. In order to enable the CNN accelerator to be applied
to more scenarios, we need a flexible data buffering scheme. The data buffering
scheme should handle networks with different parameters, support more convo-
lution types, and can dynamically adjust the data mapping method according
network parameters to improve accelerator performance. In this work, we are
motivated to present a new dynamic mapping model based on general matrix
multiplication. Our contributions are shown as follows:

1. We propose a new dynamic mapping model, combining the DRPMA and
DCMA, which greatly improves the flexibility and versatility of general matrix
multiplication.

2. We provide a uniform general accelerator architecture for two-dimensional,
three-dimensional and dilated CNNs with dynamic mapping model. The
accelerator can dynamically adapt to different computing modes without
reconfiguration. The convolutional layer segmentation strategy is introduced
to enable the accelerator to handle CNN-base AI applications of large-scale
dimensions. It achieves high performance with smaller storage and bandwidth
resources and can be ASIC.

3. We implement a RISC-V+CNN heterogeneous system based on the FPGA
platform, Experiments show that the utilization of the MAC array is sig-
nificantly improved, the dilated convolution can be performed efficiently,
and achieves an overall throughput of 329.3 GFLOP/s on VGG16 and
354.4GFLOP/s on Resnet18 respectively.

2 Related Work

At present, CNN accelerators based on FPGA are mainly divided into the fol-
lowing four types according to the acceleration methods. The first type is gen-
eral matrix multiplication CNN accelerators [10,12,16]. [10] designed a 2D/3D
general reconfigurable convolutional neural network accelerator. [12] designed a
maximize resource utilization CNN accelerator. The second type is Fast Fourier
Transform (FFT) CNN accelerator [8,20,21]. [21] designed a highly parallel 2D
FFT CNN accelerator using FFT and Concatenate-and-Pad technique to reduce
convolutional redundancy calculations. [8] designed a deep CNN accelerator
using embedded FFT. The third type is Winograd CNN accelerator [7,11,17].

A Dynamic Mapping Model for General CNN Accelerator Based on FPGA 19

Winograd fast algorithm maps feature to specific domains to reduce the complex-
ity of the algorithm. [11] designed a sparse and effective Winograd CNN Acceler-
ator. [17] designed a Winograd CNN accelerator that adapts to large steps. The
fourth type is operator customized CNN accelerator [5,9,18]. [9] designed a layer
pipeline optimized CNN accelerator. [5] designed a zero weight/activation-aware
CNN accelerator. To summarize, the general matrix multiplication accelerator
mapping convolutions to matrix multiplications, which has a good versatility.
The FFT acceleration method transforms spatial domain convolution operation
into frequency domain multiplication operation, which reduces the complexity of
the algorithm and is proved to be more effective for the large convolution kernel.
The Winograd acceleration method uses the addition operation to replace the
multiplication operation through the linear mapping, which reduces the com-
plexity of the algorithm, and is mainly suitable for the convolution stride is 1
and the transform matrices vary with the size of convolution kernels. The cus-
tomized operator accelerator is optimized according to the algorithm characteris-
tics, which fully exploits the parallelism of algorithms and has high performance.

These four types of CNN accelerators reflect different design ideas, each has
its own advantages and complements each other. To summarize, there is still a
large space for exploration in the design of accelerators for CNN. Different design
concepts make designers adopt different acceleration methods. Aims to quickly
respond to the changes in the CNN structures and the iterative speed of artificial
intelligence algorithms. We adopt general matrix multiplication method with a
new dynamic mapping model, which fully explores the loop levels parallelism
and support for dilated convolution.

3 CNN Basics and Matrix Multiplication

This section will introduce the operation characteristics of different convolution
types, the method of mapping convolution to matrix multiplication, and analyze
their common characteristics and the existing optimization space.

3.1 2D and 3D Convolution

Figure 1a illustrates the process of 2D convolution. The convolution window
slides along the column and row directions of the image to extract the spatial
information of the image. The input and output feature usually contains multiple
channels. The convolution results of each input channel are then accumulated
resulting in one channel of the output feature. And the process of calculating
other output channels is similar. Figure 1b shows the process of 3D convolu-
tion. Compared with the process of 2D convolution, in addition to sliding along
the row and column directions, 3D convolution also slides along the temporal
direction. In the 3D CNN adds a dimension of L, which represents the convolu-
tion depth in the temporal dimension. [10] indicate that 3D convolutions can be
computed in the same way as 2D convolutions by combining the accumulation
of the channel loop and the temporal loop. We also adopt this method in our

20 X. Zhao et al.

Fig. 1. 2D and 3D convolution operations.

implementation. Figure 1c–e illustrate how the convolution window slides across
rows of the input feature. The pixels in gray are involved in convolutions along
rows are shown as Fig. 1f. Accordingly, the first row appears in the input feature
1 time, the second row appears in the input feature 2 times, and the third row
appears in the input feature 3 times. The re-usability in the row direction of the
sliding window can be used to improve the parallelism of matrix multiplication.

3.2 Dilated Convolution

Fig. 2. Dilated convolution operations.

Figure 2 illustrates the process of the dilated convolution. The kernel size is 3×3
and the rate is 2. Figure 2a to Fig. 2b illustrate how the convolution window slides
across column of the input feature. Figure 2a to Fig. 2c illustrate how the convo-
lution window slides across row of the input feature. Compared to convolution,

A Dynamic Mapping Model for General CNN Accelerator Based on FPGA 21

the dilated convolution changes the features covered by the convolution window.
As shown in the shaded part of Fig. 2, the feature extraction is separated by
rate-1 in both the row and column directions. We only need to load the feature
according to this pattern, and then dilated convolution and 2D/3D convolution
can use the same computing architecture.

Fig. 3. Mapping convolutions to matrix multiplication operations.

3.3 Mapping Convolutions to Matrix Multiplications

Mapping convolution to matrix multiplication is an efficient implementation on
FPGA. As illustrated in Fig. 3, the kernel of the convolutional layer is W with
dimensions of m× c× k × k, the input feature of X with dimensions of c× h×w,
and W and X are convolved to obtain the output feature Y with dimensions
of m × h1 × w1. Where m is the size of output channels, c is the size of input
channels, k is the size of the convolution kernel, h is the size of input feature
height, w is the size of input feature width, h1 is the size of output feature height,
w1 is the size of the output feature width. The matrix multiplication method
of convolution operation compresses the weight W into a weight matrix Wm,
compresses and reorganizes the feature map X into a feature map matrix Xm.
The result of the matrix multiplication is an output matrix Ym with dimensions
of m × (h1 × w1), which is the flattened format of the output feature. Generally,
h is equal to h1 and w is equal to w1, but dilated convolution combines convo-
lution and downsampling, thus h1 and w1 will become smaller than h and w.

22 X. Zhao et al.

In addition, Xm is almost (k × k)-fold of X because of data replications during
mapping. It can be avoided by reusing the overlapped data during the sliding of
convolutional windows.

4 Accelerator Architecture Design

As illustrated in Fig. 4, the accelerator architecture has two-level on-chip caches
for the dynamic mapping model. The first level cache is Feature Buffer, Kernel
Buffer and Output Buffer. The second level cache is Feature FIFO and Kernel
FIFO. The dynamic mapping model includes three sub-mapping models: Feature
Mapping Module, Kernel Mapping Module, and Output Mapping Module. The
following of this section will introduce the MAC Array and Buffer setting and
the detailed mapping process of dynamic mapping model.

Fig. 4. Accelerator architecture with dynamic mapping model.

4.1 MAC Array and Buffer Setting

The MAC array is computing resource for matrix multiplication. As shown in
Fig. 4, the MAC array includes mr × mc MAC units, where mr and mc are the
size MAC array row and column respectively. The MAC unit consists of a multi-
plier, an adder, and a register. The register is used to store intermediate result.
The MAC array taps the two loop parallelism of the output channel and the
output feature column direction. Each MAC unit is responsible for calculating
the matrix multiplication result of the corresponding position. Therefore, the

A Dynamic Mapping Model for General CNN Accelerator Based on FPGA 23

MAC array can calculate mr ×mc elements in parallel. When the feature matrix
and the kernel matrix is relatively large, the matrix can be divided into blocks.
The kernel matrix is divided into � m

mr
� blocks and the feature matrix is divided

into�h1×w1
mc

� blocks.
Limited by the chip area, the depth of the Kernel Buffer is limited. The Kernel

Buffer depth required to load a complete convolutional layer is d×c×k×k. When
the input channel or the convolution kernel is large, or the temporal dimension
parameter of the 3D network is large, the storage space that the layer needs
will exceed the depth of the Kernel Buffer. We need to split a large convolution
layer into the sum of multiple small convolution layers. Similarly, the depth of
the Feature Buffer is also limited. The Feature Buffer depth required to load
k + stride rows feature is d × c × (k + stride) × � w

mc
�, When the convolutional

layer parameters are too large, it is also necessary to load features in blocks.
Although the additional summation operation to be introduced may affect the
performance of the accelerator, it ensures the versatility of the accelerator.

4.2 Dynamic Mapping Model

DRPMA. Matrix multiplication exploits the two loop level parallelism of out-
put channel and output feature column direction. In CNN, the numbers of output
channels of different convolutional layers vary greatly. For example, the output
channel numbers of VGG16 are 64, 128, 256, 512. When the MAC array are
designed with the dimensions of 256 × 32, the residue between the output chan-
nels and the MAC rows are 64, 128, 0 and 0. We cannot make full use of the MAC
array with residue of 64 and 128. Through analysis, we find that the reusability in
the row direction of the sliding window can be used to improve the parallelism
of matrix multiplication when a residue is generated. As the residue changes
dynamically with the number of output channels of the convolutional layer. We
name the method of dynamic mapping based on residue as DRPMA. Assuming
the residue is R, the parallelism of matrix multiplication can be improved by
DRPMA is n, then the parallelism can be defined by the following formula:

as
mr

R
≥ 2, n = �mr

R
�, 1 ≤ n ≤ k (1)

as 1 ≤ mr

R
≤ 2, n = 1 (2)

DCMA. Dilated convolution extract the feature separated by rate− 1 in both
the row and column directions that the reusability in row direction has lost,
which means n = 1. The data reuse of dilated convolution in the column direc-
tion is presented every rate − 1, It is same as convolution when rate = 1. We
can load the feature step by rate − 1 offset, the reusability of convolution and
dilated convolution in the column direction can be utilized through a consistent
pattern. We name the mapping method of reuse data in the column direction
both for convolution and dilated convolution as DCMA. With the two algo-
rithms of DRPMA and DCMA, We can efficiently map convolution and dilated

24 X. Zhao et al.

to matrix multiplication. The following of this section will introduce the details
of mapping methods.

As shown in Fig. 4, the Feature Mapping Module is connected to the Feature
Buffer and Feature FIFO, and is used to map the feature in the 2 × pad + mc

Block RAMs to mc feature FIFOs. In order to save on-chip memory, the Feature
Buffer only stores the k+stride rows data of the input feature. When performing
matrix multiplication, the Feature Buffer will prefetch the stride rows data from
the external chip. The complete mapping process is as Algorithm1.

As shown in Fig. 4, the Kernel Mapping Module is connected to the Kernel
Buffer and the Kernel FIFO, and is used to map the kernel from the mr kernel
Block RAMs to the mr kernel FIFOs. In order to save on-chip memory, the
Kernel Buffer only stores the mr rows data in the kernel matrix. The complete
mapping process is as Algorithm 2.

As shown in Fig. 4, the Output Mapping Module is connected to the MAC
array and Output Buffer, and is used to control the way of convolution results
to Output Buffer. The Output Buffer adopts the Ping-Pong mechanism. The
complete mapping process is as Algorithm 3.

Algorithm 1. Generate Feature Matrix
Input: X
Output: Xm

for i = 1, 2, . . . , k + stride
for j = 1, 2, . . . , d× c

for t = 1, 2, . . . , w
do store in 2 × pad + mc feature buffer

for i = 1, 2, . . . , k × d× c
for j = 0, rate, . . . , (k − 1) × rate

do send to mc feature fifo

Algorithm 2. Generate Kernel Matrix
Input: W
Output: Wm

for i = 1, 2, . . . ,mr

for j = 1, 2, . . . , k
for t = 1, 2, . . . , d× c

for q = 1, 2, . . . , k
do store in the ith kernel buffer

if n == 1
for i = 1, 2, . . . , k

do store in the ith kernel fifo
else

for j = 1, 2, . . . , n
for t = 1, 2, . . . ,m

do store in the (n×m + t)th kernel fifo

A Dynamic Mapping Model for General CNN Accelerator Based on FPGA 25

Algorithm 3. Dynamic output mapping algorithm
Input: Yi, The ith results of themc columns
Output: Ym

if n == 1
for i = 1, 2, . . . ,mr

do store theith Yi in the mc column output buffer
else

for j = 1, 2, . . . , n
for i = 1, 2, . . . ,m

do store the tth Yi in the mc column output buffer
wait k × d× c cycles
do store the (n×m + t)th Yi in the mc column output buffer

5 Evaluation

5.1 Experimental Setup

We evaluate the effectiveness of the dynamic mapping model by implementing
a RISC-V+CNN heterogeneous system prototype on the Xilinx VC709 FPGA
platform with 3600 DSP, 1470 BRAM, and two on-chip DDR. We assign 128 rows
and 16 columns for the MAC array. Accordingly, the kernel buffer has 128 Block
RAMs with depth of 1024, the feature buffer has 26 Block RAMs with depth of
4096, and the Ping-Pong output buffer has 32 Block RAMs with depth of 1024.
The kernel FIFO and feature FIFO have 144 Block RAMs with depth of 512.
Three typical CNNs: VGG16, C3D, and Resnet18 are tested on heterogeneous
system. The CNN parameters and feature are 16-bit floating point. The software
versions are implemented with Caffe on Intel Core i7-4790K CPU@ 4.0 GHz.
The clock frequencies of the RISC-V CPU and CNN are 20 MHz and 100 MHz
respectively.

5.2 Experimental Results

Table 1 reports the hardware resource utilization of our heterogeneous system.
The RISC-V and CNN accelerator consume most of the hardware resources.
RISC-V uses 290 Block RAMs to support for large-capacity data cache and
instruction cache, which can adapt to complex application scenarios. The CNN
accelerator consumes 382 Block RAMs for data buffering, and the heterogeneous
system uses 676 Block RAMs totally. The MAC array consumes 2048 of the 2080
DSP slices for computing matrix multiplications and the other 32 DSP slices are
used for building floating-point arithmetic units.

26 X. Zhao et al.

Table 1. Heterogeneous system resource utilization.

Module DSP BRAM LUT

RISC-V 32 0.8% 290 19.7% 57078 13%

CNN 2048 56.9% 382 26.0% 232752 54%

Sum 2080 57.7% 676 46.0% 307572 71%

The experiment selects VGG16 to test the effectiveness of the DRPMA.
Table 2 presents the evaluation results of three layers in VGG16. The residues of
conv1a, conv1b, conv2a are 64, 64, and 0 respectively. The MAC array utiliza-
tion and throughput are 83.7% and 342.8GFLOP/s on conv1a and 95.3% and
390.3GFLOP/s on conv1b with DRPMA. Without the DRPMA, the MAC array
utilization and throughput are 42.5% on conv1a and 48.1% and on conv1b. The
MAC array utilization and throughput are the same on conv2a as the R is 0. We
can conclude that the DRPMA almost increases 2× utilization of MAC array.
Additionally, we can reduce MAC array column width to reduce the memory
access bandwidth with DRPMA.

Table 2. DRPMA performance.

Layer conv1a conv1b conv2a

R 64 64 0

DRPMA 83.7% 342.8 95.3% 390.3 94.2% 385.8

No 42.5% 174.1 48.1% 197.0 94.2% 385.8

The experiment also selects VGG16 to test the performance of the DCMA.
We uses the Hybrid Dilated Convolution method from [1] to set rate group as 1,
2, 5. Table 3 presents the evaluation results. When the rate is 1, the throughput
remains unchanged. When the rate is 2, the MAC array utilization is 89.7%,
a decrease of 5%. This is caused by the load feature time increase and the
idle state of the MAC array increase. When the rate is 5, the utilization of
the MAC array is reduced by 23%. The main reason is that the feature Block
RAMs we set is 26. And the Block RAMs used for padding is 10, which supports
the maximum convolution kernel of the same size output is 11. The dilated
convolution with a rate of 5 is essentially equivalent to the standard convolution
with a convolution kernel of 14. This means that only the first 13 columns of the
MAC array can be used. Therefore, the utilization rate of MAC array decreases
sharply. In conclusion, the DCMA can efficiently support dilated convolution.

A Dynamic Mapping Model for General CNN Accelerator Based on FPGA 27

Table 3. DCMA performance.

Rate 1 2 5

Utilization (%) 94.2% 89.7% 71.6%

Throughput (GFLOP/S) 385.8 367.4 293.3

Table 4 lists the comparisons between the CPU and heterogeneous system.
The heterogeneous system achieves a 5.1× and 5.3× and 24.2× and 32.6 ×
improvement than CPU in VGG16 and Resnet18 in terms of throughput and
energy efficiency respectively. After ASIC, the energy efficiency advantage will
be more obvious.

Table 4. Evaluation results on the CPU and our accelerator.

CNN model VGG16 Resnet18

CPU FPGA CPU FPGA

Power (W) 88 13.6 88 13.6

ThroughputGFLOP/S 63.9 329.3 66.5 354.4

Energy Efficiency (GFLOP/s/W) 0.7 24.2 0.8 26.1

Table 5 shows the comparisons with other FPGA platforms. Our heteroge-
neous system achieves an overall throughput of 329.3 GFLOP/s on VGG16 and
310.2GFLOP/s on Resnet18 respectively. The throughput of the heterogeneous
system is better than [16] on VGG16 and lower than [10] on C3D. The usage
of DSP slices determines the throughput to a certain extent. [10] high through-
put is based on larger MAC array, high on-chip buffering and high bandwidth.
When heterogeneous system runs C3D, the convolutional layer will be split which
affects the performance. Our throughput will increase 4 × after ASIC which is
the best. It needs to be emphasized that our heterogeneous system is a better
choice after balancing price, versatility and performance.

Table 5. Comparisons with previous accelerator implementations.

[16] [10] Ours

FPGA Altera StratixV Xilinx VX690T Xilinx VX690T

Precision fixed fixed float16

CNN Model VGG16 C3D VGG16 C3D

Clock (MHz) 120 120 100

DSPs 727 3595 2080

Throughput (GOP/S) 118 667.7 329.3 310.2

28 X. Zhao et al.

6 Conclusions

This paper studies the mapping methods that convert convolution into matrix
multiplication, and proposes a new dynamic mapping model, which improves the
flexibility and versatility of matrix multiplication. The heterogeneous system
prototype based on FPGA platform verifies the performance of the dynamic
mapping model. And it can be applied to more complex artificial intelligence
scenarios without reconfiguring the FPGA. Future work include demonstrations
on dilated Resnet applications and efficient support of transposed convolution.

References

1. Abdel-Hamid, O., Mohamed, A.R., Jiang, H., Deng, L., Penn, G., Yu, D.: Convo-
lutional neural networks for speech recognition. IEEE/ACM Trans. Audio Speech
Lang. Process. 22(10), 1533–1545 (2014)

2. Azizimazreah, A., Chen, L.: Shortcut mining: exploiting cross-layer shortcut reuse
in DCNN accelerators. In: 2019 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pp. 94–105. IEEE (2019)

3. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

4. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recogni-
tion: the shared views of four research groups. IEEE Signal Process. Mag. 29(6),
82–97 (2012)

5. Kim, D., Ahn, J., Yoo, S.: A novel zero weight/activation-aware hardware archi-
tecture of convolutional neural network. In: 2017 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1462–1467. IEEE (2017)

6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

7. Lavin, A., Gray, S.: Fast algorithms for convolutional neural networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4013–4021 (2016)

8. Lin, S., et al.: FFT-based deep learning deployment in embedded systems. In:
2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.
1045–1050. IEEE (2018)

9. Liu, X., Kim, D.H., Wu, C., Chen, O.: Resource and data optimization for hardware
implementation of deep neural networks targeting FPGA-based edge devices. In:
2018 ACM/IEEE International Workshop on System Level Interconnect Prediction
(SLIP), pp. 1–8. IEEE (2018)

10. Liu, Z., Chow, P., Xu, J., Jiang, J., Dou, Y., Zhou, J.: A uniform architecture
design for accelerating 2D and 3D CNNs on FPGAs. Electronics 8(1), 65 (2019)

11. Lu, L., Liang, Y.: SPWA: an efficient sparse winograd convolutional neural net-
works accelerator on FPGAs. In: 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), pp. 1–6. IEEE (2018)

12. Ma, Y., Cao, Y., Vrudhula, S., Seo, J.S.: Optimizing loop operation and dataflow
in FPGA acceleration of deep convolutional neural networks. In: Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pp. 45–54 (2017)

A Dynamic Mapping Model for General CNN Accelerator Based on FPGA 29

13. Nair, V., Hinton, G.E.: 3D object recognition with deep belief nets. In: Advances
in Neural Information Processing Systems, pp. 1339–1347 (2009)

14. Ramanishka, V., et al.: Multimodal video description. In: Proceedings of the 24th
ACM International Conference on Multimedia, pp. 1092–1096 (2016)

15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

16. Suda, N., et al.: Throughput-optimized OpenCL-based FPGA accelerator for large-
scale convolutional neural networks. In: Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 16–25 (2016)

17. Wu, D., Chen, J., Cao, W., Wang, L.: A novel low-communication energy-efficient
reconfigurable CNN acceleration architecture. In: 2018 28th International Confer-
ence on Field Programmable Logic and Applications (FPL), pp. 64–643. IEEE
(2018)

18. Wu, E., Zhang, X., Berman, D., Cho, I.: A high-throughput reconfigurable pro-
cessing array for neural networks. In: 2017 27th International Conference on Field
Programmable Logic and Applications (FPL), pp. 1–4. IEEE (2017)

19. Yang, K., Qiao, P., Li, D., Lv, S., Dou, Y.: Exploring temporal preservation net-
works for precise temporal action localization. arXiv preprint arXiv:1708.03280
(2017)

20. Zeng, H., Chen, R., Zhang, C., Prasanna, V.: A framework for generating
high throughput CNN implementations on FPGAs. In: Proceedings of the 2018
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp.
117–126 (2018)

21. Zhang, C., Prasanna, V.: Frequency domain acceleration of convolutional neu-
ral networks on CPU-FPGA shared memory system. In: Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp.
35–44 (2017)

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1708.03280

A Dynamic Protection Mechanism
for GPU Memory Overflow

Yaning Yang1, Xiaoqi Wang1, and Shaoliang Peng1,2(B)

1 College of Computer Science and Electronic Engineering, Hunan University,
Changsha 410082, China

{yangyn,xqw,slpeng}@hnu.edu.cn
2 National Supercomputing Centre in Changsha, Changsha 410082, China

Abstract. Graphics Processing Units (GPU) are widely used to accel-
erate computation in many applications such as autonomous vehicles,
artificial intelligence and healthcare. However, most existing researches
just focus on the performance but ignore the security issues of GPUs.
In this paper, we design an efficient mechanism to dynamically moni-
tor GPU heap buffer overflow by using the CPU. Concretely, we first
analyze the specific requirements of GPU memory allocation. Second,
in order to realize the monitoring from the CPU, we map the allocated
device memory to the host-side. Third, the dynamic monitoring of buffer
overflow is implemented based on the mapped memory. Our results show
that it is feasible to protect the GPU memory from the CPU side. Our
work can improve the efficiency of GPU memory allocation and increase
the security at the same time. By offloading the detection of buffer over-
flow to the CPU, the performance of GPU kernels will not be affected
significantly.

Keywords: GPGPU · Memory allocation · Security · Memory
overflow

1 Introduction

With the development of parallel computing, more and more programmers are
willing to choose GPUs from vendors such as NVIDIA for high performance
computing. For example, GPUs are often used to accelerate scientific compute-
intensive tasks and finance operations [1]. In the field of real-time embedded sys-
tems, GPUs also show good performance advantages [2]. Further, most encryp-
tion algorithms are implemented based on GPU [3–5]. In addition, GPUs can
be virtualized [6], so many cloud computing providers provide users with GPU
support, enabling users to share GPUs.

Indeed, GPUs offer tremendous advantages in parallel computing, especially
in some complex computing areas such as artificial intelligence [7]. However,
there are certain security vulnerabilities on the GPU [8,9], such as buffer over-
flow. Buffer overflow is a software error caused by accessing data outside the

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 30–40, 2021.
https://doi.org/10.1007/978-3-030-79478-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_3

A Dynamic Protection Mechanism for GPU Memory Overflow 31

buffer. It is a long-standing and common software vulnerability. Once the buffer
overflows, it may cause the program to fail, system down, restart, and so on.
More seriously, it can be used to execute unauthorized instructions, and even
to obtain system privileges, and thus carry out various illegal operations. Infa-
mous security attacks such as Code Red, Slammer and Morris Worm are all
based on buffer overflow. If these problems occur on the GPU, it may cause
the leakage of sensitive data, especially when performing computational finan-
cial operations and encryption algorithms. At present, most of the research on
the vulnerability of buffer overflow targets the CPU. NVIDIA provides a tool
CUDA-MEMCHECK [10] as a part of the CUDA toolkit, which can be used to
detect out of bounds and misaligned memory access errors in CUDA applica-
tions, but it is clearly stated that applications would run much slower if using
CUDA-MEMCHECK to detect memory errors and it may lead to failures of
kernel launches such as timeout.

In response to the existence of GPU buffer overflows and the high overhead
of existing tools, we design an efficient mechanism that leverages the CPU to
dynamically monitor GPU heap buffer overflows. First, because of the efficiency
issue of cudaMalloc provided by CUDA [11–13], we use ScatterAlloc [14] to
allocate memory on the GPU. Second, we leverage the unified memory mecha-
nism to implement our system, which has the advantage of allowing the CPU
to access the memory allocated on the GPU. Third, we insert different canaries
to the head and tail of dynamically allocated buffers and create a dedicated
monitoring thread on the CPU to continuously detect buffer overflow. Once the
canary is modified, it indicates an event of buffer overflow. The reason we use
the CPU to detect buffer overflows is that if both the monitoring thread and
the user threads are performed on the GPU, resource contention will inevitably
occur in highly concurrent applications, which will result in high performance
overhead.

The remainder of the paper is organized as follows. In Sect. 2, we intro-
duce the background about CUDA programming model. We describe the over-
all design of our system and the structure of the buffer in Sect. 3 and specific
implementation details in Sect. 4. Experimental evaluation is given in Sect. 5 and
conclude this paper in Sect. 6.

2 Background

2.1 CUDA Programming Model

CUDA is a general-purpose parallel computing architecture introduced by
NVIDIA that enables GPUs to solve complex computing problems. It includes
the CUDA Instruction Set Architecture (ISA) and the parallel computing engine
inside the GPU. The CUDA code is divided into two parts, one running on the
host (CPU), the normal C code, and the other part running on the device (GPU),
which is called kernel. In CUDA, the host and device have different memory
spaces, so when executing the kernel on the device, the programmer needs to
explicitly transfer the data on the host memory to the device memory. After the
kernel is executed, the result needs to be transferred from the device memory

32 Y. Yang et al.

back to the host memory and the device memory should be released. The CUDA
runtime system provides APIs for programmers to perform these operations. A
kernel is declared with the keyword global . A running kernel is composed of
a large number of GPU threads, Threads are grouped into blocks, and blocks
are grouped into grids. When the host calls a kernel, the programmer must set
the dimensions of the grid and thread block with certain parameters.

2.2 Unified Memory

In the above programming model, it is necessary to separately define pointers for
the host and the device and allocate memory separately on the host side and the
device side, and to make an explicit copy between the CPU and GPU memory
before and after the kernel is called. This procedure is tedious and error-prone.
CUDA 6.0 introduces a feature called unified memory that greatly simplifies
the implementation of CUDA applications [15]. The user only needs to define
a pointer that can be used on both the host and the device, and the explicit
memory copy is not need any more.

2.3 GPU Allocator Optimization

In terms of dynamically managing GPU memory, the current CUDA program-
ming model supports the dynamic allocation and deallocation of device memory
using APIs such as cudaMalloc and cudaFree, but the GPU needs to inter-
rupt the CPU execution during the process of memory allocation, which has
a significant impact on the performance of data-intensive applications in high-
concurrency environments. In order to reduce the blocking phenomenon between
threads, several approaches can be used, such as optimistic concurrency control
and multi-version concurrency control. For example, we can allocate a new mem-
ory space before modifying the data and copy the new data to this space for
modification, then use it to replace the old version data. The invalid data is pro-
cessed by the garbage collection mechanism. This mechanism greatly increases
the frequency of memory allocation requests. Most experiments show that using
cudaMalloc and cudaFree provided by CUDA for memory allocation is very
inefficient [11–14]. Therefore, many researchers have done a lot of work on GPU
memory management and developed new allocators, such as XMalloc [11] and
ScatterAlloc [14], which are optimized for dynamic memory allocation. Experi-
ments show that ScatterAlloc is approximately 100 times faster than the CUDA
toolkit allocator and up to 10 times faster than XMalloc. Therefore, we choose
ScatterAlloc to manage the GPU memory in our system.

There are multiple global heaps in ScatterAlloc. The memory allocation
request is directed to a different global heap by a hash operation, which reduces
the probability of collisions accessing the global heap. ScatterAlloc divides mem-
ory into fixed-size pages and the pages are split into equally-sized chunks. In order
to find free memory space in a page, ScatterAlloc employs a pageusagetable and
every entry consists of three values: the chunk size, the number of allocated
chunks, and a bitfield. Each bit in the bitfield represents a single chunk of mem-
ory. These fixed-size pages are gathered in super blocks, which form the largest
memory unit.

A Dynamic Protection Mechanism for GPU Memory Overflow 33

3 Design Overview

3.1 Buffer Structure

For buffer overflow detection, the most common way is to add a canary to the
buffer structure, such as StackGuard [16]. In Cruiser [17], it adds different canary
words to the head and tail of the buffer. Thus, we also add canary words to the
buffer in a conventional way. The specific method is to add different canaries
to the head and tail of the buffer, that is, the headcanary and the tailcanary
as shown in Fig. 1. In addition to canaries, we also add encryption information
about the buffer size to the buffer structure. If the head canary is changed, it
means that the buffer is underflowed. Similarly, the buffer is overflowed if the
tail canary is corrupted. The purpose of adding the buffer size information is
to locate the tail canary given a buffer address. Because we encrypt the buffer
size information, it will not be leaked to attackers. The value of head canary is
the result of encryption of the head canary key, the buffer size, and the buffer
address. The tail canary is calculated in the same way, but with another tail
canary key. In this way, the head canary and the tail canary of different buffers
are different. Even if the head canary and the tail canary of one memory block
are leaked, other memory blocks are safe.

Fig. 1. Buffer structure.

3.2 Overview of the System

Our design goal is to increase the efficiency of GPU parallel computing as much
as possible without compromising security due to GPU buffer overflow. There-
fore, we propose to leverage CPU to monitor the GPU memory by separating
the monitoring thread from the user threads. The advantage of this method is
that the monitoring thread does not compete with the user threads for resources,
allowing the user threads to perform the corresponding calculation with max-
imum efficiency and the data used by the user threads is also protected. This
approach ensures that applications are both efficient and secure. As shown in
Fig. 2, after a buffer is allocated, we encapsulate the address of the allocated
buffer into an address collection. And the user threads running on the GPU can
operate the buffer normally and the monitoring thread running on the CPU will
continuously monitor the corresponding buffer wrapped in the address collec-
tion. The whole process is mainly divided into three steps. First, the system
allocates a buffer that is 3 words larger than what user thread requests, and the
reason for adding extra 3 words is that we add two canaries and the buffer size
information in the buffer structure as described in Sect. 3.1. In the second step,
we encapsulate the allocated buffer and then add the buffer information to an

34 Y. Yang et al.

address collection. The monitoring thread traverses the entire address collection
to determine if there are buffer overflows. In the third step, when a buffer is
freed, we mark the first word of the buffer as released. The monitoring thread
then removes this buffer from the address collection when it checks the buffer
and finds that the buffer is marked released.

Fig. 2. System architecture.

There is a shortcoming in our system, which is that we check the canaries
after the kernel is finished, because real-time detection may lead to high overhead
due to frequent transmission of memory pages between the CPU and GPU. Con-
current accesses to the same memory page may lead to page swapping between
the two ends. For example, a dirty page on the GPU would cause a swapping to
the CPU when the monitoring thread reads the same page. In our future work,
we plan to optimize this procedure by analyzing memory access patterns and
make our system an online solution.

4 Implementation

4.1 Memory Allocation

In this paper, we allocate memory space by using the ScatterAlloc allocator.
First, we allocate a large memory pool which is unified memory by calling the
cudaMallocManaged function and return a void pointer, see Code 1 (from line
1 to 5). Second, we declare a pointer by adding the managed keyword, which
points to a block of unified memory (line 6). The actual allocation is done in
a kernel (from line 7 to 9) which is called in a host function (line 13). In the
original ScatterAlloc, a large memory pool was allocated by calling cudaMalloc,
which can only be read/written on device side. To allocate memory blocks on this
memory pool, it needs to read and write this memory pool. So the ScatterAlloc
defined its allocation function on the device side and it was called by the kernel.

A Dynamic Protection Mechanism for GPU Memory Overflow 35

We just copied this manner of allocation. Because we encapsulate a buffer by
adding two canaries and buffer size information, the actual allocation size is
increased by 3 extra words.

Code 1: Memory Allocation

1 static void* setMemPool(size_t memsize){

2 void* pool = NULL;

3 cudaMallocManaged (&pool , memsize);

4 return pool;

5 }

6 __device__ __managed__ unsigned long *buffer;

7 __global__ void alloc(size_t size , AllocHandle mMC){

8 buffer = (unsigned long*) mMC.malloc(size);

9 }

10 void run(){

11 ...

12 ScatterAllocator mMC(1U*1024U*1024U*1024U);

13 alloc <<<blocks ,threads >>>(size + 3, mMC);

14 cudaDeviceSynchronize ();

15 ...

16 }

4.2 Buffer Structure Construction

We have already described the structure of the buffer in Sect. 3.2, see Code
2 for the specific implementation. First, we declare a pointer p that is used to
encapsulate the buffer addr (line 3), then insert the head canary, tail canary, and
buffer size information, which are encrypted results with encryption algorithms
(from line 4 to 6). Finally, the encapsulated buffer structure is added to the
thread record list by calling the produce function.

Code 2: Constructing Buffer Structure

1 inline void afterMalloc(void* addr , size_t word_size){

2 ...

3 unsigned long *p = (unsigned long *)addr;

4 p[0] = head_canary ^ new_word_size;

5 p[1] = new_word_size;

6 p[2 + word_size] = tail_canary ^ new_word_size;

7 Node node;

8 node.userAddr = p + 2;

9 t_threadRecord=g_threadrecordlist ->getThreadRecord ();

10 t_threadRecord ->produce(node);

11 }

In some highly concurrent applications, memory allocation will occur fre-
quently, so the afterMalloc function will be called multiple times. In order to
eliminate the overheads of function calls, we define it as an inline function by
adding the keyword inline.

36 Y. Yang et al.

4.3 Buffer Overflow Detection

Once a buffer is released, the encapsulation of the buffer address information in
the address collection is expired and should be removed. If a buffer is about to
be released, we set the value of its first element (head canary) to zero. A buffer
overflow depends on the value of the canaries we inserted before. The method
beforeFree in Code 3 is exactly the opposite of afterMalloc as described in
Sect. 4.2. First, we define a pointer variable p that is used to decapsulate the
buffer address. The next step is to check the first two elements (the head canary
and buffer size information) and the last element (tail canary) of the buffer,
respectively. Because we mark the first element of the buffer that has been
released as zero, it indicates a double free if the value of p[0] is detected as 0
(from line 4 to 7). When the monitoring thread checks a buffer and finds the
value of head canary free stored in the address collection is not the same as
the precomputed value by decrypting the head canary, the buffer is underflowed.
Similarly, the buffer is overflowed if the tail canary is corrupted. Once the buffer
is overflowed, the monitoring thread will call the function attackDetected to
abort the application (from line 8 to 16). In addition, if the buffer size information
(p[1]) is changed, the tail canary would not be located correctly. As a result,
reading the tail canary may incur segmentation fault, which essentially exposes
buffer overflows.

Code 3: Buffer Overflow Detection

1 inline static void beforeFree(void* addr){

2 ...

3 unsigned long *p = (unsigned long*)addr - 2;

4 if(!p[0]){

5 fprintf(stderr , "Duplicate frees are detected\n");

6 return;

7 }

8 size_t word_size = p[1];

9 unsigned long head_canary_free = p[0];

10 unsigned long tail_canary_free = p[2 + word_size];

11 if(head_canary_free != head_canary ^ word_size){

12 attackDetected(addr , 2);

13 }

14 if(tail_canary_free != tail_canary ^ word_size){

15 attackDetected(addr , 1);

16 }

17 ...

18 p[0] = 0;

19 }

5 Evaluation

This section reports the performance of the system, including memory allocation
overheads. Our experimental setup is described in Sect. 5.1. In Sect. 5.2, we show

A Dynamic Protection Mechanism for GPU Memory Overflow 37

Fig. 3. Overheads about cudaMalloc and ScatterAlloc.

the feasibility of the experiment leveraging CPU to dynamically detect GPU
buffer overflows and evaluate the performance overheads.

5.1 Experiment Setup

Our experiment was performed on Ubuntu 16.04.1. The CPU is Intel(R) Xeon(R)
E5-2630 v3 clocked at 2.40 GHz and the host memory size is 32G. The GPU is the
NVIDIA GeForce GTX 1070 (Pascal architecture) that has computing capability
6.1, 1920 CUDA Cores, 8 GB of GDDR5 memory. The CUDA runtime version
is 9.0. We use nvcc to compile CUDA code.

5.2 Performance Analysis

Additional impact on system performance is mainly caused by memory alloca-
tion and buffer overflow detection. For memory allocation, we use ScatterAlloc
allocator to allocate memory. As the number of threads continues to increase,
the performance of the allocator almost remains essentially at a constant level.
In the case of full use of the GPU, the memory allocation using ScatterAl-
loc is 100 times faster than the CUDA toolkit allocator, 10 times faster than
using SIMD optimized XMalloc [11]. On the other hand, related studies have
shown that unnecessary data copies take 16% to 537% longer to execute than
the actual data movement [18], which is not acceptable in high concurrency and
data-intensive applications that employ GPUs. This inefficiency is solved in our
system by declaring unified memory which can be accessed by the CPU and
GPU at the same time. It is not necessary to use cudaMemcpy to copy data
between CPU and GPU.

We use ScatterAlloc to allocate a series of buffers on the unified memory, the
buffer size is 4096B. And we use cudaMalloc to allocate buffers of the same size
and number on the global memory and perform a simple kernel that calculates

38 Y. Yang et al.

Fig. 4. Overheads of buffer overflow detection

the sum of two matrices with 4096 threads. Experiments show that the ratio of
the overheads of the two methods is about 60% on average. As we can see from
Fig. 3, the overhead of the first method is significantly lower than that of the
second one.

For the performance overheads of buffer overflow detection, we test the
impact of the buffer overflow detection on the overall application in the case
of different sizes and the number of allocated buffers with a fine-tuned bench-
mark called CUDA-quicksort [19] with 16384 threads. All results reported in this
section are average values of 10 runs. A large number of experiments have proved
that our method has little impact on system performance. As we can see from
the Fig. 4(a), 4(b), 4(c), when the buffer size is less than 512B, the overhead
when enabling the overflow detection is almost negligible. Even when the buffer
size is larger than 512B, the overhead incurred by buffer overflow detection is
only slightly higher than that when the detection is disabled. Figure 4(d) shows
how the overhead of buffer overflow detection varies with different buffer sizes.
When the buffer size is increased from 64B to 512B, the overhead caused by the
detection is gradually decreasing. As the size is larger than 512B, the overhead
remains basically unchanged at around 4%.

We also test the impact of the number of GPU threads on performance. In
Fig. 4(e), we allocate 1024 buffers of 1024B and 2048B, respectively, and measure
the performance overhead of overflow detection as compared to the case when
detection is disabled. In this experiment, the number of threads is variable. The
experimental results show that under the same conditions, when the number of

A Dynamic Protection Mechanism for GPU Memory Overflow 39

threads increases from 1024 to 16384, the overheads remain basically unchanged.
The detection overhead varies between 4%–6% as shown in Fig. 4(f). This means
that the number of user threads does not affect the performance of overflow
detection significantly.

6 Conclusion

In this paper, we discuss the issue of GPU memory management, including the
optimization of memory allocation and the use of unified memory, and we study
the GPU buffer overflow problem. On this basis, we propose a new mechanism
for dynamically detecting GPU memory overflow and design a prototype system
that uses the CPU to detect GPU buffer. Our tests show that in high-concurrency
and data-intensive applications, the performance overhead is only about 4%–
6%. With this mechanism, the overflow of GPU heap memory can be effectively
prevented.

Acknowledgment. This work was supported by NSFC Grants U19A2067,
61772543, U1435222, 61625202, 61272056; National Key R&D Program of
China 2017YFB0202602, 2018YFC0910405, 2017YFC1311003, 2016YFC1302500,
2016YFB0200400, 2017YFB0202104; The Funds of Peng Cheng Lab, State Key Lab-
oratory of Chemo/Biosensing and Chemometrics; the Fundamental Research Funds
for the Central Universities, and Guangdong Provincial Department of Science and
Technology under grant No. 2016B090918122.

References

1. Gaikwad, A., Toke, I.M.: Parallel iterative linear solvers on GPU: a financial engi-
neering case. In: 2010 18th Euromicro Conference on Parallel, Distributed and
Network-based Processing, pp. 607–614. IEEE (2010)

2. Kim, J., Rajkumar, R., Kato, S.: Towards adaptive GPU resource management for
embedded real-time systems. ACM SIGBED Rev. 10(1), 14–17 (2013)

3. Di Biagio, A., Barenghi, A., Agosta, G., Pelosi, G.: Design of a parallel AES for
graphics hardware using the CUDA framework. In: 2009 IEEE International Sym-
posium on Parallel & Distributed Processing, pp. 1–8. IEEE (2009)

4. Vasiliadis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: PixelVault:
using GPUs for securing cryptographic operations. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, pp. 1131–
1142 (2014)

5. Nishikawa, N., Iwai, K., Kurokawa, T.: High-performance symmetric block ciphers
on CUDA. In: 2011 Second International Conference on Networking and Comput-
ing, pp. 221–227. IEEE (2011)

6. Shi, L., Chen, H., Sun, J., Li, K.: vCUDA: GPU-accelerated high-performance
computing in virtual machines. IEEE Trans. Comput. 61(6), 804–816 (2011)

7. Le, Y., Wang, Z.J., Quan, Z., He, J., Yao, B.: ACV-tree: a new method for sentence
similarity modeling. In: IJCAI, pp. 4137–4143 (2018)

40 Y. Yang et al.

8. Di, B., Sun, J., Chen, H.: A study of overflow vulnerabilities on GPUs. In: Gao,
G.R., Qian, D., Gao, X., Chapman, B., Chen, W. (eds.) NPC 2016. LNCS, vol.
9966, pp. 103–115. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47099-3 9

9. Di, B., Sun, J., Li, D., Chen, H., Quan, Z.: GMOD: a dynamic GPU memory
overflow detector. In: Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques, pp. 1–13 (2018)

10. Nvidia: CUDA-MEMCHECK. https://developer.nvidia.com/cuda-memcheck.
Accessed 26 Aug 2020

11. Huang, X., Rodrigues, C.I., Jones, S., Buck, I., Hwu, W.M.: XMalloc: a scalable
lock-free dynamic memory allocator for many-core machines. In: 2010 10th IEEE
International Conference on Computer and Information Technology, pp. 1134–
1139. IEEE (2010)

12. Widmer, S., Wodniok, D., Weber, N., Goesele, M.: Fast dynamic memory alloca-
tor for massively parallel architectures. In: Proceedings of the 6th Workshop on
General Purpose Processor Using Graphics Processing Units, pp. 120–126 (2013)

13. Huang, X., Rodrigues, C.I., Jones, S., Buck, I., Hwu, W.M.: Scalable SIMD-parallel
memory allocation for many-core machines. J. Supercomput. 64(3), 1008–1020
(2013)

14. Steinberger, M., Kenzel, M., Kainz, B., Schmalstieg, D.: ScatterAlloc: massively
parallel dynamic memory allocation for the GPU. In: 2012 Innovative Parallel
Computing (InPar), pp. 1–10. IEEE (2012)

15. Unified Memory. http://on-demand.gputechconf.com/gtc/2018/presentation/
s8430-everything-you-need-to-know-about-unified-memory.pdf. Accessed 26 Aug
2020

16. Cowan, C., et al.: StackGuard: automatic adaptive detection and prevention of
buffer-overflow attacks. In: USENIX Security Symposium, San Antonio, TX, vol.
98, pp. 63–78 (1998)

17. Zeng, Q., Wu, D., Liu, P.: Cruiser: concurrent heap buffer overflow monitoring
using lock-free data structures. ACM SIGPLAN Not. 46(6), 367–377 (2011)

18. Zhang, J., Donofrio, D., Shalf, J., Kandemir, M.T., Jung, M.: NVMMU: a non-
volatile memory management unit for heterogeneous GPU-SSD architectures. In:
2015 International Conference on Parallel Architecture and Compilation (PACT),
pp. 13–24. IEEE (2015)

19. Manca, E., Manconi, A., Orro, A., Armano, G., Milanesi, L.: CUDA-quicksort: an
improved GPU-based implementation of quicksort. Concurr. Comput. Pract. Exp.
28(1), 21–43 (2016)

https://doi.org/10.1007/978-3-319-47099-3_9
https://doi.org/10.1007/978-3-319-47099-3_9
https://developer.nvidia.com/cuda-memcheck
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf

AI

MTLAT: A Multi-Task Learning
Framework Based on Adversarial

Training for Chinese Cybersecurity NER

Yaopeng Han1,2, Zhigang Lu1,2, Bo Jiang1,2, Yuling Liu1,2, Chen Zhang1,
Zhengwei Jiang1,2, and Ning Li1(B)

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{hanyaopeng,luzhigang,jiangbo,liuyuling,zchen,jiangzhengwei,

lining6}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. With the continuous development of cybersecurity texts, the
importance of Chinese cybersecurity named entity recognition (NER)
is increasing. However, Chinese cybersecurity texts contain not only a
large number of professional security domain entities but also many
English person and organization entities, as well as a large number of
Chinese-English mixed entities. Chinese Cybersecurity NER is a domain-
specific task, current models rarely focus on the cybersecurity domain
and cannot extract these entities well. To tackle these issues, we pro-
pose a Multi-Task Learning framework based on Adversarial Training
(MTLAT) to improve the performance of Chinese cybersecurity NER.
Extensive experimental results show that our model, which does not use
any external resources except static word embedding, outperforms state-
of-the-art systems on the Chinese cybersecurity dataset. Moreover, our
model outperforms the BiLSTM-CRF method on Weibo, Resume, and
MSRA Chinese general NER datasets by 4.1%, 1.04%, 1.79% F1 scores,
which proves the universality of our model in different domains.

Keywords: Cybersecurity · Named entity recognition · Adversarial
training · Multi-task learning

1 Introduction

Named entity recognition is the task to identify entity boundaries and the recog-
nition of categories of named entities, which is a fundamental task in the field
of natural language processing (NLP).

The NER task in the general domain mainly identifies three types of entities:
Person (PER), Organization (ORG), and Location (LOC).

Cybersecurity NER is a domain-specific task, which mainly extracts profes-
sional security entities from cybersecurity texts. In the domain of cybersecurity,
English NER [5,18] research is much more than Chinese NER [16]. Compared
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 43–54, 2021.
https://doi.org/10.1007/978-3-030-79478-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_4

44 Y. Han et al.

Fig. 1. Examples of the Chinese cybersecurity NER dataset. Organization (ORG),
Relevant Term (RT), Software (SW), and Person (PER) are categories of cybersecurity
dataset entities.

with English NER, Chinese named entities are more challenging to identify due
to their uncertain boundaries and complex composition. In this paper, we focus
on Chinese cybersecurity NER. As shown in Fig. 1, compared with Chinese gen-
eral NER tasks, entity extraction in the cybersecurity domain is a challenging
task mainly because Chinese cybersecurity texts are often mixed with English
entities, such as person, hacker organizations, and security-related entities (e.g.,

.
In this paper, we propose a novel framework, named multi-task learning based

on adversarial training (MTLAT), to tackle the aforementioned challenges in
Chinese cybersecurity NER. We design an auxiliary task to predict whether each
token is an English entity, a Chinese entity or a non-entity to jointly train with
NER task, which helps the model to learn semantic representations of named
entities and to distinguish named entities from sequences in the Chinese cyber-
security domain. We also use Convolutional Neural Network (CNN) to enhance
the ability of the model to capture local contextual information among charac-
ters sentences, which is also helpful for identifying English and security entities.
Adversarial training is to enhance the security of machine learning systems [3]
by making small perturbations to the input designed to significantly. In the NLP
tasks, since the input text is discrete, the perturbation is added to the continu-
ous the embedding layer as a regularization strategy [14] to improve robustness
and generalization of the model.

With the above improvements, we can greatly boost the performance of the
model in the extraction of name entities in the Chinese cybersecurity dataset.
In summary, our main contributions are as follows:

– We propose a multi-task learning framework based on adversarial training
(MTLAT) to imporve the performance of Chinese cybersecurity NER, and
we use the CNN network to enhance the ability of the model to capture local

MTLAT for Chinese Cybersecurity NER 45

contextual information. Our model can well extract cybersecurity entities and
English entities from Chinese cybersecurity texts.

– Our model achieves state-of-the-art F1 score on the Chinese cybersecurity
NER dataset without using any external resources like lexicon resources and
pre-trained models, which make it very practical for real-world NER systems.
Furthermore, compared to the BiLSTM-CRF model, our model improves F1
scores on Weibo, Resume, and MSRA datasets in the general domain for
4.1%, 1.04%, 1.79%, which proves the universality of our model.

Our code and data are publicly available1.

2 Related Work

2.1 NER

Recently, in the NER task, compared to the traditional methods that required
hand-crafted features, many NER studies mostly focus on deep learning. [4]
firstly proposed the BiLSTM-CRF, which is used by most state-of-the-art
models.

Chinese NER is related to word segmentation. Therefore Chinese NER mod-
els have two main methods, one based on word-level and the other based on
character-level. Recently, many studies [9,10] proved that the model based on
the character-level is better than the model based on the word-level. Because
word-level models often suffer from data sparsity caused by overly large dictio-
naries, and it will also cause word segmentation errors and out-of-vocabulary
(OOV) problems. Character sequence labeling has been the dominant approach
[2,12] for Chinese NER. [19] proposed a lattice LSTM model, which integrates
word-level information to the character-level model, but the lattice LSTM model
can not batch-level training samples.

Recently, multi-task learning (MTL) gains significant attention. [15] proposed
a model to train NER and word segmentation jointly. [1] proposed a NER model
with two additional tasks that predict the named entity (NE) segmentation and
NE categorization simultaneously in social media data. [20] proposed a novel
deep neural multi-task learning framework to jointly model recognition and nor-
malization on the medical NER task.

Recently, with the increasing number of cyberattacks, cybersecurity texts
are also rapidly increasing. How to extract valuable information from cyberse-
curity texts has gradually become a research hotspot. [5] provided an English
cybersecurity dataset that contained several categories of security entities and
use CRF to solve this problem. [16] provided the Chinese cybersecurity dataset
and use the CNN network to obtain the local feature of each character and use
some hand-craft features into BiLSTM-CRF for entity extraction. These meth-
ods do not perform well in solving the aforementioned challenges in Chinese
cybersecurity NER.

1 https://github.com/xuanzebi/MTLAT.

https://github.com/xuanzebi/MTLAT

46 Y. Han et al.

Fig. 2. The main framework of our MTLAT model.

2.2 Adversarial Training

Recently in the field of NLP, there has been a lot of researches [6,14,21] on
adversarial training, mainly to obtain more accurate perturbations and add it to
the embedding layer to improve the robustness and performance of the model.
[14] proposed two adversarial training methods, fast gradient method (FGM)
and virtual adversarial training (VAT), to enhance generalization of the model by
adding perturbation on the embedding layer. To improve the robustness of neural
networks against adversarial examples, many researchers pay more attention to
propose more effective defense strategies and models. [13] proposed a projected
gradient descent (PGD) method, which can be achieved reliably through multiple
projected gradient ascent steps followed by a stochastic gradient descent step.
[21] proposed a novel adversarial training algorithm Free Large-Batch (FreeLB),
based on the Transformer network, which promotes higher invariance in the
embedding space by adding adversarial perturbations to the embedding layer
and minimizing the resultant adversarial risk inside different regions around
input samples.

3 Methodology

In this paper, we propose a novel neural network framework, named multi-task
learning based on adversarial training, for Chinese cybersecurity NER. The

MTLAT for Chinese Cybersecurity NER 47

structure of the proposed model is shown in Fig. 2. In this section, we first
introduce the adversarial training used in MTLAT, and we then introduce the
encoding framework of the model and then introduce the decoding and training
based on adversarial training and multi-task learning.

Formally, we denote a Chinese sentence as s = {c1, c2, . . . , cn}, where ci

denotes the ith character, n is the number of characters in the sentence. By
looking up the embedding vector from a static character embedding matrix, we
obtain xi = E (ci), where xi ∈ R

de and de is the dimension of the input character
embeddings, E is a character embedding lookup table.

3.1 Adversarial Training

In the field of NLP, since the input is discrete, the perturbations are mostly added
to the embedding layer, which can enhance the robustness and performance of
the model. Generally, adversarial training can be described by the following
formula. Adversarial training seeks to find optimal parameters θ to minimize
the maximum risk for radv:

min
θ

E(x,y)∼D

[
max

‖radv‖≤ε
L (x + radv, y,θ)

]
(1)

where x = {x1,x2, . . . ,xn}, y is the sentence label sequence, D is data distri-
bution, L is loss function. When get radv through the following methods, then
add perturbations radv to the character embedding x to get new embeddings x∗,
then feed x∗ to the model to calculate the adversarial loss:

Ladv = L (x∗, y,θ) = L (x + radv, y,θ) (2)

In this paper, we use the PGD [13] method to calculate the perturbation
radv. Then we introduce the most effective method of adversarial training, PGD,
because it can largely avoid the obfuscated gradient problem.

PGD: [13] proposed to solve the inner maximization of Eq. 1 by using PGD (a
standard method for large-scale constrained optimization) method. In particular,
PGD takes the following step in each iteration:

g (rt) = ∇rL (x + rt, y)
rt+1 = Π‖r‖F ≤ε (rt + αg (rt) / ‖g (rt)‖F) (3)

where g (rt) is the gradient of the loss with respect to r, and Π‖r‖F ≤ε performs
a projection onto the ε-ball. After k-step PGD, add perturbation rk to the char-
acter embedding:

x∗ = x + rk (4)

3.2 Encoding Layer

When using adversarial training methods to add perturbation radv to the char-
acter embedding vector x, the embedding vector input for the current model is
x∗, and then feed it to our encoding layer.

48 Y. Han et al.

BiLSTM: Most studies use BiLSTM to obtain text representations when pro-
cessing text data, because it is a sequence model that can learn the internal
connections of the text well and use context information of the text. In this
paper, we use the character-level BiLSTM as the main network structure. We
obtain the contextual representation H = {h1,h2, . . . ,hn}, where H ∈ R

n×dh

and dh is the hidden dimension of BiLSTM output:

−→
h i = LSTM (f)

(
x∗

i ,
−→
h i−1

)
←−
h i =

←−−−−−−
LSTM (b)

(
x∗

i ,
←−
h i+1

)

hi =
[−→
h i;

←−
h i

] (5)

Convolutional Layer: Convolution layers are performed at every window
based location to extract local features. We apply a convolutional layer to extract
character representation to enhance local feature, which is helpful for extracting
English entities and security entities. By the same padding, filters are applied to
n possible windows in the sequence and the local contextual representation can
be represented as G = {g1, g2, . . . , gn}, where G ∈ R

n×dc and dc is the hidden
dimension of CNN output:

gi = Re LU
(
W1x∗

i−h+1:i + b1

)
(6)

where W1 ∈ R
h×de×dc and b1 ∈ R

h×dc are learnable parameters, x∗
i−h+1:i refers

to the concatenation of character x∗
i−h+1,x

∗
i−h+2, . . . ,x

∗
i with h window size of

filters are applied to the input sequence to generate character embedding repre-
sentation. Finally, concat the representation obtained by BiLSTM and CNN:

R = [H;G] (7)

where R ∈ R
n×(dh+dc). Then feed R to CRF and multi-task network to calculate

the NER loss and multi-task loss.

3.3 Training

NER Task: We use the CRF layer as the decoding layer of the NER task and
calculate the probability of the ground-truth tag sequence p (yi | si), and then
we can calculate the NER task loss:

Ladv
NER = −

N∑
i=1

log (p (yi | si)) (8)

p(y | s) =
exp

(∑
i

(
Ayi−1,yi

+ Wyi
Ri

))
∑

y′∈Y exp
(∑

i

(
Ay′

i−1,y′
i
+ Wy′

i
Ri

)) (9)

where Y denotes the set of all possible label sequences, A is the probability
of transitioning from one tag to another. Wyi

is used for modeling emission
potential for the ith character in the sentence.

MTLAT for Chinese Cybersecurity NER 49

Table 1. Statistics of the Chinese cyber-
security NER dataset.

Type Train Dev Test

Sentences 38.2k 4.8k 4.8k

Chars 2210.3k 270.1k 278.4k

PER 9944 1355 1291

ORG 14557 1727 1861

LOC 18958 2290 2467

SW 5397 719 647

RT 64471 7753 8263

VUL ID 265 25 30

Total Entities 113.5k 13.8k 14.6k

Table 2. Statistics of Chinese general
NER datasets.

Dataset Type Train Dev Test

MSRA Sentences 46.4k – 4.4k

Chars 2169.3k – 172.6k

Entities 74.8k – 6.2k

Weibo Sentences 1.4k 0.27k 0.27k

Chars 73.8k 14.5k 14.8k

Entities 1.89k 0.42k 0.39k

Resume Sentences 3.8k 0.46k 0.48k

Chars 124.1k 13.9k 15.1k

Entities 1.34k 0.16k 0.15k

Auxiliary Task: Inspired by the [11], to better distinguish between Chinese and
English entities, we add an auxiliary task to predict whether the pred tokens are
Chinese entities, English entities, or non-entities. Additionally, the auxiliary task
acts as a regular method to help the model to learn general representations of
named entities. Given a set of training example

{(
si, ŷi ∈ R

n×3
)}∣∣N

i=1
for the

auxiliary task, the auxiliary task loss can be defined as follows:

p(ŷ | s) = softmax (W2R + b2) (10)

Ladv
AUX = − 1

N

N∑
i=1

ỹi log (p (ŷi | si)) (11)

where W2 ∈ R
(dh+dc)×3 and b2 ∈ R

3 are trainable parameters, ỹ is the auxiliary
task gold label of the sentence s.

Through adversarial training, we can get the NER task loss Ladv
NER and the

auxiliary task loss Ladv
AUX , then we add these two losses to update parameters of

the model by backpropagation algorithm for jointly training:

LJOINT = Ladv
NER + αLadv

AUX (12)

where α is the balancing parameter.

4 Experiments

4.1 Datasets

Chinese Cybersecurity NER Dataset: [16] collected and labeled the Chinese
cybersecurity NER dataset from the Freebuf website and the Wooyun vulnerabil-
ity database, mainly including security text data such as technology sharing, net-
work security, vulnerability information, etc. The Chinese cybersecurity dataset

50 Y. Han et al.

Table 3. Results with different methods on the Chinese cybersecurity NER test
dataset.

Models Precision (%) Recall (%) F1 (%)

Baseline 90.74 89.40 90.07

w/ FGM 91.81 90.25 91.03

w/ VAT 91.65 89.53 90.58

w/ PGD 92.37 90.25 91.30

w/ FreeLB 92.60 89.73 91.14

w/ MTL 91.55 90.10 90.82

w/ CNN 92.31 90.17 91.23

Lattice LSTM 91.07 91.36 91.21

MTLAT(ours) 92.90 90.74 91.81

includes six types of security entities, including names of the person (PER),
location (LOC), organization (ORG), software (SW), relevant term (RT) and
vulnerability (VUL ID). In this paper, we mainly evaluate our model on a larger
dataset that they open source2. The specific analysis is shown in Table 1.

Chinese General NER Datasets: We also evaluate the effect of our model on
Chinese general domain NER datasets, Weibo NER [15], MSRA [8], and Resume
NER [19]. Their statistics are listed in Table 2. Weibo NER is based on the text
in Chinese social media Sina Weibo. MSRA comes mainly from news domain.
Resume NER is collected from Sina Finance. These domains are the domains
that the public often pays attention to, and can be unified into general domains.
On the contrary, except for security personnel, the cybersecurity domain has
received little public attention.

4.2 Comparison Methods

Baseline Model: In this paper, we use the character-level BiLSTM-CRF [7]
model as the comparison baseline method. We also explore the four different
methods of adding adversarial training (FGM, VAT, PGD, and FreeLB) based
on the baseline model.

Lattice LSTM: Lattice LSTM [19] incorporates word-level information into
character-level recurrent units, which can avoid segmentation errors. The Lattice
LSTM achieves state-of-the-art performance on the Chinese general domain NER
datasets.

4.3 Hyper-Parameter Settings

For hyperparameter configuration, we adjust them according to the performance
on the development datasets for all NER datasets. For all of the datasets, we use
2 https://github.com/xiebo123/NER.

https://github.com/xiebo123/NER

MTLAT for Chinese Cybersecurity NER 51

Fig. 3. Loss of the Chinese cybersecurity
development dataset with four different
adversarial training methods.

Fig. 4. F1 scores against training itera-
tion number on the Chinese cybersecurity
development dataset.

the Adam optimization to train our networks, and the initial learning rate was
set at 0.015 for the cybersecurity NER dataset, 0.005 for other NER datasets.
We set α in Eq. 12 to 1. We set the hidden sizes of BiLSTM to 256 dims. We use
one layer of CNN with an output channel size of 200 and set the window size as
3. The character embedding used in our all experiments are from [17]. To avoid
overfitting, we apply dropout (50% dropout rate) on the character embedding
and (20% dropout rate) on the output layer. We use “BIEOS” as the decoder
tag scheme for all datasets.

5 Results and Analysis

5.1 Results on the Chinese Cybersecurity NER Dataset

We first compare the impact of different adversarial training methods on the
Chinese cybersecurity test dataset. As shown in Table 3, adding any kind of
adversarial training method to the baseline model can improve the F1 score on
the cybersecurity dataset, which proves the effectiveness of adversarial training.
PGD and FreeLB use K-step iterations to obtain the optimal perturbations and
obtain a higher F1 score. In addition, Fig. 3 compares the loss effect of these four
methods (FGM, VAT, PGD, and FreeLB) on the development dataset. Among
the four adversarial training methods, PGD can obtain better robustness and
generalization on the development dataset. Therefore, the PGD method is used
in our MTLAT model. We find that adding the auxiliary task (MTL) to the
baseline model is helpful for recalling entities. And using the CNN network can
enhance the local feature representation of the text, greatly improving the pre-
cision and recall score of entity extraction. Figure 4 shows the comparison of the
effect of adding CNN, PGD and MTL to the baseline model on the development

52 Y. Han et al.

Table 4. F1 scores on Chinese general NER test datasets. a represents the word-level
LSTM model, b indicates the character-level LSTM model, and c is the lattice LSTM
model.

Models Weibo Resume MSRA

Zhang and Yang (2018) [19]a 47.33 93.58 86.85

Zhang and Yang (2018) [19]b 52.77 93.48 88.81

Zhang and Yang (2018) [19]c 58.79 94.46 93.18

Baseline† 54.05 93.62 89.45

Baseline-CNN-PGD 58.15 94.66 91.24

Table 5. Case Study. We use red to denote the correct labels, blue to denote the
wrong labels and purple to denote entities in the sentence. SW means software and
LOC means location.

dataset. It shows that the MTLAT achieves the best performance by adding
these three methods to the baseline model.

[19] introduce a lattice LSTM to incorporate external lexicon information
into the model. Compared with the baseline model, the F1 score of the lattice
model using external data is improved by 1.14%. Table 3 shows that our MTLAT
model achieves 91.81% F1 score on the test dataset, which outperforms the
lattice LSTM by 0.6%. Overall, our model does not require any external data
on the cybersecurity dataset to achieve state-of-the-art performance, which can
be more easily applied to real-world systems.

5.2 Results on Chinese General NER Datasets

Because there are few English entities in the general domain of NER datasets,
we do not apply the auxiliary task on general domain datasets. We only add the
adversarial training method PGD and CNN network to baseline model, namely
Baseline-CNN-PGD. The results are reported in Table 4. It shows that our
character-level baseline model outperforms the same network proposed by [19].
It can see that our model Baseline-CNN-PGD outperforms the best character-
level and word-level models on all three datasets. Although the results of our
model on Weibo and MSRA datasets are slightly lower than Lattice LSTM,
Lattice LSTM leverages external lexicon resources and can not batch training,

MTLAT for Chinese Cybersecurity NER 53

resulting in highly inefficient. It proves that adversarial training can improve
the robustness and generalization of the model, and the CNN network enhance
the ability of the model to capture local contextual information, which are of
great help to improve the performance of the model, and further proves the
universality of our model in different domains.

5.3 Case Study

To show visually that our model can solve the challenges of identifying English
entities, a case study comparing the baseline model and our model in Table 5. In
the case, there are two entities, a Chinese location entity “ ”
and an English software entity “Win32Industroyer”. The baseline model can
extract Chinese entities well, but it incorrectly recognizes English entities, while
our model can extract not only Chinese entities well, but also English professional
security entities.

6 Conclusion

In this paper, we propose a multi-task learning framework based on adversarial
training (MTLAT) method to enhance the performance of Chinese cybersecurity
NER. We incorporate adversarial training into the embedding layer to improve
robustness and generalization of the model and use the CNN network to enhance
feature local representations. Extensive experiments show that our model does
not require any external data on the Chinese cybersecurity dataset to achieve
state-of-the-art performance, which can be more easily applied to real-world sys-
tems. Moreover, compared with the BiLSTM-CRF method, our model has 4.1%,
1.04%, 1.79% F1 scores improvement on Weibo, Resume, and MSRA datasets,
which proves the universality of our model in different domains.

Acknowledgments. This research is supported by National Key Research and Devel-
opment Program of China (No.2019QY1303, No.2019QY1301, No.2018YFB0803602),
and the Strategic Priority Research Program of the Chinese Academy of Sciences (No.
XDC02040100), and National Natural Science Foundation of China (No. 61702508, No.
61802404). This work is also supported by the Program of Key Laboratory of Network
Assessment Technology, the Chinese Academy of Sciences; Program of Beijing Key
Laboratory of Network Security and Protection Technology.

References

1. Aguilar, G., Maharjan, S., López-Monroy, A.P., Solorio, T.: A multi-task approach
for named entity recognition in social media data. CoRR abs/1906.04135 (2019)

2. Dong, C., Zhang, J., Zong, C., Hattori, M., Di, H.: Character-based LSTM-CRF
with radical-level features for Chinese named entity recognition. In: Lin, C.-Y.,
Xue, N., Zhao, D., Huang, X., Feng, Y. (eds.) ICCPOL/NLPCC -2016. LNCS
(LNAI), vol. 10102, pp. 239–250. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50496-4 20

https://doi.org/10.1007/978-3-319-50496-4_20
https://doi.org/10.1007/978-3-319-50496-4_20

54 Y. Han et al.

3. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: ICLR (2015)

4. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging.
CoRR abs/1508.01991 (2015)

5. Joshi, A., Lal, R., Finin, T., Joshi, A.: Extracting cybersecurity related linked data
from text. In: 2013 IEEE Seventh International Conference on Semantic Comput-
ing, pp. 252–259. IEEE (2013)

6. Ju, Y., Zhao, F., Chen, S., Zheng, B., Yang, X., Liu, Y.: Technical report on
conversational question answering. CoRR abs/1909.10772 (2019)

7. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. In: NAACL, pp. 260–270 (2016)

8. Levow, G.A.: The third international Chinese language processing bakeoff: word
segmentation and named entity recognition. In: ACL, pp. 108–117. Association for
Computational Linguistics (2006)

9. Li, H., Hagiwara, M., Li, Q., Ji, H.: Comparison of the impact of word segmentation
on name tagging for Chinese and Japanese. In: LREC, pp. 2532–2536 (2014)

10. Li, X., Meng, Y., Sun, X., Han, Q., Yuan, A., Li, J.: Is word segmentation necessary
for deep learning of Chinese representations? In: ACL, pp. 3242–3252. Association
for Computational Linguistics (2019)

11. Liu, Z., Winata, G.I., Fung, P.: Zero-resource cross-domain named entity recogni-
tion. In: ACL, pp. 1–6 (2020)

12. Lu, Y., Zhang, Y., Ji, D.: Multi-prototype Chinese character embedding. In: Pro-
ceedings of the Tenth International Conference on Language Resources and Eval-
uation (LREC 2016), pp. 855–859 (2016)

13. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: ICLR (2018)

14. Miyato, T., Dai, A.M., Goodfellow, I.: Adversarial training methods for semi-
supervised text classification. In: ICLR (2017)

15. Peng, N., Dredze, M.: Improving named entity recognition for Chinese social media
with word segmentation representation learning. In: ACL: Short Papers (2016)

16. Qin, Y., Shen, G.W., Zhao, W.B., Chen, Y.P., Yu, M., Jin, X.: A network security
entity recognition method based on feature template and CNN-BILSTM-CRF.
Front. Inf. Technol. Electron. Eng. 20(6), 872–884 (2019)

17. Song, Y., Shi, S., Li, J., Zhang, H.: Directional skip-gram: explicitly distinguishing
left and right context for word embeddings. In: NAACL-HLT, (Short Papers), vol.
2, pp. 175–180 (2018)

18. Weerawardhana, S., Mukherjee, S., Ray, I., Howe, A.: Automated extraction of
vulnerability information for home computer security. In: Cuppens, F., Garcia-
Alfaro, J., Zincir Heywood, N., Fong, P.W.L. (eds.) FPS 2014. LNCS, vol. 8930, pp.
356–366. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17040-4 24

19. Zhang, Y., Yang, J.: Chinese NER using lattice LSTM. In: ACL, pp. 1554–1564
(2018)

20. Zhao, S., Liu, T., Zhao, S., Wang, F.: A neural multi-task learning framework to
jointly model medical named entity recognition and normalization. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 817–824 (2019)

21. Zhu, C., Cheng, Y., Gan, Z., Sun, S., Goldstein, T., Liu, J.: FreeLB: enhanced
adversarial training for language understanding. In: ICLR (2020)

https://doi.org/10.1007/978-3-319-17040-4_24

Learning-Based Evaluation of Routing
Protocol in Vehicular Network Using

WEKA

Amal Hadrich(B), Amel Meddeb Makhlouf(B), and Faouzi Zarai(B)

National School of Electronics and Telecommunications, Sfax, Tunisia
{amal.hadrich,amel.makhlouf,faouzi.zerai}@enetcom.usf.tn

Abstract. Internet of things connects any object to another and com-
municate with them using the most performed routing protocol. But in
vehicular networks, topology and communication links frequently change
due to the high mobility of vehicles. So, the key challenge of our work is
to choose the best routing protocol using machine learning algorithms.
When choosing routing protocol, most research focuses on the improve-
ment of the performance of specific routing protocol using one machine
learning algorithm. In this paper, we propose a solution in order to find
the best routing protocol in such critical condition using machine learn-
ing algorithms in order to maximize the precision of the true positive
rate. After the use of a specific algorithms such as Artificial Neural Net-
work, Random Forest and Naive Bayes, we found that the last one is the
best algorithm when it have all the true positive rate with a precision
equal to 0.9987 to select the best routing protocol.

Keywords: Vehicular networks · Routing protocol · Machine learning
algorithms

1 Introduction

Recent advances in networks have given rise to the emergence of vehicular net-
works. The research work has started from the past few years on the area of
Mobile Ad-hoc Networks also called as MANETS (Mobile Adhoc NETworks).
It allows the mobile nodes to communicate in one to one and one to many
without any predefined infrastructure. The protocols which are required to sup-
port MANETS are more complex when compared to other non-mobile networks
because of the mobility and of the non-existence predefined infrastructure or
topology for MANETS. New technologies are used to provide more and more
facilities including safety applications. Among these networks, Vehicular net-
works are a subclass of MANETs, where vehicles are simulated as mobile nodes.
The vehicular network is a self organizing network to provide Intelligent Trans-
port System (ITS). Users in vehicles connect to the Internet at any time in order
to obtain the desired services. There are three types of common communication

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 55–67, 2021.
https://doi.org/10.1007/978-3-030-79478-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_5

56 A. Hadrich et al.

models in vehicular networks: vehicle-to-infrastructure (V2I), vehicle-to-roadside
(V2R) and vehicle-to-vehicle (V2V) [15]. The routing protocol is an important
aspect in communication between networks. It is a set of rules that are framed
for exchanging the information in a network from one node to another node.
MANET routing protocols are divided into three categories: Proactive routing
protocol means that the routing information is maintained in the background
irrespective of communication requests like the protocol OLSR (Optimized Link
State Routing Protocol), reactive routing protocol opens the route only when it
is necessary for a node to communicate with each other such as AODV (Ad-hoc
On-demand Distance Vector), DSR (Dynamic Source Routing) and ZRP (Zone
Routing Protocol) is an example of hybrid routing protocols that is introduced
to reduce the control overhead of proactive routing protocols and decrease the
initial route discovery delay in reactive routing protocols. The main difference
between the MANET and vehicular routing is network topology, mobility pat-
terns, demographics, density of nodes at different timings, rapid changes in node
arriving and leaving the network. Vehicular networks was divided into three
categories [1,2]:

* Routing information: It is also divided into two categories like topology-based
routing protocols that use link information that exists in the network and
position-based routing protocols use GPS devices.

* Transmission strategies: It is divided into three categories, where broadcast
routing protocols are frequently used in vehicular network, multicast such as
cluster-based routing protocols and geocast routing protocols and unicast.

* Delay tolerant: It is useful to help balance traffic loads and reduces traveling
time.

Figure 1 represents vehicular routing protocol chosen in our work and their cat-
egories.

Fig. 1. Vehicular routing protocol chosen in our work.

Vehicles in their network have high mobility, which causes a changement
in the network topology and the connections unstability. Recently, the nature-
inspired intelligence algorithms have been widely used as direct search and opti-
mization tools in many different problems where machine learning algorithms

Learning-Based Evaluation of Routing Protocol in Vehicular Network 57

used for the choose of the best route for the devices. For this reason, we propose
a solution to choose the best routing protocol depending on the network topology
using machine learning algorithms. The remainder of this paper is organized as
follows. Section 2 reviews the related works. Section 3 introduces our proposed
solution in order to choose the perfect routing protocol. Section 4 shows the
evaluation results. Section 5 concludes this paper and gives some possible future
perspectives.

2 Related Work

Researchs focus to design an efficient routing algorithms that is adaptable to the
mobility characteristics of vehicular network.

Marzak et al. [3] proposed a new vehicular clustering algorithm based on the
ANN (Artificial Neural Network) system to select cluster-head. This algorithm
increases network connectivity and improves the stability of the cluster struc-
ture. Moreover, research in [4] introduced a Modified AODV routing protocol
of VANET communications using fuzzy neural network algorithm to determine
the best route from the source node to the destination node through several
intermediate nodes. Because of the importance of stability and the security in
vehicular networks, research in [6] presents a secure and stable AODV, named
GSS-AODV, based on the fuzzy neural network to ensure that the calculated
node stability is in accordance with the actual situation. Zaho et al. [5] proposed
a greedy forwarding algorithm based on SVM (Support Vector Machine) to pro-
cess the vehicle data and to generate routing metric. This algorithm reduces the
packet loss and network delay.

The above-mentioned literatures [3–6] mainly use machine learning methods
to increase the network connectivity, determine the best route, improve the per-
formance of the network and applications, increase the stability of the protection
and reduce the packet loss and network delay. But, they still do not applicated
this approach only in one protocol or a cluster and use only one algorithm named
ANN or SVM. However, to determine the best protocol, we have to use several
machine learning algorithms according to the high value of accuracy to avoid
the problem of the accidents and improve the performance and the protection.
The most related work is presented by Marzak et al. [3] because it selects the
best vehicular routing protocol using machine learning algorithm according to
the feature specification, but the last mentioned autor focused on cluster routing
protocol and use only ANN algorithm and in our solution, we focus in all routing
protocol with the apply of machine learning algorithms.

Table 1 summarizes the studied related works and shows their limits.

3 Proposed Solution

Our proposed solution set based on the parameter of routing protocol inserted
in the dataset and estimates the optimal protocol for data transmission using

58 A. Hadrich et al.

Table 1. Comparison with the existing and proposed solution

Solution Algorithm Protocol Limits

Clustering in
vehicular ad-hoc
network using
artificial neural
network [3]

Artificial Neural
Network

Clustering routing
protocols

Focus on cluster
routing protocol
and use only ANN
algorithm

AODV Routing
Protocol
Modification With
Dqueue (dqAODV)
and Optimization
With Neural
Network For
VANET In City
Scenario [4]

Fuzzy neural
network algorithm

A modified AODV
routing protocol

Focus only on
AODV routing
protocol using
fuzzy neural
network

Improving Security
and Stability of
AODV with Fuzzy
Neural Network in
VANET [6]

Fuzzy neural
network

GSS-AODV Focus only on
AODV routing
protocol using
fuzzy neural
network

SVM based routing
scheme in
VANETs[5]

SVM neural
network

Vehicular routing
protocol

Use only SVM
neural network

Proposed solution All algorithms in
Neural Network

All routing
protocols

——–

machine learning algorithms in order to minimize the cost of network mainte-
nance. The proposed approach must ensure optimal operation of the network
by maximizing the stability, minimizing the delivery delay of information and
bandwidth.

For this research, we propose to study three vehicular routing protocols based
on three specifications, which are “AODV”, “DSR” and “OLSR” with three
common parameter “TTL”, “QUEUE LENGTH” and “HELLO INTERVAL”.
There is more routing protocol with their categories like position based, delay
tolerant and transmissions strategies but we choose this three routing protocol
because we find that this have some common carectrestic and features based for
the select the best routing protocol.

A particular mobile node may wish to change certain of the parameters,
in particular the HELLO INTERVAL. In the latter case [10], the node should
advertise the HELLO INTERVAL in its Hello messages, by appending a Hello
Interval Extension.

The routing protocol uses minimum hop count criteria to establish routes
between sources and destinations. However [11], selecting the routing protocol

Learning-Based Evaluation of Routing Protocol in Vehicular Network 59

with minimum hop is not usually the best decision. A node which might not have
sufficient available buffer size could be leading to have high probability of packet
loss and network congestion and link breakage. Thus, the routing algorithm
consider available node queue length during routing protocol selection process.

To control congestion by applying efficient local route repair method we
should use the value of TTL [12]. A TTL value is only decreased by one at each
node. When the TTL value declines to zero, the route request packet should be
dropped even though it didn’t find the destination.

To choose the best routing protocol based on the three parameters, we base
our analysis on the following Machine Learning Algorithms:

* ANN, which are computational algorithms in order to simulate the behavior
of biological systems composed of neurons [7],

* Random Forest, which randomly creates and merges multiple decision trees
into one forest in order to create a collection of decision models to improve
accuracy [9]

* Naive Bayes, which are a collection of classification algorithms based on Bayes
theorem, it is not a single algorithm but a family of algorithms where all of
them share a common principle, i.e. every pair of features being classified is
independent of each other[8].

In Sect. 3.2 there are more description about this machine learning algorithm
mentioned above. These three machine learning algorithms show interesting
results to select the perfect vehicular routing protocol. Figure 2 shows the pro-
posed algorithm of our solution in order to minimize the cost of network main-
tenance.

First, we choose three specific vehicular routing protocol named AODV,
OLSR and DSR then we apply one machine learning algorithm like ANN, Ran-
dom Forest and Naive Bayes. To test our solution, we must compare the accuracy
with a threshold value beta flows the equation below 1.

beta =
2 ∗ precision ∗ recal

precision + recall
(1)

where recall and precision show in Eqs. 2 and 3.

recall =
TP

TP + FN
(2) precision =

TP

TP + FP
(3)

where TP, FN and FP represent respectively True Positive, False Negative
and False Positive. If the accuracy down to beta, we must change the machine
learning algorithm. And if not, we compare the training time to a fixed value.
If the time upper to this value, we must switch the machine learning algorithm.
If not, we move to the next step in order to select the best routing protocols
with the perfect feature. So, we calculate the number of features to decide. If the
number of features is down to S, then we change the machine learning algorithm
and if not, we test the specification of the routing protocol. If this result down

60 A. Hadrich et al.

Fig. 2. Choose of the perfect vehicular routing protocol with the apply of machine
learning based algorithms.

to a fixed value, representing the specification of the previous result, then we
rebuild the algorithm and if not then we set this algorithm as the best vehicular
routing protocol using the perfect machine learning algorithm.

The Table 2 shows the different features used in our proposed algorithm.

Table 2. Definition of the used features

Feature Name Definition

Time To Live (TTL) It’s the number of hops that a packet is permitted to travel
before being discarded by a router

QUEUE LENGTH It is used to hold packets while the network interface is in
the process of transmitting another packet

HELLO INTERVAL A node may offer connectivity information by broadcasting
local Hello messages. A node should only use hello
messages if it is part of an active route

First, we need a description about the routing protocol and the algorithms
chosen.

3.1 Improved Protocol Description

Security protocols are optimized for routing and routing maintenance protocol
processes.

Learning-Based Evaluation of Routing Protocol in Vehicular Network 61

AODV Routing Protocol: The Ad hoc On-Demand Distance Vector (AODV)
algorithm enables dynamic, self-starting, multihop routing between participating
mobile nodes wishing to establish and maintain an ad hoc network. AODV allows
mobile nodes to obtain routes quickly for new destinations, and does not require
nodes to maintain routes to destinations that are not in active communication.
AODV allows mobile nodes to respond to link breakages and changes in network
topology in a timely manner. Route Requests (RREQs), Route Replies (RREPs),
and Route Errors (RERRs) are the message types defined by AODV [11].

OLSR Routing Protocol: The Optimized Link State Routing Protocol
(OLSR) operates as a table driven, proactive protocol, i.e., ex-changes topology
information with other nodes of the network regularly [13]. Each node selects
a set of its neighbor nodes as MultiPoint Relays (MPR). In OLSR, only nodes,
selected as such MPRs, are responsible for forwarding control traffic, intended
for diffusion into the entire network. MPRs provide an efficient mechanism for
flooding control traffic by reducing the number of required transmissions [13].

DSR Routing Protocol: The Dynamic Source Routing protocol (DSR) is
a simple and efficient routing protocol designed specifically for use in multi-
hop wireless ad hoc networks of mobile nodes [14]. Using DSR, the network
is completely self-organizing and self-configuring, requiring no existing network
infrastructure or administration. Network nodes cooperate to forward packets
for each other to allow communication over multiple hops between nodes not
directly within wireless transmission range of one another.

3.2 Machine Learning Algorithms Description

Machine learning is a method of data analysis that automates analytical model
building. It is a branch of technology that allows systems to learn from data,
identify patterns and make decisions with minimal human intervention. It has
revolutionized the world of computer science by allowing learning with large
datasets, which enables machines to change, restructure and optimize algorithms
by themselves [16]. After analysis, we choose to use three machine learning based
algorithms, namely, Artificial Neural Network (ANN), Naive Bayes and Random
Forest, because they have the most interesting results compared to other machine
learning algorithms.

Naive Bayes: Classification is a fundamental issue in machine learning and
data mining. Naive Bayes is the simplest form of Bayesian network, in which all
attributes are independent given the value of the class variable [8].

Figure 3 shows Naive Bayes of our solution where QL and HI represent respec-
tively QUEUE LENGTH and Hello interval. In naive Bayes, each attribute node
has no parent except the class node.

62 A. Hadrich et al.

Fig. 3. Naive Bayes algorithm of our solution.

Random Forest: Random Forests in machine learning is an ensemble learning
technique about classification, regression and other operations that depend on a
multitude of decision trees at the training time. They are fast, flexible, represent
a robust approach to mining high-dimensional data [9]. Figure 4 shows Random
Forest algorithm of our solution.

Fig. 4. Random Forest algorithm of our solution.

Artificial Neural Network: Artificial neural network (ANN) is a computa-
tional model that consists of several processing elements that receive inputs and
deliver outputs based on their predefined activation functions. The ANN con-
sists of a set of processing elements, also known as neurons or nodes, which are
interconnected [7]. Figure 5 represents the ANN algorithm to our solution.

Fig. 5. ANN algorithm for our solution

Learning-Based Evaluation of Routing Protocol in Vehicular Network 63

4 Evaluation Results

For the evaluation procedure, we propose to use WEKA, which is a machine
learning workbench that supports many activities of machine learning practi-
tioners. The main features of WEKA are [17]:

* Data preprocessing: As well as a native file format (ARFF), WEKA supports
various other formats (for instance CSV, Matlab ASCII files), and database
connectivity through JDBC.

* Classification: One of WEKA’s drawing cards is the more than 100 classifi-
cation methods it contains.

* Clustering: Unsupervised learning is supported by several clustering schemes.
* Attribute selection: The set of attributes used is essential for classification

performance.
* Data visualization: Data can be inspected visually by plotting attribute values

against the class, or against other attribute values.

To test our solution, we choose k-folds cross-Validation model. It’s a re-sampling
procedure used to evaluate machine learning models on a limited data sample.
The procedure has a single parameter called k that refers to the number of
groups that a given data sample is to be split into. The general procedure is as
follows:

1- Shuffle the dataset randomly.
2- Split the dataset into k groups
3- For each unique group:

A- Take the group as a hold out or test data set.
B- Take the remaining groups as a training data set.
C- Fit a model on the training set and evaluate it on the test set.
D- Retain the evaluation score and discard the model.

4- Summarize the skill of the model using the sample of model evaluation scores.

Importantly, each observation in the data sample is assigned to an individual
group and stays in that group for the duration of the procedure. This means
that each sample is given the opportunity to be used in the hold out set 1 time
and used to train the model k-1 times.

The main objective of our work is to choose the best routing protocol based
on the calculation of the performance for each protocol and algorithm in order
to minimize the cost of network maintenance. First, we set k value to 10. The
retrieved value of the accuracy follows the matrix below 2.

Accuracy =
(
RandomForest NaiveBayes ANN

82.22% 88.88% 80%

)
(2)

The simulation results show that the Random Forest Algorithm takes a delay
time equal to 0.15 s, ANN algorithm takes about a 0.29 s and Naive Bayes algo-
rithm takes a delay time equal to 0.1 s to build their model. Figures 6a, 6b and

64 A. Hadrich et al.

6c show the results of our machine learning algorithms, where the abscissa axis
is the protocol name and y-axis is the predicted protocol name. Figure 6a shows
the result of the Random Forest Algorithm. We notice that the random forest
presents errors in DSR and OLSR routing protocol, because the two protocols
represent some commun interval of the value of TTL and queue length. Figure 6b
shows the result of the application of the ANN Algorithm. We notice that ANN
presents errors in DSR routing protocol predicted as OLSR protocol and OLSR
protocol predicted as AODV and DSR protocols. Figure 6c shows the result of
Naive Bayes Algorithm. We notice in this case that Naive Bayes presents errors
in DSR routing protocol predicted as OLSR protocol.

Fig. 6. Results of the chosen machine learning algorithms.

To evaluate the performance of our solution, we should choose the algorithm
with the accuracy ≥0.8. Thus, the best three algorithms are Naive Bayes, ANN
and Random Forest. Then, we move to fix the training time, where we choose
to eliminate the algorithm with training time >6 s. For the algorithm Random
Forest, the training time is 3s, naive Bayes is 1s and ANN algorithm is 7s.
Thus, the best two algorithms, according to the time metric, are Random Forest
and Naive Bayes. Finally, we should have one feature to chose the best routing
protocol. For the Naive Bayes the OLSR and AODV have a predicted margin
between 0.93 and 1 for the three features TTL, HELLO INTERVAL and QUEUE
LENGTH. The OLSR routing protocol has the lowest predicted margin than
AODV routing protocol for the two features TTL and QUEUE LENGTH. Thus,

Learning-Based Evaluation of Routing Protocol in Vehicular Network 65

the best routing protocol for the naive bayse is AODV. For Random Forest, the
routing protocol AODV has a predicted margin between 0.91 and 1 for the three
features TTL, HELLO INTERVAL and QUEUE LENGTH. Then we should
compare the margin prediction between AODV routing protocol for the two
algorithms. The predicted margin in Naive Bayes is 0.99 and in Random Forest
equal to 0.91 for the two features for TTL and QUEUE LENGTH. Than, we
can conclude, using these conditions, that best routing protocol is AODV the
algorithm Naive Bayes. Table 3 resumes the results about the best algorithm.

Table 3. Summarize of the choose the best algorithm

Algorithms
Steps

Accuracy Training time Number of Features

ANN AODV,OLSR NaN
Random Forest AODV,OLSR AODV
Naive Bayes AODV,OLSR AODV,OLSR AODV

To verify our resolution, Fig. 7 shows the threshold curve of the OLSR routing
protocol using the Naive Bayes algorithm where the abscissa axis is the True
Positive Rate and y-axis is the precision. We notice that the true positive rate
is less than 0.7, which is an interesting result of our simulations.

Fig. 7. The threshold curve for OLSR routing protocol with Naive Bayes algorithm

Figure 8a shows the threshold curve of AODV routing protocol for the Ran-
dom Forest algorithm,to show the variation of the precision with respect to the
True Positive Rate. We notice that the true positive rate values are between
0.7 and 1. Finally, Fig. 8b shows the threshold curve of AODV routing protocol
for the Naive Bayes algorithm. We notice that all the true positive rates are
evaluated with a precision equal to 0.9987.

In conclusion, under specific conditions, the best routing protocol chosen is
AODV using Naive Bayes Algorithm with precision of the true positive rate equal
to 0.9987. Naive Bayes is the most suitable algorithm of our proposed solution
since it has the most greater precision, where the AODV routing protocol is
simple to be determined.

66 A. Hadrich et al.

Fig. 8. Threshold curve of AODV routing protocol.

5 Conclusion

As the population is becoming more and more larger in the world, so vehicles
are increasing per day and simultaneously accidents are rising. There is no pro-
tection for human life and the vehicles. Vehicular network is the mostly utilized
connection that communicates among the vehicles. It is not only utilized for the
communication purpose but also could be structured for navigation and traffic
control. In this manuscript, a routing based solution has been lightened that
would help in the reduction of accidents based on the choose of the best routing
protocol using specific machine learning algorithms. The performance parame-
ters are computed to depict the effectiveness of the proposed work. The threshold
curve indicates that the AODV routing protocol when using Naive Bayes algo-
rithm is the best vehicular routing protocol, based on simulation hypothesis.

In our future work, we plan to use more features to choose the best routing
protocol. These features can be based on security and network characteristics,
which increase the efficiency of our solution.

References

1. Suthaputchakun, C., Sun, Z.: Routing protocol in intervehicle communication sys-
tems: a survey. IEEE Commun. Mag. 49(12), 150–156 (2011)

2. Lin, Y.-W., Chen, Y.-S., Lee, S.-L.: Routing protocols in vehicular ad hoc networks:
a survey and future perspectives. J. Inf. Sci. Eng. 26(3), 913–932 (2010)

3. Marzak, B., et al.: Clustering in vehicular ad-hoc network using artificial neural
network. Int. Rev. Comput. Softw. (IRECOS) 11(6), 548–556 (2016)

4. Saha, S., Roy, U., Sinha, D.D.: AODV routing protocol modification with Dqueue
(dqAODV) and optimization with neural network for VANET in City Scenario.
In: MATEC Web of Conferences, vol. 57, p. 02001. EDP Sciences (2016)

5. Zhao, L., Li, Y., Meng, C., Gong, C., Tang, X.: A SVM based routing scheme in
VANETs. In: 2016 16th International Symposium on Communications and Infor-
mation Technologies (ISCIT), pp. 380–383. IEEE (2016)

6. Huang, B., Mo, J., Cheng, X.: Improving security and stability of AODV with
fuzzy neural network in VANET. In: Chellappan, S., Cheng, W., Li, W. (eds.)
WASA 2018. LNCS, vol. 10874, pp. 177–188. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-94268-1 15

https://doi.org/10.1007/978-3-319-94268-1_15
https://doi.org/10.1007/978-3-319-94268-1_15

Learning-Based Evaluation of Routing Protocol in Vehicular Network 67

7. Prieto, A., et al.: Neural networks: an overview of early research, current frame-
works and new challenges. Neurocomputing 214, 242–268 (2016)

8. Zhang, H.: The optimality of Naive Bayes. AA 1(2), 3 (2004)
9. Segal, M.R.: Machine learning benchmarks and random forest regression (2004)

10. Park, N.-U., Nam, J.-C., Cho, Y.-Z.: Impact of node speed and transmission range
on the hello interval of MANET routing protocols. In: 2016 International Con-
ference on Information and Communication Technology Convergence (ICTC), pp.
634–636. IEEE (2016)

11. Ahmed, B., Mohamed, R., Mohamed, O.: Queue length and mobility aware routing
protocol for mobile ad hoc network. Int. J. Commun. Netw. Inf. Secur. 4(3), 207
(2012)

12. Bindra, P., Kaur, J., Singh, G.: Effect of TTL parameter variation on performance
of AODV route discovery process. Int. J. Comput. Appl. 70(4) (2013)

13. Clausen, T., Jacquet, P.: RFC3626: Optimized Link State Routing Protocol
(OLSR). RFC Editor (2003)

14. Johnson, D.B., Maltz, D.A., Broch, J., et al.: DSR: the dynamic source routing
protocol for multi-hop wireless ad hoc networks. Ad hoc Netw. 5(1), 139–172 (2001)

15. Ksouri, C., Jemili, I., Mosbah, M., Belghith, A.: VANETs routing protocols survey:
classifications, optimization methods and new trends. In: Jemili, I., Mosbah, M.
(eds.) DiCES-N 2019. CCIS, vol. 1130, pp. 3–22. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-40131-3 1

16. Ayodele, T.O.: Machine learning overview. New Adv. Mach. Learn. 9–19 (2010)
17. Bouckaert, R.R., et al.: WEKA-experiences with a Java open-source project. J.

Mach. Learn. Res. 11, 2533–2541 (2010)

https://doi.org/10.1007/978-3-030-40131-3_1
https://doi.org/10.1007/978-3-030-40131-3_1

Accelerating Large-Scale Deep
Convolutional Neural Networks

on Multi-core Vector Accelerators

Zhong Liu(B), Sheng Ma(B), Cheng Li, and Haiyan Chen

College of Computer, National University of Defense Technology, Changsha, China
{zhongliu,masheng}@nudt.edu.cn

Abstract. This paper proposes an efficient algorithm mapping method
for accelerating deep convolutional neural networks, which includes: (1)
Proposing an efficient transformation method, which converts CNN’s
convolutional layer and fully connected layer computations into efficient
large-scale matrix multiplication computations, and converts pooling
layer computations into efficient matrix row computations; (2) Design-
ing a set of general and efficient vectorization method for convolutional
layer, fully connected layer and pooling layer on the vector accelerator.
The experimental results on the accelerator show that the average com-
puting efficiency of convolution layer and full connected layer of AlexNet,
VGG-19, GoogleNet and ResNet-50 are 93.3% and 93.4% respectively,
and the average data access efficiency of pooling layer is 70%.

Keywords: Multi-core vector accelerators · Convolutional neural
network · Vectorization · AlexNet · VGG · GoogleNet · ResNet

1 Introduction

Currently, more and more deep learning applications are being deployed to take
advantage of the powerful computing power of supercomputers. For example,
scientists from Princeton Plasma Physics Laboratory are leading an Aurora ESP
project [1] that will leverage AI and exascale computing power to advance fusion
energy research. Patton demonstrated a software framework that utilizes high
performance computing to automate the design of deep learning networks to
analyze cancer pathology images [2]. The award-winning project [3] developed
an exascale deep learning application on the Summit supercomputer.

We design an efficient scientific computing accelerator for building a pro-
totype supercomputer system. It leverages a multi-core vector architecture for

This work is supported by the National Natural Science Foundation of China (No.
61572025).

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 68–79, 2021.
https://doi.org/10.1007/978-3-030-79478-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_6

Accelerating Large-Scale DCNN on Multi-core Vector Accelerators 69

high-density computing. The accelerator achieves high computational efficiency
in large-scale scientific computing applications, such as solving dense linear equa-
tions [4,5]. Since deep learning is currently more and more widely used, and CNN
is one of the representative algorithms of deep learning, it is very necessary to
study how to improve the accelerator’s performance in processing deep CNNs.

2 Background and Related Work

2.1 The Architecture of Vector Accelerator

Our proposed scientific computing accelerator is a high performance floating-
point multi-core vector accelerator developed for high-density computing. The
accelerator integrates 24 vector accelerator cores, and achieves a peak single-
precision floating-point performance of 9.2TFLOPS with a 2 GHz frequency.

The architecture of our proposed accelerator is shown in Fig. 1. The accel-
erator core consists of a Scalar Processing Unit (SPU) and a Vector Processing
Unit (VPU). The SPU is responsible for scalar computing and flow control and
provides a broadcast instruction to broadcast the data from the scalar register
to the vector register of the VPU. The VPU integrates 16 Vector Processing
Elements (VPEs), and provides the main computation capability.

Fig. 1. The architecture of vector accelerator.

2.2 Related Work

To accelerate and optimize the computation of CNN, Maji et al. [6] propose a fast
CNN optimization method, which takes advantage of the inherent redundancy in
the convolutional layer to reduce the computational complexity of deep networks.
Lin et al. [7] propose a novel global and dynamic pruning method to accelerate
the CNN by pruning the redundant filter in the global range. Abtahi et al.
[8] study the method of using FFT to accelerate CNN on embedded hardware.
Dominik et al. [9] study the method of accelerating large-scale CNN with parallel

70 Z. Liu et al.

graphics multiprocessor. Lee et al. [10] study how to accelerate the training of
deep CNNs by overlapping computation and communication.

To solve the problem that the CPU cannot meet the computational perfor-
mance requirements of deep CNNs, a large number of researchers have studied
how to accelerate the computation of CNNs on emerging processor platforms,
such as TPU [11], GPU [12], FPGA [13,14], NPU [15], embedded devices [16],
ASIC [17], etc.

The vector accelerator is a novel architecture that has powerful computing
performance while maintaining low power consumption. Some researches show
that the vector accelerator has high computational efficiency in dealing with
FFT [18] and matrix multiplication [5], and is suitable for accelerating large-
scale CNN. Researchers also propose some vectorization methods of convolution
computation on vector accelerators [19,20]. They use the method of loading
weight into vector array memory and loading input image feature data into
scalar storage to complete the convolution computation. The common disadvan-
tages are: (1) The weight cannot be effectively shared, the memory bandwidth
is wasted, and the computing efficiency of the vector accelerator cannot be fully
utilized; (2) Because the size of the channel dimension is uncertain, and it does
not match the number of processing units of the vector accelerator; 3) Different
CNN models have different channel dimensional sizes for different convolutional
layers, which greatly affects the efficiency of loading data, and it is not universal;
(4) It needs hardware support of reduce or shuffle and the hardware cost is high.

Fig. 2. Computation method for converting convolution computation to large-scale
matrix multiplication.

3 Algorithm Mapping of CNN on Vector Accelerator

3.1 Computation Method for Converting Convolution Operations
to Large-Scale Matrix Multiplication

As shown in Fig. 2, we propose a computation method for converting convolution
computation to large-scale matrix multiplication. It converts a large number

Accelerating Large-Scale DCNN on Multi-core Vector Accelerators 71

of inefficient small-scale convolution products into a large-scale matrix-matrix
multiplications, which is very suitable for vectorization computations and can
significantly improve the computational efficiency.

Suppose convolution computations are performed on N input images of size
H*W*C with M convolution kernels of size kH*kW*C. First, store input images
as a (H*W*C)*N two-dimensional matrix, and store convolution kernels as a
M*(kH*kW*C) two-dimensional matrix. Second, extract (kH*kW*C) rows from
input images matrix according to the convolution window, which form a new
(kH*kW*C)*N matrix. Finally, the M*(kH*kW*C) convolution kernel matrix
and the new (kH*kW*C)*N input image matrix are used to perform a large-scale
matrix-matrix multiplication, and the computed result is M*N output images
matrix. Therefore, the original M*N small convolution operations each with the
size of kH*kW*C are transformed into a large-scale matrix-matrix multiplication
with a M*(kH*kW*C) convolution kernel matrix and a (kH*kW*C)*N input
image matrix.

3.2 Vectorization Method of Valid Convolution Layer

Based on the proposed conversion method, the computation of convolution layer
is converted into matrix multiplication, which is defined as follows:

O[m,n] =
V −1∑

v=0

F [m, v] ∗ I[v, n] + b[n] (1)

The above formula can be regarded as the matrix multiplication of an M*V
matrix and an V*N matrix, and the result is then added to the bias vector,
where n ∈ [0, N) and m ∈ [0,M).

Fig. 3. The vectorization method of valid convolution layer.

As shown in Fig. 3, we can get the vectorization method of the valid convo-
lution layer based on matrix multiplication. The M*V matrix is a convolution

72 Z. Liu et al.

kernel matrix, it is stored in a kernel-dimension-last manner, and is continuously
stored in the vector accelerator’s off-chip memory as a two-dimensional matrix.
Each row of the above M*V matrix stores a single convolution kernel, and the
storage order in this row is the channel dimension first, followed by the convolu-
tion kernel width dimension, and finally the convolution kernel height dimension.
The V*N matrix is a matrix sub-block consisting of V rows extracted from the
S*N two-dimensional matrix of input image by row. Each column of the above
S*N matrix stores a single input image, and the storage order in this column
is the channel dimension first, then the image width dimension, and finally the
image height dimension.

3.3 Vectorization Method of Same Convolution Layer

Usually, the same convolution always applies a new memory area in advance
according to the new image size, fills the 0 element area with 0, and copies the
element value of the previous image in other areas. Then, the same method as
valid convolution is used to perform convolution computation on the new image.
The disadvantages of this method are: (1) At least double the memory overhead;
(2) The memory location of the 0 element is discontinuous, resulting in a large
operation overhead of padding; (3) It takes a lot of time for copying the original
image data.

As shown in Fig. 4, we propose a vectorization method for the same convo-
lution layer, which logically has a ”padding 0” operation in the computation
process, but does not physically require a ”padding 0” operation. The same
convolution computation determines whether the input image matrix row cor-
responding to the convolution kernel data is a 0-element row according to the
element value of the vector Z.

3.4 Vectorization Method of Pooling Layer

The computation of the pooling layer includes two steps. The first step is to
extract the V*N matrix from the S*N input image matrix by row into the AM
of the vector accelerator. The matrix size corresponding to each kernel is V*p,
and the total number of extractions is nextH*nextW, where p is the number
of VPE, nextH=(H-kH)/stepLen+1, nextW=(W-kW)/stepLen+1. The second
step is to perform the following vectorization computation of pooling layer for
each matrix sub-block extracted.

The algorithm is shown in Fig. 5. As can be seen, all computations and data
accesses are performed along the row dimension, which has high memory access
efficiency and is easy to be vectorized. At the same time, the computation of the
maximum value or the average value is performed in the same VPE without the
need for shuffling operations, which is convenient for software pipeline and high
computation efficiency.

Accelerating Large-Scale DCNN on Multi-core Vector Accelerators 73

Fig. 4. The vectorization method of same convolution layer.

3.5 Vectorization Method of Fully Connected Layer

The computation of the fully connected layer can be regarded as the product of
an M*U matrix and a U*N matrix, and the result of the product is then added
to the bias vector. Where the size of the weight matrix of the fully connected
layer is M*U, and it is continuously stored in the off-chip memory of the vector
accelerator in the input-feature-dimension-first-manner. The size of input image
matrix is U*N, and it is continuously stored in the off-chip memory of the vec-
tor accelerator in the image-dimension-first-manner. Therefore, the original N
matrix-vector multiplications of M*U matrix and a U vector are transformed
into a large-scale matrix-matrix multiplication with M*U weight matrix and
U*N input image matrix.

74 Z. Liu et al.

Fig. 5. The vectorization method of pooling layer.

4 Experimental Results and Performance Analysis

We conduct the experiments on a 24-core vector accelerator. Its peak single-
precision floating-point performance is 9.2TFLOPS at a 2 GHz frequency, and its
the peak memory bandwidth is 307 GB/s. Because the VPE length of accelerator
is 16, the batch size is set to an integer multiple of 16, which is suitable for
vectorization calculation. In our experiments, the value of batch size is 96.

4.1 Performance of Convolution Layers

We evaluate the performance of our proposed design with several typical modern
CNN workloads, including the AlexNet, VGG-19, GoogleNet, and ResNet-50
network models.

Figure 6(a) shows the computational efficiency of 6 different types of convo-
lution layer of GoogleNet’s Inception (4e) module. The lowest efficiency is seen
for the #5 × 5 reduce convolution layer, which is 62.8%. Yet, the computation
operation of this type of layer accounts for only 2% of the total operations. Thus,
it only has minor effect on the overall efficiency. The computational efficiency of
the other 5 types of convolution layers exceeds 90%, which makes the weighted
computational efficiency of the Inception (4e) module reach 93.2%.

Figure 6(b) shows the computational efficiency of the 5 different types of
convolution layers of ResNet-50’s block-2 module. The lowest efficiency is seen
for the conv2 convolution layer as 84.1%, and the highest one is seen for the conv4
convolution layer as 93.7%. The weighted computational efficiency of block-2
modules reaches 88%.

Figure 7(a) shows the computational efficiency of all types of convolution
layers for AlexNet, VGG-19, GoogleNet, and ResNet-50. The computational

Accelerating Large-Scale DCNN on Multi-core Vector Accelerators 75

Fig. 6. The computational efficiency of GoogleNet’s Inception(4e) and ResNet’s block2.

efficiency of the 5 convolution layers of AlexNet is generally high, and its total
weighted computational efficiency is as high as 103.9%. The first convolution
layer of VGG-19 has the lowest efficiency. It is due to that the convolution ker-
nel of this layer is the smallest one as 3 × 3 × 3, making the computational
efficiency of this layer to be only 37.6%. However, the computation operations of
this layer accounts for only 0.44% of the total operations, which does not affect
the overall computational efficiency of VGG-19, and the total weighted compu-
tational efficiency reaches 93.5%. Similarly, the computational efficiency of the
first convolution layer of ResNet-50 is 63.3%. Thus, the computation operations
of this layer accounts only for 3.1% of the total operations, and its weighted
computational efficiency reaches 87.9%. The computational efficiency of the first
two layers of GoogleNet is 63.3% and 59.6% respectively, and the proportion of
computation operands of the two layers is 5.1% and 0.5% respectively, and the
total weighted computational efficiency reaches 88.2%.

Fig. 7. The computational efficiency of all types of convolution layers and fully con-
nected layer for AlexNet, VGG-19, GoogleNet, and ResNet-50.

Parts of the convolution layers achieve more than 100% computational effi-
ciency because these convolution layers are Same convolution layers. These

76 Z. Liu et al.

same convolution layers expand the scale of calculation matrix and increase
the floating-point operations of convolution layer by padding 0 elements. How-
ever, the proposed vectorization algorithm of the Same convolution layer records
all 0-element rows by setting up a Z vector, and omits the multiplication and
addition calculation of 0-element rows. Therefore, the vectorization algorithm
of Same convolution layer proposed in this paper not only gains the advantages
of Valid convolution layer method, but also improves the computational per-
formance by reducing the multiplication and addition calculation of 0-element
rows, which makes the computational efficiency exceeding 100%.

In general, all convolution layers of the four network models have achieved
high computational efficiency. A few convolution layers with small convolution
kernels have lower computational efficiency, but the proportion of the computa-
tion operands of the layers is relatively small, which makes the weighted com-
putational efficiency of the four network models very high.

4.2 Performance of Fully Connected Layers

The AlexNet, VGG-19, GoogleNet, and ResNet-50 all contain fully connected
layers. AlexNet and VGG-19 have 3 fully connected layers, while GoogleNet and
ResNet-50 only have one fully connected layer. As shown in Table 1, it is divided
into 6 types according to the size of weight matrix.

Table 1. The six different types of fully connected layers.

Classification Weight matrix Network model

FC1 4096 × 9216 AlexNet

FC2 4096 × 25088 VGG-19

FC3 4096 × 4096 AlexNet,VGG-19

FC4 1000 × 4096 AlexNet,VGG-19

FC5 1000 × 2048 GoogleNet

FC6 1000 × 1024 ResNet-50

Figure 7(b) shows the computational efficiency of the 6 types of fully con-
nected layers. The computational efficiency of the fully connected layer is high
because the matrix size of fully connected layers is large. The smallest weight
matrix size is 1000*1024, and its computational efficiency is 88.5%. The largest
weight matrix size is 4096*25088 and its computational efficiency is 95.6%. The
average computational efficiency is 93.4%.

4.3 Performance of Pooling Layers

The AlexNet, VGG-19, GoogleNet, and ResNet-50 contain 16 different types of
pooling layers. Figure 8(a) shows the computational efficiency and data access

Accelerating Large-Scale DCNN on Multi-core Vector Accelerators 77

efficiency of 16 different types of pooling layers, where the left ordinate is used
to identify the data access efficiency, and the right ordinate is used to identify
the computational efficiency. It can be seen from the figure that the computa-
tional efficiency of the pooling layer is low, about 0.22% on average, because the
computation density of the pooling layer is very low. However, the data access
efficiency of the pooling layer is very good, about 70% on average. This is because
all data access of the pooling layer is performed in matrix rows according to the
method proposed in this paper, and the data access efficiency is high.

Fig. 8. (a) The computational efficiency of pooling layer for AlexNet, VGG-19,
GoogleNet and ResNet-50. (b) Performance comparison of different vectorization
method of AlexNet.

4.4 Performance Comparison

As shown in Fig. 8(b), we take AlexNet as an example to compare the compu-
tational performance of the convolution layer, fully connected layer and pooling
layer of different vectorization methods, where the performance data of pooling
layer is data access efficiency. The method-1 is the vectorization method proposed
in this paper, in which input images are stored in the image-dimension-first man-
ner; and the method-2 is the vectorization method in which input images are
stored in the channel-dimension-first manner. As can be seen from the figure,
the method-1 significantly improves the computational efficiency of convolution
layer and fully connected layer, and the data access efficiency of pooling layer of
AlexNet.

Table 2 compares the CNN inference performance of our accelerator with
the other three high-performance GPUs [21]. As can be seen from the table,
NVIDIA V100 achieves the best performance by images/s, followed by our
accelerator. However, NVIDIA V100 has the best performance only on the
AlexNet by images/TFLOPS, our accelerator achieved the best performance
on the GoogleNet and ResNet-50 by images/TFLOPS.

78 Z. Liu et al.

Table 2. Comparison of CNN inference performance.

Classification AlexNet VGG-19 GoogleNet ResNet-50

Images/s Images/TFLOPS Images/s Images/TFLOPS Images/s Images/TFLOPS Images/s Images/TFLOPS

Our accelerator 3777 410 279 31 2679 291 1183 129

NVIDIA V100 8700 621 500 36 4000 286 1700 121

NVIDIA T4 2600 321 100 12 1100 136 500 62

NVIDIA P4 2600 473 100 18 1100 200 500 91

5 Conclusion

This paper analyzes the computational characteristics of feature images and
convolution kernels in typical CNN models such as AlexNet, VGG, GoogleNet,
and ResNet. A general method to accelerate the computation of deep CNNs is
proposed according to the architectural characteristics of the multi-core vector
accelerator. It is worth noting that this method does not optimize a specific
CNN model, but it is general suitable for various typical deep CNN models.
Experimental results show that the method proposed in this paper can take full
advantage of the parallel computing advantages of multi-core vector accelerators
and has high computing efficiency. It can accelerate the computation of deep
CNNs.

References

1. Aurora ESP Projects. https://www.alcf.anl.gov/science/projects/AuroraESP/all.
Accessed 24 Aug 2020

2. Patton, R.M., et al.: Exascale deep learning to accelerate cancer research (2019)
3. Kurth, T., et al.: Exascale deep learning for climate analytics. In: Proceedings

of the International Conference for High Performance Computing, Networking,
Storage, and Analysis, pp. 1–12, November 2018

4. Ma, S., et al.: Coordinated DMA: improving the DRAM access efficiency for matrix
multiplication. IEEE Trans. Parallel Distrib. Syst. 30(10), 2148–2164 (2019)

5. Liu, Z., Tian, X., Ma, S.: The implementation and optimization of parallel linpack
on multi-core vector accelerator. In: 2019 IEEE 21st International Conference on
High Performance Computing and Communications, pp. 2261–2269. IEEE (2019)

6. Maji, P., Mullins, R.: 1D-FALCON: accelerating deep convolutional neural network
inference by co-optimization of models and underlying arithmetic implementation.
In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017.
LNCS, vol. 10614, pp. 21–29. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-68612-7 3

7. Lin, S., Ji, R., Li, Y., Wu, Y., Huang, F., Zhang, B.: Accelerating convolutional
networks via global & dynamic filter pruning. In: Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, pp. 2425–2432
(2018)

8. Abtahi, T., Shea, C., Kulkarni, A., Mohsenin, T.: Accelerating convolutional neural
network with FFT on embedded hardware. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 26(9), 1737–1749 (2018)

https://www.alcf.anl.gov/science/projects/AuroraESP/all
https://doi.org/10.1007/978-3-319-68612-7_3
https://doi.org/10.1007/978-3-319-68612-7_3

Accelerating Large-Scale DCNN on Multi-core Vector Accelerators 79

9. Scherer, D., Schulz, H., Behnke, S.: Accelerating large-scale convolutional neural
networks with parallel graphics multiprocessors. In: Diamantaras, K., Duch, W.,
Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6354, pp. 82–91. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15825-4 9

10. Lee, S., Jha, D., Agrawal, A., Choudhary, A., Liao, W.: Parallel deep convolu-
tional neural network training by exploiting the overlapping of computation and
communication. In: 2017 IEEE 24th International Conference on High Performance
Computing (2017)

11. Jouppi, N.P., et al.: In-data center performance analysis of a tensor processing
unit. In: Proceedings of the IEEE/ACM International Symposium on Computer
Architecture (ISCA), pp. 1–12 (2017)

12. Imani, M., Peroni, D., Kim, Y., Rahimi, A., Rosing, T.: Efficient neural network
acceleration on GPGPU using content addressable memory. In: Proceedings of the
IEEE/ACM Proceedings Design, Automation and Test in Eurpoe (DATE), pp.
1026–1031 (2017)

13. Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J.: Optimizing FPGA-based
accelerator design for deep convolutional neural networks. In: Proceedings of the
ACM Symposium on FPGAs, pp. 161–170 (2015)

14. Rahman, A., Lee, J., Choi, K.: Efficient FPGA acceleration of convolutional neural
networks using logical-3D compute array. In: Proceedings of the IEEE/ACM Pro-
ceedings Design, Automation and Test in Eurpoe (DATE), pp. 1393–1398 (2016)

15. Intel Neural Network Processor. https://www.intel.ai/intel-nervana-neural-
network-processor-architecture-update. Accessed 24 Aug 2020

16. Wang, Y., Li, H., Li, X.: Re-architecting the on-chip memory sub-system
of machine-learning accelerator for embedded devices. In: Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), p.
13 (2016)

17. Hu, M., et al.: Dot-product engine for neuromorphic computing: programming
1T1M crossbar to accelerate matrix-vector multiplication. In: Proceedings of the
ACM/IEEE Design Automation Conference (DAC), p. 19 (2016)

18. Liu, Z., Tian, X., Chen, X., Lei, Y., Liao, M.: Efficient large-scale 1D FFT vector-
ization on multi-core vector accelerator. In: 2019 IEEE 21st International Confer-
ence on High Performance Computing and Communications, pp. 484–491. IEEE
(2019)

19. Zhang, J.Y., Guo, Y., Hu, X.: Design and implementation of deep neural network
for edge computing. IEICE Trans. InfSyst. 101, 1982–1996 (2018)

20. Yang, C., Chen, S., Wang, Y., Zhang, J.: The evaluation of DCNN on vector-SIMD
DSP. IEEE Access 7, 22301–22309 (2019)

21. INFERENCE using the NVIDIA T4. https://www.dell.com/support/article/zh-
cn/sln316556/inference-using-the-nvidia-t4?lang=en. Accessed 24 Aug 2020

https://doi.org/10.1007/978-3-642-15825-4_9
https://www.intel.ai/intel-nervana-neural-network-processor-architecture-update
https://www.intel.ai/intel-nervana-neural-network-processor-architecture-update
https://www.dell.com/support/article/zh-cn/sln316556/inference-using-the-nvidia-t4?lang=en
https://www.dell.com/support/article/zh-cn/sln316556/inference-using-the-nvidia-t4?lang=en

M-DRL: Deep Reinforcement Learning
Based Coflow Traffic Scheduler with

MLFQ Threshold Adaption

Tianba Chen, Wei Li(B), YuKang Sun, and Yunchun Li

Beijing Key Lab of Network Technology, School of Computer Science
and Engineering, Beihang University, Beijing, China

{chentb,liw,sunyk2115,lych}@buaa.edu.cn

Abstract. The coflow scheduling in data-parallel clusters can improve
application-level communication performance. The existing coflow
scheduling method without prior knowledge usually uses Multi-Level
Feedback Queue (MLFQ) with fixed threshold parameters, which is insen-
sitive to coflow traffic characteristics. Manual adjustment of the threshold
parameters for different application scenarios often has long optimization
period and is coarse in optimization granularity. We propose M-DRL, a
deep reinforcement learning based coflow traffic scheduler by dynamically
setting thresholds of MLFQ to adapt to the coflow traffic characteristics,
and reduces the average coflow completion time. Trace-driven simulations
on the public dataset show that coflow communication stages using M-
DRL complete 2.08×(6.48×) and 1.36×(1.25×) faster on average coflow
completion time (95-th percentile) in comparison to per-flow fairness and
Aalo, and is comparable to SEBF with prior knowledge.

Keywords: Coflow · Datacenter network · Deep reinforcement
learning

1 Introduction

With the rapid development of big data analytics application, the parallel flows
abstracted as coflow [3,6,13,14], appear in the datacenter network, which means
that a communication stage completes only when all the flows are completed.
A typical scenario is the shuffle in MapReduce and Spark. The optimization of
traditional datacenter network is mostly based on packet-level and flow-level,
and the datacenter network cannot perceive the communication requirement
in parallel computing [3,13,14]. In recent years, some work such as Varys [6],
Aalo [4] and CODA [15] have studied how to optimize the datacenter network
based on coflow. The coflow scheduling without prior knowledge, Aalo [4] and
CODA [15] overcome the shortcomings of Varys [6] requiring prior knowledge
of coflow and use discretized Coflow-Aware Least-Attained Service (CLAS) [4]
based on MLFQ [4,15] to centrally schedule coflows. In these methods, MLFQ is

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 80–91, 2021.
https://doi.org/10.1007/978-3-030-79478-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_7

M-DRL: Deep Reinforcement Learning Based Coflow Traffic Scheduler 81

used to divide coflows into different queues according to the coflow size. CLAS
sensitive to coflow size is adopted to scheduling between different queues, First-
In First-Out (FIFO) sensitive to the arrival time of coflow is used within the
same queue, and queue thresholds of MLFQ balance the overall performance of
coflow scheduling. The fixed threshold of MLFQ queue is not sensitive to the
change of traffic characteristics. Dynamics in complicated network environment
make discretized CLAS scheduler based on MLFQ unable to achieve maximum
scheduling performance. However, manual parameter optimization has a long
cycle and is coarse in optimization granularity [2].

In order to deal with this problem, we introduce deep reinforcement learning
(DRL) to automatically adjust MLFQ thresholds. DRL is a method for pro-
cessing sequence decision-making in machine learning [7]. Some recent studies
have applied DRL to network scheduling [2,10,12]. DRL uses neural networks
with strong generalization ability to process raw and noisy inputs and optimizes
the target through reward signals indirectly, suitable for dealing with network
scheduling problems [2,10,12].

Therefore, we propose M-DRL, a deep reinforcement learning based coflow
traffic scheduler to dynamically setting thresholds of MLFQ, which is driven
by network traffic. Trace-driven simulations on the public dataset show that
communication stages using M-DRL complete 2.08× and 1.36× faster on average
coflow completion time in comparison to per-flow fairness and Aalo, and M-
DRL’s performance is comparable to that of SEBF using prior knowledge.

In summary, the main contribution of this paper include:

– It is the first time to model MLFQ-based coflow scheduling problem with
DRL, and design state, action and reward function of DRL.

– We propose a data-driven method, M-DRL, adopting DDPG to adaptively
adjust MLFQ queue thresholds to reduce the average coflow completion time.

– We conduct extensive simulations to evaluate the performance of M-DRL. The
results of the experiments show that M-DRL outperforms per-flow fairness
and Aalo, and is comparable to SEBF (the state-of-the-art method with prior
knowledge) .

This paper is organized as follows: Sect. 2 describes the existing problem in the
discretized CLAS of coflow scheduling. Modeling the coflow scheduling problem
with DRL and algorithm design of M-DRL are described in Sect. 3. Section 4
evaluate our solutions. Section 5 reviews related works. Finally, the conclusion
and future prospects of this paper is presented in Sect. 6.

2 Coflow Scheduling Model Without Prior Knowledge

2.1 Background

Coflow is a collection of flows between different nodes in the cluster of datacen-
ter network. A coflow completes only when all flows are completed. If a coflow
completes faster, then corresponding job completes faster. So optimization for

82 T. Chen et al.

coflow scheduling can improve the communication performance of the applica-
tion [3,13,14]. To simplify our analysis, the entire datacenter fabric structure is
abstracted as one non-blocking switch, which performs well in practice [4,6,15].

In some scenarios, the information about coflow size is difficult to obtain
[4,15] and we need to assume that some characteristics of coflow are unknown,
such as endpoints, the size of each flow, their arrival times. This kind of coflow
scheduling when the characteristics of coflow is unknown is called coflow schedul-
ing without prior knowledge [14]. Generally, only real-time information of coflow
can be used, including sent size, width, arrival time and duration of coflow.

2.2 Coflow Scheduling Based on MLFQ

Coflow scheduling methods such as Aalo [4] and CODA [15], use discrete Coflow-
Aware Least-Attained Service based on MLFQ [4]. MLFQ consists of K queues
(Q1, Q2, . . . , QK), with queue priority decreasing from the first queue Q1 to the
last queue QK . There are K − 1 thresholds (th1, th2, . . . , thK−1) between K
queues and the i-th queue contains coflows of size within [thi−1, thi). Note that
th0 = 0, and thK = ∞. Actions taken during three lifecycle events determine
the priority of a coflow.

1) New coflows enter the highest priority queue Q1 when they start.
2) A coflow is demoted from Qi to Qi+1, when its size exceeds threshold thi.
3) Coflows are removed from their current queues upon completion.

Preemptive priority scheduling is used between different queues. High priority
queues are prioritized and different coflows in the same queue use FIFO method.
The discretized CLAS uses MLFQ to divide coflows into different queues and
assigns coflow priority in terms of coflow size and arrival time.

CLAS is appropriate for traffic with heavy-tailed distribution [6], and FIFO
is appropriate for traffic with light-tailed distribution [5]. The discretized CLAS
based on MLFQ combines the CLAS with FIFO to better communication per-
formance. The arrival time of coflow has a greater impact on scheduling perfor-
mance for the FIFO scheduling within the same queue. Coarse-grained setting
of queue threshold will reduce the performance of FIFO.

For example [4], the number of MLFQ queues is set to 10, and the formal
queue threshold is defined as thi+1 = E × thi, where E = 10 and th1 = 10MB.
Coflow can be assigned to different queues according to the magnitude of coflow
size, where

thi+1 − thi = E × (thi − thi−1) (1)

The range of coflow size in queue Qi+1 is E times that in queue Qi.
The experiments shows that during the scheduling process, more than 95% of

coflows utilize only three priorities in MLFQ and the rest queues are empty. It’s
obvious that the granularity of threshold setting is too coarse, and the discretized
CLAS degenerates into FIFO to some extent. Therefore, it is necessary to provide
data-driven MLFQ threshold setting for different communication scenarios.

M-DRL: Deep Reinforcement Learning Based Coflow Traffic Scheduler 83

3 Data-Driven MLFQ Threshold Setting Using DRL

Manual MLFQ threshold setting often requires traffic statistics collection, offline
model analysis, parameter optimization and so on, which has a long design cycle
[2] and can only be optimized from the global distribution characteristics. There-
fore, a data-driven threshold setting method can greatly reduce overhead of
parameter optimization, and can improve coflow scheduling performance in a
finer granularity.

We use deep reinforcement learning to model the coflow scheduling problem
and design an M-DRL scheduler to make decisions based on the network status
automatically. The algorithm DDPG [9] is used in M-DRL to optimize the MLFQ
threshold setting.

3.1 DRL Formulation

We construct the coflow scheduling problem as an MDP of continuous state and
continuous action in discrete time. By training historical scheduling information,
we learn the optimal scheduling policy π, which defines state st ∈ S, action
at ∈ A and reward function rt.

In the process of coflow scheduling, M-DRL controls the setting of MLFQ
threshold through coflow status in the network environment. By continuously
sampling and training, agent learns the appropriate MLFQ threshold setting
policy, which reduces the average coflow completion time. M-DRL regards the
coflow scheduling process with one hour as an episode. When an episode ends,
the initial state is reset. An episode is divided into many time steps and each time
step Δt is set to ten seconds. The agent obtains the state st from the environment
every time Δt, generates an action control at according to the learned policy,
and gets the immediate reward rt.

State Space. The status in network scheduling is taken as state in units of
coflow, including the identifier id (unique ID in cluster), coflow width width
(the number of flows included in the coflow), sent size of coflow sent (current
transmission volume of the coflow) and duration of coflow duration (spent time
from the arrival time of the coflow). These attributes are related to the size
distribution of coflow. At the time t, the number of scheduled coflows is not
fixed. We limit the maximum number of coflows represented in the state to N .
The coflow in state is sorted increasingly according to the sent size. When the
number of coflows is greater than N , the first N coflows represent state. We use
zero padding when the number of coflow is less than N . Thus, the state at time
t is represented as

st = [id1, width1, sent1, duration1, . . . , idN , widthN , sentN , durationN] (2)

where N is set to 10, and the dimension of state is 4 × N = 40 because every
coflow has four different attributes.

84 T. Chen et al.

Action Space. Action is represented by MLFQ threshold. K queues have K−1
thresholds (th1, th2, . . . , thK−1), and action at should be represented by K − 1
components

at = [th1, th2, . . . , thK−1] (3)

In the experiment, K is 10 and the dimension of at is 9. Different MLFQ thresh-
old settings can make the average coflow completion time different.

Reward. Since the optimization goal of M-DRL is to reduce the average com-
pletion time of coflows in an episode, we define finished coflow set and active
coflow set at time t as CSf

t and CSa
t , then the average coflow completion time

until the time t is
acctt =

1

Nf
t

∑

c∈CSf
t

cctc (4)

where Nf
t represents the number of coflows in finished coflow set and cctc rep-

resents the completion time of coflow c. The average coflow duration time is
defined as

acdtt =
1

Nf
t + Na

t

(
∑

c∈CSf
t

cctc +
∑

c∈CSa
t

cdtc) (5)

where Na
t represents the number of coflows in active coflow set, and cdtc repre-

sents the duration of coflow c.
acctt estimates average coflow completion time of the entire episode until

state st, and acdtt estimates the effect of coflow scheduling. Therefore, the devi-
ation |acdtt − acctt−1| represents the contribution degree of current action at
time t to the goal. Thus reward function can be defined as

rt = −(acdtt − acctt−1) (6)

3.2 Algorithm Design

We use DDPG [9] with Actor-Critic structure to optimize MLFQ threshold set-
ting, and the algorithm is implemented using popular machine learning frame-
work TensorFlow.

The algorithm uses the Actor-Critic network structure to deal with contin-
uous actions efficiently. Actor is a policy network that generates actions in a
given state s, including actor μ(s|θμ) and target actor μ

′
(s|θμ

′
). Critic is the Q

network including critic Q(s, a|θQ) and target critic Q
′
(s, a|θQ

′
), evaluating the

value of state-action pair. The role of target network μ
′
(s|θμ

′
) and Q

′
(s, a|θQ

′
)

is to eliminate the deviation caused by overestimation and stabilize the policy
and Q network, thereby improving the stability of training. Soft update in Eq. 7
and 8 is used to update the target networks periodically

θμ
′
← τθμ + (1 − τ)θμ

′
(7)

M-DRL: Deep Reinforcement Learning Based Coflow Traffic Scheduler 85

θQ
′
← τθQ + (1 − τ)θQ

′
(8)

and the coefficient τ is 0.001. Both actor and critic network use a two fully-
connected hidden layers with 600 and 600 neurons [2] respectively to fit the
scheduling strategy fully. The whole algorithm consists of two parts, online inter-
action and offline training.

Online Interaction. During the online interaction with the environment as
shown in Fig. 1, actor μ(s|θμ) generates current action at according to state
st, acting on the environment to generate the next state st+1 and immediate
reward rt. This process is repeated until the end state is reached and transition
{st, at, rt, st+1} is stored in experience replay buffer during each iteration. Here
the OU noise N is added to the action at to increase the early random exploration
for environment, as shown in Eq. 9

at = μ(s|θμ) + Nt (9)

With the advance of training, the influence of noise will gradually decrease.

Fig. 1. Algorithm architecture based on DDPG

Offline Training. In the offline training, sample m transitions {sj , aj , rj ,
sj+1}, j = 1, 2, . . . ,m from experience replay buffer where batch size of sam-
pling is 32 and size of experience replay buffer is 10000. Then calculate the
target Q value to estimate state sj according to Eq. 10

yj = rj + γQ
′
(sj+1, μ

′
(sj+1|θμ

′
)|θQ

′
) (10)

The discount factor γ is 0.99. Next, mean squared loss function in Eq. 11 is
minimized to update parameters of critic network

1
m

m∑

j=1

(yj − Q(sj , aj |θQ))2 (11)

86 T. Chen et al.

And the sampled gradients are calculated to update parameters of actor network
in Eq. 12

�θμ J ≈ 1
m

m∑

j=1

�aQ(s, a|θQ)|s=sj ,a=μ(sj)�θμμ(s|θμ)|sj
(12)

During the update, Adam optimizer is used for the gradient descent and the
learning rate of actor and critic are 0.0001 and 0.001, respectively.

The setup of the coefficient, discount factor and learning rate in the algorithm
refers to the paper [9]. M-DRL uses algorithm DDPG to obtain coflow status
from the environment, apply MLFQ threshold actions, and repeatedly try to
learn optimized MLFQ threshold setting policy, which reduces the average coflow
completion time.

4 Evaluation

We conduct a series of experiments on M-DRL using production cluster trace
and industrial Benchmark [4,6]. We describe dataset for experiments, evaluation
metrics and the simulator used by M-DRL. Then compare with the state-of-
the-art methods of coflow scheduling to show the performance improvement of
M-DRL.

4.1 Workload

Two workloads are used in our experiment. One is based on Facebook’s open
source trace [4,6], which contains 526 coflows from 150 racks and 3000 machines,
with more than 70,000 flows. And size of each flow is between 1 MB and 10 TB.
In addition, in order to demonstrate the adaptation of M-DRL to different coflow
distributions, we generate the coflow set with light-tailed distribution based on
Facebook trace.

We categorize coflows based on their lengths (size of the longest flow in
the coflow) and widths. We consider a coflow to be short if its length is less
than 5 MB and narrow if its width is less than 50. Otherwise, it is long and
wide. Table 1 shows four categories Short&Narrow (SN), Long&Narrow (LN),
Short&Wide (SW) and Long&Wide (LW).

Table 1. Coflows binned by their length (Short and Long) and their width (Narrow
and Wide)

Workload Coflow Bin 1(SN) 2(LN) 3(SW) 4(LW)

Facebook % of Coflows 60% 16% 12% 12%

% of Bytes 0.01% 0.11% 0.88% 99.0%

LightTail % of Coflows 0% 76% 5% 19%

% of Bytes 0% 44.21% 0.07% 55.72%

M-DRL: Deep Reinforcement Learning Based Coflow Traffic Scheduler 87

In the Facebook workload, 12% of coflows contributes 99% of the total bytes
(LW) and 60% of coflows belongs to SN and its load is only 0.01%. It shows
this workload follows heavy-tail distribution and the heavy-tail characteristic
are obvious. In the LightTail workload, 95% of coflows is long, accounting for
99% of total bytes. This workload has a light-tailed distribution and 80% of
coflow size is between 1 GB to 1 TB. Compared with the Facebook workload,
the LightTail workload has a smaller distribution range in coflow size and its
coflow size is larger.

4.2 Evaluation Metrics

Varys [6] and Aalo [4] use a flow-level simulator in their evaluation. For fair
comparison, we use the same simulator as Varys for trace replay and implement
the common interface of RL provided by OpenAI Gym [1] which is used for
scheduling and training of M-DRL.

The main evaluation metric is the improvement of average coflow completion
time (CCT) in the workload. Normalized CCT is used to evaluate for fairness:

Normalized Comp. T ime =
Compared Duration

M − DRL’s Duration
(13)

If normalized CCT is larger (smaller), then M-DRL is faster (slower). Obvi-
ously, if normalized CCT is greater than 1, it means that M-DRL has better
communication performance than the compared algorithm, otherwise M-DRL
performance is worse.

4.3 Simulation Result

To verify the improvement of M-DRL, we conduct contrast experiments on the
Facebook and LightTail workload and compare M-DRL against SEBF [6] (the
state-of-the-art coflow scheduling method with prior knowledge), per-flow fair-
ness and Aalo.

Comparison of CCT. Some experiments are performed on Facebook dataset
to verify the effectiveness of M-DRL, per-flow fairness, Aalo and SEBF and the
results are shown in Fig. 2.

As shown in Fig. 2(a), M-DRL reduces the average and 95th percentile com-
pletion times of the overall coflows by up to 2.08× and 6.48×, respectively, in
comparison to TCP-based per-flow fairness. From the performance of per-flow
fairness on SN, LN, SW, LW (as shown in Table 1), M-DRL ignores character-
istics of coflow length and width and has better performance. It can also be
further proved in Fig. 2(b) that M-DRL is better than per-flow fairness in every
CCT range. In general, per-flow fairness does not consider the characteristics of
coflow, only performs flow-level scheduling and treats all flows fairly, performing
the worst among the four methods.

88 T. Chen et al.

Fig. 2. [Facebook] Improvements of M-DRL: (a) Average and 95th percentile improve-
ments in communication completion times using M-DRL over SEBF, Aalo and per-flow
fairness. The black line represents M-DRL. (b) CCT distributions for SEBF, Aalo, per-
flow fairness and M-DRL mechanism. The X-axis is in log scale.

As expected, M-DRL performs better in the overall coflows with the aver-
age completion times improved by 1.36× and 95th percentile completion times
improved by 1.25× than Aalo. In detail, M-DRL outperforms Aalo on more than
99% of long coflows, LN and LW, and performs worse on SN and SW (Fig. 2(a)).
In fact, coflow size is not evenly distributed on the exponent and long coflows
appear more frequently in MLFQ. And M-DRL uses MLFQ thresholds sensitive
to coflow size through learning in the scheduling to make coflows more evenly
distributed in the queues, which means that more queues are allocated for long
coflows. Therefore, M-DRL sacrifices the performance of short coflows to sched-
ule the long coflows better and improves the overall communication performance.
In Fig. 2(b), M-DRL is better than Aalo in the range of CCT 300–2500 s (red
ellipse). This is because the allocation of more queues for long coflows in M-DRL
has a greater impact on the scheduling of long coflows.

Compared to SEBF, M-DRL reduces the average and 95th percentile comple-
tion times of the overall coflows by up to 0.84× and 0.66×, respectively, as shown
in Fig. 2(a). Although M-DRL is not as good as SEBF on short coflows and nar-
row coflows, M-DRL achieves improvements of 0.86× and 0.90× respectively on
the long and wide coflow, LW, which is 99% of bytes. SEBF can calculate the
remaining processing time of each coflow through prior knowledge that is diffi-
cult to obtain in some scenarios. And M-DRL divides a certain range of coflows
into the same queue which are scheduled by FIFO, and reduces the CCT of short
coflows.

Adaptation of M-DRL. We conduct experiments and retrain M-DRL on
the LightTail dataset to verify its adaptation and results are shown in Fig. 3.
Figure 3(a) shows that M-DRL reduces the average and 95th percentile com-
pletion times of the overall coflows by up to 1.15× and 1.15×, respectively, in

M-DRL: Deep Reinforcement Learning Based Coflow Traffic Scheduler 89

Fig. 3. [LightTail] (a) Average and 95th percentile improvements in communication
completion times using M-DRL over SEBF, Aalo and per-flow fairness. (b) CCT dis-
tributions for SEBF, Aalo, per-flow fairness and M-DRL mechanism. The X-axis is in
log scale.

comparison to per-flow fairness. M-DRL is superior when CCT is greater than
20 s (Fig. 3(b)). Per-flow fairness treats each coflows fairly and increases the CCT
of shorter coflows. However, M-DRL decreases the CCT of shorter coflows though
priority scheduling in M-DRL. For coflows with CCT less than 20 s (Fig. 3(b)),
M-DRL uses MLFQ to make both short and long coflows in the same queue and
performs worse by FIFO scheduling.

Compared to Aalo, M-DRL reduces the average and 95th percentile com-
pletion times of the overall coflows by up to 1.26× and 1.23×, respectively
(Fig. 3(a)). As can be seen in Fig. 3(b), M-DRL has better performance than
Aalo in the range of CCT greater than 100 s, which shows that the fine-grained
division of MLFQ thresholds by M-DRL still has an advantage in large coflows
of the dataset. Figure 3(a) shows that M-DRL has comparable performance to
SEBF with average and 95th percentile improvements being 0.83× and 0.97×.
Especially, M-DRL has comparable performance to SEBF in the range of CCT
greater than 3000 s (Fig. 3(b)).

In general, M-DRL uses finer granularity to prioritize coflows by learning,
showing superior performance than per-flow fairness and Aalo. This demon-
strates that M-DRL has a strong adaptation.

5 Related Work

Chowdhury [3] proposed an abstraction of coflow which represents a collection
of semantic-related flows to convey requirements of job-specific communications.
Later, many coflow-based scheduling methods were proposed to improve the

90 T. Chen et al.

performance of cluster computing applications. Orchestra [5] adopts the First-
In First-out strategy to implement inter-coflow scheduling. Varys [6] uses the
Smallest-Effective-Bottleneck-First (SEBF) heuristic to greedily schedule coflows
assuming that prior knowledge of coflow is known. In the scenario without prior
knowledge, Aalo [4] uses the discretized Coflow-Aware Least-Attained Service
with Multi-Level Feedback Queue to assign priority for coflows. Further assum-
ing that the structure of coflows is unknown, CODA [15] uses machine learning
algorithm to extract coflow information and propose an error-tolerant schedul-
ing to mitigate occasional identification errors. Moreover, CS-DP [8] solves the
problem of CODA’s sensitivity to parameters.

Aalo [4], CODA [15], and CS-DP [8] all use MLFQ to provide the service to
coflow, but they do not take into account the impact of MLFQ threshold setting
on coflow scheduling. The reasonable MLFQ threshold setting is closely related to
the distribution of coflow size, but in complicated datacenter network scenarios,
the distribution of coflow size is variable, so we need a coflow scheduling method
that is sensitive to the coflow size distribution.

In recent years, deep reinforcement learning [7] has been applied to archi-
tecture design [11], flow control [2] and network scheduling [10,12]. In traffic
scheduling, AuTO [2] uses DDPG to make flow scheduler to adapt to the differ-
ent pattern of traffic, which directly inspired us to apply DRL to optimize the
coflow scheduling problem. In congestion control, MVFST-RL [12] proposes a
DRL-based congestion control framework to adapt to changes in network con-
gestion scenarios, dynamically control the transmission rate of each node to
maximize the overall throughout and minimize delay and packet loss rate. In
job scheduling, Decima [10] uses a graph neural network structure to process job
and cluster information as the state input of algorithm PG to adapt to different
cluster applications of the big data computing framework.

6 Conclusion

This paper proposes a DRL-based MLFQ threshold adaption method which is
driven by coflow traffic within network environment. It realizes an adaptation
to dynamic network environment by automatically setting the MLFQ threshold.
Experiments show that M-DRL has comparable SEBF communication perfor-
mance and performs better than Aalo and per-flow fairness.

In the future, we will toward to directly optimize the priority setting for
every coflow in scheduling with deep reinforcement learning, and deploying the
RL agent in an operational network to validate the effectiveness. We also plan
to improve the performance of M-DRL in terms of neural network structure and
better DRL algorithms for continuous action control, and compare with other
non-AI scheduling to verify the performance of M-DRL.

Acknowledgement. This work is supported by the National Key Research and Devel-
opment Program of China (Grant No. 2016YFB1000304) and National Natural Science
Foundation of China (Grant No. 1636208).

M-DRL: Deep Reinforcement Learning Based Coflow Traffic Scheduler 91

References

1. Brockman, G., et al.: Openai gym (2016). arXiv preprint arXiv:1606.01540
2. Chen, L., Lingys, J., Chen, K., Liu, F.: Scaling deep reinforcement learning for

datacenter-scale automatic traffic optimization. In: Proceedings of the 2018 Con-
ference of the ACM Special Interest Group on Data Communication, pp. 191–205
(2018)

3. Chowdhury, M., Stoica, I.: Coflow: a networking abstraction for cluster applica-
tions. In: Proceedings of the 11th ACM Workshop on Hot Topics in Networks, pp.
31–36 (2012)

4. Chowdhury, M., Stoica, I.: Efficient coflow scheduling without prior knowledge.
ACM SIGCOMM Comput. Commun. Rev. 45(4), 393–406 (2015)

5. Chowdhury, M., Zaharia, M., Ma, J., Jordan, M.I., Stoica, I.: Managing data trans-
fers in computer clusters with orchestra. ACM SIGCOMM Comput. Commun. Rev.
41(4), 98–109 (2011)

6. Chowdhury, M., Zhong, Y., Stoica, I.: Efficient coflow scheduling with varys. In:
Proceedings of the 2014 ACM Conference on SIGCOMM, pp. 443–454 (2014)

7. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G., Pineau, J.: An intro-
duction to deep reinforcement learning. arXiv preprint arXiv:1811.12560 (2018)

8. Li, C., Zhang, H., Zhou, T.: Coflow scheduling algorithm based density peaks
clustering. Futur. Gener. Comput. Syst. 97, 805–813 (2019)

9. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971 (2015)

10. Mao, H., Schwarzkopf, M., Venkatakrishnan, S.B., Meng, Z., Alizadeh, M.: Learn-
ing scheduling algorithms for data processing clusters. In: Proceedings of the ACM
Special Interest Group on Data Communication, pp. 270–288 (2019)

11. Penney, D.D., Chen, L.: A survey of machine learning applied to computer archi-
tecture design. arXiv preprint arXiv:1909.12373 (2019)

12. Sivakumar, V.: MVFST-RL: an asynchronous RL framework for congestion control
with delayed actions. arXiv preprint arXiv:1910.04054 (2019)

13. Wang, K., Zhou, Q., Guo, S., Luo, J.: Cluster frameworks for efficient scheduling
and resource allocation in data center networks: a survey. IEEE Commun. Surv.
Tutor. 20(4), 3560–3580 (2018)

14. Wang, S., Zhang, J., Huang, T., Liu, J., Pan, T., Liu, Y.: A survey of coflow
scheduling schemes for data center networks. IEEE Commun. Mag. 56(6), 179–
185 (2018)

15. Zhang, H., Chen, L., Yi, B., Chen, K., Chowdhury, M., Geng, Y.: Coda: toward
automatically identifying and scheduling coflows in the dark. In: Proceedings of
the 2016 ACM SIGCOMM Conference, pp. 160–173 (2016)

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1811.12560
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1909.12373
http://arxiv.org/abs/1910.04054

A Close Look at Multi-tenant Parallel CNN
Inference for Autonomous Driving

Yitong Huang1, Yu Zhang1(B), Boyuan Feng2, Xing Guo1, Yanyong Zhang1,
and Yufei Ding2

1 University of Science and Technology of China, Hefei, China
{hyt,guoxing}@mail.ustc.edu.cn, {yuzhang,yanyongz}@ustc.edu.cn

2 University of California, Santa Barbara, USA
{boyuan,yufeiding}@cs.ucsb.edu

Abstract. Convolutional neural networks (CNNs) are widely used in vision-
based autonomous driving, i.e., detecting and localizing objects captured in live
video streams. Although CNNs demonstrate the state-of-the-art detection accu-
racy, processing multiple video streams using such models in real-time imposes a
serious challenge to the on-car computing systems. The lack of optimized system
support, for example, could lead to a significant frame loss due to the high pro-
cessing latency, which is unacceptable for safety-critical applications. To alleviate
this problem, several optimization strategies such as batching, GPU parallelism,
and data transfer modes between CPU/GPU have been proposed, in addition to a
variety of deep learning frameworks and GPUs. It is, however, unclear how these
techniques interact with each other, which particular combination performs better,
and under what settings. In this paper, we set out to answer these questions. We
design and develop a Multi-Tenant Parallel CNN Inference Framework, MPIn-
fer, to carefully evaluate the performance of various parallel execution modes
with different data transfer modes between CPU/GPU and GPU platforms. We
find that on more powerful GPUs such as GTX 1660, it achieves the best perfor-
mance when we adopt parallelism across CUDA contexts enhanced by NVIDIA
Multi-Process Service (MPS), with 147.06 FPS throughput and 14.50 ms latency.
Meanwhile, on embedded GPUs such as Jetson AGXXavier, pipelining is a better
choice, with 46.63 FPS throughput and 35.09 ms latency.

Keywords: Multi-Tenant · Parallel strategy · Autonomous driving · CNN

1 Introduction

Cameras are increasingly deployed on self-driving cars because they offer a much more
affordable solution than LIDARs [15]. A car can install a surround-view camera sys-
tem consisting of up to 12 cameras to capture the panoramic view of the surround-
ing, which is critical for safe driving [4,5]. For such a system, each camera continu-
ously generates a video stream. Upon these video streams, convolutional neural net-
works (CNNs) such as Faster R-CNN [13] and YOLOv3 [12] are usually deployed to
achieve accurate object detection. However, these computation-intensive CNN models

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 92–104, 2021.
https://doi.org/10.1007/978-3-030-79478-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_8

A Close Look at Multi-tenant Parallel CNN Inference for Autonomous Driving 93

usually lead to long latency and low throughput (measured by the number of simulta-
neous camera streams that are supported) due to the limited processing power of on-car
CPU/GPUs. For example, although the original implementation of YOLOv3-416 on the
Darknet [11] claims to run within 29 ms on desktop GPU – Titan X (Table 1), its actual
latency can go up to 108 ms on Jetson AGX Xavier, an embedded GPU. The problem
deteriorates rapidly as more cameras are installed on self-driving cars for better sensing.

Table 1. Specifications and software versions of NVIDIA devices

Platform Titan X DRIVE PX2 GTX 1660 Jetson AGX Xavier

(Desktop) (Embedded) (Desktop) (Embedded)

Price $1200 $ 15000 $ 219 $ 699

CPU – 8-core ARM 8-core Intel i7† 8-core ARM

GPU 3584 CUDA cores 1408 CUDA cores× 2 1408 CUDA cores 512 CUDA cores

Power 250W 80W 120W 30W

FP32 OP/s 11 TFLOPS 8 TFLOPS 4.3 TFLOPS 5.5 TFLOPS

INT8 OP/s 44 TOPS 20–24 TOPS – 22 TOPS

Software [11] [15] MPInfer MPInfer

CUDA – 9.0 10.2 10.1

TensorRT – - 7.0.0 6.0.1

libtorch – – 1.3.1 –
† This Intel CPU does not belong to the GTX 1660 GPU card

Recently, this problem has aroused the attention from both the academic and indus-
trial community. Firstly, the wide adoption of deep learning models has accelerated
the upgrade of GPUs and the development of inference frameworks. For example, Ten-
sorRT [10] is a high performance inference framework that NVIDIA has introduced and
updated frequently since 2017. Meanwhile, new GPU hardware includes desktop GPUs
like GTX 1660, GTX 2080 and embedded GPUs like DRIVE PX2, Jetson AGX Xavier,
etc. Secondly, several aspects of parallel execution modes have been explored and
applied to deep learning inference. For example, in [15], YOLOv2 is altered to enable
pipelined execution, with parallel layer execution as an option, in order to improve the
throughput; in [3] and [6], the authors propose to boost the throughput via cloud-based
CNN inference and dynamic batching; the effect of the CUDA context parallelismmode
and the NVIDIA MPS mode is studied in [6], and several data transfer modes between
CPU/GPU are evaluated in [1].

With the emergence of these hardware/software techniques, it calls for a comprehen-
sive study of the GPU system that can carefully evaluate the effect of these techniques,
preferably with combinations of techniques at different levels. Such an evaluation study
should bear in mind the characteristics of self-driving systems such as low latency, low
power consumption and low computing resources, and should be able to answer: (1)
which parallel execution mode yields the best performance, by how much; (2) how
does this performance gain change with the number of concurrent video streams, the
number of parallel threads and the data transfer modes; (3) how much do the inference
framework and CNN models impact the multi-stream video inference performance.

94 Y. Huang et al.

In this paper, we set out to conduct such a comprehensive evaluation study to answer
these questions. We develop a Multi-tenant Parallel CNN Inference framework, MPIn-
fer, to support several proposed techniques and serve as a common platform for per-
formance comparison. On MPInfer, we carry out detailed performance characteriza-
tion that considers different parallel execution modes, data transfer modes between
CPU/GPU (pageable, pinned, unified), and GPU devices. In particular, three aspects
of parallel execution modes are carefully examined: 1) pipelining, 2) batching, and
3) GPU parallelism. Here, the GPU parallelism includes: 1) parallelism across CUDA
streams in a single CUDA context; 2) parallelism across CUDA contexts and 3) paral-
lelism across CUDA contexts enhanced by NVIDIAMulti-Process Service (MPS mode
for short below) [9]. Targeting at optimizing CNN inference for self-driving systems,
we include embedded GPUs in our study and choose TensorRT as the baseline learn-
ing framework because of its high performance. We choose one-stage YOLOv3 and
two-stage Faster R-CNN for evaluation.

We conduct the performance evaluation on GTX 1660 and Jetson AGX Xavier.
Table 1 lists the specifications and software versions of these two architectures as well
as Titan X and PX2 which were used by [11] and [15], respectively. Our results show
that, when using YOLOv3, the MPSmode achieves the best performance on GTX 1660,
reaching 147.06 FPS throughput and 14.50 ms latency. While on Jetson AGX Xavier,
pipelining is a better choice, reaching 46.63 FPS throughput and 35.09 ms latency. In
addition to the overall trend, we also have the following detailed observations. Firstly,
when the workload (e.g., 5 cameras) is close to the system capacity, the latency of
MPS mode does not increase with the parallel number. Instead, when the workload
(e.g., 6 cameras) is much higher than the capacity, the latency of MPS mode increases
approximately linearly with the parallel number. Secondly, pageable/pinned memory
have similar performance impact on MPS while the unified memory performs the worst.
Thirdly, compared to LibTorch, TensorRT reduces the latency by 61.7% and improves
throughput by 3.19×. Fourthly, both CUDA stream and pipelining modes achieve the
best energy efficiency (0.147 J of GPU per frame) on Jetson AGX Xavier. Finally, using
YOLOv3 can support 5 cameras while using Faster R-CNN can only support 2 cameras.

2 Background and Related Work

GPU Programming Models. The CUDA programming model provides the CUDA
stream and CUDA context for GPU parallelism. A sequence of operations in a CUDA
stream execute in issue-order on the GPU. Operations in different streams can execute
in parallel. A CUDA context groups CUDA streams. Different CUDA contexts execute
in a time slicing style. The key difference is that different CUDA streams have shared
address space while CUDA contexts do not, and CUDA context also introduces over-
head during GPU context switch. Moreover, NVIDIA provides MPS for transparently
enabling co-operative multi-process CUDA applications. Despite these potential ben-
efits, CUDA programming model and optimization techniques also exist non-obvious
pitfalls [16], and are largely unrecognized among the deep learning community, which
hurdles the exploitation of these techniques in accelerating CNN inference.

A Close Look at Multi-tenant Parallel CNN Inference for Autonomous Driving 95

Object Detection and Autonomous Driving. Auto-driving continuously captures images
of surrounding and detects objects in these images to follow the road signs and avoid
collision. These targets naturally align with object detection, leading to the wide deploy-
ment of CNNs in self-driving cars for achieving the high detection accuracy and high
safety. Among these CNNs, YOLOv3 has become the most prevalent CNN due to the
low computation overhead and the high accuracy. However, a tension exists between
the high resource consumption of CNNs and the limited budget on self-driving cars.
This tension exacerbates when multiple cameras are deployed on the self-driving cars
and image streams keep coming from these cameras. This tension motivates the design
of MPInfer, a multi-tenant parallel CNN inference framework for auto-driving.

Efficient CNN Inference Framework. Several works have been proposed to accelerate
CNN inference for autonomous driving. NVIDIA TensorRT Inference Server [3] is a
containerized server to deploy models from different frameworks in data centers and it
improves utilization of both GPUs and CPUs. [15] introduces the pipelined execution
of CNN models for autonomous-driving applications. LibTorch is the C++ version of
the popular framework PyTorch. Darknet is a C framework introduced by the author of
YOLO. TensorRT [10] provides a SDK for the high-performance deep learning infer-
ence. While the inference of individual CNN is accelerated, it is unclear how these
frameworks impact the multi-stream video inference performance.

3 Design of MPInfer

Below, we present the overview, design goals and issues of MPInfer, which is a com-
mon platform to conduct comprehensive evaluation of various parallel execution modes.

3.1 Overview of MPInfer

Fig. 1. Overview architecture of MPInfer

We show the overview of MPInfer design in Fig. 1. MPInfer takes a CNNmodel’s high-
level specifications and tunable parameters (e.g., batch size and data type) as input.

CNNEngineBuilder then utilizes these specifications to generate a set of optimized
CNN models for efficient execution. We design CNNEngineBuilder to be general
enough for handle a large variety of CNN inference models (e.g., Faster R-CNN and
YOLO), considering the available resource budget and application requirements (such

96 Y. Huang et al.

as inference accuracy). During the execution, MPInfer takes image streams from mul-
tiple cameras and queues these images in the connector with a priority queue. The
priority queue orders the received images based on a heuristic task priority algorithm,
and then dispatches them to the subsequent CNNApplication. CNNApplication holds
the user-specified CNN model generated by CNNEngineBuilder along with the neces-
sary pre- and post-processing, and maintains a pool of workers to execute each task
and enables different parallel strategies across image streams. Finally, MPInfer outputs
results such as bounding boxes to the next module (e.g., planning) in the self-driving
system.

3.2 Design Goals

Configurablility. Configurability is one of the key design goals because MPInfer is
designed to support several proposed techniques. Our framework is equipped with
the hyper-parameters on the number of cameras or the number of video streams Nc ,
enabling the full characterization of the workload. Upon this characterization, MPIn-
fer maintains tunable parameters on the number of threads Nt, parallel strategies S,
and interactive CPU/GPU memory management techniquesM for fully unleashing the
parallel computing ability in different GPU acceleration hardware. Although MPInfer
is built on the high performance framework TensorRT, MPInfer is also equipped with
conditional compilation to support libTorch and Darknet.

Efficiency. Our framework is also designed to choose the best parallel execution mode
in a specific configuration which achieves high throughput, low latency and small
frame loss rate (FLR). Throughput is measured by the number of images processed
in a fixed period. A typical configuration in today’s experimental auto-driving vehicle
includes a surround-view camera system with up to 12 cameras. Each camera gen-
erates a stream of images at rates ranging from 10 to 40 frames per second (FPS)
depending on its functionality (e.g., lower rates for side-facing cameras, higher rates for
forward-facing ones) [15]. All streams must be processed simultaneously by the object
detection/recognition application. A minimum rate of 30 FPS was identified as a real-
time boundary [14]. Latency (from image capture to recognition completion) is another
relevant critical performance factor and is directly relative to safety for autonomous-
driving. The camera-to-recognition latency per frame for real-time autonomous driving
should not exceed the inter-frame time of the input images (e.g., 33 ms for a 30 FPS
camera). Since there are multiple video streams at a certain frequency, frame loss rate
(FLR for short below) is considered as another important metric. FLR can be measured
by FLR = (Ninput−Nprocessed)/Ninput. The FLR here is used to show the impact of
throughput because the input rate is usually not the same as the processing throughput.

A Close Look at Multi-tenant Parallel CNN Inference for Autonomous Driving 97

3.3 Design Issues

Fig. 2. Process of three-stage CNN inference Fig. 3. CNN engine builder

Detailed Process of Three-Stage CNN Inference. We specify the detailed process of
three stages in MPInfer, as illustrated in Fig. 2. The first stage is the Pre-process stage
on the input images, which resizes the images and crops the input images to a target
resolution, and then converts the data type of the image to be float for further process-
ing. The second stage is the Inference stage, which first transports the data from the
host (e.g., mobile platforms or desktop servers) to the GPU device, namely H2D. The
GPU device will conduct inference with CNNs on the received images and generate
predictions. These predictions will be further transported to the host for the next stage,
namely D2H. The third stage is Post-process, which corrects the generated predictions
and conducts non-maximal suppression (NMS) [2] for improving the prediction accu-
racy. Finally, the predictions are resized to fit original image size and applied to the
input images as the final results.

CNN Engine Builder. MPInfer introduces a CNN engine builder to build an optimized
CNN inference model by calling TensorRT, as shown in Fig. 3. The engine builder con-
sumes two user inputs of the CNNs and the high-level specifications. One input is the
CNN model written in Caffe [7] for describing the CNN layer types, layer parame-
ters, and the topological CNN structures. The other input is the user-defined high-level
specifications on the batch size and the data type. Batch size Nb decides the trade-
off between the latency and the throughput, where a larger batch size usually leads to
higher throughput at the cost of higher latency. The data type of CNN weights and ten-
sors Top ∈{fp32,fp16,int8} guides the optimization of CNN models and shows a sig-
nificant impact on the inference speed. In particular, int8 data type consumes 4× less
GPU memory and shows proportional speedup compared to fp32, while maintaining
a comparable inference accuracy [8]. The CNN engine builder feeds these two inputs
to the TensorRT optimizer for optimizing individual CNN inference and generating an
optimized inference engine with significantly decreased inference latency. TensorRT is
chosen to be part of the infrastructure in MPInfer because it is an efficient framework
that supports graph optimization, auto-tuning, and int8 quantization. We reuse it to
achieve better performance when using different parallel strategies.

Execution Strategies. One solution to support multiple camera streams is the serial exe-
cution. However, it fails to benefit from the parallel execution of heterogeneous equip-
ments(CPU and GPU). To avoid this, we can do the Pipelining between CPU and GPU.
As jobs on CPU and GPU can run asynchronously, the pre-process job for the current
input on CPU can perform in parallel with the inference job of the previous input on

98 Y. Huang et al.

Fig. 4. Different execution strategies. The
box width indicates the execution latency

Fig. 5. Memory consumption in different CUDA
context/stream modes

GPU. However, due to the complex CUDA kernel design of operators in CNNs, the cur-
rent operator implementations cannot fully utilize the GPU resource. To further utilize
GPU, we can perform tasks in parallel on GPU. Figure 4 shows three execution strate-
gies discussed previously. Although parallel execution in this figure only shows three
workers executing in parallel, MPInfer can support more or fewer workers as needed.
Longer inference latency of Parallel execution is due to the parallel GPU. Post-process
is left with inference due to its small latency.

Resource Management of Different GPU Parallel Modes.As mentioned in Sect. 2, mod-
ern GPU programming model provides CUDA stream, CUDA context and MPS for
specifying fine-grained parallelism levels. We apply these techniques in MPInfer to
fully utilize GPUs and design two resource management modes to support these paral-
lelism levels, as illustrated in Fig. 5. The first mode isMulti-CUDA-Context, where one
CUDA context contains only one CUDA stream. In this mode, each thread maintains
a CUcontext for the metadata on the CUDA context execution, an ICudaEngine for the
optimized CNN model (network structure and weights), and IExecutionContext for
intermediate activation values on the CNN execution. Because the resource isolation
between CUDA contexts, each thread needs to instantiate the CNNmodel (ICudaEngine
in TensorRT) alone, which causes the replica of CNN models and weights. The second
mode is Multi-CUDA-Stream, where all CUDA streams exist in a single CUDA con-
text and share the same engine for the optimized CNN model. This mode significantly
reduces the memory overhead in repeatedly storing the same CNN model. Since MPS
is a transparently server enabling co-operative multi-process CUDA applications, the
resource management between MPS and CUDA context is the same. For short, CUDA
context is similar to the process in the operating system, CUDA stream is similar to
thread, and MPS is a server to simulate multiple processes as multiple threads.

Data Transfer Modes Between CPU/GPU. As illustrated in Fig. 2, the host input data
(images, CPU side) of CNN network should be transferred to device (GPU) memory
and the device output of network also needs to transfer to host side. There are three
different data transfer modes between CPU/GPU for such operations. The first one
is default pageable memory allocation of the host data (e.g., memory allocated by
malloc). When a data transfer of such memory occurs, GPU needs to first allocate a
temporary page-locked (or pinned) memory, then transfers pageable memory to pinned
memory and finally transfers pinned memory to device memory. The second one is

A Close Look at Multi-tenant Parallel CNN Inference for Autonomous Driving 99

pinned memory allocation of host data (e.g., memory allocated by cudaHostAlloc).
This does not need to allocate a temporary pinned memory and do the related transfer
as the first one. While the allocation of pinned memory will reduce the available physi-
cal memory for OS and program, too much allocation will reduce system performance.
The third one is the unified memory allocation of transfer data. Such memory is a single
memory address space accessible from CPU and GPU, so the explicit memory transfer
is not needed and the internal software/hardware will do this for the program. MPIn-
fer separately manages the input and the output of the CNN network in each thread to
support these three data transfer modes between CPU/GPU, as illustrated in Fig. 5.

Effects of Batching. Batching the input images can reduce the number of CUDA kernel
launches. However, the number of cameras used for autonomous-driving is only up to
12 and the wait time to get enough batch size is unacceptable. When the batch size is
smaller than 8, latency of individual image increases approximately linearly according
to batch size.

4 Evaluation

4.1 Experimental Settings

The measurements are performed on a desktop server GPU (GTX 1660 + 8-core Intel
i7) and an embedded GPU system (Jetson AGX Xavier), as detailed in Table 1. We
conduct object detection experiments using the officially trained YOLOv3 model in
Darknet format and Faster R-CNN in caffe format. Since the GTX1660 platform can
support PyTorch, we use the version generated by PyTorch from Darknet as the base-
line, denoted as LibTorch. For the embedded Jetson AGX Xavier, we directly use Dark-
net version as a baseline. The raw image size is 768× 576, the input size of YOLOv3 is
416× 416 and the input size of Faster R-CNN is 375× 500. The length of the priority
queue is set to 1, and the latest frame has the highest priority. We use int8 quantization
of TensorRT to accelerate the CNN inference.

Since the common frequency of camera 30Hz, we emulate camera inputs to the
CNN at rates 30FPS or its multiples. We measure the latency, throughput and FLR
over 10,000 input images in different frame rates. Latency is measured from the arrival
time of the image in the priority queue to the time we get the bounding boxes, so the
latency includes all three stages in the CNN inference. Throughput is measured by the
number of processed images in this time period. Frame loss rate (FLR) is measured
by FLR = (Ninput − Nprocessed)/Ninput, where Ninput is the total number of input
images and Nprocessed is the total number of processed images.

We measure the energy consumption on the embedded Xavier platform, which has
two INA3221 monitors providing the current power consumption of GPU, CPU, SOC,
DDR, and system 5V. We write a program to read /sys/bus/i2c/drivers/ina3221x

system file once per second and accumulate the current power consumption values to
obtain the energy consumption. Based on practical experience, the power profile is set
to 30W to get the best performance.

100 Y. Huang et al.

Ta
bl
e
2.
C
om

pa
ri
so
n
of

M
P

In
fe

r
w
ith

ad
va
nc
ed

no
n-
m
ul
ti-
te
na
nt

fr
am

ew
or
ks

(a
)
G
T
X
16
60

Fr
am

ew
or
k

N
c

L
at
en
cy

(m
s)

T
hr
ou
gh
pu
t(
FP

S)
FL

R
(%

)
Q
ue
ue

To
ta
l

L
ib
To

rc
h
(s
er
ia
l)

4
4.
17

35
.3
0

31
.8
5

73
.1
6

5
3.
15

34
.3
8

31
.7
4

78
.5
4

6
2.
73

34
.0
0

31
.6
8

82
.1
0

Te
ns
or
R
T
(s
er
ia
l)

4
3.
71

13
.5
2

10
1.
62

14
.0
6

5
3.
22

13
.0
1

10
1.
84

30
.8
9

6
2.
71

12
.8
7

97
.9
9

44
.4
0

M
PI
nf
er

(p
ip
el
in
in
g)

4
0.
08

9.
56

11
8.
65

0.
02

5
3.
20

12
.8
9

12
9.
23

12
.6
2

6
2.
73

12
.5
4

12
7.
28

28
.0
8

M
PI
nf
er

(3
C
U
D
A
St
re
am

s)

4
0.
04

9.
48

11
8.
69

0.
04

5
0.
06

18
.8
3

14
7.
78

11
.1
7

6
1.
30

21
.0
4

14
5.
03

25
.8
5

M
PI
nf
er

(2
C
U
D
A
C
on
te
xt
s)

4
0.
04

10
.1
1

11
8.
03

0.
04

5
2.
47

17
.6
0

13
0.
39

11
.1
7

6
2.
45

17
.6
7

13
0.
37

25
.8
5

M
PI
nf
er

(M
PS

+
3
C
U
D
A
C
on
te
xt
s
)

4
0.
03

9.
89

11
8.
17

0.
00

5
0.
04

14
.5
0

14
7.
06

0.
01

6
1.
30

20
.4
0

14
8.
02

17
.5
1

(b
)
Je
ts
on

A
G
X
X
av
ie
r

Fr
am

ew
or
k

N
c

L
at
en
cy

(m
s)

T
hr
ou
gh
pu
t(
FP

S)
FL

R
(%

)
Q
ue
ue

To
ta
l

D
ar
kn

et
(s
er
ia
l)

1
16
.7
7

11
4.
42

10
.2
4

65
.7
4

2
8.
43

10
6.
16

10
.2
3

82
.7
9

3
5.
48

10
3.
73

10
.1
7

88
.5
3

Te
ns
or
R
T
(s
er
ia
l)

1
0.
18

27
.1
1

29
.5
7

0.
05

2
8.
30

35
.4
9

36
.7
2

36
.8
2

3
5.
03

32
.7
6

36
.0
1

58
.5
5

M
PI
nf
er

(p
ip
el
in
in
g)

1
0.
13

28
.1
8

29
.7
0

0.
02

2
8.
85

35
.0
9

46
.6
3

20
.1
8

3
6.
10

31
.4
3

46
.6
8

45
.8
3

M
PI
nf
er

(2
St
re
am

s)

1
0.
13

27
.4
0

29
.7
2

0.
00

2
8.
73

49
.8
5

48
.5
9

16
.7
3

3
6.
01

47
.1
5

48
.5
7

43
.9
4

M
PI
nf
er

(2
C
on
te
xt
s)

1
0.
70

32
.2
6

29
.5
2

0.
49

2
7.
96

57
.2
2

39
.7
8

31
.5
4

3
3.
34

56
.5
0

36
.5
4

57
.7
3

N
ot
e:
M
PS

do
es

no
tw

or
k
on

Je
ts
on

A
G
X
X
av
ie
r

A Close Look at Multi-tenant Parallel CNN Inference for Autonomous Driving 101

4.2 Experimental Results

Finding the Best Parallel Execution Strategy. Table 2 (a) and (b) show the latency, the
throughput, and the FLR of different strategies under different number of cameras each
at 30 FPS on two GPU platforms when using YOLOv3. Columns “Queue” and “Total”
indicate frame wait time in queue and the end-to-end latency including frame wait time,
pre-process time, inference time of YOLOv3 and post-process time. The two tables just
show the best setting of different strategies. CUDA stream mode in these two tables
uses pinned memory to allocate the transfer data and all others use pageable memory.
The number of threads has shown in these two tables.

On GTX 1660, MPInfer can support 5 cameras while maintaining extremely low
FLR, and the best parallel mode is achieved using “MPS+3 CUDA Contexts”, where
the end-to-end latency is 14.5 ms, throughput is 147.06 FPS and FLR is only 0.01%.
Although “3 CUDA Streams” achieves similar throughput to “MPS+3 CUDA Contexts”,
the latency of “MPS+3 CUDA Contexts” is 23.0% shorter than “3 CUDA Streams”. This
is partially because the resources of each thread in the MPS parallel mode are relatively
independent, thus resulting in a lower overhead in GPU resource scheduling.

On Jetson AGX Xavier, MPInfer can fully support 1 camera and can roughly sup-
port 1.5 cameras. Because the best throughput under 2 cameras is much higher than 1
camera, we compare the performance under 2 cameras. The best parallel mode under
2 cameras is achieved using “pipelining”, where the end-to-end latency is 35.09 ms,
throughput is 46.63 FPS and FLR is 20.18%. Although “2 CUDA streams” achieves the
highest throughput, the throughput of “pipelining” is only 4.0% worse than“2 CUDA

streams”, while the latency of “pipelining” is 29.6% shorter than that of “2 CUDA

streams”. Compared to GTX 1660, Xavier has much less computing power and there-
fore can’t support too many parallel threads.

Finding the Best Inference Framework: TensorRT vs. LibTorch vs. Darknet. On GTX
1660 under 4 video streams, TensorRT achieves throughput of 84.50 FPS. Compared to
LibTorch, TensorRT reduces latency by 61.7% and improves throughput by 3.19×. On
Jetson AGX Xavier under 2 video streams, TensorRT significantly reduces latency by
66.6% and improves throughput by 3.59× compared to Darknet. Most of the benefit
here comes from int8 quantization. When we conduct serial inference on GTX 1660,
we can achieve 2.53× speedup with the 7.57ms inference latency, as opposed to the
19.17ms latency in the fp32 mode.

Finding the Best System Configuration: Camera Number, Frame Wait Time and FLR.
The throughput of the system is limited by the aggregated camera frame rate when it is
low, and increases as the number of camera increases until reaching its limit. Comparing
across Nc from 4 to 6 on GTX 1660, “MPS+3 CUDA contexts” significantly increases
the throughput from 118.17 FPS to 148.02 FPS and the latency also increases from 9.89
ms to 20.40 ms, due to the increased number of images in each minute.

When frames arrive faster than the process rate, frames stay in the queue until a
worker is free. For serial structures like LibTorch, Darknet, and TensorRT, if the arrival
time interval becomes shorter than the time required to process one image, the time that
a frame stays in the queue will suddenly rise. A frame loss happens when the queue is
full, the oldest frame is ejected to give way to the new frame. Note that the high FLR

102 Y. Huang et al.

indicates that a large portion of images are not processed, which dramatically obstructs
utilizing multiple cameras for the improving driving safety.

Fig. 6. Inference latency of different paral-
lel strategies on GTX 1660

Fig. 7. Impact of different data transfer modes
between CPU/GPU on GTX 1660

Impact of Different Parallel Strategies on Inference Latency. Under 6 video streams
at 180 FPS, Fig. 6 shows the impact of different parallel strategies on the inference
latency on GTX 1660 when using YOLOv3. Inference latency here does not include
pre-process and post-process. Parallel number indicates the number of CUDA streams
/contexts or the batch size of batching mode. Batching runs serially here. Figure 6 shows
that latency of CUDA context and batching increases approximately linearly according
to the parallel number and CUDA context is the worst one. Figure 6 (a) shows that when
the workload is similar to the system capacity, the latency of MPS and CUDA stream
will first increase and then become smooth as the parallel number increases. Meanwhile,
MPS is the best one. Figure 6(b) shows that when the workload is much higher than the
system capacity, all these strategies increase approximately linearly according to the
parallel number. At such case, MPS and CUDA stream show similar performance and
are better than the other two approaches. This is because the execution of MPS and
CUDA stream is almost the same under a heavy workload.

Impact of Different Data Transfer Modes Between CPU/GPU. Figure 7 shows the
impact of different data transfer modes between CPU/GPU on GTX 1660. From the
figure, we find that the unified memory is always the worst, because it needs to
maintain memory consistency between CPU and GPU. Figure 7(a) also shows that
pinned memory is the best choice for CUDA stream mode and pageable/pinned mem-
ory have similar performance impact on MPS. This is because each thread in MPS
has a separate memory space while each thread of CUDA stream shares the memory
space of the CUDA context. Figure 7(b) shows that when the input workload is high,
pageable/pinned memory have similar performance impact on both MPS and CUDA
streams.

A Close Look at Multi-tenant Parallel CNN Inference for Autonomous Driving 103

Fig. 8. Energy consumption on Jetson AGX
Xavier under 2 video streams (60FPS)

Fig. 9. Throughput and latency of Faster R-CNN

Energy Consumption. Figure 8(a) gives the total energy consumption on Jetson AGX
Xavier with 2 video streams sending 10000 images when using YOLOv3. Figure 8
(b) gives the average energy consumption per processed frame. Figure 8 shows that
2 CUDA streams and pipelining consume similar energy. From Fig. 8(a), we observe
that 2 CUDA streams and pipelining consume the most energy. This is because the
high throughput of these two versions. Indeed, if we compare the energy consumption
per frame, both 2 CUDA streams and pipelining achieve the best energy efficiency,
that is totally because they have lower FLR and handle more frames than others.

Faster R-CNN. Figure 9 gives the throughput and latency of Faster R-CNN under dif-
ferent parallel strategies and camera numbers. MPS and CUDA stream(pinned) overlap
in Fig. 9 (a) and (b). Pipelining and serial overlap in Fig. 9 (b). Like YOLOv3,
pageable/pinned memory have similar performance impact on MPS and pinned mem-
ory is a better choice for CUDA Stream mode. MPS and CUDA Stream(pinned) parallel
modes have similar performance. When using MPS and under 2 cameras, MPInfer can
achieve 59.54 FPS throughput and 35.45 ms. MPInfer can only support 2 cameras when
using Faster R-CNN, but it can support 5 cameras when using YOLOv3. This is due to
the greater amount of computation in Faster R-CNN.

5 Conclusion

In this paper, we design and develop a multi-tenant parallel CNN inference framework,
MPInfer, to support several proposed techniques and serve as a common platform for
performance comparison. Our results show that MPS mode is both the better choice for
YOLOv3 and Faster R-CNN. The future work is to explore more optimization strategies
to support more cameras.

Acknowledgment. This work was partially funded by the National Major Program for Techno-
logical Innovation 2030–New Generation Artificial Intelligence (No. 2018AAA0100500) and the
National Natural Science Foundation of China (No. 61772487).

104 Y. Huang et al.

References

1. Bateni, S., Wang, Z., Zhu, Y., Hu, Y., Liu, C.: Co-optimizing performance and memory
footprint via integrated CPU/GPU memory management, an implementation on autonomous
driving platform. In: RTAS’2020 20 IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), pp. 310–323 (2020)

2. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS - improving object detection with
one line of code. In: ICCV 2017 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 5562–5570 (2017)

3. Goodwin, D.: NVIDIA TensorRT Inference Server boosts deep learning inference (2018).
https://devblogs.nvidia.com/nvidia-serves-deep-learning-inference/

4. Hawkins, A.J.: Watch mobileye’s self-driving car drive through Jerusalem using only
cameras (2020). https://www.theverge.com/2020/1/7/21055450/mobileye-self-driving-car-
watch-camera-only-intel-jerusalem

5. Heng, L., et al.: Project autovision: localization and 3D scene perception for an autonomous
vehicle with a multi-camera system. In: ICRA IEEE International Conference on Robotics
and Automation, pp. 4695–4702 (2019)

6. Jain, P., et al.: Dynamic space-time scheduling for GPU inference. CoRR abs/1901.00041
(2019). http://arxiv.org/abs/1901.00041

7. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: [22nd]
MMACM International Conference on Multimedia, pp. 675–678. ACM, New York (2014).
https://doi.org/10.1145/2647868.2654889. http://doi.acm.org/10.1145/2647868.2654889

8. Migacz, S.: 8-bit inference with TensorRT. In: GPU Technology Conference, vol. 2, p. 7
(2017)

9. NVIDIA: Multi-Process Service (vR440) (2019). https://docs.nvidia.com/deploy/pdf/
CUDA Multi Process Service Overview.pdf

10. NVIDIA: TensorRT developer’s guide (v7.0) (2019). https://docs.nvidia.com/deeplearning/
sdk/pdf/TensorRT-Developer-Guide.pdf

11. Redmon, J.: Darknet: open source neural networks in C (2013–2016). http://pjreddie.com/
darknet/

12. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement arXiv:1804.02767 (2018)
13. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with

region proposal networks. In: [28th] NeurIPS Advances in Neural Information Processing
Systems, pp. 91–99 (2015)

14. da Silva Carvalho, M.D., Koark, F., Rheinländer, C., Wehn, N.: Real-time image recogni-
tion system based on an embedded heterogeneous computer and deep convolutional neural
networks for deployment in constrained environments. In: WCX SAEWorld Congress Expe-
rience. SAE International (2019). https://doi.org/10.4271/2019-01-1045

15. Yang, M., et al.: Re-thinking CNN frameworks for time-sensitive autonomous-driving appli-
cations: addressing an industrial challenge. In: RTAS 2019 IEEE Real-Time and Embed-
ded Technology and Applications Symposium, pp. 305–317 (2019). https://doi.org/10.1109/
RTAS.2019.00033

16. Yang, M., Otterness, N., Amert, T., Bakita, J., Anderson, J.H., Smith, F.D.: Avoiding pitfalls
when using NVIDIA GPUs for real-time tasks in autonomous systems. In: Altmeyer, S. (ed.)
[30th]ECRTSEuromicro Conference on Real-Time Systems. Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 106, pp. 20:1–20:21. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuh (2018). https://doi.org/10.4230/LIPIcs.ECRTS.2018.20

https://devblogs.nvidia.com/nvidia-serves-deep-learning-inference/
https://www.theverge.com/2020/1/7/21055450/mobileye-self-driving-car-watch-camera-only-intel-jerusalem
https://www.theverge.com/2020/1/7/21055450/mobileye-self-driving-car-watch-camera-only-intel-jerusalem
http://arxiv.org/abs/1901.00041
https://doi.org/10.1145/2647868.2654889
http://doi.acm.org/10.1145/2647868.2654889
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deeplearning/sdk/pdf/TensorRT-Developer-Guide.pdf
https://docs.nvidia.com/deeplearning/sdk/pdf/TensorRT-Developer-Guide.pdf
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
http://arxiv.org/abs/1804.02767
https://doi.org/10.4271/2019-01-1045
https://doi.org/10.1109/RTAS.2019.00033
https://doi.org/10.1109/RTAS.2019.00033
https://doi.org/10.4230/LIPIcs.ECRTS.2018.20

A Multi-model Super-Resolution Training
and Reconstruction Framework

Ninghui Yuan, Dunbo Zhang, Qiong Wang, and Li Shen(B)

School of Computer, National University of Defense Technology Changsha,
Hunan 410073, China
lishen@nudt.edu.cn

Abstract. As a popular research field of computer vision, super-
resolution is currently widely studied. In the past, the size of the train-
ing set required for super-resolution work was too large. A large training
set would cause more resource requirements, and at the same time, the
time overheads of data transmission would also increase. Moreover, in
super-resolution work, the relationship between the complexity of the
image and the model structure is usually not considered, and images
are recovered in same depth. This method often cannot meet the SR-
reconstruction needs of all images. This paper proposes a new training
and reconstruction framework based on multiple models. The framework
prunes the training set according to the complexity of the images in the
training set, which significantly reduces the size of the training set. At
the same time, the framework can select the specific depth according to
the image features of the images to recover the images, which helps to
improve the SR-reconstruction effect. After testing different models, our
framework can reduce the amount of training data by 41.9% and reduce
the average training time from 2935 min to 2836 min. At the same time,
our framework can improve the average SR-reconstruction effect of 65.7%
images, optimize the average perceptual index from 3.1607 to 3.0867, and
optimize the average SR-reconstruction time from 101.7 s to 66.7 s.

Keywords: Super-resolution · Classification · Fusion · Multi-model

1 Introduction

Super-resolution (SR) is an important branch of machine vision. The main func-
tion of super-resolution is to improve the clarity of the enlarged image and
reduce the image quality degradation caused by image upscaling. From the sim-
ple mathematical methods to the methods based on deep learning, the effect
of SR-reconstruction is constantly improving. After the deep learning method
is widely used, the optimization method of deep learning is applied to the field
of SR. The optimization direction of deep learning methods is not clear, which
also makes the optimization cycle of the SR models to be longer. At present,
super-resolution still faces some challenges:

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 105–116, 2021.
https://doi.org/10.1007/978-3-030-79478-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_9

106 N. Yuan et al.

Firstly, the SR model becomes more and more complex, which will cause over-
fitting problems. In the process of SR-reconstruction, too deep or too shallow
models can reduce SR-reconstruction effect. Insufficient model depth will lead
to insufficient extraction of image feature information, which can reduce the
SR-reconstruction effect. However, too deep models will cause overfitting and
increase resource requirements. Therefore, we hope the model depth matches
the complexity of SR-reconstruction. There has been some works using multiple
models for SR-reconstruction, such as MMSR (a Multi-Model Super Resolution
framework) [21]. However, due to the limitation of the classification effect and
the impact on the pruning of the training set, the SR-reconstruction effect of
MMSR is not satisfied. In MMSR, images with simple textures are classified into
lower depth models for SR-reconstruction, and a better SR-reconstruction effect
is obtained in lower depth models than in deeper models. The SR-reconstruction
result score is better because there are fewer artifacts and distortions in the SR-
reconstruction result, but these SR-reconstruction results may lose detailed tex-
ture information. Therefore, if the images with simple textures can be recovered
in models of different depths, and finally the results of the SR-reconstruction are
fused, the SR-reconstruction results will get better score and lose less texture.

Secondly, in order to ensure the SR-reconstruction effect, a larger training set
is generally required, which greatly increases the training time and the resource
requirements. The SR training set is obtained by processing an image set com-
posed of many images. During the processing, the images in the original image
set are first cut into fragments. For training more easily, the fragments are often
processed into specific data file formats. We observed the image fragments after
cutting and found that there are many image fragments having almost no tex-
ture features, such as the sky, the water surface, the wall, and so on. These
fragments have little impact on training, so the fragments can be pruned. The
size of the training set after pruning will be greatly reduced, which can reduce
time overhead and storage overhead.

Based on above analysis, we propose and implement a new SR framework
based on multiple-depth models. The framework is divided into two parts: train-
ing module and reconstruction module. In the training module, the training set
is reduced by pruning. In the reconstruction module, the test set is classified into
models of different depths for training. The images recovered in the shallowest
model need to be recovered in a medium-depth model, and finally fused as the
final reconstruction result. The contributions of our framework are as follows:

– A SR framework based on multiple-depth models and an image classifica-
tion strategy based on random forest are proposed. Unlike the previous
single-depth model construction method, our framework can accurately assign
different types of images to the appropriate models for SR-reconstruction,
thereby improving SR-reconstruction effect. At the same time, multi-depth
SR-reconstruction can also improve the parallelism of the SR-reconstruction
process and accelerate the SR-reconstruction process. our framework can
increase the average SR-reconstruction effect of 65.7% images, optimize the

A Multi-model Super-Resolution Training and Reconstruction Framework 107

average perceptual index from 3.1607 to 3.0867, and reduce the average SR-
reconstruction time by 34.4%.

– An image fusion algorithm is proposed. In the experiment, the fusion algo-
rithm can significantly reduce the loss of texture information of images and
improve the visual effect of the SR-reconstruction results.

– A pruning algorithm based on image texture features and edge information
is proposed to prune the training set of the SR model. Through the pruning
algorithm, the size of the training set is decreased by 41.9% and the average
training time is reduced by 3.4%.

The rest of this paper is organized as follows. Section 2 lists some related
works. Section 3 introduces our framework in detail. In Sect. 4, experimental
results are given and the performance of our framework is evaluated. And in
Sect. 5, some conclusions are given.

2 Related Work

2.1 Super-Resolution

Super-resolution: SR-reconstruction is an important work in the field of machine
vision [3,5–7,12,13,18,22,23]. Before the deep learning methods were widely
used, SR-reconstruction mainly relied on mathematical methods to calculate
and predict the upscaled images information through the information in the
original small images. SRCNN (Super-Resolution Convolutional Neural Net-
work) [1,2] introduced the method of deep learning to SR-reconstruction for
the first time. SRCNN achieved SR-reconstruction effect superior to the past
mathematical methods through a three-layer convolution neural network. After
SRCNN, deep learning based methods have gradually become the mainstream
in the field of super-resolution. The optimization of deep learning based meth-
ods mainly comes from the continuous increase of the depth of the model and
the optimization of the network structure. For example, VDSR (Very Deep net-
work for Super-Resolution) [8] introduced ResNet into SR and many models are
constructed with ResNet such as MSRResNet [11]. SRDenseNet [17] introduced
DenseNet, and SRGAN (Super-Resolution using a generative adversarial net-
work) [11] introduced GAN (generative adversarial network) [4]. ESRGAN [19]
is based on both DenseNet and GAN. These networks have made breakthrough
progress. At the same time, RED (Residual convolutional Encoder-Decoder net-
works) [15], DRCN (Deeply-recursive convolutional network for image super-
resolution) [9], LapSRN (Deep laplacian pyramid networks for fast and accurate
super-resolution) [10], SftGAN (Recovering Realistic Texture in Image Super-
resolution by Deep Spatial Feature Transform) [20] and other network structures
have also achieved good results. Among them, most effective models are based
on ResNet, GAN, and DenseNet. In this paper, to fully verify the effect of our
framework, we have also tested the models of these three structures. We put
MSRResNet, SRGAN, and ESRGAN into our framework.

108 N. Yuan et al.

In addition to the model structure, how to quantitatively evaluate the SR-
reconstruction results is also a problem to be considered in SR work. In the early
models, traditional evaluation metrics are mainly based on mathematical calcu-
lation, such as PSNR (Peak-Signal to Noise Ratio), SSIM (Structural SIMilarity)
and other methods. These evaluation metrics are traditional imagery evaluation
methods, which quantify the image structure, signal-to-noise ratio, and other
indicators, but these evaluation standards cannot match well with the feel of
human eye. SRGAN adopts the perceptual index (PI) [14,16] to evaluate the
SR-reconstruction results. The lower a perceptual index score is, the better the
image quality is. Therefore, PI is also used as the evaluation metric of image
quality in this paper.

2.2 Image Classification

The effect of the multi-depth framework depends greatly on the effect of the clas-
sification results. The current image classification methods are mainly divided
into two types, one is the mathematical method and the other is the deep learn-
ing method.

Traditional methods mainly use mathematical methods to describe image
features and classify images through some classification structures. For example,
Decision Tree and random forests can be used for image classification. Due to its
simple training, clear structure and strong interpretability, decision tree is used
to classify images commonly. The effect of classification depends on the features
provided by the user to the decision tree. Random forest is a set of decision
trees. Multiple decision trees vote on the classification results, which can improve
the accuracy of classification. The extraction of image features mainly depends
on some mathematical methods. The characteristics of images mainly include
edge characteristics, image channel value variance and so on. The edge detection
operator can be used to extract the texture of the image well. Common edge
detection operators include sobel operator, canny operator and so on. In MMSR,
the TVAT [21] algorithm is proposed, which can well calculate the variance of
the image channel value.

Non-traditional methods mainly use deep learning models for classification.
At present, such methods have achieved good classification results. The deep
learning based approaches extract and generate image features through convo-
lutional neural networks and other network structures and classify images based
on their features.

The advantages of traditional image classification methods is that they have
strong interpretability and does not require a complicated training process. The
advantage of the non-traditional classification methods is that they have a good
effect on some complex cases that cannot be solved by traditional methods. In
the multi-depth framework, not only the effect but also the efficiency needs to be
considered, therefore our framework uses traditional methods for classification.

A Multi-model Super-Resolution Training and Reconstruction Framework 109

Fig. 1. The structure and data flow of the training module.

110 N. Yuan et al.

3 Multi-model SR Training and Reconstruction
Framework

In order to address the issues mentioned above, we propose a multi-model train-
ing and SR-reconstruction framework. The framework is mainly divided into
training module and SR-reconstruction module. In the experiment, we adjust
the model depth by adjusting the number of basic blocks in the model. The
basic block is the unit that constitutes the model. A basic block contains several
convolutional layers. The depth of the model can be easily adjusted by setting
the number of basic blocks in a model. The structure and data flow of the train-
ing module are shown in the A part of Fig. 1. The task of the training module
is mainly to train the multiple models and reduce the size of the training set.
The main design idea of the training module is to prune the images with less
texture from the original training set. The size of the training set after pruning
is significantly reduced compared to that of the original data set. The structure
and data flow of the reconstruction module are shown in the part B of Fig. 1.
The task of the reconstruction module is to recover low-resolution images. We
input images into different models for SR-reconstruction through the classifica-
tion layer, thereby improving the effect and efficiency of reconstruction. At the
same time we propose fusion layer to prevent the image reconstructed in the
low-depth model from losing too much texture information.

3.1 Pruning Layer

In the original training set, the data is saved in the form of images. Some images
in the original training set do not have complex texture features, and even some
of the images are filled by solid colors. These images have little effect on the
training results, and can be removed from the training set. The pruning layer
uses ETVAT (Enhanced TVAT) and the edge detection operator to determine
which images should be pruned. In the pruning layer, the training image is gray-
scaled firstly. The purpose of grayscale is to reduce the interference of noise
and illumination when performing edge detection. After grayscaling, the module
uses edge detection operators to extract the features of the images and get the
feature maps. The final feature maps will be used to score the images together
with ETVAT.

As shown in Fig. 2, the pruning algorithm we propose is based on TVAT
and edge detection operators. In part A, we use the edge detection operator to
calculate score1. We first use the edge detection operator to calculate the edge
feature map of the image. After that, we add the gray values of the pixels in
the feature map as the first score, and this score is called Edge score. Although
this calculation method is very simple and reduces the amount of information
in the edge map, it is enough for judging the complexity of the image. And we
propose a voting mechanism of three channels (R, G, B) instead of calculating
the mean value of the three channels to calculate score2, because we found that
there are large differences in the change of different channels. Therefore, in part
B we use the values of the three channels to perform TVAT operations and

A Multi-model Super-Resolution Training and Reconstruction Framework 111

vote. If the change rate of more than two values exceeds the threshold, we think
that this point should be calculated into the final TVAT value. We call this
method ETVAT, ETVAT will help us get one score in the voting mechanism.
Then in part C we use ETVAT and Edge score to calculate the final score. The
images with the final score of 1 will be pruned. In the pruning algorithm, there
are several adjustable thresholds: threshold0, threshold1, threshold2, threshold3,
threshold4, which are used to adjust the strength of pruning. In the experiment
of this paper, we adjust the strength of pruning to about 40%.

Fig. 2. The process of pruning algorithm.

3.2 Classification Layer

After the low-resolution images enters the reconstruction module, they will be
classified first. We find that the training model required for images with simple
textures is often shallower than that for images with complex textures. Therefore,

112 N. Yuan et al.

we can also classify images based on the texture complexity of the images. The
feature extraction process in the classification layer is like that in the pruning
layer. After the feature extraction is completed, we use random forest to classify
the images. The images are divided into three categories labeled as “SIMPLE”,
“MODERATE” and “COMPLEX”. The three labels represent images with
the simplest texture, the image with moderate texture complexity and images
with the most complicated texture. In the multi-model reconstruction layer,
images labeled as “SIMPLE” enters Model1 and Model2 for SR-reconstruction
at the same time, images labeled as “MODERATE” enters Model2 for SR-
reconstruction, and images labeled as “COMPLEX” enters Model3 for SR-
reconstruction. After SR-reconstruction, the reconstruction results of the images
labeled “MODERATE” and “COMPLEX” directly enter the output layer as the
results. Images labeled as “SIMPLE” have two output results, one from Model1
and the other from Model2. These two SR-reconstruction results will enter the
fusion layer. After the fusion layer fuses the two results, the fusion result is
output to the output layer.

The classification layer is one of the core components of the reconstruction
module. Through observation, we found that complex images often require more
complex models for SR-reconstruction, while simple images often do not require
particularly complex model reconstruction. Based on this observation, we sim-
plify the classification problem to how to classify images based on their com-
plexity. We have designed a classification layer based on random forest.

We use ETVAT and Edge score calculation methods to extract image fea-
tures, and the extracted features are used as a new training set. This training
set contains only feature values and label, which is suitable for the construction
of Random Forests. And because we have a limited number of extracted fea-
tures (you can set the number of feature extraction yourself, in this paper we
extracted 5 features, which are the three feature values of ETVAT, Edge score,
and Edge score with threshold limit). It is worth noting that too many features
may cause overfitting.

The next step is the construction of random forests. The main tunable param-
eters are the number of trees in the random forest and the maximum tree depth.

3.3 Fusion Layer

The fusion layer is another important functional layer in the reconstruction mod-
ule. Its purpose is to avoid the loss of detailed information of the reconstructed
images from the simple model. The fusion algorithm is shown in Algorithm 1.
There is a buffer before the fusion layer because the speeds of SR-reconstruction
in different models are different. We must wait for both results to be recon-
structed before they can be input into the fusion layer. It has three inputs, SR
image1 and SR image2 to be fused and feature map generated using the sobel
operator, which identifies that pixels in SR image1 are in the texture areas or
in non-texture area. For each pixel, if it locates in the texture ares, the texture
information generated by model2 will be mainly added to the result SR image.

A Multi-model Super-Resolution Training and Reconstruction Framework 113

Algorithm 1. Image Fusion algorithm
Input: SR image1, SR image2, feature map
Output: the result SR image

1: for i in row of feature image do
2: for j in col of feature image do
3: if thefeature[i][j] = 1 then
4: fusionresult[i][j] = 0.3 ∗ SRimage1[i][j] + 0.7 ∗ SRimage2[i][j].
5: else
6: fusionresult[i][j] = 0.7 ∗ SRimage1[i][j] + 0.3 ∗ SRimage2[i][j].
7: end if
8: end for
9: end for

Otherwise, the non-texture information generated by the model1 will be mainly
added to the result.

4 Experiments

4.1 Environment Setup

To evaluate the performance of our mechanism, we construct a small-scale cluster
which consists of three heterogeneous “CPU+GPU” nodes. The main system
parameters of each node are listed in Table. 1.

Table 1. System parameters of each node.

HW/SW module Description

CPU Intel ® Xeon® E5-2660 v3 @2.6 GHz x2

GPU NVIDIA Tesla K80 x2

Memory 64 GB

OS Linux CentOS 7.4

Development Environment Anaconda 3, Pytorch 1.0

4.2 Experiment Details

We use DIV 2K dataset train models, and use PRIM dataset to test. DIV 2K is
a commonly used super-resolution training set with a total of 800 images, and
PRIM dataset is a standard super-resolution competition test set with a total
of 100 images. To verify the effectiveness of the model, we put different types of
models into the framework for testing and compare the effects with the original
model. Most of the current SR models are based on ResNet, DenseNet and GAN

114 N. Yuan et al.

structures. Therefore, in the experiment, we use MSRResNet to represent ResNet
structures, SRGAN to represent ResNet and GAN structures, and ESRGAN to
represent DenseNet and GAN structures. These three models can get good SR-
reconstruction effect and they can be used as basic models to verify the effect of
our framework.

Fig. 3. Comparisons of the effects of our framework and the baseline models

In the experiment, to effectively reduce the size of the training set, we
adjusted the pruning strength to about 40%. The size of the training set running
in the original model was 21401.8M, and the size of the training set after the
operation was reduced to 12436.6M. The experimental results are shown in Fig. 3.
For MSRResNet, we can reduce the training time from 2517 min to 2449 min.
The SR-reconstruction quality of 61% test images has been improved and the
average perceptual index has dropped from 5.1912 to 5.155833, at the same
time SR-reconstruction time has been optimized from 85 s to 59 s. For SRGAN,
the training time can be reduced from 1920 min to 1812 min. SR-reconstruction
quality of 58% test images have been improved and the average perceptual index
has dropped from 2.0869 to 2.0509, while SR-reconstruction time has been opti-
mized from 82 s to 46 s. For ESRGAN, the training time can be reduced from
4368 min to 4249 min. The SR-reconstruction quality of 78% test images has
been improved and the average perceptual index has dropped from 2.2041 to
2.0535. The SR-reconstruction time has been optimized from 138 s to 95 s.

A Multi-model Super-Resolution Training and Reconstruction Framework 115

5 Conclusion

In the study of super-resolution, we find that a single model cannot satisfy the
requirements of all input images to achieve the optimal SR-reconstruction effect.
At the same time, we find that the size of the training set is usually too large,
which also brings great difficulties to the research. In order to solve these prob-
lems, this paper proposes a super-resolution training and reconstruction frame-
work based on multiple models. The framework is divided into training module
and reconstruction module. In the training module, the pruning layer prunes
the training set based on ETVAT and Edge score, which effectively reduces the
size of the training set and reduces the difficulty of training. The multi-model
training layer trains multiple models at the same time. In the reconstruction
module, the classification layer uses random forest for classification. The classi-
fication layer is based on random forests. The classification layer classifies differ-
ent kinds of images into a suitable model for reconstruction and uses the fusion
layer to increase the texture information of the SR-reconstruction result. In the
experiment, we put MSRResNet, SRGAN and ESRGAN into the framework
for optimization. After testing different models, our framework can reduce the
amount of training data by 41.9% and reduce the average training time by 3.4%.
For reconstruction, our framework can increase the average SR-reconstruction
effect of 65.7% images, optimize the average perceptual index from 3.1607 to
3.0867, and reduce the average SR-reconstruction time by 34.4%. Our framework
can improve the effect of super-resolution models while reducing the resource
requirements.

Acknowledgement. This work was supported by the National Science Foundation
under Grant No. 61972407 and Guangdong Province Key Laboratory of Popular High
Performance Computers 2017B030314073.

References

1. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolu-
tional networks. CoRR abs/1501.00092 (2015). http://arxiv.org/abs/1501.00092

2. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional
neural network. CoRR abs/1608.00367 (2016). http://arxiv.org/abs/1608.00367

3. Fu, Y., Zhang, T., Zheng, Y., Zhang, D., Huang, H.: Hyperspectral image super-
resolution with optimized RGB guidance. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2019)

4. Goodfellow, I.J., et al.: Generative adversarial networks. ArXiv abs/1406.2661
(2014)

5. Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel
correction. CoRR abs/1904.03377 (2019). http://arxiv.org/abs/1904.03377

6. Haris, M., Shakhnarovich, G., Ukita, N.: Recurrent back-projection network for
video super-resolution. CoRR abs/1903.10128 (2019). http://arxiv.org/abs/1903.
10128

7. Hu, X., Mu, H., Zhang, X., Wang, Z., Tan, T., Sun, J.: Meta-SR: a magnification-
arbitrary network for super-resolution. CoRR abs/1903.00875 (2019). http://arxiv.
org/abs/1903.00875

http://arxiv.org/abs/1501.00092
http://arxiv.org/abs/1608.00367
http://arxiv.org/abs/1904.03377
http://arxiv.org/abs/1903.10128
http://arxiv.org/abs/1903.10128
http://arxiv.org/abs/1903.00875
http://arxiv.org/abs/1903.00875

116 N. Yuan et al.

8. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep
convolutional networks. CoRR abs/1511.04587 (2015). http://arxiv.org/abs/1511.
04587

9. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image
super-resolution. CoRR abs/1511.04491 (2015). http://arxiv.org/abs/1511.04491

10. Lai, W., Huang, J., Ahuja, N., Yang, M.: Deep Laplacian pyramid networks for
fast and accurate super-resolution. CoRR abs/1704.03915 (2017). http://arxiv.
org/abs/1704.03915

11. Ledig, C., et al.: Photo-realistic single image super-resolution using a genera-
tive adversarial network. CoRR abs/1609.04802 (2016). http://arxiv.org/abs/1609.
04802

12. Li, S., He, F., Du, B., Zhang, L., Xu, Y., Tao, D.: Fast spatio-temporal residual
network for video super-resolution. CoRR abs/1904.02870 (2019). http://arxiv.
org/abs/1904.02870

13. Li, Z., Yang, J., Liu, Z., Yang, X., Jeon, G., Wu, W.: Feedback network for image
super-resolution. CoRR abs/1903.09814 (2019). http://arxiv.org/abs/1903.09814

14. Ma, C., Yang, C., Yang, X., Yang, M.: Learning a no-reference quality metric
for single-image super-resolution. CoRR abs/1612.05890 (2016). http://arxiv.org/
abs/1612.05890

15. Mao, X., Shen, C., Yang, Y.: Image restoration using convolutional auto-encoders
with symmetric skip connections. CoRR abs/1606.08921 (2016). http://arxiv.org/
abs/1606.08921

16. Mittal, A., Soundararajan, R., Bovik, A.: Making a “completely blind” image qual-
ity analyzer. Signal Processing Letters, 20, 209–212 (2013). https://doi.org/10.
1109/LSP.2012.2227726

17. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip con-
nections, pp. 4809–4817 (2017). https://doi.org/10.1109/ICCV.2017.514

18. Wang, L., et al.: Learning parallax attention for stereo image super-resolution.
CoRR abs/1903.05784 (2019). http://arxiv.org/abs/1903.05784

19. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial net-
works. CoRR abs/1809.00219 (2018). http://arxiv.org/abs/1809.00219

20. Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-
resolution by deep spatial feature transform. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2018)

21. Yuan, N., Zhu, Z., Wu, X., Shen, L.: MMSR: a multi-model super resolution frame-
work. In: Tang, X., Chen, Q., Bose, P., Zheng, W., Gaudiot, J.-L. (eds.) NPC 2019.
LNCS, vol. 11783, pp. 197–208. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30709-7 16

22. Zhang, K., Zuo, W., Zhang, L.: Deep plug-and-play super-resolution for arbitrary
blur kernels. CoRR abs/1903.12529 (2019). http://arxiv.org/abs/1903.12529

23. Zhang, S., Lin, Y., Sheng, H.: Residual networks for light field image super-
resolution. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2019)

http://arxiv.org/abs/1511.04587
http://arxiv.org/abs/1511.04587
http://arxiv.org/abs/1511.04491
http://arxiv.org/abs/1704.03915
http://arxiv.org/abs/1704.03915
http://arxiv.org/abs/1609.04802
http://arxiv.org/abs/1609.04802
http://arxiv.org/abs/1904.02870
http://arxiv.org/abs/1904.02870
http://arxiv.org/abs/1903.09814
http://arxiv.org/abs/1612.05890
http://arxiv.org/abs/1612.05890
http://arxiv.org/abs/1606.08921
http://arxiv.org/abs/1606.08921
https://doi.org/10.1109/LSP.2012.2227726
https://doi.org/10.1109/LSP.2012.2227726
https://doi.org/10.1109/ICCV.2017.514
http://arxiv.org/abs/1903.05784
http://arxiv.org/abs/1809.00219
https://doi.org/10.1007/978-3-030-30709-7_16
https://doi.org/10.1007/978-3-030-30709-7_16
http://arxiv.org/abs/1903.12529

Deep Visible and Thermal Image Fusion
with Cross-Modality Feature Selection

for Pedestrian Detection

Mingyue Li1,2, Zhenzhou Shao1,2(B) , Zhiping Shi1,3 ,
and Yong Guan1,2,3(B)

1 College of Information Engineering, Capital Normal University, Beijing, China
{2181002024,zshao,shizp,guanyong}@cnu.edu.cn

2 Beijing Key Laboratory of Light Industrial Robot and Safety Verification,
Beijing, China

3 Beijing Advanced Innovation Center for Imaging Technology, Beijing, China

Abstract. This paper proposes a deep RGB and thermal image fusion
method for pedestrian detection. A two-branch structure is designed to
learn the features of RGB and thermal images respectively, and these
features are fused with a cross-modality feature selection module for
detection. It includes the following stages. First, we learn features from
paired RGB and thermal images through a backbone network with a
residual structure, and add a feature squeeze-excitation module to the
residual structure; Then we fuse the learned features from two branches,
and a cross-modality feature selection module is designed to strengthen
the effective information and compress the useless information during the
fusion process; Finally, multi-scale features are fused for pedestrian detec-
tion. Two sets of experiments on the public KAIST pedestrian dataset
are conducted, and experimental results show that our method is better
than the state-of-the-art methods. The robustness of fused features is
improved, and the miss rate is reduced obviously.

Keywords: Pedestrian detection · Cross-modality features · Feature
fusion

1 Introduction

As a fundamental task in the field of computer vision, object detection has drawn
much more attentions in several applications, such as autonomous driving, video

Supported by National Key R & D Program of China (2019YFB1309900), National
Natural Science Foundation of China (61702348, 61772351), Beijing Nova Program
of Science and Technology (Z191100001119075), the National Technology Innovation
Special Zone (19-163-11-ZT-001-005-06) and Academy for Multidisciplinary Studies,
Capital Normal University (19530012005).

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 117–127, 2021.
https://doi.org/10.1007/978-3-030-79478-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_10&domain=pdf
http://orcid.org/0000-0002-9166-9468
http://orcid.org/0000-0002-3562-8602
http://orcid.org/0000-0002-2373-2779
https://doi.org/10.1007/978-3-030-79478-1_10

118 M. Li et al.

surveillance, human-computer interaction, etc. Deep learning-based method [1–
3] has made great progress using visible images (e.g., RGB image) in recent
years. However, considering the adverse environmental conditions, i.e., the visible
information is partially or fully missed under the poor lighting condition at
night, the accuracy of detection using only RGB image becomes relatively low.
Therefore, accurate object detection under adverse environmental conditions is
still a challenging problem.

Recently, thermal images have been widely used for facial recognition [4,5],
human tracking [6,7] and action recognition [8,9] due to its robustness of biolog-
ical characteristics. In particular, compared with the visible images, night-time
thermal images provide more usable information without the need of enough
illumination, so that both modalities are combined accordingly for the multi-
spectral object detection [10–15]. The complementary relationship between both
modalities has been proven [12], it paves an alternative way for object detection
in the harsh environment, and provides new opportunities for around-the-clock
applications.

In this paper, we mainly focus on the pedestrian detection using RGB
and thermal images. Motivated by the complementary nature between modali-
ties, extensive research efforts have been made. Hwang et al. [10] proposed an
extended ACF method that uses aligned RGB and thermal images for all-weather
pedestrian detection. With the latest development of deep learning, CNN-based
methods [11,16–18] have significantly improved the performance of object detec-
tion based on RGB and thermal image fusion. Liu et al. [19] adopted the Faster
R-CNN architecture and analyzed the impact of different fusion stages in CNN
on the detection results. Kéonig et al. [20] employed Region Proposal Network
(RPN) and Boosted Forest (BF) frameworks for multispectral data detection.
Kihong et al. [13] adopted a multi-branch detection model and also introduced
a cumulative probability fusion (APF) layer to combine the results from differ-
ent modes at the regional proposal layer. Zhang et al. [15] proposed a regional
feature alignment (RFA) module to capture the position offset and adaptively
align the regional features of these two modalities to improve the robustness of
multi-modal detection. Xu et al. [11] first used a deep convolutional network to
learn nonlinear mapping, modeled the correlation between RGB and thermal
image data, and then transferred the learned feature representation to the sec-
ond deep network in this way Learned that poor lighting conditions have the
characteristics of discrimination and robustness, and it also proves that RGB
and thermal image fusion has the possibility of all-weather detection.

However, the aforementioned methods commonly use the channel addition
or cascade as the fusion strategy, the confidence of corresponding features from
RGB and thermal images is not taken into account, and it cannot guarantee the
complementary characteristics between features after the fusion.

In this paper, a pedestrian detection network that can perform cross-modal
fusion feature selection is designed for the above-mentioned problems. The main
contributions of this work are summarized as follows:

Deep Visible and Thermal Image Fusion 119

(1) We designed a two-stream fusion network for pedestrian detection. Two
branch networks with residual structure with feature squeeze-excitation
(SE)[21] modules are used to learn the features of RGB and thermal image
data.

(2) The fusion of two modal data will have useless redundant information.
Therefore, a cross-modal fusion feature selection mechanism is proposed to
extract useful information and compress useless information.

2 Proposed Method

backbone

RGB Image

Thermal Image

Softmax
Fusion mapFeature

Selection
Conv

Multi-scale

backbone

RGB Image

Thermal Image

Softmax
Fusion mapFeature

Selection
Conv

Multi-scale

Fig. 1. Overview of the proposed method.

As shown in Fig. 1, the proposed model consists of two parts: two-branch feature
extraction backbone network and cross-modal fusion feature selection module.
We use the paired RGB and thermal image as the input of the two branches,
and the corresponding features are extracted respectively using a two-branch
backbone network. Then pass the learned features to the cross-modal feature
selection module. Finally, multi-scale convolution operations are applied to fused
features for further pedestrian detection.

2.1 Two-Branch Feature Extraction Backbone Network
with Squeeze-Excitation Module

In order to extract the representative features of RGB and thermal images, we
design a backbone network to extract features for each modality. In the backbone
network, in order to improve the efficiency of feature extraction and alleviate
the overfitting problem in the deep network [24], similar to yolov3 [25], we add a
residual structure during feature extraction. Furthermore, to reduce the useless
features for pedestrian detection, squeeze-excitation (SE) module is employed in
the residual structure. It is able to improve the efficiency of feature extraction
as well.

As shown in Fig. 2, the squeeze-excitation module is combined with ResNet
structure. X represents the input feature, and Y represents the output feature.

120 M. Li et al.

C W
H

Global Pooling

FC

X

Y

1× 1 Conv

3× 3 Conv

C W
H

Global Pooling

FC

X

Y

1× 1 Conv

3× 3 Conv

C W
H

Global Pooling

FC

X

Y

1× 1 Conv

3× 3 Conv

C W
H

Global Pooling

FC

X

Y

1× 1 Conv

3× 3 Conv

C W
H

Global Pooling

FC

X

Y

1× 1 Conv

3× 3 Conv

Fig. 2. ResNet structure with squeeze-excitation module.

The input layer features first go through two convolutional layer operations of
1×1 and 3×3, and then perform a global pooling operation to obtain a vec-
tor representing the importance of a single-modal data channel, which can be
calculated by the following formula:

Zc =
1

H ∗ W

H∑

i=1

W∑

j=1

uc(i, j), (1)

where Zc represents the calculated channel importance parameter, and W and
H represent the height and width of the feature map, respectively. The formula
obtains Zc by adding up all the characteristic points in the mean value. Finally,
the importance parameters calculated from all channels are fully connected to
obtain the feature channel importance vector.

In order to use the vector obtained by channel squeeze, we multiply the
feature output from the ResNet layer with the vector, pass to the ReLu activa-
tion function, and finally obtain the output Y through the Softmax activation
function, the formula is as follows:

Y = s(δ(Z ∗ X ′)), (2)

where Y represents the final output feature, s denotes Softmax activation func-
tion, Z represents the channel importance vector, δ is ReLu activation function,
and X ′ represents the feature obtained after convolution operations with kernel
size of 1 × 1 and 3× 3, respectively.

2.2 Cross-Modality Feature Selection Module

After two-modality features are extracted using the backbone network, the effec-
tive fusion is carried out. Although multi-modality features have complementary

Deep Visible and Thermal Image Fusion 121

RGB
feature map

Thermal
feature map

Softmax

a

b

Global Pooling

FC

element-wise addtion element-wise mutiply

Fusion map

RGB
feature map

Thermal
feature map

Softmax

a

b

Global Pooling

FC

element-wise addtion element-wise mutiply

Fusion map

Fig. 3. Cross-modal fusion feature selection module.

information, they also have mutually redundant information. Therefore, both
the complementary and redundant characteristics of RGB and thermal images
are taken into account, a cross-modality feature selection module is designed
to reduce the interference of redundancy or error information on subsequent
detection.

As shown in Fig. 3, RGB feature map and thermal feature map respectively
represent the feature maps of the two modalities output by the two backbone
networks. Global Pooling represents the global pooling operation, FC represents
the fully connected layer, Softmax represents the activation function, and finally
Fusion map represents the final fusion feature map. The specific operations of
the cross-modal fusion feature selection module are as follows: After RGB and
thermal image data are extracted through the branch backbone network, the
features of the two modalities are first added together to obtain the fusion feature
map used to calculate the importance parameters of the two modal data. The
preliminary fusion feature map obtained by reuse is subjected to global pooling,
full connection, and Softmax operations. The importance parameters of RGB
and thermal image features are obtained by the following formula:

U = URGB + UThermal, (3)

where U represents the preliminary fusion feature obtained by adding RGB and
Thermal features, and URGB and UThermal represent the RGB and Thermal
features output by the backbone network, respectively. The global tie pooling
operation is written as

Sc =
1

H ∗ W

H∑

i=1

W∑

j=1

Uc(i, j), (4)

122 M. Li et al.

where H and W represent the height and width of the feature map, and Uc

denotes the feature map at cth channel.

Z = Ffc(S) = δ(β(S)). (5)

The parameters obtained by global pooling are used to obtain the fusion
feature channel importance vector through full connection, ReLu, and normal-
ization operations. fc represents the fully connected operation, δ represents the
ReLu operation, and β represents the normalization operation.

ac =
eAcZ

eAcZ + eBcZ
, bc =

eBcZ

eAcZ + eBcZ
. (6)

Equation (6) indicates that a method similar to the attention mechanism is
used to obtain the respective importance vectors of RGB and thermal features
according to the obtained feature channel importance vectors. Among them, Ac

and Bc represent the characteristics of RGB and Thermal channel count as c
respectively.

UFusec = ac ∗ URGBc
+ bc ∗ UThermalc , ac + bc = 1, (7)

where represents the multiplication operation of RGB and thermal with the
obtained importance vector, and then adding them to obtain features from the
final fusion layer. UFusec , URGBc

and UThermalcrespectively represent the fused
features, RGB and thermal features at channel c.

2.3 Optimization

We deploy all parameter calculations to run on GPU devices. In the net-
work model training, the stochastic gradient descent optimization algorithm is
adopted. In addition, the use of gradient descent in deep learning model training
is itself an approximate solution problem, and asynchronous parallel computing
is more efficient than synchronous parallel computing in approximate solution
problem, so we use asynchronous parallel computing mode in training model for
computation on GPU.

3 Experimental Results

In order to verify the effectiveness of proposed method, we conducted several
experiments on the publicly available KAIST pedestrian dataset [25] captured in
various traffic scenarios with different lighting conditions. The dataset consists
of 95,000 aligned RGB thermal image pairs. One pair of images are sampled
every 20 frames from the whole KAIST dataset for training and testing. In
our experiment, 7,472 pairs are collected as training samples and 1386 pairs for
testing.

Deep Visible and Thermal Image Fusion 123

3.1 Experimental Setup

The proposed method is implemented in the Tensorflow framework, running on
two NVIDIA Tesla P100 GPUs with 16G memory. Regardless of changes in day
and night or lighting conditions, we put all the selected data together for training
and testing. In order to ensure the adequacy of data during the experiment, data
augmentation operations (rotation and zoom) are implemented. 30 epochs are
set per experiment in the training stage.

The experiment is carried out in a batch format. Each small batch consists of
6 pairs of images, which are randomly selected from the training images. Stochas-
tic gradient descent is used to optimize the model, and its weight attenuation
parameter is set to 0.995. The initial learning rate is set to 1e-4, and then reduce
the learning rate after the model becomes stable, so as to achieve the goal of
avoiding missing the optimal solution.

3.2 Comparison with the State-of-the-Art Methods

We compare our method with advanced methods on the KAIST pedestrian
dataset, including: (i) ACF-RGB [27], which uses ACF for RGB data; (ii) ACF-
RGBT + THOG [25], that is, using ACF for RGB thermal data with HOG
characteristics; (iii) CMT-CNN [11], a detection network that learns cross-modal
deep representation; (iv) SDS-RCNN [23], which is a convolutional neural net-
work based on simultaneous detection and segmentation. As shown in Table 1,
the proposed method outperforms the state-of-the-art methods, and the miss
rate is greatly reduced by 39.2%, compared with ACF-RGBT. The performance
is comparable with SDS-RCNN.

Table 1. Comparison of different methods. We use miss rate as the evaluation param-
eter for comparison on the KAIST dataset.

Method ACF-RGB ACF-RGBT-HOG CMT-CNN SDS-RCNN Ours

Miss rate 76.16 54.82 49.55 47.44 46.32

Figure 4 illustrates a part of testing results compared with the existing meth-
ods. From left to right, the detection results of ACF-RGB, ACF-RGBT-HOG,
CMT-CNN, SDS-RCNN and our method are shown in sequence. It can be
observed that ACF-RGB method misses some targets, wrong detections occurs.
Although ACF-RGBT-HOG has a lower error rate than ACF-RGB, there are
more cases of missing detection targets. The detected targets are basically cor-
rect, and a small number of targets are not detected using CMT-CNN and SDS-
RCNN methods. The detection results using the proposed method is shown in
the last column, where the quantities of both wrong and missing targets are
reduced obviously.

124 M. Li et al.

Fig. 4. Comparison of the detection results of existing methods and our method. From
left to right are the detection results of ACF-RGB, ACF-RGBT-HOG, CMT-CNN,
SDS-RCNN and our method.

3.3 Ablation Study

In this section, a set of experiments are conducted to prove the effectiveness of the
proposed single-modal feature squeeze-excitation (SE) and multi-modal fusion
feature selection module. We analysis the proposed methods under 3 different
settings: (1) Adjust the number of Res structures at each layer and find out the
best backbone network model. (2) Add SE layer to the Res structure, add the
SE layer to the Res and fusion layer, and add the SE layer to the fusion layer.
(3) Experiments are performed on the fusion layer plus the cross-modal feature
selection (FS) layer and the fusion layer without the cross-modal fusion feature
selection layer. The detection accuracy rate AP is used as the evaluation matrix.

Table 2. Experimental results of KAIST dataset under different module settings.

Proposed method

Res:1,1,1,1,1
√ − − − −

Res:1,2,2,2,2 − √ √ √ √

Res+SE − − √ √ √

Fusion+SE − − − √ −
Fusion+FS − − − − √

AP(%) 46.61 51.41 52.85 52.42 53.68

Table 2 shows our comparison results. Use the detection accuracy rate AP
as the evaluation parameter. We use the KAIST dataset to conduct ablation
research on the model framework of this article. In the process of ablation

Deep Visible and Thermal Image Fusion 125

research, we comprehensively considered the complexity of the network model
and the accuracy of experimental results, and appropriately reduced the residual
structure on the basis of the original yolov3 network. Reduce residual structure
when considering the RGB and Thermal data feature similarities, in terms of
characteristics of reuse use too much residual structural redundancy may be
produced, and considering the residual structure can reuse low-level features
to a certain extent, alleviate the problem of gradient vanishing. Therefore, the
number of residual structures is reduced to (1, 1, 1, 1, 1) and (1, 2, 2, 2, 2) for
experimental comparison. It can be seen from Table 2 that the effect of residual
structure in the model is significantly better than that of (1, 1, 1, 1, 1) when
the number of residual structure is (1, 2, 2, 2, 2). In addition, considering that
not all features of RGB and thermal data are valid, the characteristic squeeze-
excitation module (SE), which can extract effective information and compress
unwanted information, is added into the method proposed in this paper. In
the experiment, we compared the adding location of feature squeeze-excitation
module. The experimental results show that the effect of adding feature squeeze-
excitation module after the residual structure is better, because the low-level
features reused by the residual structure are similar to the high-level features,
the superposition features generate redundant information, and the addition of
feature squeeze-excitation module produces better detection results. Finally, we
use the feature selection module of cross-mode fusion proposed by us. Because
the data of RGB and thermal are similar, the detection accuracy of single mode
features extracted by effective feature compression is improved after the fusion
selection. In this paper, we propose a two-branch detection network that adds a
feature squeeze-excitation module after the residual structure and a cross-modal
fusion feature selection module to the fusion layer, which improves the detection
accuracy and presents better detection results.

Fig. 5. Comparison of testing results without and with cross-modality feature selection
module.

As shown in Fig. 5, the first row is the detection results without cross-
modality feature selection module, while the second one illustrates the results

126 M. Li et al.

of our proposed method. It is obviously observed that pedestrian targets may
not be detected or incomplete before the cross-modality feature selection module
is applied. Our method can detect almost all pedestrian targets even when the
light conditions are not good.

4 Conclusion

This paper proposes a cross-modal feature selection pedestrian detection method
based on RGB and thermal images. The residual structure is used when extract-
ing features from RGB and thermal image data, and the feature squeeze-
excitation module is embedded after the residual structure. Finally, more prac-
tical fusion features are obtained using the cross-modal fusion feature selection
module, which effectively improves the detection accuracy. In addition, we also
adopted a multi-scale detection method to improve the detection effect of small
targets. A set of experiments are carried out on the public KAIST pedestrian
dataset. Experimental results demonstrate that the proposed method outper-
forms the state-of-the-art methods, even when the lighting conditions are not
particularly well or there exist many small targets in the scene of detection.

References

1. Yang, B., Yan, J., Lei, Z., Li, S.Z.: Convolutional channel features. In: Proceedings
of the IEEE International Conference on Computer Vision (ICCV), pp. 82–90
(2015)

2. Zhang, L., Lin, L., Liang, X., He, K.: Is faster R-CNN doing well for pedestrian
detection? In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9906, pp. 443–457. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46475-6 28

3. Li, J., Liang, X., Shen, S., Xu, T., Feng, J., Yan, S.: Scale-aware fast R-CNN for
pedestrian detection. IEEE Trans. Multimedia 20(4), 985–996 (2018)

4. Buddharaju, P., Pavlidis, I.T., Tsiamyrtzis, P., Bazakos, M.: Physiology-based face
recognition in the thermal infrared spectrum. IEEE Trans. Pattern Anal. Mach.
Intell. (PAMI) 29(4), 613–626 (2007)

5. Kong, S.G., et al.: Multiscale fusion of visible and thermal IR images for
illumination-invariant face recognition. Int. J. Comput. Vis. 71(2), 215–233 (2007)

6. Leykin, A., Ran, Y., Hammoud, R.: Thermal visible video fusion for moving target
tracking and pedestrian classification. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)

7. Torabi, A., Massé, G., Bilodeau, G.-A.: An iterative integrated framework for
thermal-visible image registration, sensor fusion, and people tracking for video
surveillance applications. Comput. Vis. Image Underst. 116(2), 210–221 (2012)

8. Zhu, Y., Guo, G.: A study on visible to infrared action recognition. IEEE Signal
Process. Lett. 20(9), 897–900 (2013)

9. Gao, C., et al.: Infar dataset: infrared action recognition at different times. Neuro-
computing 212, 36–47 (2016)

10. Hwang, S., Park, J., Kim, N., Choi, Y., So Kweon, I.: Multispectral pedestrian
detection: benchmark dataset and baseline. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 1037–1045 (2015)

https://doi.org/10.1007/978-3-319-46475-6_28
https://doi.org/10.1007/978-3-319-46475-6_28

Deep Visible and Thermal Image Fusion 127

11. Xu, D., Ouyang, W., Ricci, E., Wang, X., Sebe, N.: Learning cross-modal deep rep-
resentations for robust pedestrian detection. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 5363–5371 (2017)

12. González, A., et al.: Pedestrian detection at day/night time with visible and fir
cameras: a comparison. Sensors 16(6), 820 (2016)

13. Park, K., Kim, S., Sohn, K.: Unfied multi-spectral pedestrian detection based on
probabilistic fusion networks. Pattern Recogn. 80, 143–155 (2018)

14. Neubauer, A., Yochelis, S., Paltiel, Y.: Simple multi spectral detection using
infrared nanocrystal detector. IEEE Sens. J. 19(10), 3668–3672 (2019)

15. Zhang, L., et al.: Weakly aligned cross-modal learning for multispectral pedestrian
detection. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 5127–5137 (2019)

16. Zhang, L., et al.: Cross-modality interactive attention network for multispectral
pedestrian detection. Inf. Fusion 50, 20–29 (2019)

17. Guan, D., Cao, Y., Yang, J., Cao, Y., Tisse, C.L.: Exploiting fusion architectures
for multispectral pedestrian detection and segmentation. Appl. Opt. 57(18), D108–
D116 (2018)

18. Li, C., Song, D., Tong, R., Tang, M.: Illumination-aware faster R-CNN for robust
multispectral pedestrian detection. Pattern Recognit. 85, 161–171 (2019)

19. Liu, J., Zhang, S., Wang, S., Metaxas, D.N.: Multispectral deep neural net-
works for pedestrian detection. In: British Machine Vision Conference (BMVC),
arXiv:1611.02644 (2016)

20. König, D., Adam, M., Jarvers, C., Layher, G., Neumann, H., Teutsch, M.:
Fully convolutional region proposal networks for multispectral person detection.
In: IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 243–250 (2017)

21. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks.
In: CVPR, pp. 7132–7141 (2018)

22. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

23. Li, C., Song, D., Tong, R., et al.: Multispectral Pedestrian Detection via Simulta-
neous Detection and Segmentation. arXiv, Computer Vision and Pattern Recog-
nition, arXiv:1808.04818 (2018)

24. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In:
Computer Vision and Pattern Recognition, pp. 770–778 (2016)

25. Hwang, S., Park, J., Kim, N., Choi, Y., So Kweon, I.: Multispectral pedestrian
detection: benchmark dataset and baseline. In: CVPR, pp. 1037–1045 (2015)

26. Rezatofighi, H., Tsoi, N., Gwak, J., et al.: Generalized intersection over union: a
metric and a loss for bounding box regression. In: Computer Vision and Pattern
Recognition, pp. 658–666 (2019)

27. Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object
detection. TPAMI 36(8), 1532–1545 (2014)

http://arxiv.org/abs/1611.02644
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1808.04818

LCache: Machine Learning-Enabled
Cache Management in Near-Data
Processing-Based Solid-State Disks

Hui Sun1, Shangshang Dai1 , Qiao Cui1 , and Jianzhong Huang2(B)

1 Anhui University, Hefei 230601, Anhui, China
sunhui@ahu.edu.cn, shangshangdai@stu.ahu.edu.cn

2 Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
hjzh@hust.edu.cn

Abstract. In the era of big-data, large-scale storage systems use NAND
Flash-based solid-state disks (SSDs). Some upper-level applications put
higher requirements on the performance of SSD-based storage systems.
SSDs typically exploit a small amount of DRAM as device side cache, yet
the limitation of the DRAM inside an SSD makes a better performance
difficult to achieve. The wide application of the existing cache manage-
ment schemes (e.g., LRU, CFLRU) provides a solution to this problem.
With the popularity of near-data processing paradigm in storage sys-
tems, the near-data processing-based SSDs are designed to improve the
performance of the overall system. In this work, a new cache management
strategy named LCache is proposed based on NDP-enabled SSD using
a machine learning algorithm. LCache determines whether I/O requests
will be accessed in a period by trained machine learning model (e.g.,
decision tree algorithm model) based on characteristics of I/O requests.
When the infrequently accessed I/Os that are not intensive are directly
flushed into the flash memory, LCahe enables to update the dirty data
that has not been accessed in the cache to the flash memory. Thus,
LCache can generate clean data while replace cached data with priority to
minimize the cost of data evicting. LCache also can effectively achieve the
threefold benefits: (1) reducing the data access frequency to frequently
access data pages in flash memory, (2) improving the response time by
59.8%, 60% and 14.81% compared with LRU, CFLRU, and MQSim,
respectively, and (3) optimizing the performance cliff by 68.2%, 68%,
and 30.2%, respectively.

Keywords: Near-data processing · Machine learning · Cache
management solid state disks

This work is supported in part by the University Synergy Innovation Program of Anhui
Province under Grants GXXT-2019-007, National Natural Science Foundation of China
under Grants 61702004, 61572209.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 128–139, 2021.
https://doi.org/10.1007/978-3-030-79478-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_11&domain=pdf
http://orcid.org/0000-0002-0721-8649
http://orcid.org/0000-0003-0415-5184
https://doi.org/10.1007/978-3-030-79478-1_11

LCache 129

1 Introduction

NAND Flash based solid state disks (SSDs) usually use a small amount of DRAM
as device-side cache, which services I/O requests in high-performance DRAM, to
effectively improve the storage performance of SSDs-based systems. However, the
cache size is usually minimal because of its limited space and high cost. Academia
and industry have been devoted to design cache management with high space
utilization, durable robustness, and high performance. When the cache space is
full, the items in cache must be wiped out from the cache. The existing practice
of cache management usually use statistical methods. Data pages that are rarely
used recently are removed from the cache. The cache eviction is triggered when
a new data is written into the cache space which is full. Thus, in this case, there
are two issues affecting the overall cache performance:

1) These evicted data may enter into the cache again due to the temporal locality
and spatial locality that the access patterns exhibit.

2) The data update in cache is greatly affected by I/O access pattern. When
I/O access is intensive, it is easier to replace cache. However if the bandwidth
of flash memory is occupied, rendering confliction for I/O access. As such,
even if the cache is full, cache replacement is less likely to be triggered, and
the amount of SSDs bandwidth remains idle.

Machine learning is used in computing and storage systems [1]. With the
improvement of computing capability of devices, an architecture called near-data
processing (i.e., NDP) [2] or in storage computing (i.e., ISC) [3] attracts atten-
tion from scholars and professionals. In NDP devices, extra computing resources
are usually used to provide higher computing power. Therefore, to tackle the
issues, we propose a novel cache management algorithm, named LCache, based
on the NDP-enabled SSDs with adopting machine learning on the computing
resources in the NDP disk. LCache predicts that the data pages marked with
the tags of clean, dirty, recency, and frequency will be wrote into the cache
until they are replaced according to the characteristics of applications and then
proactive update method is designed for flushing the data into the flash memory,
meanwhile, deleting the data page in the cache.

When user data is not accessed by the machine learning, LCache judges the
status of the page in flash memory, for example if the flash chip is idle, the dirty
and recency cached item is updated into the flash memory, which can balance
bandwidth utilization in the cache. The clean data has the priority to be replaced
to minimize the cost of replacement.

The reason that the machine learning model-based LCache is applied to the
NDP devices is that the LCache needs computing resources to process prediction
based on I/Os characteristics. The traditional processor inside SSDs is difficult
to provide corresponding computing power. LCache can handle the problem of
the computing resources during the model running in NDP device. The machine
learning model of LCache is deployed into FTL through firmware.

130 H. Sun et al.

Contributions of this paper are summarized as:

1) In this paper, we design a cache management, named LCache, for NDP-based
SSDs. LCache employs the decision tree C 4.5-based model to determine
whether I/Os requests will access the cache in a while.

2) In LCache, we design a proactive update mechanism, by which the machine
learning model is able to judge the data pages that will not be accessed again
in the future. These pages identified with dirty-recency are flushed into the
flash memory when the flash chips are idle. This method can balance the
bandwidth cost in flash memory. Clean data is the first replaced to improve
the overall performance of cache management.

3) We evaluate the performance of LCache in real-world enterprise traces. Exper-
imental results show that the performance of LCache in terms of response time
and performance cliff. LCache reduces the response time by 59.8%, 60%, and
14.81%, respectively, compared with LRU, CFLRU and MQSim under proj 0.
The performance cliff is optimized by 68.2%, 68%, and 30.2%, respectively.

2 Background and Related Work

2.1 Near-Data Processing Storage Device

Figure 1 shows the overview of NDP storage system. The host connects with
the NDP device through the PCIe NVMe protocol. The NDP device side is a
flash-based solid-state disk with higher computing power. The difference between
the NDP device and the typical solid-state disk is that the former has a hard-
ware acceleration computing unit. The NDP device-side mainly consists of an
embedded processor, hardware acceleration processor, and DRAM. The phys-
ical structure of flash memory is primarily divided into channels, chips, dies,
planes, etc. Each block contains several pages. The flash memory chip can per-
form write, read, and erase operations. During this operation, the flash memory
chip will block other access commands, making the blocked commands wait in
the corresponding chip queue.

2.2 Cache Management

There are many cache management methods proposed in the past, such as LRU
[4]. However, in SSDs, the penalty of cache miss resulting in cache replacement
is different. Park et al. proposed the CFLRU [5], in which the cost of cache
replacement could be reduced by replacing the consistent data in the cache
and flash memory. With the popularity of machine learning, Wang et al. used
machine learning to predict data access patterns in the cache, which could help
to improve the cache strategy of “one-time access exclusion” [1]. In Tencent
QQ application, the HDDs in Tencent storage servers are used as the back-end
storage and SSD is used as the cache. They use the machine learning to cache
the photos that will be accessed in the cache and these image data that will not
be located will not be cached, by which the cache space is able to serve more

LCache 131

Fig. 1. Overview of near-data processing-based SSDs.

applications, thereby optimizing the SSD lifetime. MQSim [6] enclosed a new
caching scheme based on the write cache inside SSD. MQSim combined hot and
cold in the write-through mode, in which cold data written in the cache would be
flushed to the back-end flash memory. Meanwhile, the cached data in the flash
memory would be promptly deleted, thereby keeping the cache release space.
The following data can be directly written into the cache instead of the eviction
operation, thus, dramatically reducing the frequency of cache replacement and
providing higher performance. However, there is a large amount of data written
into the flash memory, resulting in a large number of erasures.

3 Overview System

LCache is an active updating cache management strategy based on machine
learning with the feature of low cost, high performance and life-friendly for
NDP devices. The machine learning model is trained according to different enter-
prise application load characteristics. By deploying the trained machine learning

132 H. Sun et al.

Fig. 2. The system structure of LCache in NDP-based SSDs.

model in the FTL layer of NDP devices, LCache, which adds functions to make
it configurable, adequately judges whether I/O requests will re-access the cache.
Simultaneously the machine learning model can decide whether the data pages
will re-access the flash memory or not. When the flash memory chip is idle, these
cached data pages are actively flushed into the flash memory, releasing the cor-
responding cache space. Even if the cache space is full, the cache will not be able
to be accessed. To improve the overhead of the cache replacement, the active
update mechanism is used to update recency dirty data into the flash memory
when the flash memory chip is idle and then, the dirty data converts to clean
one.

Figure 2 presents the system structure of LCache. The NDP device connects
with the host through the PCIe NVMe protocol. The host interface logic (HIL) is
responsible for splitting I/O requests from the host into several flash transactions
according to the size of the flash page. Flash transaction is the basic unit of cache
entries and the transaction schedule unit (TSU). We use an accelerator inside
the NDP device to extract features of the machine learning trained I/O requests.
The machine learning model is suitable for enterprise application.

LCache 133

4 System Implementation

4.1 Machine Learning Module

To predict whether the cache data will be accessed again, we use decision tree
C4.5 to train the machine learning model with the real enterprise application
load. The data set is selected from UMass trace [7] and Microsoft Cambridge
Research [8] with a wide range of enterprise applications. The decision tree algo-
rithm is selected for the following reasons:

1) The decision tree is one of the typical machine learning algorithms. Its com-
putational cost is relatively low. The size of the trained model is small, about
200 bytes. The cost of the machine learning algorithm is high in storage
devices with less abundant resources.

2) The model trained by the decision tree algorithm can be easily transformed
into an if-else statement and implemented in C language on the device side
pursuing performance.

3) The accuracy of the trained model in our test can reach 80% - 90%, which
can meet our application requirements.

We describe the generation pipeline of the machine learning model with three
stages, i.e., feature extraction, training set generation and model training.

Feature Extraction. A block-level I/O request contains time, device, LSN,
size, operation type, etc. The feature extraction stage first splits an I/O request
by the page size and then counts the frequency, distance, and size of LPN in a
specific range in the past. Frequency refers to the number of times in the past to
access the LPN within the cache size range. Distance is the number of separated
pages of the same LPN to the current nearest access LPN in the past cache size.
If there is no number found, the cache size minus 1. The revisited distance means
finding the closest page that is the same as the current LPN and calculating the
number of pages separated from the current page without limiting the cache size.
If it exceeds the current preset range, it is set to −1.

Training Set Generation. When the features of each I/O request are
extracted, the situation of entering and exiting the cache will be simulated
according to the LRU. If all tags of pages in an I/O request miss, the tag of
this trace is missing. Except this scenario, we consider others shall be hit.

Model Training. The training method adopted is decision tree C4.5, which is
characterized by frequency, distance, and the size of a trace. The labels are 0
and 1, where “0” indicates that it will not be hit during the cache period. The
notation “1” means that it will be hit. The trained model is able to classify data.
According to the characteristics of the data in workload, it can be divided into
(1) data will be hit in the cache (2) data will not be hit during the cache.

134 H. Sun et al.

4.2 Proactive Update Function

The proactive update function is an essential component inside LCache. Two
types of LRU linked lists (e.g., clean LRU link list and dirty LRU link list)
are used to manage data in the write-buffer cache. This method can effectively
search data and process the dirty or clean data to release cache space for storing
the data pages that will be re-accessed in the future. Learning cache uses the
update and replacement mechanism to reduce the cost of cache replacement.

Update Scheme. The cache management usually uses the write-back mecha-
nism to ensure the data consistency between cache and flash memory. However,
this mechanism is largely dependent on the I/Os access in applications, which
quickly causes an imbalance of data flow from the cache to flash memory. When
the I/O accesses is intensive, data updating from the cache to flash memory is
frequent, which is prone to cause I/O access conflict.

As shown in Fig. 3, LCache triggers actively update judgment once new data
is inserted into the cache. Then, it judges the data item that meets the require-
ments of active updates from the tail end of the dirty LRU list. LCache will
check first if the chip is idle. When the flash memory chip corresponding to the
LPA of the cache entry is idle and no flash transaction is waiting for service in
the corresponding chip queue, the LPA corresponding chip will be identified as
idle. If the other way around, the cache entry will not trigger an active update
but proceed to check the next cache entry. LCache will execute Classifier using
machine learning model. As shown in Fig. 3, Classifier outputs 0 and 1. “1” rep-
resents that the data page is likely to be accessed again in the future. “0” means
that the data page is unlikely to be accessed.

When the output of Classifier is 0, the data will be actively updated and
written into the flash memory. The corresponding cache entries in the write
buffer cache will be deleted as the data is unlikely to be accessed again in the
future, thereby freeing the space for other cache items that may be accessed.

When the output of the Classifier is 1, LCache first judges whether there is
space in clean data LRU list due to it accounts for much smaller proportion in
cache space than that of the dirty-data LRU linked list. If the clean data LRU
list is not full, it will be separated by hot and cold via distinguishing the data
from the occurrence or frequency. This method can improve SSD lifetime caused
by excessive active updating. A Bloom filter is used to record the coldness and
hotness of each request, similar to that in Hsieh’s work [9]. According to the
spatial and temporal locality, the probability of reaccessing the recency data is
small. LCache actively updates the recency data into flash memory and move
the cached dirty data LRU list to the clean data LRU list. If the differentiated
data is frequency, then it will not be updated actively, and LCache continues
to assess whether the next data item in the linked list will trigger the active
update. Actively updating the recency data to flash memory and putting it into
the clean data LRU list can minimize the cache replacement cost.

LCache 135

Fig. 3. The workflow in LCache.

Replacement Algorithms. When the cache space is full, the existing cached
items must be moved from the cache for the newly inserted write requests. When
the cache replacement occurs, LCache first replaces the clean data page from the
tail of the clean data LRU list, which can minimize the cost of cache replacement.
When there is no clean data page, it will continue to replace from the tail of the
dirty LRU list.

4.3 Read and Write Operation

After user-level read and write requests arrive at the device, the HIL is first
splitted into flash transactions. The index of the cache linked list will be queried,
meanwhile, the corresponding operation will be executed with reference to hit
or not.

If flash transactions belong to read requests, when cache hit occurs, if the
hit data is dirty data, it will be moved to the head of the dirty LRU list. If it
is clean data, it will be moved to the head of the clean LRU list. When cache
miss occurs, the cache that cannot service the corresponding requests reads the
corresponding data from the underlying flash memory.

If flash transactions belong to write requests, when cache hit occurs, the hit
data is extracted from the corresponding LRU linked list and updated to new
data. After modifying the corresponding metadata, it is inserted into the head of
the dirty LRU linked list. Otherwise, the cache misses, if the cache space is not
full, the new data page will be directly inserted into the head of the dirty-data
LRU linked list and return the completion information. If the cache space is full,

136 H. Sun et al.

Table 1. Details of the simulation parameters.

SSD organization Host interface: PCIe 3.0 (NVMe 1.2) Total
Capacity: 24 GB 6 channels 4 chips-per- channel

Flash microarchitecture 4KiB page, 448 B metadata-per-page, 64
pages-per-block, 1024 blocks-per-plane, 2
planes-per-die, 2 die-per-chip

Flash latencies [10] Read latency: 75 us, Program latency: 750 us,
Erase latency: 3.8 ms

Flash translation layer (FTL) GC Policy: Greedy GC Threshold: 0.05 Address
Mapping: DFTL TSU Policy: Sprinkler [11]
Overprovisioning Ratio: 0.07

the cache should be triggered to replace the new data page to free up the cache
space and the new data page are inserted into the dirty data LRU linked list
head. Please refer to Sect. 4.2 for cache replacement algorithm.

5 Experimental Setup and Evaluation

5.1 Experimental Setup

We use an open-source simulator, MQSim [6], to simulate, evaluate and compare
our proposed LCache LRU write cache strategy, CFLRU, and MQSim. MQSim,
released by the cmu-safari research group, can accurately simulate the latest
NVMe protocol solid-state disk prototype and the main front-end and back-end
components of multi-queue solid-state disk (MQ-SSD). The default cache size in
the experiment is 32 MB. The simulation parameters are shown in Table 1.

We use real enterprise-scale workload to study the performance of the cache
scheme. We select several typical block-level workloads from UMass trace and
Microsoft Cambridge Research.

5.2 Performance Evaluation

Response Time. Response time refers to the time from the time when I/O
request enters the SQ queue to the time when the host receives the return infor-
mation from SSD. It is commonly used to evaluate the performance of storage
devices. Figure 4 shows the response time of LCache under different workloads
compared with LRU, CFLRU and MQSim under four-type traces. In proj 0,
LCache achieves an improvement of 59.8%, 60%, and 14.81%, compared with
LRU, CFLRU, and MQSim respectively. It enhances about 84%, 83.3%, and
26% under prxy 0 configured with the three cache managements. In stg 0, the
response time of LCache is 1.1% higher than that of MQSim, but the erase count
is 47.2% lower than that of MQSim.

LCache 137

Fig. 4. Response time of LCache, LRU, CFLRU, MQSim under traces.

Standard Deviation of Response Time. The standard deviation of response
time is used to evaluate the optimization of storage system performance cliff
caused by different cache strategies, illustrated as Fig. 5. Compared with LRU,
CFLRU, and MQSim under proj 0, the standard deviation of response time
increases by 68.2%, 68%, and 30.2% respectively, and under prxy 0. Besides,
LCache achieves 3%, 75. 1%, and 37. 2% improvement, respectively. LCache has
a good performance in Fin1 and stg 0.

Fig. 5. Standard deviation of response time of LCache, LRU, CFLRU, MQSim under
traces.

Erase Count. Erase count in flash memory intuitively reflects the SSD lifetime.
Each block in flash memory has the upper limitation. Figure 6 shows that LCache
has a slightly higher erase count compared with LRU and CFLRU. The reason is
that LCache update mechanism can lead to much data written into flash memory
compared with other strategies. However, LCache optimizes the erase count by
2.1%, 69.3%, 47.2%, and 45.4%, respectively, under proj 0, prxy 0, stg 0, and
Fin1, compared with MQSim.

138 H. Sun et al.

Fig. 6. Erase count of LCache, LRU, CFLRU, MQSim under traces.

6 Conclusion

With the space increment of an SSD, the cache offered inside the SSD is lim-
ited. In the paper, we propose a machine learning-based cache management,
LCache, for NDP-based SSD. LCache employs decision tree C4.5 to divide I/O
requests into two types, (1) data that will re-access the cache; (2) data that will
not re-access the cache. The cache data is dynamically updated into flash mem-
ory in pursuant with the load status of flash memory chip through the active
update mechanism. LCache effectively balances the access of I/O requests to
flash memory, thereby improving the performance of the whole SSD. We simu-
late the performance of LCache through real-world traces and the result shows
that LCache outperforms other existing caching strategies.

References

1. Wang, H., Yi, X., Huang, P., Cheng, B., Zhou, K.: Efficient SSD caching by avoid-
ing unnecessary writes using machine learning. In: Proceedings of the 47th Inter-
national Conference on Parallel Processing, pp. 1–10 (2018)

2. Balasubramonian, R., et al.: Near-data processing: insights from a micro-46 work-
shop. IEEE Micro 34(4), 36–42 (2014)

3. Ki, Y.S., et al.: In-storage compute: an ultimate solution for accelerating i/o-
intensive applications. Flash Memory Summit (2015)

4. Mattson, R.L., Gecsei, J., Slutz, D.R., Traiger, I.L.: Evaluation techniques for
storage hierarchies. IBM Syst. J. 9(2), 78–117 (1970)

5. Park, S., Jung, D., Kang, J., Kim, J., Lee, J.: CFLRU: a replacement algorithm for
flash memory. In: Proceedings of the 2006 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, pp. 234–241 (2006)

6. Tavakkol, A., Gómez-Luna, J., Sadrosadati, M., Ghose, S., Mutlu, O.: MQSim: a
framework for enabling realistic studies of modern multi-queue SSD devices. In:
16th USENIX Conference on File and Storage Technologies FAST 2018, pp. 49–66
(2018)

7. Umass trace repository (2020). http://traces.cs.umass.edu/index.php/Storage/
Storage

8. Snia traces (2020). http://iotta.snia.org/traces/
9. Hsieh, J.-W., Kuo, T.-W., Chang, L.-P.: Efficient identification of hot data for flash

memory storage systems. ACM Trans. Storage (TOS) 2(1), 22–40 (2006)

http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage
http://iotta.snia.org/traces/

LCache 139

10. NAND flash memory MLC MT29F256G08CKCAB datasheet. Micron Technology
Inc (2014)

11. Jung, M., Kandemir, M.T.: Sprinkler: maximizing resource utilization in many-
chip solid state disks. In: 2014 IEEE 20th International Symposium on High Per-
formance Computer Architecture (HPCA), pp. 524–535. IEEE (2014)

Security Situation Prediction of Network
Based on Lstm Neural Network

Liqiong Chen1(B), Guoqing Fan1(B), Kun Guo1, and Junyan Zhao2

1 Department of Computer Science and Information Engineering,
Shanghai Institute of Technology, Shanghai 201400, China

lqchen@sit.edu.cn
2 Department of Computer Science and Engineering, East China University

of Science and Technology, Shanghai 200237, China

Abstract. As an emerging technology that blocks network security
threats, network security situation prediction is the key to defending
against network security threats. In view of the single source of infor-
mation and the lack of time attributes of the existing methods, we pro-
pose an optimal network security situation prediction model based on
lstm neural network. We employ the stochastic gradient descent method
as the minimum training loss to establish a network security situation
prediction model, and give the model implementation algorithm pseudo
code to further predict the future network security situation. The simula-
tion experiments based on the data collected from Security Data dataset
show that compared with other commonly used time series methods, the
prediction accuracy of the model is higher and the overall situation of
network security situation is more intuitively reflected, which provides a
new solution for network security situation.

Keywords: Network security · Parallel processing · Situation
awareness · Network security situation prediction model · Lstm network

1 Introduction

As network systems evolve toward sharing, complexity, and scale, network intru-
sions become more complex and exist in various environments. The traditional
way of network security mainly uses vulnerability scanning, intrusion detec-
tion and other protection technologies which has not been able to fully meet
the increasingly updated network security needs [1]. Network security situa-
tional awareness technology emerged in this context. Network Security Situa-
tion Awareness (NSSA) is an emerging technology that studies how to acquire,
understand, display, and predict network entities and build network security
systems [2,3].

The existing network security situation prediction methods mainly include
Markov model [4], support vector machine [5] and other technologies. Although

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 140–144, 2021.
https://doi.org/10.1007/978-3-030-79478-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_12

Security Situation Prediction of Network Based on Lstm Neural Network 141

these technologies have improved the detection accuracy to a certain extent,
they also have certain limitations. For example, they ignore the relevance of
data in a long sequence of time. In recent years, network security situation pre-
diction methods based on deep learning have been proposed because of their
better feature learning capabilities. However, although they improved the detec-
tion accuracy, they did not consider the characteristics of the result data after
prediction.

In this paper, we propose an optimal network security situation prediction
(ONS2P) model for large-scale cyber-attacks with associated characteristics and
time dimension. The main contributions of our work are listed as follows: (i)We
employ the stochastic gradient descent method as the minimum sample training
loss to optimize the parameters of the ONS2P model established for the target,
improving the accuracy of network security situation prediction. (ii) Simulation
experiments show that compared with other commonly used time series methods,
the prediction accuracy of the model is higher, and the overall situation of the
network security situation is more intuitively reflected.

2 ONS2P Algorithm

We design the ONS2P algorithm based on the sltm network and convert a one-
dimensional network security situation data set into a multi-dimensional net-
work security situation data set before prediction. The Simple code is shown in
Algorithm 1.

Algorithm 1. The ONS2P prediction network security situation algorithm
Require: History attacked data set D = x1, x2, xn

Ensure: predicted number of future network attacks K
1. Load the historical invalid data set and convert the data to floating point type
float32.
2. Convert a list of network security postures into three columns of inputs T-2, T-1,
T and a column of output T+1
3. MinMaxScalar achieves standardization of data.
4. Divide the data set into training set train X and forecast set test X
5. Transform the data into [samples, time steps, features] to construct the lstm
model.
6. Establish ONS2P model

model.add(lstm(4, input shape = (3, look back)))
model.add(Dense(1))
model.compile(loss =′ mean absolate error′, optimizer = sgd)
model.fit(trainX, trainY, epochs = 100, batch size = 1, verbose = 2)

7. Use trained models to predict the number of attacks on the network K
8. Perform matrix operations on the predicted data, and output optimization.

142 L. Chen et al.

In this paper, we also analyzed and optimized the predicted result data
according to the predicted data characteristics: (1) When the hourly attack data
shows an increasing trend, the predicted value is a little larger; (2) When the
hourly attack data is increasing When showing a decreasing trend, the predicted
value is smaller.

If the current predicted value is greater than the predicted value of the pre-
vious time, then Xi is subtracted: p

′
i = pi + Xi(pi − pi−1 >= 1). If the current

predicted value is smaller than the predicted value of the previous time, then Xi
is added: p

′
i = pi −Xi(pi − pi−1 >= 1). The value of Xi is calculated from the

average of the absolute values of the differences between the predicted data p
and the real data x of multiple experiments: Xi =

∑n
i=1(|xi−pi|)

n ,Where xi is the
real data at time i, and pi is the predicted data at time i.

3 Experiment

We conduct experiments with the malicious program attack data collected by
Honeynet organization to verify the validity and rationality of our method. In
order to verify the performance of ONS2P model, the two methods of Moving
Average (MA) and Exponential Smoothing (ES) were used as reference models
to do the same experiment.

We use the Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) evaluation indicators to measure the accuracy of our method predictions,
and the test results are shown in Table 1. The prediction results of the simulation
experiment are shown in Fig. 1.

Table 1. Comparison of experimental prediction results.

Model ES MA LSTM ONS2P

Fitting RMSE 0.05 1.87 0.11 #

Prediction RMSE 0.13 0.63 0.10 0.10

Fitting MAE 0.08 0.14 0.09 #

Prediction MAE 0.12 0.13 0.08 0.06

From the comparison data of Table 1 and Fig. 1, the conclusion of this exper-
iment can be drawn: from the overall prediction results, the ONS2P model is
more common than the commonly used time series prediction method. And the
moving average method and the exponential smoothing method predict better.
From the comparison results of the fitting error and prediction error provided in
Table 1, it can be found that the commonly used time series prediction method
moving average method and exponential smoothing method have large predic-
tion errors, and the quantitative comparison results show that the ONS2P model
more accurately.

From the comparison data of Table 1, Fig. 2 and Fig. 3, the conclusion of this
experiment can be drawn: the prediction value of the algorithm proposed in this

Security Situation Prediction of Network Based on Lstm Neural Network 143

(a) Prediction results of ONS2P simula-
tion experiment

(b) Forecast results of exponential
smoothing simulation experiment

(c) Prediction results of the moving av-
erage simulation experiment

Fig. 1. Results of prediction with different methods

Fig. 2. Comparison of predictions before
and after ONS2P data optimization

Fig. 3. Comparison of error deviation
before and after ONS2P model data opti-
mization

paper is closer to the actual value than the prediction value of the lstm network.
Therefore, it can be seen from the experimental results that the proposed opti-
mization algorithm predicts the network situation better than the lstm neural
network, and is more in line with the actual value.

4 Related Works

Network security assessment is an important part of ensuring network security.
Zhao, et al. [6] propose a grey Verhulst model or its inverse function to predict
future risk values of the network system, and then correct the prediction accuracy
based on multi-level residuals. In [7], authors proposed a quantitative evaluation
method based on improved BP neural network to solve the problem of low effi-
ciency and poor reliability of the existing network security situation assessment
method. Lu [8] established a network security prediction model based on Grey
Wolf Optimization (GWO) algorithm to optimize the support vector machine
(SVM) parameters and solve the problem of SVM parameter optimization to
improve the SVM prediction effect.

5 Conclusion

In this paper, we propose and establish a training model for the ONS2P model.
At the same time, we verify the accuracy of the model through experimental

144 L. Chen et al.

prediction data. The experimental results show that the ONS2P model with the
potential of learning long observation sequence is more accurate for network
security situational awareness prediction, in order to further improve its predic-
tion results. The accuracy of this paper is optimized for the prediction results.
According to the experimental results, the error deviation after optimization is
smaller, so a good optimization effect is obtained.

Acknowledgment. This work is supported by the NSF of China under grants No.
61702334.

References

1. Caulfield, T., Ioannidis, C., Pym, D.: The U.S. vulnerabilities equities process: an
economic perspective. In: Rass, S., An, B., Kiekintveld, C., Fang F., Schauer, S.
(eds.) Decision and Game Theory for Security. GameSec 2017. LNCS, vol. 10575, pp.
131–150. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-68711-7 8

2. Panteli, M., Crossley, P., Kirschen, D., Sobajic, D.: Assessing the impact of insuffi-
cient situation awareness on power system operation. IEEE Trans. Power Syst. 28,
2967–2977 (2013)

3. Tianfield, H.: Cyber security situational awareness. In: Proceedings of 2016 IEEE
International Conference on Internet of Things (iThings) and IEEE Green Com-
puting and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 782–787 (2016)

4. Andrysiak, T., Saganowski, �L., Maszewski, M., Marchewka, A.: Detection of net-
work attacks using hybrid ARIMA-GARCH model. In: Zamojski, W., Mazurkiewicz,
J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) DepCoS-RELCOMEX 2017.
AISC, vol. 582, pp. 1–12. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-59415-6 1

5. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-
structured long short-term memory networks. Comput. Sci. 5(1), 36 (2015)

6. Zhao, G., Wang, H., Wang, J., Shen, L.: A novel situation awareness model for
network systems’ security. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A.
(eds.) ICCS 2007. LNCS, vol. 4489, pp. 1077–1084. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72588-6 172

7. Dong, G., Li, W., Wang, S., Zhang, X., Lu, J.Z., Li, X.: The assessment method of
network security situation based on improved BP neural network. In: Liu, Q., Mısır,
M., Wang, X., Liu, W. (eds.) CENet2018 2018. AISC, vol. 905, pp. 67–76. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-14680-1 9

8. Lu, H., Zhang, G., Shen, Y.: Cyber security situation prediction model based on
GWO-SVM. In: Barolli, L., Xhafa, F., Hussain, O.K. (eds.) IMIS 2019. AISC,
vol. 994, pp. 162–171. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
22263-5 16

https://doi.org/10.1007/978-3-319-68711-7_8
https://doi.org/10.1007/978-3-319-59415-6_1
https://doi.org/10.1007/978-3-319-59415-6_1
https://doi.org/10.1007/978-3-540-72588-6_172
https://doi.org/10.1007/978-3-030-14680-1_9
https://doi.org/10.1007/978-3-030-22263-5_16
https://doi.org/10.1007/978-3-030-22263-5_16

Algorithm

Dynamic GMMU Bypass for Address
Translation in Multi-GPU Systems

Jinhui Wei, Jianzhuang Lu, Qi Yu, Chen Li(B), and Yunping Zhao

College of Computer Science, National University of Defense Technology,
Changsha 410073, China

{jinhui wei,lichen,zhaoyunping}@nudt.edu.cn,
lujz1977@163.com, fishflag@126.com

Abstract. The ever increasing application footprint raises challenges
for GPUs. As Moore’s Law reaches its limit, it is not easy to improve
single GPU performance any further; instead, multi-GPU systems have
been shown to be a promising solution due to its GPU-level parallelism.
Besides, memory virtualization in recent GPUs simplifies multi-GPU
programming. Memory virtualization requires support for address trans-
lation, and the overhead of address translation has an important impact
on the system’s performance. Currently, there are two common address
translation architectures in multi-GPU systems, including distributed
and centralized address translation architectures. We find that both
architectures suffer from performance loss in certain cases. To address
this issue, we propose GMMU Bypass, a technique that allows address
translation requests to dynamically bypass GMMU in order to reduce
translation overhead. Simulation results show that our technique outper-
forms distributed address translation architecture by 6% and centralized
address translation architecture by 106% on average.

Keywords: Multi-GPU system · Memory virtualization · Address
translation architecture

1 Introduction

Graphics Processing Units (GPUs) have been widely used in graph analytics [16,
17], large scale simulation [6,14], and machine learning [8,13] due to its massive
thread-level parallelism. Over the years, with the development of big data, the
application footprint has increased rapidly, which raises challenges for GPUs.
What is worse, as Moore’s Law reaches its limit [1], improving GPU performance
through integrating more transistors on a single die is more difficult than ever
before. Instead, multi-GPU systems [4,7,18] have been shown to be a promising
solution due to its GPU-level parallelism. Nowadays, multi-GPU systems have
been used in data centers to improve the performance of cloud computing [9].

Recent support for memory virtualization [5,19,20] in GPUs has simplified
programming and improved programming productivity. Memory virtualization

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 147–158, 2021.
https://doi.org/10.1007/978-3-030-79478-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_13

148 J. Wei et al.

requires the support of address translation. Also the details of memory hierarchy
from mainstream GPU manufacturers, such as NVIDIA, AMD, and Intel, have
not been published, it is accepted that current GPU supports TLB-based address
translation [2,4]. Recent research [2,3,11,12] has shown that the efficiency of
address translation has an important impact on GPU performance.

Currently, there are two common address translation architectures in multi-
GPU systems, namely, centralized address translation architecture (“centralized
architecture” for short) and distributed address translation architecture (“dis-
tributed architecture” for short). The major difference between these two archi-
tectures is that distributed architecture uses a GMMU (GPU Memory Manage-
ment Unit) in each GPU node (in the system) to manage address translation
for that GPU. When an address translation misses L2 TLB, the request is sent
to GMMU first for page table walk in distributed architecture; while, in central-
ized architecture, the request is directly sent to IOMMU (Input Output Memory
Management Unit) on the CPU side for translation.

In this paper, we make an in-depth analysis of these two architectures. In
terms of hardware overhead, centralized architecture causes less overhead due
to the absence of GMMU. In terms of performance, distributed architecture
outperforms centralized architecture on average, because GMMU reduces the
frequency of remote translation (translation requests are sent to IOMMU) for
local translation requests (translation requests find mappings in local memory).
However, we find that distributed architecture suffers from performance slow-
down in certain cases. For example, for those access requests that demand for
shared data (residents in other GPU node), the address translation requests are
sent to page table walker in GMMU if they miss L2 TLB. As the shared data
does not resident in the local GPU memory, the translation requests cannot
find address mappings in local memory either. These requests are then sent to
IOMMU for further translation. These unnecessary page table walks consume
additional power and incur performance degradation.

To address this issue, we propose GMMU Bypass in distributed architec-
ture to reduce unnecessary page table walks and improve address translation
performance. GMMU Bypass uses two fixed thresholds to predict according to
the variance in access behavior. Simulation results show that GMMU Bypass is
effective at reducing the overhead of handling address translation requests.

This paper makes the following major contributions:

– To our knowledge, this is the first work to provide in-depth analysis of two
address translation architectures from hardware overhead and performance
points of view in multi-GPU system.

– We propose GMMU Bypass, a technique that bypasses GMMU selectively to
improve the performance of multi-GPU system by profiling and predicting
the memory access behavior. We evaluate the performance of our design and
results show that GMMU Bypass outperforms the distributed architecture by
6% and centralized architecture by 106% averagely.

Dynamic GMMU Bypass for Address Translation in Multi-GPU Systems 149

2 Background

In this section, we introduce the background on multi-GPU systems, including
programming models, remote data access mechanisms, and address translation
architectures.

2.1 Programming Models

Currently, there exist two programming models in multi-GPU system: discrete
model and unified model [15]. Discrete model dispatches kernels to each GPU
node for execution, as a result, programmers have to rewrite the code developed
for single GPU in order to make it executable on multi-GPU systems. While,
unified model dispatches tasks at CTA (Cooperative Thread Array) granularity,
which means the CTAs of a single kernel can be dispatched to different GPU
nodes for execution. In this case, the code developed for single GPU can run
seamlessly on multi-GPU systems without any modification. Due to the pro-
gramming convenience, the research community focuses on unified model. This
paper also targets unified model.

2.2 Remote Data Access Mechanisms

There exist three remote data access mechanisms in multi-GPU system: direct
cache access, page migration, and first touch migration. Direct cache access
means that a GPU directly accesses the L2 cache of a remote GPU node to
retrieve the requested data through RDMA (Remote DMA) [4,10,18]. In this
case, the corresponding page will not be migrated to the requested GPU. Page
migration refers to migrating a page from the GPU which it residents in to the
requested GPU in case of a page fault. First touch migration is a special case of
page migration. It means that CPU migrates the page to the GPU that demands
it first, which is used for data allocation generally.

2.3 Address Translation Architectures

There exist two address translation architectures in multi-GPU systems: cen-
tralized/distributed architecture. The major difference between the two archi-
tectures is whether the GPU node has a GMMU. The address translation process
in these two architectures is shown as follows.

Centralized Architecture. The address translation process in centralized
architecture is shown in Fig. 1. The request first accesses the L1 TLB to check
for the address mapping. On an L1 TLB miss, the request accesses L2 TLB
(1©). If the request also misses L2 TLB, the request is sent to IOMMU (on the
CPU side) for further translation (2©). IOMMU performs page table walk and
sends the required address mapping to the GPU (3©). The GPU completes the
data access using the translated address. If the data residents in local memory,
the data is retrieved from its memory hierarchy; otherwise, the data is retrieved
from remote GPU through RDMA (4©).

150 J. Wei et al.

Distributed Architecture. The address translation process in distributed
architecture is shown in Fig. 2. The request accesses L1 TLB first for address
translation. On an L1 TLB miss, the request accesses L2 TLB (1©). If it also
misses L2 TLB, the request is sent to page table walker in GMMU for page
walk (2©). If the request finds the desired page table entry during page walk,
the address translation is finished; otherwise, the request is sent to IOMMU for
further translation (3©). IOMMU performs page table walk and sends back the
required address translation mapping (4©). The GPU retrieves the data from its
local memory or remote GPU via RDMA (5©).

Fig. 1. Centralized address translation architecture

Fig. 2. Distributed address translation architecture

3 Motivation

The major difference between centralized architecture and distributed archi-
tecture is whether address translation requests are sent to GMMU for page
table walk. For centralized architecture, when translation requests miss L2 TLB,
the requests are directly sent to IOMMU for further translation; while, for dis-
tributed architecture, the requests are sent to GMMU for page table walk.

Despite the fact that distributed architecture incurs higher hardware over-
head due to GMMU, it usually outperforms centralized architecture in terms

Dynamic GMMU Bypass for Address Translation in Multi-GPU Systems 151

of performance. Through further analysis, we find that the address translation
requests that miss L2 TLB touch either a local page (residents in local mem-
ory) or a remote page (residents in a remote GPU node). If it touches a local
page, for distributed architecture, the address translation completes after page
table walk, and thus, there is no need to access the IOMMU. However, for cen-
tralized architecture, no matter where the page residents, the request is always
sent to IOMMU for translation. As the communication between CPU and GPU
via PCIe incurs significant overhead (refers to latency), the remote translation
(accesses IOMMU) causes much longer latency than page table walk. Therefore,
for address translation requests that touch local pages, distributed architecture
can reduce translation overhead and improves performance.

However, if the address translation request touches a remote page, distributed
architecture may cause slight performance slowdown. This is because GMMU
does not store the page table entry of remote pages, therefore, the address
translation request cannot find the desired address mapping in local memory
after page table walk. In other words, the page table walk is unnecessary for
these requests. These unnecessary page table walks waste power and may cause
performance degradation.

To quantitatively show the discrepancy of two architectures, we evaluate the
performance of these two architectures and an ideal scheme, which is shown in
Fig. 3. The ideal scheme can predict the exact destination for each translation
request, and thus, it achieves the best performance. The experimental method-
ology can be found in Section 5. We have two observations from Fig. 3. First, we
can see that though distributed architecture significantly outperforms centralized
architecture for MT, FFT, KM, and ST, it does worse than centralized architecture
for RL, FIR, and MP. This result corroborates our analysis that unnecessary page
table walks may harm the performance of distributed architecture. Second, we
discover that the performance of the ideal scheme is better than distributed
architecture, which means that there are a great number of unnecessary page
table walks existing in distributed architecture. So we can propose a mecha-
nism that selects better destinations to reduce unnecessary page table walks for
improving performance.

0.8

1

1.2

1.4

1.6

1.8

2

RL FIR MP AES PR MT FFT KM ST

Pe
rf

or
m

an
ce

 N
or

m
al

iz
ed

Centralized Distributed ideal

4.81 5.18

5.06 5.48

Fig. 3. Comparison of different address translation architecture

152 J. Wei et al.

4 GMMU Bypass

To reduce unnecessary page table walks and maintain the advantages of GMMU
for distributed architecture, we propose GMMU Bypass, a GMMU-side mech-
anism that 1) allows address translation requests to directly access IOMMU
without walking the GPU page table, or 2) simultaneously sends translation
requests to GMMU and IOMMU. Its architecture is shown in Fig. 4.

GMMU Bypass is a simple mechanism, it counts the number of address
translation requests that touch local pages and remote pages, and calculates
the ratio periodically (L/T ratio in the figure, L is the number of local pages, T
is the number of all pages). If the ratio is larger than a threshold (T1), which
means more requests touch local pages in the current epoch, then the control
logic predicts more requests touching local pages in the next epoch and disables
GMMU bypass. If the ratio is smaller than a threshold (T2), which means more
requests touche remote pages in the current epoch, then it predicts that this is
also the case in the next epoch and enables GMMU bypass.

However, we find that when the ratio locates between T1 and T2, the pre-
diction accuracy is low as a result of random accesses to local pages and remote
pages. The random accesses do not show a domination trend and accesses to
local/remote pages account for a certain percentage. In this case, it is not appro-
priate to send all requests to GMMU only or IOMMU only. Instead, our mech-
anism sends all requests to GMMU and IOMMU simultaneously. If the request
can find the desired address mapping after page table walk, then the response
from IOMMU will be discarded; while, if the request cannot find the address
translation, it will be discarded, since there has been a request sent to IOMMU
for further translation.

By simultaneously sending requests to GMMU and IOMMU, the requests can
be handled without unnecessary page table walks. Therefore, the latency caused
by awaiting page table walks for remote translation in distributed architecture is
eliminated. However, the performance gain comes at a cost. Sending requests to
both MMUs simultaneously generates unnecessary page table walks in GMMU
or IOMMU, which may cause congestion in GMMU and IOMMU. According to
our evaluation, setting proper thresholds (empirically set T1 to 0.85 and T2 to
0.15) can both achieve high performance and limit the congestion effectively.

L2 TLB Control
Logic

L/T Ratio

IOMMU

GMMU

Address
Translation

Request

Fig. 4. GMMU bypass

Dynamic GMMU Bypass for Address Translation in Multi-GPU Systems 153

5 Methodology

We evaluate Bypass GMMU with MGPUSim [15], a multi-GPU simulator
that supports multi-GPU system simulation. This simulator has been validated
against AMD multi-GPU systems.

5.1 Experimental Setup

We evaluate a multi-GPU system with 4 AMD GPUs. The configuration is shown
in Table 1. Each GPU consists of 4 SEs (Shader Engine) and each SE consists
of 9 CUs (Compute Unit). Therefore, each GPU has 36 CUs. Each CU has a
private L1 vector TLB and all CUs in a GPU share an L2 TLB. Each Shader
Engine is equipped with an L1 instruction TLB and an L1 scalar TLB. The 4
GPUs in the system are connected via PCIe-v3 link with bandwidth of 16GB/s
in each direction. CPU and 4 GPUs are also connected via the PCIe-v3 link. The
IOMMU on CPU side supports 8 concurrent page table walks and the GMMU
in GPU supports 64 concurrent page table walks. The page size is 4KB, which
is the default size in current GPUs.

5.2 Workloads

We use workloads from AMD APPSDK, Hetero-Mark, DNN, and SHOC bench-
mark suites for evaluation. These workloads cover a wide range of domains,
including machine learning, graph analytics, numerical computation, etc. The
average dataset size of these workloads is 64 MB. Long simulation time pre-
vents us from evaluating workloads with larger footprint. Selected workloads are
shown in Table 2.

6 Evaluation

We first compare the performance of GMMU Bypass with centralized architec-
ture, distributed architecture, and an ideal scheme. We also make an in-depth
analysis behind the performance result. Finally, we estimate the overhead of our
mechanism.

Table 1. Multi-GPU system configuration

Component Configuration Number per GPU

CU 1.0 GHz 36

DRAM 512 MB HBM 8

L1 TLB 1 set, 32-ways 44

L2 TLB 8 set, 32-ways 1

IOMMU 8 page table walkers –

Intra-GPU network Single-stage XBar 1

Intra-device network 16 GB/s PCIe-v3 –

GMMU Page table walkers 64

154 J. Wei et al.

Table 2. Workloads characteristics

Abbv. Application Benchmark suite Mem.Footprint

RL Relu DNN 64M

FIR Finite impulse resp Hetero-Mark 64M

MP Maxpooling DNN 64M

AES AES-256 encryption Hetero-Mark 64M

PR PageRank algorithm Hetero-Mark 64M

MT Matrix transpose AMDAPPSDK 64M

FFT Fast fourier transform SHOC 64M

KM KMeans clustering Hetero-Mark 64M

ST Stencil 2D SHOC 64M

0.8

1

1.2

1.4

1.6

1.8

2

RL FIR MP AES PR MT FFT KM ST Avg

Pe
rf

or
m

an
ce

 N
or

m
al

iz
ed

Centralized Distributed GMMU Bypass ideal

4.81
4.85

5.06

5.18
5.29

5.48

Fig. 5. Performance normalized to each address translation architecture

6.1 Performance

GMMU Bypass exposes several design parameters, including sampling epoch,
T1 and T2, We set sampling epoch to 10µs, T1 to 0.85 and T2 to 0.15 as we
empirically find that these values yields best trade-off between performance and
overhead. The performance comparison is shown in Fig. 5. We make three obser-
vations. First, our scheme outperforms distributed architecture for RL, FIR, and
MP, which distributed architecture suffers. Second, our scheme achieves similar
or slightly higher performance with distributed architecture for the rest of appli-
cations, which distributed architecture performs well. Third, the ideal scheme
performs best for all applications. On average, our scheme achieves 6% perfor-
mance improvement over distributed architecture and is within 96% of the ideal
scheme.

6.2 Analysis

We provide an in-depth analysis of our proposed technique.

Prediction Accuracy. When the L/T ratio is larger than T1 or smaller
than T2, our technique disables GMMU bypass or enables GMMU bypass

Dynamic GMMU Bypass for Address Translation in Multi-GPU Systems 155

0

0.2

0.4

0.6

0.8

1

RL FIR MP AES PR MT FFT KM ST Avg

A
cc

ur
ac

y

(a) Result when L/T ratio is larger than
0.85

0

0.2

0.4

0.6

0.8

1

RL FIR MP AES PR MT FFT KM ST Avg

A
cc

ur
ac

y

(b) Result when L/T ratio is smaller than
0.15

Fig. 6. Prediction accuracy of our technique when L/T ratio is larger than 0.85 and
smaller than 0.15

0
0.2
0.4
0.6
0.8

1

RL FIR MP AES PR MT FFT KM ST Avg

N
or

m
al

iz
ed

 A
cc

es
s

N
um

be
r

Distributed GMMU Bypass

(a) Result in GMMU

0
0.5

1
1.5

2
2.5

RL FIR MP AES PR MT FFT KM ST Avg

N
or

m
al

iz
ed

 A
cc

es
s

N
um

be
r

Distributed GMMU Bypass

(b) Result in IOMMU

Fig. 7. The number of reduplicate page table walks in GMMU and IOMMU

correspondingly. Although in this case, L/T ratio shows a domination trend,
the prediction is not always accurate. We check this by calculating the predic-
tion accuracy of our scheme. The result is shown in Fig. 6.

It shows that when L/T ratio is larger than 0.85 (T1), our technique achieves
high prediction accuracy for MT, FFT, KM, and ST, but achieves relative low accu-
racy for RL, FIR, MP, AES, and PR. Through further analysis, we find that for these
latter five applications, our technique only collects a few translation requests
in the sampling epochs. The limited number of translation requests does not
provide enough information for prediction, thereby lowers prediction accuracy.
When L/T ratio is smaller than 0.15 (T2), our technique achieves relative high
prediction accuracy except FFT. We find that FFT also suffers from limited num-
ber of translation requests in sampling epochs. The average prediction accuracy
is 66% and 75% in these two cases, respectively.

Reduplicate Page Table Walks As it is not easy to predict the accurate
access behavior (translation requests access local pages or remote pages)) when
L/T ratio lies between 0.15 and 0.85, our techniques chooses to send the request
to GMMU and IOMMU simultaneously. This generates reduplicate page table
walks in GMMU and IOMMU since there is only one effective page table walk.
To quantitatively show the number of reduplicate page table walks, we record
the number of page table walks in GMMU and IOMMU respectively. The result
is shown in Fig. 7.

Although our technique increases the number of duplicate page table walks
in GMMU, the total number of page table walks is still smaller than that in dis-

156 J. Wei et al.

tributed architecture. This is because by enabling GMMU bypass, our technique
can reduce unnecessary page table walks. In IOMMU, our technique does not
increase the number of page table walks dramatically except ST. This is because
ST sends more translation requests when L/T ratio lies between 0.15 and 0.85,
thereby increases the number of duplicate page table walks in IOMMU signifi-
cantly. The number of all page table walks increases 14% and the performance
improves 11% in ST specificly. On average, our technique reduces the number
of page table walks by 21% in GMMU, and increases the number of page table
walks by 29% in IOMMU compared to distributed architecture. Therefore, our
technique does not incur a significant number of reduplicate page table walks in
both GMMU and IOMMU.

6.3 Hardware Cost

Our technique is simple and incurs negligible hardware costs. It only needs two
8-bit counters to record the number of translation requests that touch local
pages and remote pages respectively. In addition, a simple ALU is enough for
calculating the L/T ratio.

7 Related Work

As far as we know, this paper is the first to optimize the address translation
workflow for multi-GPU systems. In this section, we introduce previous research
focusing on address translation designs on GPUs and performance optimization
for multi-GPU systems.

7.1 Address Translation on GPU

Since the introduction of unified memory, there have been several works that
target address translation designs on GPUs. J. Power et al. and B. Pichai et al.
were among the first to explore such designs. In J. Power’s design [12], per-CU
private L1 TLB, a highly-threaded page table walker and page walk cache are
essential components for efficient address translation on GPUs. B. Pichai’s design
includes per-CU private TLB and page table walker [11]. The authors showed
the importance of making the warp scheduler to be aware of TLB design. R.
Ausavarungnirun et al. showed that replacing the page walk cache with a shared
L2 TLB can improve the performance of address translation [2].

7.2 Performance Optimization for Multi-GPU Systems

Despite multi-GPU systems utilize GPU-level parallelism, it suffers from ineffi-
ciency in certain cases. The research community proposes several optimization
techniques to improve multi-GPU performance [4,7,18]. T. Baruah et al. pro-
posed Griffin [4], a page allocation strategy to reduce the impact of bandwidth
by making more remote accesses to be local accesses. V.Young et al. proposed
CARVE [18], a hardware mechanism that stores recently accessed remote shared

Dynamic GMMU Bypass for Address Translation in Multi-GPU Systems 157

data in a dedicated region of GPU memory. G. Kim et al. proposes a strategy to
allocate CTAs in multi-GPU system [7]. This strategy can improve the spatial
locality of data access and improves the address translation efficiency for dis-
tributed architecture. Our work focuses on the address translation in distributed
architecture.

8 Conclusion

The address translation efficiency has an important impact on the performance
of multi-GPU systems. Although distributed architecture significantly outper-
forms centralized architecture for a majority of workloads, it suffers in certain
cases due to unnecessary page table walks. In this paper, we propose GMMU
Bypass, a technique aims at reducing the overhead of unnecessary page table
walks in GMMU. The simulation result shows that our technique achieves 6%
performance improvement over distributed architecture and is within 96% of an
ideal scheme, which shows the effectiveness of our technique.

Acknowledgement. This work is partially supported by Research Project of NUDT
ZK20-04, PDL Foundation 6142110180102, Science and Technology Innovation Project
of Hunan Province 2018XK2102 and Advanced Research Program 31513010602-1.

References

1. Arunkumar, A., et al.: MCM-GPU: Multi-chip-module GPUs for continued perfor-
mance scalability. ACM SIGARCH Comput. Archit. News 45(2), 320–332 (2017)

2. Ausavarungnirun, R., et al.: Mosaic: a GPU memory manager with application-
transparent support for multiple page sizes. In: Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 136–150 (2017)

3. Ausavarungnirun, R., et al.: MASK: redesigning the GPU memory hierarchy
to support multi-application concurrency. ACM SIGPLAN Not. 53(2), 503–518
(2018)

4. Baruah, T., et al.: Griffin: hardware-software support for efficient page migration in
multi-GPU systems. In: 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 596–609, February 2020. https://doi.org/10.
1109/HPCA47549.2020.00055

5. Ganguly, D., Zhang, Z., Yang, J., Melhem, R.: Interplay between hardware
prefetcher and page eviction policy in CPU-GPU unified virtual memory. In: Pro-
ceedings of the 46th International Symposium on Computer Architecture, pp. 224–
235 (2019)

6. Jermain, C., Rowlands, G., Buhrman, R., Ralph, D.: GPU-accelerated micromag-
netic simulations using cloud computing. J. Magn. Magn. Mater. 401, 320–322
(2016)

7. Kim, G., Lee, M., Jeong, J., Kim, J.: Multi-GPU system design with memory net-
works. In: 2014 47th Annual IEEE/ACM International Symposium on Microarchi-
tecture, pp. 484–495. IEEE (2014)

8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

https://doi.org/10.1109/HPCA47549.2020.00055
https://doi.org/10.1109/HPCA47549.2020.00055

158 J. Wei et al.

9. Li, C., et al.: Priority-based PCIe scheduling for multi-tenant multi-GPU system.
IEEE Comput. Archit. Lett. 18, 157–160 (2019)

10. NVIDIA, T.: V100 GPU architecture. Whitepaper (2017). nvidia.com. Accessed
September 2019

11. Pichai, B., Hsu, L., Bhattacharjee, A.: Architectural support for address transla-
tion on GPUs: designing memory management units for CPU/GPUs with unified
address spaces. ACM SIGARCH Comput. Archit. News 42(1), 743–758 (2014)

12. Power, J., Hill, M.D., Wood, D.A.: Supporting x86–64 address translation for 100s
of GPU lanes. In: 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA), pp. 568–578. IEEE (2014)

13. Raina, R., Madhavan, A., Ng, A.Y.: Large-scale deep unsupervised learning using
graphics processors. In: Proceedings of the 26th Annual International Conference
on Machine Learning, pp. 873–880 (2009)

14. Sanaullah, A., Mojumder, S.A., Lewis, K.M., Herbordt, M.C.: GPU-accelerated
charge mapping. In: 2016 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–7. IEEE (2016)

15. Sun, Y., et al.: MGPUSim: enabling multi-GPU performance modeling and opti-
mization. In: Proceedings of the 46th International Symposium on Computer
Architecture, pp. 197–209 (2019)

16. Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., Owens, J.D.: Gunrock: a
high-performance graph processing library on the GPU. In: Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pp. 1–12 (2016)

17. Wu, Y., Wang, Y., Pan, Y., Yang, C., Owens, J.D.: Performance characteriza-
tion of high-level programming models for GPU graph analytics. In: 2015 IEEE
International Symposium on Workload Characterization, pp. 66–75. IEEE (2015)

18. Young, V., Jaleel, A., Bolotin, E., Ebrahimi, E., Nellans, D., Villa, O.: Combin-
ing HW/SW mechanisms to improve NUMA performance of multi-GPU systems.
In: 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 339–351. IEEE (2018)

19. Zheng, T., Nellans, D., Zulfiqar, A., Stephenson, M., Keckler, S.W.: Towards high
performance paged memory for GPUs. In: 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp. 345–357. IEEE (2016)

20. Ziabari, A.K., et al.: UMH: a hardware-based unified memory hierarchy for systems
with multiple discrete GPUs. ACM Trans. Archit. Code Optim. (TACO) 13(4),
1–25 (2016)

https://www.nvidia.com/en-in/

Parallel Fast DOA Estimation Algorithm
Based on SML and Membrane Computing

Xiaofeng Bai1, Huajun Song1(B), and Changbo Xiang2

1 College of Oceanography and Space Informatics, China University of Petroleum,
Qingdao, China

huajun.song@upc.edu.cn
2 The 41st Research Institute of China Electronic Science and Technology Group

Corporation, Qingdao, China

Abstract. Direction of arrival (DOA) is widely used in communication,
biomedicine, and other fields. Stochastic maximum likelihood (SML)
algorithm is an excellent direction of arrival (DOA) estimation algo-
rithm. However, the extremely heavy computational complexity in the
process of SML analysis restricts its application in practical systems.
Aiming at this problem of SML, this paper proposes a parallel accelerat-
ing algorithm of membrane computing (MC), particle swarm optimiza-
tion (PSO), and artificial bee colony (ABC). Firstly, the solution space of
SML algorithm is divided into basic membrane and surface membrane by
using membrane computing; then particle swarm optimization algorithm
is used for local parallel optimization in each basic membrane, and the
locally optimal solution is transferred to the surface membrane; finally,
the artificial bee colony algorithm is used to find the global optimum
in the surface membrane. The results of the experiment show that the
proposed algorithm greatly reduces the analytical complexity of SML,
and the calculation time is decreased by more than 5 times compared
with the commonly used optimization algorithms such as GA, AM, and
PSO.

Keywords: Direction-of-arrival (DOA) · Stochastic maximum
likelihood algorithm (SML) · Membrane computingd (MC) · Parallel
computing · Intelligent optimization

1 Introduction

Since the 1960s, numerous fruitful algorithms about DOA have been proposed,
and these algorithms are being developed rapidly. The mainstream algorithms
in the current DOA field consist of linear prediction algorithms, subspace

This project is supported by “the Fundamental Research Funds for the Central Uni-
versities (NO.18CX02109A)”; This project is supported by “Science and Technology
on Electronic Test & Measurement Labora-tory (6142001180514)”.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 159–169, 2021.
https://doi.org/10.1007/978-3-030-79478-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_14

160 X. Bai et al.

decomposition algorithms, and subspace fitting algorithms. The linear prediction
algorithm is the basic algorithm of DOA estimation [10]. It is not commonly used
in modern engineering practical systems for its poor resolution. Afterwards, RO
Schmit [12] proposed the multiple signal classification (MUSIC) algorithm. The
algorithm launched the research of subspace decomposition algorithms. Then
Paulraj, Roy, and Kailath [11] developed the estimation of signal parameters
using rotational invariance techniques (ESPRIT) based on the decomposition of
subspace. ESPRIT can obtain the closed-form solution directly, but accuracy
is poor [3]. Since then, many DOA estimation algorithms have been proposed,
including weighted subspace fitting (WSF) [5], deterministic maximum likelihood
(DML) [2] and stochastic maximum likelihood (SML) [7]. This type of algorithm
constructs the fitting relationship between the array manifold matrix and signal,
then estimates the unknown parameters by calculate the cost function.

In theory, the SML algorithm has the best DOA estimation accuracy, but
the huge amount of computation hinders its application. To solve its problems,
a series of optimization algorithms have been proposed in recent years, such
as alternating minimization (AM) [1] algorithm, alternating projection (AP) [4],
EM algorithm [9], artificial intelligence optimization algorithm, etc. The conven-
tional optimization algorithm works well in solving low-dimensional optimization
problems, but as the increase in dimension and the number of solution space,
the optimization ability of conventional optimization algorithms also decreases.
Moreover, the solution to the SML cost function is a multidimensional optimiza-
tion problem, and there are multiple local best solutions, the problem will be
more complicated. Traditional optimization algorithms can’t deal it well.

Membrane computing (MC) was proposed by Gheorghe Paun [6]. The basic
idea of MC is to abstract the function and structure model of biological cells to
build a similar computational model. MC combines the ideas of parallel com-
puting and distributed computing. It is an ideal calculation mode suitable for
multi-dimensional optimization problems of large spaces. Thus, this study aims
to explore a new method suitable for SML cost function based on the theoretical
framework of membrane computing.

The second part of the thesis introduce the basic model and SML algorithm
about the DOA estimation. The third part describe the specific process of the
SML algorithm based on MC. The fourth part analyze the results of experiment
and algorithm performance. The fifth part draw the conclusion of the study.

2 Mathematical Model and SML

2.1 Array Signal Model

The q far-field narrow-band signals are incident on an antenna array from differ-
ent angles (θ1,θ2,L,θa), and the center frequency of the signal is ω0, the antenna
array consists of p array elements, the wavelength of the signal is λ, the spac-
ing between the elements is d = λ/2. Under ideal conditions, assume that each
array element in the array is isotropic, there is no channel inconsistency, mutual
coupling, and other factors, the noise of the signal is Gaussian white noise, and

Parallel Fast DOA Estimation Algorithm 161

the variance is σ2. The mathematical model of the signal received by the p array
elements is as follows:

X(t) = AS(t) + N(t) (1)

In the Eq. (1), X(t) denotes a p × 1 dimensional snapshot data vector of the
array, A is a p × q dimensional array manifold matrix of the antenna, S(t) is
a q × 1 dimensional signal data vector, and N(t) is a p × 1 dimensional noise
data vector. Suppose that the received data is subjected to L fast sampling, and
finally can be expressed as X = [x(t1), x(t2), ..., x(tL)]. DOA estimation problem
can be expressed as: given the observation data, then get the direction of arrival
of the signal: Θ̂ = {θ̂1, θ̂2, ...θ̂q}.

2.2 Stochastic Maximum Likelihood Algorithm

The derived values of the variables were calculated according to the SML cri-
terion [13], and the likelihood function of the single observation data is written
as:

fi(x) =
1

πpdet{R}exp(xH
i R−1xi) (2)

The joint probability density function of q observations is as follows:

fSML{x1, x2, ..., xq} =
q∏

i=1

1
πpdet{R}exp(xH

i R−1xi) (3)

In Eq. (3), det{.} is the determinant of the matrix, R is the covariance matrix
of the observed data, and the negative logarithm of the joint probability density
function is obtained:

− lnfSML = L(Mlnπ + ln(det{R}) + tr{R−1R̂}) (4)

To obtain the maximum likelihood estimation of the parameters, it is nec-
essary to calculate the maximum value of the log likelihood function in the
parameter space. For SML, f is a function of the variable θ so that the maxi-
mum likelihood function is expressed as:

LSML(θ) = σ2(p−q)det{A+R̂A(θ)} (5)

σ̂ = arg min LSML(θ) (6)

In Eq. (3), A+ = (AH(θ)A(θ))−1AH(θ), the orientation estimate of the
Stochastic Maximum Likelihood algorithm is to find θ = [θ1, θ2, ..., θp] to bring
the likelihood function LSML(θ) to a minimum. Because it involves the solu-
tion of multi-dimensional nonlinear functions, it is more complicated to solve it
with traditional optimization algorithms. Membrane computing is very suitable
for solving such problems because of its distributed and parallel characteris-
tics. Accordingly, the minimum value of LSML(θ) is calculated by the membrane
computing algorithm.

162 X. Bai et al.

3 SML Based on Membrane Computing

In recent years, inspired by the biological laws of nature, a bionic optimization
algorithm called membrane computing has received great attention from people
and has achieved remarkable results in practical engineering applications. Since
MC is easy to optimize in parallel, this study combined the advantages of MC
with the SML algorithm and proposed an SML algorithm using the theoretical
framework of MC. First, divide the solution space of the SML algorithm. Second,
use the PSO algorithm in parallel for local optimization in each basic membrane.
Finally, use the ABC algorithm in the surface membrane for global optimization,
which is the final result. In the parsing process of the entire algorithm, since the
local optimization algorithms in each of the basic membranes are performed
independently, no communication is performed between the basic membranes.

3.1 Membrane Division of the Solution Space

The solution space of the SML is stratified into appropriate “base membranes”.
The solution of the SML cost function can be expressed by the following math-
ematical model:

L(θ) = ln(σ2(p−q)det{A+R̂A(θ)}) (7)

The maximum likelihood estimation of the DOA is set as the objective func-
tion of the solution:

minf(θ), θ = [θ1, θ2, ..., θq] ∈ Q = [−90◦, 90◦] (8)

In Eq. (8), q denotes the dimension of the solution space, f(θ) is the objective
function of the algorithm, and Q is the solution space of the SML algorithm.
The feasible solution space Q is spatially stratified into m sub-regions, that is, m
basic membranes, [s(1), t(1)], [s(2), t(2)], ..., [s(m), t(m)], the basic membranes is
stratified as follows:

s(i) = −90◦ +
180◦

m
(i − 1) (9)

t(i) = −90◦ +
180◦

m
i (10)

Each subspace [s(i), t(i)] serves as a basic membrane region of the membrane
system for intra-membrane local search. To verify the effect of the number of
basic membranes (m) on the performance of the MC, the selection of the number
of basic membranes is discussed below:

Figure 1 shows the variation of the DOA estimates that is run 100 times
separately when the two sources are incident from different directions (10◦ and
−30◦), as the number of basic membranes increased from 2 to 10. Figure 1(a)
shows that when the angle is 10◦ and the number of base membranes is 4, the
DOA estimate is closest to the true value 10◦; Fig. 1(b) suggests that when the
angle is −30◦ and the number of base membranes is 4, the DOA estimate is the
closest to the true value −30◦. In general, though the DOA estimate shows an

Parallel Fast DOA Estimation Algorithm 163

irregular change with the increase in the number of base membranes, when the
number of base membranes is 4, even if two sources are incident from different
directions, the DOA estimation error is the smallest, and it is more advantageous
to obtain the optimal value. Therefore, in this experiment, the number of basic
membranes is chosen to be 4.

2 4 6 8 10

Number of basic membranes

9.94

9.95

9.96

9.97

9.98

9.99

10

D
O

A
(°

)

(a) The source is incident at 10 degrees

2 4 6 8 10

Number of basic membranes

-30

-29.99

-29.98

-29.97

-29.96

-29.95

-29.94

D
O

A
(°

)

(b) The source is incident at 30 degrees

Fig. 1. Experimental results of the DOA estimate as a function of the number of basic
membranes.

2 3 4 5 6 7 8 9 10

Number of basic membranes

17.84

17.845

17.85

17.855

17.86

17.865

17.87

17.875

17.88

A
ve

ra
ge

 fi
tn

es
s

va
lu

e

Fig. 2. Experimental results of the fitness value changing with the number of basic
membranes.

The variation diagram in Fig. 2 reveals that when the number of basic mem-
branes is 4, the average fitness value will be the smallest (SML algorithm seeks
the minimum cost function value). In summary, when two sources are incident
from different directions (10◦ and −30◦), and the number of basic membranes is
4, the DOA estimation performance will be the best.

164 X. Bai et al.

3.2 Intra-membrane Local Search Parallel Algorithm

The PSO-based intra-membrane local search algorithm based on PSO integrates
the idea of parallel computing of membrane computing, and combines mem-
brane computing with traditional PSO algorithm [8]. The following describes
the specific process of local search algorithm in membrane:

(1) The cost function L(θ) of SML is the fitness function of the PSO algorithm;
(2) Since the receiving array is a uniform planar array, the range of the solu-

tion space is [−90◦, 90◦], namely the optimized spatial extent of the PSO
algorithm is [−90◦, 90◦], and the solution space is spatially stratified into m
sub-regions [s(1), t(1)], [s(2), t(2)], ..., [s(m), t(m)];

(3) Construct a particle group Θ = {Θ̇1, Θ̇2, ..., Θ̇n}, the number of particles in
the particle group is n, divide n particles into m parts, the number of each
part is n/m, the m particles are randomly distributed in m base membranes
(the surface membranes must be empty), and each particle is a potential
solution to the optimization problem;

(4) Initialize various parameters in the PSO algorithm, such as the number
of particles n/m, the inertia factor ω, the number of iterations, etc. Each
particle continuously iterates according to the local optimal solution and
the global optimal solution. Let i be the ith particle, l means the number
of lth iterations, Θl

i is the position of the ith particle in the search space at
the lth iteration, Cl

i is the local optimal solution of the ith particle after lth
iteration. It is obvious that:

C0
i = Θ0

i (11)

Ci
1 = arg min

Θ0
i ,Θ1

i

L(θ), ... (12)

Ci
l = arg min

Θ0
i ,...,Θl

i

L(θ). (13)

Let Dl be the global optimal solution that all particles can find after lth
iterations, thus

Dl = min{Cl
1, C

l
2, ...C

l
n/m} (14)

(5) The independent variable Θi, the local optimal solution Cl
i and the global

optimal solution Dl is updated by loop iteration. The formula for updating
the position and velocity of the lth particle is:

θl+1
i = θl

i + vl+1
i (15)

V l+1
i = ωV l

i + c1r1(Cl
i − Θl

i) + c2r2(Dl − Θl
i) (16)

L is the number of iterations, ω is the inertia factor, ω ∈ [0.4, 0.9], r1, r2 is
the learning factor, and r1, r2 is the random number between 0 and 1;

(6) If reach the maximum number of iterations or the accuracy reaches 10−5,
send the global optimal solution to surface membrance; otherwise, go to step
(5) and iterate again.

Parallel Fast DOA Estimation Algorithm 165

In the process of local search in membrane, the solution space is divided
firstly, and the local optimal solution and global optimal solution are updated
iteratively in different solution spaces. In the program running, the loop structure
often consumes the most computing resources. Optimizing the code in the loop
body or parallelizing the loop is the most common way to speed up the program
running. Because the search algorithm is independent in different solution space,
we can use parfor loop to accelerate the calculation, and make full use of the
parallel processing ability of multi-core processor to shorten the running time of
problem processing and improve the running efficiency of the algorithm.

3.3 Global Optimization Strategy

After the intra-membrane local search with PSO algorithm, the local optimal
value can be easily obtained, and then send the optimal solution in each basic film
to the surface film to guide the algorithm for global optimal search. Artificial bee
colony (ABC) algorithm has strong global search ability. Therefore, to improve
the computational efficiency of the algorithm, the ABC algorithm is used for
global optimization in the surface film region.

(1) At first, initialize the population to generate initial control parameters and
initial solutions. Mainly includes: the number of food sources is M (the num-
ber of solutions of optimization problem), the maximum number of iterations
is P , and the maximum number of iterations of the food source whose quality
has not been improved is Limit. The initial solution is composed of the local
optimal solution transferred from the basic membrane to the surface mem-
brane, which corresponds to the bees one by one, then records the fitness
value and the optimal solution of each initial solution;

(2) According to Eq. (17), bees conduct neighborhood search to generate a new
candidate solution θ̇in, calculate the fitness value, and select the probability
of θ̇in and θin to record the better solution;

θ̇in = θin + φin(θin − θkn) (17)

(3) Calculate the selection probability associated with each solution according
to equation (18);

pi =
fiti∑M

j=1 fitj
(18)

(4) The observation bees according to the Roulette Wheel Selection method to
select the food source with probability Pi. Then the observation bees perform
a neighborhood search according to Eq. (17) to generate a new candidate
solution θ̇in, computing the fitness value and making optimal choices for θ̇in

and θin, then record the better solutions;
(5) The scout bees judge whether there is a solution to give up according to

Limit. If there is, a new solution will be selected from the local optimal
solution to replace the abandoned solution;

(6) Record the optimal solution to date;
(7) Cycle = Cycle + 1, If Cycle < P or the accuracy less than 10−5, go to step

(2); otherwise, output the optimal solution.

166 X. Bai et al.

3.4 DOA Estimation Step Based on Membrane Computing

The above analysis reveals that the SML algorithm based on MC could be pri-
marily stratified into three parts, and the flow chart is shown in Fig. 3.

4 Simulation and Performance Analysis

Through specific simulation experiments, the performance of the SML algorithm
based on MC proposed in this paper is analyzed. And compare it with PSO, AM,
and GA algorithm. The simulation environments include:

MATLAB R2016b,
i7-4770k CPU with 3.4 GHz, 4-core, and 8-thread,
12 GB DDR3 RAM.

Start

Dividing mul ple "sub-
solu on spaces" for the
"solu on space" of SML

Parallel opera on low-
dimensional op miza on
algorithm in "sub-solu on

space"

Global op mal search in
the superficial membrane
region

Op mal value
convergence?

End

Yes

No

Fig. 3. Flow chart of SML algorithm based on membrane computing.

During the experiment, assuming the array is a uniform planar array, the
steering vector can be simplified as:

a(θ) = [1, e−jφ(θ), L, e−j(p−1)φ(θ)]T (19)

φ(θ) = 2πΔsinθ/λ (20)

Parallel Fast DOA Estimation Algorithm 167

Fig. 4. RMSE relationship with signal-to-noise ratio change.

In Eq. (19), λ denotes the signal wavelength, Δ is the distance between array
elements. In the experiment, Δ = λ/2, SNR is defined as:

SNRk = 10log10
E[|Sk(t)|2]

σ2
(21)

The Root-Mean-Square-Error (RMSE) is defined as:

RMSE =

√√√√ 1
qN

q∑

k=1

M∑

m=1

|θ̂k,m − θk|2 (22)

In the Eq. (22), θ̂k,m denotes the derived value of θk in the mth experiment,
and do 100 times Monte Carlo experiments for each case.

The receiving antenna adopts a 32-element uniform linear array, and four
narrow-band signals are incident from the far-field. The number of snapshots of
the signal is 1024, and the noise is Gaussian white noise with a mean of 0. For
the SML algorithm based on MC, according to the above analysis, the solution
space is divided into four basic membranes, and six particles are initialized in
each basic membrane. Figure 4 describes how the RMSE of each algorithm varies
with SNR. For the ESPRIT algorithm, preprocessing is required when dealing
with coherent sources; for non-coherent sources, when SNR∈ [−10 dB, 20 dB],
the RMSE of PSO algorithm is much better than ESPRIT algorithm, and the
RMSE of SML algorithm based on MC is slightly better than PSO algorithm.
For the coherent source, the RMSE of the PSO algorithm is much better than
the ESPRIT algorithm when SNR∈ [−10 dB, 15 dB]. When SNR∈ [15 dB, 20 dB],
the performance of the PSO algorithm and ESPRIT algorithm are similar. The
RMSE of the SML algorithm based on the MC is slightly better than the PSO
algorithm.

Under the same experimental environment, compare the performance of SML
algorithm based on MC, PSO, GA and AM algorithm.

For the AM algorithm, a search method combining long and short steps is
used. First, perform a rough search with a long step size (0.1◦) to find the range
of the optimal solution, and then perform a detailed search with a short step

168 X. Bai et al.

size (0.01◦), when the estimated accuracy meet |G(l+1) − Gl| ≤ 10−5, record the
result. This method reduces the computational complexity of the global search
by the interactive minimization algorithm without reducing the DOA accuracy
requirements.

In the artificial genetic algorithm (GA), set the number of populations as
60, set the crossover probability as 0.6, and set the mutation probability as 0.1.
When the estimation accuracy of the DOA meet |G(l+1) − Gl| ≤ 10−5, stop the
iteration.

Table 1. Comparison of performance of different algorithms (non-coherent sources).

MC-SML PSO-SML AM-SML GA-SML

Number of particles – 25 – –

Average number of iterations – 143.5 – –

Total number of calculations – 25 * 143.5 = 3587.5 – 46300

Spend time (seconds) 0.88 4.52 6.53 36.58

Table 2. Comparison of performance of different algorithms (coherent sources).

MC-SML PSO-SML AM-SML GA-SML

Number of particles – 25 – –

Average number of iterations – 146 – –

Total number of calculations – 25 * 146 = 3650 – 46300

Spend time (seconds) 0.95 4.74 6.61 36.65

The results of various aspects of the SML algorithm based on the MC, the
PSO, the GA, and the AM algorithm in dealing with non-coherent sources and
coherent sources are listed in Table 1 and Table 2. According to Table 1, when
dealing with non-coherent sources under the premise of ensuring convergence
accuracy, the calculation time cost by the AM algorithm is 6.53 s, the time cost
by the GA algorithm is 36.58 s, and the cost time of the conventional PSO
algorithm is 4.52 s, whereas the calculation time of the proposed membrane cal-
culation method is only 0.88 s, about 1/5 of the conventional PSO algorithm.
The results suggest that the convergence speed of the proposed membrane com-
puting algorithm is significantly improved. Table 2 shows that various algorithms
spend more time processing coherent sources in the same situation than process-
ing non-coherent sources. In brief, the results reveal that the proposed membrane
computing algorithm has a significant real-time effect.

Besides, when using i5-4210M CPU with 2-core, the cost time of MC-SML
is about 2.7 s, about half of the serial processing time. When using i7-860 CPU
with 4-core, the cost time of MC-SML is about 2.5 s, about a quarter of the serial
processing time. It can be seen that the number of CPU cores and single-core
performance will affect the computational efficiency of parallel algorithms.

Parallel Fast DOA Estimation Algorithm 169

5 Conclusion

Based on the theoretical framework of membrane computing, this study proposed
a membrane computing method suitable for SML cost function. The algorithm is
capable of effectively solving the problem of DOA estimation while ensuring the
estimation accuracy. According to the results of the experiment, the proposed
membrane computing algorithm can perform a global search and local search
simultaneously, which reduces the computational complexity of SML. Thus, it
has an obvious advantage in convergence speed.

References

1. Chen, B., Xing, L., Liang, J., et al.: Steady-state mean-square error analysis for
adaptive filtering under the maximum correntropy criterion. IEEE Signal Process.
Lett. 21(7), 880–884 (2014)

2. Chang, W., Ru, J., Deng, L.: Stokes parameters and DOA estimation of polarized
sources with unknown number of sources. IET Radar Sonar Navig. 12(2), 218–226
(2018)

3. Dandekar, K.R., Ling, H., Xu, G.: Smart antenna array calibration procedure
including amplitude and phase mismatch and mutual coupling effects. In: IEEE
International Conference on Personal Wireless communications, pp. 293–297 (2000)

4. Francois, V., Olivier, B., Eric, C.: Approximate unconditional maximum likelihood
direction of arrival estimation for two closely spaced targets. IEEE Signal Process.
Lett. 22(1), 86–89 (2015)

5. Gao H, H.X.: Direction finding of signal subspace fitting based on cultural bee
colony algorithm. In: IEEE Fifth International Conference on Bio-inspired Com-
puting: Theories Applications (2010)

6. Gheorghe, P.: Computing with membranes (P systems): an introduction. In: Cur-
rent Trends in Theoretical Computer Science, pp. 845–866 (2001)

7. Song, H.J., Liu, F., Chen, H.H., Zhang, H.: A stochastic maximum likelihood
algorithm based on improved PSO. Acta Electron. Sinica 45(8), 1989–1994 (2017)

8. Shao, J., Zhang, X., Liu, Y., Yang, F.: Estimation of time reversal target DOA
over underwater acoustic multipath time-varying channels. In: 2014 IEEE China
Summit and International Conference on Signal and Information Processing (2014)

9. Zhou, L., Zhu, W., Luo, J., Kong, H.: Direct positioning maximum likelihood
estimator using TDOA and FDOA for coherent short-pulse radar. IET Radar Sonar
Navig. 11(10), 1505–1511 (2017)

10. Nguyen, A.T., Matsubara, T., Kurokawa, T.: Low-complexity and high-accuracy
DOA estimation for coprime arrays using Toeplitz matrices (2017)

11. Roy R, Paulraj A, K.T.: Estimation of signal parameters via rotational invari-
ance techniques - ESPRIT. In: Advanced Algorithms and Architectures for Signal
Processing I. International Society for Optics and Photonics (1986)

12. Schmidt, R., Schmidt, R.O.: Multiple emitter location and signal parameters esti-
mation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

13. Schwartz, O., Dorfan, Y., Taseska, M., Habets, E.A.P., Gannot, S.: DOA estima-
tion in noisy environment with unknown noise power using the EM algorithm. In:
Hands-free Speech Communications and Microphone, pp. 86–90 (2017)

Segmented Merge: A New Primitive
for Parallel Sparse Matrix Computations

Haonan Ji1, Shibo Lu1, Kaixi Hou2, Hao Wang3, Weifeng Liu1(B),
and Brian Vinter4

1 Super Scientific Software Laboratory, Department of Computer Science
and Technology, China University of Petroleum-Beijing, Beijing, China

{haonan ji,lslslsb}@yeah.net, weifeng.liu@cup.edu.cn
2 Department of Computer Science, Virginia Tech, Blacksburg, USA

kaixihou@vt.edu
3 Department of Computer Science and Engineering, The Ohio State University,

Columbus, USA
wang.2721@osu.edu

4 Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark
vinter@au.dk

Abstract. Segmented operations, such as segmented sum, segmented
scan and segmented sort, are important building blocks for parallel irreg-
ular algorithms. We in this work propose a new parallel primitive called
segmented merge. Its function is in parallel merging q sub-segments to
p segments, both of nonuniform lengths. We implement the segmented
merge primitive on GPUs and demonstrate its efficiency on parallel
sparse matrix transposition (SpTRANS) and sparse matrix-matrix mul-
tiplication (SpGEMM) operations.

Keywords: Parallel computing · Segmented merge · Sparse matrix ·
GPU

1 Introduction

Since Blelloch et al. [1] reported that segmented operations can achieve better
load balancing than row-wise approaches in parallel sparse matrix-vector multi-
plication (SpMV), several new parallel segmented primitives, such as segmented
sum [12], segmented scan [4] and segmented sort [8] have been developed for
replacing their ordinary counterparts, i.e., sum, scan and sort, in a few irregular
sparse matrix algorithms on many-core platforms such as GPUs.

However, merge, another important fundamental routine in computer science,
has not received much attention from the view point of segmented operation.
Actually, it can be quite useful when both the input and the output matrices are
stored with indirect indices. One important higher level algorithm example is
sparse matrix-matrix multiplication (SpGEMM). It multiplies two sparse matri-
ces A and B, and generates one resulting sparse matrix C. When the nonzeros in

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 170–181, 2021.
https://doi.org/10.1007/978-3-030-79478-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_15

Segmented Merge 171

each row of the input sparse matrix B are sorted in the ascending order according
to their column indices, the basic operation needed is actually merge [6,10,11].

We in this paper first define a new primitive called segmented merge. It
merges q sub-segments to p segments, both of nonuniform lengths. The elements
in each sub-segment are ordered in advance. When all the sub-segments in one
segment are merged into one sub-segment of the same length as the segment
containing it, the operation is completed. In the SpGEMM scenario, the rows of
B involved can be seen as the sub-segments, and the rows of C can be seen as
the segments.

Although the definition and a serial code of the segmented merge can be both
straightforward, designing an efficient parallel algorithm is not trivial. There are
two major challenges. The first one is the load balancing problem. It happens
when the lengths of the sub-segments and the segments are nonuniform, meaning
that roughly evenly assigning them to tens of processing units can be difficult.
The second challenge is the vectorization problem. It can be also hard to carefully
determine a similar amount of elements processed by thousands of SIMD lanes
on many-core processors such as GPUs.

To address the two challenges, we design an efficient parallel algorithm for
the segmented merge operation on GPUs. The algorithm first preprocesses the
segments and sub-segments, and records the boundaries of them for dividing
the tasks. Then our method uses a binary tree for merging sub-segments in
a bottom-up manner. The algorithm works in an iterative way and completes
when each segment only has one sub-segment. In the procedure, each pair of
sub-segments are merged independently by utilizing SIMD lanes, i.e., threads
running on CUDA GPUs, and each SIMD lane merges a similar amount of
elements with serial merge.

We benchmark two sparse kernels, sparse matrix transposition (SpTRANS)
and SpGEMM, utilizing the segmented merge primitive on two NVIDIA Turing
GPUs, an RTX 2080 and a Titan RTX. By testing 956 sparse matrices down-
loaded from the SuiteSparse Matrix Collection [2], the experimental results show
that compared to the NVIDIA cuSPARSE library, our algorithm accelerates per-
formance of SpTRANS and SpGEMM operation by a factor of on average 3.94
and 2.89 (and up to 13.09 and 109.15), respectively.

2 Related Work

In this section, we introduce three existing segmented primitives: segmented
sum [1,12], segmented scan [4] and segmented sort [8].

2.1 Parallel Segmented Sum

When a parallel algorithm processes irregular data such as sparse matrices, it is
quite common to in parallel deal with arrays of different lengths. For example,
in the SpMV operation, multiplying a sparse matrix A and a dense vector x
basically equals computing the dot product of every sparse row of A with x.

172 H. Ji et al.

When the number of nonzero entries in the rows are nonuniform, it is easy to
encounter the load imbalance issue on parallel processors, and thus to degrade
performance [13].

To make the parallel SpMV operation more balanced, Blelloch et al. [1] pro-
posed the segmented sum primitive. The parallel operation has five steps: (1)
first gathers intermediate products into an array, (2) labels the indices and val-
ues in the same row as a segment, (3) equally assigns the entries to independent
threads, (4) then sums the values belonging to the same segment up into one
value and saves it , and (5) finally sums the values across multiple threads to
finish the operation. Figure 1 plots an example of the parallel segmented sum. To
further make the segmented sum suitable for sparse matrices with empty rows,
Liu and Vinter proposed a speculative segmented sum [12].

Fig. 1. An example of Blelloch’s algorithm using five threads (each processes one col-
umn) to find the sum of eight segments (filled with the same color), and uses SUM and
PRESENT arrays to store the intermediate results of the split segments.

2.2 Parallel Segmented Scan

The scan (also known as prefix-sum) operation sums all prefixes. For example,
the row pointer array of a sparse matrix in the compressed sparse row (CSR)
format is the result of scanning an array storing the number of nonzeros of the
rows. Parallel segmented scan is to scan multiple segments in parallel, and the
result of each segment is the same as that of a single scan. Besides the same load
balancing problem as the segmented sum, segmented scan is relatively more
complex because of dependencies between the prefixes.

Dotsenko et al. [4] proposed a relatively load balanced segmented scan algo-
rithm by using a novel data structure and reduced the consumption of shared
memory on GPU. This algorithm is divided into three steps: (1) stores the seg-
ments in an array and divides it into blocks of the same size, (2) each thread
scan one segment and rescans when it encounters a new segment, (3) if there is
a segment spanning blocks, the result of this segment is propagated. Figure 2
plots an example of the parallel segmented scan.

Segmented Merge 173

Fig. 2. An example of Dotsenko’s algorithm using four threads (each for one block) to
find the scan of six segments (filled with the same color) (Color figure online)

2.3 Parallel Segmented Sort

The parallel segmented sort operation simultaneously makes keys or key-value
pairs in multiple segments ordered. It uses two arrays for storing a list of keys
and a group of header pointers of segments. In the procedure, each processing
unit obtains the information of the corresponding segment by accessing the seg-
ment pointer array, then sorts each segment in serial or in parallel. Because of
the nonuniform lengths of the segments, load balancing issues often restrict the
efficiency of the algorithm.

Fig. 3. An example of Hou’s algorithm using four bins to store four segments (filled
with the same color), and calling reg-sort and smem-merge to sort the segments. (Color
figure online)

Hou et al. [8] presented an adaptive segmented sort mechanism on GPUs. It
proposed a differentiated method for eliminating irregularity in data distribu-
tion and a register-based sorting method for accelerating short segments. The
register-based sorting algorithm has four steps: (1) gets the amount of tasks per
thread, (2) converts data into specific sequence by using shuffle functions, (3)
stores data in threads into different registers to perform swap operations, and
(4) swaps the data in registers to make them ordered. Figure 3 plots an example
of the segmented sort.

174 H. Ji et al.

3 Segmented Merge and Its Parallel Algorithm

3.1 Definition of Segmented Merge

We first define the segmented merge primitive here. Assuming we have a key-
value array

S = {S1, S2, . . . , Sp}, (1)

that includes p segments (i.e., sub–arrays1), and further a segment

Si = {Si,1, Si,2, . . . , Si,qi}, i ∈ [1, p], (2)

contains qi sub-segments. So we have

S = {S1,1, S1,2, . . . , S1,q1 , S2,1, S2,2, . . . S2,q2 , . . . , Sp,1, Sp,2, . . . , Sp,qp} (3)

Each sub-segment Si,j includes ni,j key-value pairs already sorted according
to their keys. The objective of the segmented merge operation is to let ni =∑qi

j=1 ni,j key-value pairs in each segment Si ordered. Thus S eventually consists
of p sorted segments.

3.2 Serial Algorithm for Segmented Merge

A serial segmented merge algorithm can be represented as a multi-way merge,
meaning that each sub-segment of the same segment is regarded as a leaf node of
a binary tree and is merged in a bottom-up manner. Figure 4 shows an example
of merging eight sub-segments in to three segments using the segmented merge.

Fig. 4. An example showing the segmented merge algorithm. Here the segment pointer
(including three segments) points to the sub-segment pointer pointing to eight ordered
sub-segments continuously stored in the array. After the segmented merge, the eight
sub-segments are merged into three ordered segments.

1 We in this paper call “sub-array” “segment”, since each segment further includes at
least one “sub-segment”. In this way, we can avoid using terms like “sub-array” and
“sub-sub-array”.

Segmented Merge 175

3.3 Simple Parallel Algorithm for Segmented Merge

Algorithm 1 shows a simple parallel pseudocode working in an iterative fashion
(lines 3–14): each segment (lines 4–12) can be processed in parallel, and each pair
of sub-segments (lines 7–11) can be also merged in parallel until each segment
has only one sub-segment.

Algorithm 1. A simple parallel segmented merge algorithm.
1: m split ← get split row num()

2: snum ← get seg num()

3: while m split �= snum do
4: for each segment in parallel do
5: // Challenge 1: The combination of sub-segments of different

6: lengths in different segments may bring load imbalance

7: for each pair of sub-segments in segment in parallel do
8: // Challenge 2: Merging sub-segments of unequal length

9: is difficult to vectorize

10: serial merge(buff, segment info, segment id)
11: end for
12: end for
13: snum ← get seg num()

14: end while

It can be seen that there are two for loops in lines 4 and 7 respectively.
Although the two loops can be parallelized straightforward, their simple imple-
mentation may bring suboptimal performance. In particular on many-core pro-
cessors running a large amount of threads, this approach may bring load imbal-
ance problem since the lengths of segments and sub-segments may be imbalanced
(see lines 5–6 and 8–9, respectively). This is the first challenge we face. Such per-
formance degradation from irregular data distribution is actually not unusual in
sparse matrix algorithms [11,13].

3.4 Improved Parallel Algorithm for Segmented Merge on GPU

We propose a parallel algorithm for segmented merge. The main idea is to fix
the number of elements processed by a thread, and to merge the sub-segments in
the same segment in the form of binary tree until all sub-segments are merged.
The algorithm consists of three steps: (1) data preprocessing, (2) merging two
sub-sequences of each thread by using merge path, (3) merging sub-segments on
binary tree in an iterative way. Algorithm 2 shows a pseudocode of the parallel
segmented merge, and Fig. 5 gives an example.

The first step is data preprocessing (lines 4–15 in Algorithm 2). Its objective
is to record starting and ending positions of segments and sub-segments. We
construct two arrays of size p + 1 and q + 1, respectively, as two-level pointers
(see the top left of Figs. 4 and 5). Then, we set each thread’s workload to a fixed
amount nnzpt, and count the number of threads required in merging every pair

176 H. Ji et al.

Algorithm 2. A parallel segmented merge algorithm
1: m split ← get split row num()

2: snum ← get seg num()

3: while m split �= snum do
4: for each pair of sub-segments in segment in parallel do
5: tnum local ← get local thread num(segment ptr, sub-segment ptr)

6: tnum total ← get total thread num(tnum local)
7: end for
8: malloc(thread info, tnum total)
9: for each pair of sub-segments in segment in parallel do

10: thread id ← get thread id()
11: scatter thread info(thread info, thread id)
12: end for
13: for each thread in parallel do
14: gather thread info(thread info, thread id)
15: end for
16: for each thread in parallel do
17: serial merge using merge path(buff, thread info, thread id)
18: end for
19: snum ← get seg num()

20: free(thread info)

21: end while

of sub-segments (line 5). As a result, each iterative step knows the total number
of threads to be issued (line 6). Then each sub-segment scatters a group of
information, such as global memory offset and segments size, to threads working
on it (lines 9–12). After that, each thread gathers information by running the
partitioning strategy of the standard merge path algorithm (lines 13–15).

The second step is merging sub-sequences of each thread by using merge
path (lines 16–18 in Algorithm 2). The merge operation of sub-segments is often
completed by multiple threads and these threads cooperate with each other
and merge sub-sequences through the merge path algorithm [5]. The merge path
algorithm is an efficient merge algorithm and has excellent parallelism. In its pro-
cedure, each thread is responsible for processing partial sub-sequences without
data correlation. First, the data in the sub-sequence corresponding to the thread
is compared multiple times to generate boundaries for splitting the two sub-
sequences. Then based on the target matrix, the data in the two sub-sequences
are placed in the output sequence according to the ‘path’ to complete the merge
operation. In Fig. 5, two examples of merging two groups of sub-sequences is
shown in the pink dotted box, and the two pairs of sub-sequences are merged
with three threads.

The third step is merging sub-segments on the binary tree in an iterative
way (the while loop of lines 3–21 in Algorithm 2). According to the information
obtained from the above two steps, each sub-segment of the same segment can
be seen as a leaf node of a binary tree to merge, and multiple iterations may be
needed. When the pointers of segment and sub-segment are completely aligned,
the iteration ends and the sorting is completed. If there is a single sub-segment,

Segmented Merge 177

Fig. 5. An example showing the proposed segmented merge algorithm. Here the seg-
ment pointer (including three segments) points to the sub-segment pointer pointing to
eight ordered sub-segments continuously stored in the array. There are two levels of
arrays, with indexes on the top and values at the bottom. After the segmented merge,
the eight sub-segments are merged into three ordered segments. In the computation,
two thread blocks of two warps are used. (Color figure online)

it will not be processed at all in the iteration (see the segment in light pink of
Fig. 5). When the sub-segments in the same segment are merged, they can be
processed by the same warp of 32 threads in CUDA, but the sub segments in
different segments can not cross different warps. For example, when combining
the blue and light blue sub-segments in Fig. 5, although the thread elements
do not reach a fixed number, they will not cross warps. So, a large amount of
threads can be saved for data in a power-law fashion (i.e., several segments have
much more sub-segments than the others). Moreover, because all cores can be
saturated, our segmented merge method can achieve good load balancing on
massively parallel GPUs.

4 Performance Evaluation

4.1 Experimental Setup

We on two NVIDIA Turing GPUs benchmark the SpTRANS and SpGEMM
functions calling the segmented merge primitive proposed, and compare them
with the corresponding functions in the NVIDIA cuSPARSE library v10.2.
Table 1 lists the two testbeds and the participating algorithms.

178 H. Ji et al.

Table 1. The testbeds and participating SpTRANS and SpGEMM algorithms.

The testbeds The participating SpTRANS and SpGEMM
algorithms

(1) An NVIDIA GeForce RTX 2080
(Turing TU104, 2944 CUDA cores @
1.8GHz, 10.59 SP TFlops, 331.2 DP
GFlops, 4 MB LLC, 8 GB GDDR6, 448
GB/s bandwidth, driver v440.89)
(2) An NVIDIA Titan RTX (Turing
TU102, 4608 CUDA cores @
1.77GHz, 16.31 SP TFlops, 509.76
DP GFlops, 6 MB LLC, 24 GB
GDDR6, 672 GB/s bandwidth, driver
v440.89)

(1) The SpTRANS function cusparse?csr2csc() in
cuSPARSE v10.2
(2) The SpTRANS method using segmented merge
proposed in this work
(3) The SpGEMM function cusparse?csrgemm() in
cuSPARSE v10.2
(4) The SpGEMM algorithm proposed by Liu and
Vinter [11]
(5) The SpGEMM method using segmented merge
proposed in this work

The matrix dataset is downloaded from the SuiteSparse Matrix Collection
(formerly known as the University of Florida Sparse Matrix Collection [2]). We
select all 956 relatively large matrices of no less than 100,000 and no more than
200,000,000 nonzero entries for the experiment.

4.2 Performance of SpTRANS Using Segmented Merge

The SpTRANS operation transpose a sparse matrix A in the CSR format to
its transpose AT also in the CSR format. From the data structure point of
view, the operation is the same as converting A’s CSR format to its compressed
sparse column (CSC) format. Wang et al. [15] proposed two vectorized and load
balanced SpTRANS algorithms for x86 processors.

To utilize higher computational power and bandwidth on GPUs, we design a
new SpTRANS algorithm using segmented merge proposed in this work. Specifi-
cally, the number of nonzeros are calculated firstly, then the nonzeros are inserted
into the transpose matrix in an unordered way using atomic operation. To keep
the indices of the nonzeros in each row of the transpose sorted, the segmented
merge primitive is called. For the long rows, they are cut into smaller pieces
that can be sorted independently by utilizing on-chip shared memory. Then the
long rows can be seen as segments, and the sorted pieces are processed as sub-
segments. Thus the segmented merge primitive can be used naturally.

Figure 6 shows the abstract performance (in GB/s) and relative speedups of
SpTRANS in cuSPARSE and using our segmented merge method on NVIDIA
RTX 2080 and Titan RTX GPUs. It can be seen that in most cases our method
is faster than cuSPARSE. The average speedup on the two GPUs can reach
3.55× (up to 9.64×) and 3.94× (up to 13.09×), respectively. For matrices with
many short rows and balanced distribution, such as igbt3 matrix, our algorithm
dynamically determines the optimal number of threads to be used in each iter-
ation. Therefore, our algorithm has a good performance for igbt3 matrix and
achieves the speedup of 13.09× over cuSPARSE.

Segmented Merge 179

(a) RTX 2080 (b) Titan RTX

Fig. 6. Comparison of two SpTRANS methods in cuSPARSE and using the segmented
merge primitive on two NVIDIA GPUs. The x-axis represents the density (the ratio
of the number of nonzeros to the multiply of the number of rows and columns) of the
matrices tested.

4.3 Performance of SpGEMM Using Segmented Merge

The SpGEMM operation computes C = AB, where the three matrices are
all sparse. The most used fundamental approach for SpGEMM is the row-row
method proposed by Gustavson [7]. Its parallel implementation can be straight-
forward. Each thread traverses the nonzeros of a row of A, and uses the values
to scale all entries of the corresponding rows of B, then merges the scaled entries
into the row of C. The function for this procedure is also called sparse accumu-
lator and has been studied by much research [3,9–11,14,16].

The SpGEMM algorithm tested is an improved version of the SpGEMM
approach in bhSPARSE developed by Liu and Vinter [11]. In the original imple-
mentation, the authors assign the workload for computing the rows of C to 37
bins according to the floating point operations needed for the rows. The first
36 bins process relatively short rows, and the last bin is designed to process
the rows of a large mount of nonzeros. For the rows in the last bin, the entries
cannot be placed into on-chip shared memories, thus global memory has to be
used. Hence the segmented merge is used for calculating the long rows, by first
saving the scaled rows from B (as sub-segments) onto global memory and then
merging the sub-segments belonging to the same row of C (as a segment). Note
that all the rows, i.e., segments, in the last bin are involved in one segmented
merge computation.

Figure 7 plots the performance of SpGEMM in cuSPARSE, bhSPARSE and
bhSPARSE with segmented merge on NVIDIA RTX 2080 and Titan RTX GPUs.
It can be seen that the performance of our method is significantly better than
cuSPARSE and bhSPARSE. On RTX 2080, the speedups over the two methods

180 H. Ji et al.

(a) RTX 2080 (b) Titan RTX

Fig. 7. Comparison of three SpGEMM methods computing A2: cuSPARSE,
bhSPARSE [11] and bhSPARSE using segmented merge. The x-axis is compression
rate, i.e., the ratio of the number of intermediate nonzeros to nonzeros in C.

reach on average 2.89× (up to 109.15×) and 1.26× (up to 7.5×), respectively. On
Titan RTX, the speedups are on average 2.53× (up to 81.85×) and 1.22× (up to
17.38×), respectively. Taking the webbase-1M matrix with many long rows as an
example, cuSPARSE cannot evenly distribute the data to cores, and bhSPARSE
can only use one thread block for each long row, meaning the two libraries
actually underuse the GPUs. But because our algorithm avoids dealing with a
long row in a thread by evenly dividing all elements to thread, our algorithm
obtain 5.85× and 2.31× speedups over cuSPARSE and bhSPARSE, respectively.

5 Conclusion

In this paper, we have defined a new primitive called segmented merge, and
presented an efficient parallel algorithm achieving good load balancing and SIMD
unit utilization on GPUs. The experimental results show that two sparse matrix
algorithms, SpTRANS and SpGEMM, using our parallel segmented merge are
greatly faster than existing methods in cuSPARSE and bhSPARSE.

Acknowledgments. We would like to thank the invaluable comments from all the
reviewers. Weifeng Liu is the corresponding author of this paper. This research was sup-
ported by the Science Challenge Project under Grant No. TZZT2016002, the National
Natural Science Foundation of China under Grant No. 61972415, and the Science Foun-
dation of China University of Petroleum, Beijing under Grant No. 2462019YJRC004,
2462020XKJS03.

Segmented Merge 181

References

1. Blelloch, G.E., Heroux, M.A., Zagha, M.: Segmented operations for sparse matrix
computation on vector multiprocessors. Technical report, CMU (1993)

2. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans.
Math. Softw. 38(1), 1:1-1:25 (2011)

3. Deveci, M., Trott, C., Rajamanickam, S.: Multithreaded sparse matrix-matrix
multiplication for many-core and GPU architectures. Parallel Comput. 78, 33–46
(2018)

4. Dotsenko, Y., Govindaraju, N.K., Sloan, P.P., Boyd, C., Manferdelli, J.: Fast scan
algorithms on graphics processors. In: Proceedings of the 22nd Annual Interna-
tional Conference on Supercomputing, ICS 2008, pp. 205–213 (2008)

5. Green, O., McColl, R., Bader, D.A.: GPU merge path: A GPU merging algorithm.
In: Proceedings of the 26th ACM International Conference on Supercomputing,
ICS 2012, pp. 331–340 (2012)

6. Gremse, F., Küpper, K., Naumann, U.: Memory-efficient sparse matrix-matrix mul-
tiplication by row merging on many-core architectures. SIAM J. Sci. Comput.
40(4), C429–C449 (2018)

7. Gustavson, F.G.: Two fast algorithms for sparse matrices: multiplication and per-
muted transposition. ACM Trans. Math. Softw. 4(3), 250–269 (1978)

8. Hou, K., Liu, W., Wang, H., Feng, W.c.: Fast segmented sort on GPUs. In: Pro-
ceedings of the International Conference on Supercomputing, ICS 2017 (2017)

9. Liu, J., He, X., Liu, W., Tan, G.: Register-based implementation of the sparse
general matrix-matrix multiplication on GPUs. In: Proceedings of the 23rd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
2018, pp. 407–408 (2018)

10. Liu, J., He, X., Liu, W., Tan, G.: Register-aware optimizations for parallel sparse
matrix-matrix multiplication. Int. J. Parallel Program. 47, 403–417 (2019)

11. Liu, W., Vinter, B.: A framework for general sparse matrix-matrix multiplication
on GPUs and heterogeneous processors. J. Parallel Distrib. Comput. 85, 47–61
(2015)

12. Liu, W., Vinter, B.: Speculative segmented sum for sparse matrix-vector multipli-
cation on heterogeneous processors. Parallel Comput. 49, 179–193 (2015)

13. Liu, W., Vinter, B.: CSR5: An efficient storage format for cross-platform sparse
matrix-vector multiplication. In: Proceedings of the 29th ACM on International
Conference on Supercomputing, ICS 2015, pp. 339–350 (2015)

14. Nagasaka, Y., Nukada, A., Matsuoka, S.: High-performance and memory-saving
sparse general matrix-matrix multiplication for NVIDIA pascal GPU. In: 2017
46th International Conference on Parallel Processing (ICPP), pp. 101–110 (2017)

15. Wang, H., Liu, W., Hou, K., Feng, W.C.: Parallel transposition of sparse data
structures. In: Proceedings of the 2016 International Conference on Supercomput-
ing, ICS 2016, pp. 33:1–33:13 (2016)

16. Xie, Z., Tan, G., Liu, W., Sun, N.: IA-SpGEMM: an input-aware auto-tuning
framework for parallel sparse matrix-matrix multiplication. In: Proceedings of the
ACM International Conference on Supercomputing, ICS 2019, pp. 94–105 (2019)

A Hierarchical Model of Control Logic
for Simplifying Complex Networks

Protocol Design

Yi Yang1, Wei Quan1(B), Jinli Yan1, Lu Tang2, and Zhigang Sun1

1 Computer College, National University of Defense Technology,
Changsha 410000, Hunan, China
{yangyi14,w.quan}@nudt.edu.cn

2 HuNan Hua Xin Tong Networks, Changsha 410000, Hunan, China

Abstract. With the increase of network protocols complexity, the finite
state machine model commonly used in hardware design is difficult to
directly describe and manage complex protocol control logic. The hierar-
chical approach can simplify the design and implementation of complex
logic. However, the control logic of the protocol is a whole, and how to
divide the control logic of the protocol hierarchically is a problem that
needs to be solved urgently. Therefore, by analyzing the characteristics
of complex protocol control logic, this paper proposes the DoubleDeck
model. This model divides the state in protocol processing into a global
state perceivable by the protocol peer and a local state invisible to the
outside. Next, we established a prototype system of the time synchro-
nization protocol (AS6802) on the FPGA array based on the DoubleDeck
model, which effectively verified the feasibility of the model.

Keywords: Finite state machine · Control logic · Network protocol ·
Hierarchical design

1 Introduction

With the development of communication technology [1,2], the complexity of the
protocol has continued to increase. How to implement complex protocol control
has become an important issue facing hardware implementation protocols [3].
The complexity of protocol control is mainly reflected in two aspects. One is
that while the protocol entity exchanges constantly changing status information
with the peer through packets, it also needs to set various types of timers to
infer the network status and the behavior of the protocol peer; The second is
that the protocol not only needs to monitor asynchronous trigger events, but also
needs to perform various synchronous and asynchronous processing operations.
In the face of complex protocol control, the finite state machine model used
in traditional hardware design is not only poorly readable, but also difficult to
directly describe and manage complex control behaviors [4,5].

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 182–187, 2021.
https://doi.org/10.1007/978-3-030-79478-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_16

A Hierarchical Model of Control Logic 183

In order to simplify the design and implementation of complex control logic,
some recent studies have proposed implementation methods based on hierar-
chical state machines [6]. However, in the existing protocol design schemes, the
control logic of the protocol is a whole, and how to set a common division stan-
dard for complex protocols and achieve feasible hierarchical division of control
logic is still an urgent problem to be solved [7].

In response to the above-mentioned challenges, this paper proposes a Dou-
bleDeck model that supports the hardware implementation of complex protocol
control logic to simplify the complexity of protocol control logic design. The basic
idea of DoubleDeck is to divide the state in the protocol processing process into
a global state that is external to the protocol entity and a local state that is not
external. Among them, the global state and the corresponding conversion logic
constitute the top-level state machine to maintain the changes in the protocol
processing stage. At the same time, the local state associated with the top state
and the corresponding transition logic form a series of bottom state machines to
control the detailed processing details of the processing stage.

2 Motivation and Related Works

2.1 Motivation

In different agents of the same protocol, the control logic executes different con-
trol state machines that are related to each other. In the process of protocol
processing, the protocol entity must obtain the network status and behavior of
the opposite end to correctly complete the protocol-related processing. There
are two main methods for the protocol entity to obtain the network information
of the opposite end. First of all, in view of the characteristics of the packet type
that can reflect the processing state of the protocol, the protocol entity exchanges
state information with the peer through multiple protocol-related packets. Sec-
ond, the protocol entity sets up a series of timers to infer the status information
of the peer.

Through the analysis of the agreement, we found that in the process of
implementation of the agreement, the agreement entities showed a diverse state.
Among them, some states are necessary information for the protocol peer to pro-
cess events (state transitions, etc.), so the protocol peer needs to perceive such
states; some states can be set to an externally invisible state because they involve
the details of the event processing of the protocol peer. Regarding whether the
protocol state can be perceived by the outside world, we divide the protocol
state into a global state perceivable by the protocol peer and a local state that
is not visible from the outside. Therefore, we can decouple the protocol control
logic into global state-related conversion logic and local state-related processing
logic. Therefore, in this article, we propose a two-layer state machine design
model to simplify the design and implementation of complex protocol control
logic by dividing complex protocol control logic into small conversion logic and
processing logic.

184 Y. Yang et al.

2.2 Related Works

The finite state machine (FSM) model is widely used in hardware logic design [4].
However, when there are many protocol states and complex state transitions, the
flat finite state machine model will cause problems such as poor model readability
and difficulty in later debugging. Hierarchical Finite State Machine (HFSM) [6]
adds elements such as state variables and state transitions on the basis of FSM
to further express the dynamic behavior of the system in a fine-grained manner.
HFSM uses a top-down approach to describe the system. In this method, the
hardware logic is divided into multiple smaller sub-modules, which can reduce the
complexity of the overall hardware design. However, the sub-modules are highly
independent and need to be designed and tested separately, which increases the
difficulty of later debugging to a certain extent.

3 DoubleDeck Model Overview

Fig. 1. The overview of DoubleDeck model.

DoubleDeck consists of top deck and bottom deck, as shown in Fig. 1. There
is a top state machine on the Top deck, which is responsible for maintaining
the global state of the protocol and its corresponding transition logic. The top
state machine controls the conversion of the global state and sends the state
information to the CPU and other external devices to facilitate later debugging
and maintenance. In addition, the top state machine controls the bottom state
machine to jump from the waiting state to the active state through the state info
signal. At the same time, the state transition of the top state depends on the
feedback information of the bottom state machine. The bottom state machine
that completes the processing task transfers the next stage of the protocol pro-
cessing (global state) to the top state machine through the state info signal.
Bottom deck consists of a series of bottom state machines. The bottom state
machine implements the processing logic in the global state and provides con-
trol information for the state transition of the global state. The bottom state

A Hierarchical Model of Control Logic 185

machine array processes external trigger events based on flow rules. The bottom
state machine has three states, which are waiting state, active state and end
state. Among them, the active state has multiple processing states, that is, the
partial state mentioned above. When the device receives protocol-related traffic,
the external receiving module sends the protocol-related information to the bot-
tom state machine array. The bottom state machine in the active state receives
the information and enters the appropriate local state according to the protocol
settings to generate command events. When the command event contains global
state jump information, the bottom state machine enters the end state and uses
the state info signal to notify the top state machine to perform state transition.

4 Experiment

The AS6802 protocol describes a fault-tolerant high-precision time synchroniza-
tion algorithm [8]. SM and CM are two protocol roles of AS6802. We imple-
mented the IP core of the AS6802 protocol based on the DoubleDeck model,
and implemented the prototype system of the AS6802 protocol on a network
processing platform composed of multiple Arria10 SoCs (Altera FPGAs). We
instantiate the IP core as three SMs and one CM, as shown in Fig. 2. In addi-
tion, the oscilloscope in Fig. 2 is used to detect the synchronization pulse signal
of each node and calculate the error between the synchronization pulses in real
time. The controller forms an out-of-band configuration network with all nodes
through switches to realize the configuration and status monitoring of each node.

In the first experiment, we used a CM to exchange data with multiple SMs
to achieve time synchronization between nodes. As shown in Fig. 3, we tested
the stay time of the node in the intermediate state during the synchronization
establishment process through three sub-experiments. Experimental results show
that with the increase in the number of nodes, the test network can quickly
synchronize the time of the entire network within 465 microseconds. In addition,
the state transition conditions of the nodes are consistent with the description
in the protocol.

In the second experiment, we evaluated the performance of the AS6802 IP
core using 3 SMs and 1 CM. After all nodes enter the SYNC state, we obtain
the maximum clock deviation of the four nodes through an oscilloscope, that is,
the synchronization accuracy of the test network. We collected 50 sets of data,
as shown in Fig. 4. Analyzing the experimental results, it can be found that the
synchronization accuracy of the four nodes can be controlled within 25 ns, which
fully meets the requirements of high-precision time synchronization.

186 Y. Yang et al.

Fig. 2. An experiment envi-
ronment with 4 nodes (3
SM and 1 CM).

Fig. 3. The time used
by the nodes during the
startup phase.

Fig. 4. Synchronization
precision of the four-
node network.

5 Conclusion

The traditional finite state machine model is difficult to solve the complexity
problem of hardware implementation of complex protocol control logic. Although
the hierarchical method has become an important means to simplify the design
of complex logic, the existing work fails to provide developers with a standard
for dividing complex protocol control logic. This paper decouples the control
logic of the protocol into conversion logic and processing logic, and maps it
to the double-layer state machine of the DoubleDeck model, which effectively
simplifies the design of complex protocol control logic.

Acknowledgments. This work is supported by the Defense Industrial Technology
Development Program (Grant NO. WDZC20205500110). We also thanks HuNan Hua
Xin Tong Networks for their equipments to carry out our experiments.

References

1. Kotulski, Z., Nowak, T.W., Sepczuk, M., Tunia, M.A.: 5G networks: types of iso-
lation and their parameters in RAN and CN slices. Comput. Netw. 171, 107135
(2020)

2. Nasrallah, A., et al.: Ultra-low latency (ULL) networks: the IEEE TSN and IETF
DetNet standards and related 5G ULL research. IEEE Commun. Surv. Tutor. 21(1),
88–145 (2018)

3. Steinhammer, K., Ademaj, A.: Hardware implementation of the time-triggered eth-
ernet controller. In: Rettberg, A., Zanella, M.C., Dömer, R., Gerstlauer, A., Ram-
mig, F.J. (eds.) IESS 2007. ITIFIP, vol. 231, pp. 325–338. Springer, Boston, MA
(2007). https://doi.org/10.1007/978-0-387-72258-0 28

4. Qi, Y., et al.: FSM-based cyber security status analysis method. In: 2019 IEEE
Fourth International Conference on Data Science in Cyberspace (DSC), pp. 510–
515. IEEE (2019)

5. Moshref, M., Bhargava, A., Gupta, A., Yu, M., Govindan, R.: Flow-level state tran-
sition as a new switch primitive for SDN. In: Proceedings of the Third Workshop
on Hot Topics in Software Defined Networking, pp. 61–66 (2014)

https://doi.org/10.1007/978-0-387-72258-0_28

A Hierarchical Model of Control Logic 187

6. Oliveira, A., Melo, A., Sklyarov, V.: Specification, implementation and testing of
HFSMs in dynamically reconfigurable FPGAs. In: Lysaght, P., Irvine, J., Harten-
stein, R. (eds.) FPL 1999. LNCS, vol. 1673, pp. 313–322. Springer, Heidelberg
(1999). https://doi.org/10.1007/978-3-540-48302-1 32

7. Fragal, V.H., Simao, A., Mousavi, M.R.: Hierarchical featured state machines. Sci.
Comput. Program. 171, 67–88 (2019). And Applications, pp. 313–322. Springer
(1999)

8. SAE AS6802: Time-triggered ethernet. SAE International (2011)

https://doi.org/10.1007/978-3-540-48302-1_32

Architecture and Hardware

FPGA-Based Multi-precision Architecture
for Accelerating Large-Scale Floating-Point

Matrix Computing

Longlong Zhang1,2, Yuanxi Peng1(B), Xiao Hu2, Ahui Huang1,2, and Tian Tian2

1 State Key Laboratory of High Performance Computing, School of Computer, National
University of Defense Technology, Changsha, China

pyx@nudt.edu.cn
2 Institute of Microelectronics, School of Computer, National University of Defense

Technology, Changsha, China
xiaohu@nudt.edu.cn

Abstract. Matrix computing plays a vital role in many scientific and engineering
applications, but previous work can only handle the data with specified precision
based on FPGA. This study first presents algorithms, data flows, and mapping
strategies to match the hardware structure for matrix computing of different pre-
cisions. Then, we propose a unified multi-precision matrix computing unit core
that can handle three precisions and three matrix operation modes and can be used
as a coprocessor for large-scale matrix computing which has advantages of low
storage and high efficiency. Finally, we build a complete matrix computing accel-
eration system and deploy it on FPGA using 128 processing elements (PEs). The
experimental results show that the accelerator achieves a maximum frequency
of 180 MHz, and matrix computing of double-precision, single-precision, and
half-precision floating-point data performs 46.1 GFLOPS, 92.1 GFLOPS, and
184.3 GFLOPS respectively, which is superior to other current designs in terms
of application range and performance.

1 Introduction

Matrix computing is widely used in the fields of computing science and engineering
applications, such as signal processing [1], image processing [2], and convolutional
neural networks [3]. In recent years, although matrix computing has achieved good
performance on many acceleration platforms such as CPU, GPU, TPU, and FPGA, its
computing performance is still the bottleneck for the performance improvement of the
entire system.

Compared with other platforms, field-programmable gate arrays (FPGAs) have the
advantage of designing computing structures and storage schemes for specific applica-
tions. Many studies have shown that FPGAs are superior to other platforms in terms
of performance and power consumption [4], and are suitable as a low-cost hardware
accelerator for matrix computing.

© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 191–202, 2021.
https://doi.org/10.1007/978-3-030-79478-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_17

192 L. Zhang et al.

There have beenmany solutions formatrix computing based on FPGAs. Some schol-
ars have proposed algorithms and structures for fixed-point matrix multiplication [5] and
matrix calculation [6]. A systolic array structure has achieved high data throughput and
computing speed [7, 8]. But its demand for the number of PEs and I/O bandwidth is
very high. Another linear array structure is widely used in matrix multiplication [9–11].
Some studies have carried out different types of optimization based on the structure
[12], such as storage optimization [13], I/O, and storage scheduling optimization [14].
This structure has also achieved better results in the acceleration of convolutional neural
networks [15, 16], multi-operation and continuous matrix computing [17].

However, matrix computing based on FPGAs still faces the following concerns.
Firstly, the previous work was specifically designed for matrix computing with certain
data precision. After determining the data type, the calculation structure can not handle
the data with another precision. For example, the signal processing in the controller
has a greater demand for matrix computing with different precisions, which requires
a special hardware accelerator to speed up real-time computing capabilities. Secondly,
most of the existing researchwas interested inmatrixmultiplication. Inmany engineering
applications, such as the filtering algorithm, matrix addition and matrix subtraction are
used together with matrix multiplication. Therefore, they are both important calculation
models. Thirdly, consider that thematrix calculation accuracy in the deep learningmodel
does not need to be too high. It is necessary to design a half-precision floating-point
matrix calculation accelerator that satisfies performance and calculation efficiency.

This study aims to develop an efficientmulti-precisionmatrix computing acceleration
(MCA) unit core based on a unified architecture. The major contributions of this work
are as follows:

• Based on the parallel block matrix computing algorithm and linear array, we present
two parallel single-precision floating-point matrix computing unit. Through the splic-
ing data and the mapping strategy from algorithm to calculation structure, each PE
can complete two single-precision floating-point matrix computing in parallel, which
truly improves the computing speed.

• The proposed multi-precision MCA unit core with a unified structure can handle
three precisions (double-precision, single-precision, and half-precision) and three
commonly used matrix operations (matrix multiplication, matrix addition and matrix
subtraction) which enhances the adaptability of data types.

• We develop the MCA system based on the DSP-FPGA platform. Compare to some
state-of-the-art structures, the proposed systemmeets engineering needs and achieves
better performance.

The remainder of this paper is organized as follows. In Sect. 2, the parallel block
matrix computing algorithm and linear array are introduced. The details of single-
precision, half-precision floating-point matrix computing, multi-precision functional
component, the MCA core and system are described in Sect. 3. The implementation
results and discussion are shown in Sect. 4. Finally, Sect. 5 concludes the work.

FPGA-Based Multi-precision Architecture 193

2 The Parallel Block Matrix Computing Algorithm and Linear
Array

The matrix multiplication involved in this article is shown in Eq. (1), where matrix A,
matrix B, and matrix C are dense matrices of arbitrary size.

CM×N = AM×K × BK×N + CM×N. (1)

We introduce a parallel block matrix multiplication algorithm [17]. As shown in
Algorithm 1, it includes three outer loops and two inner loops. The outer loops with
loop variables Tp, Tt1, and t2 are used for the data transmission of the sub-matrix A and
B, and the initialization of the sub-matrix C. The inner loops with loop variables p and
t1 are used for the calculation in each PE. After the block processing, the sizes of the
sub-matrix blocks A, B, and C are Sp×K, K×St1, and Sp×St1, respectively. Parameters
Sp and St1 are also represent the number of PE and the depth of on-chip RAM in each
PE.

Algorithm 1. Parallel block matrix multiplication.

for Tp=0 to M-1, Sp do
for Tt1=0 to N-1, St1 do

Initialize data block C[Tp:Tp+Sp-1,Tt1:Tt1+St1-1] to zero;
for t2 =0 to K-1 do

Load data block A[Tp:Tp+Sp-1, t2];
Load data block B[t2,Tt1:Tt1+St1-1];

for p=Tp to Tp+Sp-1 do
for t1=Tt1 to Tt1+St1-1 do

C[p,t1]=C[p,t1]+A[p,t2]*B[t2,t1];
Store data block C[Tp:Tp+Sp-1,Tt1:Tt1+St1-1];

As shown in Fig. 1, the structure of linear array corresponding to Algorithm 1 is
usually composed of a set of PEs, a data transfer controller, and two-stage FIFOs. Each
PE includes two registers for storing elements of sub-matrixAandB, aFIFO for buffering
data flow a, an on-chip RAM block for storing a row of elements of sub-matrix C, and
a multiply-accumulate functional component for matrix multiplication.

Before the calculation starts, all elements in the on-chip RAM block are initialized
to zero in advance, and a column of elements from sub-matrix A is preloaded and
distributed to the register a in each PE. When the elements from the sub-matrix B flow
into the linear array by rows, the linear array starts parallel calculations. Then, each
PE completes the ck = a × b + ck−1 operation through the write-back mechanism and
saves the intermediate result in the on-chip RAM block. After K iterations, the result of
sub-matrix C is moved to the off-chip memory.

The above algorithm and structure can complete the functions of A×B±C. When
B = 1, the addition and subtraction operations can be realized. It uses the identity matrix
I to realize the matrix addition (subtraction) of sub-matrix A and sub-matrix C, as shown
in Eq. (2).

CM×K = AM×K × IK×K ± CM×K . (2)

194 L. Zhang et al.

Fig. 1. Linear array architecture and computing process.

The matrix addition (subtraction) uses the same structure and similar data flow
method as matrix multiplication. The sub-matrix C originally initialized to a zero matrix
is loaded into the on-chip RAM block by the RAM channel in advance.

3 Multi-precision Floating-Point Matrix Computing Based
on a Unified Structure

To solve the problem of multiple data types for matrix computing, we first discuss
how to design algorithms, data flows, and PE structures for single-precision and half-
precisionfloating-pointmatrix computing based on the aforementioned double-precision
floating-point matrix computing and linear array. Then, we introduce the corresponding
floating-point multiply-accumulate (subtract) functional component in each PE. Finally,
we describe the multi-precision floating-point MCA unit core and take the core to build
a multi-precision MCA system.

3.1 Two Parallel Single-Precision Floating-Point Matrix Computing

In this section, a PE in the proposed structure can complete two single-precision floating-
point data operations in the same clock cycles.

As shown in Algorithm 2, two parallel single-precision floating-point matrix mul-
tiplication uses the same block method, loop mode, and data flow as Algorithm 1. The
difference is that the size of sub-matrix A and C becomes 2Sp×K and 2Sp×St1, respec-
tively. In the innermost loop, the original multiply-accumulate operation becomes two
parallel multiply-accumulate operations.

FPGA-Based Multi-precision Architecture 195

Algorithm 2. Two parallel single-precision floating-point matrix multiplication.

Initialize data block C[0:2Sp-1,0:St1-1] to zero;
for t2 =0 to K-1 do

Load data block A[0:2Sp-1, t2];
Load data block B[t2,0: St1-1];

for p=0 to Sp -1 do
for q=0 to St1-1 do

C[2p,q]=C[2p,q]+A[2p,t2]*B[t2,q];
C[2p+1,q]=C[2p+1,q]+A[2p+1,t2]*B[t2,q];

Store data block C[0: 2Sp -1,0: St1-1];

Figure 2 shows the PE structure of several data types. The data sources in Fig. 2(a)
and Fig. 2(b) are double-precision and single-precision floating-point data, respectively.

Generally, each PE has three source operands. In the structure of two parallel single-
precision floating-point matrix multiplication, we use a data splicing mechanism when
preparing the source operands. Two32-bit single-precisionfloating-point data are spliced
into a 64-bit source operand, that is, the two single-precision floating-point data are
placed in the upper half and the lower half of the register, respectively.

Fig. 2. The PE structure of matrix multiplication. (a) Double-precision floating-point. (b) Two
parallel single-precision floating-point. (c) Four parallel half-precision floating-point.

Figure 3 describes the mapping process of single-precision floating-point matrix
multiplication from algorithm to hardware structure. Firstly, the value of the sub-matrix
C is initialized to zero matrix. Then, when loading a column of data (2Sp) from sub-
matrixA,we stitch two adjacent single-precision data into a 64-bit operand and distribute
it to the corresponding PE. When loading data row by row from the sub-matrix B, we
also stitch two identical single-precision data into a 64-bit operand and distribute it to
each PE. At the same time, the calculation of the linear array begins.

After the write-back mechanism and K iterations, the results are 64-bit operands.
Each PE is responsible for calculating the two rows of sub-matrix C, where the lower
32 bits are the result of the previous row of sub-matrix C, and the upper 32 bits are the
result of the subsequent row of sub-matrix C.

The single-precision floating-point matrix addition (subtraction) uses a similar algo-
rithm and calculation structure with the single-precision floating-point matrix multipli-
cation. The difference is that the sub-matrix B becomes an identity matrix, and the sub-
matrix C participating in multiply-accumulate (subtract) operation needs to be imported
into the on-chip RAM in advance.

196 L. Zhang et al.

Fig. 3. Themapping process of two parallel single-precision floating-point matrix multiplication.

3.2 Four Parallel Half-Precision Floating-Point Matrix Computing

In half-precision floating-point matrixmultiplication, one PE can complete four floating-
point data operations in the same clock cycles. As shown in Algorithm 3, the size of
sub-matrix A is 4Sp × K, the size of sub-matrix B is unchanged, and the size of sub-
matrix C is 4Sp ×St1. In the innermost loop, the original multiply-accumulate operation
becomes four parallel multiply-accumulate operations.

Algorithm 3. Half-precision floating-point matrix multiplication.
Initialize data block C[0:4Sp-1,0:St1-1] to zero;

for t2 =0 to K-1 do
Load data block A[0:4Sp-1, t2];
Load data block B[t2,0: St1-1];

for p=0 to Sp -1 do
for q=0 to St1-1 do

C[4p,q]=C[4p,q]+A[4p,t2]*B[t2,q];
C[4p+1,q]=C[4p+1,q]+A[4p+1,t2]*B[t2,q];
C[4p+2,q]=C[4p+2,q]+A[4p+2,t2]*B[t2,q];
C[4p+3,q]=C[4p+3,q]+A[4p+3,t2]*B[t2,q];

Store data block C[0: 4Sp -1,0: St1-1];

As shown in Fig. 2(c), whenwe prepare the source operand, four 16-bit half-precision
floating-point data are spliced into a 64-bit source operand. For example, half-precision
floating-point source operands a′

41_a
′
31_a

′
21_a

′
11 and b′

11_b
′
11_b

′
11_b

′
11 are operated to

obtain four half-precision operation results c′
41_c

′
31_c

′
21_c

′
11.

Similar to the process shown in Fig. 3, when loading a column of data (4Sp) from
sub-matrix A, we stitch four adjacent half-precision data into a 64-bit source operand
and distribute it to the corresponding PE. When loading data row by row from the sub-
matrix B, we also stitch four identical half-precision data into a 64-bit source operand
and distribute it to each PE. Here, each PE is responsible for calculating four rows of
sub-matrix C.

Besides, the half-precision floating-point matrix addition (subtraction) has similari-
ties with the half-precision floating-point matrix multiplication.

FPGA-Based Multi-precision Architecture 197

3.3 Multi-precision Floating-Point Multiply-Accumulate (Subtract) Functional
Component

We adjust and optimize a self-designed and high-performance floating-point multiply-
accumulate (subtract) functional component [18] tomeet the needs ofmatrix calculation.
Figure 4 shows the three precision floating-point data formats that comply with the
IEEE 754 standard. According to the rules of data format, the multi-precision functional
component can perform single-precision and half-precision floating-point operations by
maximizing the logical structure of double-precision floating-point operation.

Fig. 4. Different precision floating-point formats used in the unit. (a) Double-precision format.
(b) Single-precision format. (c) Half-precision format.

The multi-precision functional unit adopts a six-stage pipeline design which mainly
includes the modules, such as operand preparation, mantissa multiplication, Multiply-
add, normalization processing, exception judgment, and result selection.

After reading the operands, the functional unit separates the exponent and mantissa
according to the format and performs corresponding operations respectively. Figure 5(a)
shows that in half-precision calculation, the input 64-bit source operand is split into four
half-precision floating-point format data.

Fig. 5. (a) The process of half-precision data preparation. (b) Multiplexing multiplier in the
mantissa multiplication module.

Besides, we use four single-precision multipliers to perform each group of man-
tissa multiplications in parallel. The hardware overhead can be saved by multiplexing
the multipliers. As shown in Fig. 5(b), when performing half-precision floating-point
operations, the separated 4-way multiplication operation data are respectively sent to the
upper 11 bits of the four 32*32 bit multipliers.

198 L. Zhang et al.

3.4 Implementation for Multi-precision MCA Unit Core and MCA System

TheMCAunit core supportsmatrices computing of arbitrary size. As shown in Fig. 6, the
core receives the matrix operation mode signal provided externally and decides whether
to load or initialize the sub-matrix C. It can also select the appropriate precision mode
according to the actual needs. Then we supply the corresponding operands and process
the corresponding operands according to the precision mode.

In the process of implementing the multi-precision MCA unit core, we add logic for
selecting data types, data splicing, and parts that cannot be reused, but the logic delay
constraints meet the design requirements.

Fig. 6. The architecture of multi-precision MCA unit core and MCA system.

The overall structure of the system is shown in Fig. 6. The MCA system uses the
architecture of DSP + FPGA. Firstly, the DSP sends instructions and control signals to
the coprocessor and transfers the data from the memory on the host side to the DDR
on the coprocessor side by starting the SRIO module. Then, the coprocessor calculates
autonomously. After the overall calculation is completed, the system starts the SRIO
module again and returns the calculation result. Therefore, when the coprocessor is
working, the DSP can execute other instructions to achieve independent acceleration.

The coprocessor includes an MCA unit core and data transmission logic. The logic
mainly includes the DMA module for selecting operation mode, controlling data flow,
and transmitting data within the coprocessor. The connection between modules and the
core uses the AXI protocol to facilitate communication between each other.

4 Experimental Results and Discussions

The MCA unit core is programmed in Verilog HDL, synthesized, and simulated using
synthesis tools (Xilinx Vivado 2016). Then, we deployed the MCA system on the DSP
+ FPGA platform.

4.1 Synthesis Results

We use the 585T development board as the target device and synthesize the MCA unit
using 128 PEs under typical conditions. The delay of each stage of the pipeline meets
the target delay of 550 ps and the total power consumption is 5.48 W.

Different numbers of PEs directly affects the calculation efficiency and hardware
overhead in the proposed structure. Table 1 shows the logical resource consumption of

FPGA-Based Multi-precision Architecture 199

the MCA unit with different numbers of PEs. We can see that as the number of PEs
increases, LUTs and Slice Registers increase. In addition to the number of PEs, the
RAM block consumption is also related to the size of the sub-matrix block. Because
the number of PEs determines the number of RAM blocks used, and the size of the
sub-matrix block determines the depth of the RAM blocks.

Because the depth of the RAMblock in the PE represents the number of times that the
data of sub-matrix block A can be reused. To maximize the reuse of data, we can choose
the depth of the RAM block according to the size of the sub-matrix B. In principle, the
larger the better if the on-chip storage allows. We set the depth of the RAM block to 512
in the project.

Table 1. Resource consumption of different numbers of PEs.

PEs LUTs Slice registers BRAM (18K)

32 70130 58920 41

64 139860 117700 73

128 278960 234450 140

For M×N rectangular matrices, due to the idea of block matrix, our storage require-
ment is only 2SpSt1, where the parameters Sp and St1 represent the number of rows and
columns of the sub-matrix C, respectively. Therefore, this structure has the characteristic
of low storage requirement in large-scale matrix computing.

4.2 Performance Analysis

Table 2 shows the relationship between the maximum operating frequency and peak
performance of the multi-precision MCA unit with the number of PEs. When we set
128 PEs, the maximum operating frequency achieves 180 MHz. At this time, the multi-
precision MCA unit can complete 128 double-precision multiplication operations and
128 addition operations in one cycle. The peak performance of double-precision floating-
point matrix computing, for example, can be estimated as 180Mhz× 128 FLOP× 2 =
46.1GFLOPS. It can also complete two times single-precision floating-point data and

Table 2. Number of PEs, clock speed, and peak performance for double-precision/ single-
precision/half-precision floating-point data.

PEs 32 64 128

Clock Speed (Mhz) 202 195 180

Peak performance (GFLOPS) Double-precision 12.92 24.96 46.1

Single-precision 25.85 49.92 92.1

Half-precision 51.71 99.84 184.3

200 L. Zhang et al.

four times half-precision floating-point data at the same time. Therefore, single-precision
floating-point andhalf-precisionfloating-point performance can reach92.1GFLOPSand
184.3 GFLOPS, respectively.

In large-scalematrix computing, we have to consider the time to initialize the system,
the time to transfer data from external memory, and the calculation unit waiting for
calculation data that may occur during the calculation process.

Firstly, for the time to initialize the system, the main consumption is preloading data.
In multi-precisionmatrix multiplication andmatrix addition (subtraction), the amount of
preloading data are Sp and Sp+SpSt1, respectively. When the size of the matrix becomes
larger, the ratio of data preload time to the total time will be small, and the calculation
is more efficient.

Secondly, according to the characteristics of the algorithm and structure, we analyze
the data transfer time in the calculation process ofmatrix computing.As shown inEq. (3),
we use �Br

i and �Cr
i to denote elements containing the ith row of matrix B and matrix C,

respectively.

�Cr
1 = a1,1 �Br

1 + a1,2 �Br
2 + . . . + a1,k �Br

k. (3)

Let one PE calculates a row of elements from left to right. After k iterations, the
first PE can complete the calculation of the first row of the matrix C. Then, the ith PE
is responsible for the calculation of the ith row of the matrix C. More generally, the
extension to all rows of the matrix C is represented by Eq. (4).

�Cr
i = ai,1 �Br

1 + ai,2 �Br
2 + . . . + ai,k �Br

k. (4)

It can be seen from this formulation that all PEs canwork in parallel without affecting
each other. We can reuse the data ai,k by reasonably setting the number of elements in a
row ofmatrix B, and at the same time, the latency of floating-point functional component
and the datamoving time can be hidden into the computing time,which effectively avoids
the time of waiting data and ensures the pipeline of the structure.

4.3 Discussion

As shown in Table 3, we compare the proposed multi-precision matrix calculation
acceleration unit with related work.

Compared to the double-precision floating-pointmatrixmultiplication structure [13],
our calculation structure merges more precisions and more matrix calculation modes.
Compared with [17], although our proposed multi-precision MCA unit places fewer
PEs, it does not affect the performance of the calculation unit. We can see from Table
3 that when calculating single-precision floating-point data, the performance is close to
the structure [17]. When calculating half-precision floating-point data, the performance
exceeds the structure [17].

Although the proposed structure based on the circulant matrix [6] has reached a high
performance, it is only for fixed-point data. This can notmeet the needs ofmost engineer-
ing calculations, such as the nonlinear Kalman filter algorithm and the extended Kalman
filter algorithm that require floating-point matrix multiplication and matrix addition. Its
size of the matrices is equal to the number of PEs, and it can only handle square matrices.

FPGA-Based Multi-precision Architecture 201

Therefore, its processing capacity is limited. Besides, the computational performance
of our structure on a half-precision floating-point (16bit) is better than that of the struc-
ture on fixed-point (18bit) [6]. Our preparation time for preloading data is significantly
shorter than their preparation time for preloading and generating circulant matrix.

Another matrix computing system [19] with multiple accelerators attempts to set up
separate computing arrays for different matrix operations. We can see that our structure
is superior to the structure in both performance and energy efficiency.

Table 3. Performance and hardware overhead compared to related work.

Ours [17] [13] [19] [6]

Supported matrix
sizes

M × N M × N M × N M × N N × N

No. of PEs 128 256 256 N.A 500

f (Mhz) 180 195 181 150 346

Performance
(GFLOPS)

46.1/92.1/184.3 99.8 N.A 76.8 173

Power (W) 5.48 5.24 N.A 4.59 N.A

Energy efficiency
(GFLOPS/W)

8.4/16.81/33.63 19.05 N.A 16.7 N.A

5 Conclusions

This paper extends the matrix calculation to a multi-precision and multi-operation envi-
ronment based on the block matrix computing algorithm and linear array. Through
adjusting data flow and reusing logic, the proposed multi-precision floating-point MCA
unit can process half-precision, single-precision, and double-precision floating-point
data at the same time. Then, we built the MCA system based on the MCA unit core.
Compared with the existing matrix calculation structure, our matrix calculation unit can
handle three kinds of precision and three modes of operation in a unified structure and
features low storage and high efficiency. We plan to improve the arithmetic compo-
nent to support more precise numerical calculations including fixed-point and extended
double-precision in the future.

Acknowledgments. This work was partially supported by the National Science and Technology
Major Project (2017-V-0014-0066).

References

1. Amira, A., Bouridane, A., Milligan, P.: Accelerating matrix product on reconfigurable hard-
ware for signal processing. In: Brebner, G., Woods, R. (eds.) FPL 2001. LNCS, vol. 2147,
pp. 101–111. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44687-7_11

https://doi.org/10.1007/3-540-44687-7_11

202 L. Zhang et al.

2. Bensaali, F., Amira, A., Bouridane, A.: Accelerating matrix product on reconfigurable
hardware for image processing applications. IEE Proc. Circ. Devices Syst. 152, 236–246
(2005)

3. Liu, Z.Q., et al.: Throughput-optimized FPGA accelerator for deep convolutional neural
networks. ACM Trans. Reconfigurable Technol. Syst. 10(3), 23 (2017)

4. Jovanovic, Z.,Milutinovic, V.: FPGA accelerator for floating-point matrixmultiplication. IET
Comput. Digit. Tech. 6(4), 249–256 (2012)

5. Sonawane, D., Sutaone, M.S., Malek, I.: Systolic architecture for integer point matrix
multiplication using FPGA, pp. 3822–3825 (2009)

6. Abbaszadeh,A., et al.:An scalablematrix computingunit architecture for FPGA, andSCUMO
user design interface. Electronics 8(1), 20 (2019)

7. Qasim, S.M., Abbasi, S.A., Almashary, B.: A proposed FPGA-based parallel architecture for
matrix multiplication. In: Proceedings of the IEEE Asia Pacific Conference on Circuits and
Systems (2008)

8. Zhou, L.T., et al.: Research on Systolic multiplication technology based on FPGA. Comput.
Eng. Sci. 37, 1632–1636 (2015)

9. Jang, J.-W., Choi, S.B., Prasanna, V.K.: Energy- and time-efficient matrix multiplication on
FPGAs. IEEETrans. Very Large Scale Integr. (VLSI) Syst. 13(11), 1305–1319 (2005). https://
doi.org/10.1109/TVLSI.2005.859562

10. Zhuo, L., Prasanna, V.K.: Scalable and modular algorithms for floating-point matrix mul-
tiplication on reconfigurable computing systems. IEEE Trans. Parallel Distrib. Syst. 18(4),
433–448 (2007)

11. Kumar, V.B.Y., et al.: FPGA based high performance double-precision matrix multiplication.
Int. J. Parallel Prog. 38(3), 322–338 (2010)

12. Dou, Y., et al.: 64-bit floating-point FPGAmatrix multiplication. In: Proceedings of the 2005
ACM/SIGDA13th International Symposium on Field-Programmable Gate Arrays,Monterey,
California, USA, pp. 86–95. Association for Computing Machinery (2005)

13. Wu, G.M., Dou, Y., Wang, M.: High performance and memory efficient implementation of
matrix multiplication on FPGAs. In: 2010 International Conference on Field-Programmable
Technology, Beijing, pp. 134–137 (2010)

14. Jia, X., Wu, G.M., Xie, X.H.: A high-performance accelerator for floating-point matrix multi-
plication. In: 2017 15th IEEE International SymposiumonParallel andDistributed Processing
with Applications, pp. 396–402. IEEE, New York (2017)

15. Qiao, Y.R., et al.: FPGA-accelerated deep convolutional neural networks for high throughput
and energy efficiency. Concurr. Comput.-Pract. Exp. 29(20), 20 (2017)

16. Shen, J., et al.: Towards a multi-array architecture for accelerating large-scale matrix
multiplication on FPGAs (2018)

17. Zhang, L., et al.: A scalable architecture for accelerating multi-operation and continuous
floating-point matrix computing on FPGAs. IEEE Access 8, 92469–92478 (2020)

18. Tian, T.: The Research and Implementation of High Performance SIMD Floating-Point
Multiplication Accumulator Unit for FT-XDSP. National University of Defense Technology
(2013)

19. Wang, W.Q., et al.: A universal FPGA-based floating-point matrix processor for mobile
systems. In: Proceedings of the 2014 International Conference on Field-Programmable
Technology, pp. 139–146. IEEE, New York (2014)

https://doi.org/10.1109/TVLSI.2005.859562

A Configurable Hardware Architecture
for Runtime Application of Network Calculus

Xiao Hu1(B) and Zhonghai Lu2

1 School of Computer, National University of Defense Technology,
Changsha, People’s Republic of China

xiaohu@nudt.edu.cn
2 KTH Royal Institute of Technology, Stockholm, Sweden

zhonghai@kth.se

Abstract. Network Calculus has been a foundational theory for analyzing and
ensuring Quality-of-Service (QoS) in a variety of networks including Networks
on Chip (NoCs). To fulfill dynamic QoS requirements of applications, runtime
application of network calculus is essential. However, the primitive operations in
network calculus such as arrival curve, min-plus convolution and min-plus decon-
volution are very time consumingwhen calculated in software because of the large
volume and long latency of computation. For the first time, we propose a config-
urable hardware architecture to enable runtime application of network calculus.
It employs a unified pipeline that can be dynamically configured to efficiently
calculate the arrival curve, min-plus convolution, and min-plus deconvolution at
runtime. We have implemented and synthesized this hardware architecture on a
Xilinx FPGA platform to quantify its performance and resource consumption.
Furthermore, we have built a prototype NoC system incorporating this hardware
for dynamic flow regulation to effectively achieve QoS at runtime.

Keywords: Network calculus · Hardware architecture · Hardware
configuration · Network-on-chip · Quality-of-Service

1 Introduction

Network Calculus [1–4] has been an active research area and successfully applied to
fulfill Quality-of-Service (QoS) requirements of various networks. Recently, it has also
been successfully applied to Networks on Chip (NoCs) in Chip Many-core Processors
(CMPs) and Many-Processor Systems-on-Chip (MPSoCs) [5–8].

Traditionally, network calculus is used at design time as a theoretical tool for worst-
case performance derivations of packet delay upper bound, maximum buffer backlog,
minimal flow throughput etc. In recent years, network calculus is also applied in dynamic
network admission control to monitor the changing traffic scenario in hard real-time
systems. Huang et al. proposed a light-weight hardware module to address the traffic
conformity problem for run-time inputs of a hard realtime system [6]. The arrival curve
capturing theworst-case/best-case event arrivals in the timedomain canbe conservatively

© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 203–216, 2021.
https://doi.org/10.1007/978-3-030-79478-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_18

204 X. Hu and Z. Lu

approximated by a set of staircase functions, each of which can be modeled by a leaky
bucket. They used a dual-bucket mechanism to monitor each staircase function during
run-time, one for conformity verification and the other for traffic regulation. In case
too many violation events are detected, the regulator delays the input events to fulfill
the arrival curve specification assumed at design time. By conducting the conformity
check, the system is able to monitor and regulate the actual behavior of NoC traffic flows
in order to realize dynamic QoS in time-critical applications. However, the method in
[6] for the conformity check of actual traffic stream against predefined specification
assumes the linear arrival curve. Since it does not compute the arrival curve, it cannot be
used for general arrival curve. Also, to enable a full scale of applying network calculus
for dynamic QoS assurance, a systematic approach needs to be taken. For example, to
compute output arrival curve needs to realize min-plus deconvolution, because output
arrival curve is the result of min-plus deconvolution between input arrival curve and
service curve. Indeed, to process both arrival curve and service curve,weneed to calculate
basic network calculus operations, which include both min-plus convolution and min-
plus deconvolution.

From the software perspective, basic network calculus operations such as arrival
curve, min-plus convolution, and min-plus deconvolution can be computed at runtime
but are very time-consuming due to high complexity. For example, the computation
complexity of the min-plus deconvolution operation in the recursive Eq. (8) (Sect. 3.3)
is O(N), where N is the length of calculation window in number of data items or cycles.
When N = 128, there are 256 (128 × 2) operations for computation. In software, it
costs about 22.9 μs on an Intel Core i3-3240 3.4 GHz CPU with Windows 7 operating
system (see Sect. 4.3). However, in timing-critical applications, the system requires
quick verification and fast regulation of flows online in several cycles according to the
computation results of network calculus. Under such circumstances, how to accelerate
the calculation speed in hardware fully supporting network calculus operations becomes
anopen challenge. Furthermore, to be efficient, it is desirable to have the network calculus
hardware architecture configurable such that different operations can be done by simple
configurations on the same hardware substrate.

To address the above challenge, we propose a hardware architecture for runtime
(online) computation of network calculus operations. This hardware architecture is
designed by analyzing the rudimentary definitions of the arrival curve, min-plus con-
volution and min-plus deconvolution. Through analyzing their recursive accumulative
behaviors in their mathematical representations, we are able to reckon a unified pipeline
architecture to conduct these primitive operations through simple configurations via
de-multiplexing and multiplexing selections. We have implemented and optimized the
hardware design and synthesized it on FPGA. In a case study, the specialized hardware
module is used to build a runtime flow monitor attached to regulators in the network
interface ofNoC so as to facilitate dynamic flow regulation. To the best of our knowledge,
no previous research has touched upon this approach.

The main contributions of the paper can be summarized as follows.

1. We develop a configurable hardware architecture for runtime computation of net-
work calculus operations including arrival curve,min-plus convolution, andmin-plus

A Configurable Hardware Architecture for Runtime Application 205

deconvolution. The hardware architecture features a unified pipeline where the three
network calculus operations can be performed by runtime configurations.

2. We implement the proposed design on a Xilinx FPGA platform and evaluate its area
and speed, demonstrating its efficiency and feasibility.

3. With a multi-media playback system, the architecture is prototyped and used to
satisfy application QoS, showing its potential in runtime monitoring of QoS bounds.

2 Related Work

Network calculus originated frommacronetworks for performanceguarantees in Internet
and ATM [1–4]. Theoretically it transforms complex non-linear network systems into
analyzable linear systems [2–4]. In real-time calculus [9], it is extended to define both
upper/lower arrival curves and upper/lower service curves to compute worst-case delay
bounds under various scheduling polices for real-time tasks.

In recent years, network calculus has been applied to NoCs for analyzing worst-case
performance guarantees of real-time applications, for example, to determine the worst-
case reorder buffer size [11], to design network congestion control strategy [13] and
to develop a per-flow delay bound analysis methodology for Intel’s eXtensible Micro-
Architectural Specification (xMAS) [7].Notably in industrial practices, network calculus
has been employed as a theoretical foundation to build the data NoC of Kalray’s MPPA-
256 many-core processor to achieve guaranteed communication services in per-flow
delay and bandwidth [8].

In network calculus, traffic specification (e.g. linear arrival curve) can be used not
only to characterize flows but also to serve as a contract for QoS specification. Subse-
quently, flow regulation as a traffic shaping technique can be employed at runtime for
admission control to check conformity. In [10, 12], flow regulation is used to achieve
QoS communication with low buffering cost when integrating IPs to NoC architectures.
Lu andWang presented a dynamic flow regulation [12], which overcomes the rigidity of
static flow regulation that pre-configures regulation parameters statically and only once.
The dynamic regulation is made possible by employing a sliding window based runtime
flow (σ, ρ) characterization technique, where σ bounds traffic burstiness and ρ reflects
the average rate. The effectiveness of dynamic traffic regulation for system performance
improvement is further demonstrated in [14].

3 Configurable Hardware Architecture

We consider network calculus in a digital system. A data packet stream, noted as flow,
arrives cycle by cycle. The two basic operations in network calculus are min-plus con-
volution and min-plus deconvolution [2] in min-plus algebra, noted as f ⊗ g and f Ø g,
respectively (see definitions below). There are two input functions, f and g, in convolu-
tion and deconvolution. When the two functions are the same, they are noted as f ⊗ f
and f Ø f , respectively. The result of f Ø f is in fact the Arrival Curve (AC) [2], which
may be separated as the third operation due to its importance.

To conduct network calculus calculations in hardware at system runtime, we propose
a unified hardware architecture that can flexibly support all above three basic network

206 X. Hu and Z. Lu

calculus operations, i.e., f⊗ g, f Ø g, and f Ø f (AC) by simple configurations. As such,
the hardware resources consumed by these operations can be shared for efficiency so
as to facilitate and justify runtime application of network calculus. In the following, we
detail our flexible hardware architecture step by step.

3.1 Micro-architecture for Function f Ø f (Arrival Curve)

We start by designing a functional hardware architecture for Arrival Curve.

Definition of Arrival Curve [2]: Given a wide-sense increasing function α defined for
t ≥ 0, we say that a flow f is constrained by α if and only if for all s ≤ t: f(t) − f(s) ≤ α(t
− s). Equivalently we say that f has α as an arrival curve.

Let di be the size of arrival data at cycle i, from the definition, we have:

(f �f)(t) = sup
u≥0

{f (t + u) − f (u)} = sup
u≥0

{∑
u+1≤i≤t+u

di
}
, t > 0 (1)

Here sup is the supremum operator. We can define
∑

u+1≤i≤t+udi in Eq. (1) as an
intermediate function, named AR(t). Then we have

(f �f)(t) = sup
u≥0

{AR(t)} (2)

Furthermore, AR(t) can be iteratively calculated by the following recursive function:

AR(t) =
∑

u+1≤i≤t+u

di =
∑

u+1≤i≤t+u−1

di + dt+u = dt+u + AR(t − 1) (3)

In particular, AR(0) = d0

Compute Micro-architecture for Arrival Curve: We take advantage of the recursive
equation of AR(t) in Eq. (3) to define an effective hardware micro-architecture for com-
puting arrival curve. We can observe that, by defining cascaded registers storing AR(t)
values, (f �f)(t) can be transformed into recording the maximum values in AR(t) regis-
ters. In this way, we can design a pipeline circuit to efficiently calculate the arrival curve
in a processing window to handle the continuous data stream.

Figure 1 draws the hardware micro-architecture for computing arrival curve. The
basic logic unit is called AddShiftComp unit. There areN AddShiftComp units cascaded
in a pipeline. Each unit has an adder, a comparator, a multiplexer and a shifter connected
to the next unit. As a generic efficient hardware design, the arrival curve is only calculated
in one sliding window with a length of N data items. The Sampling unit is used in the
sampling mode, which is to be detailed in the next section. If the Sampling unit is
bypassed, a new data item flows into the processing pipeline at each cycle.

In Fig. 1, f(t) is the input flow and di is the volume of arrival data at cycle i. AR is
the Accumulating Register and BR is the Bound Register. The circuit also comprises the
adders, comparators and multiplexers. On each cycle, the value of every AR added with
current di is written into the next AR. Each AR is compared with the corresponding BR,
the bigger one is written into the BR again. The Samp_CTL, AR_RST and BR_RST are

A Configurable Hardware Architecture for Runtime Application 207

control signals. The Samp_CTL is designed for the sampling mode. The AR_RST and
BR_RST are used to initialize the AR and BR registers. After N + 2 cycles, the values
of the accumulating function in the window of length N are computed and stored in
ARs. The maximum bound values of ARs are stored in BRs. All values in BRs represent
the arrival curve. The results in BRs can be snapshotted or registered and shifted out.
When clearing all ARs and BRs with related Reset (RST) signals, the process restarts.
To use the results in BRs, i.e., the dynamic arrival curve, by other circuits, we design
Snapshot&Shiftout registers (SFs). With Control signal, these SFs are updated with all
BRs snapshoted and shifted out one by one.

Snapshot&ShiftOut of BR

acc_reg
M bits

AR_0
M bits

AR_1 AR_N-1

BR_0
M bits

BR_1 BR_N-1
rst rst rstBR_RST

Comp
&MUX

Bound Registers
Output

Input flow

Snapshot&ShiftOut of BR

rst rst rst

rst

AR_RST

Comp
&MUX

Comp
&MUX

f(t):di

On-line NC module
Sampling unit

AddShiftComp unit

Counter
C bits

CLK

SF_0
M bits0

SF_1 SF_N-1

Snapshot/
ShiftOut
Control

Fig. 1. Hardware micro-architecture for computing arrival curve.

Operation Details with an Example: The process of computing arrival curve is listed
in Fig. 2. Taking N = 4 as an example, the processing details are given in Table 1. As N
= 4, there are 4 ARs (AR_0~AR_3) and 4 BRs (BR_0~BR_3). At cycle 1, the volume
of arrival data is d0 and all ARs and BRs are cleared with AR_RSTand BR_RST. At
cycle 2, the volume of arrival data is d1 and all ARs are d0 and all BRs are still 0. As the
cycle time advances, AR_0 is equal to last data item di−1, AR_1 equal to di−2 + di−1,
AR_2 equal to di−3 + di−2 + di−1 and AR_3 equal to di−4 + di−3 + di−2 + di−1.
BR_0 stores the maximum value of AR_0, i.e., sup

0≤j≤i−2

{
dj

}
. BR_1 stores the maximum

value of AR_1, i.e., sup
0≤j≤i−3

{
dj + dj+1

}
. BR_2 stores the maximum value of AR_2,

which is sup
0≤j≤i−4

{
dj + dj+1 + dj+2

}
. BR_3 stores the maximum value of AR_3, which

is sup
0≤j≤i−5

{
dj + dj+1 + dj+2 + dj+3

}
. Then we get arrival curve via BR_0~BR_3.

The hardware cost can be estimated from Fig. 1 (2× N ×M register bits for AR/BR
and 2×N adders for compare/add). It is almost linear with numberN of AddShiftComp
units.

208 X. Hu and Z. Lu

1: //Config step
2: Clear all ARs with AR_RST
3: Clear all BRs with BR_RST
4: //Work step
5: while (N)
6: { input di per cycle }
7: //Output step
8: Snapshot BR Registers into Snap-
shot&Shiftout registers
9: Shift out Snapshot&Shiftout registers (Arrival
Curve) to other circuits one by one

Fig. 2. Process of computing arrival curve.

Data
flow

w1 w2 w4w0

Sampling Point

Max Bound

Min Bound

t (cycles)

 Accumulating Function

w3

Fig. 3. Sampling-mode bounds for Arrival
Curve.

Table 1. Register details of computing arrival curve

3.2 Sampling-Based Micro-architecture for Arrival Curve

For some applications, there is a need to sample arrival curve at a larger time granularity
than per cycle. For example, a system might not generate input data at each and every
cycle. It is possible that the traffic generation is asynchronous and has a larger period
than the arrival curve computation hardware. It might also be possible that an arrival
curve at a larger time granularity is more interesting for the QoS analysis. In such
cases, a larger time scale is needed to calculate arrival curve. To support this feature,
we design a sampling scheme at a larger time scale as the sampling module shown in
Fig. 1. It consists of a C-bit counter, an acc_reg register and an accumulator. Input di is
accumulated into the acc_reg every cycle continuously. TheC-bit counter as a controller
enables the acc_reg output to the pipeline at a period of W cycles. The circuit samples
the arrival curve every W cycles in the sampling mode (the ith sampling point is at i ×
W cycles). The max/min bound is indicated by the upper/lower stairs in Fig. 3.

A Configurable Hardware Architecture for Runtime Application 209

Comparing with the original scheme recording all data of Full Accumulating Func-
tion (FAF) curve, the accumulating function curve recorded in the sampling mode (Sam-
pling Accumulating Function, SAF) is composed of these sampling points. The SAF is
accurate at these sampling points. Between two sampling points, the FAF may be any
curve not larger than the upper sampling point and not less than the lower sampling
point. Therefore, the maximum bound of FAF is the upper stairs set by sampling points
and the minimum bound of FAF is the lower stairs set by sampling points.

The maximum bound of arrival curve can be expressed as:

αmax =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sup
0≤i

{wi + wi+1}, 0 ≤ t < T

sup
0≤i

{wi + wi+1 + wi+2},T ≤ t < 2T

sup
0≤i

{wi + wi+1 + wi+2 + wi+3}, 2T ≤ t < 3T

· · ·

(4)

The minimum bound of arrival curve can be expressed as:

αmin =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sup
0≤i

{wi}, 0 ≤ t < T

sup
0≤i

{wi + wi+1},T ≤ t < 2T

sup
0≤i

{wi + wi+1 + wi+2}, 2T ≤ t < 3T

· · ·

(5)

3.3 Micro-architecture for Function f Ø g

Definition of Min-plus Deconvolution [2]: f Ø g denotes the min-plus deconvolution.
Let f and g be two functions or sequences. The min-plus deconvolution of f by g is the
function:

(f �g)(t) = sup
u≥0

{f (t + u) − g(u)} (6)

Compared to common convolution, min-plus deconvolution uses the maximum
respectively supremum (sup) operator to replace the sum operator and the minus opera-
tor to replace the product operator. Assume that f(t) and g(t) are two infinite data flows
denoted by di and ei, respectively. Time t is in clock cycle. From the definition of function
f Ø g, we have:

(f �g)(t) = sup
u≥0

{∑
0≤i≤t+u

di −
∑

0≤i≤u
ei

}
(7)

We can define AR(t) in the same way as in Sect. 3.1:

AR(t) =
∑

0≤i≤u+t

di −
∑
0≤i≤u

ei = du+t +
∑

0≤i≤u+t−1

di −
∑
0≤i≤u

ei = dt+u + AR(t − 1)

(8)

210 X. Hu and Z. Lu

For AR(0), we have:

AR(0) =
∑

0≤i≤u
di −

∑
0≤i≤u

ei =
∑

0≤i≤u
(di − ei) (9)

Compute Micro-architecture for f Ø g: Since Eq. (8) is similar to Eq. (3), this means
that we can reuse and enhance the hardware micro-structure for f Ø f to realize the
general f Ø g operation. Specifically, an SubAcc unit is added to the input part of the
hardware circuit of f Ø f to calculate function f Ø g, as shown in Fig. 4. When f(t) =
g(t), the diff_reg and AR_0 register are always zero in the SubAcc unit so they can be
omitted and the circuit turns into f Ø f with N-1 items (BR_0 is always zero).

With the function in Eq. (7), for a f Ø g curve with t = N cycles, the total calculation
operations are N × (1 + 3 + 5 + … + (2u + 1)). When u = N, the computation
complexity of the deconvolution operation is O(N2).

Fig. 4. Hardware micro-architecture for computing f Ø g

3.4 Micro-architecture for Function f⊗g

Definition of Min-plus Convolution [2]: Let f and g be two functions or sequences.
The min-plus convolution of f and g denoted by f ⊗ g is the function

(f ⊗ g)(t) = inf
0≤s≤t

{f (t − s) + g(s)} (10)

Compared to common convolution, min-plus convolution uses the minimum respec-
tively infimum (inf) operator to replace the sum operator and the sum operator to replace
the product operator. Suppose that g(t) is an infinite data flow denoted by ei and f(t)
denoted by di.

(f ⊗ g)(t) = inf
0≤s≤t

{
∑

0≤i≤t−s
di +

∑
0≤i≤s

ei} (11)

Again, we can define AR(t) in the same way as in Sect. 3.1:

A Configurable Hardware Architecture for Runtime Application 211

AR(t) =
∑

0≤i≤t−s
di +

∑
0≤i≤s

ei = dt−s +
∑

0≤i≤t−s−1
di +

∑
0≤i≤s

ei = dt−s + AR(t − 1)

(12)

For AR(0), we have:

AR(0) = d0 + e0 (13)

Compute Micro-architecture of f ⊗ g: Since Eq. (12) is similar to Eq. (3), we can
reuse and enhance the hardware micro-structure for f Ø f to realize the f ⊗ g operation.
Specifically, a Mux unit is added to the hardware circuit of f Ø f to deal with two inputs
of g(t) and f(t), as shown in Fig. 5. There are two stages (Initial and Normal) when
calculating function f ⊗ g. The Initial Stage is to initialize the AR registers with g(t)
(input flow is eN−1, eN−2, e1,e0 cycle by cycle) by setting the control signal Mux_CTL.
After the Initial Stage, the content of the ith AR register is g(i) (

∑
0≤j≤iej). The Normal

Stage is to compute the function f ⊗ g by setting the control signal Mux_CTL to the
f(t) channel. The comparator is configured such that the smaller one of the two inputs
is written into the BR register for the inf operation. The BL_CTL signals are added
to enable each of the comparators to remove useless comparison results. The register
content details for computing function f ⊗ g are similar to Table 1.

3.5 Unified Micro-architecture with Function Configuration

Combining these hardware micro-architectures by switches, we obtain a unified config-
urable hardware architecture for executing the network calculus functions as drawn in
Fig. 5. The shared part is the central pipeline with AddShiftComp units, each of which
contains 2M-bit adders and 2M-bit registers. Different network calculus operations are
realized by adding switches on the Sampling unit (from the arrival curve unit in Fig. 1),
SubAcc unit (from the f Ø g unit in Fig. 4) and Mux unit (from the f ⊗ g unit). When
configured to the arrival curve mode, di is switched to AddShiftComp units through the
Sampling unit directly. When configured to the f Ø gmode, di and ei are switched to the
SubAcc unit through each sampling unit. When configured to the f ⊗ g mode, di and ei
are switched to the Mux unit through each sampling unit.

The configurable hardware architecture generates results in one cycle because the
N AddShiftComp units process data in parallel. In terms of resources, it costs only
1/3 of the non-configurable architecture which otherwise uses three individual hardware
micro-architectures for the three network calculus functions. For a configurable hardware
architecture with N units of AddShiftComp, the circuit only requires 2 × N adders and
2 × N registers with M-bit width. Thus, the hardware complexity is O(N).

4 FPGA Implementation and Evaluation

We implemented the unified configurable pipeline hardware architecture on ZYNQ
FPGA from Xilinx. The number of AddShiftComp units is N, the width of AR/BR
register isM bits and the counter of sampling unit is C bits.

212 X. Hu and Z. Lu

BR_RST

Bound Registers
Output

Input flow

Snapshot&ShiftOut Registers of BR

AR_RST

f(t):di

g(t):ei

On-line NC moduleMux_CTL
BL_CTL

AddShift
Comp
unit

AddShift
Comp
unit

AddShift
Comp
unit

Mux
unit

Sub
Acc
unit

Sampling
unit

Sampling
unit

CLK

FUNC_CTL

Fig. 5. Unified configurable pipeline hardware architecture for network calculus operations. The
solid line is the datapath of configuration for arrival curve. (Dotted line: f Ø g. Dashed line: f ⊗ g)

We validated the three basic network calculus operations with models realized in
MATLAB. When using the same sampling method and no overflows, the results of
FPGA andMATLAB implementations are the same, because the configurable hardware
architecture is designed accurately according to the recursive equations.

4.1 Performance Optimization

We further optimized the performance of the hardware design. Since the critical path of
the circuit is the comparing and multiplexing of AR and BR, an additional register is
inserted to the output of each comparator to shorten the critical path. Since the data path
of input di to each adder has a big fan-out, an output register is added to the multiplexor.

Table 2 lists the FPGA implementation results (N = 128,M = 16) before and after the
optimization. As can be seen, the register utilization is increased after the optimization.
The total resources of LUT decrease by 25.2%. The frequency increases by 10.1%.

Table 2. Hardware implementation results. (AddShiftComp (N) = 128, AR/BR register (M) =
16)

4.2 Scalability and Overhead

The required resource utilizations and the maximum frequencies of different design
parameters (N AddShiftComp units andM bits width) are evaluated. As shown in Fig. 6,
the required resource utilizations increase linearly and the maximum frequencies are
stable around 250 MHz–280 MHz in the ZYNQ FPGA platform. These results show

A Configurable Hardware Architecture for Runtime Application 213

good scalability of the hardware architecture. When N = 64 & 128, the maximum
frequency ofM = 16 is a bit larger thanM = 24 and M = 32. This is because the FPGA
resources for logic synthesis ofM = 16 can be limited in one hardware block region.

When using 128 AddShiftComp units and 16-bit width AR/BR registers, the FPGA
resource of the configurable hardware architecture is about 6k LUTs. Compared with the
area-overhead of a recent flow generator & monitor in [15], our configurable hardware
architecture is acceptable.When computing the arrival curvewithN = 128, it takes 3.7 ns
on 269.1 MHz frequency to generate the result. With parallel computing in hardware,
the execution time of the proposed circuit only depends on the maximum frequency.
This means no matter how big N gets, it costs about the same time.

1,000

10,000

1,00,000

64 128 256N
um

be
r o

f L
U

Ts
 o

f
FP

G
A

Number of AddShi Comp units (N)

Hardware Resources

200

250

300

64 128 256
M

ax
im

um

fr
eq

ue
nc

y
(M

H
z)

Number of AddShi Comp units (N)

Maximum frequency

M=16 bits
M=24 bits
M=32 bits

Fig. 6. Hardware resources and maximum frequencies on different design parameters

4.3 Comparison with Software Implementation

The Network Calculus such as arrival curve is computed only by software traditionlly.
To obtain the speedup achieved by the specific hardware design, we realize an algorithm
written in C language to do the arrival curve computation in software following the
recursive function in Eqs. (2) and (3). The computer has an Intel Core i3-3240 CPU
running at 3.4 GHz frequency. The operating system is Windows 7. With the same
parameter as for the FPGA hardware, the length N for the arrival curve computation is
set to 128. Completing the 128 × 2 calculation operations (comparison and addition) in
Eqs. (2) and (3) takes 22.9 μs (memory accesses of CPU and the OS take most of the
time). In contrast to the 3.7ns execution time in hardware, the hardware speedup is more
than 6000 times.

5 System Prototype and Case Study

Researches on real-time analysis often focus on design-time (static) analysis of worst-
case timing bounds. The validity of the derived bounds should however be monitored
and analyzed at runtime to guarantee the system QoS. In our approach, by computing
the accurate results of f ⊗ g, f Ø g, and f Ø f (arrival curve) at runtime, the hardware
architecture can be incorporated in a runtime monitor to ensure that the input flow
conforms to its specification and thus to facilitate dynamic QoS fulfillment.

Taking video data stream transfer as an example, we implemented the proposed
hardware in a multimedia playback system, as shown in Fig. 7(a). The parameters (N =

214 X. Hu and Z. Lu

128, M = 16, C = 12) were chosen by experience. The system is a NoC-based platform
using twoXilinx Zynq FPGA evaluation boards (ZC702). Each ZC702 board contains an
XC7Z020 SoC and provides peripheral ports including DDR3, HDMI port, SD card and
two FMC (FPGA Mezzanine Card) connectors. The XC7Z020 SoC of Xilinx Zynq™-
7000 Programmable SoC architecture integrates a dual-core ARM®Cortex™-A9 based
Processing System (PS) and Xilinx Programmable Logic (PL).

The two ZC702 boards are connected by an FMC cable. With a router and other
interface logic implemented in the PL, the two boards provide a hardware environment
for evaluating our design for QoS. In each ZC702 board, the router has four ports and
connects two ARM cores and two FMC ports, as shown in Fig. 7(b). The configurable
hardware architecture is used as a runtime flowmonitor attached to the arbitrator module
for calculating the arrival curve so as to dynamically monitor and shape the input flow.

The prototype is constructed as a client-server system on the two Xilinx FPGA
boards. The CPU Core_A in the sender board reads video frame data from the SD card
and sends them to the other board (receiver board) through routers and the FMC cable.
The software decoder running on the receiver CPU Core_A decodes the video frame
data and sends them to the display through the HDMI port.

Fig. 7. Application to a multi-media playback system

Regarding the arrival curve, we can define two experience-based bounds named
Alarm Bound and Dead Bound at design time, as shown in Fig. 7(c). The alarm bound is
nearer to the actual arrival curve than the dead bound. Violating the Dead Bound means
that data transfers are not valid. Violating the AlarmBoundmeans that the system should

A Configurable Hardware Architecture for Runtime Application 215

take measures to prevent the possible violation of the dead bound. The arrival curve is
calculated by the hardware implementation of our proposed architecture. The comparator
of AR and BR is a violating-state indicator whenever a violation occurs.

The advantage of the proposed approach is that it can expose precise details of the
behavior of the flow and service: not only if a bound is violated, but also which part
violates and how much of violation. Beyond normal functionality, the approach can
support finer analysis with more information. For example, when checking how tight
the arrival curve bound of the input flow is, the tightest bound curve values from design-
time analysis can be defined at each point and be preloaded into the BR registers. When
a violation event (AR(i) > BR(i)) occurs, it is known that the ith time interval is violated
and the volume of violation is calculated by the ith comparator. Such precise information
enables the system to react to the violation for precise QoS provisioning.

6 Conclusion

To enable application of network calculus to satisfy QoS constraints at runtime, we have
for the first time proposed a configurable hardware architecture to realize all essential
network calculus operations for processing arrival and service curves. By configuring
switches to different data paths, it can calculate arrival curve, min-plus convolution and
min-plus deconvolution in a unified pipeline hardware substrate with only one cycle
latency. This architecture is implemented and further optimized on an FPGA platform,
showing high performance with reasonable resource cost. A case study of a multimedia
playback for runtime arrival curve monitoring and QoS has been presented. By enabling
to support network calculus operations at a full scale in dynamic environments, this study
demonstrates the hardware implementation feasibility of bringing network calculus into
action to achieve QoS at runtime beyond what is achievable at design time.

References

1. Cruz, R.L.: A calculus for network delay, part i: network elements in isolation; part ii: network
analysis. IEEE Trans. Inf. Theory 37(1), 114–131 (1991)

2. Boudec, J.-Y.L., Thiran, P.: Network Calculus: A Theory of Deterministic Queuing Systems
for the Internet. LNCS, vol. 2050. Springer, Heidelberg (2004). https://doi.org/10.1007/3-
540-45318-0

3. Chang, C.-S.: Performance Guarantees in Communication Networks. Springer, London
(2000). https://doi.org/10.1007/978-1-4471-0459-9

4. Jiang, Y., Liu, Y.: Stochastic Network Calculus. Springer, London (2008). https://doi.org/10.
1007/978-1-84800-127-5

5. Qian, Y., Zhonghai, L., Dou, W.: Analysis of worst-case delay bounds for on-chip packet-
switching networks. IEEETrans. Comput.-AidedDesign Integr. Circuits Syst. 29(5), 802–815
(2010)

6. Huang, K., Chen, G., Buckl, C., Knoll, A.: Conforming the runtime inputs for hard real-time
embedded systems. In: Proceedings of the 49thDesignAutomationConference (DAC) (2012)

7. Lu, Z., Zhao, X.: xMAS-based QoS analysis methodology. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 37(2), 364–377 (2018)

https://doi.org/10.1007/3-540-45318-0
https://doi.org/10.1007/978-1-4471-0459-9
https://doi.org/10.1007/978-1-84800-127-5

216 X. Hu and Z. Lu

8. de Dinechin, B.D., Durand, Y., van Amstel, D., Ghiti, A.: Guaranteed services of the NoC
of a manycore processor. In: Proceedings of International Workshop on Network on Chip
Architecture, Cambridge, U.K., pp. 11–16 (2014)

9. Wandeler, E., Thiele, L., Verhoef, M., Lieverse, P.: System architecture evaluation using
modular performance analysis: a case study. Int. J. Softw.ToolsTechnol. Transf.8(6), 649–667
(2006). https://doi.org/10.1007/s10009-006-0019-5

10. Lu, Z., Millberg, M., et al.: Flow regulation for on-chip communication. In: Proceeedings of
2009 Design, Automation and Test in Europe Conference (DATE), Nice, France, April 2009

11. Du, G., Li, M., et al.: An analytical model for worst-case reorder buffer size of multi-path
minimal routing NoCs. In: Proceedings of International Symposium on Networks-on-Chip
(NOCS), September 2014

12. Lu, Z., Wang, Y.: Dynamic flow regulation for IP integration on network-on-chip. In: The 6th
ACM/IEEE International Symposium on Networks-on-Chip (NOCS), May 2012

13. Du, G., Ou, Y., et al.: OLITS: an Ohm’s law-like traffic splitting model based on congestion
prediction. In: Proceedings of 2016 Design, Automation and Test in Europe Conference,
March 2016

14. Lu, Z., Yao, Y.: Dynamic traffic regulation in NoC-based systems. IEEE Trans. VLSI Syst.
25(2), 556–569 (2017)

15. Du, G., Liu, G., et al.: SSS: self-aware system on chip using a static-dynamic hybrid method.
ACM J. Emerg. Technol. Comput. Syst. 15(3), 28 (2019)

https://doi.org/10.1007/s10009-006-0019-5

FEB3D: An Efficient FPGA-Accelerated
Compression Framework for Microscopy

Images

Wanqi Liu1,2(B), Yewen Li1,2, Dawei Zang1, and Guangming Tan1,2

1 Institute of Computing Technology, Chinese Academy of Sciences,
Beijing 100095, China

{liuwanqi,liyewen,zangdawei,tgm}@ncic.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. With the rapid development of fluorescence microscope tech-
nologies, high-content screening and light-sheet microscopy are produc-
ing ever-larger datasets that pose great challenges in data storing and
data sharing. As a popular compression tool, B3D introduces a noise
dependent compression algorithm for microscopy images to preserve the
numerical intensities of all pixel within their uncertainties by exploit-
ing the natural variability of each pixel value. Nevertheless, the high
complexity of the processing flow restricts the deployment of the tool
since the throughput and power consumption cannot satisfy the increas-
ing demand. In this paper, we propose an efficient FPGA-accelerated
data compression framework based on B3D. Following the co-design
methodology, the compression processing flows are partitioned into dif-
ferent blocks to deploy on CPU or FPGA according to their computation
characteristics. Also, we design a custom accelerator core that consists
of multiple full on-chip pipelines using the channel function of the Intel
OpenCL toolkit to implement data-flow driven computation. Our experi-
ments show that the proposed framework achieves up to 32× throughput
for a single pipeline compared with Intel Xeon E3-1220 v5 operating at
3.00 GHz, and 6× energy-efficiency compared with GPU implementation.

Keywords: Data compression · FPGA · Throughput

1 Introduction

Fluorescence microscope technologies such as the high-content screening, the
single molecule localization microscopy, and the light-sheet microscopy provide
new opportunities for biological research by increasing the speed of imaging, the
number of specimens or the resolution of the observed structures [4]. Although
these new technologies push biology to a new level, the production speed and
volume of experimental image data at such a fast pace still pose a formidable
challenge to data processing, storage, and transmission. For example, the rate

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 217–230, 2021.
https://doi.org/10.1007/978-3-030-79478-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_19

218 W. Liu et al.

Table 1. Data sizes in microscopy devices.

Imaging device Image size Frame rate Data rate Exp size

SPIM 2x sCMOS camera 2048 × 2048 50/s 800 MB/s 10 TB

SMLM 2x EMCCD camera 512 × 512 56/s 56 MB/s 500 GB

Screening CCD camera 1344 × 1024 8.5/s 22 MB/s 5 TB

Confocal Zeiss LSM 880 512 × 512 5.0/s 12.5 MB/s 50 GB

SPIM ×2 4x sCMOS camera 2048 × 2048 100/s 1600 MB/s 20 TB

of image data generated by single-plane illumination microscopy (SPIM) [5] is
about 800 MB/s with 10 TB experiment size (Table 1). The real-time data han-
dling becomes a bottleneck for new discoveries in many cases. A straightforward
solution to this problem is to perform image compression.

Nonetheless, microscopy image compression generally means incompatibili-
ties with previous tools, especially in the aspects of loss control, compression
ratio, and compression speed. Unlike common photos that only need preserv-
ing those structures recognized by the human visual system, scientific images,
however, are obtained through sets of quantitative measurements and there-
fore their compression should instead preserve the numerical values of all pixel
intensities within their uncertainties [4]. Although the compression ratio (origi-
nal size/compressed size) can be substantially increased with lossy compression
algorithms such as JPEG2000 [13], their use is often discouraged as the loss
of information depends heavily on the image content and cannot be explicitly
controlled.

As a novel compression toolkit for microscopy image compression, B3D [4,5]
can compress microscopy images both in lossless mode and lossy mode with
a better compression effect. In particular, its lossy mode introduces a noise
dependent compression algorithm for microscopy images to preserve the numer-
ical intensities of all pixel within their uncertainties by exploiting the natural
variability of each pixel value. As a result, the user can specify the maximally
tolerated pixel error in proportion to the inherent noise to control the informa-
tion loss. Although B3D can solve loss control and compression ratio problems
of microscopy images compression, the high complexity of the processing flow
restricts the deployment of the tool since the throughput and power consumption
cannot satisfy the increasing demand, such as SPIM×2 (Table 1). For example,
the throughput of single thread CPU implementation of B3D is nearly 10 M/s,
which cannot meet the requirement of data production speed for microscopy
images.

In addition to CPU and GPU, Field Programmable Gate Array (FPGA)
is another popular device used for algorithm acceleration because of its high
parallelism, high energy efficiency, external connectivity [9], low latency, and
so on. Its computation features are compatible with the characteristic of the
critical blocks of B3D. In this article, we propose an FPGA-accelerated data
compression framework based on B3D, called FEB3D, to improve the through-
put and energy efficiency of microscopy images compression tasks. Following the

FEB3D: An Efficient FPGA-Accelerated Compression Framework 219

co-design methodology, the lossy and lossless processing flows are partitioned
into different blocks to deploy on CPU or FPGA according to their computa-
tion characteristics. Also, we design a custom accelerator core that consists of
multiple full on-chip pipelines using the channel function of the Intel OpenCL
toolkit [1] to implement data-flow driven computation. Our contributions can be
summarized as follows:

1. Following the co-design methodology, we propose an FPGA-accelerated data
compression framework based on B3D, called FEB3D, by partitioning the
compression processing flows into different blocks to deploy on CPU or FPGA
according to their computation characteristics.

2. We design a custom accelerator consisting of multiple full on-chip pipelines,
which use the channel function of the Intel OpenCL toolkit to implement data-
flow driven computation. Each pipeline includes six-stages which correspond
to six algorithm blocks.

3. We implement a prototype according to the proposed framework and meth-
ods. The results show that the prototype achieves up to 32× throughput for a
single pipeline compared with Intel Xeon E3-1220 v5 operating at 3.00 GHz,
and 6× energy-efficiency compared with GPU implementation.

The rest of this paper is organized as follows. In Sect. 2, we introduce various
techniques used in image compression and background knowledge of CPU and
FPGA co-design. In Sect. 3, we describe our hardware design, system collabora-
tion, and further optimizations. In Sect. 4, we evaluate our design on Xeon CPU
and Intel FPGA for microscopy images. In Sect. 5, we discuss the related works.
In Sect. 6, we present our conclusion.

2 Background

2.1 B3D Algorithm

Compression is a common and effective way to reduce the heavy burdens of mas-
sive data. Some commonly used compression algorithms such as deflate [7] only
support the lossless mode and work well on sequence data. The image data com-
pression algorithm like JPEG2000 supports lossy mode and works well on many
kinds of images, but it comes at the cost of accuracy loss in the image trans-
form domain (Fourier or Wavelet) so that the compression error of each pixel
cannot be controlled and thus, is not suitable for scientific analysis. However,
B3D focuses on the microscopy image data compression, and adopts a strategy
that compression errors can be controlled related to the standard deviation of
the noise. It mainly involves five key steps: stabilizing transform, quantization
[10], data prediction [15], run-length coding, and Huffman coding [11] (Fig. 1).
Among them, the stabilizing transform and quantization are only used for the
lossy mode. This paper mainly discusses the lossy mode. The detailed description
of these steps is shown as follows.

220 W. Liu et al.

– Stabilizing transform. This operation is the key to achieving B3D error
controlled lossy compression, including a nonlinear transformation, which
transforms the input pixel intensity value to a new value, i.e., T (Eq. (1)) [6].
I is the intensity value, while the rest parameters are determined by imaging
sensors.

– Quantization. To make the transformed values more similar, each value is
quantified by q. For example, if q equals 1, the quantified value will only be
the multiple of 1.

– Data prediction. After data quantization, B3D predicts quantified T of
each pixel based on its neighboring T values (the top and the left). Then the
difference between the predicted value and the original value is calculated,
and this difference is often small because neighboring pixel values are similar.
This operation can make the values of the whole image more concentrated.

– Run-length coding. Run-length coding can encode a series of repeated
values (difference) into the value itself and the number of consecutive occur-
rences (i.e., value and count). Thanks to the good local correlation of the
microscopy image data, this coding operation is able to significantly reduce
the data volume.

– Huffman coding. Finally, Huffman coding is performed to further compress
the run-length coding results by encoding less frequent symbols with more
bits.

T = 2
√

(I − offset)g + σ2 (1)

The main operations used in B3D are listed above. There are only three
steps in the lossless mode, i.e., data prediction, run-length coding, and Huff-
man coding. Moreover, the order of the prediction and the quantization can be
changed [5]. When the prediction is before the quantization, there is a serious
data dependency because the neighbor values used in the prediction should be
uncompressed by their own neighbor values (last cycle). Conversely, when the
prediction is after the quantization, this dependency disappears. Within a cer-
tain quantization error range, the two modes above have their own advantages
and disadvantages. In some cases, the former has a better compression ratio than
the latter, but it is not good for the pipeline and can lead to bad performance
in FPGA. We choose the latter eventually, which achieves high performance.

Fig. 1. Calculation steps in B3D algorithm.

FEB3D: An Efficient FPGA-Accelerated Compression Framework 221

2.2 FPGA and OpenCL

Compared to CPU and GPU, FPGA provides a high level of parallelism, config-
urability and high power efficiency that enables custom to implement dedicated
high parallel pipelines suited to the particular needs of an application. For exam-
ple, compression cores can be integrated with many specific pipelines that work
parallel. In addition, various algorithmic choices can be altered depending on
the characteristics of the data being processed. This flexibility may enable even
higher levels of compression than a more general fixed approach, such as CPU
and GPU. However, previous FPGA implementations were written in a hardware
description language such as Verilog HDL or VHDL which are akin to assembly
language for hardware. This makes FPGA design time-consuming and difficult to
verify. Instead, OpenCL is a C-based language intended for application acceler-
ation on heterogeneous systems. The use of OpenCL for FPGA implementation
enables more productivity gains while maintaining high efficiency [3] as the gen-
erated system matches or exceeds the speed of prior work.

3 Design and Implementation

In this section, we describe the design and implementation of FEB3D. Our main
purpose is to improve the performance and energy efficiency of B3D by mapping
and optimizing the algorithm on the FPGA-accelerated platform. Therefore, we
focus on the five main steps of B3D, analyze the characteristics of the data path
and each computing kernel, and then design a framework suitable for FPGA-
accelerated implementation (Sect. 3.1). Moreover, we describe the optimized
design of each kernel in detail (Sect. 3.2). In Sect. 3.3, we use further optimization
methods to make our compressor work better. As already mentioned before, B3D
has both lossy and lossless modes. We mainly describe the design of lossy mode,
and the lossless mode is the same as the lossy mode after removing two kernels
(i.e., stabilizing transform and quantization).

3.1 The Co-design Framework

Modular and systematic thinking is extremely important for mapping software
algorithms to FPGA-accelerated co-design frameworks. Therefore, we divide the
tasks of the B3D algorithm into several parts, and each part is processed by
its own suitable computing resources (CPU or FPGA). Of course, most of the
computing load is allocated to FPGA in our design because of its rich com-
puting units, good parallelism, and flexible data path. In order to better divide
and assign the computing tasks, we analyze the data path and the computing
characteristics of the algorithm, respectively.

– Data path. According to the execution order of the B3D algorithm, the
microscopy image data requires to be loaded first. Then the original pixel
values should be transformed into the floating-point data which remain the

222 W. Liu et al.

Fig. 2. Overall co-design framework of FEB3D.

same number before and after. Next, the transformed values above are quan-
tified by the quantization step q and the quantified values are then predicted
by their neighbors, and we obtain the differences between their predicted val-
ues and themselves by simple subtraction. Furthermore, the differences are
encoded to a series of data pairs, which include two values, i.e., the difference
and its count. After the run-length coding, generally, the total number of
data is significantly reduced. In addition, the differences and the counts are
used to build a Huffman table, and then they are encoded by this Huffman
table. The output data of the Huffman coding is a bitstream. At the end
of the compression process, this bitstream is written to a file in a particular
format. The data path from the original image to the compressed file is as
described above. Obviously, the entire calculation process is streaming, which
is suitable for pipeline design.

– Computing characteristics. One of the most critical features of B3D is
the error control, which is implemented by stabilizing transform. In order
to avoid the reduction of compression ratio and compressed image quality,
the transformed value should be the floating-point type. Therefore, there are
a large number of floating-point calculations in this algorithm, which is a
heavy computing burden for the CPU because of its relative lack of comput-
ing resources. Moreover, there are some complex operations like square root
(Eq. (1)) in the step of the stabilizing transform and division operations in the
quantization, which are also not the CPU friendly computing characteristics.
This algorithm has a high degree of data parallelism, hence, FPGA is able to
take advantage of its computing resources and get better parallel design. 90%
of the computing time is spent on data loading, stabilizing transform, quan-
tization, data prediction, run-length coding and generation of Huffman codes
implemented on FPGA, and the rest 10% of time consumption is for con-
structing Huffman tree implemented on CPU. LAWRENCE L. LARMORE
et al. [12] proposed a method to construct Huffman tree in parallel, but for

FEB3D: An Efficient FPGA-Accelerated Compression Framework 223

us it is hard to be implemented efficiently on FPGA. This will be considered
as the future work.

Based on the analysis above, we can draw the following ideas about the
co-design framework of FEB3D as Fig. 2.

1. According to the analysis of the computing characteristics, we can come up
with the allocation plan for the computing tasks: The construction of the
Huffman tree is assigned to the CPU, and the rest is assigned to the FPGA.

2. The pipeline design is good for implementing this algorithm. We build a six-
stage pipeline, including data loading, stabilizing transform, quantization,
prediction, run-length coding, and Huffman coding. The first five kernels are
communicated via FIFO, and the last kernel is connected with CPU, com-
municated via PCIe.

3.2 Hardware Optimized Design

After the framework of the algorithm is determined, each computing kernel
requires to be implemented on the hardware, i.e., FPGA. Furthermore, in order
to achieve higher performance, we optimize the hardware level design based on
the characteristics of each kernel, and also fully consider the connection between
kernels (Fig. 3).

We notice that for the pipeline design, both the execution speed of each
single computing kernel and the balance between each kernel speed are equally
significant. For instance, if most of the kernels are running slow (without effective
optimizations), the overall performance will undoubtedly be very tremendously
low. On the other hand, if there is only one bad-performance kernel (the other
kernels perform well), this bad-performance kernel will become the performance
bottleneck of the entire system, which seriously reduces the overall performance.
For the reasons above, we follow the two principles below when optimizing the
hardware design: The first is to accelerate each computing kernel as much as
we can and the second is to reduce the performance difference between the six
kernels as much as possible.

Fig. 3. Data flow and hardware optimized design.

224 W. Liu et al.

– Data loading. This is the first kernel performed on FPGA. In our design,
the microscopy image data (TIFF, such as Zebrafish) is read from the disk
to the memory by CPU, and then we use the OpenCL function interface
to write the data in the CPU memory to the global memory of the FPGA
via PCIe. When the above process is completed, FPGA reads data from its
global memory. Considering the advantages of the FPGA, we read a block
of data in one cycle, i.e., eight unsigned short integers (Type ushort8 in the
OpenCL), instead of a single unsigned short integer. This operation is effective
for FPGA because of the increasing of the reading rate, which also reflects
the flexibility of the data type and the data path on FPGA. During the same
cycle, this kernel writes an unshort8 variable (containing eight unsigned short
integers, i.e., sixteen bytes) to the FIFO, and then waits for the next cycle.
This ushort8 variable is stored in the latch (consists of on-chip logic units,
not the memory), which is the fastest way. The main operations of this kernel
are the data reading (global memory) and the data writing (FIFO) rather
than the complex calculation. Therefore, the speed of the data loading kernel
is high.

– Stabilizing transform. This is the second kernel performed on FPGA,
which is aimed to transform the input data to another data with Eq. (1),
based on the camera parameters (such as the read noise). The input data of
this kernel in a cycle is an ushort8 variable, received from the data loading
kernel via FIFO. The data parallelism of this kernel is tremendously high,
because there is nearly no dependency on the input ushort8 variable, i.e.,
eight unsigned short variables. In other words, these eight variables are cal-
culated by themselves, using Eq. (1), and mapped to the hardware, which
means that there are eight computing units performed in parallel during the
same cycle. Although the computing complexity of Eq. (1) is not low, this
concurrent design helps the stabilizing transform kernel achieve good perfor-
mance. The output of this kernel is an float8 variable (i.e., eight floating-point
variables), which is then written to the FIFO at the end of this cycle.

– Data quantization. In our design, the data quantization is the third ker-
nel. As mentioned before (Sect. 2.1), there will be severe data dependency
if the prediction is performed before the quantization. Therefore we choose
the scheme that the prediction is performed after the quantization. As for a
single variable, the quantization step includes multiplication and a division.
When the transformed float8 variable is received by the quantization kernel,
these eight floating-point variables are calculated in parallel with the same
operations. The output of the quantization kernel is also an float8 variable,
which is then sent to the FIFO.

– Data prediction and Run-length coding. The data prediction kernel
is the fourth. After the quantization of eight floating-point variables, the
predicted values (float) are calculated by their neighbors (i.e., the left and the
top), and the differences (float) between the predicted values and the original
values are obtained in parallel. In Fig. 3, the top comes from the last cycle.
Unlike the previous kernels, the output of the prediction kernel is not float8,
but float. The reason is that the run-length kernel will be obviously slower

FEB3D: An Efficient FPGA-Accelerated Compression Framework 225

than others if eight floating-point variables are processed in the run-length
kernel together. The run-length step compares the neighbors, and records
the counts one by one, limited by data dependence, thereby leading to bad
performance. We adopt a pipeline design on FPGA, so the performance of
the kernels requires to be balanced. In order to solve this problem, we adopt
a data buffering strategy, which means that during one cycle, the prediction
kernel only sends a single float variable to the run-length kernel via FIFO,
and the rest seven float variables are stored in the latch, waiting for the next
cycle. As for the run-length kernel, the input is a float variable. At the end
of this kernel, three kinds of variables are written to the global memory, i.e.,
values, values counts, and the length of data, and after that they are sent
to the CPU via PCIe for constructing the Huffman tree and obtaining the
Huffman table.

– LZ77 & Huffman coding. In our design, in order to get a better com-
pression ratio, the Huffman coding kernel is updated to the LZ77 [18] and
Huffman kernel, based on the proposal of Mohamed S. Abdelfattah et al.
[3]. This is the last kernel on FPGA. The inputs are the outputs of the run-
length kernel and the Huffman table computed by CPU. The outputs are a
bitstream and CPU reads it via PCIe. It is worth noting that this kernel is
not the bottleneck (nearly 3GB/s), and the throughput of the whole design
is no more than 2GB/s.

3.3 Further Optimizations

In addition to the framework design and specific hardware optimized design, we
also propose further optimizations for higher performance as follows.

1. Further Parallelism and Data Partition. The previous proposed six-
stage flow design is with a single pipeline. Today, there are abundant resources
on FPGA, making it possible to duplicate multiple pipelines (parallel execu-
tion). Moreover, the data loading, the stabilizing transform, the data quan-
tization, the data prediction, and the run-length coding kernels are tremen-
dously lightweight. Therefore, we duplicate five copies of the above kernels.
This further parallelism makes use of the bandwidth of PCIe and the resources
of FPGA, which further improves performance (nearly 6×). Correspondingly,
in order to cope with the pipeline duplication, the data partition is necessary.
As is shown in Fig. 3, We divide the image data by row, and each pipeline
processes multiple rows. Moreover, it is worth noting that the number of rows
is required to be at least two because the predicted value is calculated by its
left value and its top value, as shown in Sect. 2.1. The data partition can
influence the compress ratio, and the number of rows is able to be adjusted.

2. The Strategy of Building Huffman Tree. Building the Huffman tree is
processed on CPU, which nearly takes up 10% of the whole time. In order
to further improve performance, we need to reduce the time consumption of
this step. We put together one hundred images into a single image, and build
the Huffman tree for this single image instead of building a hundred trees.

226 W. Liu et al.

Furthermore, inspired by Bulent Abali et al. [2], w e notice that it takes a
long time to count the frequency of each symbol for building the Huffman
tree because of the passing of massive input data. Therefore, We only count
the frequencies of a part of the input data (10%), selected randomly.

4 Experiment and Evaluation

4.1 Experimental Setup

– Platform. There are three different experimental platforms, including CPU,
GPU and FPGA. The CPU is an Intel Xeon E3-1220 v5 (80W) running at 3.00
GHZ. The GPU is an NVIDIA GeForce GTX 970 (165W) graphics processing
unit, which is used by Bálint Balázs et al. [4]. The last platform is a Intel Arria
10 GX FPGA (42W) device. The above platforms are of similar magnitude
(None of them are the latest products). Our design is implemented with Intel
OpenCL SDK. Software designs are compiled using Microsoft Visual Studio
2012. Moreover, We use the Intel OpenCL IP function write channel intel()
for the FIFO design.

– Datasets. We use two kinds of fluorescence microscopy image data as our
datasets. One is the images of Zebrafish, and the another is the images of
the brain of Caenorhabditis elegans. There are 100 images (400 M in size) in
both two datasets.

– Baselines. We have two baselines for comparison: our implementation of
CPU-based B3D using C++ and the B3D library based on GPU, proposed
by Bálint Balázs et al. [4,5].

4.2 Results and Analysis

In our design, a key point is to reduce the bottleneck of the pipeline, so that
the data flow is executed quickly and smoothly. As is described in Sect. 3.2,
the execution time of the run-length coding kernel is significantly longer than
other kernels, making it a main bottleneck of the pipeline. Therefore, we design
a buffer in the prediction kernel to reduce the burden of the run-length coding
kernel (Fig. 3). We adjust the buffer size and measure the execution time and
resource consumption of the first five pipeline stages. As is shown in Fig. 4, the
larger the buffer size, the shorter the running time and the lower the resource
usage. The reason for shortened running time is that the larger buffer can better
balance the execution time of the first five kernels (8 is enough). The resource is
saved is because the larger buffer reduces the hardware complexity of the run-
length coding kernel, which saves far more resources than that brought about
by a larger buffer.

FEB3D: An Efficient FPGA-Accelerated Compression Framework 227

We compare our FPGA-accelerated design with the above baselines. We refer
the single pipeline design as FPGA, and the further optimized FPGA as the
design with six pipelines (excepts LZ77 and Huffman coding) and the use of the
strategy of building the Huffman tree in Sect. 3.3.

Table 2. Throughput of CPU and FPGA implementation (MB/s).

CPU CPU×8 FPGA FPGA(FO)

Zebrafish 9 46 285 1782

Elegans 6 31 205 1282

0 2 4 6 8
0

5000

10000

15000

20000

25000

30000

8

9

10

11

12

13

14

Buffer Size

R
un

Ti
m

e(
m

s)

R
esource

U
sed(%

)
Run Time(ms)

Resource Used(%)

Fig. 4. Buffer sizes.

19 20 21 22 23 24
0
5

10
15
20
25
30
35
40
45
50

Pe
rf

or
m

an
ce

-p
er

-W
at

t(
M

B
/J

)
CPU

GPU

FPGA

Compression Ratio

FPGA(FO)

CPU(×8)

Fig. 5. Efficiency and ratios.

1. FPGA versus CPU. We evaluate our FPGA-accelerated design and the
CPU implementation on the above two datasets. As is shown in Table 2, the
throughput of FPGA design far exceeds that of single-thread CPU (32×).
Even for the multi-thread CPU implementation (×8), the performance is
worse than the single pipeline FPGA design. Moreover, the performance-per-
watt of FPGA is also better than that of CPU (Fig. 5). The compression ratio
of FPGA is lower because of the parallelism design and reducing symbols of
the frequency count (Sect. 3.3).

2. FPGA versus GPU. GPU implementation enjoy high performance (beyond
1 GB/s). From Fig. 5 we can know that the performance-per-watt of the single
pipeline FPGA-based design is close to that of GPU because of the high power
consumption of GPU and the further optimized one is much better than GPU
(6×).

3. Resource utilization. Table 3 demonstrates that the first five kernels con-
sume far fewer resources than the last kernel (LZ77 and Huffman) so that we
can duplicate multiple copies for the fist five kernels.

228 W. Liu et al.

Table 3. Resource utilization from synthesis for single pipeline.

Kernel name ALUTs FFs RAMs DSPs

Load data 2291 2188 13 0

Photon transform 9477 6407 24 29

Prediction 2677 2964 0 8

Quantization 14801 10133 37 36

rle coding 5080 12660 82 0

lz77 huffman 315228 149105 1430 0

Total 430317 (55%) 341658 (22%) 1873 (75%) 140 (10%)

5 Related Work

There have been many studies on data compression techniques. JPEG2000 and
LZW [14] are both widely used in conventional image compression, but they
are not suitable for scientific image data because of the defects of pixel value
error control and compression ratio. SZ [8] is a popular error-bounded lossy
compression framework for scientific data, but it suffers from low compression
throughput limited by CPU implementation. The reason is that the CPU has
hardware disadvantages in terms of parallelism and computing resources. B3D
introduce a noise dependent compression algorithm for microscopy images to pre-
serve the numerical intensities of all pixel within their uncertainties by exploiting
the natural variability of each pixel values. However, CPU-based B3D has a low
throughput, which cannot meet the requirement of the microscopy image data
production rate obviously. GPU-based lossless B3D gets a performance improve-
ment compared to the CPU implementation, but the power consumption is also
really high. Moreover, GPU generally improves performance through SIMT (sin-
gle instruction, multiple threads) [16], accompanied by a certain synchronization
overhead. Field programmable gate array (FPGA) is popular in the algorithm
acceleration field because of its configurability, high energy efficiency, low latency,
external connection, and so on. Xiong et al. proposed GhostSZ [17], and Tian
et al. proposed WaveSZ [16], both of them implemented SZ algorithm based on
FPGA and got performance improvement. B3D is more suitable for microscopy
image data because the stabilizing transform step is based on camera parameters,
and the run-length coding step is also suitable for this kind of image data. As
we know, FEB3D is the first FPGA-accelerated framework based on B3D, and
we improve both throughput and energy efficiency through customized hardware
co-design.

6 Conclusion

In this work, we propose an efficient FPGA-accelerated data compression frame-
work called FEB3D, which can improve the performance and the energy effi-
ciency of B3D, an effective compression algorithm for fluorescence microscopy

FEB3D: An Efficient FPGA-Accelerated Compression Framework 229

images both in lossy and lossless modes. We properly assign the computing tasks
to FPGA and CPU, and design each hardware kernel according to their charac-
teristics. Moreover, we also adopt further optimizations both in hardware and
software in order to further improve performance. The throughput of this frame-
work far exceeds the CPU implementation (32× for the single pipeline), and the
performance-per-watt of the further optimized FPGA design is about 6× higher
than that of the GPU implementation.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China under grant no. 61902373, is supported by Strategic Priority Research
Program B of the Chinese Academy of Sciences under grant no. XDB24050300, grant
no. XDB44030300.

References

1. Intel FPGAs and Programmable Devices - Intel FPGA. https://www.intel.com/
content/www/us/en/products/programmable.html. Library Catalog: www.intel.
com

2. Abali, B., Blaner, B., Reilly, J., Klein, M., Mishra, A., Agricola, C.B.: Data com-
pression accelerator on IBM POWER9 and z15 processors. In: ISCA. IEEE, Los
Angeles (2020)

3. Abdelfattah, M.S., Hagiescu, A., Singh, D.: Gzip on a chip: high performance
lossless data compression on FPGAs using OpenCL. In: IWOCL, pp. 1–9. ACM
Press, Bristol (2014)

4. Balázs, B., Deschamps, J., Albert, M., Ries, J., Hufnagel, L.: A real-time compres-
sion library for microscopy images. bioRxiv, July 2017

5. Balázs, B., Deschamps, J., Albert, M., Ries, J., Hufnagel, L.: A real-time compres-
sion library for microscopy images - supplementary notes and figures. bioRxiv, p.
15 (2017)

6. Bernstein, G.M., Bebek, C., Rhodes, J., Stoughton, C., Vanderveld, R.A., Yeh,
P.: Noise and bias in square-root compression schemes. Publ. Astron. Soc. Pac.
122(889), 336–346 (2010)

7. Deutsch, P.: DEFLATE compressed data format specification version 1.3. Techical
report RFC1951, RFC Editor, May 1996

8. Di, S., Cappello, F.: Fast error-bounded lossy HPC data compression with SZ. In:
2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pp. 730–739. IEEE, Chicago, May 2016

9. Geng, Tet al.: O3BNN: an out-of-order architecture for high-performance bina-
rized neural network inference with fine-grained pruning. In: Proceedings of the
ACM International Conference on Supercomputing, pp. 461–472. ACM, Phoenix
Arizona, June 2019

10. Gray, R., Neuhoff, D.: Quantization. IEEE Trans. Inf. Theory 44(6), 2325–2383
(1998). Conference Name: IEEE Transactions on Information Theory

11. Huffman, D.: A method for the construction of minimum-redundancy codes. Proc.
IRE 40(9), 1098–1101 (1952)

12. Larmore, L.L., Przytycka, T.M.: Constructing Huffman trees in parallel. SIAM J.
Comput. 24(6), 1163–1169 (1995)

13. Rabbani, M., Joshi, R.: An overview of the JPEG 2000 still image compression
standard. Signal Process.: Image Commun. 17(1), 3–48 (2002)

https://www.intel.com/content/www/us/en/products/programmable.html
https://www.intel.com/content/www/us/en/products/programmable.html
www.intel.com
www.intel.com

230 W. Liu et al.

14. Savari, S.A.: Redundancy of the Lempel-Ziv-Welch code. In: Proceedings of the
Data Compression Conference, DCC 1997 (1997)

15. Tao, D., Di, S., Chen, Z., Cappello, F.: Significantly improving lossy compression
for scientific data sets based on multidimensional prediction and error-controlled
quantization. In: 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 1129–1139. IEEE, Orlando, May 2017

16. Tian, J., et al.: waveSZ: a hardware-algorithm co-design of efficient lossy compres-
sion for scientific data. In: PPoPP, pp. 74–88. ACM, San Diego, February 2020

17. Xiong, Q., Patel, R., Yang, C., Geng, T., Skjellum, A., Herbordt, M.C.: GhostSZ: a
transparent FPGA-accelerated lossy compression framework. In: FCCM, pp. 258–
266. IEEE, San Diego, April 2019

18. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inform. Theory 23(3), 337–343 (1977)

NUMA-Aware Optimization of Sparse
Matrix-Vector Multiplication on

ARMv8-Based Many-Core Architectures

Xiaosong Yu1, Huihui Ma1, Zhengyu Qu1, Jianbin Fang2, and Weifeng Liu1(B)

1 Super Scientific Software Laboratory, Department of Computer Science
and Technology, China University of Petroleum-Beijing, Beijing, China

{2019215847,2019211254,2019215846}@student.cup.edu.cn,
weifeng.liu@cup.edu.cn

2 Institute for Computer Systems, College of Computer, National University
of Defense Technology, Changsha, China

j.fang@nudt.edu.cn

Abstract. As a fundamental operation, sparse matrix-vector multipli-
cation (SpMV) plays a key role in solving a number of scientific and
engineering problems. This paper presents a NUMA-Aware optimiza-
tion technique for the SpMV operation on the Phytium 2000+ ARMv8-
based 64-core processor. We first provide a performance evaluation of
the NUMA architecture of the Phytium 2000+ processor, then reorder
the input sparse matrix with hypergraph partitioning for better cache
locality, and redesign the SpMV algorithm with NUMA tools. The exper-
imental results on Phytium 2000+ show that our approach utilizes the
bandwidth in a much more efficient way, and improves the performance
of SpMV by an average speedup of 1.76x on Phytium 2000+.

Keywords: Sparse matrix-vector multiplication · NUMA
architecture · Hypergraph partitioning · Phytium 2000+

1 Introduction

The sparse matrix-vector multiplication (SpMV) operation multiples a sparse
matrix A with a dense vector x and gives a resulting dense vector y. It is one
of the level 2 sparse basic linear algebra subprograms (BLAS) [13], and is one
of the most frequently called kernels in the field of scientific and engineering
computations. Its performance normally has a great impact on sparse iterative
solvers such as conjugate gradient (CG) method and its variants [17].

To represent the sparse matrix, many storage formats and their SpMV algo-
rithms have been proposed to save memory and execution time. Since SpMV
generally implements algorithms with a very low ratio of floating-point calcu-
lations to memory accesses, and its accessing patterns can be very irregular,
it is a typical memory-bound and latency-bound algorithm. Currently, many

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 231–242, 2021.
https://doi.org/10.1007/978-3-030-79478-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_20

232 X. Yu et al.

SpMV optimization efforts have achieved performance improvements to various
degrees, but lack consideration on utilizing NUMA (non-uniform memory access)
characteristics of a wide range of modern processors, such as ARM CPUs.

To obtain scale-out benefits on modern multi-core and many-core proces-
sors, NUMA architectures is often an inevitable choice. Most modern x86 pro-
cessors (e.g., AMD EPYC series) and ARM processors (e.g., Phytium 2000+)
utilize NUMA architecture for building a processor with tens of cores. To fur-
ther increase the number of cores in a single node, multiple (typically two,
four or eight) such processor modules are integrated onto a single motherboard
and are connected through high-speed buses. But such scalable design often
brings stronger NUMA effects, i.e., giving noticeable lower bandwidth and larger
latency when cross-NUMA accesses occur.

To improve the SpMV performance on modern processors, we in this work
develop a NUMA-Aware SpMV approach. We first reorder the input sparse
matrix with hypergraph partitioning tools, then allocate a row block of A and the
corresponding part of x for different NUMA nodes, and pin threads onto hard-
ware cores of the NUMA nodes for running parallel SpMV operation. Because
the reordering technique can organize the non-zeros in A on diagonal blocks
and naturally brings the affinity between the blocks and the vector x, the data
locality of accessing x can be significantly improved.

We benchmark 15 sparse matrices from the SuiteSparse Matrix Collection [3]
on a 64-core ARMv8-based Phytium 2000+ processor. We set the number of
hypergraph partitions to 2, 4, 8, 16, 32 and 64, and set the number of threads
to 8, 16, 32, and 64, then measure the performance of their combinations. The
experimental results show that, compared to classical OpenMP SpMV implemen-
tation, our NUMA-Aware approach greatly improves the SpMV performance by
1.76x on average (up to 2.88x).

2 Background

2.1 Parallel Sparse Matrix-Vector Multiplication

Sparse matrices can be represented with various storage formats, and SpMV with
different storage formats often has noticeable performance differences [1]. The
most widely-used format is the compressed sparse row (CSR) containing three
arrays for row pointers, column indices and values. The SpMV algorithm using
the CSR format can be parallelized by assigning a group of rows to a thread.
Algorithm 1 shows the pseudocode of an OpenMP parallel SpMV method with
the CSR format.

2.2 NUMA Architecture of the Phytium 2000+ Processor

Figure 1 gives a high-level view of the Phytium 2000+ processor. It uses the
Mars II architecture [16], and features 64 high-performance ARMv8 compati-
ble xiaomi cores running at 2.2 GHz. The entire chip offers a peak performance

NUMA-Aware Optimization of Sparse Matrix-Vector Multiplication 233

Algorithm 1. An OpenMP implementation of parallel SpMV.
1: #pragma omp parallel for
2: for i = 0 → A.row nums do
3: y[i] = 0
4: for j = A.rowptr[i] → A.rowptr[i + 1] do
5: y[i] = y[i] + A.val[j] ∗ x[A.col[j]]
6: end for
7: end for

Fig. 1. A high-level view of the Phytium 2000+ architecture. Processor cores are groups
into panels (left) where each panel contains eight ARMv8 based Xiaomi cores (right).

Fig. 2. STREAM triad bandwidth test on Phytium 2000+.

of 563.2 Gflops for double-precision operations, with a maximum power con-
sumption of 96 W. The 64 hardware cores are organized into 8 panels, where
each panel connects a memory control unit.

The panel architecture of Phytium 2000+ is shown in the right part of Fig. 1.
It can be seen that each panel has eight xiaomi cores, and each core has a private
L1 cache of 32KB for data and instructions, respectively. Every four cores form

234 X. Yu et al.

a core group and share a 2MB L2 cache. The L2 cache of Phytium 2000+ uses
an inclusive policy, i.e., the cachelines in L1 are also present in L2.

Each panel contains two Directory Control Units (DCU) and one routing
cell. The DCUs on each panel act as dictionary nodes of the entire on-chip
network. With these function modules, Mars II conducts a hierarchical on-chip
network, with a local interconnect on each panel and a global connect for the
entire chip. The former couples cores and L2 cache slices as a local cluster,
achieving a good data locality. The latter is implemented by a configurable cell-
network to connect panels to gain a better scalability. Phytium 2000+ uses a
home-grown Hawk cache coherency protocol to implement a distributed directory-
based global cache coherency across panels.

We run a customized Linux OS with Linux Kernel v4.4 on the Phytium 2000+
system. We use gcc v8.2.0 compiler and the OpenMP/POSIX threading model.

We measure NUMA-Aware bandwidth of Phytium 2000+ by running a
Pthread version of the STREAM bandwidth code [15] bound to eight NUMA
nodes on the processor. Figure 2 plots the triad bandwidth of all pairs of NUMA
nodes. It can be seen that the bandwidth results obtained inside the same NUMA
node are the highest, and the bandwidth between difference nodes are notice-
able much lower. On Phytium 2000+, the maximum bandwidth within the same
nodes is 17.78 GB/s, while the bandwidth of cross-border access can be down
to only 11.93 GB/s. The benchmark results further motivate us to design a
NUMA-Aware SpMV approach for better utilizing the NUMA architectures.

2.3 Hypergraph Partitioning

Hypergraph can be seen as a general form of graph. A hypergraph is often
denoted by H = (V,E), where V is a vertex set, and E is a hyperedge set. A
hyperedge can link more than two vertices, which is different to an edge in a
graph [18]. A hypergraph can also correspond to a sparse matrix through the
row-net model (columns and rows are vertices and hyperedges, respectively).

The hypergraph partitioning problem divides a hypergraph into a given num-
ber of partitions, and each partition includes roughly the same number of ver-
tices. Its effect is that the connections between different partitions can be mini-
mized. Thus when hypergraph partitioning is used for distributed SpMV, both
load balancing (because the sizes of the partitions are almost the same) and less
remote memory accesses (because connections between partitions are reduced)
can be obtained for better performance [4,17,22]. In this work, we use PaToH
v3.0 [19,23] as the hypergraph partitioning tool for preparing the sparse matrices
for our NUMA-Aware SpMV implementation.

NUMA-Aware Optimization of Sparse Matrix-Vector Multiplication 235

Fig. 3. (a) An original sparse matrix A of size 16 × 16, (b) A row-net representation
of hypergraph H of matrix A, and a four-way partitioning of H, (c) The matrix A
reordered according to the hypergraph partitioning. As can be seen, the non-zero entries
in the reordered matrix are gathered onto the diagonal blocks, meaning that the number
of connections between the four partitions are reduced.

3 NUMA-Aware SpMV Alogrithm

The conventional way of parallelizing SpMV is by assigning distinct rows to
different threads. But the irregularity of accessing x through indirect indices of
the non-zeros of A may degrade the overall performance a lot. To address the
issue, considering the memory accessing characteristics of the NUMA architec-
ture, storing a group of rows of A and part of the vector x most needed by the
rows onto the same NUMA node should in general bring a performance improve-
ment. In this way, the cross-node memory accesses (i.e., accessing the elements
of x not stored on the local node) can be largely avoided.

To this end, we first need to partition the hypergraph form of a sparse matrix.
Figure 3 plots an example showing the difference between a matrix before and
after reordering according to hypergraph partitioning. It can be seen that some
of the non-zero elements of the matrix move to the diagonal blocks. The number
of non-zeros in the off-diagonal blocks in Fig. 3(a) is 48, but in Fig. 3(c), the
number is reduced to 38.

After the reordering, the matrix is divided into sub-matrices i.e. row blocks,
and the vector is also divided into sub-vectors. For example, the matrix in Fig. 3
now includes four sub-matrices of four rows. Then we use the memory allocation
API in libnuma-2.0 [2] to allocate memory for the sub-matrices and sub-vectors
on each NUMA node. Figure 4 demonstrates this procedure, and Algorithm 2
lists the pseudocode. As can be seen, the local memory of each NUMA node
contains one sub-matrices of four rows and one sub-vector of four elements. In
Algorithm 2, the start and end (line 3) represent the beginning and the end of
the row positions for each thread, and the Xpos and remainder (line 6) are used
to locate the vector x needed for local calculation.

236 X. Yu et al.

Fig. 4. The computational process of the NUMA-Aware SpMV algorithm on a 16-core
four-node NUMA system. The four row blocks of the sparse matrix in Fig. 3(c) are
allocated onto the four nodes, and the four sub-vectors are also evenly distributed.
When computing SpMV, the cross-node memory accesses for remote x are visualized
by using lines with arrows.

When the matrix and vector are allocated, our algorithm creates Pthread
threads and bind them to the corresponding NUMA nodes (lines 10–12 in Algo-
rithm 2). For the example in Fig. 4, we issue and bind four threads to each
NUMA node and let each one computes a row of the sub-matrix allocated on
the same NUMA node (lines 1–9). Since the memory on the node only stores a
part of the full vector, the threads will access both the local sub-vector and the
remote ones. In the example in Fig. 4, the threads in NUMA node 0 will also
access the sub-vectors stored in nodes 1 and 4.

Algorithm 2. A NUMA-Aware Pthread implementation of parallel SpMV.
1: function SpMV
2: numa run on node(numanode)
3: for i = start → end do
4: suby[i] = 0
5: for j = A.subrowptr[i] → A.subrowptr[i + 1] do
6: suby[i] = suby[i] + A.subval[j] ∗ subx[Xpos][remainder]
7: end for
8: end for
9: end function

10: for i = 0 → thread nums in parallel do
11: pthread create(&thread[i], NULL, SpMV, (void∗)parameter)
12: end for
13: for i = 0 → thread nums in parallel do
14: pthread join(thread[i], NULL)
15: end for

NUMA-Aware Optimization of Sparse Matrix-Vector Multiplication 237

4 Performance and Analysis

4.1 Experimental Setup and Dataset

In this work, we benchmark 15 sparse matrices from the SuiteSparse Matrix
Collection [3] (formerly known as the University of Florida Sparse Matrix Col-
lection). The 15 sparse matrices include seven regular and eight irregular ones.
The classification is mainly based on the distribution of non-zero elements. The
non-zero elements of regular matrices are mostly located on diagonals, while
those of irregular matrices are distributed in a pretty random way. We in Table 1
list the 15 original sparse matrices and their reordered forms generated by the
PaToH library. Each matrix is divided into 2, 4, 8, 16, 32 and 64 partitions, and
reordered according to the partitions. In terms of the sparsity structures of these
matrices, as the number of partitions increases, the non-zero elements will move
towards the diagonal blocks.

We measure the performance of OpenMP SpMV and NUMA-Aware SpMV
on Phytium 2000+. The total number of threads is set to 8, 16, 32 and 64, and
the threads are created and pinned to NUMA nodes in an interleaved way. We
run each SpMV 100 times, and report the average execution time. For both
algorithms, we run original matrices and their reordered forms according to
hypergraph partitioning.

4.2 NUMA-Aware SpMV Performance

Figure 5 shows the performance comparison of OpenMP SpMV and NUMA-
Aware SpMV running the 15 test matrices. Compared to OpenMP SpMV, our
NUMA-Aware SpMV obtains an average speedup of 1.76x, and the best speedup
is 2.88x (occurs in matrix M6). We see that both regular and irregular matrices
obtain a significant speedup. The average speedup of irregular matrices is 1.91x,
and that of regular matrices is 1.59x.

According to the experimental data, it can be seen that hypergraph parti-
tioning has greatly improved our NUMA-Aware SpMV, but has little impact on
OpenMP SpMV. Moreover, for the same matrix, the number of partitions brings
noticeable different performance. In can also be seen that, after partitioning, the
more non-zero elements the diagonal blocks have, the better the performance.

Specifically, in Fig. 6, with the increase of the number of blocks, the num-
ber of remote memory accesses has been continuously decreased. Before par-
titioning matrix M6, SpMV needs a total of 16,242,632 cross-node accesses to
the vector x. But when the matrix is divided into 64 partitions, that number
drops to 1,100,551, meaning that the number of cross-node accesses decreased by
93.22%. As can be seen from Table 1, the non-zero elements of the split matrix
move towards the diagonal. As for the matrix circuit5M, the best performance is
achieved when having 16 partitions, and the number of cross-node accesses has
been dropped by 65%, compared to the original form.

238 X. Yu et al.

Table 1. Sparsity structures of the original and reordered sparse matrices. The top
seven are regular matrices and the bottom eight are irregular ones.

NUMA-Aware Optimization of Sparse Matrix-Vector Multiplication 239

(a) Transport (b) af shell6 (c) bone010

(d) x104 (e) ML Laplace (f) pre2

(g) Long Coup dt0 (h) circuit5M (i) NLR

(j) cage15 (k) dieFilterV3real (l) germany osm

(m) M6 (n) packing - 500 (o) road central

Fig. 5. Performance of OpenMP SpMV (left) and NUMA-Aware SpMV (right) on
Phytium 2000+. In each subfigure, x-axis and y-axis refer to the number of threads
and partitions, respectively. The heatmap values are in single precision GFlop/s.

240 X. Yu et al.

Fig. 6. Comparison of communication volume before and after partitioning under dif-
ferent number of blocks (the x-axis is the number of partitioned blocks, the y-axis is
the communication volume).

Fig. 7. The ratio of hypergraph partition time to a single NUMA-Aware SpMV time.
The x-axis represents the number of blocks from the hypergraph partitioning.

4.3 Preprocessing Overhead (Hypergraph Partitioning Runtime)

The preprocessing overhead (i.e., the execution time of the hypergraph partition)
is another important metric for parallel SpMV. Figure 7 reports the ratio of
the running time of the hypergraph partition to a single NUMA-Aware SpMV.
From the overall perspective of the 15 matrices, due to the different distribution
of non-zero elements of the matrix, the best observed performance of NUMA-
Aware SpMV is mainly concentrated when the numbers of partitions are 16 and
32. It can be seen that as the number of partitions increases, the ratio increases
accordingly. As the number of partition blocks increases, the partition time in
general increases as well. Specifically, the matrix pre2 has a maximum ratio of
5749 times when the number of hypergraph partitions is 64. In contrast, the
minimum ratio is 257, which is from the matrix Af shell6.

NUMA-Aware Optimization of Sparse Matrix-Vector Multiplication 241

5 Related Work

SpMV has been widely studied in the area of parallel algorithm. A number of
data structures and algorithms, such as BCSR [7], CSX [12] and CSR5 [14], have
been proposed for accelerating SpMV on a variety of parallel platforms. Williams
et al. [20], Goumas et al. [6], Filippone et al. [5], and Zhang et al. [21] evaluated
performance of parallel SpMV on shared memory processors.

Hypergraph partitioning received much attention when accelerating SpMV
on distributed platforms. Over the past few decades, researchers have proposed
a few partitioning approaches and models for various graph structures and algo-
rithm scenarios [4,17,22,24,25]. A few software packages containing these algo-
rithms have been developed and widely used. For example, Karypis et al. devel-
oped MeTiS [9,11], ParMeTiS [10] and hMeTiS [8], and Çatalyürek et al. devel-
oped PaToH [19,23], which is used in this work.

6 Conclusions

We have presented a NUMA-Aware SpMV approach and benchmarked 15 rep-
resentative sparse matrices on a Phytium 2000+ processor. The experimental
results showed that our approach can significantly outperform the classical
OpenMP SpMV approach, and the number of generated hypergraph partitions
demonstrates a dramatic impact on the SpMV performance.

Acknowledgments. We would like to thank the invaluable comments from all the
reviewers. This research was supported by the Science Challenge Project under Grant
No. TZZT2016002, the National Natural Science Foundation of China under Grant No.
61972415 and 61972408, and the Science Foundation of China University of Petroleum,
Beijing under Grant No. 2462019YJRC004, 2462020XKJS03.

References

1. Asanovic, K., et al.: The landscape of parallel computing research: a view from
berkeley. Technical report Uc Berkeley (2006)

2. Bligh, M.J., Dobson, M.: Linux on NUMA systems. In: Ottawa Linux Symposium
(2004)

3. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans.
Math. Softw. 38(1), 1–25 (2011)

4. Devine, K.D., Boman, E.G., Heaphy, R.T., Bisseling, R.H., Çatalyürek, Ü.V.: Par-
allel hypergraph partitioning for scientific computing. In: International Parallel &
Distributed Processing Symposium (2006)

5. Filippone, S., Cardellini, V., Barbieri, D., Fanfarillo, A.: Sparse matrix-vector mul-
tiplication on GPGPUs. ACM Trans. Math. Softw. 43(4), 1–49 (2017)

6. Goumas, G., Kourtis, K., Anastopoulos, N., Karakasis, V., Koziris, N.: Performance
evaluation of the sparse matrix-vector multiplication on modern architectures. J.
Supercomput. 50, 36–77 (2009)

7. Im, E.J., Yelick, K., Vuduc, R.: Sparsity: optimization framework for sparse matrix
kernels. Int. J. High Perform. Comput. Appl. 18(1), 135–158 (2004)

242 X. Yu et al.

8. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph parti-
tioning: applications in VLSI domain. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 7(1), 69–79 (1999)

9. Karypis, G., Kumar, V.: Analysis of multilevel graph partitioning. In: Supercom-
puting 1995: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing,
pp. 29–29 (1995)

10. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular
graphs. In: Proceedings of the 1996 ACM/IEEE Conference on Supercomputing,
Supercomputing 1996, p. 35-es (1996)

11. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

12. Kourtis, K., Karakasis, V., Goumas, G., Koziris, N.: CSX: an extended compression
format for SPMV on shared memory systems. In: Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel Programming, PPoPP 2011, pp.
247–256 (2011)

13. Liu, W.: Parallel and scalable sparse basic linear algebra subprograms. Ph.D. thesis,
University of Copenhagen (2015)

14. Liu, W., Vinter, B.: CSR5: An efficient storage format for cross-platform sparse
matrix-vector multiplication. In: Proceedings of the 29th ACM on International
Conference on Supercomputing, ICS 2015, pp. 339–350 (2015)

15. McCalpin, J.D.: Stream: sustainable memory bandwidth in high performance com-
puters. Technical report, University of Virginia, Charlottesville, Virginia (1991–
2007). A continually updated technical report

16. Phytium: Mars ii - microarchitectures. https://en.wikichip.org/wiki/phytium/
microarchitectures/mars ii

17. Uçar, B., Aykanat, C.: Partitioning sparse matrices for parallel preconditioned
iterative methods. SIAM J. Sci. Comput. 29, 1683–1709 (2007)

18. Uçar, B., Aykanat, C.: Revisiting hypergraph models for sparse matrix partition-
ing. Siam Rev. 49(4), 595–603 (2007)

19. Uçar, B., Çatalyürek, V., Aykanat, C.: A matrix partitioning interface to PaToH
in MATLAB. Parallel Comput. 36(5), 254–272 (2010)

20. Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimization
of sparse matrix-vector multiplication on emerging multicore platforms. Parallel
Comput. 35(3), 178–194 (2009)

21. Zhang, F., Liu, W., Feng, N., Zhai, J., Du, X.: Performance evaluation and analysis
of sparse matrix and graph kernels on heterogeneous processors. CCF Trans. High
Perform. Comput. 1, 131–143 (2019)

22. Çatalyürek, V., Aykanat, C.: Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication. IEEE Trans. Parallel Distrib. Syst.
10(7), 673–693 (1999)

23. Çatalyürek, V., Aykanat, C.: Patoh (partitioning tool for hypergraphs). In: Padua,
D. (ed.) Encyclopedia of Parallel Computing, pp. 1479–1487. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-0-387-09766-4 93

24. Çatalyürek, V., Aykanat, C., Uçar, B.: On two-dimensional sparse matrix par-
titioning: models, methods, and a recipe. SIAM J. Sci. Comput. 32(2), 656–683
(2010)

25. Çatalyürek, V., Boman, E.G., Devine, K.D., Bozda, D., Heaphy, R.T., Riesen,
L.A.: A repartitioning hypergraph model for dynamic load balancing. J. Parallel
Distrib. Comput. 69, 711–724 (2009)

https://en.wikichip.org/wiki/phytium/microarchitectures/mars_ii
https://en.wikichip.org/wiki/phytium/microarchitectures/mars_ii
https://doi.org/10.1007/978-0-387-09766-4_93

CARAM: A Content-Aware Hybrid
PCM/DRAMMain Memory System Framework

Yinjin Fu1,2(B) and Yang Wu2

1 PengCheng Laboratory, Shenzhen 518055, China
2 Army Engineering University, Nanjing 210007, China

Abstract. The emergence of Phase-Change Memory (PCM) provides opportuni-
ties for directly connecting persistent memory to main memory bus. While PCM
achieves high read throughput and low standby power, the critical concerns are
its poor write performance and limited durability, especially when compared to
DRAM. A naturally inspired design is the hybrid memory architecture that fuses
DRAM and PCM, so as to exploit the positive aspects of both types of mem-
ory. Unfortunately, existing solutions are seriously challenged by the limited main
memory size, which is the primary bottleneck of in-memory computing. In this
paper, we introduce a novel Content Aware hybrid PCM/ DRAM main mem-
ory system framework—CARAM, which exploits deduplication to improve line
sharing with high memory efficiency. CARAM effectively reduces write traffic
to hybrid memory by removing unnecessary duplicate line writes. It also sub-
stantially extends available free memory space by coalescing redundant lines in
hybrid memory, thereby further improving the wear-leveling efficiency of PCM.
To obtain high data access performance, we also design a set of acceleration
techniques to minimize the overhead caused by extra computation costs. Our
experiment results show that CARAM effectively reduces 15%–42% of memory
usage and improves I/O bandwidth by 13%–116%,while saving 31%–38%energy
consumption, compared to the state-of-the-art of hybrid systems.

Keywords: Phase change memory · Hybrid memory management ·
Deduplication · Content awareness · Line sharing

1 Introduction

The limited main memory capacity has always been a critical issue for multi/many-
core systems to meet the needs of concurrent access to working sets. Unfortunately,
conventional DRAM is not the ideal storage medium for in-memory computing due to
its high power consumption, even though it achieves low access latency.Moreover, Phase
change memory (PCM) is attracting an increasing attention as a promising candidate
for next-generation memory [1]. However, there are some crippling limita-tions that
prevent PCM from completely replacing DRAM in future systems, such as low write
performance, high power cost of write access, and limited long-term endurance. These
drawbacks have led designers toward the adoption of hybrid main memory architectures

© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 243–248, 2021.
https://doi.org/10.1007/978-3-030-79478-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_21&domain=pdf
http://orcid.org/0000-0001-9107-1338
https://doi.org/10.1007/978-3-030-79478-1_21

244 Y. Fu and Y. Wu

[2–7], which couple the large-capacity PCMwith the small-capacity DRAM, in order to
combine the best of bothmemorymedia. Further-more, deduplication can improve space
efficiencyby replacing redundant datawith references to a unique copy in storage systems
[8], due to its excellent ability in removing redundancy with higher throughput than
lossless compression techniques [9]. Hence, we can enable deduplication for a hybrid
PCM/DRAM memory structure that fits the characteristic of storage class memory due
to their merits in DRAM-like performance and lower power consumption than DRAM.

In this paper, we present CARAM, a content-aware hybrid DRAM/PCMmain mem-
ory system design framework by leveraging the deduplication technique at the line level.
We use DRAM buffering for unique line writes to PCM, and also exploit the available
DRAM space for memory address mapping to store deduplication metadata. We also
introduce a deduplication-based hybrid memory line write processing to elevate space
efficiency by enabling line sharing. Finally, we evaluate the space saving, I/O perfor-
mance, and power consumptionwith real-world traces using a simulator that we build for
content-aware hybrid memory evaluation. To the best of our knowledge, this is the first
study on the architectural design of content-aware hybrid PCM/DRAM main memory
system by enabling line sharing to the most extent using deduplication.

PCM

Storage Pool

H
yb

ri
d

M
em

or
y

Buffer

LFI AMT

Core Core Core Core

Memory Controller
Deduplicator

DRAM

LLA PLA

LFP PLA RefCount

Address Mapping Table

Line Fingerprint Index

0x1001 0x1001

0x10d5 0x120e

⁞ ⁞

6cd41f 0x1001 1

395c8e 0x120e 28

⁞ ⁞

0x20ff 0x120e

Fig. 1. The architecture of CARAM.

2 System Design of CARAM

2.1 The Overview of System Architecture

Our CARAM design aims to improve space efficiency, power efficiency, and the
endurance limit of traditional DRAM/PCM main memory. Figure 1 presents our archi-
tectural design of CARAM. The on-chip memory controller replays memory requests
from the core’s LLCs to the DRAM controller or the PCM controller. Line-level dedu-
plication is performed in a deduplicator module, which generates line fingerprints with
light-weight hashing SuperFastHash [12]. To support the deduplication process for line
fingerprint management and line address mapping in duplicate identification, we store a
line fingerprint index (LFI) and an address mapping table (AMT) in a persistent battery-
backed DRAM, along with a write buffer for the PCM write accesses to overcome the

CARAM: A Content-Aware Hybrid PCM/DRAM 245

slow write speed of PCM. We assign all the PCM and the remaining part of DRAM to
a single physical memory address space used for the unique line writes after deduplica-
tion. The hybrid main memory is used for page cache to hide the access latency in the
underlying persistent storage pool, and all the unique pages in both DRAM and PCM
are managed by page caching algorithms, such as LRU [6] and CLOCK [7].

In our CARAM design, the AMT is an in-memory table that consists of multiple
entries, each of which is a key-value pair {logical line address (LLA), physical line
address (PLA)}. Each entry requires 4B for storing the LLA and another 4B for PLA.
The pair is a many-to-one mapping to support line sharing after deduplication. We need
to update the AMT when there are new lines or line updates in hybrid main memory.
The LFI is responsible for the fingerprint management of memory lines. Each of its
entries contains a mapping between a line fingerprint (LFP) and a pair: {physical line
address (PLA), RefCount}. RefCount presents the corresponding reference count in
the hybrid main memory. Each fingerprint is 4B long for SuperFastHash value, while
each RefCount is 2B long. Each entry is a one-to-one mapping to record the metadata
information of a unique line in main memory at that time. The LFI can be updated when
a memory line is renewed or swapped.

Duplicate?

Lookup AMT Table

Yes

Update LFI Index
for New Line

No

LLA exists?

Finish

Yes

Update AMT Table
for Line Sharing

No

Lookup AMT Table

LLA exists?

Update AMT
Table for New

Line

Update AMT
Table for Line

Update

YesNo

Delete the old
LFP mapped by

LLA in LFI

Line Write on LLA

LFP exists?

Lookup LFI Index

Calculate LFP

Yes

No

Read Line Data

Fig. 2. Line deduplication processing in CARAM.

2.2 Line Deduplication Processing

As shown in Fig. 2, the line deduplication processing of our CARAM is performed in
the deduplicator module of the memory controller. When a line write request on a LPA
is issued from the LLC, the corresponding line fingerprint LFP is calculated in CPU
using weak hashing SuperFastHash. Then it queries the LFI in DRAM to check whether
its line fingerprint exists or not. If yes, it further reads and compares the data in PLA

246 Y. Fu and Y. Wu

line with the writing line data, if it is duplicate, we can find the mapping of LLA to the
same PLA in the AMT, and if it exists in the table, we can deduce that the line write is
a duplicate request and drop it; otherwise, the write operation is a duplicate line write,
and it updates the AMT for line sharing in hybrid memory. On the other hand, if the line
fingerprint LFP does not exist in the LFI or not a duplicate, which means a new line is
issued, and it needs to add the new LFP and its metadata into the LFI after the line write
is finished in the hybrid main memory. Then it also queries the LLA in the AMT. If it is
found, then it updates the AMT for the line update after line edition or page swapping,
and deletes the old LFP mapped by LLA in the PFI; Other-wise, it means a new line
write is issued, and adds the new LLA into the AMT.

Fig. 3. The experiment results of various main memory architecture.

3 Evaluation

We build a trace-driven hybrid memory simulator based on DRAMsim2 [10] for our
studies. To support the heterogeneous design, we use multiple channels to simulate
DRAM and PCM. We calculate the performance and energy metrics by referring to the
energy andperformancemodels used in [2]. There are twochannels in the current version:
one channel for 8 GB PCM, and another channel for 2 GB DRAM. We implement
the deduplicator module to enable deduplication in hybrid main memory by modifying
some components in DRAMsim2 to support simulation for PCMmemory.We can easily
modify the simulator to support pure DRAM, pure PCM, and the naïve hybrid memory
simulation for comparisons. We assume that the byte price of DRAM is four times that
of PCM, and compare CARAM with the three kinds of main memory configuration
with the same cost: 4 GB DRAM (DRAM), 16 GB PCM (PCM), and the hybrid 2 GB
DRAM+ 8 GB PCMmemory (Hybrid). We feed the simulator with modified I/O traces
down-stream of an active cache from four types of application systems: amail VM server
(mail), a web VM server for online course (web-vm), a file server (homes) and a web
server for personal pages of users (web-users), in the CS department of FIU [11]. The
four workloads were obtained by adding hash calculation time with 1 byte/cycle on each
volume as a downstream of a last-level cache. It records the same line fingerprint for all
256B lines from every 4 KB block, and the fingerprint value is the first 4B value of the
MD5 value of the block.

As shown in Fig. 3, we evaluate various mainmemory architectures in terms of space
efficiency, I/O performance, and energy consumption. Limited main memory size is the
primary bottleneck for in-memory computing. Here, we assume the space occupation

CARAM: A Content-Aware Hybrid PCM/DRAM 247

ratio of DRAM is 1 in all four applications. As shown in Fig. 3(a), the ratio of PCM is
very low, and it has only a quarter of DRAM’s value due to its low unit price. The ratio
of the naïve hybrid memory is more than 0.4, while CARAM can improve it to approach
or even better than that of PCM, by saving 15%–42% memory space of hybrid main
memory systems via deduplication.

CARAM enables deduplication in hybrid main memory, and it can significantly
reduce line writes to enhance I/O performance through line sharing. Figure 3(b) shows
that CARAM can achieve higher performance range from 13% to 116% than the naïve
hybrid main memory system, since it performs a large number of low-overhead meta-
data updates only instead of duplicate line writes. Also, it performs the best under the
mail workload mainly due to its lowest space occupation ratio.

We evaluate the energy consumption of the four memory architectures with the I/O
traces first, but their values are almost the same under the four different workloads due
to the domination of idle time. To differentiate these schemes, we stress-test their energy
consumption by continuously issuing the read or write line request without the greatest
common idle intervals. Results in Fig. 3(c) show that our CARAM can save 31% –38%
energy consumption than that of the naïve hybrid mainmemory, since it can significantly
reduce the number of write operations in main memory.

4 Conclusions

In this paper, we present a content aware hybrid DRAM/PCM main memory system,
called CARAM, by exploiting line sharing with deduplication technique, and imple-
ment it in a trace-driven hybrid memory simulator based on DRAMsim2. Specifically,
we introduce line-level deduplication processing of write access in our hybrid structure
to balance space saving and system performance. Evaluation results show that CA-RAM
constantly outperforms the existing hybridmemory systems in terms of space saving, I/O
bandwidth, and power consumption. We will study the combination of de-duplication
and memory compression running real data as a direction of future work.

Acknowledgments. This research was supported by the NSF-Jiangsu grant BK20191327. We
would like to thank Prof. Patrick P.C. Lee, the Chinese University of Hong Kong for his help on
the initial design of the system.

References

1. Lee, B.C., Zhou, P., Yang, J., et al.: Phase change technology and the future of main memory.
IEEE Micro 30(1), 131–141 (2010)

2. Lee, H., Baek, S., Nicopoulos, C., et al.: An energy-and performance-aware DRAM cache
architecture for hybrid DRAM/PCM main memory systems. In: IEEE ICCD 2011, pp. 381–
387 (2011)

3. Ham, T.J., Chelepalli, B.K., Xue, N., et al.: Disintegrated control for energy-efficient and
heterogeneous memory systems. In: IEEE HPCA 2013, pp. 424−435 (2013)

4. Qureshi, M.K., Srinivasan, V., Rivers, J.A.: Scalable high performance main memory system
using phase-change memory technology. IEEE ISCA 37(3), 24–33 (2009)

248 Y. Fu and Y. Wu

5. Dhiman, G., Ayoub, R., Rosing, T.: PDRAM: a hybrid PRAM and DRAM main memory
system. In: IEEE DAC, pp. 664–669 (2009)

6. Ramos, L., Gorbatov, E., Bianchini, R.: Page placement in hybrid memory systems. In:
International Conference on Supercomputing, pp. 85–95 (2011)

7. Lee, S., Bahn, H., Noh, S.H.: CLOCK-DWF: a write-history-aware page replacement algo-
rithm for hybrid PCM and DRAM memory architectures. IEEE Trans. Comput. 63(9),
2187–2200 (2014)

8. Wang, Q., Li, J., Xia, W., et al.: Austere flash caching with deduplication and compression.
In: USENIX ATC, pp. 713–726 (2020)

9. Baek, S., Lee, H.G., Nicopoulos, C., et al.: Designing hybrid DRAM/ PCM main memory
systems utilizing dual-phase compression. ACM TODAES 20(1), 1–31 (2014)

10. DRAMsim2. https://github.com/ericlove/DRAMSim2
11. FIU Traces. http://iotta.snia.org/traces/390
12. Hsieh, P.: The superfasthash function (2004). http://www.azillionmonkeys.com/qed/hash.

html

https://github.com/ericlove/DRAMSim2
http://iotta.snia.org/traces/390
http://www.azillionmonkeys.com/qed/hash.html

Big Data and Cloud

Optimization of RDMA-Based HDFS
Data Distribution Mechanism

Xiao Zhang(B), Binbin Liu, Junhao Zhao, and Cong Dong

School of Computer Science, Northwestern Polytechnical University,
Xian 710129, Shaanxi, China

zhangxiao@nwpu.edu.cn

Abstract. Hadoop Distributed File System (short for HDFS) is a high
availability file system designed to run on commodity hardware. It uses
multiple replicas to ensure high reliability, and many data are trans-
mitted between storage nodes. The performance of data transmission
has a great impact on the latency of writing operations. Remote Direct
Memory Access (short for RDMA) is a protocol with low latency and
high through which is running on the Infiniband network. When HDFS
runs on the Infiniband network, the default protocol IPoIB can not take
advantage of the high-speed network. The latency of the writing pro-
cess is similar to a TCP/IP network. In this paper, we present a new
RDMA-based HDFS writing mechanism. It enables DataNodes to read
data parallelly from the Client through RDMA. And by using RDMA
primitive, the transmission latency is slower than the original TCP/IP
protocol. The experiments show that our approach reduces the latency
of the writing process by 10.11%–40.81% compared with the original
HDFS.

Keywords: Distributed file system · RDMA · Data distribution
mechanism · HDFS · Performance optimization

1 Introduction

HDFS provides high-throughput data access, and programs running on HDFS
usually have large data sets. Typical HDFS file sizes are in GBs or TBs volume
level. An HDFS cluster can support hundreds of nodes and thousands or mil-
lions of files. Through the analysis of the existing HDFS, it is found that the
communication protocol used is mainly TCP/IP. Due to the excessive processing
delay of the TCP/IP protocol, there are multiple memory copies, and now the
memory bandwidth performance is very large with high CPU bandwidth and
network bandwidth. The difference causes HDFS to have a higher write latency.
With the popularity of IB equipment and the rapid progress of research on RoCE
(RDMA Over Converged Ethernet), iWARP (Internet Wide Area RDMA Pro-
tocol) and other Ethernet-based analog IB equipment, RDMA has gradually

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 251–262, 2021.
https://doi.org/10.1007/978-3-030-79478-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_22

252 X. Zhang et al.

stepped out of the field of high-performance computing and has been applied to
the optimization of distributed file systems. RDMA can be used to obtain higher
data transmission performance, reducing the time for replicas to be transmitted
between nodes, thereby shortening the execution time of HDFS write operations
and reducing write latency. In order to accelerate the data transmission speed
between nodes and reduce the write latency of HDFS, this paper designs a new
write data distribution mechanism for HDFS based on RDMA, so that each data
node can read data in parallel. The experiment results show that the optimized
HDFS write latency is reduced by 10.11%–40.81%. The main contributions of
this paper are as follows:

(1) Analyze the advantages and disadvantages of the HDFS writing process and
communication mechanism.

(2) Analyze the three implementation methods of IB network and the two prim-
itives of RDMA, determine the most suitable primitive usage scheme for
HDFS optimization, minimize the modification of the source code architec-
ture, and greatly reduce the HDFS write delay.

(3) A data distribution mechanism based on RDMA technology is proposed, so
that each data node can read data in parallel.

(4) Evaluate the optimizations achieved in this paper and reduce the overall
time-consuming of HDFS write operations.

2 Related Work

RDMA was first used in the field of high-performance computing. With the
reduction of hardware costs and the progress of Ethernet-based RDMA research
(such as RoCE and iWARP), RDMA is gradually used in the field of distributed
storage. The paper of Jiesheng Wu and others used RDMA to optimize the
IO performance of PVFS [1]. They designed a RDMA-based transport layer to
make PVFS data transmission transparent and stable in performance; designed
a buffer management method for flow control, Dynamic and balanced buffer
sharing; an efficient memory registration and deregistration scheme was pro-
posed. Brent Callaghan proposed a storage protocol that supports RDMA on
the WAN(Wide Area Network) [2], and use it to accelerate NFS performance [3].
The paper by Qingchao Cai et al. proposes an efficient distributed memory plat-
form GAM, which provides directory-based cache coherence protocol through
RDMA, so it can integrate the memory of each node, and ensure consistency
through state transition, read through RDMA and take the data of the remote
node [4]. Anuj Kalia’s paper proposes FaSST [5], a high-performance, scalable,
and distributed memory transaction processing system that uses RDMA message
primitives and datagram transmission methods to design a new RPC (Remote
Procedure Call), so it can maintain low overhead and simple system design.
These studies show that RDMA can benefit traditional distributed and parallel
file systems.

With the development of Hadoop, the performance of HDFS has received a
lot more attention. They applied RDMA to HDFS to improve its performance.

Optimization of RDMA-Based HDFS Data Distribution Mechanism 253

Sayantan Sur’s paper studies the impact of high-performance interconnection
networks on HDFS [6]. When the underlying storage medium is HDD (Hard
Disk Drive), the network equipment is replaced by Gigabit Ethernet card to IB
network card (IPoIB), the performance can be improved by 11%–100%; when
the underlying storage medium is replaced by SSD (Solid State Drive), the high-
speed Internet can bring 48%–219% performance improvement. At present, the
network becomes the IO bottleneck because of the emergence of NVMe SSD and
even NVM (Non-volatile Memory) devices, and the application of RDMA can
bring more obvious performance improvement effects. Since Hadoop has released
many versions, and many HDFS-based optimizations are tightly coupled with
the RDMA design, it cannot be easily applied to the production environment;
so Adithya Bhat and others have designed a RDMA-based HDFS plug-in that
can flexibly interact with Hadoop2.5, 2.6 version combination [7].

HDFS communication is mainly based on RPC, and using RDMA to modify
the RPC interface to optimize communication bottlenecks is also a solution. For
example, Li Liang designed and developed a set of RDMA-based network com-
munication architecture in his paper, and implemented and provided an RPC
over RDMA communication interface [8]; Yang Heng optimized RDMA-based
RPC in his paper. Registered memory blocks are used repeatedly to reduce mem-
ory registration time and improve performance [9]. They eventually increased
the RPC communication rate by 30%, but it was not applied to HDFS, but
only provided us with an idea. After all, RPC still has serialization overhead,
and if it does not cooperate with the distribution mechanism of modifying write
data, it will still waste RDMA communication performance, and the reduction in
HDFS write latency is not obvious. As stated in Dushyanth Narayanan’s paper,
although RDMA reading is not as flexible as RPC, it can bring benefits in terms
of latency and throughput, and we should use reasonable design to give full play
to its advantages [10].

Nusrat Sharmin Islam et al. performed a series of optimizations on HDFS
based on RDMA. Firstly, they designed a set of java buffer management mecha-
nism, and modified the data transmission protocol of HDFS using RDMA-based
UCR (Unified Communication Runtime) library [11]. Next, they further opti-
mized the RPC of HDFS to make RDMA compatible with Java’s IO interface
and reduce its memory copy [12]. Finally, due to the improvement of IO per-
formance, the HDFS software stack has become a new bottleneck, and they
have proposed SOR-HDFS [13], using the SEDA (Staged Event-Driven Archi-
tecture) [14] to improve HDFS write performance. SOR-HDFS divides the HDFS
write process into four stages, each of which has an input queue and a thread
pool associated with it. At any stage, the threads in the thread pool will use the
data in the input queue, process it and provide it to the input queue in the next
stage. This allows the different stages of data transmission and IO to overlap to
the greatest extent, thereby accelerating the overall speed of the write process.

254 X. Zhang et al.

3 Background and Motivation

In this section, firstly, we outline the existing HDFS write data process and
determine its performance bottlenecks. Then, we introduced the different imple-
mentations of RDMA, determine our usage plan and clarify the reasons.

3.1 HDFS Introduction

HDFS is an important part of the Hadoop ecosystem. As a distributed file sys-
tem, it is built on a cluster of multiple servers, and each server can be responsible
for one or more roles, which are NameNode, DataNode, and Client. As shown
in the figure, the various roles are interconnected through the network, using
RPC for control flow, and using Socket for data flow. As shown in Fig. 1, where
NameNode acts as a cluster metadata server, it stores cluster metadata infor-
mation, contacts the DataNode through a heartbeat mechanism and monitors
the cluster status. The Client must also pass the NameNode to register and
obtain the required file information. As a data center of the cluster, DataNode
provides storage services, sends heartbeat information to NameNode through
RPC, reports the status of data blocks, and transmits data with other nodes
through the pipeline flow constructed by Socket. The Client provides an inter-
active interface between the cluster external application and HDFS. The upper
layer application can interact with the NameNode to obtain cluster informa-
tion and file metadata information through the Client, and interact with the
DataNode to read or write files through the Client.

Fig. 1. HDFS architecture

HDFS saves redundant copies of data on multiple DataNode nodes. The
default number of copies is 3, which are stored on this node, the same rack node,
and adjacent rack nodes. This design not only performs data backup, but also
improves security. It also makes it possible to access neighboring nodes as much
as possible when reading data to improve access efficiency; but at the same time
it also increases the overall data transmission amount when data is written, this

Optimization of RDMA-Based HDFS Data Distribution Mechanism 255

phenomenon will be more serious under the poor network performance and pipe
line data transmission.

3.2 The Writing Process of Original HDFS

In HDFS, the completion of a file write operation requires the cooperation of the
entire cluster. The process of writing a file is shown in Fig. 2. First, the Client
needs to do some preparation work. For example, contact the NameNode to
apply for the data block information, initialize the DataStreamer thread; create
a file lease to avoid conflicting file write operations; NameNode will also update
the metadata information after receiving the request from the client, allocate
the data block and return block information; the client can establish a Pipeline
connection with the DataNode based on the returned information. Then, the
client can perform formal data transmission operations. For example, cyclically
writes data to the data queue; at the same time, the DataStreamer thread will
also take out the data in the data queue in parallel, calculate the checksum, and
encapsulate it into a packet to write into the pipeline stream; DataNode reads
the packet from the pipeline stream and check the checksum, write it to disk,
and pass the packet to the downstream node. Finally, after receiving all ACK
messages, the Client performs the finishing work. For example, close the pipeline
flow and contact the NameNode to update the file status.

Fig. 2. The flowchart of HDFS writing process

256 X. Zhang et al.

It can be seen from the previous introduction that although the Client does
not need to wait for the ACK information of the previous packet when passing the
packet, each DataNode needs to wait for the packet data from the upstream node.
This serial pipeline flow slows down the entire write process. On the DataNode
side, each node can check the checksum and persist the data only after receiving
the entire packet from the upstream node. We divide the HDFS writing process
into four parts: communicating with NameNode (registering file information and
obtaining data block information), establishing PipeLine, transmitting data, and
completing files; and the process of transmitting data can be divided into four at
each DataNode Stage: Receiving the packet, checking the checksum, persist the
data, and transmitting the packet. As shown in Fig. 3, receiving and transmitting
packets account for 66% of the data transmission stage, and then account for
43% of the entire write process, is the bottleneck of the entire writing process.
Therefore, improving the data transmission environment and optimizing the data
distribution mechanism can greatly reduce HDFS write latency.

Fig. 3. The proportion of time cost in each phase of the write process of HDFS

3.3 RDMA Introduction

RDMA technology contains three major features: low CPU usage, kernel bypass,
and zero copy. RDMA reduces the server-side data processing delay in network
transmission. It transmits data directly from the memory of one computer to
another without the intervention of both operating systems. There are three
different implementations of RDMA, namely InfiniBand, RoCE and iWARP.
Among them, InfiniBand is a kind of network specially designed for RDMA,
which guarantees reliable transmission from the hardware level, while RoCE
and iWARP are RDMA technologies based on Ethernet and support the corre-
sponding verbs interface. InfiniBand network supports RDMA new generation
network protocol, with good performance, but the price of network card and

Optimization of RDMA-Based HDFS Data Distribution Mechanism 257

switch is also very high. With the development of technology, the emergence of
RoCE and iWARP which are based on Ethernet, reduced the cost of hardware
and promoted the research on RDMA. But in order to obtain the best opti-
mization effect, this paper uses InfiniBand to build the corresponding RDMA
network.

RDMA accesses remote memory using two types of primitives [15]: 1) mes-
sage primitives, send and recv, similar to socket programming, before sending
a message, the receiver needs to call the recv primitive in advance to specify
the received message The stored memory address, such primitives are also called
two-side RDMA; 2) memory primitives, read and write, these primitives can
directly read or update remote memory without intervention from the remote
CPU, They are called one-side RDMA. Obviously, the advantage of memory
primitives is that they can obtain higher performance, and save CPU resources
when there are computationally intensive tasks at the remote end; the disadvan-
tage is that because there is no CPU participation, it is easy to cause consistency
problems. On the contrary, the advantages of message primitives are that infor-
mation can be transmitted in time, and there is feedback for reading and writing;
the disadvantage is that the overhead is large and the delay is high. As shown in
Figs. 4(a) and (b), due to the need to create queue pairs and maintain memory
buffers in advance when establishing RDMA connections, it takes some time,
and Java Socket does not need to maintain the above information; therefore, in
small-scale data transmission, the performance of RDMA is not as good as Java
Socket; but with the increase of data scale, after all, the preliminary preparation
of RDMA only needs once, so the performance is greatly overtaken. In view of
the above characteristics of RDMA, in the design of this paper, we will choose
to use message or memory primitives according to whether the communication
process needs feedback, and only choose to use RDMA when the network con-
nection can be established or be used many times, so as to give full play to
RDMA performance, reduce HDFS write latency.

(a) small file (b) more files

Fig. 4. The time cost of the different communication ways

258 X. Zhang et al.

4 The Design and Implementation of JUCX HDFS

According to the previous analysis, data distribution is the bottleneck of the
entire writing process. The read performance of one-side RDMA is much higher
than other network transmission methods, and reading data from the Client to
the DataNode does not require feedback, so here is the most It is suitable to use
one-side RDMA. However, one-side RDMA need to determine the corresponding
memory address, data transmission also needs to know the packet size, and these
two information are small, the DataNode and Client need to interact in time,
so use the message primitives of RDMA. Finally, the operation of Pipeline and
ACK, because it is only a simple RPC transmission control flow, and the amount
of data is small, almost no impact on performance, so retain the original Java
Socket communication method.

The overall write process after optimization is shown in Fig. 5(a). Since
the data distribution part was mainly modified, the process of contacting the
NameNode in the early stage and completing the file in the later stage has not
changed, so it is not reflected in the figure. In the packet data transmission pro-
cess, first, the client sends the memory address and packet length of the packet
data to each DataNode through the message primitive, that is, the send function.
Then, the DataNode can read the packet data directly through the memory prim-
itive, namely the get function, according to the received information. Although
the send function still serially sends RDMA information to each DataNode, due
to the small amount of data, it can be considered that each DataNode starts to
read data from the Client at almost the same time, that is, to persist data in
parallel.

(a) The write process (b) The data stream and control flow

Fig. 5. RDMA-based HDFS write distribution mechanism

Optimization of RDMA-Based HDFS Data Distribution Mechanism 259

In this paper, RDMA uses JNI (Java Native Interface) to call the underlying
UCX (Unified Communication X) library. The detailed data flow after optimiza-
tion is shown in Fig. 5(b). First, the client-side DataStreamer thread constructs a
packet, temporarily stores the data in memory, and sends related information to
the DataNode through the RDMA send function. Then, the BlockReceive thread
of the DataNode can receive information through the recv function. After deter-
mining the remote address and read length, the packet data in the client memory
can be directly read through RDMA and persisted to the disk. Finally, the ACK
message is returned to the client via the original RPC. The experiment uses
HDFS cluster built by Hadoop 2.9.0 to analyze the performance of HDFS under
different storage media and different networks. This paper directly uses the put
file system interface provided by HDFS to test the execution time of write oper-
ations. The put command can upload files locally to the HDFS cluster, that is,
the complete HDFS write process is executed. Use the put command to upload
1-5GB files to the HDFS cluster and record the execution time of the command
to analyze the reduction effect of this optimization on HDFS write latency.

DataNode can also implement a parallel data distribution mechanism using
TCP/IP, but TCP/IP will perform multiple memory copies, so the transmission
performance is far lower of RDMA. And the first consideration in this paper is
to apply RDMA technology to HDFS more efficiently, so this paper does not
implement the data distribution mechanism under TCP/IP.

5 Evaluation

5.1 Experimental Setup

The experiment used 6 machines with the same hardware configuration to
build the Hadoop 2.9.0 cluster. The software and hardware configuration of the
machine is shown in Table 1. Among them, one machine is used as the NameN-
ode node, one is used as the Client node, and the remaining four are used as
DataNode nodes. Commands are executed under the Client node to avoid the
influence of NameNode and DataNode.

Table 1. The configuration of platform

Name Describe

Model Sugon S650

CPU AMD Opteron(TM) 6212, 2.6 GHz, 16 cores

Memory 40GB

HDD 1TB SEAGATE 7200 rpm

SSD 250GB SamSung MZ-76E2508

1GigE NetWork Intel 82574L Gigabit Network Connection

IB NetWork Mellanox Technologies MT26428

Operating System Ubuntu 16.04 Linux, kernel 4.4.0-119-generic

260 X. Zhang et al.

5.2 Single Replica

First, in order to test the optimization effect of RDMA, regardless of the effect
of the copy distribution mechanism, we set the cluster to single replica mode.
Different back-end storage media will also affect the write performance, so we
use HDD and SSD as DataNode storage disk for experiments. The experiment
results are shown in Fig. 6(a) and (b). The optimized HDFS in this paper reduces
the write latency of 22.87%–40.81%. Consistent with the previous analysis, due
to the time-consuming preparations such as establishing RDMA connections,
the performance improvement is not obvious when the data volume is small,
and it can be greatly improved when the file size is 5 GB. When the storage
medium is replaced by HDD to SSD, the data persistence time is reduced, and
the two stages of data transmission and data persistence have pipeline design,
so the overall write performance of HDFS is improved, and the performance
optimization of data transmission is covered. It is reflected in the test results
that the overall optimization rate under SSD is lower than under HDD.

(a) HDD (b) SSD

Fig. 6. HDFS write performance in single-replica

5.3 Multiple Replicas

Next, in order to verify our write distribution mechanism, we adjusted the num-
ber of cluster replicas to perform the same test. Observing the experimental
results, we can see that due to the increase in the number of replicas, the work-
load of data transmission increases. Whether it is the original HDFS or our opti-
mized HDFS, the execution time of the write operation has increased. According
to Figs. 7(a) and (b), HDFS optimized in this paper reduces the write latency of
10.11%–25.32%. However, due to the pipeline mechanism in HDFS’s own design,
during the packet transmission, DataNode is also performing data persistence, so
the performance improvement of the data transmission process will be covered
by the data persistence process, so the performance improvement in the case of
multiple replicas is not as high as in the case of single replica. In the future, we
will design new solutions and optimize the data persistence process, but this is
not the work of this paper. Through the new write distribution mechanism, we

Optimization of RDMA-Based HDFS Data Distribution Mechanism 261

have retained the complete RDMA optimization to improve the write perfor-
mance, so that the new HDFS we designed has a large increase in write latency
under two replica configurations and two underlying storage configurations.

(a) HDD (b) SSD

Fig. 7. HDFS write performance in multiple-replica

6 Conclusion

This paper proposes a RDMA-based data distribution mechanism that improves
the HDFS write process and optimizes HDFS write performance. By analyzing
the existing HDFS writing process, it can be found that the data transmission
process has a large overhead and a high time-consuming account. This is caused
by the underlying TCP/IP protocol and the serial pipe stream data transmis-
sion method. Therefore, we used the high throughput and zero copy features of
RDMA to modify the HDFS write process, so that the DataNode can read data
from the Client in parallel, reducing the data transmission time for writing files
and improving the overall write performance. Experiments show that, compared
to the existing HDFS, the optimized HDFS using the method proposed in this
paper reduces the write latency by 10.11%–40.81%.

Acknowledgement. This work is supported by the National Key Research and
Development Project of China (2018YFB1004400), Beijing Municipal Natural Science
Foundation-Haidian original innovation joint fund(L192027).

References

1. Wu, J., Wyckoff, P., Panda, D.: PVFS over infiniband: design and performance
evaluation. In: 2003 International Conference on Parallel Processing, 2003. Pro-
ceedings, pp. 125–132. IEEE (2003)

2. Yu, W., Rao, N.S.V., Vetter, J.S.: Experimental analysis of infiniband transport
services on wan. In: 2008 International Conference on Networking, Architecture,
and Storage, pp. 233–240 (2008)

262 X. Zhang et al.

3. Callaghan, B., Lingutla-Raj, T., Chiu, A., Staubach, P., Asad, O.: NFS over
RDMA. In: Proceedings of the ACM SIGCOMM Workshop on Network-I/O Con-
vergence: Experience, Lessons, Implications, NICELI 2003, pp. 196–208. Associa-
tion for Computing Machinery, New York, NY, USA (2003). https://doi.org/10.
1145/944747.944753

4. Cai, Q., et al.: Efficient distributed memory management with RDMA and caching.
Proc. VLDB Endow. 11(11), 1604–1617 (2018). https://doi.org/10.14778/3236187.
3236209

5. Kalia, A., Kaminsky, M., Andersen, D.G.: Fasst: fast, scalable and simple dis-
tributed transactions with two-sided (RDMA) datagram RPCs. In: 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16), pp.
185–201. USENIX Association, Savannah, GA (2016). https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/kalia

6. Sur, S., Wang, H., Huang, J., Ouyang, X., Panda, D.K.: Can high-performance
interconnects benefit hadoop distributed file system. In: Workshop on Micro
Architectural Support for Virtualization, Data Center Computing, and Clouds
(MASVDC). Held in Conjunction with MICRO, p. 10. Citeseer (2010)

7. Bhat, A., Islam, N.S., Lu, X., Wasi-ur-Rahman, Md, Shankar, D., (DK) Panda,
D.K.: A plugin-based approach to exploit RDMA benefits for apache and enterprise
HDFS. In: Zhan, J., Han, R., Zicari, R.V. (eds.) BPOE 2015. LNCS, vol. 9495, pp.
119–132. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29006-5 10

8. Liang, L.: Research and implementation of communication protocol based on
RDMA across user and kernel space. Master’s thesis, Huazhong University of Sci-
ence and Technology (2016)

9. Heng, Y.: Research and implementation of optimization of RPC over RDMA in
user-space. Master’s thesis, Huazhong University of Science and Technology (2016)

10. Dragojevic, A., Narayanan, D., Castro, M.: RDMA reads: To use or not to use?
IEEE Data Eng. Bull. 40(1), 3–14 (2017)

11. Islam, N.S., et al.: High performance RDMA-based design of HDFs over infiniband.
In: SC 2012: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pp. 1–12. IEEE (2012)

12. Lu, X., et al.: High-performance design of hadoop RPC with RDMA over infini-
band. In: 2013 42nd International Conference on Parallel Processing, pp. 641–650.
IEEE (2013)

13. Islam, N.S., Wasi-ur Rahman, M., Lu, X., Panda, D.K.: High performance design
for HDFs with byte-addressability of NVM and RDMA. In: Proceedings of the
2016 International Conference on Supercomputing, pp. 1–14 (2016)

14. Welsh, M., Culler, D., Brewer, E.: Seda: an architecture for well-conditioned, scal-
able internet services. ACM SIGOPS Oper. Syst. Rev. 35(5), 230–243 (2001)

15. Kalia, A., Kaminsky, M., Andersen, D.G.: Design guidelines for high performance
RDMA systems. In: 2016 USENIX Annual Technical Conference (USENIX ATC
16), pp. 437–450 (2016)

https://doi.org/10.1145/944747.944753
https://doi.org/10.1145/944747.944753
https://doi.org/10.14778/3236187.3236209
https://doi.org/10.14778/3236187.3236209
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kalia
https://doi.org/10.1007/978-3-319-29006-5_10

Reducing the Time of Live Container
Migration in a Workflow

Zhanyuan Di1,2 , En Shao1,2(B) , and Mujun He3

1 University of Chinese Academy of Sciences, Beijing, China
{dizhanyuan,shaoen}@ncic.ac.cn

2 State Key Laboratory of Computer Architecture, Institute of Computing
Technology, CAS, Beijing, China

3 Chongqing University, Chongqing, China

Abstract. As a lightweight virtualization solution, container technol-
ogy can provide resource limiting capabilities and can run multiple iso-
lated process sets under a single kernel instance. Multi-tenant preemp-
tion leads to competition in computing, storage, and network resources,
resulting in degraded computing service performance. Virtualization ser-
vice migration can provide a solution to the problem of resource shortage
in supercomputing systems. However, the resource overhead and delay
in the migration process also reduce the efficiency of high-performance
computers. To solve this problem, this dissertation proposes a method of
container migration and a tool for supporting container migration. Also,
this paper optimizes the startup of containers from checkpoints and pro-
poses a multi-container migration strategy, reducing migration time by
30% compared to sequential migration. The migration method in this
paper provides valuable experience for service migration in supercom-
puters and data centers.

Keywords: Container · Live migration · CRIU · Docker · Workflow

1 Introduction

With the popularity of Linux in the field of servers, more and more manufac-
turers provide users with Linux-based services. Operating system virtualization
technology has also developed, which is lightweight virtualization technology.
As a representative of virtualization technology at the operating system level,
docker [6] has become more and more popular in recent years. Container virtual-
ization technology is more like a lightweight alternative to the hypervisor, with
higher resource usage efficiency than virtual machines. With the development of
clusters, grids, and cloud computing, the application of virtualization technology
is more widespread. The wide applicability of virtualization technology makes
it a commonly used technology in cloud computing centers and has become the
basic architecture of cloud computing technology. It has also been applied in a
large number of cloud-based supercomputers.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 263–275, 2021.
https://doi.org/10.1007/978-3-030-79478-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_23&domain=pdf
http://orcid.org/0000-0003-2716-5051
http://orcid.org/0000-0002-9678-7228
http://orcid.org/0000-0003-3051-4304
https://doi.org/10.1007/978-3-030-79478-1_23

264 Z. Di et al.

In the field of high-performance computing, service migration [20] based on
virtualization provides an effective and feasible solution to solve the resource
shortage of supercomputing systems. In the field of supercomputing system
structure design, high-performance computers regard computing performance
as their core. The computing resource overhead of service migration, the time
overhead of service interruption, and the network overhead of data migration
will all seriously affect the usage efficiency of high-performance computers.

Virtualization service migration is divided into cold migration and live migra-
tion [12]. The main discussion in this paper is live migration technology. Com-
pared with cold migration, live migration saves the entire service running state
and directly transfers or dumps this information in the form of files. Finally,
using the saved information, the service can be restored to the original platform
or even to a different platform. Through live migration technology, it can also
effectively solve problems such as load balancing, system hardware, and software
maintenance and upgrade, fault recovery, and rapid service deployment.

The container live migration technology implemented by CRIU [17] can
quickly copy and migrate containers by saving the container running state, and
realize dynamic load balancing by migrating applications to hosts with less load
and meet the needs of high-performance service migration by migrating appli-
cations from failed hosts.

However, the current research is not aimed at docker and unnecessary file
operations in docker’s internal implementation increase the container startup
time. Also, the current multi-container migration is only a repetition of the
single-container migration, which cannot meet the requirements of dependencies
between multiple containers and the need for full resource utilization.

More specifically, the major contribution of this paper includes:

• We propose a method of container migration and a tool for supporting con-
tainer migration. The tool runs the client of the migration tool on the node
where the container or workflow to be migrated and the server on the migra-
tion destination host.

• We implement the optimization for starting docker container from checkpoint.
By modifying the original code of docker, this paper optimizes the container
startup process, reduces unnecessary startup overhead, and greatly improves
the performance of the container startup from the checkpoint.

• Aiming at the problem of workflow dependencies and resource utilization,
we propose a strategy to migrate containers through pipelines. This strategy
controls the migration process in stages, greatly improving the performance
of multi-container migration and reduces container migration overhead.

2 Background and Motivation

2.1 Live Migration

In general, there are two ways to migrate virtual machines, memory-based and
disk-based. Unlike container live migration, the content saved by virtual machine

Reducing the Time of Live Container Migration in a Workflow 265

live migration is relatively simple, and only the physical resources occupied by
the virtual machine and the saved state need to be considered. In the field of
virtual machines, most of the current popular virtualization solutions provide
solutions for live migration [12]. Migration at the entire virtual machine level
can use an efficient and easy way to transfer memory, including the state and
application level of the internal storage of the kernel State.

There are currently some thermal migration solutions for containers. OpenVZ
is an open-source virtualization platform that uses the Virtuozzo kernel. Due to
its highly customized kernel, Virtuozzo is one of the first batches of server ven-
dors to provide container live migration solutions. On OpenVZ, the application
process checkpoint tool in the kernel is used to save and restore container pro-
cesses.

A better solution is to accomplish the same thing in the mainstream Linux
kernel environment, so Virtuozzo established the CRIU (Checkpoint-restore in
Userspace) project team to carry out this effort. As a new solution, CRIU has
two advantages over other solutions: 1. This is the only solution that does not
require any special operating environment. CRIU runs on a conventional Linux
kernel and does not need to recompile the application. 2. This program was
originally designed to be used in conjunction with containers, and the traditional
checkpoint reduction program did not take this into account [20]. However, there
is currently no live migration solution for docker containers. Also, the existing
methods have not considered the optimization of multi-container migration.

2.2 Motivation

At present, as an implementation of the more popular container technology,
docker integrates the function of starting the container from the checkpoint.
This function uses the open-source software CRIU, which is a tool running on
the Linux operating system, and its function is to save and restore checkpoints
in userspace. Therefore, this function can be used to freeze and restore a single
container on the machine.

However, the built-in function of docker cannot meet the needs of migration
between different nodes, nor can it meet the live migration needs of multiple
containers. Therefore, there is a need for a feasible solution that can imple-
ment the multi-container live migration between different nodes. This solution
is best based on the process saving and recovery functions provided by CRIU,
combined with the docker container management method. In view of the charac-
teristics of high-performance virtualization services, this method can complete
the overall live migration of multiple interrelated containers. After the migration
is completed, the docker on the destination host should continue to manage and
control the container process like the source host. Finally, we need to optimize
performance for application scenarios to minimize migration overhead.

This paper will focus on the feasibility and implementation of container live
migration and study the efficient migration solution of multiple containers for
different migration scenarios.

266 Z. Di et al.

3 Overview of Architecture

The design principle of migration tool is driven by two critical factors: building
and optimizing the migration tool. These two factors are shown in Fig. 1. The
migration tool runs in C/S (client-server) mode, runs the client of the migration
tool on the node where the container or workflow to be migrated, and runs the
server on the migration destination host. On the destination host, the server of
the migration tool is responsible for receiving and processing control messages,
sending the information of environment and node status, and completing the
creation and recovery of new containers from the received files. On the local
machine (source host), the migration tool is responsible for checking the envi-
ronment, completing container analysis and process dumping, sending files and
parameter information needed for container recovery to the server, and control-
ling the various stages of container migration.

Fig. 1. Architecture of migration tool

4 Building Migration Engine

First, we designed a docker container migration engine to handle parameters,
processes, and file systems. Second, we modified the source code of docker to
avoid unnecessary file operations that reduce the startup time of the docker
container.

4.1 Migration Engine

As shown in Fig. 1, the main module of migration tool contains four parts.

Parameter Analysis. The migration engine needs the parameters of the con-
tainers. The engine uses the python library provided by docker to obtain the
parameters. As shown in Fig. 1, the migration engine will send the relevant infor-
mation to the destination host. The server on the destination host receives and

Reducing the Time of Live Container Migration in a Workflow 267

creates new containers based on the information to ensure that the configuration
of the container has not changed before and after the migration.

Process Dump. The migration engine uses runc to dump the process. Runc
is a CLI tool that generates and runs containers according to OCI (Open Con-
tainer Initiative) standards. Runc can obtain all running containers managed by
docker. Therefore, the migration engine directly manages the currently running
container through runc. Runc calls CRIU through RPC. CRIU is a tool for pro-
cess dumping and recovery on Linux. It can freeze a running application and
persist its state to disk.

File System. In docker, each container is composed of multiple readable mir-
ror layers, and a layer of readable and writable containers will be added when
running the container. For the container to be migrated, the migration engine
handles the container layered file system in two ways: 1. The engine completes
the migration of the readable and writable container layer 2. The existing con-
tainer layer is packaged into a new image layer, the packaged image is transferred
to the destination node, and the container is created according to the image.

Process Restore. When restoring the container process, the migration engine
calls docker to restore the container process from the checkpoint. Docker calls
runc to complete the creation and start of the container. After setting the work-
ing environment for CRIU, runc will complete the recovery of the container
process by calling CRIU through RPC.

4.2 Modification to Docker

At present, the implementation of docker will cause unnecessary overhead during
the container startup phase. Docker applies its file reading and writing frame-
work to the dump file. This framework is effective when dealing with small files
and facilitates unified management. However, the reading and writing speed
under this framework is too slow for large files with hundreds of megabytes.
Docker applies a function to output the file system difference between two dif-
ferent directories. This function will output the content in a stream. Docker calls
this function to traverse the dump directory and package the contents, and the
packaged files will be output to the pipe. After that, docker outputs these con-
tents from the pipe to temporary files in a fixed directory. Contained will read
from the previously saved image file through the docker stream, and the read
content will be stored by containerd in temporary directory. After completing
the operation for the dump file, containerd will prepare for the next call to runc
to complete the recovery of the container process, and the temporary directory
will eventually be passed to runc as the new dump file path.

During the test, it was found that docker’s way of reading and writing large
files takes a long time. The average time of files of about 1 GB is between 20 and

268 Z. Di et al.

30 s, which seriously affects the container startup and increases the migration
overhead. Therefore, the process of starting the docker container was modified
in the migration plan to bypass the process of repeatedly reading and writing
files. After modifying the source code of dockerd and containerd and recompiling
them, the time overhead caused by repeated file operations is saved. This part
is reflected in the experiment in Sect. 4.3 and 6.2.

4.3 Case Study: Analysis of Container Migration Time Reduction

This experiment tests the migration tool to migrate a single container. Two
containers in WGS (Whole Genome Sequencing), wgs indel and wgs call, were
used for testing. See Sect. 6.1 for details of the containers.

Case study1: The wgs indel container starts the migration operation of the
migration tool when it reaches 600 s. At this time, the memory occupied by the
container is 1351143424 bytes. As shown in Fig. 2, the total migration time is
44.778 s (original) and 22.945 s (modified).

Fig. 2. Wgs indel container migration process

In the same way, the wgs call container was tested, and the test results are
as follows (Fig. 3):

Fig. 3. Wgs call container migration process

As shown in Fig. 4, the modification of docker reduces the migration time by
nearly 50% compared to the original version.

Case study2: In addition, we used httpd: 2.4.43, mongo: 4.2, mysql: 8.0.19,
nginx: 1.17.9, redis: 6.0-rc3 for testing and the containers can be successfully

Reducing the Time of Live Container Migration in a Workflow 269

recovered. All test containers use the official image in docker hub. Since the time
required for migration is closely related to the machine platform, the specific
information of the migration process is not listed here.

Fig. 4. Comparison of migration time between original and modified version

5 Optimizing Migration Tool

This section proposes a migration solution for scenarios where multiple contain-
ers in the workflow need to be migrated. The migration process is controlled in
stages and the total migration time is reduced.

5.1 Workflow Migration

Requirements for Container Order. In a containerized microservices archi-
tecture, there are dependencies between services. After being packaged into con-
tainers, this dependency is transferred between the containers. To ensure the
correctness of the service, it is necessary to carry out the container dump (stop)
and the container recovery in a fixed order. Therefore, the migration tool needs to
resolve the dependencies between multiple containers to ensure that the contain-
ers are stopped and restored in the correct order during the migration process.

Migration Overhead of Multiple Containers. During the container migra-
tion process, the migration time overhead generally consists of four parts: process
dump, file packaging, network transmission, and process recovery. At each stage,
the emphasis on resource utilization is different. When migrating multiple con-
tainers, the resource utilization efficiency of the sequential migration method is
low. For example, network transmission is only one of four phases. During the
execution of the other three phases, the network bandwidth is idle and cannot
be fully utilized. Therefore, the migration tool needs to provide a corresponding
optimization method in the case of multi-containers to reduce the total migration
time of multi-container migration.

270 Z. Di et al.

In general, users migrate containers in sequence when multiple containers
need to be migrated. This approach is not suitable for multi-container migration
with complex dependencies. And if the migration process is processed in stages,
multiple threads are used to complete the migration, instead of completing them
sequentially. The most obvious problem is that it may cause a single container
downtime to be too long. The threads started by the migration tool will preempt
resources from each other, resulting in a longer container downtime.

In response to the above problems, the migration tool proposes a migration
solution for containers in the workflow (Fig. 5).

Fig. 5. Schematic diagram of pipeline migration

Pipeline Migration. Different from multi-threaded simple parallel jobs, pipe-
line migration migrates various stages in parallel through the pipeline. The con-
tainers of the first start level can be transmitted preferentially on the premise
of ensuring the stopping sequence, which reduces the downtime of the contain-
ers. To optimize the migration performance, the migration tool adopts a mode
that ranks the order of stopping and restoring. The tool does not distinguish the
order of containers that are stopped or restored at the same level. This approach
ensures that containers with a high startup level will be completed first while
avoiding resource competition caused by multiple threads.

To test if our migration method is effective in multi-container migration, we
show a comparative case study in Fig. 7 between three methods.

6 Experiment and Evaluation

6.1 Methodology

We mainly used the program in WGS (Whole Genome Sequencing) for test-
ing. WGS sequenced the entire genome of an organic organism to obtain com-
plete genome sequencing information. Multiple containers can be used for WGS
together, and each container is responsible for performing one of the steps of
gene sequencing. For some of these stages, you can also use multiple containers

Reducing the Time of Live Container Migration in a Workflow 271

to complete in parallel. Wgs indel and wgs call were used in the experiment. Wgs
indel is responsible for re-alignment in the process, finds the correct area, and
performs re-alignment and selection of genetic information. Wgs call is a variant
detection link in the WGS process, which mainly deals with genes Mutation site.
These two steps are also the most time-consuming in the WGS workflow. In a
WGS workflow, multiple indels and calls can be run simultaneously.

6.2 Optimization of Container Startup

This experiment tested the optimization made by the modification to docker
during the container startup phase. In this section, the test container used is
wgs indel. When the memory occupied by the container is small, for example,
when the memory of the container process on the test platform is less than
200 MB, there is no significant difference between the original docker and the
modified docker. When the memory usage increases gradually, the optimized
container startup speed is significantly improved. When the memory usage of
the container process reaches more than 700 MB, the optimized docker container
startup time has dropped to less than one-tenth of the container startup time
before optimization (Fig. 6).

Fig. 6. Optimization of container start from checkpoint

For containers that occupy more than 200 MB of memory, using optimized
dockerd and containerd programs for container startup will significantly reduce
container startup time. For the migration tool, it will also significantly reduce
the time taken for container migration and reduce container downtime.

6.3 Test on Workflow Migration

In this section, the three migration methods for multi-container migration in
Sect. 3 will be tested. For convenience, these test containers are called A1, A2, B1,
B2, C1, and C2, respectively. Among them, C1 and C2 are wgs call containers,
and the rest are wgs indel containers. After checking the migration environment,
the migration tool officially started. 300 s after the startup of these containers,

272 Z. Di et al.

the migration tool is started. Specify the migration order as follows: dump order:
first level: A1, A2; second level: B1, B2; third level: C1, C2 startup order: first
level: C1, C2; second level: B1, B2; third level: A1, A2. The migration order is
not considered in sequential migration. The migration process is shown in Fig. 7.

Fig. 7. Time comparison of different migration methods

Figures 7(a), (b), and (c) identify the time taken by each container in each
stage of the migration process and the time that it is blocked by the migration
tool. Among the three migration methods, the total time taken for sequential
migration is the longest, reaching 153.8 s. The total time for multi-thread migra-
tion is 126.4 s, which is 18% less than the sequential migration. The total pipeline
migration time is 107.7, which is 30% less than the sequential migration. The
pipeline method can alleviate the problems of resource competition and insuf-
ficient resource utilization, thereby reducing the total time of multi-container
migration.

7 Related Work

Container virtualization technology originally originated on UNIX. By changing
the root directory of the process through chroot, it can have the isolation of
disk space from the process level. In 2005, OpenVZ was released. This container
solution achieved resource management and environmental isolation with the

Reducing the Time of Live Container Migration in a Workflow 273

help of a customized Linux kernel. In 2007, Google proposed a common method:
Cgroups, used to solve resource management problems on Linux machines [5].
During this period, containers were mainly managed in two aspects, such as
resource containers [2,16] and secure containers [11,13,15].

Initially, the namespace on Linux was obtained by the kernel from a sin-
gle global table for each resource to obtain information. Later, the namespace
developed into Plan9-esque [18], each resource of each process can be in a specific
namespace [4]. Namespace technology does not provide the function of resource
management. Linux provides resource management through Cgroups technol-
ogy [14].

Process migration was a hot topic in the field of systems research in the
1980s [3,7,10,19], but it was not widely used at the time. The research work on
process dump and recovery is currently divided into two categories: system level
and application level. Process dumping at the system level was once seen as a
more likely solution. This dumping method can be implemented as a general
mechanism, and checkpoint and restore operations can be integrated into the
cluster resource scheduler [20]. Berkeley Lab’s Checkpoint/Restart (BLCR) is a
system-level solution consisting of a library and a kernel module, and the appli-
cation must actively provide support for checkpoints [8,9]. Compared to projects
at the system level, process dumping and recovery at the user level generally run
on the Linux kernel without special modification, and the operating system does
not need special support during the dumping and recovery process. DMTCP
(Distributed Multi-Threaded CheckPointing) is a typical user-level application
checkpoint restoration project. It implements checkpoint saving and restoration
of processes at the library level [1].

Virtuozzo has always been committed to providing real-time migration solu-
tions for virtualization technology. As the first organization to propose live
migration of containers, Virtuozzo supports live migration on its containers.
However, the implementation method is to integrate the main processes and
functions required to perform container live migration into the Virtuozzo kernel,
which is a highly customized Linux kernel by Virtuozzo.

A better solution is to accomplish the same thing in the mainstream Linux
kernel environment, so Virtuozzo established the CRIU (Checkpoint-restore in
Userspace) project team to carry out this effort [20].

The current research is not conducted on docker, and the multi-container
migration is not optimized. Based on the current research, this paper proposes a
method for docker container migration. Also, this method improves the startup
speed of the container and greatly reduces the total time of multi-container
migration.

8 Conclusion

This study aims to achieve the live migration of docker containers between
nodes, especially the migration of workflows composed of multiple containers.
The migration tool implemented in this paper can migrate containers between

274 Z. Di et al.

different nodes, providing a variety of migration options. Also, the tool optimizes
the performance of docker containers starting from checkpoints and proposes a
optimization solution for multi-container migration in workflow scenarios.

Acknowledgement. This work is supported in part by National Program on Key
Research Project (No. 2018YFB0204400), by NSFC (No. 61702484, No. 61972380), by
CASSPRP (XDB24050200). Sponsored by CCF-Baidu Open Fund.

References

1. Ansel, J., Arya, K., Cooperman, G.: DMTCP: transparent checkpointing for cluster
computations and the desktop. In: 2009 IEEE International Symposium on Parallel
& Distributed Processing, pp. 1–12. IEEE (2009)

2. Banga, G., Druschel, P., Mogul, J.C.: Resource containers: a new facility for
resource management in server systems. In: OSDI, vol. 99, pp. 45–58 (1999)

3. Barak, A., La’adan, O.: The MOSIX multicomputer operating system for high
performance cluster computing. Future Gener. Comput. Syst. 13(4–5), 361–372
(1998)

4. Bhattiprolu, S., Biederman, E.W., Hallyn, S., et al.: Virtual servers and check-
point/restart in mainstream Linux. ACM SIGOPS Oper. Syst. Rev. 42(5), 104–113
(2008)

5. Clark, J.: Google: ‘EVERYTHING at Google runs in a container’[OL]. https://
www.theregister.co.uk/2014/05/23/google containerization two billion

6. Docker[OL]. https://docs.docker.com/get-started/overview/
7. Douglis, F., Ousterhout, J.: Transparent process migration: design alternatives and

the Sprite implementation. Softw. Pract. Exp. 21(8), 757–785 (1991)
8. Duell, J.: The Design and Implementation of Berkeley Lab’s Linux Check-

point/Restart. Lawrence Berkeley National Laboratory (2005)
9. Hargrove, P.H., Duell, J.C.: Berkeley lab checkpoint/restart (BLCR) for Linux

clusters. J. Phys. Conf. 46, 494–499 (2006)
10. Jul, E., Levy, H., Hutchinson, N., et al.: Fine-grained mobility in the Emerald

system. ACM Trans. Comput. Syst. (TOCS) 6(1), 109–133 (1988)
11. Kamp, P.H., Watson, R.N.M.: Jails: confining the omnipotent root. In: Proceedings

of the 2nd International SANE Conference, vol. 43, p. 116 (2000)
12. Kotikalapudi, S.V.N.: Comparing live migration between Linux containers and

kernel virtual machine: investigation study in terms of parameters (2017)
13. MacCarty, B.: SELinux-NSA’s open source security enhanced Linux: beating the

O-day vulnerability threat (2005)
14. Menage, P.B.: Adding generic process containers to the Linux kernel. In: Proceed-

ings of the Linux Symposium, vol. 2, pp. 45–57 (2007)
15. Morris, J., Smalley, S., Kroah-Hartman, G.: Linux security modules: general secu-

rity support for the Linux kernel. In: USENIX Security Symposium, pp. 17–31.
ACM, Berkeley (2002)

16. Nagar, S., Franke, H., Choi, J., et al.: Class-based prioritized resource control in
Linux. In: 2003 Linux Symposium (2003)

17. Pickartz, S., Eiling, N., Lankes, S., et al.: Migrating LinuX containers using CRIU.
In: IEEE International Conference on High Performance Computing, Data, and
Analytics, pp. 674–684 (2016)

https://www.theregister.co.uk/2014/05/23/google_containerization_two_billion
https://www.theregister.co.uk/2014/05/23/google_containerization_two_billion
https://docs.docker.com/get-started/overview/

Reducing the Time of Live Container Migration in a Workflow 275

18. Pike, R., Presotto, D., Thompson, K., et al.: The use of name spaces in Plan 9.
Oper. Syst. Rev. 27(2), 72–76 (1993)

19. Powell, M.L., Miller, B.P.: Process migration in DEMOS/MP. ACM SIGOPS Oper.
Syst. Rev. 17(5), 110–119 (1983)

20. Vasyukov, A., Beklemysheva, K.: Using CRIU with HPC containers field experi-
ence. Int. J. Eng. Comput. Sci. 7(07), 24106–24108 (2018)

RDMA-Based Apache Storm
for High-Performance Stream

Data Processing

Ziyu Zhang(B), Zitan Liu, Qingcai Jiang, Zheng Wu, Junshi Chen,
and Hong An(B)

University of Science and Technology of China, Hefei, China
{zzymm,jauntyliu,jqc,zhengwu,cjuns}@mail.ustc.edu.cn, han@ustc.edu.cn

Abstract. Apache Storm is a scalable fault-tolerant distributed real-
time stream-processing framework widely used in big data applications.
For distributed data-sensitive applications, low-latency, high-throughput
communication modules have a critical impact on overall system perfor-
mance. Apache Storm currently uses Netty as its communication com-
ponent, an asynchronous server/client framework based on TCP/IP pro-
tocol stack. The TCP/IP protocol stack has inherent performance flaws
due to frequent memory copying and context switching. The Netty com-
ponent not only limits the performance of the Storm but also increases
the CPU load in the IPoIB (IP over InfiniBand) communication mode.
In this paper, we introduce two new implementations for Apache Storm
communication components with the help of RDMA technology. The
performance evaluation on Mellanox QDR Cards (40 Gbps) shows that
our implementations can achieve speedup up to 5× compared with IPoIB
and 10× with 1 Gigabit Ethernet. Our implementations also significantly
reduce the CPU load and increase the throughput of the system.

Keywords: Apache Storm · RDMA · InfiniBand · Stream-processing
framework · Cloud computing · Communication optimization

1 Introduction

With the increase of Internet users and the development of hardware equip-
ment, processing massive amounts of data in real-time has posed a great chal-
lenge to system design. Real-time stream processing frameworks such as Apache
Storm [1], Apache Spark [2], and Apache Flink [3] have attracted more atten-
tion than batch processing frameworks such as Apache Hadoop [4]. Streaming
systems must handle high-speed data streams under strict delay constraints. To
process massive data streams, modern stream processing frameworks distribute

Z. Zhang—The work is supported by the National Key Research and Development
Program of China (Grants No. 2018YFB0204102).

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 276–287, 2021.
https://doi.org/10.1007/978-3-030-79478-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_24&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_24

RDMA-Based Apache Storm 277

processing over numbers of computing nodes in a cluster. These systems sac-
rifice single-node performance for the scalability of large clusters and rely on
Java Virtual Machine (JVM) for platform independence. Although the JVM
provides a high-level abstraction from the underlying hardware, the process-
ing overhead caused by its data (deserialization) serialization, the dispersion of
objects in memory, garbage collection, and frequent context switching caused
by inter-process communication reduce the efficiency of data access provided
by the computing framework [5,6]. Therefore, the overall performance of the
scalable computing framework built on the JVM is severely limited in terms of
throughput and latency.

In general, the most advanced systems focus on optimizing throughput and
latency for high-speed data streams. The data stream model is implemented by
utilizing a scalable system architecture based on message passing mechanism [7–
9]. From the perspective of the development of modern hardware, the potential
performance bottleneck of the scalable streaming computing system is that it
cannot fully utilize current and emerging hardware trends, such as multi-core
processors and high-speed networks [5]. Due to frequent cross-node communi-
cation, the Internet has an important impact on the performance of modern
distributed data processing systems. Restricted by the traditional communi-
cation protocol, the current streaming computing system cannot fully utilize
the 40 Gbps network [6]. In addition, the huge load caused by the transmission
pipeline based on the data flow model severely limits the computing perfor-
mance of the CPU [10]. Optimize the execution strategy to solve the problem
of unbalanced CPU load in the computing system, such as reducing the size of
the partition or simply adding more cores to each network connection can only
obtain sub-optimal performance [11].

InfiniBand is an industry-standard switched fabric that is designed for high-
speed, general-purpose I/O interconnects nodes in clusters [12]. One of the main
features of InfiniBand is Remote Direct Memory Access (RDMA), which allows
software to remotely read or update memory contents of another remote pro-
cess without involving either one’s operating system [13]. A direct way to run
Apache Storm over InfiniBand is to use the IP over InfiniBand (IPoIB). IPoIB
wraps Infiniband devices into regular IP based Ethernet cards, making appli-
cations transparently migrated into InfiniBand based device provides a useful
feature, that is, using InfiniBand devices easily by IP address is like using Eth-
ernet devices. Cross-node data transmission is realized based on event-driven
asynchronous I/O library. Although the asynchronous method can effectively
reduce the waiting time during the transmission process, the overhead of con-
text switching cannot be ignored. On the other hand, due to the inherent defects
of the TCP/IP protocol stack, the system kernel will copy data buffer multiple
times during the message sending and receiving process [11], consuming a lot
of CPU resources. As the amount of data and the complexity of the calculation
topology increase, the IPoIB mode exacerbates the above problems.

In this paper, we experiment on the cluster of high-performance intercon-
nected hardware devices and prove that the inherent defects of the TCP/IP

278 Z. Zhang et al.

protocol stack used in the communication component are the main reason for
the excessive CPU load. Secondly, We use InfiniBand’s remote direct Memory
access (RDMA) technology to redesign the data transmission pipeline of Apache
Storm.

The rest of this paper is organized as follows. In Sect. 2, we examine the
overall process of Apache Storm inter-worker communication and the overhead
introduced by Netty communication component and its underlying TCP/IP
protocol stack. Section 3 presents our optimization on Storm’s messaging layer
and explains how we design and implement the RDMA-based Storm in detail.
Section 4 demonstrates the evaluation result of our newly designed Storm.
Finally, Sect. 5 gives our conclusion.

Fig. 1. Computational topology and logical structure

2 Background and Motivation

2.1 Parallel Processing of Data Streams

Parallelism is key to the fast streaming of Storm. Storm handles user-defined
computational topology in parallel by creating a large number of Spouts and
Bolts as shown in Fig. 1. Spouts get the data stream from the data source, convert
the data stream into the smallest data structure tuple, then send them to one
or more Bolts. Next, Bolts process the tuple, and then send tuple to the next
Bolt or database according to the topology user have specified. By instantiating
multiple Spouts and Bolts, the process can be executed in parallel [1]. Figure 1
shows that a node in the cluster runs multiple Worker processes according to the
user’s definition and the Worker handles user-defined computational topology.
It processes tuples by executing Executor and Executor handles or emits tuples
by instantiating Spout or Bolt.

2.2 Message Processing Structure

Apache Storm applies a distributed producer-consumer pattern and a buffer
mechanism to handle data transmission among operators (Spout and Bolt) as

RDMA-Based Apache Storm 279

shown in Fig. 2. Since different operators are distributed on different nodes in the
cluster, the partitioning method requires frequent inter-process communication.
A complete communication process is as follows:

1. Each Worker process has a receiver thread (listening to the specified port).
When new message arrives, the receiver thread puts the tuple from the net-
work layer into its buffer. When the amount of tuple reaches a certain thresh-
old, the receiver thread sends tuple to the corresponding (one or more) Execu-
tors’ incoming-queues specified by the task number in the tuples.

2. Each Worker process contains multiple Executors, which are the actual com-
ponents that process the data. The Executor contains a worker thread with
an incoming queue and a sender thread with an outgoing queue. The mes-
sages emit by receiver thread gets processed in the worker thread, and then
put into the outgoing queue ready to be sent.

3. When the tuples in the outgoing queue of the Executor reaches a certain
threshold, the sending thread of the executor will get the tuples in the out-
going queue in batches and send them to the transfer queue of the Worker
process, which will be sent to the network by the sending thread then.

Fig. 2. Communication inside and outside worker processes

2.3 InfiniBand and RDMA

The streaming system on modern hardware must effectively use three key hard-
ware resources to achieve high resource utilization: CPU, main memory, and net-
work [14,15]. However, Trivedi [6] and Steffen [5] prove that the large load caused
by the data transmission pipeline has become the bottleneck of the CPU, and the
streaming computing system cannot currently fully utilize the high-performance
interconnect. The development of network hardware technology makes the net-
work communication speed may exceed the memory bandwidth in the future.

280 Z. Zhang et al.

The commonly used Ethernet technology provides 1, 10, 40, or 100 Gbit band-
width [5]. InfiniBand, an industry-standard switched fabric that is designed for
High Performance Computing (HPC) cluster interconnection, on the other side,
provides bandwidth comparable or even faster than the main memory and its
main feature, Remote Direct Memory Access (RDMA) allows software to read
or update the remote memory contents without any CPU involvement [12]. This
important trend will lead to drastic changes in streaming system design. In
particular, the traditional idea of network layer and kernel-user boundary data
encapsulation is inconsistent with the future development trend of network tech-
nology. Therefore, the speed of using high-performance interconnection networks
to transfer data between nodes is greater than or equal to the speed of memory
access will bring new challenges to the design of future streaming computing
systems [16]. Our work presents a possible solution to the above problem.

Fig. 3. Netty’s NIO communication model

2.4 Analysis

The Storm communication module is implemented by Netty framework cur-
rently. Based on NIO (non-blocking IO), Netty uses Reactor as its multiplexing
model. During a communication, the server uses a thread pool to receive client
connections concurrently as shown in Fig. 3. When the TCP connection gets
accepted, the server registers the newly created Socket-Channel (an abstraction
of network operations, including basic I/O operations) to a thread in the I/O
thread pool. In order to handle service requests delivered to a service handler
by one or more inputs concurrently, Netty uses the Reactor multiplexing model
as shown in Fig. 3. The Listen-EventLoopGroup (bossGroup) is responsible for
listening sockets. When new clients arrive, it allocates corresponding Channels
and routes them to the associated request handlers.

A straightforward way to run existing applications on InfiniBand is to use IP
over InfiniBand (IPoIB). However the existing TCP/IP stack will cause frequent
context switching, which consumes lots of CPU resources as throughput gets

RDMA-Based Apache Storm 281

bigger. A typical stream processing application involves bunches of data transfer
between workers, and the problem grows worse with higher parallelism or smaller
message size. The excessive use of CPU could also result in a throughput decrease
since workers have to wait for the context switching to finish. To sum up, stream
processing applications like Apache Storm cannot fully utilize InfiniBand and its
communication modules need targeted optimization.

3 Design

3.1 Messaging Transport Layer and Basic Model

The message component of the Storm source code defines several interfaces to
describe the communication needs between workers. Based on these, we wrote
our own components to support RDMA communication. The relevant interfaces
are indicated in Fig. 4.

– TransportFactory: Used to create the communication context, which is used
by WorkerState in the Worker process.

– Context: Used to provide actual context for server and client communication
component for different hardware devices (Ethernet or InfiniBand) according
to different configuration parameters.

– Connection Callbacks: Receive messages asynchronously and notify the
receiver thread for subsequent processing

The communication is one-way for workers, that is, the clients actively connect
to the server and send their message. The server is required to implement regis-
terRecv() call, and call when new messages arrive, and the client is required to
implement send() call.

Fig. 4. Communication module components of Storm

282 Z. Zhang et al.

3.2 JXIO-based Implementation

JXIO is a high-performance asynchronous reliable messaging library optimized
for hardware acceleration. Figure 6 shows the communication timing logic based
on JXIO. Figure 5 shows the main classes involved and their respective function-
alities are as follows:

– The Server class is responsible for Initializing parameters, binding IP
addresses, setting listening ports, registering memory pools, and initializing
event handling queues to handle client connections and IO events.

– ServerPortal is for listening to incoming connections. It can accept/reject
or forward the new session request to another portal. Two event handlers
for ServerPortal are required to implement, namely onSessionNew for a new
session arrival notification and onSessionEvent for events like CLOSED.

– ServerSession is for receiving Message from client and sends responses. Ser-
verSession handles three events on his lifetime, namely onRequest for requests
from the client, onSessionEvent for several types of session events, and onMs-
gError when error occurs.

Fig. 5. Basic model for JXIO-Based RDMA communication

3.3 DiSNI-Based Implementation

DiSNI (former known as jVerbs [17]) is a Java library for direct storage and
networking access from userspace. The DiSNI-based component consists of two
parts: the Server and the Client. Figure 6 shows the communication timing logic
based on DiSNI. On the Server side, we implemented our own Endpoint by
inheriting RdmaEndpoint class and overriding init() and dispatchCqEvent() call.
Since calls to serverEndpoint.accept() are blocked, a separate thread (Server-
Main) for server logic is necessary. Once connection established, the init()
method will set up several recv Verbs call, whose number is configured by recv-
CallInitialized. Once messages arrive, dispatchCqEvent() will be called, and the
normal TaskMessages are passed to upper layer by calling IConnectionCallback
registered by registerRecv() call. On the Client side, Client.Endpoint is respon-
sible for client logic. Once send() is issued by upper layer, messages are put into
the task message queue, waiting for client thread to take.

RDMA-Based Apache Storm 283

4 Performance Evaluation

4.1 Experimental Setup

We use 8 Sugon nodes with dual Intel Xeon E5-2660 processors and 128 GB
RAM each for our evaluation cluster setup. Each node runs CentOS Linux release
7.3.161, and are connected with both 1GigE and Mellanox 40G QDR InfiniBand
via an Ethernet and an InfiniBand switch, respectively. We use our modified
Storm based on v2.0.0 and Zookeeper-3.4.5 in our experiments. The Zookeeper
is deployed on all 8 nodes of the cluster, so that the Storm nimbus and supervisor
daemon can share the state information at a minimal cost. The Storm nimbus
daemon is deployed on node1 and Storm supervisor daemon is deployed on the
remaining 7 nodes.

To find the best buffer size of Storm performance, we run Storm on 4 nodes
at first, adjusting the message size by setting configuration parameter topol-
ogy.transfer.buffer.size, and determine the best size with the minimal processing
delay and CPU load. Then, we use the transferred tuple per second to bench-
mark the performance of Storm under the best buffer size tested. The topology
we use is designed to maximize inter-worker communication, therefore broadcast
grouping is used. We use 4 worker processes per node for all the tests mentioned.

Fig. 6. RDMA communication diagram (left: JXIO, right: DiSNI) each of the horizon-
tal timelines corresponds to a representative object with its name given above. The
rectangle marks significant events that happened during the process.

4.2 The Effect of Message Size on Performance

We run Storm on 4 nodes, and 4 Worker processes per node, a total of 16
processes running on the cluster. Each Worker process contains 5 Executors,

284 Z. Zhang et al.

and each Executor chooses to be a Spout or a Bolt. We conclude our experiment
in two aspects according to the experimental data as shown in Fig. 7 and Fig. 8:

– The increase in send buffer size will result in an increase in processing delay,
which has the most significant impact on TCP and has less impact on RDMA
implementations. Both RDMA and IPoIB achieve significant improvements
over TCP. Compared with TCP, RDMA can achieve an acceleration ratio of
around 10, and compared with IPoIB, RDMA can achieve an acceleration
ratio of around 5. The DiSNI version of Storm has a slightly lower processing
latency than the JXIO version.

– The send buffer size will also affect the CPU load. Because IPoIB takes advan-
tage of the hardware, it can process more packets than TCP at the same time.
However, this exacerbates the shortcomings of TCP/IP protocol stack, that
is, frequent context switching and memory copying, which will increase the
CPU load. RDMA significantly reduces CPU load compared to IPoIB because
there is no need to interrupt the operating system for memory copying.

Fig. 7. Experimental result of execute latency

Fig. 8. Experimental result of CPU load

RDMA-Based Apache Storm 285

4.3 The Impact of Distributed Scale on Performance

We test the scalability of RDMA based Apache Storm, testing on 2, 4, 6, and
8 nodes, respectively. The result we measure is the total number of tuples in
a certain length of time. This data is used to represent the network’s total
throughput.

As shown in Fig. 9, when the number of nodes in the cluster is 2 and the total
number of working processes is 8, the number of connections between processes is
8*8. At this time, the throughput of systems based on RDMA (DiSNI), RDMA
(JXIO), IPoIB, and TCP are 894 Tuples/s, 660 Tuples/s, 316 Tuples/s, and
444 Tuples/s. When the cluster size increased to 8 nodes and the number of
processes increased to 32, the throughput rates of the three modes are 3482
Tuples/s, 3138 Tuples/s, 1900 Tuples/s and 1058 Tuples/s. After the scale is
expanded by 4 times, the system throughput based on RDMA, IPoIB, and TCP
modes has increased by 4 times, 6 times, and 2 times respectively.

Fig. 9. Experimental result of transferred tuples

5 Conclusion

In this paper, we reconstruct the communication module of the streaming pro-
cessing framework Storm with two different RDMA-based Java interfaces, JXIO
and DiSNI, respectively. The experimental results show that the optimized Storm
achieves significant performance improvement. When complex stream topologies
are specified, the frequent memory copying of the TCP/IP protocol stack causes
the CPU to perform context switching frequently, which will increase the CPU
load. The accelerated transmission of IPoIB’s underlying hardware exacerbates
the above consequences. The experiment shows that the optimized Storm can
effectively use RDMA technology to reduce CPU utilization significantly. When
the message buffer size increases, the RDMA version of the Storm shows good
acceleration characteristics. It can significantly reduce the processing delay and
Bolt can process and send more Tuples. The throughput of the topology network
increases linearly when the cluster size increases. Experimental results show that
the scalability of the optimized Storm is improved compared to the TCP version.

286 Z. Zhang et al.

6 Related Work

The work is inspired by Seokwoo Yang’s [11], which implements JXIO accelera-
tion on an earlier version of Storm. Our work differs from Yang’s in two ways:
First, we have implemented JXIO acceleration in the current version of Storm,
and lots of interfaces have to be reconsidered since the messaging interface has
been changing a lot. Second, JXIO is based on a high-level, request-response
based communication paradigm, which limits the possibility for further opti-
mizations. The native Verbs call and SVC design in DiSNI [17] are brought to
address and solve such problems, and we have achieved lower CPU load and
latency with the help of the direct JNI interface the DiSNI have provided.

References

1. Apache Storm (2019). https://storm.apache.org/
2. Apache Spark (2019). http://spark.apache.org/
3. Apache Flink (2019). https://flink.apache.org/
4. Abadi, D.J., et al.: Aurora: a new model and architecture for data stream

management. VLDB J. 12(2), 120–139 (2003). https://doi.org/10.1007/s00778-
003-0095-z

5. Zeuch, S., et al.: Analyzing efficient stream processing on modern hardware. Proc.
VLDB Endow. 12(5), 516–530 (2019)

6. Trivedi, A., et al.: On the [ir]relevance of network performance for data process-
ing. In: Clements, A., Condie, T. (eds.) 8th USENIX Workshop on Hot Topics in
Cloud Computing, HotCloud 2016, Denver, CO, USA, 20–21 June 2016. USENIX
Association (2016)

7. Sun, D., Gao, S., Liu, X., Li, F., Buyya, R.: Performance-aware deployment
of streaming applications in distributed stream computing systems. Int. J. Bio-
Inspired Comput. 15(1), 52–62 (2020)

8. Liu, X., Buyya, R.: Resource management and scheduling in distributed stream
processing systems: a taxonomy, review, and future directions. ACM Comput.
Surv. 53(3), 50:1–50:41 (2020)

9. Amarasinghe, G., de Assunção, M.D., Harwood, A., Karunasekera, S.:
ECSNeT++: a simulator for distributed stream processing on edge and cloud envi-
ronments. Future Gener. Comput. Syst. 111, 401–418 (2020)

10. Zhang, S., He, B., Dahlmeier, D., Zhou, A.C., Heinze, T.: Revisiting the design of
data stream processing systems on multi-core processors. In: 33rd IEEE Interna-
tional Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, 19–22
April 2017, pp. 659–670. IEEE Computer Society (2017)

11. Yang, S., Son, S., Choi, M.-J., Moon, Y.-S.: Performance improvement of Apache
Storm using InfiniBand RDMA. J. Supercomput. 75(10), 6804–6830 (2019).
https://doi.org/10.1007/s11227-019-02905-7

12. MacArthur, P., Liu, Q., Russell, R.D., Mizero, F., Veeraraghavan, M., Dennis,
J.M.: An integrated tutorial on InfiniBand, verbs, and MPI. IEEE Commun. Surv.
Tutor. 19(4), 2894–2926 (2017)

13. Agostini, E., Rossetti, D., Potluri, S.: GPUDirect Async: exploring GPU syn-
chronous communication techniques for InfiniBand clusters. J. Parallel Distributed
Comput. 114, 28–45 (2018)

https://storm.apache.org/
http://spark.apache.org/
https://flink.apache.org/
https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1007/s11227-019-02905-7

RDMA-Based Apache Storm 287

14. Zhang, S., He, J., Zhou, A.C., He, B.: BriskStream: scaling data stream processing
on shared-memory multicore architectures. In: Boncz, P.A., Manegold, S., Aila-
maki, A., Deshpande, A., Kraska, T. (eds.) Proceedings of the 2019 International
Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The
Netherlands, 30 June–5 July 2019, pp. 705–722. ACM (2019)

15. Corral-Plaza, D., Medina-Bulo, I., Ortiz, G., Boubeta-Puig, J.: A stream processing
architecture for heterogeneous data sources in the Internet of Things. Comput.
Stand. Interfaces 70, 103426 (2020)

16. Akidau, T., et al.: The dataflow model: a practical approach to balancing correct-
ness, latency, and cost in massive-scale, unbounded, out-of-order data processing.
Proc. VLDB Endow. 8(12), 1792–1803 (2015)

17. Stuedi, P., Metzler, B., Trivedi, A.: jVerbs: ultra-low latency for data center appli-
cations. In: Proceedings of the 4th Annual Symposium on Cloud Computing, SoCC
2013 (2013)

Payment Behavior Prediction
and Statistical Analysis for Shared

Parking Lots

Qingyu Xu1, Feng Zhang1(B), Mingde Zhang1, Jidong Zhai2, Jiazao Lin3,
Haidi Liu3, and Xiaoyong Du1

1 Key Laboratory of Data Engineering and Knowledge Engineering (MOE),
and School of Information, Renmin University of China, Beijing, China

fengzhang@ruc.edu.cn
2 Department of Computer Science and Technology, Tsinghua University,

Beijing, China
3 Zhongzhi Huaching (Beijing) Technology Co., Ltd., Beijing, China

Abstract. As the sharing economy is booming in China, many intelli-
gent shared parking lots appear. Since more and more Chinese house-
holds own cars, it is necessary to study the payment behavior of shared
parking lots, which may represent the entire sharing economy. In detail,
we analyze the factors that influence users’ payment and predict users’
payment behavior of whether and when users will deliver parking bills
after parking. We use 29,733 real parking records provided by Huach-
ing Tech, a top smart parking company in China, in our study. After a
comprehensive statistical analysis, we use decision tree model to predict
users’ payment behavior. Experiments show that the decision tree model
can reach 79% accuracy.

Keywords: Payment behavior · Payment time prediction · Shared
parking lots

1 Introduction

For intelligent shared parking lots, users’ untimely payment behavior has become
a serious problem. Fortunately, based on users’ parking and payment records,
we can predict their payment time and provide timely action to reduce delayed
payment behaviors. To achieve this goal, we need to analyze the parking dataset
containing parking records and user data with parking and payment history.

Parking-related behavior prediction has become a hot research topic in recent
days. There are many works related to parking occupancy analysis [3,5]. Alho
and others [1] proposed a prediction method for urban freight parking demand
using linear regression and generalized linear models. We also explored the rela-
tions between parking and weather information [4,13,14]. In terms of payment

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 288–293, 2021.
https://doi.org/10.1007/978-3-030-79478-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_25&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_25

Payment Behavior Prediction and Analysis for Parking Lots 289

prediction, Wen and others [12] explored customer behavior and developed a
probabilistic graphical model to predict the consumption behavior of a single
user. Moreover, the existing fraud detection method is not suitable for our sce-
nario [2].

Compared with the previous work, we predict the payment behavior with
limited information, which poses large difficulties in our research. In detail, cur-
rently, most users have a small number of parking records; even worse, the users
who have delay payments usually have only one or two parking records. We not
only need to clean and preprocess the data, but also need to design appropriate
classification criteria.

We provide an effective solution to payment behavior prediction. We first
analyze the factors that may cause users’ delay payment, and extract relevant
features from the obtained payment records. Second, we divide the features into
two categories: numerical features and category features, and then we preprocess
these two types of features. Third, we use decision tree model [10] and 10-fold
cross-validation [6] to predict payment behavior. Experiments show that we can
predict the payment types of orders and gain good prediction results of 79.73%
accuracy.

2 Background and Motivation

We introduce the delayed payment behavior and decision tree model in this
section.

Delayed Payment. The purpose of delayed payment is to provide customers
with a time buffer for convenience. However, by analyzing the payment records
provided by Huaching Tech (http://www.huaching.com/), we find that 4.22%
users prefer to pay after three days, and some users forgot to pay the parking
fee, which could be a potential problem in the sharing economy. Fortunately,
if we can predict the user payment behavior, the parking system can provide
better services, such as payment reminders, which is also the motivation of this
work.

Decision Tree. The decision tree model is a predictive model, and it is com-
posed of a tree-like model and possible results [10]. According to the different
types of target variables, the decision trees can be categorized as classification
trees, regression trees, and CART (Classification And Regression Trees) [10].
In our work, we use payment records to train and generate CART for predict-
ing the users’ payment time. We choose this model due to its simplicity and
effectiveness.

3 Payment Behavior Prediction and Statistical Analysis

We show our prediction method and statistical analysis in this section.

Payment Records. We randomly select a parking lot in Hangzhou, China.
Our users’ parking dataset spans 14 months from April 9th, 2019 to June 29th,

http://www.huaching.com/

290 Q. Xu et al.

2020, which consists of 29,733 parking records. We divide the records into three
categories: 1) arrears, whose payment durations are more than three days, 2)
late payments, whose payment durations are longer than one day but less than
three days, and 3) timely payments, whose payment durations are less than one
hour.

To better understand the correlation between payment data and predict pay-
ment behavior, we analyze the correlations between payment time and related
features. The related features can be divided into two categories: categorical
features and numerical features. The categorical features include year, month,
and user’s identity (whether a user has a membership). The numerical features
include 1) the money calculated as order amount minus deposit amount, 2) the
total number of parkings, 3) the parking duration of this record, and 4) the
average payment duration in days.

Categorical Features. We first explore the relationship between user late pay-
ment ratio and different category features. We show part of the relation between
dates and payment behaviors in Fig. 1. We can see that the ratio of orders to
be paid has an upward trend, possibly because the number of users is increasing
year by year. We can also observe that there is a sharp decrease in February
2020, which is due to the coronavirus pandemic (COVID-19) [7].

Fig. 1. Relation between dates and payment behaviors.

Numerical Features. We next analyze the numerical features and possible
influence factors. We first clean up the outliers. We regard the records with
the parking duration less than 5 min as noise data. From our analysis of these
numerical features, we find that there is a certain linear correlation between the
user’s past payment time and the payment time of this order. We also observe
that the users who have unpaid records have only one or two parking times.

Payment Behavior Prediction and Analysis for Parking Lots 291

4 Experiment

In this section, we evaluate our payment prediction method and analyze the
results.

Evaluation Method. We use the decision tree model [10], as discussed in
Sect. 2, to predict users’ payment behavior. We train and test the model using
10-fold cross-validation [6]. The evaluation metrics we use are the average F1-
macro [11] shown in Eq. 1 and accuracy [8] shown in Eq. 2. In the 10-fold
cross-validation, the datasets are divided into ten equal parts. There are ten
rounds, and one part is used as a test set and the rest as a training set in one
round, which means that we use 26,760 records as training data and the rest as
test data in one round. Our validation results(F1-macro, accuracy) are averaged
over the rounds.

Average F1 − macro =
10∑

j=0

3∑

l=1

2 ∗ (
precisionjl ∗ recalljl

)

precisionjl + recalljl
/30 (1)

Average accuracy =
10∑

j=0

CRj

ALj
/10 (2)

In Eq. 1, l denotes the classes to be classified. In Eq. 2, CR stands for the
number of correctly predicted results, and AL denotes the number of all test
samples.

Decision Tree. We use the decision tree, CART [10], to predict the orders’
payment type. As described in Sect. 2, decision tree is a supervised model of
classification and it learns decision rules from features. We develop the model by
using the DecisionTreeClassifier module in SKlearn [9] with python. The depth
of the decision tree is automatically set by SKlearn.

Results. We use the features mentioned in Sect. 3 and use the CART model for
our prediction. We demonstrate our partial results in Fig. 2; other parts of the
results are similar. To distinguish between unpaid orders and paid orders, we
change the payment time of unpaid orders to negative values. From Fig. 2, We
have the following observations. First, our method can predict most cases; on
average, it achieves 79.73% accuracy. Second, 80.26% of cases belong to timely
payments, 2.96% of cases belong to late payments, and 16.79% of cases belong
to arrears, which implies that the current payment situation is fine. Third, our
method is good at identifying unpayable orders, which is important to shared
parking scenarios.

292 Q. Xu et al.

Fig. 2. Predicted payment time vs real payment time.

5 Conclusion

In this paper, we have analyzed payment behavior for a shared parking lot by
leveraging related payment features. We exhibit our methods on how to perform
feature analysis, and also use the CART model for parking payment predic-
tion. Experimental results demonstrate the advantage of our method, and show
that the CART model is effective in payment prediction, which achieves 79.73%
accuracy.
Acknowledgments. This work is supported by the National Key Research and Devel-
opment Program of China (No. 2018YFB1004401), National Natural Science Founda-
tion of China (No. U1911203, 61802412, and 61732014), and Beijing Natural Science
Foundation (No. L192027).

References

1. Alho, A.R., Silva, J.d.A.E.: Freight-trip generation model: predicting urban freight
weekly parking demand from retail establishment characteristics. Transp. Res. Rec.
2411(1), 45–54 (2014)

2. Cahill, M.H., Lambert, D., Pinheiro, J.C., Sun, D.X.: Detecting fraud in the real
world. In: Abello, J., Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Massive
Data Sets. MC, vol. 4, pp. 911–929. Springer, Boston, MA (2002). https://doi.org/
10.1007/978-1-4615-0005-6 26

3. Chen, X.: Parking occupancy prediction and pattern analysis. Dept. Comput. Sci.,
Stanford Univ., Stanford, CA, USA, Technical Report CS229-2014 (2014)

4. Feng, N., Zhang, F., Lin, J., Zhai, J., Du, X.: Statistical analysis and prediction
of parking behavior. In: Tang, X., Chen, Q., Bose, P., Zheng, W., Gaudiot, J.-L.
(eds.) NPC 2019. LNCS, vol. 11783, pp. 93–104. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30709-7 8

5. Florian, M., Los, M.: Impact of the supply of parking spaces on parking lot choice.
Transp. Res. Part B: Methodol 14(1–2), 155–163 (1980)

6. Geisser, S.: Predictive Inference: An Introduction (1993)

https://doi.org/10.1007/978-1-4615-0005-6_26
https://doi.org/10.1007/978-1-4615-0005-6_26
https://doi.org/10.1007/978-3-030-30709-7_8
https://doi.org/10.1007/978-3-030-30709-7_8

Payment Behavior Prediction and Analysis for Parking Lots 293

7. Mehta, P., et al.: COVID-19: consider cytokine storm syndromes and immunosup-
pression. Lancet (London Engl.) 395(10229), 1033–1034 (2020)

8. Metz, C.E.: Basic principles of roc analysis. In: Seminars in Nuclear Medicine, vol.
8, pp. 283–298. WB Saunders (1978)

9. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

10. Qiu, Q., Huang, W.: Forward supervised discretization for multivariate with cate-
gorical responses. Big Data Inf. Anal. 1(2/3), 217–225 (2016)

11. Sasaki, Y., et al.: The Truth of the F-measure 2007 (2007)
12. Wen, Y.T., Yeh, P.W., Tsai, T.H., Peng, W.C., Shuai, H.H.: Customer purchase

behavior prediction from payment datasets. In: Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining, pp. 628–636 (2018)

13. Zhang, F., et al.: PewLSTM: Periodic LSTM with weather-aware gating mechanism
for parking behavior prediction. In: Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20, pp. 4424–4430. International
Joint Conferences on Artificial Intelligence Organization, July 2020

14. Zhang, F., Liu, Y., Feng, N., et al.: Periodic weather-aware LSTM with event
mechanism for parking behavior prediction. IEEE Trans. Knowl. Data Eng. (2021)

Edge Computing

Location-Based Service Recommendation
for Cold-Start in Mobile Edge Computing

Mengshan Yu1,2, Guisheng Fan1(B), Huiqun Yu1, and Liang Chen1

1 Department of Computer Science and Engineering,
East China University of Science and Technology, Shanghai, China

{gsfan,yhq}@ecust.edu.cn
2 Shanghai Key Laboratory of Computer Software Evaluating and Testing,

Shanghai, China

Abstract. With the rapid development of the 5G and Internet of Things
(IoT), mobile edge computing has gained considerable popularity in aca-
demic and industrial field, which provides physical resources closer to
end users. Service recommendation in such a distributed environment
is a hot issue. However, the cold-start problem for service recommen-
dation in mobile edge computing is still urgent to be solved. In this
paper, we propose a service recommendation method based on collabo-
rative filtering (CF) and user location, by comprehensively considering
the characteristic of services at the edge and mobility of users. In detail,
we first synthesize the service characteristics of each dimension through
multidimensional weighting method. We further introduce the idea of
Inverse CF Rec to the traditional CF and then predict the lost QoS value
to solve the problem of sparse data. Finally, a recommendation algorithm
based on predicted QoS value and user geographic location is proposed to
recommend appropriate services to users. The experimental results show
that our multidimensional inverse similarity recommendation algorithm
based on collaborative filtering (MDICF) outperforms Inverse CF Rec
in terms of the accuracy of recommendation.

Keywords: Mobile edge computing · QoS · Service recommendation ·
Multiple dimension

1 Introduction

In recent years, the edge computing paradigm has been widely adopted as a
good complement to cloud computing, which brings the processing to the edge
of the network [1]. And the service recommendation problem is a hot issue in
edge computing. For example, when a mobile user send a service request, edge
servers that have enough resources to process the information will intercept and
respond to the user request [2]. And the recommendation system becomes very
important if there are more than one edge server which can process user requests.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 297–309, 2021.
https://doi.org/10.1007/978-3-030-79478-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_26&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_26

298 M. Yu et al.

Usually, service recommendation algorithms consider quality of service (QoS) as
the decision variable [3]. So, how to calculate the QoS value of the service more
accurately is one of our key research points.

According to our survey, most service recommendation methods are based
on massive historical data [3,4,6,9,13], such as the memory-based collaborative
filtering (MCF) [3]. However, the mobility of users may lead to the fluctuation
of QoS value in mobile edge computing [5]. When a mobile user moves from the
wireless coverage range of one edge server to that of another edge server, the
historical QoS value will become invalid and the QoS value on the new edge
server is null [6]. In the field of service recommendation in edge computing, the
data density is generally sparse, that is, there exists the cold start problem. And
our proposed method is based on collaborative filtering. However, it is difficult
to calculate the similarities between object user and other users when the object
user moves to a new edge sever. To solve it, the similarities between the object
user and other users who have data on the object user’s historical edge server
and new edge server is considered. We also calculate the similarities among users
on object user’s new edge server. Because of the sparse data matrix, calculating
the similarities among users directly may lead to imprecise results. So authors in
Ref [7] introduce the sociological theory, namely an enemy’s enemy is a friend,
which represents that the opposite user of a opposite user is likely to be a similar
user of the object user. However, their work only consider user requirements on a
single dimension. In actual decision, considers on multiple dimensions are more
common.

According to aforementioned issues, we propose a multi-dimensional inverse
similarity recommendation algorithm based on collaborative filtering (MDICF).

(1) Considering the multi-dimensionality of user needs and service performance
at the edge, we adopt a multi-dimensional linear weighting method to take
into account the needs of every dimension. For each mobile user, our weight
coefficients in different dimensions are dynamically adjusted for a more com-
prehensive understanding of user needs.

(2) Aiming at the mobility of users and sparse data of services at the edge, we use
inverse similarity to predict users QoS value based on collaborative filtering
and calculate the distance between the user and the service by obtaining
their latitude and longitude. A MDICF method is proposed to recommend
appropriate services to users within a reasonable range.

The rest of this paper is organized as follows. Section 2 shows the related
work. Section 3 details our prediction recommendation method. Section 4 intro-
duces the design and experimental results of our experiments and Sect. 5 sum-
marizes our methods and prospects for future work.

2 Related Work

Because of high interpretability, collaborative filtering (CF) is widely used in var-
ious recommendation systems. CF is mainly divided into two categories: Model-
based and Memory-based. Memory-based CF is also called Neighborhood-based

Location-Based Service Recommendation for Cold-Start in MEC 299

CF, which can be divided into user-based similarity CF and content-based sim-
ilarity CF. The basic idea of that method is to find similar user sets or items
based on user or content similarity, and recommend to target users based on rat-
ings of similar users or items. The similarity among users or content is mainly
calculated by using Pearsons Correlation Coefficient and Cosine Similarity. In
addition, hybrid recommendation algorithm contains a mixture of matrix decom-
position and deep learning. This method incorporates different recommendation
algorithms, so it has a powerful feature extraction ability and can automatically
retrieves a deeper representation of data.

In recent years, there have been many researches on CF in the field of recom-
mendation system. The author of [11] takes into account the number of times a
user calls a service when calculating the historical QoS similarity generated when
a user calls the same service. They improve authenticity and persuasion of data
by using the average of all QoS. The collaborative filtering model based on matrix
factorization [11,12] has also been widely used in Web service recommendation.
As a potential linear model, the performance of matrix factorization is not good
enough when capturing complex interactions. With the rapid development of
service-oriented computing and cloud computing, many machine learning and
deep learning models are applied to recommendation systems in combination
with traditional collaborative filtering. The authors in [10] propose a hybrid
web recommendation algorithm based on matrix factorization and deep learning
which combines collaborative filtering and text content. The invocation between
mashups and services and their functions are integrated into a deep neural net-
work to describe the complex interactions between services. Article [11] proposed
a model combined a compressed interaction network and DNN. On the level of
vectorization, the feature interaction was generated in an explicit way. But they
have serious bottlenecks in running efficiency and memory consumption. Such
deep learning models can solve many problems, but there are serious bottlenecks
in terms of operating efficiency and memory consumption.

In addition, the exiting recommendation algorithm in edge computing rarely
take into account the location characteristics of users and services. In fact, the
QoS of services in edge computing are usually closely related to the location rela-
tionship between users and services. Now that smart phones and other devices
that support GPS navigation are widely used, they can collect more and more
location information, which also provides reliable conditions for our location-
based recommendations. There have been many researches on location-based
service recommendation before. They usually introduce location information
as a new dimension to recommendation algorithms. The article [14] proposed
a location-aware personalized CF web service recommendation method which
select similar users or services of target users in users and web services at two
locations.

3 Motivation

In this section, we illustrate our method through a scenario. Vehicle-road col-
laboration is an important part of smart transportation. As a good complement

300 M. Yu et al.

to cloud computing, edge computing performs most of the calculations near the
road at the edge. As shown in Fig. 1.

Fig. 1. Service recommendation in mobile edge computing

It integrates a local map system, traffic signal information, nearby moving
targets and multiple sensor interfaces [8] at the edge node near the road. A
self-driving vehicle A drives away from the coverage of edge node a1 and enters
coverage of edge node a2. It needs to obtain the required services in a2. And we
need to consider the problem of spare data when historical information of A is
little at edge node a2. In addition, since there are many kinds of integrated at
edge nodes near the road, we need to consider multidimensional feature such as
response time, throughput and so on. Therefore, we propose a multi-dimensional
weighted inverse similarity method to predict unknown QoS values and make
recommendations based on geographic location.

4 Multidimensional Inverse Similarity Recommendation
Algorithm Based on CF

According to the aforementioned analysis, we consider using collaboration fil-
tering with reversed user similarity to predict the unknown QoS values, and the
problem of multi-dimension for the QoS value is also considered. Then we recom-
mend services to object user based on locations of user and services. Specifically,
we adopt linear weighted sum method to integrate QoS in different dimensions
into one comprehensive QoS. Then the problem is transformed into a linear
programming problem. Our method is mainly divided into two steps:

(1) QoS prediction. This step includes the calculation of user similarity, the
determination of users with similar behaviors and similar users and pre-
diction of QoS. We predict unknown QoS through the calculation of user
similarity and similar credibility.

Location-Based Service Recommendation for Cold-Start in MEC 301

(2) Service recommendation. We can get all services within a certain distance
from the user through our calculating. We recommend services for the object
user based on the predicted QoS in the previous step.

The overview of our approach is shown in Fig. 2 as follow.

Fig. 2. Overview of MDICF

4.1 QoS Prediction

Linear Weighted Sum Method. In mobile edge computing, the focus of
services at different locations may be different. Thus, we consider adopting linear
weighted sum method to integrate different dimension of QoS in one service
with one dimension. This is a method commonly used in the multi-objective
optimization problem which keeps the original data in each dimension. The linear
weighted sum method is formalized in Eq. (1):{

q =
∑S q

i=1(pi ∗ xi)∑S q
i=1 pi = 1

(1)

wherein pi ∈[0,1], xi indicates the weight coefficient and QoS value of each
dimension in one service, respectively.

In this paper, we consider the response time and throughput of services at
edge. So, we transform the Eq. (1) into Eq. (2):{

q(i,k) = α ∗ tp(i,k) + β ∗ rt(i,k)

α + β = 1
(2)

wherein α and β are weight coefficients between 0 and 1, tp(i,k) and rt(i,k)
respectively represent the quality of service in terms of response time and
throughput when servicek is called by useri, q(i,k) represents the weighted qual-
ity of service when servicek is called by useri, which is used when we calculate
the similarities later. The calculation of α and β will be introduced later.

302 M. Yu et al.

Calculate the User Similarity. Pearson correlation coefficient (PCC) is
widely used in the similarity calculation because of its simplicity and effi-
ciency. Thus, we consider using PCC to calculate the similarities of users. We
use U = {u1, u2, u3, ..., um} to represent the user set that call for services,
E S = {es1, es2, es3, ..., esn} to represent the set of services at edge. In our
method, q(i,k) represents the QoS of edge servicek when useri calls for edge
servicek and qi represents the average QoS of useri. sim(i,j) is the similarity
between useri and userj which is calculated as Eq. (3):

sim(i,j) =

∑
esk∈IN (q(i,k) − q̄i) ∗ (q(i,k) − q̄i)√∑

esk∈IN (q(i,k) − q̄i)2 ∗
√∑

esk∈IN (q(j,k) − q̄j)2
(3)

In this equation, IN is the set of edge services that both useri and userj

have called for. If useri and userj have not called for the same edge service, IN
is equal to Null. We calculated the similarity among all users in the user set. In
addition, in the user similarity matrix, sim(i,j) is empty when IN is Null (i.e.
sim(i,j) = Null if IN = Null).

Calculate Similar Users. We have obtained the similarity matrix of users in
previous sections. Now we define and calculate several key variables. threshold P
(−1 ≤ threshold P ≤ 1) denotes pre-defined similarity threshold and is adjusted
in our experiment. potential similar and potential opposite represent potential
similar user set and potential opposite user set, respectively. rel matrixopposite

and rel matrixsimilar denote the reliability matrix of opposite users and similar
users, respectively. The calculations about them will be introduced in detail
later. rel matrixopposite is a user set opposite to the object user. As we can see
in Eq. (4), users whose similarity with the object user is less than the threshold
are defined as opposite users.

opposite usersobject user = {useri|sim(object user,i) ≤ threshold P} (4)

We determine potential similar users based on the theory that “the enemys
enemy is a possible friend” [16]. The inaccurate results will be obtained if we
directly define the opposite users of opposite users as the similar users. So we
quote a reliability calculation as Eq. (5) [7]. In this equation, userj is the opposite
user of object user and the userk is the opposite user of userj , that is userj ∈
opposite userobject user and userk ∈ opposite userj .

reliability(object user, userk) = sim(object user,j) ∗ sim(j,k) (5)

For each object user, we establish a credibility matrix for the potentially
similar user set called rel matrixi. The similar credibility constraints between
each user in the matrix and object user are as shown in Eq. (6).

reliabilitysimilar = {k ∈ potential similar,

reliability(object user, userk) ≥ −threshold P} (6)

Location-Based Service Recommendation for Cold-Start in MEC 303

In addition, we know that the friend of the enemy may be an enemy. There-
fore, we use a opposite credibility constraint to determine the opposite user show
in Eq. (7).

reliabilityopposite = {k ∈ potential opposite,

reliability(object user, userl) ≤ threshold P} (7)

wherein userj is the opposite user of object user and userl is the similar user
of userj , that is, userj ∈ opposite usersobject user and userl ∈ similar userj .

Fig. 3. QoS prediction in mobile edge computing

We then add the opposite users obtained by above constraints to the opposite
user set. The relationship between users is shown in Fig. 3. We get opposite users
by calculating user similarities, and the potential similar users of opposite
users can be obtained. Then, the similar users of opposite users with reliability
constraint reliabilityopposite can be added into the original opposite user set.
Next we get potential similar users with calculating opposite users of users in
opposite users. At last, we obtain similar user set similar users of object user
through the constraint of similar reliability (reliabilitysimilar).

QoS Prediction. We have obtained the similar users and similar reliability
between all similar users and the object user. Now we regard the reliability as
the probability of user similarity. So we can predict the missing QoS when the
object user is calling service that has not been called before by Eq. (8) and
userk ∈ similar users. In this equation, q(k,i) and predict q(object user,i) denote
the QoS when userk calls servicei and the predicted QoS when the object user
is calling servicei, respectively.

predicted q(object user,i) =∑
userk∈similar users reliability(object user, userk) ∗ q(k,i)∑

userk∈similar users reliability(object user, userk)
(8)

304 M. Yu et al.

4.2 Service Recommendation

It cannot be ignored in service recommendation that the wireless coverage dis-
tance of the edge server is limited. To solve this problem, we need to calculate
the distance between the object user and the service to ensure that the recom-
mended service is within the wireless coverage area. As shown in Fig. 1 in Sect. 3,
we need to find a service on Edge node a2 that meets the needs of users.

In this paper, we use a general geographic distance calculation method,
Haversine equation, to calculate the distances between users and services accord-
ing to attitude and longitude. Because it uses a sine function, it can maintain
enough significant figures even at small distances.

We use (lon1, lat1) and (lon2, lat2) to represent the longitude and latitude of
the object user and the service, respectively. dis(u, si) represents the distance
between the object user and the i-th service. The distance calculation is shown
in Eq. (9) as follow.⎧⎨

⎩dis(u,si) = 2R · arctan(
√

hav(θ)√
1−hav(θ)

)

hav(θ) = sin2(lat1−lat2
2) + coslon1coslon2sin

2(lon1−lon2
2)

(9)

Wherein θ represents the center angle between the object user and the service,
and R represents radius of earth. Here we take 6371 km.

Based on the calculation of the above equation, we find the recommendable
service set s in the range which is shown in Eq. (10). We select the top − K
services from the predicted data to recommend to the object user.

s = {s1, s2, · · · , sc}, dis(u,si) ≤ λ (10)

4.3 Algorithm Design

Our improved inverse user similarity collaborative filtering algorithm predicts
the QoS value of the unknown service that the object user calls for. And the
recommendation algorithm is based on geographic location. The implementation
of our algorithms is shown as the pseudo-code of Algorithm 1.

Assuming that each QoS matrix includes m users and n service data, and all
of them are in k dimensions. The analysis of our time complexity is as follow:

(1) Linear weighted sum method: The time complexity of QoS linear weighting
on k dimensions is O(k ∗ m ∗ n).

(2) Calculate the user similarity: We calculate the user similarity based on the
existing user and service data offline. Here, it is O(1). If he is a new user,
the time complexity is O(m).

(3) Calculate similar users: According to the user similarity matrix, we judge
the reliability of indirect friends between users. The maximum number of
opposite users is m, and the maximum number of opposite users opposite
users is m. In other words, the time complexity of finding indirect similar
users is O(m2) under the worst possibility.

(4) Distance calculation: The distance between object user and each service need
to be calculated, so the complexity is O(n).

Location-Based Service Recommendation for Cold-Start in MEC 305

(5) Service recommendation: We maximized the number of indirect friends as
m and the number of edge services in the recommended range as n, so the
worst time complexity of our QoS prediction and service recommendation is
O(m ∗ n). Since indirect similar users judgment and geographical location
calculation are conducted at the same time, we assume l = Max(m2, n).
Based on the above analysis, the time complexity of our algorithm is O(l +
m ∗ n).

Algorithm 1. MDICF
Input: U ; E S; tp Matrix; rt matrix;
Output: recommendation service
Begin:
1: Initialization: predict q = φ;similar users = φ; threshold P
2: for (q(i,k) in QoS Matrix) do:
3: q(i,k) = α ∗ tp(i,k) + β ∗ rt(i,k)

4: end for
5: for (useri in U) do:
6: for (userj in U) do:
7: calculate sim(i,j) by Equation(3)

8: end for
9: end for

10: calculate opposite users by Equation(4)
11: for (userk in potential similar) do:
12: calculate reliability similar by Equation(6)
13: update similar users < − userk

14: end for
15: for (userq in potential opposite) do:
16: calculate reliability opposite by Equation(7)
17: update opposite users < − userq

18: end for
19: repeat 11-18
20: for (esi in ES) do:
21: if q(object user,i) = φ then
22: calculate predicted q(object user,i) by Equation(8)

23: end if
24: end for
25: for (esi in ES) do:
26: calculate dis(objectuser, i)
27: if dis ≤ λ then:
28: add esi into potential service

29: end if
30: end for
31: return Top-3 services with predicted q in potential service

306 M. Yu et al.

5 Experiment

In this section, we first verify the rationality of our experiment, and then we
compare our algorithm with other related algorithms. The results of experiments
is calculated by running an average of 100 times.

5.1 Experiment Environment and Datasets

Datasets. In our experiment, we adopt the public dataset WSDream of the
Chinese University of Hong Kong. The dataset describes real-world QoS evalua-
tion results including both response time and throughput values, obtained from
339 users on 5825 web services as a user-service matrix. We use the real response
time and throughput in the dataset to simulate the response time and through-
put of the service that the user calls for at the edge. In addition, we calculate
the distance between the user and service through the latitude and longitude of
them in the dataset. Since we mainly consider the case where the data matrix
is sparse, we randomly delete some quality items based on the original data set
and obtain data matrixes with different data density d. In this paper, the data
density d of the nine experimental configurations varies from 5% to 50%, namely
5%, 10%, 15%, 20%, 25%, 30%, 35%, 40% and 50%.

5.2 Experimental Design

Our algorithm is an improvement based on the traditional collaborative filter-
ing method. Compared with traditional service recommendation, the mobility of
edge users and the immediacy of demand are the important points that we need
to consider. At the same time, the demand for computing power and through-
put cannot be ignored. Therefore, we comprehensively consider the throughput,
response time of the service and mobility of users and recommend services at
the edge to end users in this paper.

Parametric Design. At the beginning of the experiment, we weight the qual-
ity of service in two dimensions. We use the linear weighting sum method in
Ref. [15], where α and β are adaptive for different object users. Generally, the
most important demand has the maximum weight coefficient value according to
the user preferences. Since the α and β for each test user in this experiment are
different, no quantitative explanation will be made here.

The threshold of similar user judgement and reliability judgement refer to
the design in Ref. [7], tentatively set threshold P = −0.6. We also performed
it during the experiment. After verification, we find the results of our algorithm
under this threshold is relatively good.

Since this experiment is based on the WSDream dataset, the geographical
distances between users and services are larger than those in our scenario, so λ
should also be relatively large. Through calculation, the distance between the
user and service in the data set ranges from 0 to 50000. In a real scenario at the
edge, the value of λ needs to be reset according to the real coverage. Finally, we
recommend the top − 3 services to target users within this geographic range.

Location-Based Service Recommendation for Cold-Start in MEC 307

5.3 Experiment Results

We use Mean Absolute Error (MAE) to measure the error between our predicted
value and the true value, and compare it with other methods.

In this paper, we adopt Mean Absolute Error (MAE) to measure the error
between our predicted value and the true value.

MAE =
1
c

·
c∑

i=1

|predicted qi − qi| (11)

In Eq. (11), c represents the number of prediction services, predict qi rep-
resents the predicted value, and q i represents the true value. The smaller the
MAE value, the higher the prediction accuracy.

When the data density d is 5%, the number of edge services es is 1000, and
the number of different users u is varied from 100 to 300, the QoS value that
predicted by our proposed method is shown in Fig. 4(a).

When the data density d is 5%, the number of users u is 100, and the number
of edge services s is varied from 1000 to 3000, the QoS value that predicted by
our proposed method is shown in Fig. 4(b).

Fig. 4. Recommendation accuracy

As can be seen in the figure, compared with other methods, our method
performs significantly better on the MAE evaluation index. Among them, the
lowest prediction accuracy is the Inverse CF Rec method when the response
time is the evaluation standard. This method only considers the response time
of the service as the evaluation index. However, the response time is affected by
the distance besides the service application at edge. Therefore, it is difficult to
make an accurate recommendation based on only one evaluation index. Followed
by SBT-SR, this method only considers the theory that “the enemys enemy
is a friend”, but ignores “the enemys friend may be an enemy”. It take less
consideration about some potential similar users and potential opposite users
which may lead to reduce prediction accuracy. The method our proposed has

308 M. Yu et al.

the best performing which comprehensively considers the service response time,
throughput and potential similar users. At last, we consider the geographical
location of users to improve the feasibility of recommendation.

In addition, we also made comparisons in different data densities. As shown
in Fig. 5, when the number of edge services s is 1000, the number of users u is
100 and data density d is varied from 5% to 50%, the QoS value that predicted
by our proposed method is significantly smaller than that predicted by other
method in the case of data density.

Fig. 5. MAE of different data density Fig. 6. Different threshold on MAE

In this experiment, we selected object users in the test dataset, and verified
the rationality of taking threshold P equal to −0.6 as the similar threshold
when the data density is 5% for 100 users and 1000 services. As shown in Fig. 6,
we set as below: threshold P = −0.4, −0.5, −0.6, −0.7, −0.8. Regardless of
the accuracy to the decimal place, the selected threshold performs well in QoS
prediction, and we can consider our value to be reasonable.

6 Conclusion

In this paper, we combine quality indicators of multiple dimensions into one
comprehensive QoS value and take the geographical location of end users into
consideration. These handling strategies make our method better fit the char-
acteristics of services at edge and end users. To solve the cold start problem
for the service recommendation system in edge computing, we propose a multi-
dimensional inverse user similarity recommendation algorithm based on collabo-
rative filtering (MDICF). The experimental results demonstrate the effectiveness
of our algorithm for service.

In the future, we plan to improve our prediction model through deep learning
when facing sparse data. In addition, how to combine the predicted QoS value
with geographic location information more closely is also the focus of our future
work.

Location-Based Service Recommendation for Cold-Start in MEC 309

Acknowledgement. This work was supported by the National Natural Science Foun-
dation of China (No. 61702334,61772200), the Project Supported by Shanghai Natural
Science Foun-dation (No.17ZR1406900, 17ZR1429700) and the Planning Project of
Shanghai Insti-tute of Higher Education (No. GJEL18135)

References

1. Wang, S., Zhao, Y., Xu, J., Yuan, J., Hsu, C.H.: Edge server placement in mobile
edge computing. J. Parallel Distrib. Comput 127, 160–168 (2019)

2. Ahmed, A., Ahmed, E.: A survey on mobile edge computing. In: 2016 10th IEEE
International Conference on Intelligent Systems and Control, pp. 1–8 (2016)

3. Zheng, Z., Ma, H., Lyu, M.R., King, I.: QoS-aware web service recommendation
by collaborative filtering. IEEE Trans. Serv. Comput. 4(2), 140–152 (2011)

4. Kang, G., Tang, M., Liu, J., Liu, X., Cao, B.: Diversifying web service recommen-
dation results via exploring service usage history. IEEE Trans. Serv. Comput. 9(4),
566–579 (2016)

5. Arshad, R., Elsawy, H., Sorour, S., Alnaffouri, T.Y., Alouini, M.S.: Handover man-
agement in dense cellular networks: a stochastic geometry approach. In: 2016 IEEE
International Conference on Communications, Kuala Lumpur, pp. 1–7 (2016)

6. Wang, S., Zhao, Y., Huang, L., Xu, J., Hsu, C.H.: QoS prediction for service
recommendations in mobile edge computing. J. Parallel Distrib. Comput. 127,
134–144 (2019)

7. Zhou, Y., Tang, Z., Qi, L., Zhang, X., Dou, W., Wan, S.: Intelligent service recom-
mendation for cold-start problems in edge computing. IEEE Access 7, 46637–46645
(2019)

8. Ekiz, N., Salih, T., Kucukoner, S., Fidanboylu, K.: An overview of handoff tech-
niques in cellular networks. Int. J. Inf. Technol. 2, 132–136 (2005)

9. Herlocker, J.L.: An empirical analysis of design choices in neighborhood-based
collaborative filtering algorithms. Inf. Retriev. 5, 287–310 (2002)

10. Xiong, R., Wang, J., Zhang, N., Ma, Y.: Deep hybrid collaborative filtering for web
service recommendation. Exp. Syst. Appl. 110, 191–205 (2018)

11. Li, S., Wen, J., Luo, F., Gao, M., Zeng, J., Dong, Z.Y.: A new QoS-aware web
service recommendation system based on contextual feature recognition at server-
side. IEEE Trans. Netw. Serv. Manage. 14(2), 332–342 (2017)

12. Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., Sun, G.: Xdeepfm: combining
explicit and implicit feature interactions for recommender systems. In: 2018 24th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, London,
pp. 1754–1763 (2018)

13. Li, K., et al.: A personalized QoS prediction approach for cps service recommenda-
tion based on reputation and location-aware collaborative filtering. Sensors 18(5),
1556 (2018)

14. Liu, J., Tang, M., Zheng, Z., Liu, X., Lyu, S.: Location-aware and personalized
collaborative filtering for web service recommendation. IEEE Trans. Serv. Comput.
9(5), 686–699 (2016)

15. Xie, Y., et al.: A novel directional and non-local-convergent particle swarm opti-
mization based workflow scheduling in cloud-edge environment. Future Gener.
Comput. Syst. 97, 361–378 (2019)

16. Lianyong Q., Xuyun Z., Yiping W., Yuming Z.: A social balance theory-based
service recommendation approach. In: 2015 9th Asia-Pacific Services Computing
Conference, Bangkok, THAILAND, pp. 48–60 (2015)

An Adaptive Delay-Limited Offloading
Scheme Based on Multi-round Auction

Model for Mobile Edge Computing

Huamei Qi1, Yiran Wang1, Su Jiang2, Chunmeng Yang1(B), and Jia Wu1(B)

1 School of Computer Science and Engineering, Central South University,
Changsha, People’s Republic of China

qhm@csu.edu.cn
2 Information Technology Department, China Life Ecommerce Company Limited

Changsha Regional Branch, Changsha, Hunan, People’s Republic of China

Abstract. Mobile edge computing (MEC) has been widely used in many
scenarios due to its advantages such as low latency, high bandwidth, and
strong real-time performance. For mobile edge computing in networks
with multiple mobile users and multiple MEC servers, this paper pro-
poses an adaptive delay-limited offloading scheme based on a multi-round
auction model. First, a multi-round auction model is adopted. Users and
servers select each other to achieve a globally optimal match. The pro-
posed evaluation function is based on the delay and energy consumption
that can be reduced by offloading, and weights the two parts based on
the user’s optimization needs. At the same time, a mechanism for adap-
tive delay limitation is proposed. The threshold is dynamically updated
according to the unloading feedback, which makes the algorithm dynam-
ically adapt to the load changes in the network. Experimental results
show that the proposed offloading scheme has obvious advantages in
reducing the total delay and the total energy consumption of the sys-
tem, effectively improving the system performance.

Keywords: Mobile edge computing · Computation offloading ·
Auction model · Delay limit

1 Introduction

The dramatic increase in the number of mobile terminal devices has driven the
development of mobile cloud computing (MCC). However, due to the shortcom-
ings of mobile cloud computing such as high latency [10], mobile edge comput-
ing (MEC) came into being [9]. Mobile edge computing has been widely used in
fields such as computationally intensive scenarios, intelligent video acceleration,
Internet of Vehicles and Internet of Things [7]. Taking a video surveillance sys-
tem as an example, a mobile cloud computing network captures various video

Supported by Natural Science Foundation of China (project number: 61803387).

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 310–322, 2021.
https://doi.org/10.1007/978-3-030-79478-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_27&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_27

An Adaptive Delay-Limited Offloading Scheme 311

information through a video surveillance device, and then sends it to a cloud
surveillance server for processing. This method will transmit huge video data,
which not only increases the traffic load of the core network, but also has a high
delay. The mobile edge computing network can directly perform data analysis
on the MEC server close to the monitoring equipment. This not only reduces the
pressure on the network, but also solves the bottleneck problems such as delay
and energy consumption of the monitoring system [15].

Some computationally intensive applications consume a lot of resources and
energy. Mobile devices have limited resources. This makes computing offload-
ing a key technology for mobile edge computing [23]. Zhang et al. [20] propose
optimization of offloading decision based on coordinate descent method in ultra-
dense networking. The iterative method finally obtains the optimal offloading
decision, which effectively reduces the energy consumption of the system. Wei
and Zeng [14] design an edge computing offloading scheme based on Stackel-
berg game theory. Through the mutual influence and evolution of strategies in
a Stackelberg games of “leader with multiple followers”, the optimal utility of
both parties is achieved. These algorithms have a good effect in a network with
one MEC server, but cannot be applied in a network with multiple MEC servers.

There are also some offloading schemes applicable to networks with multiple
MEC servers. The computation offloading scheme based on the improved auction
model proposed in [11] considers that there are multiple users and multiple
servers in the network. The evaluation function of the algorithm only considers
the time delay, and does not consider the energy consumption. This is not fair
enough for some computing tasks with the goal of reducing energy consumption.
Lin [8] uses a multi-round auction algorithm, which is applicable to the situation
of multiple users and multiple MEC servers in the network. The effect of actual
offloading is not considered in the evaluation function. This standard is not
objective enough.

The above solutions have achieved good results, but the following problems
still exist.

1) The offloading scheme based on the auction model can realize the bidirectional
selection of multiple users and multiple MEC servers in the network. But the
evaluation function given in the above schemes all have deficiencies.

2) None of the existing algorithms consider the impact of delay on the network.
Some algorithms give users a fixed delay tolerance, but it is difficult to meet
the needs of the entire network.

Based on the above analysis, this paper proposes an adaptive delay-limited
offloading scheme based on the multi-round auction model. The contributions of
this paper are listed as follows.

1) The proposed evaluation function in the multi-round auction model is based
on the delay and energy consumption that can be reduced by offloading, and
weights the two parts based on the user’s optimization needs.

2) A mechanism for adaptive delay limitation is proposed. The threshold is
dynamically updated according to the offloading feedback, which makes the

312 H. Qi et al.

algorithm dynamically adapt to the load changes in the network and improve
the overall performance of the network.

The rest of this paper is organized as follows. Section 2 concludes the related
work. The offloading scheme proposed in this paper is described in Sect. 3,
including four parts: scenario description, calculation model, multi-round auc-
tion model, and adaptive delay-limited mechanism. Section 4 demonstrates the
simulation results. Finally, Sect. 5 concludes this study.

2 Related Work

Offloading schemes with different optimization goals are suitable for different
types of computing tasks [5]. Offloading schemes with the goal of reducing latency
are suitable for time-sensitive tasks, while offloading schemes with the goal of
reducing energy consumption are suitable for energy-constrained tasks. In order
to better meet the needs of users, the scheme proposed in this paper belongs to
the offloading scheme with the trade-off between latency and energy consump-
tion, because the evaluation function proposed in this paper is related to both
latency and energy consumption. According to different optimization goals, the
existing offloading schemes in mobile edge computing can be divided into the
following three.

2.1 Offloading Scheme with the Goal of Reducing Latency

The distributed computing offload algorithm designed in [3] quantifies the cal-
culation delay index to achieve lower calculation time overhead. Wang et al.
[12] propose a scheme that considers interference management when offload-
ing, and allocates resources by minimizing delay. Chen et al. [2] use the idea
of software-defined networking. The task offloading problem is expressed as a
mixed integer nonlinear calculation process, and the problem of reducing delay is
transformed into task offloading placement problem and resource allocation sub-
problem. Compared with random unloading and unified unloading, this scheme
can shorten the delay to a greater extent. Yu et al. [17] propose a complete poly-
nomial time approximation scheme, which effectively shortens the calculation
delay. Yuan and Cai [19] transform the optimal content offloading problem into
the content maximum delivery rate problem, thereby reducing the delay. The
evaluation function proposed in [11] is based on the effect of reducing latency.

2.2 Offloading Scheme with the Goal of Reducing Energy
Consumption

Zhang et al. [21] use an artificial fish school algorithm, and experiments show that
the algorithm has a significant reduction in energy consumption. Zhao et al. [24]
propose a greedy heuristic method based on linearization and Gini coefficient
to minimize system energy consumption. Geng et al. [6] use heuristic search

An Adaptive Delay-Limited Offloading Scheme 313

algorithm to solve offload decision and task scheduling problems, which can
significantly reduce the energy consumption of mobile devices. Zhang et al. [22]
propose an energy-aware offloading scheme, which optimizes the allocation of
communication and computing resources through an iterative search algorithm,
thereby reducing the energy consumption of mobile devices. Xu et al. [16] propose
a particle swarm optimization algorithm for energy consumption optimization,
which converges stably.

2.3 Offloading Scheme with the Trade-Off Between Latency
and Energy Consumption

Dai et al. [4] propose a calculation offload and resource allocation mechanism
based on the multiplier method to solve the convex optimization problem of mini-
mum energy consumption and delay weighted sum. Wang et al. [13] design a com-
putational offload algorithm (CAMEGA) based on improved genetic algorithm
with the goal of minimizing the weighted sum of delay and energy consumption.
Yu et al. [18] propose a power distribution algorithm based on game theory, and
uses a binary search method to optimize transmission power to reduce trans-
mission delay and energy consumption. Zhao [25] designs a heuristic algorithm
based on simulated annealing to find the optimal solution. Bozorgchenani et al.
[1] model task offloading in MEC as a constrained multi-objective optimization
problem (CMOP) that minimizes both the energy consumption and task pro-
cessing delay of the mobile devices. Lin [8] designs an evaluation function which
is the weighted sum of the user’s demand for delay and energy consumption.

3 Adaptive Delay-Limited Offloading Scheme Based
on Multi-round Auction Model

3.1 Scenario Description

The MEC servers are deployed on the small base stations in the network to
process users offloaded tasks. They have strong real-time performance and they
can provide a good user experience. Suppose that there are n mobile users in
the network, forming a set U = {U1, U2, ..., Un}, and m MEC servers, forming a
set S = {S1, S2, ..., Sm}.

3.2 Calculation Model

Local Execution. Assume that the required tasks for user Ui is x bits. Each
bit of computation requires the CPU to run C cycles. The user’s local computing
capability is Flocal as cycle/s. Let Plocal be the local compute power, the time
and energy required for local execution can be defined as below:

Tlocal =
xC

Flocal
(1)

314 H. Qi et al.

Elocal =
xC

Flocal
× Plocal (2)

Where Tlocal is the time required for local execution, and Elocal is the energy
consumption required for local execution.

Offloading Execution. Assume that the user Ui offloads the computing task
to the MEC server Sj . The bandwidth allocated to each base station is B. The
channel noise power is σ2. The channel gain is Hn. The transmit power is Psend.
The upload rate Rsend can be obtained:

Rsend =
B

n
× log2(1 +

Psend × Hn

σ2
) (3)

Similarly, the download rate Rreceive from the MEC server to the mobile user
can be obtained.

The offloading time consists of three parts: task upload time, task calculation
time on the server, and calculation result download time.

Toffload = Tcalculate + Tsend + Treceive (4)

Tcalculate =
xC

Fserver
(5)

Tsend =
x

Rsend
(6)

Treceive =
αx

Rreceive
(7)

Where Tcalculate is the task compute time on the server. Fserver is the server
compute capability as cycle/s. Tsend is the task upload time. Treceive is the
result download time. α is the data compression ratio between the calculated
result and the original data.

As calculated results are compressed, the energy consumption of download
is negligible. We then get:

Toffload =
xC

Fserver
+

x
B
n × log2(1 + Psend×Hn

σ2)
+

αx
B
n × log2(1 + Preceive×Hn

σ2)
(8)

Eoffload =
xPsend

Rsend
(9)

Where Toffload is the offloading time. Eoffload is the offloading energy consump-
tion.

Offloading Conditions. The computing resources required for the offloading
tasks cannot exceed the total resources provided by the MEC servers. At the
same time, The tasks that can be offloaded need to meet the following conditions:

Toffload ≤ Tlocal (10)

Eoffload ≤ Elocal (11)

An Adaptive Delay-Limited Offloading Scheme 315

3.3 Multi-round Auction Model

The multi-round auction model consists of evaluation stage and auction stage.
According to formulas (8) and (9), it can be seen that due to the differences
in channel conditions and the servers, the time and energy required for the
same task to be offloaded to different MEC servers are various. The multi-round
auction model allows users and MEC servers to perform a two-way selection,
which is suitable within multiple users and MEC servers scenarios. More details
of the multi-round auction model refers to [8].

Evaluation Stage. In the user’s evaluation stage, each user performs a separate
evaluation on all cases of offloading to different MEC servers, and the improved
evaluation function proposed in this paper is:

price = ωt × ρt × (Tlocal − Toffload) + ωe × ρe × (Elocal − Eoffload) (12)

ωt + ωe = 1 (13)

Where ρt and ρe represent the bid constants of delay and energy consumption.
ωt and ωe are the weights of delay and energy consumption. The users determine
ωt and ωe according to the task type and different needs. For example, ωt = 1
and ωe = 0, which indicates only low delay is expected for the task offloading
and not energy consumption.

After the users evaluate the resources of each MEC server, they give each
element in the respective set S = {S1, S2, ..., Sm} a price. Sj .price represents the
evaluation of the user offloading the task to the Sj server. Find the element with
the biggest value of Sj .price in the set S, Sj is determined to be the highest
priority MEC server corresponding to the task, and Sj .price is the bidding price
for Sj of the task. As the larger the value of price, the better the MEC server
fulfillment of users need.

Auction Stage. In the auction stage, each MEC server allocates resources
to tasks which select this server as the highest priority server. The order of
resource allocation is determined by the bidding prices of these tasks. After the
first round of auction, if some tasks fail to be offloaded and there are remaining
server resources, the second round of auction will be conducted. The S set will
be updated, and the task will participate in the auction again with the new bid
until no resources remain or the task is completely offloaded.

3.4 Adaptive Delay-Limited Mechanism

Based on the multi-round auction model, this paper proposes an Adaptive delay-
limited mechanism. Since the success of the auction depends on the price, the
time for the task to wait for the final auction is mainly related to the price. The
smaller the value of price is, the more likely the auction fails, and the longer the
waiting time will be.

316 H. Qi et al.

Algorithm 1. The Offloading Algorithm
Input: The number of MEC servers m, the number of users n, and the parameter b.
Output: The match matrix match.

price ← ρt ∗ ωt. ∗ Tdis + ρe ∗ ωe. ∗ Edis

P0 ← (1 − b) ∗ Pmax

// Find tasks performed locally
[row, cell] ← find(price < P0)
price(:, cell) ← 0
j ← length(cell)
while j < n do

// Record the price of tasks with big Twait

[row, cell] ← find((Tlocal − Toffload < Twait)
P (1, cell) ← price(1, cell)
temp p ← price
// Match the best task for each server
for i ← 1 to m do

max p ← max(max(price))
[row, cell] ← find(temp p ≡ max p)
temp p(:, cell) ← 0
temp p(row, :) ← 0
price(:, cell) ← 0
Ts(1, cell) ← Tcalculate(1, cell)
match(row, k) ← max p
// Task offloaded successfully
j + +

end for
Twait ← Twait + max(Ts)
k + +

end while
Pmax ← max(Pmax, max(P))

If there are many tasks in the network, some of them will fail to be offloaded.
Since the server computing capacity has a greater advantage than the local
computing capacity, the time waiting for the next auction has little effect on
tasks with not very strict latency requirements. The optimization effect brought
by persistent offloading is still considerable. However, for tasks with small values
of (Tlocal − Toffload) and strict latency requirements, their price is relatively
small. These tasks are likely to fail in multiple auctions. The delay caused by
waiting for the next auction may have a great impact on them. If these tasks
exit the auction early and choose to execute locally, the result can better meet
their needs. At the same time, the latency of other tasks in the network will be
reduced, and the burden on the entire network will be reduced.

Algorithm 1 shows the offloading algorithm proposed in this paper. The algo-
rithm is comprising of threshold update and condition verification. A nested loop
is used to match user and server resources.

An Adaptive Delay-Limited Offloading Scheme 317

The price of all tasks with a queue delay longer than (Tlocal − Toffload) are
recorded in the set P . Find the maximum value in P and assign it to Pmax.
Set a threshold P0, which needs to be updated according to the change of the
network. After each time period, update P and Pmax to get a new P0:

Pmax = max{Pmax,max P} (14)

P0 = (1 − b)Pmax (15)

Where b ∈ (0, 1). Its role is to provide a detection range for the estimation of
P0, allowing the threshold to change up and down.

Before each auction, an additional verification is required. The tasks to par-
ticipate in the auction must meet the following conditions:

price ≥ P0 (16)

It can be seen that when the network load is heavy, additional conditions will
become stricter to maximize the overall benefit. When the network load is light,
the probability of failure in auctions will be greatly reduced, and the value of
P0 will also adapt to changes in the network and become very small, which will
allow more computing tasks to participate in the auction.

4 Simulation Results and Analysis

The experiment assumes that there are three MEC servers in the network, the
number of users increases from 100 to 1000, and each user requests to offload a
task. Other parameters in the experiment are shown in Table 1.

Table 1. The simulation parameters

Parameter Value

Bandwidth allocated to each base station 20 MHz

Channel noise −170 dBm/Hz

Channel gain [−50, −30] dBm

CPU operating capacity 1000 cycles/bit

Computing capability of local CPU [0.1, 1] GHz

Computing capability of MEC server 100 GHz

Calculation amount of each task [50, 200] kB

Local computing power 0.1 W

Local transmit power 0.1 W

Base station transmit power 1 W

Data compression rate 0.2

318 H. Qi et al.

Figure 1 compares the delay and energy consumption of tasks executed locally
and offloaded in different ways. The experiment was conducted under the con-
dition of different number of users. The delay and energy consumption of all
users were accumulated to obtain the total delay and total energy consump-
tion. The evaluation function in [8] is only based on the needs of users, and the
offloading effect of this scheme is difficult to compare with other schemes. So
the offloading scheme in [11] was used for this experiment, which compensates
tasks with Twait through the evaluation function. It can be seen that the multi-
round auction scheme with adaptive delay limitation proposed in this paper has
certain advantages in reducing delay and energy consumption. The reason for
the advantage is that the optimization objective of the evaluation function con-
tains a reduction in delay and energy consumption. Another reason is that the
multi-round auction ensures that each user and each MEC server can get the
best global match in each auction.

(a) Delay comparison chart (b) Energy consumption comparison chart

Fig. 1. Comparison chart of different offloading methods

Figure 2 is a delay comparison chart of different delay limiting methods. The
experiment was conducted on the basis of using the same multi-round auction
model. For the offloading method with fixed delay limit, after experimental com-
parison, the best performance was achieved in all aspects when T0 was 0.3 s. It
can be seen that when the number of users is small, the total delay of the adaptive
-delay-limited method and the non-delay-limited method is significantly lower
than that of the fixed-delay-limited method. This is because some tasks can
only be executed locally because they do not meet the fixed delay limit, which
increases the delay. When the number of users is large, the total delay of the
offloading method with fixed delay is the lowest. Because of the fixed delay limit,
Some users no longer insist on offloading, which reduces the queuing delay and
reduces the total delay. Although the total delay of the adaptive-delay-limited

An Adaptive Delay-Limited Offloading Scheme 319

method is not the lowest, the advantages are also obvious compared with the
non-delay-limited method.

Figure 3 is an energy consumption comparison chart of different delay limit-
ing methods. It can be seen from the figure that the total energy consumption
of the non-delay-limited method is always the lowest of the three. All tasks are
offloaded, and users only need to consume the energy when uploading. However,
in practical applications, the non-delay-limited method is hard to be accepted,
because the continuous queuing delay will make the total delay increase signifi-
cantly. The fixed-delay-limited method has the highest total energy consumption.
This is because the fixed delay limit causes many tasks to be executed locally,
which increases user energy consumption. The adaptive-delay-limited method
is significantly better than the fixed-delay-limited method in terms of energy
consumption.

Fig. 2. Delay comparison chart of differ-
ent delay limiting methods

Fig. 3. Energy consumption comparison
chart of different delay limiting methods

Combining the delay result and energy consumption result of offloading, it
can be known that the offloading method with adaptive delay limitation has
obvious advantages. This is because the offloading effect caused by the load
change will give the mechanism a feedback, so that P0 is constantly updated.
The delay limit can find the best value in a short time to adapt to the load
changes in the network.

320 H. Qi et al.

(a) Delay variation chart (b) Energy consumption variation chart

Fig. 4. Variation chart of different b

In addition, the experiment proves that when the number of users is fixed,
different values of b will bring different offloading effects. Figure 4 shows the vari-
ation of delay and energy consumption with different value of b. The larger the
value of b, the higher the total delay, and the lower the total energy consump-
tion. This is because a larger b means that the delay limit is more relaxed. The
more tasks that will be successfully offloaded, the more energy consumption will
be reduced. But the queuing delay causes the delay advantage to be weakened.
In other words, the smaller the value of b, the more obvious the delay reduction.
The larger the value of b, the more obvious the reduction in energy consumption.
Therefore, the multi-round auction offloading scheme with adaptive delay limita-
tion proposed in this paper can be applied to networks with different densities,
and can also be applied to networks with different emphasis on optimization
goals through the adjustment of b.

5 Conclusion

In the research of mobile edge computing offloading, in order to make the offload-
ing scheme better applicable to the network of multiple users and multiple MEC
servers, this paper adopts a multi-round auction model, in which users and MEC
servers select each other to achieve the global best match. Based on the time
delay and energy consumption actually reduced by offloading, and considering
the optimization needs of users, a better evaluation function is proposed. This
paper also designs an adaptive delay limit mechanism to continuously adapt to
load changes and find the optimal delay limit to improve the overall performance
of the network. Experiments show that the offloading scheme proposed in this
paper can effectively reduce the total delay and total energy consumption of
network devices in networks with different loads. And compared with the fixed
delay limited method and non-delay limited method, it has obvious advantages.

An Adaptive Delay-Limited Offloading Scheme 321

References

1. Bozorgchenani, A., Mashhadi, F., Tarchi, D., Monroy, S.S.: Multi-objective com-
putation sharing in energy and delay constrained mobile edge computing environ-
ments. IEEE Trans. Mob. Comput. (2020)

2. Chen, M., Hao, Y.: Task offloading for mobile edge computing in software defined
ultra-dense network. IEEE J. Sel. Areas Commun. 36(3), 587–597 (2018)

3. Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for
mobile-edge cloud computing. IEEE/ACM Trans. Networking 24(5), 2795–2808
(2015)

4. Dai, M., Liu, Z., Guo, S., Shao, S., Qiu, X.: Edge computing offload and resource
allocation mechanism based on terminal energy consumption and system delay
minimization. Electron. Inf. Sci. 41(11), 2684–2690 (2019)

5. Dong, S., Li, H., Qu, Y., Zhang, Z., Hu, L.: Review of researches on computing
offloading strategies in mobile edge computing. Comput. Sci. 46(11), 32–40 (2019)

6. Geng, Y., Yang, Y., Cao, G.: Energy-efficient computation offloading for multicore-
based mobile devices. In: IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, pp. 46–54. IEEE (2018)

7. Li, Z., Xie, R., Sun, L., Huang, T., et al.: Overview of mobile edge computing.
Telecommun. Sci. 34(1), 87–101 (2018)

8. Lin, X.: Calculation task offloading strategy based on resource joint configuration
in mobile edge computing network. Master’s thesis, Beijing University of Posts and
Telecommunications (2017)

9. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and com-
putation offloading. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017)

10. Pan, J., McElhannon, J.: Future edge cloud and edge computing for internet of
things applications. IEEE Internet Things J. 5(1), 439–449 (2017)

11. Sheng, J., Teng, X., Li, W., Wang, B.: Calculation offloading strategy based
on improved auction model in mobile edge computing. Computer Application
Research (2019)

12. Wang, C., Yu, F.R., Liang, C., Chen, Q., Tang, L.: Joint computation offload-
ing and interference management in wireless cellular networks with mobile edge
computing. IEEE Trans. Veh. Technol. 66(8), 7432–7445 (2017)

13. Wang, Y., Ge, H., Feng, A.: Computing offloading strategy for cloud-assisted
mobile edge computing. Computer Engineering (2019)

14. Wei, Z., Zeng, L.: Edge computing offloading decision-making method based on
stackelberg game theory. Math. Pract. Underst. 49(11), 91–100 (2019)

15. Xie, R., Lian, X., Jia, Q., Huang, T., Liu, Y.: Summary of mobile edge computing
offloading technology. J. Commun. 39(11), 138–155 (2018)

16. Xu, J., Li, X., Ding, R., Liu, X.: Multi-resource calculation offloading strategy opti-
mized for energy consumption in mobile edge computing. Comput. Integr. Manuf.
Syst. 25(4), 954–961 (2019)

17. Yu, R., Xue, G., Zhang, X.: Application provisioning in fog computing-enabled
internet-of-things: A network perspective. In: IEEE INFOCOM 2018-IEEE Con-
ference on Computer Communications, pp. 783–791. IEEE (2018)

18. Yu, X., Shi, X., Liu, Y.: Joint optimization of offloading strategy and power in
mobile edge computing. Computer Engineering (2019)

19. Yuan, P., Cai, Y.: A greedy strategy for content offloading in mobile edge comput-
ing. Comput. Appl. 39(9), 2664–2668 (2019)

322 H. Qi et al.

20. Zhang, H., Li, H., Chen, S., He, X.: Task offloading and resource optimization
based on mobile edge computing in ultra-dense networks. Electron. Inf. Sci. 41(5),
1194–1201 (2019)

21. Zhang, H., Guo, J., Yang, L., Li, X., Ji, H.: Computation offloading considering
fronthaul and backhaul in small-cell networks integrated with MEC. In: 2017 IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp.
115–120. IEEE (2017)

22. Zhang, J., et al.: Energy-latency tradeoff for energy-aware offloading in mobile edge
computing networks. IEEE Internet Things J. 5(4), 2633–2645 (2017)

23. Zhang, K., Gui, X., Ren, D., Li, J., Wu, J., Ren, D.: Review of research on com-
puting migration and content caching in mobile edge networks. J. Softw. 30(8),
2491–2516 (2019)

24. Zhao, P., Tian, H., Qin, C., Nie, G.: Energy-saving offloading by jointly allocating
radio and computational resources for mobile edge computing. IEEE Access 5,
11255–11268 (2017)

25. Zhao, Y.: Research on computation offloading in mobile edge computing systems
with limited resources. Master’s thesis, Beijing University of Posts and Telecom-
munications (2019)

An Efficient Data Transmission Strategy
for Edge-Computing-Based Opportunistic

Social Networks

Jingwen Luo, Jia Wu(B), and Yuzhou Wu

School of Computer Science and Engineering, Central South University,

Changsha 410083, China

Abstract. As wireless network has developed rapidly in recent years,
especially with the maturity and wide application of 5G wireless system,
millions of mobile users have been able to quickly exchange large amounts
of data in social networks. Despite the positive impact of the recent
advances in edge computing on opportunistic social networks (OSNs),
classical OSN algorithms rely on only a few source nodes to forward
data, which often results in data transmission delay, excessive resource
consumption and even loss of source nodes. Therefore, we propose an
efficient edge-computing-based data transmission strategy in OSNs. It
classifies nodes into new communities according to their degree of asso-
ciation. Source nodes forward data through relay nodes in community,
which effectively reduces the resource consumption of a single node. The
experiment results of comparison with the three algorithms show that the
proposed method can effectively reduce the resource consumption dur-
ing data transmission as well as enhance the information transmission
efficiency.

Keywords: Edge computing · Opportunistic social networks · OSNs ·
Data transmission · Data management

1 Introduction

The development of wireless network coupled with mobile devices has con-
tributed to the rapid development of social networks in recent years, therefore
users are able to enjoy different kinds of services and applications [1]. Especially
with the rapid application of 5G (5th Generation Wireless Systems), the num-
ber of mobile terminals and devices increases significantly, reconstructing the
social networks. Millions of mobile users have been able to quickly exchange large
amounts of data in the social network, forming a significant network paradigm in
5G [2]. Mobile devices that are carried by users are characterized by a strong ran-
domness and mobility, making them a social node, and the correlation between
nodes can help establish communities [3].

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 323–335, 2021.
https://doi.org/10.1007/978-3-030-79478-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_28&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_28

324 J. Luo et al.

Also, innovations keep emerging in different fields, with mobile edge comput-
ing included, which will dramatically affect social networks [4]. By incorporating
edge computing into the opportunistic social networks (OSNs), the system can
better evaluate users’ current situation in the social network, optimize the net-
work by calculating and evaluating, and give reasonable selection suggestions. It
can significantly increase the data transmission of nodes and effectively reduce
the network’s data transmission delay.

In OSNs, Vahdat etc. al. proposed the Epidemic routing algorithm [5], and
Lu etc. al. proposed an improved Epidemic scheme which is energy-saving n-
epidemic algorithm [6]. However, those algorithms adopt flooding techniques to
transmit data, which increases the network overhead significantly. Spyropoulos
etc. al. brought forward the Spray and Wait routing algorithm [7], and Wang
etc. al. brought forward a dynamic Spray-and-Wait algorithm [8]. The calculation
and update of node quality by those algorithm can be restricted by the energy
consumption. Edge computing as a new computing paradigm in recent years,
which, in social networks, could be capable of solving many issues like latency,
limited battery life of mobile devices, and bandwidth cost, etc. [9,10].

However, edge computing can nott completely solve the existed problems in
OSNs where nodes search opportunities to exchange data in the way of “store-
carry-forward” in their communities [11]. For the traditional opportunistic algo-
rithms, a lot of communities use one or two nodes existing in the social network
for information delivery. Those nodes have to transmit a large amount of data
as well as calculate many tasks that will consume more energy [12,13]. In the
traditional opportunistic network protocol, due to the lack of enough cache or
overhead for source node, data transmission may cost a long time in the com-
munity [11]. What’s worse is that for these nodes, information transmission will
consume many resources by using flooding technology and data will be lost as
the source node dies.

To solve above-mentioned limitations, the paper focuses on proposing an effi-
cient data transmission scheme based on edge computing in OSNs, reconstruct-
ing the community taking into account to which degree the edge or the source
node is associated with the neighbor nodes. The correlated community nodes
take charge of a data transmission task, i.e., allocating some source nodes. The
proposed scheme is capable of reducing source node consumption as well as pro-
longing the source node’s life cycle. The paper mainly makes three contributions
as follows.

• Regarding community reconstruction, source nodes are required to conduct
reconstruction based on the degree of association between nodes, and infor-
mation transmission shall be performed in proper communities;

• The proposed algorithm is characterized by an effective information delivery
and is capable of reducing the energy consumption by source nodes during
data transmission;

• As shown by experiments, the method can dramatically lower the energy
consumption as well as enhance the delivery efficiency of data.

An Efficient Data Transmission Strategy 325

2 System Model

In OSNs, the scarcity of source nodes and ineffective information transmission
may cause the enormous resources consumption of single source node and the
death of source node, finally data carried by the source node will loss. For pre-
venting the nodes resource from being over-consumed as well as reducing the
node death rate, it is necessary to focus on searching some proper adjacent
nodes for helping the source node to deliver a part of data. On that account, we
define the changing theorems of communities and propose a data transmission
algorithm with a high effectiveness based on edge computing in this section.

2.1 Community Definition

Suppose a user sends a data download request to the associated network. Firstly,
considering the download content and the user’s information, the system can
check whether the associated edge or source nodes have the cache data. If yes,
the system can decide who (edge user or source node) sends the requested infor-
mation directly to the mobile user based on channel, correlation, and energy
consumption, etc. If not, edge user or source nodes will get current data based
on their computing power, channel conditions, degree of association, energy con-
sumption, and so on, and then send the obtained data to the requested user. The
process is shown in Fig. 1.

............

Cloud provider 1 Cloud provider 2 Cloud provider N

Different colors represent different dataDifferent colors represent different data

......

Cloud provider 1 Cloud provider 2 Cloud provider N

Different colors represent different data

Edge server 1Edge server 1 Edge server 2Edge server 2 Edge server KEdge server K

E

S

R

R
R

E

R

S
R

D R

Community 1 Community 2 Community M-1 Community M

E

S

R
R

D

R

R

S

Cloud server

Edge-cloud
services

User & edge

S Source nodeS Source node

Adjacent nodeAdjacent node

R Relay nodeR Relay node

D Destination nodeD Destination node

E Edge nodeE Edge node

Fig. 1. The opportunistic social networks with edge computing.

However, in the process of user movement, the community of node may
change. Therefore, the changing form of communities during user movement
shall be proved.

326 J. Luo et al.

Based on the weighted networks in social networks [14], the network topo-
logical structure can be expressed as G =(N,E, ω), where N represents the node
number in current network, E can be expressed as N = {(a, b) | a ∈ N, b ∈ N},
both of a and b is nodes, ω is the weight between a and b. There are n adjacent
nodes for source node Ns at t moment, and n ⊆ N . When source node and adja-
cent node meet the condition υωij ≥ θ, the source node can forward information
through the adjacent node, which can be called relay node. υωij represents the
association between source node Ni and adjacent node Nj , υ stands for a coef-
ficient, ωij means weight between Ni and Nj , and θ stands for the threshold.
Here the structural degree exhibited by community is defined as SX , which can
predict the changes in the community X.

SX(t) =
ωx

T
− ω2

s

(2T)2
=

4Tωx − α2
s

(2T)2
(1)

SX(t) denotes the structural degree exhibited by community X, T means the
total weight in networks, ωx means the total weight of community X, αi means
the total degree of Ni, Δω denotes the weight variation, ωij denotes the edge
weight between Ni and Nj, Ei

X denotes the total edge weight of Ni in X. The
theorem and proof are as follows.

Theorem 1. When the community X is divided into two sub-communities Xi

and Xj, it should satisfy the requirements αiαj

2T < ωij < Δω + αiαj+αsΔω+Δω2

2(T+Δω) .

Proof. Suppose the community X is split into sub-communities of Xi and Xj ,
and considering the increase in the total weight of community,

⎧
⎨

⎩

ωi + ωj < T
Si

T − α2
i

4T 2 + Sj

T − α2
j

4T 2 <
αi+αj+wij

T − (αi+αj)
2

4T 2

ωij >
αiαj

2T

(2)

With the decrease in the given total weight, it is possible to rewrite the
formula as follows.

ω∗
i + ω∗

i > T ∗ (3)

ωij < Δω +
αiαj + αsΔω + Δω2

2(T + Δω)
(4)

Thus, the sub-communities Xi and Xj satisfies the theorem αiαj

2T < ωij <

Δω + αiαj+αsΔω+Δω2

2(T+Δω) , then the community X is separated.

Theorem 2. During node Ni movement, the edge of the node Ni connects node
Nj and becomes the only edge of node Nj. With the decline of the weight between
Ni and Nj, Nj can not be separated from the community.

An Efficient Data Transmission Strategy 327

Proof. Similar to theorem 1, the assumption that edge weight reduction between
Ni and Nj is represented by Δw, Δw < 0. With the separation of community
X, below theorem should be satisfied.

⎧
⎪⎨

⎪⎩

ωi + ωj < T
4Tωi−α2

i

(2T)2 + 4Tωj−α2
j

(2T)2 <
4T (αi+αj+ωij)−(αi+αj)

2

(2T)2

ωij >
αiαj

2T

(5)

ω∗
i and ω∗

j is the edge weight of Ni and Nj after community X separate, T ∗

is the community total weight ater separate. Then,
{

ω∗
i + ω∗

j > T ∗

ωij < εsεi+εsΔω+Δω2

2(κ+Δω) + Δω
(6)

That is
αiαj

2T
< ωij <

αiαj + αiΔω + Δω2

2(T + Δω)
+ Δω (7)

It can be explained as

αiαj

2T
< ωij <

αiαj + αiΔω

2(T + Δω)
(8)

Because
αiαj + αiΔω

2(T + Δω)
− αiαj

2T
=

αiΔω (T − αj)
2T (T + Δω)

< 0 (9)

αiαj
2T < ωij <

αiαj+αiΔω+Δω2

2(T+Δω) is a false proposition.
Hence, the only edge of Nj connects Ni and the weight decreases. Nj can not

be separated from the community.

Theorem 3. Ni in community X, the edge weight as well as the weight of
community Y increase, satisfying the equation 4(T + Δω)

(
Ei

Y − Ei
X + Δω

)
+

(αi + Δω) (αX − αY − αi) − Δω2 > 0, thus it is possible for Ni to join into
community Y.

Proof. Community X and Y see rising edge weight, and communities’ structure
degree is:

SX + SY =
2TωX − (αX + Δω)2

4(T + Δω)2
+

2TωY − (αY + Δω)2

4(T + Δω)2
(10)

With Ni leaving community X as well as jointing into community Y, com-
munities’ structure degree is:

SX−i + SY +i =
4T

(
ωX − Ei

X

)
− (αX + Δω)2

4(T + Δω)2
+

4TωY − (αY + Δω)2

4(T + Δω)2
(11)

328 J. Luo et al.

To proof that the the join of Ni will increase the structure degree exhibited
by community Y, it is necessary to first proof SX−i + SY +i > SX + SY .

4(T + Δω)
(
Ei

Y − Ei
X + Δω

)
+ (αi + Δω) (αX − αY − αi) − Δω2 > 0 (12)

Above theorems assist in proving the changes of community in the course of
node movement.

2.2 Data Transmission Model

During the data transmission of OSNs, multiple hop transmission is needed to
deliver data to destination nodes. Besides, the delivery of complete data to com-
munity’s node is usually conducted in an overlay way, which will greatly increase
the routing overhead as well as the energy consumption. Therefore, an Edge-
Computing-based Efficient Data Transmission (ECEDT) scheme is designed to
reduce the routing overhead as well as the energy consumption of source nodes.

In this scheme, the source node Ns and the relay nodes communicate with
each other, with the later receiving as well as storing certain data from the for-
mer. Relay nodes take charge of broad information transmission to other nodes.
The movement of source node is along with searching for relay nodes from adja-
cent nodes, as well as reconstructing the old community into new ones. Recon-
structed communities are able to relieve the pressure suffered by source node

Community1

R
S

R
S

R

R

R

R

d/2

S RS R

R

RR

R

RR

Community2

d/4

R

RR
R

RR

S
R

S
R

Community3

d/8

d/4

R

R

R

R

Community(n-1)

D R

R

D R

R R
S

R
S

d/2n

Community(n)

d/(2n-1)

Data structure
1th

Transmited Awaiting

2th 3th ... n1th

Transmited Awaiting

2th 3th ... n

d/2

Data transmissionData transmission

Node movementNode movement

1th

Transmited Awaiting

Data structure
1th

Transmited Awaiting

Data structure
Awaiting1th

Transmited

Data structure

2th1th

Transmited

Data structure

2th

Awaiting

Fig. 2. The process of data transmission.

An Efficient Data Transmission Strategy 329

for data transmission and information spread, which enables the transmission of
data on the line. For a clear description of the delivery process of information,
how ECEDT scheme works is explained below:

Step 1: The total data that are carried by the source node Ns are expressed
as T0(ϑ) = ϑ0, and Ns sends a message of “HELLO” to the adjacent nodes
for searching those that can be used in a community.
Step 2: After receiving the message of “HELLO” in the community, the adja-
cent node will give a response, followed by establishing a connection to the
source node. If adjacent node meets the condition υωij ≥ θ, it can be con-
verted into a relay node.
Step 3: The source node begins to communicate with the relay node, together
with transmitting 50% of data to the relay nodes of community with multiple
perceptions. With the source node marking the completion of data transmis-
sion, the relay node regarding community 1 will receive information from Ns

after the first data transmission (as shown in Fig. 2).

Then, the information carried by community 1 are as follows.

T1(ϑ) =
1
2
T0(ϑ) =

1
2
ϑ0 (13)

Tsur1 (ϑ) represents the surplus data that were unset by Ns after the first
transmission.

Tsur1(ϑ) = T0(ϑ) − T1(ϑ) = ϑ0 − 1
2
ϑ0 =

1
2
ϑ0 (14)

Step 4: The source node keeps moving, together with sending the message of
“HELLO” as well as searching for relay nodes.
Step 5: The source node firstly communicates with community 2, followed by
sending 50% of data that are unsent to the nodes in the community. Also,
data are transmitted between communities, and the nodes in community 1
are capable of broadcasting 50% of the information provided by the source
node (Fig. 2).

Information below are received by community 2:

T2 (ϑ) =
1
2
Tsur1 (ϑ) + T1(ϑ) =

1
22

T0(ϑ) + T1(ϑ) =
3
4
ϑ0 (15)

Below equation describes the surplus information that are unsent by Ns after
the second transmission:

Tsur2 (ϑ) = T0(ϑ) − T2(ϑ) − T1 (ϑ) (16)

As is well known, data of community 2 covers all the data provided by com-
munity 1, i.e. T1 (ϑ) ⊆ T2 (ϑ). Therefore, equation (16) can be rewritten into:

Tsur2 (ϑ) = T0 (ϑ) − T2 (ϑ) = ϕ0 − 1
22

ϑ0 − 1
21

ϑ0 =
1
4
ϑ0 (17)

The source node marks the unsent surplus information and keeps moving.

330 J. Luo et al.

Step 6: It is assumed that communities can achieve data communication,
therefore, with the source node meeting the community 3 and beginning to
transmit information, community 3 is able to see the message from the pre-
vious two communities.

T3 (ϑ) =
1
2
Tsur2 (ϑ) + T2 (ϑ) + T1 (ϑ) =

7
8
ϑ

0
(18)

The surplus information are marked by source node, and the source node
keeps moving. Equation 17 shows the surplus information unsent by Ns after
the third transmission.

Tsur3 (ϑ) = T0 (ϑ) − T3 (ϑ) = ϑ0 − 1
23

ϑ0 − 1
22

ϑ0 − 1
21

ϑ0 =
1
8
ϑ0 (19)

Step 7: Repeat abovementioned procedures.
Step 8: With the source node searching for target node’s community after
information transmission is performed for n times, 1

2n T0 denotes target node’s
community information, and

∑n−1
k=1 Tk (ϑ) denotes the communication data

between different communities. Figure 2 displays the entire transmission pro-
cess.

When n → ∞, the ECEDT scheme transmits the same amount of infor-
mation with the Epidemic and Spray and Wait algorithm. If the data are
transmitted for a long time, those received by the destination node will be
more complete. And ECEDT, Epidemic and Spray and Wait exhibit a time
complexity of O (2n − 1), O(n) and O(2n) respectively. But the routing over-
head of ECEDT, Epidemic and Spray and Wait is

∑n
k=1 (1

2)k = 1 − (1
2)n,

n and n. ECEDT has an obviously lower routing overhead compared with
Epidemic and Spray and Wait n → ∞.

3 Simulation and Analysis

For evaluating the performance exhibited by ECEDT, a simulation tool named
Opportunistic Network Environment (ONE) is adopted [15], and is compared
with the three basic approaches, i.e. Information cache management and data
transmission (ICMT) algorithm [16], Status estimation and cache management
(SECM) algorithm [17], and Spray and Wait algorithm [7].

The experiment sets the simulation parameters: The simulation time lasts for
1–6 hours, and the network area is 4500m×3400m. The transmission adopts the
broadcast pattern, that involves 400 nodes moving at 0.5 to 1.5m/s in a random
manner. Each node has 5MB cache storage information. The social model is
adopted for nodes for data transmission, and each node has the max transmission
domain of 10m2. Data packet is sent each 25–35 at the transmission speed of
250KB/s. The initial energy of each node reaches 100 Joules, and 1J energy will
be consumed for sending a data packet. Based on the simulation report data,
the experimental results are shown in Fig. 3-4.

An Efficient Data Transmission Strategy 331

Fig. 3. Relationship between time and different parameters.

Figure 3 shows the relationship between time and four parameters. In
Fig. 3(a), the transmission rates of Spray and Wait(copy = 30 and copy = 10) and
SECM are lower than ECEDT. Spray-and-Wait and SECM algorithms deliver
information to nodes by copying a large amount of duplicate information and
using the flooding method, leading to more information loss. ICMT algorithm
controls the time interval of delivery information that improves the transmission
and receiving of effective information, which is its delivery ratio higher than
the other two. ECEDT combining multi-sensing community and mobile node
transmission base on edge-computing, the transmission rate of the algorithm is
effectively improved and is the highest among all algorithms.

In Fig. 3(b), the routing overhead of the ECEDT is maintained steady, and
ICMT’s performance is also good. But the routing overhead of Spray and Wait
routing algorithm(copy = 30) is highest. Spray and Wait(copy = 10) and SECM
have a local flooding phenomenon, which overhead remains in a high range.

In Fig. 3(c), the energy consumption of Spray and Wait is highest, and each
node needs energy to transmit information through spray. Several communities
bear the energy consumption and extend the information transmission time of
nodes in the ECEDT algorithm, thus reducing the number of information trans-
mission times to source nodes. The energy consumption of the ECEDT is less
than the other.

In Fig. 3(d), the SECM adopts a encounter delivery method that mass copied
information transmit, and its average delay is highest. ECEDT’s delay remained
in a fairly good range. The transmission delay of Spray and Wait is lowest. It
can indicate that their information diffusion capability is strong.

332 J. Luo et al.

Fig. 4. Relationship between cache and different parameters.

Node ache acts as a significant indicator for social networks and can directly
impact algorithms’ transmission efficiency. Figure 4 displays the relationship
between cache and 4 parameters. In Fig. 4(a), Spray and Wait algorithm adopts
flooding method, and its delivery ratio is lowest. The raising delivery ratio of
ECEDT is significant in increasing node cache due to combining community and
node mobile delivery data. ICMT’s delivery rate is also good.

Figure 4(b) show that a larger node cache can reduce the node overhead.
The routing overhead of the ECEDT drops faster than the other three.

In Fig. 4(c), ECEDT adopts a data delivery method assisted by the com-
munity that reduces energy consumption significantly. Other algorithms’ energy
consumption increase as the cache enlarges, while ECEDT’s energy consumption
remains steady.

Figure 4(d) show that the delivery delay decline with the increasing cache,
the delay of ECEDT and Spray and Wait(copy = 30) lower than the other two
algorithms.

Based on the above experiment analysis, ECEDT performs better than other
algorithms with regard to the transmission rate, the energy consumption and the
routing overhead, however, it exhibits a higher time delay than that of the Spray
and Wait routing algorithm. In practice, ECEDT performs better regarding the
information transmission for a long time.

The actual environment sees different kinds of information transfer
approaches. Hence, it is necessary to attach importance to various moving
approaches. Three different mobile modes are chosen for confirming the per-
formance exhibited by ECEDT, namely Shortest Path Map Based Movement

An Efficient Data Transmission Strategy 333

(SPMBM), random way point (RWP), and random walk (RW) [15]. The simu-
lation results are shown in Figure 5.

In Fig. 5(a), the RWP model exhibits the best overall performance and the
largest delivery rate, and the RWP model exhibits a higher delivery rate than
the RW model.

In Fig. 5(b), considering the node movement process as well as the informa-
tion transfer process, community can share information with abundant nodes
while transferring information and reconstructing node. The routing overhead
of ECEDT suffers a slight impact, and the routing overhead of the three models
ranges from 110 to 120.

In Fig. 5(c), the three models present a slightly different energy consump-
tion. As shown in the result, ECEDT exhibits a stable performance for node
information transmission, and model change consume many energy.

In Fig. 5(d), for three models in the range of 185–220, RW and SPBM present
the largest and smallest delay, respectively. The results demonstrate the effec-
tiveness of SPMBM model of ECEDT regarding information transmission.

Fig. 5. Relationship between time and different parameters in three mobile models.

4 Conclusion

The paper focuses on designing a data transmission scheme with a high effi-
ciency, i.e. (edge-computing-based efficient data transmission (ECEDT), which

334 J. Luo et al.

can assist in solving the problem that source nodes consume excessive energy.
The performance exhibited by traditional opportunistic network algorithms is
compared and analyzed. As indicated by the experiment, the proposed scheme
can well transmit data and performs excellently in three mobile models, which
demonstrates its steadiness in various environments. In edge-computing-based
OSNs, the proposed scheme is capable of lowering nodes’ energy consumption,
prolonging the life cycle of network as well as remarkably enhancing the effi-
ciency of data transmission. The future work is suggested to pay attention to
energy consumption reduction regarding source nodes and relay nodes.

References

1. Ye, M., Yin, P., Lee, W.C.: Location recommendation for location-based social
networks. In: Proceedings of the 18th SIGSPATIAL international conference on
advances in geographic information systems, pp. 458–461 (2010)

2. Su, Z., Xu, Q.: Content distribution over content centric mobile social networks in
5g. IEEE Commun. Mag. 53(6), 66–72 (2015)

3. Wu, J., Yu, G., Guan, P.: Interest characteristic probability predicted method in
social opportunistic networks. IEEE Access 7, 59002–59012 (2019)

4. He, Y., Yu, F.R., Zhao, N., Yin, H.: Secure social networks in 5g systems with
mobile edge computing, caching, and device-to-device communications. IEEE
Wirel. Commun. 25(3), 103–109 (2018)

5. Vahdat, A., Becker, D., et al.: Epidemic routing for partially connected ad hoc
networks (2000)

6. Lu, X., Hui, P.: An energy-efficient n-epidemic routing protocol for delay tolerant
networks. In: 2010 IEEE Fifth International Conference on Networking, Architec-
ture, and Storage, pp. 341–347. IEEE (2010)

7. Spyropoulos, T., Psounis, K., Raghavendra, C.S.: Spray and wait: an efficient rout-
ing scheme for intermittently connected mobile networks. In: Proceedings of the
2005 ACM SIGCOMM workshop on Delay-tolerant networking, pp. 252–259. ACM
(2005)

8. Wang, G., Wang, B., Gao, Y.: Dynamic spray and wait routing algorithm with
quality of node in delay tolerant network. In: 2010 International Conference on
Communications and Mobile Computing, vol. 3, pp. 452–456. IEEE (2010)

9. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016)

10. Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81
(2016)

11. Wu, J., Chen, Z., Zhao, M.: Community recombination and duplication node tra-
verse algorithm in opportunistic social networks. Peer-to-Peer Netw. Appl. 13(3),
940–947 (2020)

12. Liu, H., Kou, H., Yan, C., Qi, L.: Link prediction in paper citation network to
construct paper correlation graph. EURASIP J. Wirel. Commun. Netw. 2019(1),
1–12 (2019)

13. Yuan, Y., Ong, Y.S., Gupta, A., Xu, H.: Objective reduction in many-objective
optimization: evolutionary multiobjective approaches and comprehensive analysis.
IEEE Trans. Evol. Comput. 22(2), 189–210 (2017)

14. Newman, M.E.: Analysis of weighted networks. Phys. Rev. E 70(5), 056131 (2004)

An Efficient Data Transmission Strategy 335

15. Keranen, A.: Opportunistic network environment simulator. Special Assignment
report, Helsinki University of Technology, Department of Communications and
Networking (2008)

16. Wu, J., Chen, Z., Zhao, M.: Information cache management and data transmission
algorithm in opportunistic social networks. Wirel. Netw. 25(6), 2977–2988 (2019)

17. Wu, J., Chen, Z., Zhao, M.: Secm: status estimation and cache management algo-
rithm in opportunistic networks. J. Supercomput. 75(5), 2629–2647 (2019)

Emering

Shadow Data: A Method to Optimize
Incremental Synchronization in Data

Center

Changjian Zhang1, Deyu Qi1(B), and Wenhao Huang1,2

1 School of Computer Science and Engineering, South China University
of Technology, Guangzhou, China

csa@scut.edu.cn
2 Guangzhou Mingsen Technology Company Ltd., Guangzhou 510000, China

Abstract. With the continuous increase of data, the data center that
plays the role of backup is facing the problem of energy hunger. In prac-
tice, to reduce the bandwidth, the local data is synchronized to the data
center based on incremental synchronization. In this process, the data
center will generate a huge CPU load. To solve this pressure of the data
center, first, we analyze the process of the Rsync algorithm, the most
commonly used in incremental synchronization, and CDC algorithms,
another way of chunking algorithm. Then we propose a data structure
called Shadow Data, which greatly reduces the CPU load of the data
center by sacrificing part of the hard disk space in the local node.

Keywords: Data synchronization · Shadow data · Data backup

1 Introduction

In case of the loss of important data caused by the PC crash, companies and
individuals choose to put these data in their own or third-party data centers [1,2].
However, data centers face challenges from data synchronization and others [3,4].
As more and more data is managed in data centers, more and more requests for
data synchronization will be made. In this case, data centers usually increase
their processing capacity by adding servers.

Since most of the synchronization requests in the data center are incremental
synchronization, to increase the parallel processing capacity of the data center,
we start with the process of incremental synchronization. We analyze why incre-
mental synchronization would cost a lot of data center resources, and remove the
most CPU consuming steps from the process, store the Shadow Data of backup
in the local node instead.

The main contributions of this paper are as follows:

1. We analyze the process of incremental synchronization algorithms, including
the Rsync algorithm and CDC(content-defined chunking) algorithms. Then
we find out the steps caused CPU load of the data center in this process.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 339–348, 2021.
https://doi.org/10.1007/978-3-030-79478-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_29&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_29

340 C. Zhang et al.

2. We propose a data structure, Shadow Data. After finding out the cause of the
CPU load in the data center, we propose to store the Shadow Data of the data
center in the local hard disk, which can cut off several steps of incremental
synchronization at the data center to reduce the CPU load.

3. In the experiments, we test the practicability of Shadow Data. For the same
size of local data that you want to synchronize to the data center, the Shadow
Data can reduce the CPU load of the data center to about 14% of the original.

2 Background and Related Work

2.1 Incremental Synchronization

With the growth of the size of one single file, the synchronization of the file
always goes incremental. When incremental synchronization is implemented, it
is achieved through multiple network communications between the local and
data center. The simplified communication flow of incremental synchronization
between local and data center is shown in Fig. 1 [5,6]. It should be noted that
the synchronization process discussed in this paper is the upload process of one
single file in the data center. The upload process refers to copying the local data
to the data center. Corresponding to this is the download process, which copies
the data in the data center to the local.

Fig. 1. The communication flow between the local and data center to complete the
synchronization of one single file.

As mentioned above, the communication process shown in Fig. 1 is simplified.
We remove some confirmation messages and focus on the key messages the four
in Fig. 1. A detailed introduction to these messages is as follows:

1. Local REQ: Request message. It is sent to the data center from the local node,
indicating that a synchronization request about one single file is to be initi-
ated. The message content is: |LocalF ileInfo|DCFileInfo|. LocalF ileInfo:
information about local file in this synchronization request. DCFileInfo:
information about target file in the data center.

2. DC ACK CHECKSUM: message sent by data center to local. It contains
chunk abstract information for the target file stored in the data center.

Shadow Data 341

The message content is: |Over flag|Chunk abstract|. Over flag indicates
whether it is the last message. Chunk abstract: abstract information for one
chunk.

3. Local ACK DiffCHECKSUM: message sent by local to data center. After
comparing the local file and the checksum content, local node gets the differ-
ent chunk information, and sent to data center with Local ACK DiffCHE
CKSUM message. The message content is: |Over flag|Chunk info|. Over
flag indicates whether it is the last message. Chunk info: chunk informa-
tion. There are two kinds of chunk information: one for the same chunk and
the other for the different chunk.

4. DC ACK COMPLETE: message sent by data center to local. This message is
to tell local that the synchronization request is finished. The message content
is: |Complete info|. It contains some information about result.

The actual message sent is messagehead + messagecontent. messagehead:
|Meshead|Mestype|. Meshead contains some version information. Mestype is
the type of this message.

2.2 Related Work

Academic circles have done a lot of research on incremental synchronization
among files. The Rsync algorithm [5], proposed by Andrew Tridgell, claims to
complete the synchronization task through multi-segment communication and
propose a strong and weak hash code to improve synchronization performance.
The weak hash function chosen by Rsync is the Adler-32, which is a rolling-check
algorithm, and the strong one is MD5. To optimize the resource usage of Rsync,
Chao Yang et al. proposed an optimized communication process to reduce the
data center CPU load during downloading [6]. Besides, many scholars optimize
the Rsync algorithm from the perspective of the chunking algorithm. Won Youjip
et al. proposed MUCH algorithm base on Rabin to speed up the chunking pro-
cess with multi-thread [7]. Jihong Ma et al. proposed UCDC algorithm, claims
the definition of a chunking mark is: for a value of a string, taking the remainder
from being divided by a fixed value [8]. Instead of division, some chunking algo-
rithms using byte comparison are proposed: LMC(Local Maximum Chunking)
algorithm decides to set a cut-off point when the maximum value of a window
data is in the middle of the window [9]; in order to speed up the validation of
the window data, AE [10] and RAM [11] algorithms are proposed. For AE, if
the maximum value of bytes in the data window is located at the end of the
window, the cut-off point is set at the end of the window. For RAM: if a byte
value with no less than all byte values in the window is read out of the window,
a cut-off point is set at this byte. To make the cut point of chunk more stable,
Changjian Zhang et al. proposed MII [12] and PCI [13] algorithms, set a cut-
point based on the length of a increasing interval and number of ‘1’ in binary
window Separately.

However, the focus of these studies is to improve the synchronization per-
formance without considering the optimization of synchronization process and
reducing unnecessary steps with the idea of space for time.

342 C. Zhang et al.

3 The Design of Shadow Data

3.1 What Makes the CPU Load in the Data Center

Before explaining the design of the Shadow Data, first, we discuss the reasons
for the CPU load in data centers. As shown in Fig. 1, DC ACK CHECKSUM
messages are sent by the data center. Before sending, the data center needs to
chunk the backup files and calculate the summary information. These processes
generate a lot of calculations, especially in the calculation of strong checksum,
such as MD5.

3.2 Why Shadow Data

For the backup system, when a local file is synchronized to the data center, at
this point, the local and data center are consistent. At the next time point, the
local data has changed and needs to do one synchronization. However, the local
does not need to ask the data center for the content of the local data at the
previous time point, because the content once existed at its own disk.

For example, as shown in Fig. 2, the content of the backup file in the data
center at t1 time is the content of the local file at t0 time, and then after
synchronization, the content of the backup file becomes the content of the local
at t1 time. At t2 time, if the local file wants to synchronize for one time, it needs
to know its data at t1 time. In the normal communication process, it needs the
DC ACK CHECKSUM messages from the data center. As shown in Fig. 2,
we can see that the data of local at t1 time can also be obtained from its previous
records.

Fig. 2. The change of files in both local and the data center during synchronization of
one single file.

Shadow Data 343

3.3 What Is Shadow Data

The comparison of the “synchronization module” shown in Fig. 2 before and
after using Shadow Data is shown in Fig. 3. AbstractInfo denotes DC ACK
CHECKSUM message, and DiffInfo denotes Local ACK DiffCHECK-
SUM message.

Fig. 3. The comparison of the “synchronization module” with and without using
Shadow Data.

Shadow Data is proposed to replace the abstract information of backup files
sent from the data center. For example, at t1 time, when the local node completes
a synchronization, it stores its own summary information on its disk. Thus,
when it needs to synchronize at t2 time, it will no longer need to ask data from
the data center, which removes the most CPU load of the data center and, at
the same time, saves one data transmission. In practice, the amount of data
transmitted this time is about half of the total amount of data transmitted
during synchronization. The abstract information stored on the local disk here
is called Shadow Data, the shadow of the backup file.

The Shadow Data format is a chunk abstract information list, which
is stored in the order of the backup file chunks. The specific format is
AbstractInfo;Abstr actInfo; ...AbstractInfo;. Where AbstractInfo is in the
form of: ChunkAbstract, StartIndex,ChunkLength. ChunkAbstract refers
to the strong checksum of chunks, such as MD5, and the weak check
if needed; StartIndex indicates the starting index of the chunk in the
backup file; ChunkLength indicates the length of the chunk. Based on
this design, in the Local ACK DiffCHECKSUM message, the format of

344 C. Zhang et al.

Chunk info is: 1, ChunkIndex,BlockLength, if it is the same block, and
0, ChunkData, if it is a different one. In the data center, after receiving
Local ACK DiffCHECKSUM message, the new backup file can be merged
only by random reading without calculation.

The storage format of the Shadow Data is shown in Fig. 4, and the format
of Local ACK DiffCHECKSUM message is shown in Fig. 5.

Fig. 4. Storage format of Shadow Data.

Fig. 5. Format of Local ACK DiffCHECKSUM message.

It is worth noting that Shadow Data is only applicable to data centers that
play a backup role, not data centers that play a sharing role. Because the latter
will have multiple different clients to update the data in the data center.

4 Evaluation

4.1 Experiment Setup

The experimental environment of the data center is shown in Table 1. For the
local environment, we only implement a client on another machine, connecting
the port of the data center for interaction.

Shadow Data 345

Table 1. Experimental environment

Operating system CPU Memory IDE

Windows 10 i5-7500 3.40GHz 16g Idea2019.3

The datasets are randomly generated data. Three files with a size of about
2.1G are generated by the Mersenne Twister Pseudo-Random Number Generator
[14]. The three files are divided into three groups. These three files act as backup
files. In each group, the backup file is randomly modified to generate a new file,
which will act as the local file. The experimental datasets are shown in Table 2.

Table 2. The datasets

Group Id Backup file Local file

Group1 2.1G about 2.1G

Group2 2.1G about 2.1G

Group3 2.1G about 2.1G

In the experiment, we use the CDC algorithms instead of Rsync, and the
type of CDC algorithms is PCI algorithm. Since we only simulate the incremen-
tal synchronization process, using Shadow Data to reduce the steps of the data
center, the choice of synchronization algorithm will not affect the final experi-
mental results and the same to the datasets.

4.2 CPU Load of the Data Center

We have carried out the synchronization process for three groups of data respec-
tively, and then monitored the CPU utilization of the thread responsible for
synchronization in the data center with the help of the monitoring tool. The
experimental results of the three groups of data are shown in Figs. 6, 7 and 8
separately.

Let’s focus on one of the three groups of test data, figure (a) shows the sit-
uation when there is no Shadow Data. In this case, the data center needs to
calculate the abstract information of the backup file, and the resulting CPU uti-
lization is shown as the first irregular polygon in the figure. The second irregular
polygon in the figure means the CPU utilization for generating new files, the
same as the first one in figure (b). From the two irregular areas, we can see that
the CPU utilization generated by calculating the abstract information of the
backup file is much higher than the CPU utilization generated by generating the
new file, which is more than six times. In other words, with Shadow Data, the
CPU utilization of the data center with single synchronization can be reduced
to about 14% of the original. The reason is obvious, since there is no need to

346 C. Zhang et al.

(a) (b)

Fig. 6. CPU load in the data center without((a)) and with((b)) Shadow Data based
on the group1 dataset.

(a) (b)

Fig. 7. CPU load in the data center without((a)) and with((b)) Shadow Data based
on the group2 dataset.

(a) (b)

Fig. 8. CPU load in the data center without((a)) and with((b)) Shadow Data based
on the group3 dataset.

calculate the abstract information of the backup file with Shadow Data. Since
the actual CPU load is not easy to capture in the running of the algorithm, so
in this paper, the CPU utilization is used to approximate the CPU load, which
may not be rigorous, but in qualitative analysis, it makes sense.

4.3 Sacrifice of Disk on Local Node

The use of Shadow Data makes it necessary to store part of the data locally,
which is put on the local disk. When the local wants to initiate one synchroniza-
tion, it will be read from the local. In the experiment, we use memory mapping

Shadow Data 347

to read, which speeds up the reading speed. In Table 3, we show the cost of local
disks corresponding to three groups of test data.

Table 3. Cost of Local Disk

Group Id Number of chunks (piece) Cost of disk (KB)

Group1 2508184 68583.2

Group2 2391516 65393.0

Group3 2446812 66905.0

The size of disk usage is related to the number of chunks. In this experiment,
the average block size [9] is used, which is close to the average block size of
Rsync. It can be seen that for about 2.1G backup files, about 65M local disk
capacity needs to be consumed to store Shadow Data, aka the abstract infor-
mation. However, this saves a transmission of this data from the data center.
In fact, if it is sent from the data center, the data sent should be greater than
65M, because the message header should also be included. In the multi round
communication proposed by Rsync algorithm, the client and the server must be
dual channels, which can not be guaranteed in some applications. Using shadow
data can simplify the communication process of file incremental synchronization,
which only needs a single channel from client to server to complete one synchro-
nization. The results of synchronization can be obtained by querying the server
by the client.

5 Conclusion

By analyzing the process of incremental synchronization algorithm, we find out
the steps, which generate the server-side CPU load. Shadow Data is proposed
to remove these steps. Shadow Data is stored on the disk of the local node to
replace the abstract information of backup files, which should be sent from the
data center. In the experimental part, we verify the practicability of Shadow
Data.

References

1. Elahi, B., Malik, A.W., Rahman, A.U., Khan, M.A.: Toward scalable cloud data
center simulation using high-level architecture. Softw. Pract. Exp. 50(6), 827-843
(2020)

2. Tang, X., Wang, F., Tong, L.I., Zhang, P.: Research and implementation of real-
time exchange system in data center. Comput. Sci. 70, 104–125 (2017)

3. Nizam, K.K., Sanja, S., Tapio, N., Nurminen, J.K., Sebastian, V.A., Olli-Pekka, L.:
Analyzing the power consumption behavior of a large scale data center. Comput.
Sci. Res. Dev. 34, 61–70 (2018)

348 C. Zhang et al.

4. Zhi, C., Huang, G.: Saving energy in data center networks with traffic-aware virtual
machine placement. Inf. Technol. J. 12(19), 5064–5069 (2013)

5. Tridgell, A.: Effcient algorithms for sorting and synchronization. https://www.
samba.org//tridge/phd thesis.pdf. Accessed February 1999

6. Chao, Y., Ye, T., Di, M., Shen, S., Wei, M.: A server friendly file synchroniza-
tion mechanism for cloud storage. In: IEEE International Conference on Green
Computing & Communications, IEEE & Internet of Things(2013)

7. Won, Y., Lim, K., Min, J.: Much: multithreaded content-based file chunking. IEEE
Trans. Comput. 64(5), 1375–1388 (2015)

8. Ma, J., Bi, C., Bai, Y., Zhang, L.: UCDC: unlimited content-defined chunking, a
file-differing method apply to file-synchronization among multiple hosts. In: 2016
12th International Conference on Semantics, Knowledge and Grids (SKG), pp.
76–82 (August 2016)

9. Bjørner, N., Blass, A., Gurevich, Y.: Content-dependent chunking for differential
compression, the local maximum approach. J. Comput. Syst. Sci. 76(3–4), 154–203
(2010)

10. Zhang, Y., Feng, D., Jiang, H., Xia, W., Fu, M., Huang, F., Zhou, Y.: A fast
asymmetric extremum content defined chunking algorithm for data deduplication
in backup storage systems. IEEE Trans. Comput. 66(2), 199–211 (2017)

11. Widodo, R.N.S., Lim, H., Atiquzzaman, M.: A new content-defined chunking algo-
rithm for data deduplication in cloud storage. Futur. Gener. Comput. Syst. 71,
145–156 (2017)

12. Zhang, C., et al.: MII: a novel content defined chunking algorithm for finding
incremental data in data synchronization. IEEE Access 7, 86932–86945 (2019)

13. Zhang, C., Qi, D., Li, W., Guo, J.: Function of content defined chunking algorithms
in incremental synchronization. IEEE Access 8, 5316–5330 (2020)

14. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8(1), 3–30 (1998)

https://www.samba.org//tridge/phd_thesis.pdf
https://www.samba.org//tridge/phd_thesis.pdf

DROAllocator: A Dynamic
Resource-Aware Operator

Allocation Framework in Distributed
Streaming Processing

Fan Liu1,2, Zongze Jin1(B), Weimin Mu1, Weilin Zhu1, Yun Zhang1,
and Weiping Wang1

1 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China

{liufan,jinzongze,muweimin,zhuweilin,zhangyun,wangweiping}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. With the rapid development of Internet services and the
Internet of Things (IoT), many studies focus on operator allocation to
enhance the DSPAs’ (data stream processing applications) performance
and resource utilization. However, the existing approaches ignore the
dynamic changes of the node resources to allocate the operator instances
to guarantee the performance, which increasing the number of migra-
tion leads to the waste of resources and the instability. To address these
issues, we propose a framework named DROAllocator to select the appro-
priate nodes to allocate the operator instances. By capturing the change
tendency of the node resources and the operator performance, our allo-
cation mechanism decreases the number of migration to enhance the
performance. The experimental results show the DROAllocator not only
decrease the number of migrations to allocate the operator instances to
ensure the end-to-end throughput and the latency, but also enhance the
resource utilization.

Keywords: Data stream processing · Operator allocation · Resource
change · Deep learning

1 Introduction

With the increasing development of Internet services and the Internet of Things
(IoT), a huge amount of data has been generated from the social networks, the
electronic commence, the urban intelligent transportation, and so on. The data
is usually in the form of continuous streams and it should be processed by the
distributed stream processing systems (DSPSs), such as Flink [1], to mine the
values.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 349–360, 2021.
https://doi.org/10.1007/978-3-030-79478-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_30&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_30

350 F. Liu et al.

Many studies have focused on the DSPSs [2]. Especially, in the multi-user
and multi-task concurrent competition environment, to adapt the fluctuat-
ing and abrupt data stream load by provisioning appropriate resources, many
researchers [3–5] adopt the operator instantiation and the operator allocation to
enhance the efficiency of the DSPSs. The operator instantiation determines the
number of operator instances and the resource requirements for each operator
instance to process the varying data in real-time. The operator allocation refers
to the results of the operator instantiation to allocate the operator instances to
the appropriate nodes.

The existing approaches make operator allocation decisions based on different
current states of resources, including CPU, memory, networks, disk, load, and
so on. Nardelli et al. [6] considers the network delays to allocate the operator
instances and proposes several heuristics to achieve the best trade-off between the
resolution time and the quality of the computed allocation solution. Li et al. [7]
refers to the state of the nodes and the workload to decide where the operator
instances are allocated and adopts a novel approach using the deep reinforcement
learning to minimize the end-to-end latency. Wang et al. [8] proposes a network-
aware and partition-based resource management scheme, which leverages the
inter-operator traffic, the network condition and the resource capacity to arrange
the operator instances, to enhance the performance of the DSPSs. Pietzuch et
al. [9] uses the current state of the stream, the network, and the node resources
to allocate the operator instances to improve the network utilization and reduce
the stream latency.

However, the above approaches only consider the current state and ignore
the change of the resources to allocate the operator instances to the nodes.
Concretely, the nodes are used by multiple tasks and users, so the resources
of the nodes are constantly changing. The resource changes of the nodes affect
the available resources of the containers [10]. Accordingly, the performance of
the operator instances in the containers is affected. It will cause the failure of
the allocation scheme and requires operator migration to ensure the DSPAs’
performance shortly, which is costly and unstable.

For example, the traditional approaches collect the resource metrics of the
nodes at present, then analyze the appropriate allocation node for different goals,
such as minimizing the end-to-end latency. Finally, the operator instances are
allocated to the selected nodes by containers, such as Kubernetes [11]. With the
DSPAs running, due to the change of node resources, it can not provide enough
resources for the execution of the operator instances. Thus, we have to migrate
the operator instances to other available nodes to ensure the system stability
and low cost of adaptation.

In this paper, we propose a Dynamic Resource-aware Operator Allocation
Framework (DROAllocator) to allocate the operator instances to the appro-
priate nodes. We consider the change tendency of the node resources and the
performance of operator instances from the past to the future to select the appro-
priate allocation nodes and reduce unnecessary migration. The contributions of
our work are summarized as follows:

A Dynamic Resource-Aware Operator Allocation Framework in DSP 351

– We first consider the change of the resources of nodes to address the prob-
lem which ignores the change. We present the DROAllocator which contains
three core parts: the Node Resource Predictor, the Node Clusterer, and the
Resource Aware Scheduler.

– To predict the resources in the next time, we adopt BiGRU to capture the
feature of the change tendency of the node resources in the Node Resource
Predictor.

– To measure the relationship between the resources of the node clusters and
the performance of the operator instances, we first aggregate the nodes with
similar resource state and change pattern into a cluster and leverage the
Pearson correlation coefficient in the Node Clusterer.

– In the Resource Aware Scheduler, we propose a greedy-based merge algorithm
to find the appropriate nodes for the operator instances and use a cost-based
reallocation instance selection algorithm to find the best combination of the
operator instances to adapt the dynamically fluctuating data input rate.

– Finally, we run the DROAllocator on DataDock, which is our data stream
processing system. The experimental results demonstrate that our DROAllo-
cator not only decrease the number of migration while ensuring the DSPAs’
performance, but also enhances the resource utilization.

The rest of this paper is organized as follows. Section 2 describes the design
of our DROAllocator. The experimental results are shown in Sect. 3. Finally, we
conclude our work in Sect. 4.

2 Framework

2.1 Overview

In this paper, we consider the change tendency of the node resources and the per-
formance of operator instances from the past to the future to select the appropri-
ate allocation nodes and reduce unnecessary migration. We design the DROAl-
locator to allocate the operator instances to the appropriate nodes. As shown
in Fig. 1, the DROAllocator contains three core modules: the Node Resource
Predictor (NRP), the Node Clusterer (NC) and the Resource Aware Scheduler
(RAS).

At the runtime, the Metric Collector collects the resources of each node,
the performance metrics of each operator instance, and the data input rate in
real-time, then stores them in MetricDatabase. The NRP analyzes the large
collected data of node resources to get the change tendency of node resources.
Then the NC aggregates the nodes into multiple clusters at different times based
on the prediction results of the NRP. Besides, we refer to the result of the
QEScalor [12], which analyzes the requirements of resources for the operator
instances quantitatively based on the data input rate. Finally, the RAS allocates
the operator instances to the most appropriate nodes and perform the instance
reallocation, to satisfy the resource requirements of the operator instances with
least migrations. As shown in Fig. 1, we use the green part to present the state

352 F. Liu et al.

before the operator instance allocation. And we use the blue part to present the
operator instance allocation at time t0. At last, we use the red part to illustrate
the allocation is still valid in the future tf .

2.2 Node Resources Predictor

In the multi-user and multi-tasking competition environment, the available
resources of a node change dynamically over time. Compared with the exist-
ing methods, many studies [13,14] demonstrate the Recurrent Neural Network
(RNN), which models the time series data and the process prediction tasks, can
show better performance. The BiGRU networks not only consider the depen-
dence of time series from the past to the future, but also the dependence from
the future to the past, which are more efficient than the BiLSTM in the training
process [15]. We use the BiGRU to learn the changing patterns of node resources
and make multi-step prediction of the node resources.

The input of our NRP is xt = (nrt−h+1
i , nrt−h+2

i , ..., nrti), which presents the
sequence of the resources of node i over the past h time period. We consider the
CPU utilization, the memory consumption, and the system load average to rep-
resent the node resource state, which are significant resource factors affecting the
operator performance [16]. So the resources of node i at time t can be expressed
as nrti = (cput

i,memt
i, loadti). And the output is yt = (nrt+1

i , nrt+2
i , ..., nrt+f

i),
which denotes the sequence of the node resources in the future f time period.

During the training process, the NRP continuously reads the sequences of
the node resources over the past h time period and in the future f time period
from the MetricDatabase to build the NRP, which are normalized to the range
[0,1] with the Min-Max scaler [15]. During the predicting process, we get the
multi-step prediction of the node resources in the future f time period.

2.3 Node Clusterer

The performance of an operator instance is related to the resource changes of
the running node, as shown in Fig. 2. The performance of the compute-intensive
operator instance improves with the decrease of CPU utilization. The impact of
nodes with similar resources on the performance of operator instances is consid-
ered to be similar. In order to find the nodes that satisfy the operator instance
in the future, we aggregate the physical nodes into multiple clusters based on
the resources of the nodes, which dynamically change over time. We use the
K-means clustering algorithm [17] to aggregate the nodes at every moment in
the future f time period.

Our NC takes the resource state of the nodes at the current and the
future moments as the input, which are multi-step prediction results of the
NRP. The input is expressed as Dnr = (Dt+1

nr ,Dt+2
nr , ...,Dt+f

nr), where Dt+j
nr =

(nrt+j
1 , nrt+j

2 , ...). Our NC aggregates the nodes into multiple clusters at the
current and future moments, and we use Dcls = (Dt+1

cls ,Dt+2
cls , ...,Dt+f

cls) as the
output, where Dt+j

cls denotes the clusters at time t + j.

A Dynamic Resource-Aware Operator Allocation Framework in DSP 353

Fig. 1. DROAllocator architecture.

(a) the CPU utilization (b) the throughput

Fig. 2. Correlation analysis between the CPU resource and the performance of the
compute-intensive operator instance.

354 F. Liu et al.

2.4 Resource Aware Scheduler

We use the Resource Aware Scheduler (RAS) to analyze the most appropriate
nodes to allocate the operator instances. It contains three parts: the Alloca-
tion Node Selector, the Reallocation Analyzer, and the Reallocation Instance
Selector.

In the RAS, the node cluster results of our NC, Dcls = (Dt+1
cls ,Dt+2

cls , ...,

Dt+f
cls), are used as the input. Besides, we use the resource require-

ments and the theoretical maximum performance of the operator instances
(oiqk, cpuqk,memqk, thrptqk) from the QEScalor [12] as the input. The alloca-
tion relationship between the operator instances and the nodes (oiqk, TMi) is
the output of our RAS.

Allocation Node Selector. We use the Allocation Node Selector to find the
appropriate nodes to allocate the operator instances. The operator instances run
on the nodes with less migration and higher performance.

Specifically, based on the clustering results of the NC, we get multiple clus-
ters at every moment in the future f time period. We use the Pearson correlation
coefficient [18] to measure the correlation between the resources of node clusters
and the performance of operator instances. The clusters with the lower CPU
utilization, memory consumption, and system load are available clusters to allo-
cate the operator instances. Then we present a greedy-based merge algorithm,
named GMA, to get the allocation nodes at different times with less migration.
Our GMA finds the most suitable allocation node by calculating the intersection
of available clusters at each time, and the operator instance will not migrate or
migrate rarely when running on the node.

Algorithm 1. GMA.
exit intsct = true
while exit intsct do

exit intsct = false
for k ∈ [t + 1, t + f) do

intsct = intersection(Dk
cls, D

k+1
cls)

if !intsct.isempty() and (intsct != Dk
cls or intsct != Dk+1

cls) then
Dk

cls = intsct, Dk+1
cls = intsct, exit intsct = true

end if
end for

end while

Reallocation Analyzer. We use the Reallocation Analyzer to measure
whether some instances of an operator should be reallocated to other nodes,
when the overall processing performance of the instances of an operator is less
than the data input rate. Specifically, we monitor the actual performance of all

A Dynamic Resource-Aware Operator Allocation Framework in DSP 355

instances of the operator at time t from the MetricDatabase, and calculate the
sum of the actual performance of all instances, which is represented as ϑt

actual.
We get the theoretical maximum performance of all instances of the operator
from the QEScalor, and calculate the sum of the theoretical performance of all
instances, which is represented as ϑpeak. We get the data input rate at time t
from the MetricDatabase, which is represented as γt.

Then, we compare ϑt
actual with ϑpeak and compare ϑpeak with γt. If ϑt

actual <
ϑpeak and ϑpeak ≥ γt, we get that the operator instances can not process the
data with the input rate because some instances do not achieve their theoretical
maximum performance. Thus if we reallocate some or all of these instances to
other more appropriate nodes, the operator instances may process the data with
the input rate. In this case, we calculate the difference between the data input
rate and the sum of actual performance, which is denoted as γt − ϑactual, and is
the input of the Reallocation Instance Selector.

While in other cases, such as ϑt
actual = ϑpeak or ϑpeak < γt, it demonstrates

that the operator instantiation of the QEScalor is unreasonable and our RAS is
unable to process these cases. So we feed these cases back to the QEScalor to
adapt the fluctuating data input rate.

Reallocation Instance Selector. When the Reallocation Analyzer gets that
it’s necessary to reallocate and migrate some instances, we use the Reallocation
Instance Selector to find the best combination of the operator instances that
fail to achieve the maximum performance. Then these instances are reallocated
by the Allocation Node Selector to the nodes with more resources to get better
performance. We build a cost model to evaluate the total cost of the reallocation
of the instances. The cost is defined as:

min C(n) =
n∑

k=1

ckrsc + con + coff + crrt, s.t.
n∑

k=1

Δpk ≥ ΔW (1)

where C(n) is the total cost, n is the number of selected instances, ckrsc is the
cost of system resources used by the kth selected instance, con is the startup
cost, coff is the shutdown cost, and crrt is the re-routing cost. In the constraint,
we use Δpk, which represents the performance improvement, to indicate the
difference between the optimal performance and the actual performance of the
kth operator instance. We use ΔW to denote the difference between the data
input rate and the sum of the actual performance of all operator instances.

Then we propose a cost-based reallocation instance selection algorithm,
named CRISA, to find the best combination of the operator instances that fail
to achieve the theoretical optimal performance. We use the CRISA to pick the
best combination, which satisfies the constraint and the least cost. Our CRISA
is divided into 3 steps. Firstly, we compare the theoretical optimal performance
of the operator instances with the actual runtime performance to obtain the set
of candidate reallocation operator instances. Secondly, we rank the candidate

356 F. Liu et al.

set in descending order according to the theoretically improved performance of
the candidate reallocation operator instances. At last, we iteratively select k
operator instances from the candidate set with the minimum reallocation cost.

Algorithm 2. CRISA.
for k ∈ [0, oq.instance num) do

if oiqk.actual thprt < oiqk.peak thprt then
oiqk.incrs thprt = oiqk.peak thprt − oiqk.actual thprt
candidates.append(oiqk)

end if
end for

sort in desc(candidates.incrs thrpt)

for k ∈ [1, candidates.num] do
for j ∈ [0, candidates.num) do

k candidates = select oi(candidates[j, candidates.num), k)
if sum(k candidates.incrs thrpt) � ΔW and C(k candidates) < minC then

mgrt ois = k candidates, minC = C(k candidates)
else

break
end if

end for
end for

3 Experiments

3.1 Datasets and Settings

We collect the resources of the physical machine nodes, the performance metrics
of the operator instances, and the data input rate in experiments, as shown in
Table 1.

Specifically, The node resource dataset is divided into a training set and a
testing set. The training set includes data from the first 20 d, which are used
to train the prediction models. And the testing set contains data from the next
10 d, which are used to evaluate the effectiveness of the models. Besides, to
construct the operator performance dataset, we run the compute-intensive oper-
ator instances (the keyword extraction operator) which consumes a lot of CPU
resources on every node. The node resource dataset and the operator perfor-
mance dataset are used to analyze the correlation between the cluster resources
and the operator performance. Furthermore, we get the operator instantiation
data, including the resource requirements and the theoretical maximum perfor-
mance of every operator instance, from the QEScalor to construct the operator
instantiation dataset.

We conduct experiments in a cluster environment which consists of eleven
machines. These machines are all configured with Intel Xeon CPU E5-2620 v3

A Dynamic Resource-Aware Operator Allocation Framework in DSP 357

2.30 GHz 24 cores, 128 GB memory, and 599 GB disks. We use one machine to
run JobManager and MetricDatabase to collect data in real-time. We use three
machines with NVIDIA TESLA P4 GPUs to conduct training and testing of our
prediction, clustering, and scheduling models. The remaining seven machines are
used to run the operator instances which are deployed by Kubernetes.

In the node resource prediction analysis, we compare our NRP with the
ARIMA, the SVR, the GRU, and the BiLSTM. Specifically, we all use ReLU as
the activation function, adam as the optimizer, MSE [15] as the loss, and we set
the size of hidden layer to 128 for the LSTM, the GRU, the BiLSTM and our
NRP. We use rbf as the kernel, scale as the gamma, and C is set to 100.0 for
the SVR. In the operator instance allocation, we collect the migration number
and calculate the sum of throughput of 22 operator instances running on the 7
nodes for 24 h. We do our experiments repeatedly ten times.

Table 1. The datasets in the experiments

Dataset name Metrics Collection
frequency

Collection
duration

Node resource dataset CPU utilization, memory
consumption and system
load average

1 min 30 days

Operator performance dataset Throughput (Number of
data processed per minute)

1 min 30 days

Input rate dataset Input rate (Number of data
received per minute)

1 min 30 days

Operator instantiation dataset CPU req, mem req,
thrpt peak

– 30 days

3.2 Metrics

We use the Root Mean Square Error (RMSE) and the Mean Absolute Error
(MAE) metrics [15] to evaluate the performance of the node resource predic-
tion models. And we use the overall throughput and the cumulative number of
migrations of the operator instances to evaluate the performance of the operator
instance allocation.

3.3 Results

Operator Instance Allocation Analysis. To evaluate the performance of
the operator instance allocation, we compare our RAS with the system default
allocation scheme and the RES-ODP [6]. We use the overall throughput and
the cumulative number of migrations of the operator instances to measure the
operator instance allocation.

358 F. Liu et al.

As shown in Fig. 3, the overall throughput of our RAS is higher than the
default scheme. And there is a bit difference between our RAS with the RES-
ODP. But the throughput of our RAS is more stable and the change is small,
compared with other methods. More importantly, our RAS is significantly lower
than other methods for the cumulative number of migrations.

(a) the sum of end-to-end throughput (b) the cumulative number of migrations

Fig. 3. Operator instance allocation analysis.

The system default allocation scheme which leverages round-robin only con-
siders whether the node is available the current time. The RES-ODP, which
uses the linear relaxation of the ILP formulation of ODP, considers the current
network delay when allocating the operator instances. When the resources of
the nodes change over time and the allocation nodes are no longer appropriate
to run some instances, these methods should reallocate and migrate some or
all instances to other nodes. Thus our RAS outperforms the default and the
RES-ODP allocation scheme, which takes the change of the node resources into
account and tries to allocate the instances to the nodes with the longest runtime
and the least migration.

Node Resource Prediction Analysis. The experimental results of the five-
step forward prediction are shown in Table 2. The recurrent neural networks,
such as the LSTM, the GRU, the BiLSTM, and the NRP, perform significantly
better than the traditional methods for the node resource prediction, such as
the ARIMA and the SVR. The recurrent neural networks capture more latent
information from the massive of the collected data and learn the changing trend
of the node resources more accurately. Besides, our NRP outperforms the LSTM
and GRU, because the NRP analyzes data of node resources in two directions
to get more latent features in the time dimension. Furthermore, our NRP shows
faster training and higher prediction accuracy than BiLSTM.

Correlation Analysis Between the Resources of Node Clusters and the
Performance of the Operator Instances. We calculate the Pearson correla-
tion coefficient between the node resources and the performance of the compute-
intensive operator instances. We get –0.8946, –0.4554, –0.7214 for the correlation

A Dynamic Resource-Aware Operator Allocation Framework in DSP 359

Table 2. The five-step ahead prediction performance of node resources for different
models

Model

type

ARIMA SVR GRU LSTM BiLSTM NRP

RMSE 0.0517 ± 0.0003 0.0449 ± 0.0004 0.0243 ± 0.0002 0.0289 ± 0.0002 0.0282 ± 0.0003 0.0234 ± 0.0002

MAE 0.0397 ± 0.0002 0.0341 ± 0.0003 0.0145 ± 0.0003 0.0156 ± 0.0002 0.0136 ± 0.0002 0.0116 ± 0.0003

coefficient between the CPU utilization, memory consumption, system load with
the performance of the compute-intensive operator instances respectively.

The results show the resources of the node clusters and the operator perfor-
mance are negatively correlated. The operator performance is higher in the node
clusters with the lower CPU utilization, memory consumption, and system load.

4 Conclusion

In this paper, we propose an operator allocation framework, named DROAllo-
cator, to address the problem which ignores the dynamic changes of the node
resources to allocate the operator instances to guarantee the performance. It
contains three core modules: the Node Resource Predictor (NRP), the Node
Clusterer (NC) and the Resource Aware Scheduler (RAS). We use the NRP to
get the precise change tendency prediction of the node resources by the BiGRU.
Then we refer to the change tendency of the node resources and analyze the
relationship between the resources of the node clusters and the performance of
the operator instances. Finally, the RAS allocates the operator instances to the
most appropriate nodes and reallocate some operator instances when the overall
performance of the operator instances is less than the data input rate. Exper-
iments demonstrate our framework not only improve the DSPAs’ performance,
but also enhance the resource utilization.

References

1. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache flinkTM: stream and batch processing in a single engine. IEEE Data Eng.
Bull. 38(4), 28–38 (2015)

2. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: distributed stream computing
platform. In: ICDMW 2010, The 10th IEEE International Conference on Data
Mining Workshops, Sydney, Australia, 13 December 2010, pp. 170–177 (2010)

3. Zhang, S., He, J., Zhou, A.C., He, B.: Briskstream: scaling data stream processing
on shared-memory multicore architectures. In: Proceedings of the 2019 Interna-
tional Conference on Management of Data, SIGMOD Conference 2019, Amster-
dam, The Netherlands, June 30 - July 5 2019, pp. 705–722 (2019)

4. Lombardi, F., Aniello, L., Bonomi, S., Querzoni, L.: Elastic symbiotic scaling of
operators and resources in stream processing systems. IEEE Trans. Parallel Distrib.
Syst. 29(3), 572–585 (2018)

360 F. Liu et al.

5. Cardellini, V., Grassi, V., Presti, F.L., Nardelli, M.: Distributed qos-aware schedul-
ing in storm. In: Proceedings of the 9th ACM International Conference on Dis-
tributed Event-Based Systems, DEBS 2015, Oslo, Norway, June 29 - July 3 2015,
pp. 344–347 (2015)

6. Nardelli, M., Cardellini, V., Grassi, V., Presti, F.L.: Efficient operator placement
for distributed data stream processing applications. IEEE Trans. Parallel Distrib.
Syst. 30(8), 1753–1767 (2019)

7. Li, T., Xu, Z., Tang, J., Wang, Y.: Model-free control for distributed stream data
processing using deep reinforcement learning. Proc. VLDB Endow. 11(6), 705–718
(2018)

8. Wang, Y., Tari, Z., Huang, X., Zomaya, A.Y.: A network-aware and partition-based
resource management scheme for data stream processing. In: Proceedings of the
48th International Conference on Parallel Processing, ICPP 2019, Kyoto, Japan,
05–08 August 2019, pp. 20:1–20:10 (2019)

9. Pietzuch, P.R., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer,
M.I.: Network-aware operator placement for stream-processing systems. In: Pro-
ceedings of the 22nd International Conference on Data Engineering, ICDE 2006,
3–8 April 2006, Atlanta, GA, USA, p. 49 (2006)

10. Lloyd, W., Pallickara, S., David, O., Lyon, J., Arabi, M., Rojas, K.: Performance
implications of multi-tier application deployments on infrastructure-as-a-service
clouds: towards performance modeling. Future Gener. Comp. Syst. 29(5), 1254–
1264 (2013)

11. Bernstein, D.: Containers and cloud: from LXC to docker to kubernetes. IEEE
Cloud Comput. 1(3), 81–84 (2014)

12. Mu, W., Jin, Z., Zhu, W., Liu, F., Li, Z., Zhu, Z., Wang, W.: QEScalor:
quantitative elastic scaling framework in distributed streaming processing. In:
Krzhizhanovskaya, V.V., Závodszky, G., Lees, M.H., Dongarra, J.J., Sloot, P.M.A.,
Brissos, S., Teixeira, J. (eds.) ICCS 2020. LNCS, vol. 12137, pp. 147–160. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-50371-0 11

13. Liao, D., Xu, J., Li, G., Huang, W., Liu, W., Li, J.: Popularity prediction on
online articles with deep fusion of temporal process and content features. In: The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-
First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1 2019, pp. 200–207 (2019)

14. Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., Cottrell, G.: A dual-stage
attention-based recurrent neural network for time series prediction. In: Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, 19–25 August 2017, pp. 2627–2633 (2017)

15. Mu, W., Jin, Z., Wang, J., Zhu, W., Wang, W.: BGElasor: elastic-scaling framework
for distributed streaming processing with deep neural network. In: Tang, X., Chen,
Q., Bose, P., Zheng, W., Gaudiot, J.-L. (eds.) NPC 2019. LNCS, vol. 11783, pp.
120–131. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30709-7 10

16. Zhu, J., et al.: Perphon: a ml-based agent for workload co-location via performance
prediction and resource inference. In: Proceedings of the ACM Symposium on
Cloud Computing, SoCC 2019, Santa Cruz, CA, USA, 20–23 November 2019, p.
478 (2019)

17. Yu, H., Wen, G., Gan, J., Zheng, W., Lei, C.: Self-paced learning for K-means
clustering algorithm. Pattern Recognit. Lett. 132, 69–75 (2020)

18. Ahmed, Z., Kumar, S.:“Pearson’s correlation coefficient in the theory of networks:
A comment”, CoRR, vol. abs/1803.06937 (2018)

https://doi.org/10.1007/978-3-030-50371-0_11
https://doi.org/10.1007/978-3-030-30709-7_10

A Medical Support System for Prostate
Cancer Based on Ensemble Method

in Developing Countries

QingHe Zhuang1,2, Jia Wu1,2(B) , and GengHua Yu1,2

1 School of Computer Science, Central South Universtiy, Changsha, China
2 “Mobile Health” Ministry of Education-China Mobile Joint Laboratory,

Changsha, China

Abstract. As a cancer with high incidence rate, Prostate cancer (PCa)
endangers men’s health worldwide. In developing countries, medical staff
are overloaded because of the lack of medical resources. Medical sup-
port system is a good technique to ease contradiction between the large
number of patients and small number of doctors. In this paper, we
have collected 1,933,535 patient information items from three hospi-
tals, constructed a medical support system for PCa. It uses six relevant
tumor markers as the input features and output a quantitative indica-
tor EM value for staging and recommending treatment method. Classi-
cal machine learning techniques, data fusion and ensemble method are
employed in the system to make the results more correct. In terms of
staging PCa, it reaches an accuracy of 83%. Further research based on
the system and collected data are carried out. It is found that the inci-
dence of prostate cancer has been rising in the past five years and diet
habit and genetic inheritance have a great impact on it.

Keywords: Prostate cancer · Tumor marker · Medical support
system · Machine learning

1 Introduction

In 2018, PCa’s morbidity and mortality are 13.5% and 6.7% respectively in male
patients. In 185 countries, it has the highest morbidity in 105 countries and the
highest mortality in 46 countries [1]. Undoubtedly, PCa has become one of the
main threats to men’s health worldwide.

Even though PCa is not high-fatal, in developing countries that lack med-
ical resources, many patients can’t receive timely and effective diagnosis and
therapy, which will worsen the condition of patients. Scarce medical resource,
specially the lack of high-quality medical resources may lead to patients’ distrust
to doctors and aggregate the conflict between them [2]. Sometimes doctors even
get physically injured by family members of patients because of their distrust to

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 361–372, 2021.
https://doi.org/10.1007/978-3-030-79478-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_31&domain=pdf
http://orcid.org/0000-0001-9013-0818
https://doi.org/10.1007/978-3-030-79478-1_31

362 Q. Zhuang et al.

doctors. Take China for example, there are only 2.59 practitioners for every 1000
people [3]. Patients need to wait hours for diagnosis or examination [4]. Things
get worse in some top-class hospitals. In Beijing, a small number of medical staff
in 3A grade hospitals need to serve not only over 20 million local people but also
people seeking treatment from other regions. Overloaded burden increases the
chance of mistakes and causes severe consequences. At the same time, inspection
charge of PCa accounts for a large portion. Many high-end inspection methods
including MRI and PET-CT are too expensive for poor patients to afford.

Other developing countries may face similar dilemmas:

• Due to the scarce medical resources, it is difficult for patients to get timely
diagnosis and treatment.

• The long-term workload of doctors increases the chance of mistakes and aggre-
gates the conflicts between doctors and patients.

• Many hospitals in developing countries have poor medical equipment and
many patients in developing countries cannot afford expensive checking fare.

Scarce medical resources, long-term overloaded medical staff and difficult
access to medical care have severely restricted the life expectancy of patients
in developing countries. Fortunately, these problems may be eased by building
medical support system which aims to offer help for medical staff [4]. By analyz-
ing large amounts of data, the medical support system can extract a diagnostic
model. It will serve doctors with suggestions relevant to diagnosis or treatment
based on the learned model [6,7]. Combining suggestions form the system and
their own knowledge, doctors will give the final decision. Contradiction between
doctors and patients may be eased if the medical support system work well
[8,9]. In this work, we constructed a medical support system which can diag-
nose if a patient has PCa, determine the pathological stage, recommend treat-
ment method, and evaluate the effectiveness of treatment method. Given the low
income in developing countries, the system is featured as inputting six tumor
markers with relatively low testing price and high relevance to PCa. Classical
machine learning techniques and ensemble method are adopted to extract the
knowledge inside data and improve system’s performance.

Compared with other works, the main innovations and contributions of our
system include:

• Unlike other system based on CT or MRI, the constructed system only uses
features that are cheap for people in developing countries and also reached
good performance, which makes it possible to deploy the system in other
developing countries.

• In addition to the diagnosis, the system can give treatment plan and evaluate
its effectiveness quantificationally at the same time.

• The system is trained based on a large amount of patient information from
three high-level hospitals in China and some factors affecting PCa are ana-
lyzed via the constructed system.

A Medical Support System for PCa 363

2 Design of Medical Support System

2.1 Overall Requirements and Framework of the System

Medical support system aims to provide some advice for doctors. Its functions
contain determining PCa’s benignancy or malignancy and pathological stage,
recommending suitable treatment plan and judging effectiveness of treatment
plan. Determining PCa’s benignancy or malignancy and pathological stage can
be regard as a classification task. But in order to give a cancer treatment plan
and estimate its efficacy at the same time, the whole problem is considered as
a regression problem. Our system will transform the discrete input feature into
continuous variable which cane evaluating the malignancy of PCa, abbreviated
for EM. The larger EM stands for the higher malignancy. If the value does not
decrease after a certain treatment plan is executed, it means that the treatment
plan has little efficacy and another a new one needs to be selected. At the same
time, the medical support system needs to have good parallelism and be able
to process multiple patients’ simultaneous diagnosis requests. After the medical
system is invested, the amount of data obtained will increase over time. The
decision model will be retrained to further improve the generalization perfor-
mance.

2.2 Detailed Description of the Medical Support System

In this medical support system, six tumor markers with high relevancy to PCa is
used as input feature. They include Prostate-specific Antigen (PSA), Prostate-
specific membrane antigen (PSMA), total Prostate-Specific Antigen (tPSA), Red
Blood Cell (RBC), Hemoglobin (HB), and Prostate Acid Phosphatase (PAP).
Machine learning techniques including Support Vector Machines (SVM) and
Neural Networks (NN), mainly Multilayer Perceptron (MLP) and Radical Basis
Function Neural Network (RBF) are ensembled to acquire good performance in
classification.

Figure 1 depicts the main flow of the medical support system. First, in
preprocessing module, relevant data from different hospital systems are col-
lected. Then six important tumor markers’ level are extracted from thou-
sands of information items. After data cleaning and normalizing, input vector
x = (xPSA, xPSMA, xtPSA, xRBC , xHB , xPAP) is formed. In decision module, it
will firstly use a binary SVM to determine tumor’s malignancy or benignancy. In
clinical experience, increase of tumor marker doesn’t mean a malignant tumor
for sure. They don’t have high specificity and there may be other reasons that
lead to the increase such as lesions or inflammations. So the system cannot deter-
mine it simply by critical threshold. Sometimes one tumor marker is abnormal
while others are normal. In this circumstance, doctors will find it hard to give
correct results. Data mining or machine learning models are able to extract fea-
tures with high specificity and make use of these features for decision. That’s
the motivation they are deployed in the system. If diagnosed as benign tumor,
relevant therapy will be recommended according to the previously recorded sim-
ilar samples in the database. If judged as malignant tumor, then an ensemble

364 Q. Zhuang et al.

model is executed to complete pathological stage division. The pathological stage
for malignant tumor includes four stages: I, II, III, and IV. That is to say, the
system must complete a four-classification task. Since SVM is mainly used in
binary classification, multi-classification SVM (M-SVM) which combines binary
SVM and DS (Dempster/Shafer) evidence theory is constructed according to
[10]. Unlike binary SVM, M-SVM can output probabilistic result and reduce
the number of used binary SVMs compared with other extending method. The
output result from a M-SVM is a four-dimensional vector, whose value in each
dimension represents the possibility of corresponding class. In order to reduce
the risk brought by choosing specific kernel function, different M-SVMs with
different kernels are trained as is shown in Fig. 1. Here three commonly used
kernel functions: linear kernel, polynomial kernel and Gaussian kernel are chosen
simultaneously. For binary SVMs in each M-SVM, the same kernel functions are
used. While in different M-SVM, different kernel functions are used.

Fig. 1. Overall framework of the proposed system.

A Medical Support System for PCa 365

While training, hyperparameters in kernel functions and binary SVMs are
tuned to reduce the generalization error below threshold ε. In order to reduce
risk further, widely used MLP neural network and RBF neural network are
added into the system. Because 6 input features are chosen and the samples are
classified into four classes, the input and output layers of the MLP and RBF
networks are 6 units and 4 units respectively. Three group MLP neural networks
with different structures are selected. ReLU function is used as the activation
function in MLP neural networks. Similarly, three RBF networks with different
structure are used. The hidden unit number in three networks are set as 10, 14,
16, respectively. Use k-means clustering algorithm to determine the center ci of
each hidden unit. In RBF neural network, radical basis function is used as the
activation function. As in SVMs, the hyperparameters are adjusted to reduce
the generalization error below the threshold ε.

Ensemble algorithm

Input:
Training set: D = {(x1, y1) , (x2, y2) , . . . , (xm, ym)} , yi ∈ {I, II, III, IV }.
Primary classifier: S = {SVM1, . . . , RBF3}
Output: Second learning algorithm H(x) : ln(yEM) = wTx + b
Begin:
D′ = ∅
for i in Ddo:

for t in S do:
zit = St (xi); /*zit is a four-dimensional vector. */

end for
y′
i = map (yi); /*map function convert the class label into a numerical value.*/

D′ = D′ ∪ ((zi1, zi2 . . . zit) , y
′
i)

end for
use D′ to train H (x);
output H (x);
End

Finally, outputs of each M-SVM and all MLP and RBF networks are reshaped
into one vector as the input of the secondary learner. Instead of averaging the
results of different classifiers, a second learner is introduced to learn the weight
of each base learner. The selection of the second learner is based on the priori
knowledge. By observing the tumor marker level of all samples, it is found that
for benign tumors and patients in stage I, the tumor marker levels are usually
close to normal range. But for patients in stage III and stage IV, the level of
tumor markers deviates greatly. Therefore, we made an priori assumption that
the increase of tumor markers conforms to the exponential law as PCa worsens.
This hypothesis is basically true in medicine. In the early stages like stage I and
stage II, symptoms are slight or not obvious. Tumors are often latent and grow
slowly. However, in stage III or IV, they develop savagely and spread throughout

366 Q. Zhuang et al.

the body, causing the tumor marker levels really high. Hence, Exponential Linear
Regression (ELR) is selected as a secondary learner to ensemble the results of
M-SVM, MLP and RBF models. We add supervising label 3, 4, 5, 6 manually for
the input patient samples in stage I II III IV, respectively. The output value of
exponential linear regression model is not set to start from 1 in order to improve
the model’s robustness to normal people and benign tumor cases. Finally, the
evaluation of PCa’s malignancy (EM) is output. Ensemble algorithm shows the
procedure integrating the results of base learners by exponential linear regres-
sion. Pathological stage of malignant PCa is determined by EM value.

Fig. 2. Relationship between EMV and TM.

In recommendation module, a probabilistic graphical model on the basis of
that treatment selection mainly depends on EM value is used. The relation-
ship between EM value (EMV) and treatment method (TM) is shown in Fig. 2.
Selection of TM is related to EMV. Meanwhile, selection of TM will also have an
impact on EMV. They depend on each other. Figure 3 depicts the building and
training process of the model. First, numerical EM value is divided by interval
parameter e to form discrete set of EMV (EMV S = emv1, emv2, . . . , emvN) and
treatment method set (TMS) containing commonly used tumor treatment meth-
ods such as chemotherapy, radiotherapy, excision, drug method, hospital charge
is formed simultaneously. Treatment process of patient i can be characterized as
a sequential data:

(
E1

i , T 1
i

)
, . . . , (Et

i , T t
i) , . . . ,

(
E

|ti|
i , T

|ti|
i

)
, i = 1, 2, . . . T ot

where Et
i and T t

i represents EM value and treatment method of patient i in
treatment interval t and belong to EMVS and TMS respectively. |ti| is the total
treatment interval of patient i, Tot is total number of data.

Use these data, two kinds of conditional probability distribution, P (EMV |
TM,EMV) and P (TM |EMV) can be learned. P (TM |EMV) means the pos-
sibility of selecting TM in the state of EMV. Similarly, P (EMV |TM,EMV)
means the possibility of EM value changing into state EMV after TM is used in
state EMV. Parameter can be estimated by (1) and (2).

P (TM = tmk|EMV = emvj) =
1 +

∑Tot
i=1

∑|ti|
t=1 sgn (Et

i = emvj , T
t
i = tmk)

N +
∑Tot

i=1

∑|ti|
t=1 sgn (Et

i = emvj)
(1)

A Medical Support System for PCa 367

Fig. 3. Building and training process of the recommendation model.

P (EMV = emvm|TM = tmk, EMV = emvj)

=
1 +

∑Tot
i=1

∑|ti|−1
t=1 sgn

(
Et

i = emvj , T
t
i = tmk, E

t+1
i = emvm

)

NM +
∑Tot

i=1

∑|ti|
t=1 sgn (Et

i = emvj , T t
i = tmk)

(2)

Selection of interval e follows (3):

e = argmaxe

Tot∏

i=1

P
(
E1

i

)
P

(
T

|ti|
i |E|ti|

i

) |ti|−1∏

t=1

P (T t
i

∣
∣Et

i

)
P (Et+1

i

∣
∣Et

i , T
t
i

)
(3)

When new patient with malignant PCa comes, the system will recommend
treatment method to doctors. The recommendation procedure is rough and pri-
mary so final decision must be made by doctors. But it can relieve burden of
medical staff to some extent.

3 Experiment

3.1 Dataset and Models’ Training

From three top-class hospitals in China: First Xiangya Hospital, Second Xiangya
Hospital and Third Xiangya Hospital, we obtained a large amount of data.
Records of the tumor markers (PSA, PSMA, tPSA, RBC, HB, and PAP), diag-
nostic results (benign, stage I, stage II, stage III, stage IV) and treatment process
are screened and preprocessed. A total of 12186 patients’ data is extracted and
the distribution is shown in Table 1.

368 Q. Zhuang et al.

Table 1. Distribution of the collected data.

Benign Malignant

Stage I Stage II Stage III Stage IV

Number 3628 2864 1523 1795 2376

Table 2 shows the normal range of tumor markers relevant to PCa. Values of
malignant patient’s tumor marker are several times or even tens of times beyond
the normal range.

Table 2. Normal range of different tumor marker.

Types of tumor marker Normal range

Total Prostate-Specific Antigen 4–20 µg/L

Hemoglobin 120–165 µg/L

Red Blood Cell 12–15 g/100 ml

Prostate Acid phosphatase 0–9 U/L

Prostate-specific membrane antigen 0–4 ng/mL

The data set is divided into three parts: training set, validation set and test
set, accounting for 70%, 20% and 10% respectively. First of all, we choose the
appropriate kernel function and penalty parameter to train SV M0. Secondly, we
extract all malignant samples for the training in the next step. Because SVM
and neural networks are not sensitive to data, and arbitrary division of data is
likely to lead to the problem of imbalanced data which means two datasets don’t
have same distribution. Hence we choose the same training set to train all base
learners. For M-SVM blocks’ training, malignant samples are firstly divided in
two ways which have been described elaborately in [10], forming two datasets
SA = {SI,II , SIII,IV } and SB = SI,III , SII,IV , where Si,j represents the union of
ci, cj . SA and SB are then used to train two binary SVMs. The output of M-SVM
is the fusion result of these two binary SVMs. For neural networks, the malignant
samples are directly marked as (1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T , (0, 0, 0, 1)T

by their stages. Back propagation and gradient descent are performed to obtain
good classification ability. Finally, the output of M-SVM blocks and neural net-
works are reshaped into one vector, which is used as the input of exponential
linear regression model. The loss function of exponential linear regression uses
mean square loss function.

3.2 Analysis of the Results of Experiments

After training, all malignant samples are input into the model, and calculate
the range of their EM values, which are listed in Table 3. As Table 3 shows,
EM values of all the malignant examples have a rough 0.5 deviation around the

A Medical Support System for PCa 369

Table 3. EM value of each stage of PCa.

Clinical stage of PCa Range of lnEM

Stage I 2.7–3.6

Stage II 3.6–4.5

Stage III 4.5–5.3

Stage IV >5.3

supervising value set in advance. The model has a good fitting ability on the
malignant samples of different stages, which indirectly proves the correctness
of our hypothesis that the tumor marker level increases exponentially as PCa
worsens.

In order to verify the effectiveness of our medical support system, accuracy
of the system on different scale data sets with that of doctors and other method
are compared. As shown in Fig. 4, when the dataset is small, accuracy of medical
support system is very low, no better than random guess (50%). While accuracy
of doctors is high, almost 100%. However, when the size of dataset increases,
accuracy of the medical support system increases and doctors’ accuracy starts
to decrease because of overloaded burden and cumulative errors. As the amount
of data reaches 4000, accuracy of the system is roughly the same with that
of doctors. This implies our medical support system can make full use of the
increasing amount of data to improve generalization performance.The final result
is based on 12186 patients’ data. For SV M0, it reaches 89.9%, 86.6%, 98.9% in
terms of accuracy, recall and precision (take malignant samples as positive). In
Fig. 4, it can also be seen that accuracy of proposed model is always higher
than others’ instead of being an average of other models. This demonstrates the
correctness of strategy of using secondary learners to ensemble them. It may be
explained as that base classifiers play a role of feature extractor and this makes
it easier for secondary learner to determine the clinical stage. The confusion
table of the proposed ensemble model is shown in Table 4. The final accuracy is
roughly 87.4%.

Fig. 4. Comparison of doctors and the system.

370 Q. Zhuang et al.

Table 4. Confusion Table of the ensemble model.

Prediction Real label

Stage I Stage II Stage III Stage IV

Stage I 2621 101 24 9

Stage II 204 1312 67 25

Stage III 25 66 1476 271

Stage IV 14 44 228 2071

Average EM value of different years are calculated to explore the develop-
ment trend of PCa in recent years. As shown in Fig. 5, the mean EM value
of patients from three hospitals has been increasing from 2014 to 2018. This
implies an increase in proportion of patients with PCa which will make medical
resources more precious, so it is necessary and urgent to establish a medical
support system.

Fig. 5. Average EM value in the past five year.

By calculating the quantitative indicator of PCa’s malignancy (EM value),
the system can easily judge therapy’s efficacy by the change of EM and recom-
mend treatment methods to improve the condition of PCa patients. Figure 6
shows the recommended treatment methods and changes of EM value of one
patient diagnosed with stage IV PCa. At first, EM value is very high. In the end
of several diagnosis intervals, the patient’s EM value comes to a relatively low
level, which proves the tumor has been controlled by the recommended treat-
ment plan. It is convincing that the system can make some decisions and relieve
doctor’s burden indeed.

A Medical Support System for PCa 371

Fig. 6. A treatment process of a PCa patient.

3.3 Relevant Analysis Based on the System

By controlling different input variables, influence of a certain factor on prostate
cancer are evaluated. Here, relevant information of some patients is collated
to evaluate impact of patients’ diet habits and genetic inheritance. Diet habits
are divided into high-fat diets and none high-fat diets by description in medi-
cal record. Genetic inheritance is defined by malignant tumor incidence in the
patient’s family members (lineal relatives). From the data of 2014–2018, it can
be inferred that high-fat diet with tends to worsen the condition of patients. EM
value for patients with high-fat diet is 2.43–2.63 times of those without high-fat
diet, and in terms of genetic inheritance, it’s 6.26–7.98 times, as shown in Fig. 7.

Fig. 7. Influence of diet habit and genetic inheritance.

372 Q. Zhuang et al.

4 Conclusion

This paper mainly builds medical support system of PCa for countries that lack
medical resources. The selected features are cheap for underdeveloped countries,
which ensures that even poor people have access to cancer health care. The sys-
tem is able to provide doctors with advice on the diagnosis, staging and therapy
recommendation of PCa. After training the system in the big data environment,
it gets relatively good results. It can relieve the burden of doctors to some degree
but can’t replace the doctor completely. In many cases, it needs doctor’s correc-
tion. Using the system, development of prostate cancer in the past five years is
researched, and found the increasing prevalence of PCa, which proves the signif-
icance of establishing the medical support system. In addition, high-fat diet and
genetic inheritance increase the severity of the disease.

References

1. Freddie, B., Jacques, F., Isabelle, S.: Global cancer statistics 2018:GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA
Cancer J. Clin. 68(6), 394–424 (2018)

2. Wu, J., Guan, P., Tan, Y.: Diagnosis and data probability decision based on non-
small cell lung cancer in medical system. IEEE Access 7(November), 44851–44861
(2019)

3. Department of Planning Development and Information Technology, “Statistical
Communiqué on China’s Health Care Development in 2018” (2019)

4. Wu, J., Tian, X., Tan, Y.: Hospital evaluation mechanism based on mobile health
for IoT system in social networks. Comput. Biol. Med. 109(April), 138–147 (2019)

5. Wu, J., Tan, Y., Chen, Z., Zhao, M.: Data decision and drug therapy based on
non-small cell lung cancer in a big data medical system in developing countries.
Symmetry (Basel) 10(5), 1–16 (2018)

6. Malmir, B., Amini, M., Chang, S.I.: A medical decision support system for disease
diagnosis under uncertainty. Expert Syst. Appl. 88, 95–108 (2017)

7. Stylios, C.D., Georgopoulos, V.C., Malandraki, G.A., Chouliara, S.: Fuzzy cogni-
tive map architectures for medical decision support systems. Appl. Soft Comput.
J. 8(3), 1243–1251 (2008)

8. Wang, P., Zhang, P., Li, Z.: A three-way decision method based on Gaussian kernel
in a hybrid information system with images: an application in medical diagnosis.
Appl. Soft Comput. J. 77, 734–749 (2019)

9. Tashkandi, A., Wiese, I., Wiese, L.: Efficient in-database patient similarity analysis
for personalized medical decision support systems. Big Data Res. 13, 52–64 (2018)

10. Hao, Z., Shaohong, L., Jinping, S.: Unit model of binary SVM with DS output and
its application in multi-class SVM. In: Proceedings of the 2011 4th International
Symposium on Computational Intelligence and Design (ISCID 2011), vol. 1, no. 2,
pp. 101–104 (2011)

The Entry-Extensible Cuckoo Filter

Shuiying Yu, Sijie Wu, Hanhua Chen(B), and Hai Jin

National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,
School of Computer Science and Technology, Huazhong University of Science and

Technology, Wuhan, China
{shuiying,wsj,chen,hjin}@hust.edu.cn

Abstract. The emergence of large-scale dynamic sets in real applica-
tions brings severe challenges in approximate set representation struc-
tures. A dynamic set with changing cardinality requires an elastic capac-
ity of the approximate set representation structure, while traditional
static structures, e.g., bloom filter, cuckoo filter, and their variants can-
not satisfy the requirements. Existing dynamic approximate set repre-
sentation structures only provide filter-level extensions, which require a
single membership query to probe all discrete filters one by one. The large
number of small discrete memory accesses takes up the vast majority
of query time and results in unsatisfied query performance. To address
the problem, in this work we propose the entry-extensible cuckoo fil-
ter (E2CF) to reduce memory access overhead for dynamic set repre-
sentation and accelerate the membership query. E2CF utilizes adjacent
buckets with continuous physical addresses in a cuckoo filter to extend
bucket entries, which avoids many discrete memory accesses in a query.
To further make E2CF space and time efficient, we adopt asynchronous
extension and fine-grained splitting methods. Experiment results show
that compared to state-of-the-art designs, E2CF reduces the query and
insertion time by 82% and 28%, respectively.

Keywords: Dynamic set representation · Set membership query ·
Entry-extensible · Cuckoo filter

1 Introduction

Since the emergence of large-scale sets in big data applications [4], set represen-
tation and membership query structures have been widely used [6]. Set repre-
sentation means organizing set information based on a given format, while the
membership query means determining whether a given item belongs to a set. In
practice, the performance of set membership query is crucial to applications. For
example, in network security monitoring applications [9], the long membership
query time results in late detection and failed protection. Furthermore, the per-
formance of set membership query directly affects deletion and non-repeatable
insertion, which need to search the item first.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 373–385, 2021.
https://doi.org/10.1007/978-3-030-79478-1_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_32&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_32

374 S. Yu et al.

1 2 4 8 16 32
0
1
2
3
4
5
6
7
8
9

Q
ue

ry
 ti

m
e

(u
s)

The number of CBFs

T-check
T-memory
T-hash

1 2 4 8 16 32
0
1
2
3
4
5
6
7
8
9

Q
ue

ry
 ti

m
e

(u
s)

The number of CFs

T-check
T-memory
T-hash

Fig. 1. The time breakdown of a query in DBF and DCF

In real-world applications, precise set storage and query cannot meet the
requirements of space and time efficiency. Fortunately, approximate set repre-
sentation and membership query structures can reduce storage overhead and
accelerate query at the cost of a small probability of false positive on the query
result, and thus have attracted much efforts in academia [2,7].

The most widely-used approximate set representation structures are bloom
filter (BF) [2], cuckoo filter (CF) [7], and their variants [3,8,14]. BF [2] is a fixed-
length array of bits, which are initially set to “0”. When inserting an item, BF
maps the item into the array by k independent hash functions and transforms
the corresponding bits to “1”. BF queries whether an item belongs to the set by
checking if all its k bits are “1”. However, BF does not support deletion. If one
deletes an item by flipping its k bits to “0”, other existent items that share the
k bits will also be regarded as not in the set.

To support deletion, counting bloom filter (CBF) [8] replaces each bit of a BF
with a counter of d bits. Inserting or deleting an item will increase or decrease
the value of the corresponding counter. However, it requires d× more space than
a BF. CF [7] is an array of m buckets and each bucket contains b entries. For an
incoming item, CF stores its fingerprint in one of the entries. CF can support
deletion by searching and removing the corresponding fingerprint.

The cardinality of the sets in real applications is constantly changing and
unpredictable [5,10,11]. For example, the arrival of items in stream process-
ing applications shows high dynamics [12]. Since aforementioned static struc-
tures [2,7,8] cannot adjust capacity, they fail to represent the dynamics of set car-
dinality, and the cost of rebuilding a larger static structure is unacceptable. Very
limited work has been done to cope with frequently changing sets. The notable
exceptions include dynamic bloom filter (DBF) [10] and dynamic cuckoo filter
(DCF) [5]. To dynamically extend and downsize capacity, DBF [10] appends and
merges multiple homogeneous CBFs. However, using multiple CBFs leads to the
problem of unreliable deletion. DCF [10] further utilizes multiple CFs to store
the fingerprint of an item, and thus supports reliable delete operation.

However, the query performance of existing dynamic set representation struc-
tures [5,10] is unsatisfied. Both DBF [10] and DCF [5] are filter-level exten-
sions, which require a single membership query to probe all conjoint filters one
by one until the result is found. Today’s CPU reads data from memory at a

The Entry-Extensible Cuckoo Filter 375

coarse-grained granularity of cache lines, which are typically 64 to 128 bytes [3].
However, a query in DBF and DCF must access multiple discrete counters and
buckets, which are usually much smaller than a cache line [7,8]. Therefore, a
query in existing dynamic set representation structures performs a large number
of small discrete memory accesses and reads a large amount of unnecessary data
from memory, resulting in long membership query time.

In Fig. 1, we examine the query performance of DBF and DCF by experiments
with real-world network traffic traces [1]. We deploy DBF and DCF on a server
with an Intel 2.60 GHz CPU and 64 GB memory. In each experiment, we run
1 × 106 queries and record the average query time. We breakdown the query
time into three parts, including hash computation time, memory access time,
and item check time. The results show that with the increase of the number of
static filters, the memory access time grows rapidly and contributes a significant
fraction of 90% to the query time. If we can reduce the memory access time, the
query performance can be greatly improved.

Based on the observation, we propose the entry-extensible cuckoo filter
(E2CF), a dynamic set representation structure that satisfies the requirement of
fast membership query. E2CF exploits the entry-level extension to store entries
with the same indexes at continuous physical addresses. By adopting the asyn-
chronous extension and fine-grained splitting, E2CF achieves both space and
time efficiency. We implement E2CF and conduct comprehensive experiments
with real-world traces to evaluate the design. The results show that compared
to existing designs, E2CF reduces the query and insertion time by 82% and 28%,
respectively.

To summarize, our contributions are threefold:

– We identify the problem of long membership query time in existing dynamic
set representation structures.

– We propose a novel structure to improve membership query performance by
exploiting entry-level extension of CF.

– We implement E2CF and conduct comprehensive experiments with real-world
traces to evaluate our design.

The rest of the paper is organized as follows. Section 2 introduces the related
work. Section 3 presents E2CF design. Section 4 analyzes the performance of
E2CF. Section 5 evaluates our design. Section 6 concludes the paper.

2 Related Work

2.1 Static Structures

Bloom Filter and Counting Bloom Filter. Bloom filter (BF) [2] contains
an array of n bits. Initially, all the n bits are set to “0”. When inserting an item,
BF maps the item into the array by k independent hash functions and flips the
k corresponding bits to “1”. When determining whether item x belongs to a set,
BF checks whether the k corresponding bits of x are all “1”.

376 S. Yu et al.

Fig. 2. The process of inserting and querying items in CF

To support deletion in BF, Fan et al. [8] propose counting bloom filter (CBF),
which replaces each bit of BF with a counter of d bits. When inserting and
deleting an item, CBF increases or decreases the value of the corresponding
counter. However, it requires d× more space than a BF.

Cuckoo Filter. Cuckoo filter (CF) [7] consists of an array of m buckets and each
bucket contains b entries. For an incoming item x, CF generates its fingerprint
(denoted as ξx) by a hash function and inserts it in one of the entries. To alleviate
collisions during insertion, CF computes two candidate buckets for x and stores
its fingerprint ξx in one entry of the two buckets. The two candidate bucket
indexes h1(x) and h2(x) are calculated by Eq. (1). With one of the two candidate
bucket indexes and ξx stored in it, CF can compute the other index of x by using
the known index to perform a XOR operation with hash(ξx).

h1(x) = hash(x)
h2(x) = h1(x) ⊕ hash(ξx)

(1)

Figure 2 presents the examples of inserting x and querying y. For the inser-
tion, since both the two buckets of ξx are full, CF randomly kicks out a fingerprint
as a victim, e.g., ξf , and stores ξx in it. Then CF computes the other candidate
bucket index for victim ξf . Since the other bucket 3 of ξf is also full, CF evicts a
new victim ξi and stores ξf in bucket 3. The eviction repeats until all items find
empty entries or the number of relocations reaches the pre-defined maximum
number of kickouts (MNK). For the query of y, CF reads the fingerprints from
its two candidate buckets and checks whether ξy exists in them. For an item
deletion, CF finds the corresponding fingerprint and removes it.

Guo et al. [10] reveal that data sets in real applications are highly dynamic.
However, existing static structures [7,8] lack the ability to extend capacity. In
addition, allocating large enough capacity in advance will cause a waste of space.
Therefore, it is rather important to design a set representation structure that
supports dynamically extending and downsizing capacity.

2.2 Dynamic Structures

Dynamic Bloom Filter. Guo et al. [10] propose the dynamic bloom filter
(DBF), which is an approximate set representation structure that copes with

The Entry-Extensible Cuckoo Filter 377

dynamically changing of set cardinality. A DBF consists of a linked list of s
homogeneous CBFs. When the current CBF is full, DBF extends its capacity by
appending new building blocks of CBFs. For a query, DBF checks every CBF
independently to determine whether the item exists in it.

Dynamic Cuckoo Filter. Chen et al. [5] propose the dynamic cuckoo filter
(DCF), which uses a linked list of s homogeneous CFs to dynamically adjust
capacity. DCF always maintains an active CF. When a new item comes, DCF
tries to insert it into the active CF. If the active CF is full, DCF appends a
new empty CF and stores the item in it. Then the new CF becomes the active
CF. For a query, the DCF, however, needs to probe the candidate buckets in all
the CFs to check whether the fingerprint exists in it. Clearly, a query process in
DCF will access discrete memory multiple times, resulting in long query time.

Consistent Cuckoo Filter. Luo et al. [11] propose the index-independent
cuckoo filter (I2CF), which adds and removes buckets adaptively to cope with
dynamic set. However, I2CF can only handle small-scale capacity extension. To
deal with large-scale highly dynamic data set, Luo et al. [11] further propose the
Consistent cuckoo filter, which consists of a linked list of I2CFs.

Existing dynamic structures typically adopt filter-level extension, which
requires a membership query to probe all discrete homogeneous filters, resulting
in unsatisfied query performance. Differently, E2CF exploits entry-level exten-
sion, reduces memory accesses, and further improves query performance.

Table 1. Notations

Notation Explanation

ξx The fingerprint of the item x

PCFk The kth PCF in E2CF

k1, k2 The serial number of PCFs which an item belongs to

h1(x), h2(x) The two candidate bucket indexes of x in primary CF0

h1(x)′, h2(x)′ The two candidate bucket indexes of x in PCFk1 and PCFk2

m The number of buckets in primary CF0

b The number of entries in a bucket of primary CF0

lh, ll The highest and lowest levels that PCFs exist

f The length of fingerprint

α The maximum permissible load factor of PCF

3 Entry-Extensible Cuckoo Filter

3.1 Overview

As aforementioned, the query performance of existing dynamic set representation
structures suffers from the large number of small discrete memory accesses. The

378 S. Yu et al.

E2CF exploits the entry-level extension to avoid many time-consuming mem-
ory accesses. An E2CF is initially a standard CF, i.e., CF0. When E2CF needs
to extend capacity, it creates a new partial cuckoo filter (PCF) and alternately
moves half of the old buckets to the new PCF. We call the newly allocated filter
PCF because it only contains partial buckets of the primary standard CF0. Then,
the empty entries of the removed buckets are merged into the adjacent remaining
buckets. In this manner, the entries with the same index are stored in continuous
physical addresses. For a query, E2CF determines which two candidate buckets
the fingerprint resides in and reads them from memory. To improve space effi-
ciency, E2CF allows every PCF to extend capacity independently. E2CF also
leverages a fine-grained splitting method to support operations during splitting.
We summarize the notations used in this paper in Table 1.

Fig. 3. An example of E2CF

3.2 Entry-Level Extension

E2CF exploits the entry-level extension to reduce the large number of small
discrete memory accesses. However, if we directly allocate new memory to extend
entries, the physical addresses of entries with the same indexes will be discrete.
Fortunately, we find that the physical addresses of the adjacent buckets in a CF
are continuous, which could be utilized in entry extension.

Initially, E2CF consists of a primary CF, denoted as CF0, which has m
buckets. Each bucket in CF0 has b entries. When the number of items increases,
E2CF extends its capacity. E2CF first allocates a new PCF1, which has the same
size as CF0. To leverage the continuous memory addresses of adjacent buckets
to extend entries, E2CF moves the buckets with odd indexes from CF0 to PCF1.
The empty entries of these buckets in CF0 are then merged into the adjacent
buckets with smaller even indexes, which forms new PCF0. After the extension,
both PCF0 and PCF1 have m/2 buckets and each bucket contains 2 × b entries.
The process of moving buckets with odd index to the new PCF is called splitting.

Figure 3 illustrates an example of E2CF. For simplicity, we only plot the
fingerprints in the primary CF0 during splitting. When CF0 in level 0 starts to

The Entry-Extensible Cuckoo Filter 379

split, E2CF will allocate a new PCF1 and move the fingerprints in buckets with
odd indexes, e.g., ξh and ξn in bucket 1, to PCF1. Then the buckets with even
indexes in CF0 absorb the adjacent empty entries. Since PCF0 and PCF1 in
level 1 are derived from the same PCF in level 0, we call them brother PCFs.
However, if we split all PCFs in E2CF simultaneously, the space cost will increase
exponentially, which is unacceptable for applications with expensive storage.

To solve the problem, we adopt the asynchronous extension method, which
enables each PCF to extend capacity independently. A PCF performs splitting
only when one of the following two conditions is met. First, the load factor of
a PCF, i.e., the ratio of the used entries to the total entries, exceeds the pre-
defined maximum permissible load factor α. Second, the number of relocations
reaches MNK. We will split the PCF that performs the last kicking out.

Once a PCF reaches the split condition, E2CF splits it independently. For
example, in Fig. 3, if PCF0 in level 1 reaches the split condition, E2CF splits
PCF0 into PCF0 and PCF2 in level 2. Since PCF1 in level 1 does not satisfy
the split condition, it remains in level 1. At this moment, E2CF contains three
grey PCFs, i.e., PCF0, PCF1, and PCF2. The total number of buckets in E2CF
remains eight. When a new item comes, E2CF finds its candidate PCFs and
buckets according to our insertion method (Sect. 3.3).

To help locate the PCFs and buckets, we assign a serial number for each
PCF. After the split of PCFk in level l, the serial number of the PCF that holds
even index buckets remains k. For the newly allocated PCF that receives odd
index buckets from the PCFk, its serial number is the sum of k and 2l. For
example, when the PCF0 in level 1 splits, the serial number of PCF0 does not
change. The serial number of the newly allocated PCF is the sum of 0 and 21,
which is two. Algorithm 1 presents the splitting process.

3.3 Operations of E2CF

Insertion. When inserting an item x, E2CF first calculates its fingerprint ξx.
Then E2CF needs to determine which PCFs (PCFk1 and PCFk2) and buckets
(bucket h1(x)′ and h2(x)′) the fingerprint ξx belongs to. For an item x, E2CF
computes the primary candidate bucket indexes h1(x) and h2(x) by Eq. (1).
Since we do not know in which levels the candidate PCFs exist, we search from
the lowest level ll. We calculate the serial number k1 of the first PCF by Eq. (2).
If PCFk1 exists in the level, then we calculate h1(x)′ by Eq. (2). Otherwise, we

Algorithm 1: E2CF: Splitting ()
1 if PCFk in level l reaches the split condition then
2 new PCFk+pow(2,l);
3 for n = 1; n < m/pow(2, l); n+ = 2 do
4 move PCFk.B[n] to PCFk+pow(2,l).B[(n − 1)/2];

5 increase the levels of PCFk and PCFk+pow(2,l) by 1;

380 S. Yu et al.

repeat the same computation from level ll + 1 to lh until PCFk1 and h1(x)′ are
found. Similarly, we can obtain another candidate PCFk2 and bucket indexes
h2(x)′ of item x. During the insertion, the PCF that reaches the split condition
performs splitting operation.

ki = hi(x)%2l

hi(x)′ = �hi(x)/2l� i ∈ {1, 2} (2)

Figure 3 presents an example of inserting item x. When there are no empty
entries in the two candidate buckets of x, E2CF randomly kicks out a fingerprint
ξt, which is called a victim, and stores ξx. For ξt, E2CF calculates its another
candidate bucket and continues the relocation. For an insertion, if both two
candidate buckets have empty entries, E2CF inserts the item into the bucket
in the lower level to ensure load balance. In this manner, the value of lh − ll
is usually very small in practice, resulting in little index computation overhead.
Algorithm 2 presents the detailed process of the insertion in E2CF.

Membership Query. For a query of item x, E2CF computes k1 and h1(x)′

by Eq. (2). If a matched ξx is identified in a bucket of PCFk1 , E2CF returns
success. Otherwise, E2CF further calculates k2 and h2(x)′ and checks whether
ξx exists in PCFk2 . If both the two candidate buckets do not contain ξx, E2CF
returns failure. Since E2CF only needs to read two buckets and entries in each
bucket have continuous physical addresses, very little memory access overhead
is introduced in a query.

Algorithm 2: E2CF: Insert (x)
1 fp = ξx, h1(x) = hash(x), h2(x) = h1(x)

⊕
hash(fp);

2 for j = 0; j < MNK; j + + do
3 // Calculate k1 and h1(x)′

4 for l = ll; l ≤ lh; l + + do

5 k1 = h1(x)%2l;
6 if PCFk1 belong to level l then

7 h1(x)′ = �h1(x)/2l�;
8 break;

9 if j = 0 then
10 calculate k2 and h2(x)′;

11 if PCFk1 .B[h1(x)′] or PCFk2 .B[h2(x)′] has an empty entry then
12 put fp to the empty entry;
13 return success;

14 randomly kick out a victim ξt from the two buckets and store fp;
15 fp = ξt;
16 let h1(x) be another primary candidate bucket index of the victim ξt;

17 PCFk1 .Splitting () and insert fp;

The Entry-Extensible Cuckoo Filter 381

Deletion. For the deletion of item x, E2CF searches the position of ξx by a
membership query and removes it from E2CF. If the fingerprint ξx is not in
E2CF, the delete operation returns failure.

However, deletions may result in the reduction of space utilization in E2CF.
To improve space efficiency, we compress sparse PCFs to downsize the capacity
of E2CF. For a PCFp in the highest level lh, if the load factors of both PCFp

and its brother PCF are less than α/2 − 0.1, we merge them into a PCF in level
lh − 1. If the sparse PCFp is not in level lh, we first try to move the fingerprints
in level lh to it. Then, we merge the sparse PCFs in the highest level lh. With
the compression method, we can restrict the maximum level difference in E2CF,
i.e., lh − ll ≤ 2, which improves the insertion and query performance.

3.4 Fine-Grained Splitting

The dynamic sets in real applications typically require real-time insert and query
operations [9]. However, supporting real-time operations is difficult when E2CF
is splitting. To solve the problem, we design a fine-grained splitting method,
which allows E2CF to perform operations during splitting.

When a PCF starts to split, we mark it as in the splitting state. In E2CF, we
add a 1-bit flag to each bucket. For the primary CF0, we initialize the flag to “0”,
which represents that the bucket has not split. When a new item x is inserted
into a bucket with flag “0” in the splitting CF0, we check whether the bucket
index h1(x)′ is odd. If so, we flip the flags of old buckets h1(x)′ and h1(x)′ − 1
to 1, move the bucket h1(x)′ to the newly allocated PCF, and store ξx in the
new PCF. Otherwise, we change the flags of old buckets h1(x)′ and h1(x)′ + 1,
move the bucket h1(x)′ +1 to the new PCF, and store ξx in the old PCF. When
moving the bucket, we move the flag together. After CF0 is split into PCF0 and
PCF1 in level 1, all the flags are converted to “1”. So for PCFs in even levels,
flag “0” indicates that the bucket has not split; while for PCFs in odd levels,
flag “1” does. The PCF splitting process finishes when all flags of the buckets in
the old PCF are flipped. Then we reset the PCF to non-splitting state.

In this manner, E2CF moves buckets during insertion. For an operation on
the splitting PCF, if its candidate bucket has been moved, we perform it on the
newly allocated PCF. Otherwise, we operate on the old splitting PCF.

4 Analysis of E2CF

4.1 Query Performance

According to Fig. 1, the memory access time dominates the query time. There-
fore, we use the memory access time Tmem to represent the query performance.
Today’s CPU reads data from memory at cache line granularity. We denote the
size of a cache line as M and use Tc to represent the time of reading a cache line
size memory. For DBF and DCF, they access small discrete memories that are
much smaller than M . Their memory access time is calculated by Eq. (3).

382 S. Yu et al.

Fig. 4. Query time with
different values of s

Fig. 5. Query time with dif-
ferent negative query rates

Fig. 6. Query time with
different set cardinalities

TDBF−mem = k × Tc × s, TDCF−mem = 2 × Tc × s (3)

where k represents each CBF in DBF has k independent hash function, and s
is the number of static filters in DBF and DCF. The memory access time of a
query in E2CF is calculated by Eq. (4), where s is the number of PCFs in E2CF.

TE2CF−mem = 2 × Tc × �2�log2s� × b

�M
f � � (4)

In practice, M is typically 64 to 128 bytes. In E2CF, we set b = 4 and f = 16
bits. Therefore, �M

f � ∈ [32, 64]. Also, s ≤ 2�log2s� ≤ 2 × s. Equation (5) presents
the range of TE2CF−mem, which is much smaller than that of DBF and DCF.

Tc × �s

8
� ≤ TE2CF−mem ≤ Tc × �s

2
� (5)

4.2 False Positive Rate

According to [7], the false positive rate of CF can be computed by Eq. (6).

FPCF = 1 − (1 − 1
2f

)2b ≈ 2b

2f
(6)

In E2CF, PCFs may exist in multiple levels, and the number of entries in
the PCFs of level l is 2l × b. We use nl to denote the number of PCFs in level
l. The false positive rate of E2CF is calculated by Eq. (7). When all the PCFs
exist in one level, the false positive rate of E2CF and DCF [5] is the same.

FPE2CF =1 −
lh∑

l=ll

nl

s
× (1 − 1

2f
)2×2l×b ≈ b

2f × s

lh∑

l=ll

(2l+1 × nl) (7)

The Entry-Extensible Cuckoo Filter 383

5 Performance

5.1 Experiment Setups

We implement E2CF and make the source code publicly available1. We con-
duct the experiments on a server with an Intel 2.60 GHz Xeon E5-2670 CPU
and 64 GB RAM. The CPU has 32 KB L1 data cache, 32 KB instruction cache,
256 KB L2 cache, and 20 MB L3 cache. The size of a cache line in the server is
64 bytes. We use both real-word network traffic traces [1] and synthetic data set
to evaluate the performance.

We compare E2CF with DBF [10] and DCF [5], respectively. For E2CF and
DCF, we set m = 222, b = 4, α = 0.9, and f = 16. For DBF, the parameters
are calculated based on the same false positive rate as E2CF. We run each
experiment five times and record the average value.

5.2 Results

Figure 4 compares the query time with different values of s. The E2CF-sp means
some PCFs are in the splitting state during the query. We perform negative
queries, which mean searching for a non-existent item. The result shows that
the splitting state barely affects the query performance and E2CF reduces the
query time by up to 85% and 82% compared to DBF and DCF, respectively.
That is because DBF and DCF need to access small discrete memory multiple
times while E2CF only needs to read entries in continuous memory.

Figure 5 presents the query time with different proportions of negative queries
when s = 32. The result shows that E2CF always greatly outperforms DBF and
DCF. Figure 6 compares the query time [13] with different set cardinalities. The
result shows that E2CF reduces the query time by up to 82% compared to DCF.

Figure 7 shows the instantaneous insertion time with different MNKs. We test
non-repeatable insertion, which does not allow an item to be inserted twice. With
the increase of the number of inserted items, E2CF reduces the instantaneous
insertion time by up to 45% and 28% compared to DBF and DCF, respectively.

Figure 8 plots the cumulative insertion time with different MNKs. When we
increase MNK from 10 to 40, more relocations will occur, and the insertion time
of DCF and E2CF increases. The result shows that compared to DBF and DCF,
E2CF reduces the cumulative insertion time by up to 41% and 22%.

Figure 9 presents the deletion time with different values of s. When s
increases, the deletion time of DBF and DCF grows linearly, while the time
of E2CF is essentially unchanged. Figure 10 plots the deletion time with differ-
ent set cardinalities. The result shows that E2CF reduces the deletion time by
up to 84% and 79% compared to DBF and DCF, respectively.

Figure 11 compares the memory cost when increasing set cardinalities. E2CF-
syn denotes E2CF without asynchronous extension. As shown in the figure, E2CF

1 https://github.com/CGCL-codes/E2CF.

https://github.com/CGCL-codes/E2CF

384 S. Yu et al.

0 10 20 30 40 50 60 70
0

2

4

6

8

10

In
se

rti
on

 ti
m

e
(u

s)

Number of items (107)

DBF
DCF
E2CF

(a) MNK=10

0 10 20 30 40 50 60 70
0

2

4

6

8

10

In
se

rti
on

 ti
m

e
(u

s)

Number of items (107)

DBF
DCF
E2CF

(b) MNK=40

Fig. 7. Instantaneous insertion time

0 10 20 30 40 50 60 70
0

20

40

60

In
se

rti
on

 ti
m

e
(m

in
)

Number of items (107)

DBF
DCF-40
DCF-10
E2CF-40
E2CF-10

Fig. 8. Cumulative inser-
tion time

1 2 4 8 12 16 32
0

1

2

3

4

5

D
el

et
io

n
tim

e
(u

s)

Value of s

DBF
DCF
E2CF

Fig. 9. Deletion time with
different values of s

0 10 20 30 40 50
0

1

2

3

4

5

6

7

D
el

et
io

n
tim

e
(u

s)

Set cardinalities (107)

DBF
DCF
E2CF

Fig. 10. Deletion time with
different set cardinalities

0 10 20 30 40
0

1

2

3

4

M
em

or
y

co
st

 (G
B

)

Set cardinalities (107)

DBF
DCF
E2CF-syn
E2CF

Fig. 11. Memory cost with
different set cardinalities

reduces the memory cost by up to 66% and 50% compared to DBF and E2CF-
syn and achieves comparable space efficiency with DCF. But note that E2CF
greatly outperforms DCF in terms of the query, insert, and delete performance.

6 Conclusion

In this paper, we find that the query performance of existing set representation
structures is subject to long memory access time. We design and implement
the E2CF, a dynamic structure that supports fast membership query for large-
scale dynamic data set. The E2CF exploits entry-level extension to extend and
downsize capacity. We further adopt asynchronous extension and fine-grained
splitting methods to achieve space and time efficiency. Theoretical analysis and
experiment results show that E2CF greatly outperforms existing schemes.

Acknowledgement. This research is supported in part by the National Key Research
and Development Program of China under grant No. 2016QY02D0302, and NSFC
under grant No. 61972446.

The Entry-Extensible Cuckoo Filter 385

References

1. WIDE project (2020). http://mawi.wide.ad.jp/mawi/
2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.

ACM 13(7), 442–426 (1970)
3. Breslow, A., Jayasena, N.: Morton filters: faster, space-efficient cuckoo filters via

biasing, compression, and decoupled logical sparsity. Proc. VLDB Endow. 11(9),
1041–1055 (2018)

4. Chen, H., Jin, H., Wu, S.: Minimizing inter-server communications by exploiting
self-similarity in online social networks. IEEE Trans. Parallel Distrib. Syst. 27(4),
1116–1130 (2015)

5. Chen, H., Liao, L., Jin, H., Wu, J.: The dynamic cuckoo filter. In: Proceedings of
ICNP, pp. 1–10 (2017)

6. Dayan, N., Athanassoulis, M., Idreos, S.: Optimal bloom filters and adaptive merg-
ing for LSM-trees. ACM Trans. Database Syst. 43(4), 16:1–16:48 (2018)

7. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.: Cuckoo filter: practi-
cally better than bloom. In: Proceedings of CoNEXT, pp. 75–87 (2014)

8. Fan, L., Cao, P., Almeida, J.M., Broder, A.Z.: Summary cache: a scalable wide-area
web cache sharing protocol. IEEE/ACM Trans. Networking 8(3), 281–293 (2000)

9. Groza, B., Murvay, P.: Efficient intrusion detection with bloom filtering in con-
troller area networks. IEEE Trans. Inf. Forensics Secur. 14(4), 1037–1051 (2019)

10. Guo, D., Wu, J., Chen, H., Yuan, Y., Luo, X.: The dynamic bloom filters. IEEE
Trans. Knowl. Data Eng. 22(1), 120–133 (2010)

11. Luo, L., Guo, D., Rottenstreich, O., Ma, R.T.B., Luo, X., Ren, B.: The consistent
cuckoo filter. In: Proceedings of INFOCOM, pp. 712–720 (2019)

12. Monte, B.D., Zeuch, S., Rabl, T., Markl, V.: Rhino: efficient management of very
large distributed state for stream processing engines. In: Proceedings of SIGMOD,
pp. 2471–2486 (2020)

13. Peng, B., Lü, Z., Cheng, T.C.E.: A tabu search/path relinking algorithm to solve
the job shop scheduling problem. Comput. Oper. Res. 53, 154–164 (2015)

14. Wang, M., Zhou, M., Shi, S., Qian, C.: Vacuum filters: more space-efficient and
faster replacement for bloom and cuckoo filters. Proc. VLDB Endow. 13(2), 197–
210 (2019)

http://mawi.wide.ad.jp/mawi/

Monitoring Memory Behaviors
and Mitigating NUMA Drawbacks

on Tiered NVM Systems

Shengjie Yang1,2, Xinyu Li1,2, Xinglei Dou1,2, Xiaoli Gong3, Hao Liu4,
Li Chen2, and Lei Liu1,2(B)

1 Sys-Inventor Lab, Beijing, China
lei.liu@zoho.com

2 SKLCA, ICT, CAS, Beijing, China
liulei2010@ict.ac.cn

3 Nankai, Tianjin, China
4 AMS, PLA & Tsinghua, Beijing, China

Abstract. Non-Volatile Memory with byte-addressability invites a new
paradigm to access persistent data directly. However, this paradigm
brings new challenges to the Non-Uniform Memory Access (NUMA)
architecture. Since data accesses cross NUMA node can incur significant
performance loss, and, traditionally, OS moves data to the NUMA node
where the process accessing it locates to reduce the access latency. How-
ever, we find challenges when migrating data on NVM, which motivates
us to migrate the process instead. We propose SysMon-N, an OS-level
sampling module, to obtain access information about NVM in low over-
head. Furthermore, we propose N-Policy to utilize the data collected by
SysMon-N to guide process migration. We evaluate SysMon-N and N-
Policy on off-the-shelf NVM devices. The experimental results show that
they provide 5.9% to 3.62× bandwidth improvement in the case where
cross-node memory accesses happen.

Keywords: DRAM-NVM · NUMA · OS · Migration · Scheduling

1 Introduction

Non-Volatile Memory (NVM) attaches to the memory bus promises DRAM-like
latency, byte-addressability, and data persistence. NVM will become common-
place soon. Previous studies (e.g., [4]), focusing on kernel-bypassing, redesign the

This project is supported by the National Key Research and Development Program
of China under Grant No.2017YFB1001602 and the NSFC under grants No.61502452,
61902206, 61702286. This work originates from L. Liu’s series of studies in ISCA,
PACT, TPDS, TC, etc. [5–12] on memory systems conducted in Sys-Inventor Lab.
More details refer to Sys-Inventor Lab - https://liulei-sys-inventor.github.io.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 386–391, 2021.
https://doi.org/10.1007/978-3-030-79478-1_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_33&domain=pdf
https://liulei-sys-inventor.github.io
https://doi.org/10.1007/978-3-030-79478-1_33

Monitoring Memory Behaviors and Mitigating NUMA Drawbacks 387

file system dedicated to NVM for reducing software overheads stemmed from ker-
nel involvement. A critical feature of this type of file system is the “direct access”
(i.e., DAX) style interface through the mmap() system call, through which the
user process can map the NVM-based file into its address space and access the
file content directly by load/store instructions from user space [1]. Different from
the on-demand paging data access, NVM possesses both byte-addressability and
persistency, which allows user processes to access the persistent data directly.
However, NVM is usually mounted on a specific node and forms a tiered/hybrid
memory system with DRAM on NUMA servers, leading to the risk of cross-node
accesses (i.e., remote access). Remote access may cause dramatic performance
degradation, and there are many studies to provide shreds of evidence for this.

In terms of the performance loss due to the remote accessing on DRAM, pre-
vious work moves data from remote NUMA node to the local node where the user
process is running on. However, we find some challenges in the previous stud-
ies about the NVM-based systems. (1) There is no “struct page” for persistent
data in NVM that managed by the DAX-aware file systems [1], leading to the
complexity of page migration on the system using both DRAM and NVM. (2)
Since the data blocks to be migrated are persistent, the process of page migra-
tion needs to be guaranteed as atomic and consistent using a transaction-like
mechanism, which will introduce extra overheads on the critical path. (3) The
persistent data usually has a much larger size than the volatile data, and fre-
quent migrating of them will produce significant overheads [13]. These challenges
motivate us to seek a new design.

In this work, we propose an new mechanism. Instead of moving persis-
tent data, we migrate the process to the original node where the persistent
data locates. In order to achieve our goal, we propose SysMon-N and N-Policy.
SysMon-N is an OS-level memory behavior sampling module that can obtain
the NVM access “hotness” (i.e., access times within a sampling interval) and
the access mode (i.e., remote or local) for a user process with low overheads.
N-Policy is a process migration policy designed for the user processes which use
MVM. For instance, N-Policy reduces the expensive remote accesses to NVM by
migrating the process to the node that is close to NVM. The experimental results
show that SysMon-N and N-Policy can increase the bandwidth of read-intensive
applications by 5.9% and the bandwidth of write-intensive applications by 2.71×
to 3.62× when the incorrect core is allocated and remote access occurs.

2 The Art of Our Design

2.1 SysMon-N - Sampling Memory Systems with NVM

To tackle the problems mentioned above, we first design a practical OS-level
memory behavior sampling module to capture the NVM access information.
Our prior efforts [5,6,8] propose SysMon as an OS-level memory behavior moni-
toring module. SysMon periodically checks the access bits in Page Table Entries
(PTEs) to obtain the page hotness. However, merely checking PTEs can not dis-
tinguish whether the page is located in NVM or DRAM. So, we design SysMon-N,

388 S. Yang et al.

based on SysMon [5], to provide the physical address information of the data, it
achieves two objectives. (1) Sampling pages in NVM to collect the page hotness
information while avoiding sampling pages in DRAM to narrow down the sam-
pling space; (2) Checking whether remote access occurs and collecting related
data access information.

As a preprocessing step, SysMon-N collects the NUMA topology information
of the platform by scanning ACPI static resource affinity table (SRAT), where
the topology information of all processors and memories are stored. By checking
the ACPI SRAT MEM NON VOLATILE flag of the SRAT entries, SysMon-N can get
the range of physical address of all NVM devices. Usually, the physical locations
of all pages in a Virtual Memory Aera (VMA) are the same. For a specific VMA,
SysMon-N gets the physical address of VMA’s start page and checks whether
it falls in the physical address range of an NVM device. If so, it means that all
pages of the VMA are on one specific NVM device, and it is necessary to traverse
the VMA’s memory address. Otherwise, the VMA is not in NVM and can be
skipped to narrow down the sampling space.

Fig. 1. Workflow of SysMon-N

Figure 1 shows the workflow of SysMon-N. It has two phases. In phase 1,
SysMon-N checks each page’s access bit within the monitored process to find
the hot pages in NVM and their corresponding physical address area. Besides,
considering the massive pressure that NVM’s large capacity puts on the limited
number of TLBs, it is natural for OS to use the huge page on NVM. The detection
of the huge page utilization on NVM are basically the same with the 4KiB-based
pages; SysMon-N uses the PMD entries to complete the address translation since
the OS omits the last level PTE for 2MiB huge pages.

In phase 2, by comparing the node id of CPU where the process running on
and that of the NVM node where the data are stored, SysMon-N can determine
whether remote accesses occur or not. SysMon-N obtains the set of CPUs on
which it’s eligible to run by checking process’s CPU affinity mask, and then calls
the cpu to node() kernel function to check the node corresponding to the CPU.
Finally, SysMon-N compared the CPU node id with NVM node id for the result:

Monitoring Memory Behaviors and Mitigating NUMA Drawbacks 389

if the two node ids are the same, the process has accessed the page on remote
NVM; otherwise, the process only touches the local NVM.

Finally, after sampling, SysMon-N has the number of hot and cold pages and
related physical address ranges, and provides the information to N-Policy for
making a decision.

2.2 N-Policy - for NVM

N-Policy leverages the formation provided by SysMon-N, and guides process
migration accordingly. The key component of N-Policy is a conditional migration
model which is depicted in Fig. 2. It has two principles. (1) Eliminating remote
access whenever possible; (2) Trying to avoid unnecessary migration. The inputs
of N-Policy include: (1) the number of hot/cold pages on per node; (2) access
coverage for each node; (3) CPU’s node id on which the process locates; (4) node
id for the used NVM.

Fig. 2. Conditional Migration Model of N-Policy

After each SysMon-N sampling epoch is completed, the N-Policy immediately
decides whether to migrate according to three data access conditions as shown
in Fig. 2. The first case is when completely remote access occurs (no data are
accessed from local NUMA node), the migration action is triggered to migrate
the process to the same node of data. This situation is determined by judging
whether there is intersection between the set of the node id of CPU which the
process are allowed to run on and that of NVM where accessed data locates.
N-Policy makes process migration in this case, easing the overhead of cross-node
access by placing the process on the same node as the NVM being used.

If the two set of node ids have intersections, N-Policy compare access cover-
age on different nodes to further decide whether to execute migration. Access
coverage symbolizes the amount of data accessed by the process on each NUMA
node. If the access coverage of different nodes is unbalanced (i.e., in Fig. 2, N-
Policy considers access coverage on remote NUMA node greater than 80% as
unbalanced access). N-Policy will select the least utilized CPU on the NUMA
node with the broadest access coverage as the target of process migration.

390 S. Yang et al.

Finally, information about page hotness is also taken into account in N-
Policy. Hot pages indicate frequently accessed pages and the data on them is
often more important than other pages (may not be right in some cases), and
should be accessed closer for reducing latency. To ensure fast access to hot pages,
N-Policy compares NUMA node’s hotness and migrate the process to the node
with the more hot pages.

To avoid significant overheads caused by repeated and meaningless migra-
tions, we let N-Policy receives messages from SysMon-N for every 10 s. N-Policy
uses the function sched getaffinity() of the Linux kernel to bind a process to the
corresponding CPU nodes for migration.

3 Effectiveness of N-Policy on Bandwidth and Latency

Our experimental platform is a server with dual CPU sockets of Intel Xeon Gold
6240M CPU (each has 36 cores); it has 512 GB Intel® Optane™ DC persistent
memory on per socket, i.e., 1024 GB NVM on our platform. We configure the
namespace [3] for the Optane PMM, which represents a certain amount of NVM
that can be formatted as logical blocks, and then deploy the ext4-DAX file system
on it to support direct data access. We don’t consider I/O in experiments [14].

We use the Flexible I/O Tester (Fio) [2] with libpmem engine to evaluate
the effectiveness of N-policy collaborated SysMon-N. We adjust the minimum
read/write block size of I/O operations to perform reads and writes to NVM in
different situations, and record bandwidth under different block sizes with and
without N-Policy enabled, respectively. To verify the effectiveness of N-Policy,
all data accesses of Fio are set as remote access.

(a) 100% read (b) 100% write

Fig. 3. Unmanaged vs. Use N-Policy to guide migration

Figure 3-(a) presents the 100% read case. As a baseline, we launch Fio [2]
in two cases with a single data access size of 4KiB and 2MiB, respectively. The
corresponding memory bandwidth of the two cases is stable with an average of
2273 MiB/s and 2482 MiB/s, respectively. When N-Policy is enabled, it conducts
process migration to eliminate the remote access which occurs at the timing

Monitoring Memory Behaviors and Mitigating NUMA Drawbacks 391

around 10s. The bandwidth changes accordingly as the process is migrated to
the optimal node. N-Policy can improve the bandwidth by 6.94% and 5.90% for
4KiB and 2MiB block size, respectively. Figure 3-(b) shows the 100% write case.
N-Policy achieves better results in this case. By eliminating the remote access
with process migration, the bandwidth of Fio can increase by 2.71× and 3.26×
in the case of 4KiB and 2MiB block sizes, respectively. This is because reading
and writing bandwidth on NVM are not symmetric and NVM is more sensitive
to write operations.

References

1. Direct Access for files. https://www.kernel.org/doc/Documentation/filesystems/
dax.txt

2. Fio - Flexible I/O tester. https://fio.readthedocs.io/en/latest/
3. Persistent Memory Concepts. https://docs.pmem.io/ndctl-user-guide/concepts
4. Rao, D.S., et al., System software for persistent memory. In: EuroSys (2014)
5. Xie, M., et al.: Sysmon: monitoring memory behaviorsvia OS approach. In: APPT

(2017)
6. L. Liu, et al.: Hierarchical hybrid memory management in OS for tiered memory

systems. In: IEEE TPDS (2019)
7. X. Li, et al.: Thinking about a new mechanism for huge page management. In:

APSys (2019)
8. Liu, L., et al.: Going vertical in memory management: handling multiplicity by

multi-policy. In: ISCA (2014) (revised version)
9. Liu, L., et al.: BPM/BPM+: software-based dynamic memory partitioning mech-

anisms for mitigating DRAM Bank-/channel-level interferences in multicore sys-
tems. In: ACM TACO (2014) (revised version)

10. Liu, L., et al.: A software memory partition approach for eliminating bank-level
interference in multicore systems. In: PACT (2012) (revised version)

11. Liu, L., et al.: Rethinking memory management in modern operating system: hor-
izontal, vertical or random?. In: IEEE Trans. Comput. (TC) (2016)

12. Liu, L., et al.: Memos: a full hierarchy hybrid memory management framework. In:
ICCD (2016)

13. Chen, S., et al.: Efficient GPU NVRAM persistence with helper warps. In: DAC
(2019)

14. Lv, F., Cui, H.-M., Wang, L., Liu, L., Wu, C.-G., Feng, X.-B., Yew, P.-C.: Dynamic
I/O-Aware scheduling for batch-mode applications on chip multiprocessor systems
of cluster platforms. J. Comput. Sci. Technol. 29(1), 21–37 (2014). https://doi.
org/10.1007/s11390-013-1409-2

https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://fio.readthedocs.io/en/latest/
https://docs.pmem.io/ndctl-user-guide/concepts
https://doi.org/10.1007/s11390-013-1409-2
https://doi.org/10.1007/s11390-013-1409-2

Network

TPL: A Novel Analysis and Optimization
Model for RDMA P2P Communication

Zhen Du1,2, Zhongqi An2, and Jing Xing2(B)

1 University of Chinese Academy of Sciences, Beijing, China
2 High Performance Computer Research Center, Institute of Computing Technology,

CAS, Beijing, China
duzhen18z@ict.ac.cn, {anzhongqi,xingjing}@ncic.ac.cn

Abstract. With increasing demand for networks with high throughput
and low latency, RDMA is widely used because of its high performance.
Because optimization for RDMA can fully exploit the performance poten-
tial of RDMA, methods for RDMA optimization is very important. Exist-
ing mainstream researches design optimization methods by constructing
a more complete hardware view and exploring relation between software
implementation and specific hardware behavior. However, the hardware
architecture of NIC (like InfiniBand) is a “black box”, which limits devel-
opment of this type of optimization. So existing methods leave unsolv-
able problems. Besides, with development of RDMA technology, new
features are proposed constantly. So, analysis and optimization meth-
ods of RDMA communication performance should be advancing with
the times. The contributions of this paper are as follows: 1) We pro-
pose a new RDMA point-to-point communication performance analy-
sis and optimization model: TPL. This model provides a more com-
prehensive perspective on RDMA optimization. 2) Guided by TPL, we
design corresponding optimization algorithms for an existing problem,
like WQE cache miss and a new scenario, like DCT. 3) We implement
a new RDMA communication library, named ORCL, to put our opti-
mizations together. ORCL eliminates WQE cache miss in real-time. And
we simulate the workload of the in-memory KV system. Compared with
existing RDMA communication implement, ORCL increases throughput
by 95% and reduces latency by 10%.

Keywords: RDMA · Performance tuning · Optimization model

1 Introduction

With the development of the in-memory key-value stores [8,12], NVM distributed
filesystem [6,11], distributed deep learning systems [7,18] and distributed graph
processing system [3,14,20]. RDMA is widely used because of its high throughput
and low latency. A well-optimized RDMA communication is related to low-level
details, like hardware architecture and RDMA software options. And good opti-
mization can increase performance by 10 times [9]. RDMA system designers need

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 395–406, 2021.
https://doi.org/10.1007/978-3-030-79478-1_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_34&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_34

396 Z. Du et al.

to face many difficulties to improve RDMA performance. Besides, P2P commu-
nication is the bottom of the mainstream RDMA communication library [1,5],
which is the basis of RDMA optimization.

Many published results have analyzed and optimized RDMA P2P commu-
nication performance. They can be divided into two categories. One focus on
traditional RDMA communication [4,9,15,19], to exploit hardware view and
find relation between RDMA options and low-level transmission process. The
other is focus on new features of RDMA, like DCT [13,16,17]. These results
follow the development of RDMA technology. They do tests and propose how to
use these new features appropriately.

However, previous studies ignore following aspects: 1) The analysis and opti-
mization of RDMA communication are not systematic enough. They only focus
on hardware details, including CPU, NIC and PCIe, and transmission process of
a single message. But they ignored dispatches of multiple messages and cooper-
ation of different hardware. 2) RDMA new features like DCT(dynamically con-
nected transport) and DM(device memory), should be optimized and included
in RDMA communication optimization model. As far as we know, this article is
the first one for DCT optimization and application of DM.

The contributions of this paper are as follows: 1) This paper presents a bet-
ter analysis and optimization model of RDMA point-to-point communication—
TPL. 2) Guided by TPL, we design algorithms to solve a remaining problem
(WQE cache miss) and optimize a new feature (DCT). 3) We design and imple-
ment a new RDMA communication library—ORCL. In ORCL, WQE cache miss
is eliminated. And we simulate workload of the in-memory KV system in our clus-
ter. Compared with existing RDMA communication implement, ORCL increases
throughput by 95% and reduces latency by 10%.

The rest of the paper is organized as follows: In Sect. 2, we provide the back-
ground information of RDMA. In Sect. 3, we propose TPL. In Sect. 4, we intro-
duce two optimization cases guided by TPL. In Sect. 5, we evaluate our algo-
rithm.

2 Background

2.1 Low-Level Details Related to RDMA P2P Communication
Performance

Figure 1 shows hardware topology of RDMA P2P communication. PCIe root
complex is core component of PCIe. It schedules communication between CPU,
memory controller, and PCIe devices.

Figure 2 shows the relation between main data structures and hardware.
InfiniBand RDMA verbs is programming interface of RDMA communication.
It contains several basic data structures: work queue element (WQE), queue
pair (QP), completion queue (CQ), completion queue element (CQE) [2]. These
data structures are stored in memory and some parts of them are cached in NIC
cache [9].

TPL 397

Fig. 1. Hardware topology of P2P com-
munication

Fig. 2. Data structures and hardware

Verbs includes two main types of transport: RC (reliable connected trans-
port), DCT (dynamically connected transport). RC promises the correctness
and sequence of messages. Programmers need to establish a connection between
QP before communication. DCT is a new protocol introduced by Mellanox in
recent years. DCT has the same functionality as RC, but it can establish connec-
tions by hardware and connections can be changed. So DCT has much stronger
scalability than RC.

2.2 Optimization Method Focusing on Hardware View and Single
Message Transmission Process

Before reading this paper, we strongly recommend you to read this published
guideline [9]. This guideline is basis of a series of RDMA P2P communication
optimizations that have been proposed in recent years. It points out that there
are a series of parameters and implementation details corresponding to different
hardware behaviors that determine the performance of RDMA P2P communi-
cation, including several factors: 1) Transport flag, like inlined and signaled, 2)
Transport type, like RDMA write, RDMA read, 3) Verbs type. This guideline
constructs a more detailed hardware view and maps different communication
implementations to different software and hardware processes for analysis and
optimization.

3 TPL: Analysis and Optimization Model of RDMA P2P
Communication Performance

TPL stems from some observations in our practice: 1) The opinions in existing
guidelines have no way to explain all the phenomena we encounter. The fac-
tors that affect performance are more complicated. 2) The coordination between

398 Z. Du et al.

Fig. 3. Hardware topology of P2P com-
munication

Fig. 4. Data structures and hardware

hardware also affects performance. 3) The key to solving the problem of per-
formance degradation is sometimes irrelevant to specific transmission step that
directly leads to degradation. 4) A new model is needed to face new features,
like DCT.

As shown in Fig. 3, we found implementation communication will affect per-
formance at three levels from low to high: single message transport, dispatching
of multi-message transport, and coordination of different hardware. Optimiza-
tion goals of different levels are different.

3.1 Transmission Efficiency of a Single Message

The transmission process of a single message includes steps of sending a message.
Taking RDMA write as an example, the transmission process includes: 1) WQE
is transferred from the CPU to the NIC, 2) payload is transferred from the
memory to the NIC, 3) local NIC sends the message to remote NIC, 4) the
payload is transferred from the remote NIC to remote memory.

3.2 Parallelism of WQE Submission and Handling

WQE submission and handling are respectively performed by CPU and NIC.
Parallel processing can improve throughput of RDMA communication. WQE
submission parallelism is determined by thread number of CPU.

There are two types of parallelism in WQE handling: intra-QP parallelism
and inter-QP parallelism. The reason for intra-QP parallelism is the pipeline
inside the process of WQE handling. Intra-QP parallelism is determined by signal
period [9] (signaled WQE is submitted periodically, and CQ is polled to wait for
the completion of the corresponding WQE). Inter-QP parallelism is determined
by the number of QP and PU (QPs and PUs are bound, WQEs of different QPs
can be handled by different PUs at the same time).

TPL 399

3.3 Load Balance Between CPU and NIC

Throughput of RDMA communication meets bucket theory. Maintaining load
balance between CPU and NIC can also improve performance. Because Infini-
Band NIC is a black box and only provides limited programming interfaces, the
load balancing between the CPU and the NIC can only be adjusted indirectly.

3.4 Relation Between Three Dimensions

Only optimizing a certain dimension cannot maximize RDMA P2P communica-
tion performance. Adjustments to one dimension may affect other dimensions.
So, three dimensions of TPL are not orthogonal and the relation between them
is shown in Fig. 4.

4 Optimization Algorithm Design Based on TPL

Fig. 5. WQE cache misses recurrent.
The relation between signal period and
throughput

Signaled
WQE WQE WQE CQ pollingCQ polling

last operation latency

Signaled
WQE CQ pollingCQ polling

normal latency

CQ polling
Signaled
WQE

Fig. 6. Definition of last operation
latency and normal latency

TPL is the design principle and guideline of RDMA P2P communication perfor-
mance optimization. This section will show two typical applications of TPL in
the old problem (WQE cache miss) and a new scenario (DCT optimization).

4.1 TPL-Based Systematic Analysis and Single-Dimensional
Optimization

WQE cache miss is a legacy problem that is difficult to solve in traditional verbs
types. To increase RDMA communication performance, WQEs are cached in in-
chip memory of NIC. When too many WQEs need to be cached, the WQE cache

400 Z. Du et al.

transmission
effeciency

parallelism load balancing

WQE cache miss

refetch
WQE

last op
latency
change

Fig. 7. Use TPL to explain the cause of
WQE cache miss

Fig. 8. The relation between last opera-
tion latency and normal latency with best
parameters

will be filled which causes WQE cache miss. WQE cache miss causes WQE re-
fetching that lengthens transmission process and harm performance (as shown
in Fig. 5). The existing method [9] focuses on WQE re-fetching detection which
reduces performance directly. So existing researches use PCIe counter, but it is
harmful to performance and not suitable to use in a production environment.

Design of Dynamic Signal Algorithm Based on TPL. The design of
dynamic signal algorithm is divided into two parts: WQE cache miss detection
and WQE cache miss avoidance. Under the guidance of TPL, WQE cache over-
flow detection is easy. As shown in Fig. 7, increasing parallelism exacerbates
the computing speed gap between fast CPU and slow NIC. Worse load balance
between CPU and NIC makes many WQEs stay in cache, which causes WQE
cache miss and reduces transmission efficiency. Lower transmission efficiency
makes the situation of load balance even worse. Although the transmission pro-
cess influences performance directly, load balance is the key to solve WQE cache
miss. To analyze the situation of load balancing, we define two concepts (Fig. 6):
1) Last operation latency. When the signal period size is greater than 1, the
interval between WQE submission at the end of the signal period and receiving
the CQE corresponding to the WQE. Last operation latency is a characterization
of load balance. 2) Normal latency. It is transport latency when signal period
size is equal to 1. The normal latency is a reference used to determine whether
last operation latency means WQE cache miss and bad load balancing.

As shown in Fig. 8, by adjusting the parameters, we can get good performance
when the last operation latency is between 1.8*normal latency and 2.5*normal
latency. WQE cache miss happens when last operation latency is greater than
2.5*normal latency. Last operation latency is less than 1.8*normal latency when
NIC performance is not fully utilized.

TPL 401

last_op_latency
>2.5*normal_latency

signal _period
=signal_period*0.75

start

last_op_latency
<1.8*normal_latency

end

signal _period
=signal_period+1

NO

YesYes

NO

Fig. 9. The flow chart of dynamic signal
period

Fig. 10. Throughput comparison
between DCT and RC

WQE Cache Miss Avoidance. According to TPL, developers can adjust
the gap of running speed between CPU and NIC in multiple ways: number of
threads, number of QPs, and signal period. Adjusting the signal period is the
easiest. To improve the throughput as much as possible while preventing the
overflow of the WQE cache, the signal period should be increased when the last
operation latency is less than 1.8*normal latency. Correspondingly, when the
final operating delay is higher than the 2.5*normal latency, the signal period
should be reduced. WQE cache miss will affect other PCIe devices, the signal
period should be conservatively increased and radically reduced. In this way, the
last operation latency can be kept within a reasonable interval. The flow chart
of this algorithm is shown in Fig. 9.

4.2 TPL-Based Multi-dimensional Optimization

The technology of RDMA has been improving rapidly during the past decade.
Besides, the HPC system based on RDMA is also highly customized. The design-
ers of the RDMA system need to face new scenarios as and make optimization.
This section will take new RDMA hardware and new verbs type (DCT) as an
example to show how to optimize new scenarios under the guidance of TPL
(Fig. 10).

Testing and Analysis of DCT and DM Guided by TPL. TPL simpli-
fies the test design of RDMA communication. By separately fixing three of four
factors, containing the transmission process, intra-QP parallelism, inter-QP par-
allelism as well as WQE-posting parallelism, the impact of these four factors on
performance can be tested. And load balance also needs to be taken into con-
sideration while analyzing test results.

402 Z. Du et al.

Most test results of DCT are similar to RC. Compared with RC, the char-
acteristics of DCT performance are mainly reflected in intra-QP parallelism.
Figure 9 shows the throughput of RDMA write in different verbs types and sig-
nal period size. From the results of this test, the following conclusions can be
revealed: 1) When the signal period is equal to 1, DCT throughput is less than
RC, indicating that the DCT has higher latency and lower transmission effi-
ciency. 2) Considering the size of the WQE header, the throughput of fixed con-
nection DCT has a similar growth rate with RC. This comparison indicates that
the two have similar intra-QP parallelism scalability, and lower transmission effi-
ciency is the only reason for the lower performance of fixed connection DCT. 3)
The change of DCT connection does not affect latency, but it affects the growth
rate of throughput, indicating that changing the connection will reduce the scal-
ability of intra-QP parallelism. According to TPL, there are two optimization
methods: 1) Directly relieving the decline of intra-QP parallelism. 2) Increasing
inter-QP parallelism to make up for the decline in intra-QP parallelism.

Fig. 11. Single thread read and write
bandwidth to the local device memory

Fig. 12. Latency with different payload
size in different buffer type

DM (device memory) is a new feature proposed in recent years. Users can
explicitly copy the payload to the NIC by MMIO, which expands the way the
payload is copied from memory to NIC. So, DM affects the transmission efficiency
of a single message.

Figure 13 shows the local device memory read and write performance. The
local read and write performance is seriously asymmetric, and the DM write
bandwidth is 200 times higher than the DM read bandwidth. This result shows
that DM should not be used as a receive buffer to avoid reading DM.

Improving DCT Single Message Transmission Efficiency (T). When
sending small messages, MMIO takes less time to copy the payload to NIC than
DMA. Therefore, using DM as a sending buffer can shorten the transmission

TPL 403

time of a single message. The test result shown in Fig. 12 shows that setting DM
as send buffer reduces the latency by 15% while transmitting small messages.

Improving Load Balancing (L). According to the previous tests, changing
DCT connection frequently causes the decrease of intra-QP parallelism scal-
ability (will be mentioned below). Using DM as send buffer transfers part of
the overhead from NIC to CPU (from DMA read to MMIO write), making the
load between CPU and NIC more balanced when DCT connection is changed
frequently. Figure 12 shows the effect of this optimization. When the DCT con-
nection is frequently changed, DM can improve throughput by 30%.

Fig. 13. Throughput of different payload
size and send buffer type

node i node j

node k

......

......
......

DC

RC

group m group n

Fig. 14. Messages sent from node I to
node K

Improving the Parallelism of DCT (P). We improve intra-QP parallelism.
To reduce the probability of changing the DCT connection, all of the nodes are
grouped. The nodes in the group are connected by RC. DCT is used for sending
messages between groups. Sending messages to nodes outside the group requires
forwarding, Fig. 14 shows this process. Node I from group m sends the message
to node K from group N, and node J forwards this transmission. Node J and
node I have the same index within their group.

5 Evaluation

ORCL is the RDMA communication library that we design under the guidance
of TPL. ORCL-Classic is designed for mlx4 NIC, ORCL-Advanced is designed
for mlx5 NIC. To prove that the optimization guided by TPL is effective, we
test the effect of the dynamic signal period in ORCL-Classic on the elimination
of WQE cache miss, and the performance of ORCL-Advanced delay under the
workload of small-grain KV storage. The test platform of dynamic signal is two
E5 nodes equipped with ConnectX-3, each node has 4 threads. The test platform
of ORCL-Advanced is two E5 nodes equipped with ConnectX-5.

404 Z. Du et al.

Fig. 15. The relation between payload
and throughput of dynamic signal period,
fixed signal period with best parameters
as well as worst parameters

Fig. 16. The payload size is changed
smoothly. Throughput of dynamic signal
period and fixed signal period

5.1 Testing and Analysis of Dynamic Signal Period

Avoidance of WQE cache miss is essentially an automatic tuning algorithm.
Figure 9 shows the comparison of the throughput of dynamic signal period and
fixed signal period under different fixed payload sizes. Figure 15 shows that
dynamic signal period has similar performance with best-parameters fixed sig-
nal period. Figure 16 and Fig. 17 shows that the throughput of dynamic signal
period is not lower than 90% of the best fixed signal period’s throughput.

Fig. 17. Payload size is changed ran-
domly. Throughput of dynamic signal
period and fixed signal period

Fig. 18. Throughput of ORCL and tradi-
tional implement in the different payload

5.2 Throughput Test of ORCL-Advanced

Because the results of the latency test are similar to the result shown in Fig. 11,
this subsection only shows the throughput of ORCL. We simulated a load of

TPL 405

distributed hash-based in-memory KV storage with traces from YCSB. We sim-
ulated the scale of 16 nodes at two physical nodes. The test result is shown in
Fig. 18. ORCL throughput is 95% higher than DC Pool (traditional implement
designed by Hari Subramoni [16]).

6 Related Work

Designing high-performance RDMA systems is an active area of research. Anuj
published three paper [8–10]. He revealed the effects of different verbs types,
transport types as well as designs on performance. And these researches propose
a serious method to improve performance. ScaleRPC [4] improves the RDMA
system scalability by improving CPU L3 cache hit rate. RFP [15] improves the
performance when the number of clients is much higher than servers, by using
different verbs in different transport direction between servers and clients.

Some works [13,16,17] for DCT test and research have been published. But
these works don’t include optimization of DCT. So, this paper is the first paper
for DCT optimization.

7 Conclusion

In this article, we reveal the one-sidedness of existing RDMA communication
optimization methods, and propose a new, more systematic analysis and opti-
mization model: TPL. Under the guidance of this model, it is easier for us to
find the key to solve the problem of performance degradation. The test results
show that TPL can effectively solve the problem that existing methods are hard
to solve. And TPL can has strong adaptability to new scenarios.

Acknowledgment. This work was supported by the National Key R&D Program
of China (2018YFC0809300) and the National Natural Science Foundation of China
(61502454).

And this work is supported in part by National Program on Key Research
Project (No. 2018YFB0204400), by NSFC (No. 61702484, No. 61972380), by CASSPRP
(XDB24050200).

References

1. Openucx/ucx. https://github.com/openucx/ucx
2. Barak, D.: Verbs programming tutorial. Open SHMEM (2014)
3. Chen, R., Shi, J., Chen, Y., Zang, B., Guan, H., Chen, H.: Powerlyra: differenti-

ated graph computation and partitioning on skewed graphs. ACM Trans. Parallel
Comput. (TOPC) 5(3), 1–39 (2019)

4. Chen, Y., Youyou, L., Shu, J.: Scalable RDMA RPC on reliable connection with
efficient resource sharing. In: Proceedings of the Fourteenth EuroSys Conference
2019, pp. 1–14 (2019)

https://github.com/openucx/ucx

406 Z. Du et al.

5. Gabriel, E., et al.: Open MPI: goals, concept, and design of a next genera-
tion MPI implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.)
EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30218-6 19

6. Islam, N.S., Wasi-ur-Rahman, M., Lu, X., Panda, D.K.: High performance design
for HDFS with byte-addressability of NVM and RDMA. In: Proceedings of the
2016 International Conference on Supercomputing, pp. 1–14 (2016)

7. Jia, C., et al.: Improving the performance of distributed tensorflow with RDMA.
Int. J. Parallel Prog. 46(4), 674–685 (2018)

8. Kalia, A., Kaminsky, M., Andersen, D.G.: Using RDMA efficiently for key-value
services. In: Proceedings of the 2014 ACM Conference on SIGCOMM, pp. 295–306
(2014)

9. Kalia, A., Kaminsky, M., Andersen, D.G.: Design guidelines for high perfor-
mance {RDMA} systems. In: 2016 {USENIX} Annual Technical Conference
({USENIX}{ATC} 2016), pp. 437–450 (2016)

10. Kalia, A., Kaminsky, M., Andersen, D.G.: Fasst: fast, scalable and sim-
ple distributed transactions with two-sided ({RDMA}) datagram RPCS. In:
12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 2016), pp. 185–201 (2016)

11. Lu, Y., Shu, J., Chen, Y., Li, T.: Octopus: an RDMA-enabled distributed per-
sistent memory file system. In: 2017 {USENIX} Annual Technical Conference
({USENIX}{ATC} 2017), pp. 773–785 (2017)

12. Mitchell, C., Geng, Y., Li, J.: Using one-sided {RDMA} reads to build a fast,
CPU-efficient key-value store. In: 2013 {USENIX} Annual Technical Conference
({USENIX}{ATC} 2013), pp. 103–114 (2013)

13. Park, J., Son, Y., Yeom, H.Y., Kim, Y.: SoftDC: software-based dynamically con-
nected transport. Cluster Comput. 23(1), 347–357 (2020)

14. Shi, J., Yao, Y., Chen, R., Chen, H., Li, F.: Fast and concurrent {RDF} queries
with RDMA-based distributed graph exploration. In: 12th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 2016), pp. 317–332
(2016)

15. Su, M., Zhang, M., Chen, K., Guo, Z., Wu, Y.: RFP: when RPC is faster than
server-bypass with RDMA. In: Proceedings of the Twelfth European Conference
on Computer Systems, pp. 1–15 (2017)

16. Subramoni, H., Hamidouche, K., Venkatesh, A., Chakraborty, S., Panda, D.K.:
Designing MPI library with dynamic connected transport (DCT) of infiniband:
early experiences. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2014.
LNCS, vol. 8488, pp. 278–295. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-07518-1 18

17. Takagi, M., Yamaguchi, N., Gerofi, B., Hori, A., Ishikawa, Y.: Adaptive trans-
port service selection for MPI with InfiniBand network. In: Proceedings of the 3rd
Workshop on Exascale MPI, pp. 1–10 (2015)

18. Xue, J., Miao, Y., Chen, C., Wu, M., Zhang, L., Zhou, L.: RPC considered harmful:
fast distributed deep learning on RDMA. arXiv preprint arXiv:1805.08430 (2018)

19. Zambre, R., Grodowitz, M., Chandramowlishwaran, A., Shamis, P.: Breaking band:
a breakdown of high-performance communication. In: Proceedings of the 48th
International Conference on Parallel Processing, pp. 1–10 (2019)

20. Zhu, X., Chen, W., Zheng, W., Ma, X.: Gemini: a computation-centric distributed
graph processing system. In: 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 2016), pp. 301–316 (2016)

https://doi.org/10.1007/978-3-540-30218-6_19
https://doi.org/10.1007/978-3-319-07518-1_18
https://doi.org/10.1007/978-3-319-07518-1_18
http://arxiv.org/abs/1805.08430

Connectivity and Routing Algorithm
of the Data Center Network HSDC

Hui Dong, Jianxi Fan(B), Baolei Cheng, Yan Wang, and Jingya Zhou

School of Computer Science and Technology, Soochow University,
Suzhou 215006, China
jxfan@suda.edu.cn

Abstract. In order to satisfy the rapidly increasing demand for data
volume, large data center networks (DCNs) have been proposed. In 2019,
Zhang et al. proposed a new highly scalable DCN architecture named
HSDC, which can achieve greater incremental scalability. In this paper,
we give the definition of the logical graph of HSDC, named Hn, which
can be treated as a compound graph of hypercube and complete graph
of the same dimension. First, we prove that the connectivity and tightly
super connectivity of Hn are both n. Then, we give an O(n) routing
algorithm to find a shortest path between any two distinct nodes in Hn,
and prove the correctness of this algorithm. In fact, we also prove that
the distance constructed by this algorithm is no more than 2d+1 if d < n
and at most 2d if d = n, where d is the Hamming distance between the
start and end nodes, and the diameter of Hn is 2n.

Keywords: Data center network · Connectivity · Routing algorithm ·
Shortest path

1 Introduction

With the rapid expansion of cloud-based services, large data center networks
(DCNs) have been proposed. It is necessary to design a network architecture
and related protocols to interconnect thousands or even hundreds of thousands
of servers in a single data center. In order to satisfy the rapidly increasing demand
for data volume, the performance of DCN has been continuously improved. In
many DCN architectures, there are many DCNs inspired by some special inter-
connected networks. For example, Fat-Tree [1] is based on the Fat-trees inter-
connection network [2], BCube [3] is based on the generalized hypercube [4],
and BCDC [5] is based on the crossed cube. It is known that hypercube is
widely used in parallel computers due to its super features. In 2019, Zhang et
al. [6] proposed a new DCN architecture named HSDC based on the hypercube,
whose highly scalable architecture can achieve greater incremental scalability.
The HSDC architecture is constructed by employing 2-port servers and low-cost

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 407–419, 2021.
https://doi.org/10.1007/978-3-030-79478-1_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_35&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_35

408 H. Dong et al.

commodity m-port switches. Zhang et al. compared the static characteristics of
HSDC with other DCNs and the analysis results demonstrate that HSDC is a
superior candidate for building large-scale data centers.

In this paper, we focus on the logical graph of HSDC. Our main contributions
as follows.

1. We give the definition of the logical graph of HSDC, named Hn. Then, we
show that the connectivity and tightly super connectivity of Hn are both n.

2. We propose an O(n) node-to-node shortest routing algorithm in Hn, and
prove the correctness of this algorithm. We also prove that the length of the
shortest path constructed by this algorithm is no more than 2d + 1 if d < n
and at most 2d if d = n, where d is the Hamming distance between two given
distinct nodes, and the diameter of Hn is 2n.

This paper is organized as follows. Section 2 provides the preliminaries used
throughout this paper and gives the formal definition of Hn. The proofs about
connectivity and tightly super connectivity of Hn are given in Sect. 3. In Sect. 4, a
node-to-node shortest routing algorithm for Hn is described. Section 5 concludes
the paper.

2 Preliminaries

2.1 Terminology and Notation

The basic topology of a data center network can be represented by a graph G =
(V (G), E(G)), where the switches are regarded as transparent network devices [7,
8,15] and the remaining server set is represented by the node set V (G), the links
between servers are represented by the edge set E(G). We follow the symbol and
definition of the graph proposed by Hsu and Lin [9]. For any two distinct nodes
u and v, if (u, v) ∈ E(G), then u and v are neighbors, and the neighbor set of
u is denoted as NG(u) = {v | (u, v) ∈ E(G)}. The degree of node u is expressed
by degG(u) = |NG(u)|. The minimum degree of node in G is expressed by δ(G).
A path in G is a sequence of edges P = ((a0, a1), (a1, a2), . . . , (ak−1, ak)) where
ai ∈ V (G), 0 ≤ i ≤ k, ai �= aj and i �= j. And we denote the path P − ak =
((a0, a1), (a1, a2), ···, (ak−2, ak−1)). The length of a path P is the number of edges
in P . For any two distinct nodes a and b, we write the path from a to b by a ∼ b
and use ai → aj where i �= j to denote an edge (ai, aj) in the path. The distance
between a and b is written as dist(a, b), which is the minimum value of all path
lengths between a and b. The diameter of G is the maximum distance between
any two distinct nodes in G, denoted as max{dist(a, b) | a, b ∈ V (G) and a �= b}.
Let G and G′ be two graphs. If G is isomorphic to G′, we will write G ∼= G′.

Let F be a subgraph of G, denoted as F ⊆ G, if V (F) ⊆ V (G) and E(F) ⊆
E(G). The clique in G refers to a set of nodes such that there exists an edge
between any two nodes. It can be seen that the induced subgraph of a clique is a
complete subgraph of G. For any subset F ⊂ G, G−F denotes deleting all nodes
in F and removing the edges with at least one end-node in F . For any non-empty

Connectivity and Routing Algorithm of the Data Center Network HSDC 409

subset F ⊂ G, if G−F is disconnected, then we called F is a separating set of G.
The maximal connected subsets of G−F are called components. Reliability has
always been a concern in networks. Connectivity can assess the reliability of a
network. In the following, we make no distinction between graphs and networks.
The connectivity of G is denoted by κ(G), which is defined as the minimum
cardinality of a set of nodes, if any, whose deletion disconnects G or makes G
be a trivial graph. In the case of node failure, connectivity plays a crucial role
in measuring the fault tolerance of network. If κ(G) ≥ k, the graph G is said
to be k-connected. A k-regular k-connected graph is super k-connected if any
one of its minimum separating set is a set of the neighbors of some node. In
addition, if deleting the minimum separation set will cause the graph to contain
two components (one of which has only one node), the graph is tightly super
k-connected.

2.2 Topological Structure of Hn

By using n-port switches, the HSDCn(n) architecture is constructed based on
n-dimension hypercube. The HSDCn(n) can be defined as follows.

Definition 1. [6] In HSDCn(n), the nodes and edges are defined as follows:

(1) The switches and servers are identified as (xn · · · x1; 0) and (xn · · · x1; y),
respectively;

(2) The edges are defined as ((xn · · ·x1; 0), (xn · · ·x1; y)) and ((xn · · ·x1; y), (xn ·
· · xy+1xyxy−1 · · · x1; y));

where xi ∈ {0, 1}, n ≥ 2, 1 ≤ i ≤ n, 1 ≤ y ≤ n and xy is the complement of xy.

Figure 1 shows the structure of HSDC4(4).

Definition 2. [10] Given two regular graphs G and K, the compound graph
G(K) is obtained by replacing each node of G by a copy of K and replacing each
link of G by a link which connects corresponding two copied of K.

We treat the logical graph Hn of HSDC (HSDCn(n)) as a compound graph
G(K), where G is a n-dimensional hypercube Qn and K is the same dimen-
sional complete graph Kn. In the following, we will introduce the definition of
hypercube and complete graph.

Definition 3. [11] The node-set V of n-dimensional hypercube Qn consists of
all binary sequence of length n on the set {0, 1}, i.e., V = {x1x2 · · · xn|xi ∈
{0, 1}, i = 1, 2, · · ·, n}. Two nodes x = x1x2 · · · xn and y = y1y2 · · · yn are
linked by an edge if and only if x and y differ exactly in one coordinate, i.e.,∑n

i=1 |xi − yi| = 1.

Proposition 1. [11] The hypercube Qn has the following properties.

(1) Qn is n-regular, has 2n nodes and n2n−1 edges;
(2) Qn is bipartite;

410 H. Dong et al.

Fig. 1. The structure of HSDC4(4).

(3) Qn is hamiltonian if n ≥ 2; and eulerian if n is even;
(4) Qn has the diameter d(Qn) = n;
(5) Qn has the connectivity κ(Qn) = λ(Qn) = n;
(6) Qn is a Cayley graph CΓ(S) and, hence, is node-transitive, where Γ = Z2 ×

· · · × Z2, S = {100 · · · 00, 010 · · · 00, · · ·, 00 · · · 01};
(7) Qn is edge-transitive.

Definition 4. [9] A complete graph is a simple graph in which every pair of
distinct nodes is connected by an edge.

According to the definition of hypercube, compound graph, and the structure
of HSDC. Next, we give the formal definition of Hn.

Definition 5. The logical graph of HSDC, named as Hn where n is an integer
with n ≥ 2. The node-set V is represented as (xnxn−1 · · · x1; y) where xnxn−1 ·
· · x1 is the label of the node in Qn and y is the label of the node in Kn. Two
nodes u = (xnxn−1 · · · x1; y) and v = (x′

nx′
n−1 · · · x′

1; y
′) are adjacent if and only

if one of the following conditions is satisfied:

(1) xnxn−1 · · · x1 = x′
nx′

n−1 · · · x′
1 and y �= y′;

(2) y = y′ and xnxn−1 · · · x1, x
′
nx′

n−1 · · · x′
1 differ only in the y-th bit.

We call the edge that satisfies the first condition is a clique edge, and the edge
satisfies the second condition is a hypercube edge or cross edge. For each node
u ∈ V (Hn), if (u, v) ∈ E(Hn) is a clique edge, we say v to be an inner-neighbor

Connectivity and Routing Algorithm of the Data Center Network HSDC 411

Fig. 2. The structure of H4.

of u, and v to be an external-neighbor of u when (u, v) is a cross edge. Figure 2
shows the structure of H4.

In this paper, we let

A = {xnxn−1 · · · x1|xq ∈ {0, 1}, q = 1, 2, . . . , n}.

We know that Hn consists of 2n disjoint cliques. For any xnxn−1 · · · x1 ∈ A,
let V ′ = {(xnxn−1 · · · x1; y)|y = 1, 2, . . . , n}. Then Hn[V ′] ∼= Kn, we use i to
denote xnxn−1 · · · x1’s decimal value and Bi to denote Hn[V ′]. Then we denote

I2n = {i|i = 0, 1, . . . , 2n − 1}.

Proposition 2. Hn has the following properties.

(1) Hn is n-regular;
(2) Hn has n2n nodes and n22n−1 edges;
(3) Each node in Hn is associated with a clique and has only one external-

neighbor.

3 Connectivity and Tightly Super Connectivity of Hn

As the number of nodes in Hn continues to increase, the failures of the node
become the norm. Generally, reliable data transmission in Hn is based on the
condition of any set of faulty nodes. In other words, any nodes in Hn may fail.
In this case, assuming that the connectivity of Hn is κ, and the number of faulty
nodes in the structure is at most κ − 1, that is, there is at least one fault-free

412 H. Dong et al.

path between any two distinct fault-free nodes, which can be used for reliable
communication between the two nodes. Let F be a faulty node set of Hn, and
for any integer i ∈ I2n , we set Fi = Bi ∩ F . For convenience, we also let

I = {i ∈ I2n | |Fi| ≥ n − 1}, J = I2n − I,

J0 = {j ∈ J | |Fj | = 0}, J1 = J − J0 = {j ∈ J | 1 ≤ |Fj | ≤ n − 2},

and
BJ = ∪j∈JBj , FJ = ∪j∈JFj .

Obviously, Bj − Fj is connected for any j ∈ J .

Lemma 1. For any subset F of Hn with |F | ≤ n−1 and n ≥ 2, we have |I| ≤ 1
and BJ − FJ is connected.

Proof. Since |F | ≤ n−1, we have |I| ≤ 1 (otherwise, 2n−2 ≤ |FI | ≤ |F | ≤ n−1,
a contradiction). Let |J1| = m. Then |J0| = 2n − |I| − m. Note that

|J0| = 2n − |I| − m
≥ 2n − |F |
≥ 2n − (n − 1)
≥ 3.

Then we have J0 �= ∅. Now, we shall show that BJ0 is connected through
induction on |J0|.
(1) When |J0| = 3, we have n = 2. It is easy to see that BJ0 is connected.
(2) In the induction step, assume that the statement is true for |J0| = k, where

k ≥ 3.
(3) When |J0| = k+1, since for any i ∈ J0, there are at least n−(n−1) = 1 cross

edges between Bi and BJ0−{i}, where BJ0−{i} is connected by induction.
Hence, BJ0 is connected.

For any j ∈ J1, |Fj | ≤ n−2, we know Bj−Fj is still connected since Bj
∼= Kn,

and the connectivity of Kn is n − 1. To prove that BJ − FJ is connected, it is
suffices to prove that Bj − Fj is still connected to BJ0 for any j ∈ J1. For each
Bj with j ∈ J1, there are at least n − (m − 1) − |I| cross edges between Bj and
BJ0 . Since there exists at least one faulty node in Bj for any j ∈ J1, we have

|Fj | = |F | − |FI | − |FJ1−{j}| ≤ n − 1 − (n − 1)|I| − (m − 1).

Thus, we have

[n − (m − 1) − |I|] − |Fj | ≥ [n − (m − 1) − |I|] − [n − 1 − (n − 1)|I| − (m − 1)]
= n − (m − 1) − |I| − n + 1 + (n − 1)|I| + (m − 1)
= (n − 2)|I| + 1
≥ 1,

which implies that there exists at least one fault-free cross edge between Bj and
BJ0 , i.e., Bj − Fj is connected to BJ0 . By the arbitrariness of j, BJ − FJ is
connected. �

Connectivity and Routing Algorithm of the Data Center Network HSDC 413

Theorem 1. κ(Hn) = n for any integer n with n ≥ 2.

Proof. By Whitney’s inequality, we have

κ(Hn) ≤ λ(Hn) ≤ δ(Hn) = n.

Thus, we just need to show κ(Hn) ≥ n in the following. That is, we need show
that Hn − F is still connected when |F | = n − 1. We know that 0 ≤ |I| ≤ 1.
Otherwise, 2n − 2 ≤ |F | = n − 1, a contradiction.

When |I| = 0, by Lemma 1, Hn − F = BJ − FJ is connected.
When |I| = 1, say I = {i}, then |Fi| = |F | = n − 1, Bi has only one node,

say v, and J0 = J = I2n − {i}. Similarly, by Lemma 1, BI2n−{i} is connected.
Note that each node in Hn has exactly one external-neighbor by Proposition 2.
Then, the node v in Bi − Fi is connected to some node in BI2n−{i}.

Thus, Hn − F is connected. �

Theorem 2. Hn is tightly super n-connected.

Proof. Let F be a minimum separating set of Hn. Then |F | = n by Theorem 1.

According to the definition of tightly super connectivity, we just need to show
that Hn − F has exactly two components, one of them is an isolated node.

When n = 2, |F | = 2, say F = {u, v}, if there exist one node x and NG(x) =
{u, v}, then Hn − F has exactly an isolated node and a connected component.

Next, we consider the case when n ≥ 3. It is clear that |I| ≤ 1 (otherwise,
2n − 2 ≤ |Fi| ≤ |F | = n, a contradiction).

Case 1. |I| = 0.
When |I| = 0, we have Hn − F = BJ − FJ . First, we know that for any

j ∈ J1, 1 ≤ |Fj | ≤ n − 2, then Bj − Fj is connected. In the following, we just
consider the case that BJ − FJ is not connected. In this case, we know that
for any j ∈ J1, we have 2 ≤ Bj − Fj ≤ n − 1, therefore, at least two nodes in
Bj − Fj are fault-free. BJ − FJ is not connected, if and only if there exist two
distinct fault-free nodes in Bj − Fj , say v1, v2, and their external-neighbors are
both faulty. Then, we know that (v1, v2) is an isolated edge, a contradiction.

Case 2. |I| = 1.
Suppose I = {i}, we distinguish the following two cases according to the size

of |Fi|.
Case 2.1. |Fi| = n.

Obviously, V (Fi) = V (Bi). We have Bi −Fi = ∅ and Hn −F is equivalent to
remove a clique from Hn, which does not affect the connectivity of Hn. Therefore,
Hn − F is connected, a contradiction.

Case 2.2. |Fi| = n − 1.
Clearly, |FJ | = |F − Fi| = n − (n − 1) = 1. Let FJ = {u}. We know

|Bi − Fi| = n − (n − 1) = 1. Thus, Bi − Fi is a node, say v. Since v has only one

414 H. Dong et al.

external-neighbor, say v′. Then Bi − Fi is connected to BJ − FJ if v′ �= u. We
have that Hn − F is connected, a contradiction.

Now we consider that Bi − Fi is not connected to BJ − FJ . This situation is
only when v′ = u, then v becomes an isolated node in Hn − F . Next, we need
show that BJ − FJ is connected. We know that BJ = BJ0 ∪ BJ1 and FJ = {u},
thus, we know u ∈ Bj where j ∈ J1. Since |V (Bj − {u})| = n − 1, Bj − {u} is
connected. As a result, any nodes in Bj −{u} has one external-neighbor in BJ0 ,
which implies Bj − {u} is connected to BJ0 and BJ − FJ is connected. Thus, v
is an isolated node in Hn − F and Hn − F − {v} is connected.

Combining the two cases above completes the proof. �

4 Shortest Routing Algorithm

In this section, we will propose an efficient node-to-node routing algorithm in
Hn, called HRouting, to get a shortest path between any two distinct nodes of
Hn. Routing is a basic feature to ensure that the network can communicate. A
good routing algorithm can reduce the node-to-node transmission delay in the
network, and reduce the packet loss rate. As a compound graph of hypercube
and complete graph, the shortest path between any two distinct nodes in Hn is
inspired by the method of hypercube Qn. The method of hypercube is as follows.
Let x = x1x2 · · · xn and y = y1y2 · · · yn be any two distinct nodes of Qn, the
shortest path between x and y can obtained by this way: start at x and end at
y by continuously changing the different bits from left to right. For example, let
x = 0101011, y = 1010010, then

x = 0101011,1101011, 1001011, 1011011, 1010011, 1010010 = y

is a shortest path between x and y, where the boldface bits are obtained by
each change. Therefore, the distance between x and y is determined by the
number of coordinates of different bits in the two nodes. This number becomes
the Hamming distance, denoted by H(Qn;x, y). We designed a node-to-node
shortest routing algorithm suitable for Hn by using the method of continuously
changing bits. The algorithm is as follows:

HRouting
Input: an n-dimensional HSDC, Hn, and two distinct nodes a, b ∈ Hn

where a = (xnxn−1 · · · x1; y), b = (unun−1 · · · u1; z);
Output: a shortest path from node a to node b in Hn;
1: function HRouting(Hn, a, b)
2: a1 ← (xnxn−1 · · · x1), b1 ← (unun−1 · · · u1), d ← H(Qn; a1, b1),

Q ← DIF(a1,b1), P ← (a)
3: function Find-Path(a, b, d)
4: if d = 0 then
5: P ← (P , b)
6: else if d = 1 then

Connectivity and Routing Algorithm of the Data Center Network HSDC 415

7: if y = z and xy �= uz then
8: P ← (P , b)
9: else if y �= z and Q[0] = y or z then
10: if Q[0] = y then
11: P ← (P , (b1;Q[0]), b)
12: else
13: P ← (P , (a1;Q[0]), b)
14: end if
15: else
16: P ← (P , (a1;Q[0]), (b1;Q[0]), b)
17: end if
18: else if 2 ≤ d ≤ n − 1 then
19: if y ∈ Q then
20: c = (xn · · · xy · · · x1; y)
21: else if y �= z and Q[0] = z then
22: c = (xn · · · xQ[1] · · · x1;Q[1])
23: else
24: c = (xn · · · xQ[0] · · · x1;Q[0])
25: end if
26: P ← (Find-Path(a, c, 1) − c, Find-Path(c, b, d − 1))
27: else if d = n then
28: c = (xn · · · xy · · · x1; y)
29: P ← (P , Find-Path(c, b, d − 1))
30: end if
31: end function
32: return P
33: end function
34: function DIF(a1, b1)
35: Q ← ()
36: for i = n to 1 do in parallel
37: if xi �= ui then
38: Q ← Q ∪ {i}
39: end if
40: end for
41: return Q
42: end function

Apparently, the length of the path constructed by algorithm HRouting is depen-
dent only on the coordinate representation of the source and destination nodes.
The core of the algorithm is a sub-algorithm Find-Path, we find that the most
time is taken in lines 27−29, which can be looped at most n times and the time
complexity can be computed in O(n) time. The lines 34−42 construct a list to
store the addresses of a1 and b1 with different coordinates, which takes O(n)
time. The H(Qn; a1, b1) also takes O(n) time. Therefore, the time complexity of
algorithm HRouting is O(n).

416 H. Dong et al.

Next, we will prove the correctness of the algorithm by Hamming distance .
Let

a = (xnxn−1 · · ·x1; y), b = (unun−1 · · ·u1; z), a1 = (xnxn−1 · · ·x1), b1 = (unun−1 · · ·u1),

d = H(Qn; a1, b1), Q = DIF(a1, b1) = {i|1 ≤ i ≤ n, xi �= ui}.

When d = 0, which means node a and node b are in the same clique, and the
shortest path is (a, b); When d = 1, if y = z and xy �= uz, which indicates that
(a, b) is a cross edge of Hn, and the shortest path is (a, b). Both cases above are
(a, b) ∈ E(Hn). Next, we will consider the case (a, b) /∈ E(Hn).

Case 1. d = 1.
We use the following method to find a shortest path from a to b.

a ∼ a(0) ∼ b, a(0) = (xnxn−1 · · · xQ[0] · · · x1;Q[0]).

When y �= z and Q[0] = y, the shortest path is a → (b1; y) → b;
When y �= z and Q[0] = z, the shortest path is a → (a1; z) → b.
In the remaining cases, the shortest path is a → (a1;Q[0]) → (b1;Q[0]) → b.

Case 2. 2 ≤ d ≤ n.
We find an intermediate node c by reducing the Hamming distance by 1 each

time, then the problem is transformed into finding a shortest path between node
c and node b. We must ensure that the node c found every time is optimal. We
regard the sub-algorithm Find-Path as a cyclic invariant of this algorithm. Next,
we need to prove that the cyclic invariant holds at each loop. At the beginning
of the algorithm, we first compute the Hamming distance of the two nodes, then
input the two nodes and Hamming distance into the sub-algorithm Find-Path.
In the sub-algorithm, we give a specific method to determine the intermediate
node c to ensure that the cyclic invariant holds. The path from a to b is construct
by this way:

a ∼ a(0) ∼ a(1) ∼ · · · ∼ a(d−1) ∼ b,

among them,

a(0) = (xnxn−1 · · ·xQ[0] · · ·x1;Q[0]), a(1) = (xnxn−1 · · ·xQ[1] · · ·xQ[0] · · ·x1;Q[1])

where xQ[1] and xQ[0] appear in an undefined order, and so on.
We use the distance from node a to node a(0) as an example to analyze

the distance from node a(i) to node a(i+1) in the above steps, and the distance
between the remaining two nodes is consistent with it. Through the Case 1, we
know that the length from node a to node a(0) has the following cases:

(1) y = z and xy �= uz, the length is 1;
(2) y �= z and Q[0] = y or Q[0] = z, the length is 2;
(3) otherwise, the length is 3.

Connectivity and Routing Algorithm of the Data Center Network HSDC 417

It can be seen from the above three cases that we must perform an accu-
rate conversion to ensure that the obtained node c is optimal. For example,
when y ∈ Q, we put a ∼ a(y) in the first step, and the length of path
a → (xnxn−1...xy...x1; y) is 1, which is smaller than the other cases. In each
conversion, the above analysis is required. Therefore, it can be ensured that the
resulting path is the shortest.

Lemma 2. Let a = (xnxn−1 · · ·x1; y), b = (unun−1 · · ·u1; z) be any two distinct
nodes in Hn. And a1 = (xnxn−1 · · · x1), b1 = (unun−1 · · · u1), d = H(Qn; a1, b1),
Q = DIF (a1, b1) = {i|1 ≤ i ≤ n, xi �= ui}. The distance between a and b is:

dist(a, b)

⎧
⎨

⎩

= 2d + 1 if y /∈ Q and z /∈ Q;
= 2d − 1 if y �= z and y, z ∈ Q;
= 2d if y = z and y, z ∈ Q or only one of y, z ∈ Q.

And the length of the shortest path constructed by this algorithm is no more than
2d + 1 if d < n and at most 2d if d = n.

Proof. According to the algorithm HRouting, constructing a path from a to b
has the following three cases. Next, we will discuss the length of the path in
these cases.

Case 1. y, z /∈ Q.
We let a(0) = (xnxn−1 · · ·x1), a(1) = (xnxn−1 · · ·xQ[0] · · ·x1) and so on. Thus,

the shortest path from a to b is as follows:

a = (a(0); y) → (a(0);Q[0]) → (a(1);Q[0]) → · · ·
→ (a(i);Q[i − 1]) → (a(i);Q[i]) → (a(i+1);Q[i]) → · · ·
→ (a(d−1);Q[d − 2]) → (a(d−1);Q[d − 1]) → (a(d);Q[d − 1]) → b.

We know that the length of the path (a(0); y) → (a(0);Q[0]) → (a(1);Q[0]) is 2
and the length from (a(i);Q[i−1]) to (a(i+1);Q[i]) is 2 where i ∈ {1, 2, . . . , d−1},
and such conversion has been carried out d − 1 times, adding the path from
(a(d);Q[d − 1]) to b, the distance from a to b is 2d + 1.

Case 2. y �= z and y, z ∈ Q.
Let y = Q[0], z = Q[d − 1], which means (a(0); y) = (a(0);Q[0]) and

(a(d);Q[d − 1]) = b. After the analysis of Case 1, we can conclude that the
distance from a to b is 2d + 1 − 1 − 1 = 2d − 1.

Case 3. y = z and y, z ∈ Q or only one of y, z ∈ Q.
Let y ∈ Q, and the case y = z ∈ Q is equal to only one of y, z ∈ Q. Through

the analysis of Case 2, the distance from a to b is 2d + 1 − 1 = 2d.
After the analysis of the above three cases, we know that when d = n,

only the latter two cases may occur. Therefore, the length of the shortest path
constructed by this algorithm is no more than 2d + 1 if d < n and at most 2d if
d = n. �

Theorem 3. The diameter of Hn is 2n.

418 H. Dong et al.

Proof. According to the Lemma 2, we know that the distance between any two
distinct nodes is no more than 2d + 1 if d < n and at most 2d if d = n. Thus,
the diameter of Hn is 2n. �

5 Conclusions

The connectivity κ(G) is an important factor determining the reliability of a net-
work. In this paper, we give the connectivity and tightly super connectivity of
Hn, which is the logical graph of the data center network HSDC, and construct
a shortest node-to-node routing algorithm HRouting. Finally, we summarize the
length of the shortest path between any two distinct nodes and prove that the
diameter of Hn is 2n. In the next work, we will study the restricted connectiv-
ity of Hn [12,16,17]. Furthermore, we consider that there are some hypercube
variants, such as crossed cubes [13], spined cubes [14], etc., whose diameters are
smaller than that of the hypercube. They can be used to design DCNs by the
method in [6], which is worthy of our further study.

Acknowledgment. This work was supported by the Joint Fund of the National Nat-
ural Science Foundation of China (No. U1905211), the National Natural Science Foun-
dation of China (No. 61972272) and the Project Funded by the Priority Academic
Program Development of Jiangsu Higher Education Institutions.

References

1. Al-Fares, M., Loukissas, A., Vahdat, A., Scalable, A.: Commodity data center net-
work architecture. ACM SIGCOMM Comput. Commun. Rev. 38(4), 63–74 (2009)

2. Leiserson, C.E.: Fat-trees: universal networks for hardware-efficient supercomput-
ing. IEEE Trans. Comput. 34(10), 892–901 (2012)

3. Guo, C., et al.: BCube: a high performance, server-centric network architecture for
modular data centers. In: ACM SIGCOMM Conference on Data Communication
(2009)

4. Bhuyan, L., Agrawal, D.: Generalized hypercube and hyperbus structures for a
computer network. IEEE Trans. Comput. 33(4), 323–333 (2006)

5. Wang, X., Fan, J., Lin, C.-K., Zhou, J., Liu, Z.: BCDC: a high-performance, server-
centric data center network. J. Comput. Sci. Technol. 33(2), 400–416 (2018)

6. Zhang, Z., Deng, Y., Min, G., Xie, J., Yang, L., Zhou, Y.: HSDC: a highly scalable
data center network architecture for greater incremental scalability. IEEE Trans.
Parallel Distrib. Syst. 30(5), 1105–1119 (2019)

7. Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., Lu, S.: DCell: a scalable and fault-
tolerant network structure for data centers. ACM SIGCOMM Comput. Commun.
Rev. 38(4), 75–86 (2008)

8. Wang, X., Fan, J., Lin, C.-K., Jia, X.: Vertex-disjoint paths in DCell networks. J.
Parallel Distrib. Comput. 96, 38–44 (2016)

9. Hsu, L.-H., Lin, C.-K.: Graph Theory and Interconnection Networks. CRC Press,
Boca Raton (2009)

10. Guo, D., et al.: KCube: a novel architecture for interconnection networks. Inf.
Process. Lett. 110(18–19), 821–825 (2010)

Connectivity and Routing Algorithm of the Data Center Network HSDC 419

11. Xu, J.: Combinatorial Theory in Networks. Science Press (2001)
12. Wang, X., Fan, J., Zhou, J., Lin, C.-K.: The restricted h-connectivity of the data

center network DCell. Discret. Appl. Math. 203, 144–157 (2016)
13. Efe, K.: A variation on the hypercube with lower diameter. IEEE Trans. Comput.

40(11), 1312–1316 (1991)
14. Zhou, W., Fan, J., Jia, X., Zhang, S.: The spined cube: a new hypercube variant

with smaller diameter. Inf. Process. Lett. 111(12), 561–567 (2011)
15. Wang, X., Erickson, A., Fan, J., Jia, X.: Hamiltonian properties of DCell. Networks

Comput. J. 58(11), 2944–2955 (2015)
16. Li, X., Zhou, S., Guo, X., Ma, T.: The h-restricted connectivity of the generalized

hypercubes. Theor. Comput. Sci. 850, 135–147 (2021)
17. Fan, J., Jia, X., Cheng, B., Yu, J.: An efficient fault-tolerant routing algorithm

in bijective connection networks with restricted faulty edges. Theor. Comput. Sci.
412(29), 3440–3450 (2011)

CCRP: Converging Credit-Based
and Reactive Protocols in Datacenters

Yang Bai, Dinghuang Hu, Dezun Dong(B), Shan Huang, and Xiangke Liao

College of Computer, National University of Defense Technology,
Changsha 410073, China

{baiyang14,hudinghuang19,dong,huangshang12,xkliao}@nudt.edu.cn

Abstract. As the link speed has grown steadily from 10 Gbps to
100 Gbps, high-speed data center networks (DCNs) require more effi-
cient congestion management. Therefore, proactive transports, especially
credit-based congestion control, nowadays have drawn much attention
because of fast convergence, near-zero queueing and low latency. How-
ever, in real deployment scenarios, it is hard to guarantee one protocol
to be deployed in every host at one time. Thus, when the credit-based
protocols are deployed into DCNs incrementally, the network will convert
to multi-protocol state and face the following fundamental challenges: (i)
unfairness, (ii) non-convergence, and (iii) high buffer occupancy. In this
paper, we propose a new protocol, called CCRP, aiming for converging
credit-based and reactive protocols in data centers. Targeting the mostly
deployed protocol, i.e. DCQCN based on explicit congestion notification
(ECN), in DCNs, CCRP leverages the forward ECN to detect the net-
work congestion in data queue and optimizes feedback control of the
credit-based transports. Our experiment results show that this design
can address the unfair link allocation and converge with reactive proto-
cols rapidly. Furthermore, CCRP achieves high utilization and low buffer
occupancy at the same time.

Keywords: Data center · Credit-based and ECN-based protocol ·
Multi-protocol converging

1 Introduction

The data center networks (DCNs) are growing rapidly in size and link speed in
recent years. A large data center uses a Clos network of shallow buffered switches
to connect more than 100,000 computers. In the past decade, the link speed has
steadily increased from 10 Gbps to 100 Gbps [2]. These evolutions have enabled
low-latency and high-bandwidth communications in data centers. At the same
time, it presents a series of challenges to congestion control [1].

Many reactive congestion control protocols [3–8] have been proposed to solve
these challenges. Reactive protocols use congestion signals (e.g., packet loss,
explicit congestion notification (ECN) and network delay) to make accurate

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 420–434, 2021.
https://doi.org/10.1007/978-3-030-79478-1_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_36&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_36

CCRP: Converging Credit-Based and Reactive Protocols in Datacenters 421

responses after congestion occurs, which can maintain good average performance
under long traffic conditions. However, due to the slow detection of network
congestion, it is difficult for reactive protocols to achieve the “correct” rate in
each round, which is deciding for small flows and tail performance.

Therefore, the current line of work introduces a new method called proactive
congestion control [9–13], which has received much attention in recent years.
Among these technologies, one of the most promising deployments in future
data centers is ExpressPass [11]—a credit-based proactive congestion algorithm,
which can provide zero data loss, fast convergence, low buffer occupancy, and
high utilization.

Due to their attractive advantages, credit-based transports, especially
ExpressPass, are highly recognized by academia [20,21]. However, current DCNs,
such as Google and Amazon, still mainly deploy ECN-based reactive protocols
like DCTCP [6] and DCQCN [5]. Thus, the gradual deployment of ExpressPass
into DCNs is a visible task in the future. Nonetheless, deploying credit-based
protocols [14,15] like ExpressPass in DCNs will bring many challenges to the
fairness of bandwidth allocation, especially in multi-tenant DCNs [25,26]. We
show in Sect. 2 that simply mixing ExpressPass with reactive protocols deployed
in real DCNs will cause serious trouble.

Therefore, we will face severe challenges when incrementally deploying
ExpressPass with existing reactive transports in the current DCNs. The root
cause is due to the different ways of detecting network congestion. Reactive pro-
tocols detect network congestion based on those indirect and passive congestion
signals used in the data queue, such as packet loss [22,23], ECN [5,6,24] and
network delay [7,17]. Taking DCQCN as an example, when the queue length
exceeds the ECN threshold in switch, the data packets will be marked with con-
gestion experienced (CE) codepoint. Then, DCQCN can detect congestion by
simply identifying whether the packets are ECN-marked at the end hosts. How-
ever, ExpressPass acquires congestion information from the credit queue. As
shown in Fig. 1, a clear physical isolation exists between data queue and credit
queue under Expresspass. ExpressPass uses the credit loss rate as the congestion
indicator. When congestion is detected, ExpressPass reduces the credit sending
rate at the receiver.

Thus, if we mix Expresspass with DCQCN traffic in the network, Express-
pass can not detect the network congestion in the data queue and will transmit
packets at a full speed, even the queue length exceeds the buffer size in switch.
In contrast, DCQCN will reduce its sending rate continually until its bandwidth
occupancy approaches zero, since a great quantity of packets may be marked with
the CE codepoint in the data queue. We conducted several multi-protocol exper-
iments to prove the aggressiveness of ExpressPass when coexisting with other
three different types of reactive algorithms: DCQCN (FECN-based), CUBIC [29]
(drop-based) and Timely (delay-based). The result indicates that ExpressPass
is too aggressive for all of them, thus, the unfairness caused by the physical
isolation must be eliminated.

422 Y. Bai et al.

A1 A2 A1 A2
A1

A2

A2
A1

B2
B1

drop
B1

A1

A1

B1
A2 B2

R1

R2

S1

S2

Credit Limiter Credit Limiter

Switch 1 Switch 2

Expresspass
dataCredit

TCP
data

Fig. 1. The Dilemma of Deploying ExpressPass in DCN: ExpressPass gets network
congestion information only in credit queue. Thus, when there is other traffic (ep.
TCP flows) in the network and congestion occurs in the data queue, Expresspass will
preempt the bandwidth, resulting in a large number of queues, even packet loss.

The core problem of conflicting with reactive protocols is that the credit-
based transports like Expresspass only detect network congestion through the
credit queue, so a natural idea is to optimize the congestion detection mechanism
for ExpressPass so that it can also detect congestion in the data queue. Therefore,
we propose a new scheme called CCRP, which aims to achieve the symbiosis
between credit-based protocols and reactive protocols. The key points of CCRP
are as follows.

• CCRP breaks the isolation between the credit queue of credit-based protocols
and the data queue by adding the ECN marking mechanism.

• We make a trade-off between the throughput and latency of the multi-protocol
network by adjusting the threshold of the random early detection (RED) ECN
marking scheme in the switch data queue.

• We replace the old feedback control of the credit-based protocols by a new
ECN-based control algorithm, so that CCRP can also detect and deal with
the network congestion occurs in the data queue.

Our new ECN-based feedback control in CCRP can detect and respond
to network congestion in a few RTTs without affecting the performance of
the reactive protocol stack. CCRP ensures fairness between different protocols
with cross-protocol convergence time reaching milliseconds. The average buffer
occupancy is also reduced to less than 170 KB under CCRP. Moreover, when
CCRP coexists with few traffic under other congestion algorithms in the net-
work, the transmission can be completed at high convergence speed without
introducing additional overhead. Simulating the current DCN common parti-
tioning/aggregation mode shows that CCRP can greatly reduces the tail delay

CCRP: Converging Credit-Based and Reactive Protocols in Datacenters 423

and also ensure that the average flow completion time (FCT) in a multi-protocol
network will not be affected.

2 Background and Motivation

2.1 DCN Needs the Credit-Based Protocols

In the past decade, reactive protocols have played an important role, because
they achieve high throughput and low buffer occupancy rate in DCNs. So far,
many data centers are still deploying reactive protocols, such as DCQCN and
DCTCP, to prevent the network from collapsing under heavy and sudden traffic.

However, due to the increased link speeds and shallow buffered commercial
switches, the buffer size for per Gbps link speed is decreasing. For example,
DCQCN result in unfairness due to the slow response time, which puts DCQCN
in straits. In addition, the simulation result shows that when coexisting with a
large number of concurrent flows, the instantaneous queue length is much larger
than the maximum queue capacity under DCQCN, leading to low QOS for DCN.

Therefore, in recent years, credit-based proactive algorithms have attracted
widespread attention. Unlike reactive protocols, credit-based proactive protocols
like ExpressPass are characterized by the merits of high throughput, fast con-
vergence and bounded-queue. ExpressPass is a hop-by-hop proactive congestion
control algorithm. Before sending data packets, sender sends a credit request
to the receiver. After receiving the request, receiver sends the credits to the
sender on a per-flow basis in an end-to-end manner. The Switches then rate-
limit the credits and decide the available bandwidth for packets which will flow
in the reverse direction. As shown in Fig. 1, credit packets throttled to 5% band-
width ensure that traffic is transmitted within the link capacity. ExpressPass
can achieve lossless transmission at only 5% bandwidth cost by using credits.
However, Expresspass hasn’t been deployed in DCNs. To deploy incrementally in
data centers, ExpressPass must be optimized to coexist with the already widely
deployed reactive protocols, such as DCQCN and DCTCP.

2.2 The Challenges of Deploying Credit-Based Protocols in DCNs

Credit-based transports must coexist with other traditional protocols in DCNs,
however, whether two kind of traffic can converge fairly is a main problem. In
Fig. 2, we assume that flow 1 to N are scheduled by two different protocols—
ExpressPass and DCQCN. Then the question arises, if all the senders send
data to the receivers simultaneously in these topologies, can the bottleneck link
resource be allocated in a fair manner?

Figure 1 shows the dilemma of deploying ExpressPass in DCNs. The credit
queue for Expresspass is isolated from the data queue for other protocols. Thus,
when coexisting with other traffic in the network, the transmission rate of the
ExpressPass traffic will not be reduced, since Expresspass detect network con-
gestion only through the credit queue. In contrast, other “reactive” flow will

424 Y. Bai et al.

Sender 1

Sender N

Receiver 1

Receiver N

.

.

.

.

.

.

Bottleneck Link

Fig. 2. Dumbbell topology: can the
bottleneck resource be allocated in a
fair way?

Fig. 3. The Problem of Multi-protocol in
DCNs. Most bandwidth are occupied by
Expresspass once it is injected into network.

be restricted because they can detect the network congestion in the data queue
by using different congestion signals (ECN, RTT or packet loss). Consequently,
ExpressPass preempts all resources of the bottleneck link aggressively, while the
“reactive” flow can only wait.

To verify our analysis, we design an experiment based on the topology shown
in Fig. 2 by using OMNeT++ simulator. We let DCQCN run first, and then
insert ExpressPass traffic into the network after 10ms. We use long flows so
that they can be transmitted continuously. In addition, we set the link speed
to 10Gbps and the propagation delay to 5µs. The result is shown in Fig. 3, as
Expresspass inserted into network, it preempts all resources of the bottleneck
link. ExpressPass can always occupies the bandwidth quickly, while the other
“reactive” flows could only be restricted and wait. Therefore, ExpressPass must
be improved to coexist with reactive protocols, which is a quite a challenging
job.

3 CCRP Design

3.1 Basic Idea

As we describe in Sect. 2, the main problem is that Expresspass can not receive
any congestion information from the data queue due to the isolation between the
credit queue and the data queue. Thus, we propose a new protocol called CCRP,
which has achieved great success by using appropriate congestion signals for the
credit-based proactive protocols, developing a new feedback control schemes,
and determining reasonable network configurations. The key idea of CCRP is to
optimize the feedback control and congestion detect scheme of the credit-based
protocols, so that it can break the isolation between the data queue and the
credit limiter to achieve great convergence when coexisting with other traffic.

CCRP: Converging Credit-Based and Reactive Protocols in Datacenters 425

Algorithm 1: ECN-based Feedback Control on Receiver
1: ECN α ← 1, ω ← 0, cur rate ← initial rate, DCQCN Timer ← FALSE
2: repeat
3: credit Loss = # dropped credit/# sum credit;
4: ECN ratio = # ECN packet/# sum packet;
5: if ECN ratio � target ECN ratio then
6: ECN α = (1 − g) ∗ ECN α + g ∗ ECN ratio;
7: tmp rate = cur rate ∗ (1 − (target ECN ratio + ECN α)/2);
8: if DCQCN Timer = TRUE then
9: Use ECN-based feedback control of DCQCN;

10: end if
11: end if
12: if credit Loss � target loss then
13: � (increasing phase)
14: ω = (ω + ωmax)/2;
15: cur rate = (1 − ω) ∗ tmp rate + ω ∗ max rate;
16: else
17: � (decreasing phase)
18: cur rate = tmp rate ∗ (1 − credit loss rate);
19: ω = max(ωmin, ω/2);
20: end if
21: until End of flow

In CCRP, we choose FECN to deliver congestion information of data queue as
it can be provided by commodity switches in DCN.

Specifically, when the network is converted to a congested state, low mode
stage of DCQCN feedback control starts; when the network is not crowded,
ExpressPass’s credit feedback control algorithm will be fully effective. For ECN-
based feedback control, once we deploy a reasonable ECN threshold on the
switch, CCRP will automatically reduce the sending rate immediately after
receiving ECN-marked packet, because only when there is some other non-
ExpressPass traffic in the network, the queue length in switch will exceeds the
ECN threshold. In addition, when ECN-marked packet is no longer received in
multiple RTTs, CCRP will send credits more excessively.

3.2 ECN-Based Feedback Control

As an effective technique to detect network congestion, using ECN is not a
rare occurrence in reactive protocols. However, applying ECN to credit-based
proactive protocols is a novel work. Our ECN-based feedback control focuses on
two issues: (i) How to react appropriately to the different types of congestion
information from credit queue and data queue. (ii) How to detect congestion
more effectively.

First, we need to keep the good performance of the credit-based transports.
When there is little “reactive” traffic in the network environment, credits can
be sent excessively to achieve high convergence. To this end, in the initial few

426 Y. Bai et al.

RTTs, CCRP enables traffic tend to send packets at the link capacity. After
multiple RTTs, if not getting any packet marked with CE codepoint, we set the
DCQCN Timer as true and assume that there is no other “reactive” traffic in
the network and take a more aggressive approach.

Here, we must make a trade-off between convergence and packet loss. Before
the network environment is determined, it’s easy to cause packet loss when the
sender sends credits at high speed in the manner of Algorithm1. We can design
the phase to send packets by using slow start scheme, which will harm the
convergence of Expresspass. There are the reasons for sending credit at high
rate in CCRP:

• As the link speed has grown steadily from 10 Gbps to 100 Gbps, the trans-
mission of data flow will be completed in much shorter time. Under 100Gbps
network, the AvgFCT of 0-100KB small flows would be around 2 RTTs [16],
which indicates that even one RTT is quite important for these small flows.
Thus, If CCRP starts at a low speed, it may waste the bandwidth.

• Starting at high rate can help CCRP quickly detect whether there is other
“reactive” flows in DCNs.

• When there is few other “reactive” flows in the network, the characteristic of
high of convergence can be guaranteed for credit-based protocols.

In addition, we use ECN to detect the network congestion of data queue.
When Expresspass coexist with other “reactive” traffic in the network, some
packets will be marked with CE codepoint and the low mode of DCQCN feedback
control will be triggered. After serval increasing and decreasing stages, the ECN
ratio will converge to the target ECN ratio recursively.

Finally, in CCRP, we also design a variant version of the credit-based increase
and decrease phase to make full use of the link capacity information provided by
the credit queue. The variable ω that we added to these phases floats between
ωmin and ωmax, and can achieve slow self-increase and rapid decrease. Based
on this, we have designed the ECN-based feedback control algorithm, which is
shown in Algorithm1. With this algorithm, when coexisting with other “reac-
tive” traffic in the network, CCRP can allocate the bottleneck link bandwidth
in a fair manner instead of disrupting other traffic aggressively. Also, CCRP
can keep the advantages of bounded queue and high convergence of credit-based
protocols through the acceleration algorithm of DCQCN. Our experiments show
that the new version of credit-based feedback control is strongly suitable for
multi-protocol networks.

3.3 Parameter Choice

Target Loss: Since the credit-based protocols like Expresspass can disrupt other
traffic roughly, we need to set a lower target loss in the variant version of credit-
based control phase to reduce the aggressiveness in the early stages of deploying
CCRP. Thus, we set 0 for the target loss to adapt to the current multi-protocol
network environment.

CCRP: Converging Credit-Based and Reactive Protocols in Datacenters 427

Target ECN Ratio: In the current shallow-buffer switch environment, tar-
get ECN ratio should be set as 0, which will ensure that the average queue
length in switch is around the ECN threshold K. We also provide an interface
by defining the target ECN ratio to improve feedforward compatibility of DCN,
so that we can control the switch buffer usage by modifying the parameters at
the host instead of modifying the threshold at the switch.

ωmax: The aggression factor ω is particularly significant in CCRP feedback con-
trol algorithm. Based on our experiments, we find in most cases, the credit loss
is less than the target loss since CCRP does not always utilize all the band-
width. Thus, ω is tend to get closer to ωmax in multi-protocol network. In order
to reduce the aggressiveness of CCRP, we choose a smaller ωmax. To choose an
appropriate value for ωmax, we did a parallel experiments between CCRP and
DCQCN and finally found that 0.04-0.07 is suitable for ωmax to ensure fairness.
In our experiments, ωmax is set to 0.06 and the evaluation of the range of ωmax

is shown in Sect. 4.

3.4 Endhost and Switch Mechanism

Marking at CP: Based on the random early detection scheme, we use instan-
taneous queue length to detect network congestion. DCTCP recommends to set
Kmin and Kmax to the same value K, so that congestion can be detected and
handled quickly. DCQCN advocates to use three parameters, Kmin, Kmax, and
Pmax to mark packets. However, it’s not efficient because in most cases, there
is no ingress/egress traffic and queue occupancy is close to zero. Therefore, we
set Kmin as 5KB and Kmax as 200KB in CCRP.

Controller at RP: Different from other protocols, the ECN-based feedback
control algorithm of CCRP is on the receiving side. The controller of the receiver
can provide great convenience, since we can detect congestion accurately by
checking whether the data packet is marked with CE codepoint. Compared with
traditional method of using ACK to notify the sender to cut the congestion
window, CCRP can also reduce the load of the link by reducing the credit sending
rate at the receiver.

Bandwidth Allocation of Credit/Packet Channel: CCRP doesn’t change
the design of the credit packet size and the separate queue on the switch. An 84B
size Ethernet frame credit can trigger the sender to send a 1538B size Ethernet
frame packet. Therefore, 5% of the link capacity is used for credit transmit, while
the remaining 95% of the link capacity is allocated for data packets. Even if the
credit channel is not fully utilized in multi-protocol networks, the design remains
unchanged since the traffic of DCNs is changing rapidly.

4 Evaluation

In this section, we measure the performance of CCRP from five perspectives: (i)
utilization of the bandwidth (ii) fairness (iii) convergence speed (iv) flow comple-

428 Y. Bai et al.

Fig. 4. Fairness measurement. CCRP can achieve fairness greatly due to the ECN-
based congestion control, while ExpressPass cannot guarantee fairness.

tion time (v) queue length. All the experiments are completed with OMNeT++
simulator [27,28,30] and the ratio of CCRP/ExpressPass to DCQCN is 1:1.

Utilization of the Bandwidth: Firstly, we measure utilization since one of the
benefits of using ECN is high utilization. As we described in Sect. 2, Express-
pass must provide 5% of the link bandwidth to transmit credits, so that the
utilization of CCRP and Expresspass is near to 95%. We compare the perfor-
mance of CCRP, Expresspass and DCQCN in the same multi-protocol network
environment, and the results show that all the three protocols can make full use
of network bandwidth. The utilization rate of the network in which the credit-
based protocol and the ECN-based protocol coexist is 95%, while the utilization
of only ECN-based protocol is close to 100%.

Fairness: CCRP aims to optimize the feedback control algorithm and reduce
the aggressiveness of credit-based proactive protocols so that they can coexist
with other tradition “reactive” traffic in the network. Thus, fairness is the most
significant metric in our evaluation. We mainly did two experiments to mea-
sure the fairness of CCRP in multi-protocol networks. We calculate the average
bandwidth of each flow in a 100 millisecond interval by using the Jain’s fairness
index and the result is shown in Fig. 4a. Due to the aggressiveness of credit-
based protocols, fairness between Expresspass and DCQCN is poor. Besides,
as more concurrent traffic being injected into network, Expresspass will suffer
from packet loss and fairness will deteriorate further. On the contrary, as shown
in Fig. 4a, CCRP performs much better than Expresspass. We attribute this
improvement to the ECN-based feedback control in CCRP. As shown in Fig. 4b
and 4c, the fairness between the two types of traffic is evaluated by the ratio of
CCRP/Expresspass to DCQCN. This measurement only focuses on the unfair-
ness between different traffic and ignores the internal unfairness caused by packet
loss. The result also shows that CCRP can ensure fairness when coexising with
other “reactive” traffic.

Convergence: Convergence is also a highlight of our work. We did a series of
experiments to simulate the convergence of CCRP/ExpressPass and DCQCN
when they coexist in the network. Specifically, there are four types of hosts

CCRP: Converging Credit-Based and Reactive Protocols in Datacenters 429

Fig. 5. Convergence measurement. When ωmax ranges from 0.04-0.07, CCRP can con-
verge to fairness with DCQCN, while ExpressPass cannot converge to fairness.

(A to D). Type A machine (running ExpressPass or CCRP, sender) connect
type C machine (running ExpressPass or CCRP feedback control, receiver) and
type B machine (running DCQCN, sender) connect to type D machine (running
DCQCN, receiver) with 10 Gbps links via ECN-enable switch. A to C and B to
D are through the same path. The switch creates two connections to simultane-
ously fetch two large flows from sender A and D. Since ωmax is one of the most
important variable of ECN-based feedback control algorithm in CCRP, in our
experiments, we range ωmax from 0.03-0.07.

As seen from Fig. 5b, 5c, 5d, 5e, when ωmax ranges from 0.04 to 0.07, CCRP
can greatly reduce the aggressiveness of Expresspass and converge with DCQCN
perfectly. When the aggression factor is set to 0.07 as shown in Fig. 5e, the
convergence speed is only 100 ms slower than that of DCQCN as shown in
Fig. 5g. In contrast, Fig. 5f shows that ExpressPass with DCQCN cannot achieve

430 Y. Bai et al.

(a) FCT Distributions (b) Avg 99th 99.9th FCT

Fig. 6. FCT Performance of CCRP+DCQN and Expresspass+DCQCN. CCRP
achieves much better FCT than Expresspass.

Fig. 7. Average Queue Length. Compared with Expresspass, CCRP avoids bursty traf-
fic and reduces the buffer occupancy.

convergence in the multi-protocol network. However, when ωmax is too small
(ωmax=0.03), as shown in Fig. 5a, although CCRP can also help DCQCN seize
the bandwidth, the result of convergence is not ideal. Finally, Fig. 5h shows that
both CCRP and Expresspass have the same performance with high convergence.

Flow Completion Time: Since the FCT is one of the most important perfor-
mance metrics of network congestion protocols, we also use FCT as a comparison
metric. We plot the FCT distributions in Fig. 6 and the Avg/99th/99.9th FCT
in Fig. 7. All the simulation results show that, CCRP achieves much better FCT
than Expresspass. We believe that our new ECN-based feedback control breaks
the isolation between the data queue and credit queue, helping CCRP deal with
the network congestion in data queue and improve the FCT performance. How-
ever, Expresspass cannot detect the network congestion in the data queue and
send packets aggressively, causing severe packet loss and the increase of FCT.

CCRP: Converging Credit-Based and Reactive Protocols in Datacenters 431

Queue Length: The last major indicator is the buffer occupancy. Due to the
shallow buffered switches, low buffer occupancy is also the performance that we
pursue in our work. Thus, we measured the average queue length of the switch,
which characterizes the queue under general circumstances. As shown in Fig. 7,
compared with Expresspass, CCRP can achieve much smaller queue length when
coexist with DCQCN in the network.

Summary: After the detailed measurement and analysis, we conclude that
CCRP can greatly narrow the competitiveness difference between credit-based
proactive protocols like ExpressPass and traditional reactive protocols like
DCQCN. Compared with Expresspass, CCRP can converge with DCQCN per-
fectly and achieve high Utilization, fairness, small FCT and low buffer occupancy
at the same time.

5 Related Work

RTT-based Protocols: For those congestion control algorithms (Timely [7]
and DX [17]) which are based on delay, RTT is a very important congestion
signal. They do not require any information feedback from the switches. Only
the continuous record of delay of packets at the host can determine whether con-
gestion happens. Timely belongs to a different class of algorithms that use delay
measurements to detect congestion. Unlike TCP Vegas [17], which is window-
based and maintain a queue close to the minimum RTT, Timely is a rate-based
algorithm that employs a gradient approach and does not rely on measuring the
minimum RTT. It works well with NIC support, despite infrequent RTT signals.
Compared to DCTCP, Timely can significantly reduce queuing delay. Reducing
CPU utilization of end hosts is not a goal for Timely. Different from Timely, DX
implements accurate latency measurements using a DPDK driver for the NIC
and the congestion control algorithm is within the Linux TCP stack, which is
similar to the conventional window-based proposals.

Credit-Based Feedback Control: Credit-based congestion control in data
centers is inspired by credit-based flow control [19] for other interconnected sys-
tems. ExpressPass uses a similar idea like TVA [31] that performs rate-limit
requests at the router and CCRP inherite that method. Furthermore, in high-
performance networks, proactive congestion control uses grants for congestion
control. Unlike CCRP, those schemes use speculative packets on a grant-based
basis to avoid wasting preparing the data transmission. Although they are diffi-
cult to implement and have extra preprocessing time overhead, and those trade-
offs are hard to balance, they provide an idea for the credit-based protocols in the
DCNs. We look forward to finding a reasonable compatibility solution for other
credit-based transports. Moreover, compared with CCRP, end-to-end credit-
scheduled congestion control focus on incast problems based on the receiver.
Those transmission control algorithms add an extra control layer to make sure
senders only transmit according to some quota assigned to them.

432 Y. Bai et al.

6 Conclusion

In this paper, we propose a new protocol called CCRP, aiming for incrementally
deploying the credit-based congestion control in current data centers. CCRP
breaks the isolation between the data queue and the credit rate limiter by using
ECN as the congestion signal. The new efficient ECN-based feedback control
algorithm that we use to control the credit sending rate can guarantee high per-
formance of CCRP without interfering with other traffic in the network. The
evaluation results show that CCRP can greatly narrow the competitiveness dif-
ference between credit-based proactive protocols like ExpressPass and traditional
reactive protocols like DCQCN. Compared with Expresspass, CCRP can con-
verge with DCQCN perfectly and achieve high Utilization, fairness, small FCT
and low buffer occupancy at the same time. Therefore, CCRP has high applica-
bility in the incremental deployment of credit-based congestion control in data
centers.

Acknowledgment. We would like to thank the anonymous reviewers for their insight-
ful comments. We gratefully acknowledge members of Tianhe interconnect group at
NUDT for many inspiring conversations. The work was supported by the National Key
R&D Program of China under Grant No. 2018YFB0204300.

References

1. Singh, A., et al.: Jupiter rising: a decade of clos topologies and centralized control
in Google’s datacenter network. Commun. ACM 45, 188–197 (2016). https://doi.
org/10.1145/2785956.2787508

2. Jose, L., et al.: High speed networks need proactive congestion control. In: Pro-
ceedings of HotNets, pp. 1–7 (2015). https://doi.org/10.1145/2834050.2834096

3. Wilson, C., et al.: Better never than late: meeting deadlines in datacenter networks.
In: Proceedings of SIGCOMM, pp. 50–61 (2011). https://doi.org/10.1145/2018436.
2018443

4. Wu, H., et al.: ICTCP: incast congestion control for TCP in data-center networks.
In: Proceedings of CoNEXT, pp. 1–12 (2010). https://doi.org/10.1145/1921168.
1921186

5. Eran, H., et al.: Congestion control for large-scale RDMA deployments. In: Pro-
ceedings of SIGCOMM, pp. 523–536 (2015). https://doi.org/10.1145/2785956.
2787484

6. Alizadeh, M., et al.: Data center TCP (DCTCP). In: Proceedings of SIGCOMM,
pp. 63–74 (2010). https://doi.org/10.1145/1851182.1851192

7. Mittal, R., et al.: Timely: RTT-based congestion control for the datacenter. In:
Proceedings of SIGCOMM, pp. 537–550 (2015). https://doi.org/10.1145/2785956.
2787510

8. Hong, C., et al.: Finishing flows quickly with preemptive scheduling. In: Proceed-
ings of SIGCOMM, pp. 127–138 (2012). https://doi.org/10.1145/2377677.2377710

9. Gao, P., et al.: pHost: distributed near-optimal datacenter transport over commod-
ity network fabric. In: Proceedings of CoNEXT, pp. 1–12 (2015). https://doi.org/
10.1145/2716281.2836086

https://doi.org/10.1145/2785956.2787508
https://doi.org/10.1145/2785956.2787508
https://doi.org/10.1145/2834050.2834096
https://doi.org/10.1145/2018436.2018443
https://doi.org/10.1145/2018436.2018443
https://doi.org/10.1145/1921168.1921186
https://doi.org/10.1145/1921168.1921186
https://doi.org/10.1145/2785956.2787484
https://doi.org/10.1145/2785956.2787484
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/2785956.2787510
https://doi.org/10.1145/2785956.2787510
https://doi.org/10.1145/2377677.2377710
https://doi.org/10.1145/2716281.2836086
https://doi.org/10.1145/2716281.2836086

CCRP: Converging Credit-Based and Reactive Protocols in Datacenters 433

10. Perry, J., et al.: Fastpass: a centralized “zero-queue” datacenter network. In:
Proceedings of SIGCOMM, pp. 307–318 (2014). https://doi.org/10.1145/2619239.
2626309

11. Cho, I., et al.: Credit-scheduled delay-bounded congestion control for datacen-
ters. In: Proceedings of SIGCOMM, pp. 239–252 (2017). https://doi.org/10.1145/
3098822.3098840

12. Jiang, N., et al.: Network congestion avoidance through speculative reservation.
In: Proceedings of HPCA, pp. 1–12 (2012). https://doi.org/10.1109/HPCA.2012.
6169047

13. Montazeri, B., et al.: Homa: a receiver-driven low-latency transport protocol using
network priorities. In: Proceedings of SIGCOMM, pp. 221–235 (2018). https://doi.
org/10.1145/3230543.3230564

14. Michelogiannakis, G., et al.: Channel reservation protocol for over-subscribed chan-
nels and destinations. In: Proceedings of HPCA, pp. 52:1–52:12 (2013). https://
doi.org/10.1145/2503210.2503213

15. Nan, J., et al.: Network endpoint congestion control for fine-grained communi-
cation. In: Proceedings of SC, pp. 35:1–35:12 (2015). https://doi.org/10.1145/
2807591.2807600

16. Hu, S., et al.: Augmenting proactive congestion control with aeolus. In: Proceedings
of APNet, pp. 22–28 (2018). https://doi.org/10.1145/3232565.3232567

17. Lee, C., et al.: Accurate latency-based congestion feedback for datacenters. In: Pro-
ceedings of USENIX ATC, pp. 403–415 (2015). https://doi.org/10.1109/TNET.
2016.2587286

18. Brakmo, L., et al.: TCP Vegas: new techniques for congestion detection and avoid-
ance. In: Proceedings of SIGCOMM, pp. 24–35 (1994). https://doi.org/10.1145/
190314.190317

19. Kung, H., et al.: Credit-based flow control for ATM networks: credit update pro-
tocol, adaptive credit allocation, and statistical multiplexing. In: Proceedings of
SIGCOMM, pp. 101–114 (1994). https://doi.org/10.1145/190314.190324

20. Zhang, Y., et al.: BDS: a centralized near-optimal overlay network for inter-
datacenter data replication. In: Proceedings of EuroSys, pp. 1–14 (2018). https://
doi.org/10.1145/3190508.3190519

21. Mittal, R., et al.: Revisiting network support for RDMA. In: Proceedings of SIG-
COMM, pp. 313–326 (2018). https://doi.org/10.1145/3230543.3230557

22. Alizadeh, M., et al.: pFabric: minimal near-optimal datacenter transport. In:
Proceedings of SIGCOMM, pp. 435–446 (2013). https://doi.org/10.1145/2486001.
2486031

23. Fall, K., et al.: Simulation-based comparisons of (Tahoe, Reno and SACK TCP).
In: Proceedings of SIGCOMM, pp. 5–21 (1996). https://doi.org/10.1145/235160.
235162

24. Zats, D., et al.: DeTail: reducing the flow completion time tail in datacenter net-
works. In: Proceedings of SIGCOMM, pp. 139–150 (2012). https://doi.org/10.
1145/2377677.2377711

25. Judd, G., et al.: Attaining the promise and avoiding the pitfalls of TCP in the
datacenter. In: Proceedings of NSDI, pp. 145–157 (2015). https://doi.org/10.5555/
2789770.2789781

26. He, K., et al.: AC/DC TCP: virtual congestion control enforcement for datacenter
networks. In: Proceedings of SIGCOMM, pp. 244–257 (2016). https://doi.org/10.
1145/2934872.2934903

27. http://omnetpp.org/

https://doi.org/10.1145/2619239.2626309
https://doi.org/10.1145/2619239.2626309
https://doi.org/10.1145/3098822.3098840
https://doi.org/10.1145/3098822.3098840
https://doi.org/10.1109/HPCA.2012.6169047
https://doi.org/10.1109/HPCA.2012.6169047
https://doi.org/10.1145/3230543.3230564
https://doi.org/10.1145/3230543.3230564
https://doi.org/10.1145/2503210.2503213
https://doi.org/10.1145/2503210.2503213
https://doi.org/10.1145/2807591.2807600
https://doi.org/10.1145/2807591.2807600
https://doi.org/10.1145/3232565.3232567
https://doi.org/10.1109/TNET.2016.2587286
https://doi.org/10.1109/TNET.2016.2587286
https://doi.org/10.1145/190314.190317
https://doi.org/10.1145/190314.190317
https://doi.org/10.1145/190314.190324
https://doi.org/10.1145/3190508.3190519
https://doi.org/10.1145/3190508.3190519
https://doi.org/10.1145/3230543.3230557
https://doi.org/10.1145/2486001.2486031
https://doi.org/10.1145/2486001.2486031
https://doi.org/10.1145/235160.235162
https://doi.org/10.1145/235160.235162
https://doi.org/10.1145/2377677.2377711
https://doi.org/10.1145/2377677.2377711
https://doi.org/10.5555/2789770.2789781
https://doi.org/10.5555/2789770.2789781
https://doi.org/10.1145/2934872.2934903
https://doi.org/10.1145/2934872.2934903
http://omnetpp.org/

434 Y. Bai et al.

28. https://inet.omnetpp.org/
29. Ha, S., et al.: CUBIC: a new TCP-friendly high-speed TCP variant. ACM SIGOPS

Oper. Syst. Rev. 42, 64–74 (2008). https://doi.org/10.1145/1400097.1400105
30. Varga, A., et al.: An overview of the OMNeT++ simulation environment. In: Pro-

ceedings of SIMUTools, pp. 1–10 (2008). https://doi.org/10.1145/1416222.1416290
31. Yang, X., et al.: A DoS-limiting network architecture. In: Proceedings of SIG-

COMM, pp. 241–252 (2005). https://doi.org/10.1145/1080091.1080120

https://inet.omnetpp.org/
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1145/1416222.1416290
https://doi.org/10.1145/1080091.1080120

Storage

CompressedCache: Enabling Storage
Compression on Neuromorphic Processor

for Liquid State Machine

Zhijie Yang, Rui Gong, Lianhua Qu, Ziyang Kang, Li Luo, Lei Wang(B),
and Weixia Xu

College of Computer Science and Technology, National University of Defense
Technology, Changsha, Hunan, People’s Republic of China

{yangzhijie,Leiwang}@nudt.edu.cn

Abstract. Spiking Neural Network (SNN) based neuromorphic proces-
sors have gained momentum due to their high energy efficiency. As a kind
of SNN, Liquid State Machine (LSM) shows potential in domains such as
image recognition and speech recognition, and it is simpler to train than
other SNNs. In neuromorphic processors, weights and synapses are stored
on-chip to reduce the energy cost of data movement. However, the stor-
age of them is redundant if the dep loyed network on the neuromorphic
processor is LSM which is a sparse SNN. By exploiting the sparsity of
LSM, adopting storage compression can reduce the power consumption
of the processor or enable a single chip to deal with more complex tasks
with more logic neurons. In this work, we propose a lossy storage com-
pression method, Compressed Sparse Set Associative Cache (CSSAC)
which makes use of the sparsity and the robustness of LSM. We apply
CSSAC on an LSM-oriented neuromorphic processor to demonstrate how
the hardware design supports CSSAC to enable storage compression and
complete LSM computation. CSSAC does not introduce much metadata
overhead to ensure the compression effect, nor does it decrease the accu-
racy of LSM or the performance of the processor. Experimental results
show that in our implementation, CSSAC can, at best, result in 14%–
55% reduction in on-chip storage and 5%–46% reduction in power con-
sumption of the processor under different weight data widths on MNIST,
NMNIST, DVS128 Gesture datasets.

Keywords: Spiking neural network · Neuromorphic processor · Liquid
state machine · Storage compression

1 Introduction

SNNs [1–3] and neuromorphic processors [4–6] have attracted much attention
and developed rapidly due to the characteristics of modeling the behavior of

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 437–451, 2021.
https://doi.org/10.1007/978-3-030-79478-1_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_37&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_37

438 Z. Yang et al.

neurons in the brain and high energy efficiency. As a kind of SNN, LSM [1]
has shown great potential in the fields of image recognition and speech recogni-
tion [7]. Because it is natural to use LSM to recognize the spike trains produced
by various new sensors, such as Dynamic Vision Sensor (DVS) [8] and Dynamic
Audio Sensor (DAS). Besides, compared with other SNNs, the training of LSM is
simpler because only the readout layer of it, which is generally a single-layer fully
connected layer, needs to be trained. Moreover, different readout layers can share
the same versatile reservoir layer which is responsible for data pre-processing, to
deal with multiple tasks.

In neuromorphic processors like TrueNorth [4] and Loihi [5], all synapses and
weights are reserved on-chip storage to support the deployment of different kinds
of SNNs with dense or sparse connectivities. However, the storage reserved for
weights and synapses is redundant if the deployed network on the neuromorphic
processor is LSM which is sparse. It limits the number of logic neurons of LSM
that a single chip with the fixed area can support, which influences the processing
ability and the best accuracy of LSM. Besides, in the neuromorphic processor
such as TrueNorth, the power consumption used for storage is several times that
of computing and communication. Thus, compressing the storage of weights
and synapses can reduce power consumption or increase the number of logic
neurons on a single chip without adding more storage, which is vital to enabling
a single chip to handle more complex tasks and the construction of multi-core
neuromorphic processor to simulate larger-scale biological neural networks in the
next generation.

In this work, we propose CSSAC, a lossy storage compression method for
LSM-oriented neuromorphic processor. It makes use of the sparsity and the
robustness of LSM to enable storage compression without incurring accuracy
loss of LSM. To demonstrate how the hardware design supports CSSAC to
enable storage compression and LSM computation, we design a hardware neuron
for LSM-oriented neuromorphic processor using CSSAC storage organization.
Thus, CSSAC can be used in hardware neurons of similar neuromorphic proces-
sors deployed sparse SNNs like LSM. To sum up, our main contributions are as
follows:

– We design a lossy storage compression method, CSSAC, for LSM-oriented
neuromorphic processor. It makes use of the sparsity and the robustness of
LSM to enable storage compression on weights and synapses of LSM and
does not incur LSM accuracy loss, large metadata overhead nor processor
performance degradation.

– We design a hardware neuron for LSM-oriented neuromorphic processor using
CSSAC storage organization, demonstrating how the hardware design sup-
ports CSSAC to reduce the storage and power consumption and to complete
LSM computation.

The experimental results show that, in our implementation, CSSAC can,
at best, result in 14%–55%, reduction in storage and 5%–46%, reduction in
power consumption under different weight data widths on MNIST, NMNIST [9],

CompressedCache 439

DVS128 Gesture [10] datasets when compared with the uncompressed implemen-
tation.

2 Background and Motivation

In this section, we will introduce the basic structure of LSM and compressed
sparse storage methods. Then we will introduce our motivation, the sparsity of
LSM and the robustness of LSM.

2.1 Liquid State Machine

As shown in Fig. 1, LSM consists of the following three components. The input
layer, which is a feed-forward neural network for receiving external spike trains
produced by new sensors such as DVS and DAS. The reservoir layer, which is
a spiking recurrent neural network composed of multiple neurons for data pre-
processing. The readout layer, which can be many kinds of structures such as
Support Vector Machines (SVM), fully connected neural networks, and linear
regression models, etc. with plastic weights for classification.

I1
I2

Im

O1

O2

On

I1
I2

Im

Time

Readout Layer

… …

…
…

Input Layer

Reservoir Layer
for Data Pre-processing

Fig. 1. The typical structure of LSM. The reservoir layer is a spiking recurrent neural
network for data pre-processing with implastic weights. The weights in the readout
layer are plastic.

As the core of LSM, the reservoir layer is the most time-consuming and has
the most complex structure, among the three layers of LSM. As shown in Fig. 1,
there are two different types of neurons in the reservoir layer. Ones are the
excitatory neurons (the dark green ones) and others are the inhibitory neurons
(the light green ones). So there are four kinds of synapses in the reservoir layer
according to the difference between the starting and ending neurons. They are
excitatory-to-excitatory synapse, excitatory-to-inhibitory synapse, inhibitory-to-
excitatory synapse, and inhibitory-to-inhibitory synapse.

The topology of the reservoir layer is generated according to different connec-
tion probabilities of the four connections in network initialization. The weights
of the reservoir layer will remain unchanged during both inference and training
after the initialization. While only the weights of the readout layer are plastic
and can be trained to do classifications of different tasks. This feature makes
LSM training simpler and less time-consuming than other SNNs.

440 Z. Yang et al.

2.2 Compressed Sparse Storage Formats

Compressed sparse storage formats are used to exploit the sparsity of neural
networks to enable storage compression. The main idea of it is that only the non-
zero entries will be stored, together with their indices which uniquely identify
each entry. The existing sparse storage formats includes Compressed Sparse Row
(CSR) [11], Compressed Sparse Fiber (CSF) [12], co-ordinate [13] and their
variants [14]. In these formats, the non-zero entries are stored contiguously in the
memory along with their indices. For example, each entry in CSR is (dw + iw)
long, where dw and iw are the bit widths of the non-zero elements and their
indices, respectively. The bit width of the index is determined by the number of
entries before compression. Therefore, when the network sparsity is high enough,
using these compressed sparse storage methods can bring benefits. However,
when the network sparsity is not high enough, the metadata overhead brought
by them will make the effect worse or even counterproductive.

2.3 Motivation

In this section, we will introduce the sparsity and robustness of LSM which
provides us a chance to enable lossy storage compression on LSM-oriented neu-
romorphic processor. Then we will introduce our motivation.

The Sparsity of LSM. Lsm is spare both in space and time. The sparsity in
space of LSM is the key to storage compression. During the initialization of the
reservoir layer, the four types of synapses are randomly generated with different
connecting probabilities. Through a large number of experiments, we find the
optimal connection probabilities that can make the LSM network reach the high-
est accuracy under different datasets. With the optimal connection probabilities,
averagely, the total connection probability is about 34.7%. In other words, 65.3%
of all weights are zero. Thus these weights can be compressed and their storage
can be saved by using the compressed sparse storage method.

The Robustness of LSM. We observe that if we randomly replace a certain
proportion of the non-zero weights with a non-zero value in the reservoir layer,
the LSM accuracy will not decrease after the replacement. So LSM has a certain
degree of robustness.

We conduct an experiment to further quantify the robustness of LSM. First,
we generate and initialize an LSM network. Then we train the weights of its
readout layer until the accuracy of the network is converged. After that, we keep
the weight of the readout layer unchanged, randomly replace a certain percentage
of the non-zero weights with a non-zero value in the reservoir layer. We define this
kind of operation as the random disturbance. After the disturbance, we observe
the relationship between the random disturbance ratio and accuracy loss. As
shown in Fig. 2, when the random disturbance ratio is less than or equal to 5%

CompressedCache 441

Fig. 2. Relationship between random disturbance ratio on non-zero weights and accu-
racy loss under different datasets.

on the MNIST, NMNIST, and DVS128 Gesture datasets, the LSM accuracy will
not lose.

In summary, the static sparsity of LSM provides us a chance to enable storage
compression on LSM-oriented neuromorphic processor. The robustness of LSM
allows us to change a small part of non-zero weights without incurring the accu-
racy loss of LSM. These two features of LSM create the foundation for the lossy
sparse compression method on LSM-oriented neuromorphic processor to reduce
the power consumption or increase supported logic neurons with the fixed chip
area.

3 Compressed Sparse Set Associative Cache

In this section, we will present the details of CSSAC and analyzes the metadata
overhead it brings. The discussion about the sensitivity of the parameters is in
Sect. 6.

The main idea of the CSSAC approach is to compress the storage by storing
only the non-zero weights on the chip and organizing the weight memory as a
read-only set-associative cache. During the processor initialization, All non-zero
weights are transferred to the on-chip weight memory to be stored. Weights that
have nowhere to be stored due to the storage limit will be discarded. But their
synapses information is preserved on the chip. Thus discarded weights can be
replaced by other weights stored on chip when needed.

3.1 Details of the Method

In the CSSAC method, we first group all weights including zero ones and non-
zero ones of a neuron into equal groups. Then we generate tags based on higher

442 Z. Yang et al.

bits of their addresses for them. With the tag, a weight can be distinguished
from other weights within the same group.

All non-zero weights and their tags will then be transferred to the belonging
set in memory on-chip. But some of them will have no place to store because we
reduce entries in each set in on-chip memory by the same amount. The number
of reduced entries in each set is determined by the compression ratio under the
random disturbance ratio without accuracy loss. Thus, these weights will be
discarded. Note that some storage units may be empty. The on-chip memory is
organized as a read-only set-associative cache after the above initialization. Each
stored entry is (dw + tw) long, where dw and tw are the bit widths of the weights
and their tags respectively. tw is calculated as tw = �log2(N)�, where N is the
number of entries in a set before the compression. Besides, all of the synapses
information is stored in an on-chip adjacent vector in which each bit indicates
whether a synapse exists or not, to distinguish weights that are discarded in
compression from zero weights. Thus, if the discarded weights are needed, their
existence can be known through synapses information and they can be replaced
by the weights stored in the same set to be used.

Group 2
Group 3

Weight 0
Weight 1g
Weight 2

0
Weight 4
Weight 5

0
0

Weight 8
0
0

Weight 11
0

Weight 13
0

Weight 15

Weight 0 Weight 4 Weight 8 0

1 1 1 0 1 1 0 0 1 0 0 1 0 1 0 1

Grouping

Compress

Group 0

Adjacent Vector

Discard

tw bits dw bits
Original

CSSAC

00 01 10 11

1 0 0 0

Tag Number

Set Number

Address

Weight 1 Weight 5 0 Weight 1300 01 10 11
Weight 2 0 0 000 01 10 11

0 0 Weight 11 Weight 1500 01 10 11

Group 1

Weight 8 Weight 13

Weight 0 Weight 4Set 0 00 01
Weight 1 Weight 500 01
Weight 2 empty00 01
Weight 11 Weight 1510 11

Set 1
Set 2
Set 3 On-chip Memory

Fig. 3. Compressed sparse set-associative cache.

During the process of computation, a request for weight will lead to simul-
taneous accesses to both the weight memory and the adjacent vector. By the
modulus operation between the requested weight index and the number of sets,
the corresponding set number is generated. All tags in the target set are read
out and compared with the tag of request weight. If the tag of the requested
weight hits one of the tags in the set, the corresponding weight is read out to be
used. If not and the bit corresponding to the requested weight in the adjacent
vector is “1”, the first item in the same set is read out to replace the requested
one.

As shown in Fig. 3, we give an example of the CSSAC. Assume that a neuron
has 16 synapses and weights. Only 9 of synapses are existent, i.e. the weights of
them are non-zero, due to the static sparsity. Firstly, weights are grouped into 4
groups equally based on the modulo operation of their indexes. Each set has four

CompressedCache 443

entries. So the bit width of the tag is 2. The entries of each set are reduced to 2
in on-chip memory. During the process of transferring all non-zero weights and
their tags to on-chip memory, weight 8 and weight 13 are discarded because of
the limitation of storage space. Besides, the adjacent vector is also set to store
all synapses information without compressing.

Weight request

Generate tag
and set number

Access adjacent
vector

Access all tags
in target set in

weight memory

Synapse
exists?

Tag hits?

Exist

Not exist

Not hit

Read out the
hit weightHit

Skip the
computa on

Read out the
replaced weight

Fig. 4. The process of accessing a request weight in CSSAC.

The process of accessing a request weight is executed as the sequence in
Fig. 4 and the storage of CSSAC is organized as on-chip storage shown in Fig. 3.
For instance, if weight 3 is requested, the computation will be skipped. Because
the synapse of weight 3 is found as “0” in the adjacent vector. If weight 8 is
requested, its tag will not be found in weight memory. But in the adjacent vector,
the synapse of weight 8 will be found as “1”. Thus, the first entry in the same
set, weight 0, is read out to replace it.

3.2 Metadata Overhead

Given all weights entries of in-degree synapses of a neuron is a if it supports
fully connect with other neurons. These entries are divided equally into s sets.
We reduce r entries per set to compress the storage for there are not that many
synapses needed to be stored due to the static sparsity of LSM. Thus the total
metadata overhead M is computed as follows, which consists of tag and synapse
information stored in the adjacent vector.

M = [(�log2(
a

s
)�) × (a − s × r)] + (1 × a) (1)

where 1 ≤ s ≤ a and 1 ≤ r ≤ a
s . The compression ratio C is calculated as

follows:
C =

s × r

a
× 100% (2)

The storage reduction rate R considered metadata overhead is calculated as
follows:

R = [1 − M + (1 − C) × a × dw

a × dw
] × 100% (3)

444 Z. Yang et al.

where dw is the quantization bit widths of the weights. The discussion about
the sensitivity of storage reduction under different quantization bit widths is in
Sect. 6.

Compared with the conventional compressed sparse storage method, CSSAC
has a better effect on the medium sparse network such as LSM. Because it intro-
duces less metadata overhead than conventional methods which are discussed in
Sect. 6.

4 CSSAC-Improved Architecture

In this section, we will briefly introduce the working process of a typical LSM-
oriented neuromorphic processor. Then we introduce the hardware neuron design
in detail to demonstrate how the hardware neuron supports CSSAC storage
organization to reduce weight storage and completes LSM computation.

Algorithm 1: Workflow of typical LSM-oriented neuromorphic processor
Input: external input spikeit, i ≤ I, t ≤ T // I is the number of input neurons
Output: Classification result R
for t = 1; t ≤ T ; // T is the number of time steps in one sample picture do

for i = 1; i ≤ N ; do
for j = 1; j ≤ I + N ; // N is the number of hardware neurons do

if spikejt == 1&&synapseij == 1 then
voltagei = voltagei + weightij ;

end

end
if voltagei ≥ threshold then

spikei+I,t+1 = 1; //Generate internal spikes as input for the next time step.
voltagei = 0;
statei = statei + 1;

end

end

end
R = Readout(state); //Readout is the function of readout layer of LSM.

Typical LSM-oriented neuromorphic processor works by timestep as Algo-
rithm 1. In each time step, the external input spike train and their indices are
sent to the hardware neuron by shift registers cycle by cycle. Each neuron receives
the spike and index in each clock cycle and the weight is accessed according to
the received index to perform membrane voltage accumulation. When all the
external input spikes in a time step are processed, each neuron compares its
membrane voltage with the pre-stored threshold. And each neuron will generate
an output spike if the voltage is larger than the threshold for the use in the next
time step as an internal input spike. Then, the computation of the next time
step can be started. After all the time steps of a sample picture are performed,
the acquired liquid states are used to get the classification result.

CompressedCache 445

tag
CMP

spike_in

index_in

weightweighttag tag

weightweighttag

set number

CMP

Weight SRAM
en

Adjacent Vector Register

Neuron i
voltage

Synapse
Operation

Index
Counter index_out

C
M

PThreshold
spike_out

tag

addr

weightMUX

Fig. 5. Block diagram of the hardware neuron.

4.1 Hardware Neuron

The function of the hardware neuron is receiving the input spike, performing
the accumulation of membrane voltage of neurons, and generating the output
spike. As shown in Fig. 5, the structure of a neuron consists of the following
components. A weight SRAM and a tag SRAM are used to store the weights
of all logic neurons in a hardware neuron using CSSAC organization with par-
allel comparators and a multiplexer. An adjacent vector register that stores the
uncompressed synapses information. Registers that stores the threshold and all
membrane voltages of logic neurons. A synapse operation module is used to per-
form the accumulation of membrane voltage. A comparator used to compare the
threshold with membrane voltage and to decide whether to generate an output
spike or not. An index counter which indicates the index of the logic neuron
being used.

Cycle 1

0

0

-

-

Cycle 2

0

0

-

-

Cycle 3

0

0

1

-

Cycle 4

(a) Initialization process of hardware neurons.

0

0

1

-

Cycle 1

0

0

1

-

Cycle 2

0

0

1

-

Cycle 3

0

0

1

-

Cycle 4

0

0

1

-

Cycle 5

(b) Execution process of hardware neurons.

Fig. 6. Working process of hardware neurons organized using CSSAC.

446 Z. Yang et al.

The neuron works as follows, which is shown in Fig. 6. During weight initial-
ization, the initial weights are input into the hardware neuron and stored in the
weight SRAM using the CSSAC method. To simplify, assume that each neuron
has 4 synapses and 2 sets. Each set has 1 entry. Weights are passed between
neurons to be stored in neurons they belong to. Some weights will be discarded
due to the storage limitation but their synapses will be stored in the adjacent
vector such as the condition in Cycle 3.

During the membrane voltage accumulation process, each neuron receives
the input spike and index from the shift register. Using the index, each neuron
checks the existence of the synapse in the adjacent vector. If the input spike is
“0” or the synapse is found not existent, the computation in this cycle is skipped
as NU 1 dose in Cycle 1, 2, and 3. If the input spike is “1” and the synapse
exists, set number and tag are generated according to the input index. Then all
the tags of the target set are accessed to be compared with the generated tag.
If the generated tag does not match any tags in the set, the weight in the first
place of the set is directly fetched to perform the accumulation computation
of membrane voltage as NU 0 does in Cycle 3 of the execution process. The
computational model of the neuron is performed as the leak-integration-firing
(LIF) neuron model [7].

After processing all the input spikes, neurons will enter the phase of output
spike generation. The calculated membrane voltage is compared with the pre-
stored threshold. If the membrane voltage is greater than the threshold, an
output spike is generated and the membrane voltage is reset as NU 0 does in
Cycle 4 and 5 of the execution process. Otherwise, there is no output spike
and the membrane voltage of the logic neuron is directly written back to the
corresponding register. And the membrane voltage of the next logical neuron
to be processed is taken out for computation during the same time step. Until
voltage updating computations of all logic neurons are finished, computation of
the next time step will be started then.

5 Experiment Setup

5.1 Simulation Infrastructure

We use Brain 2 [15], a spiking neural network simulator, to generate the topol-
ogy of an LSM network containing 256 input neurons, 1024 reservoir neurons,
and a 1024*10 fully-connected readout layer. Then we initialize the weights in
LSM, train the network to convergence, test the LSM accuracy, and conduct
the random disturbance experiment of weights in the reservoir layer. We use a
python-based simulator to simulate the stored procedure of CSSAC and acquire
the discard ratios under different compression ratios. Note that the effect of the
discard ratio and the random disturbance ratio on the LSM accuracy is nearly
equal.

CompressedCache 447

5.2 Hardware Implementation

We implement the hardware architecture using RTL-level code and evaluate
in 32 nm ASIC technology to get experiment data of hardware. We first imple-
ment an uncompressed version of the neuromorphic processor using 1024 uncom-
pressed hardware liquid neurons. It uses shift registers for spike transmission and
contains the necessary buffers for data exchange. We then use CSSAC-improved
hardware neuron implementation to replace the neurons in the uncompressed
version of the neuromorphic processor. Then we get a compressed version of the
neuromorphic processor implementation.

5.3 Datasets

For image recognition, we use a subset of the MNIST and N-MNIST, each includ-
ing 10k images for training and 10k samples for testing. For the DVS dataset, we
use the DVS128 Gesture dataset [10] which contains 11 hand gestures from 29
subjects under 3 illumination conditions.The highest accuracies the LSM we use
can achieve in MNIST, N-MNIST, DVS128 Gesture datasets are 87.1%,93.1%,
and 85.6%, respectively while they are 99%, 99%, and 94% [10] in state of the
art work [16] using DNN.

5.4 Measurements

First, we measure the sensitivity of the discard ratio under the different num-
ber of sets to find the optimal parameter configuration of CSSAC. Second, we
measure the compression effect under different weight data widths compared
with CSR compressed sparse format. Then we measure the power consumption
reduction of the processor brought by CSSAC. The baseline is the implementa-
tion without storage compression.

6 Evaluation

6.1 Discard Ratio Sensitivity Analysis on Number of Sets

To study the impact of the number of sets on the discard ratio in CSSAC stored
procedure, we examine the storage compression under different numbers of set. In
infrastructure, each reservoir neuron has 1280 synapses (256 from input neurons
and 1024 from internal reservoir neurons). Figure 7 (a) shows different configu-
rations of CSSAC. First, we determine the number of sets. Then we compress
the storage by reducing the number of entries in each set, i.e. ways. The configu-
ration points under the blue dotted line plane will not bring accuracy loss. Each
CSSAC configuration point corresponds to a storage reduction rate. As shown
in Fig. 7 (b), the fewer sets there are, the more tolerant the discard ratio is to
the storage reduction rate. Because the memory is becoming more similar to the
fully associative cache when the number of sets gets smaller. But the hardware
overhead of the memory increases when the number of sets gets smaller for that
it needs more parallel comparators to compare the tags in the same set. So the
number of sets can not set to be too small.

448 Z. Yang et al.

Fig. 7. The relationship between the storage compression and the weight discard ratio
under different sets and ways numbers configuration when the data width of weight is
8-bit.

6.2 Compression Effect Sensitivity Analysis on Weight Data Width

To compare the compression effect of the CSSAC, hash addressing, and CSR [11],
we conduct storage compression using these three methods under different weight
data widths. Figure 8(a) shows the maximum storage reduction that can be
achieved by the three methods under different weight data widths. Although the
CSR method only stores non-zero weights and the storage utilization is 100%,
its compression effect is worse than CSSAC due to its high metadata overhead.
Another reason for the poor performance of CSR applied to LSM is that the
sparsity of LSM is not particularly high, thus limiting the effect of CSR. So
stored in CSR, the total storage with metadata overhead is even larger than the
storage before compression.

As for hash addressing, we use a simple hash function to recode addresses
for non-zero weights. The non-zero weights whose addresses are collided will be
discarded. We use this method as a lossy sparse compression method to compare
with CSSAC. Because this approach has less metadata overhead, it works better
when the weight data width is lower. However, due to the high collision rate
(more than 6%) brought by this method, the accuracy of LSM will be reduced,
so we do not adopt this method.

6.3 Power Consumption Evaluation

Compressing storage with CSSAC brings power consumption reduction of the
processor. We synthesize the uncompressed implementation and the compressed
implementation with CSSAC of the neuromorphic processor to show the rela-
tionship between the power consumption reduction and the compression ratio.
As shown in Fig. 8(b), CSSAC brings 5%–46% reduction in power consumption
under different weight data widths.

CompressedCache 449

Fig. 8. The compressing effect and power consumption sensitivity under different
weight quantization.

6.4 Performance Evaluation

Before storage compression using LSM sparsity, memory access in the neuromor-
phic processor is accomplished by direct addressing. Therefore, only one clock
cycle is required when accessing the weight. In the case of using CSSAC, access
to the synaptic information in the adjacent vector is also done by direct address-
ing and thus requires one clock cycle. But access a weight requires two clock
cycles for this process contains two steps, tag comparing and weight selecting
out which need two clock cycles in total. However, only if the input spike is “1”
and the synapse is existing will the two-cycle weight access process be performed
in full. Due to the sparsity of LSM in time and space, the actual probability fully-
executed weight access is about 0.1% averagely in the LSM we use under the
mentioned three data sets. Thus, using the CSSAC results in less than 0.2%
reduction in the performance of the neuromorphic processor approximately.

7 Related Work

Wang et al. [7] presented a general-purpose LSM-oriented neuromorphic learn-
ing processor with integrated training and recognition for real-world pattern
recognition problems. They did not take advantage of the sparsity in LSM for
storage compression. Jin et al. [17] proposed a novel sparse and self-organizing
LSM architecture with a spike-timing-dependent plasticity mechanism for effi-
cient on-chip training. In their work, they exploited the sparsity of the readout
layer and realized up to 29.2% synapse reduction. But they didn’t pay atten-
tion to the sparsity of unchanged weights and synapses in the reservoir layer of
LSM, which took up more storage than the readout layer. Because in their work,
the number of reservoir layer neurons was only 135, the storage of weights in
the reservoir layer might not be a big deal. TrueNorth [4] was a neuromorphic
processor which was composed of 4096 neurosynaptic cores tiled in a 2D array.

450 Z. Yang et al.

It implemented sparse memory access patterns to exploit the sparsity of SNNs
but it did not adopt storage compression. Loihi [5] was a neuromorphic proces-
sor which advanced the state-of-the-art modeling of spiking neural networks in
silicon. It supported three sparse matrix compression models in which fan-out
neuron indices were computed based on index state stored with each synapse’s
state variables.

To sum up, the above works do not pay attention to the storage compression
of the reservoir layer in LSM. And we do not know about the details of how
Loihi support the sparse compression because the authors only introduced the
methods briefly in their papers.

8 Conclusion

In neuromorphic processors, the storage of weights and synapses is redundant
if the deployed network is sparse, such as LSM. In this work, we design a lossy
storage compression method, CSSAC which makes use of the sparsity and the
robustness of LSM. CSSAC does not introduce much metadata overhead nor
does it decrease the accuracy of LSM or the performance of the processor. We
apply CSSAC on an LSM-oriented neuromorphic processor. Experimental results
show that in our implementation, CSSAC can bring much reduction in storage
and power consumption of the neuromorphic processor, which is meaningful
to enabling a single chip to handle more complex tasks and the construction
of multi-core neuromorphic processors to simulate larger-scale biological neural
networks in the next generation.

Acknowledgement. This work is founded by National Key R&D Program of China
[grant numbers 2018YFB2202603], HGJ of China (under Grant 2017ZX01028-103-002)
and in part by the National Natural Science Foundation of China [grant numbers
61802427] and [grant numbers 61832018]. And thanks to the reviewers for their efforts.

References

1. Maass, W., Natschlager, T., Markram, H.: Real-time computing without stable
states: a new framework for neural computation based on perturbations. Neural
Comput. 14(11), 2531–2560 (2002)

2. Diehl, P.U., et al.: Conversion of artificial recurrent neural networks to spiking neu-
ral networks for low-power neuromorphic hardware. In: 2016 IEEE International
Conference on Rebooting Computing, pp. 1–8 (2016)

3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017)

4. Akopyan, F., et al.: Truenorth: design and tool flow of a 65 mW 1 million neu-
ron programmable neurosynaptic chip. IEEE Trans. Comput.-aided Des. Integr.
Circuits Syst. 34(10), 1537–1557 (2015)

5. Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning.
IEEE Micro 38(1), 82–99 (2018)

6. Benjamin, B.V., et al.: Neurogrid: a mixed-analog-digital multichip system for
large-scale neural simulations. Proc. IEEE 102(5), 699–716 (2014)

CompressedCache 451

7. Wang, Q., Jin, Y., Li, P.: General-purpose LSM learning processor architecture
and theoretically guided design space exploration. Biomed. Circ. Syst. Conf. 1–4
(2015)

8. Berner, R., et al.: Dynamic vision sensor for low power applications. Int. Symp.
Consum. Electr., 1–2 (2014)

9. Orchard, G., et al.: Converting static image datasets to spiking neuromorphic
datasets using saccades. Front. Neurosci. 437(2015)

10. Amir, A., et al.: A low power, fully event-based gesture recognition system. Com-
put. Vision pattern Recognit. 7388–7397 (2017)

11. Buluc, A., et al.: Parallel sparse matrix-vector and matrix-transpose-vector multi-
plication using compressed sparse blocks. ACM Symp. Parallel Algorithms Archit.
233–244 (2009)

12. Smith, S., et al. SPLATT: efficient and parallel sparse tensor-matrix multiplication.
Int. Parallel Distrib. Proc. Symp. 61–70 (2015)

13. Zhang, S., et al.: Cambricon-x: an accelerator for sparse neural networks. Int. Symp.
Microarchitecture, 1–12 (2016)

14. Pal, S., et al. OuterSPACE: an outer product based sparse matrix multiplication
accelerator. High-performance Comput. Archit. 724–736 (2018)

15. Stimberg, M., Romain, B., Goodman, D.F.M.: Brian 2, an intuitive and efficient
neural simulator. eLife (2019)

16. He, W., et al.: Comparing SNNs and RNNs on neuromorphic vision datasets: sim-
ilarities and differences. arXiv (2020)

17. Jin, Y., Liu, Y., Li, P.: SSO-LSM: a sparse and self-organizing architecture for
liquid state machine based neural processors. Int. Symp. Nanoscale Archit. 55–60
(2016)

ODCP: Optimizing Data Caching
and Placement in Distributed File System

Using Erasure Coding

Shuhan Wu1, Yunchun Li1, Hailong Yang1,3(B), Zerong Luan2, and Wei Li1

1 School of Computer Science and Engineering, Beihang University,
Beijing 100191, China

hailong.yang@buaa.edu.cn
2 College of Life Sciences and Bioengineering, Beijing University of Technology,

Beijing 100083, China
3 State Key Laboratory of Mathematical Engineering and Advanced Computing,

Wuxi 214125, China

Abstract. Many current distributed file systems use erasure-coding
based data redundancy techniques to improve the reliability of data stor-
age. Such techniques can significantly improve the effective storage uti-
lization. However, there are several drawbacks to the above techniques.
Firstly, they introduce non-negligible computation overhead for decod-
ing. Secondly, traditional data caching and placement strategies become
less effective in such cases. To solve the above drawbacks, this paper pro-
poses a new data cache allocation mechanism based on simulated anneal-
ing and a new data placement strategy based on convex optimization,
which effectively reduces data block transmission delay and decoding
delay. We have implemented the proposed data placement strategy in the
real-world distributed file system Alluxio, and evaluated the performance
of our strategy. Experiment results show that our strategy can signifi-
cantly reduce the file read delay compared to traditional data placement
strategies.

Keywords: Distributed file system · Erasure coding · Decoding
latency · Data placement strategy · Cache allocation strategy

1 Introduction

The distributed file system provides an excellent solution for storing and process-
ing large scale data. However, the unbalanced accesses for hot data in distributed
file system often cause severe performance degradation. For instance, studies [11]
have shown that in a Facebook cluster, for more than 50% of the time, the fre-
quency of visits to the most popular links exceeds 4.5× than the average visits of
ordinary links. Such a phenomenon of extremely unbalanced data accesses often
leads to overwhelmed load on storage nodes and causes the slowdown of the entire

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 452–464, 2021.
https://doi.org/10.1007/978-3-030-79478-1_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_38&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_38

Optimizing Data Caching and Placement Using Erasure Coding 453

distributed file system [8,15]. The widely adopted method to address the load
unbalance problem is to cache data and optimize data placement. Particularly,
erasure-coding based techniques have been proposed to reduce the storage cost
of keeping multiple data copies in the distributed file system for reliability [6,11],
such as Ceph [2] and HDFS [12]. However, erasure-coding based techniques have
their own drawbacks [6,9]. Firstly, the decoding process introduces extra compu-
tation overhead and thus leads to longer data access delay. Secondly, the decoding
overhead cannot be addressed by traditional data caching and placement strate-
gies, because the overhead highly depends on the data block to be decoded.
Therefore, a new approach needs to be designed to optimize the data caching
and data placement targeting the distributed file system with erasure-coding.

To solve the above challenge, we propose a data cache allocation mechanism
based on simulated annealing and a data placement strategy based on convex
optimization. Evaluate results on real-world distributed file system Alluxio with
erasure coding shows that our approach can significantly reduce file access delay.

Specifically, the main contributions of this paper are as follows:

– We propose a new data placement strategy that decomposes data placement
problem into two stages of sub-optimization problems, and solves them using
simulated annealing algorithm and convex optimization method, which dra-
matically reduces the complexity for computing the optimization results.

– We propose a new data cache allocation mechanism based on simulated
annealing algorithm, which identifies the most profitable file blocks and allo-
cates them in the data cache to achieve low read latency.

– We build a file read delay model that incorporates the decoding delay model
and data transmission delay model. This model can effectively guide the
design of data placement strategy for optimizing the file read latency.

– We implement the proposed approaches in real-world distributed file system
Alluxio, and demonstrate the effectiveness of our approaches for reducing file
read latency by comparing with traditional data placement approaches.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground of data caching and data placement as well as the motivation of this
paper. We present the design and implementation of our ODCP in Sect. 3. We
evaluate the effectiveness of ODCP in Sect. 4. Section 5 presents the related work
on the data caching and placement, and we conclude this paper in Sect. 6.

2 Background and Motivation

2.1 Erasure Coding

The most commonly used Erasure Code is RS code, which divides the original
file into k file blocks, and then generate r redundant blocks through the encoding
matrix. k plus r equals n, which is denoted as (n, k) coding. It is an MDS code [5]
(maximum distance separable code), which means that for (n, k) encoding, any
subset with k blocks is obtained from the set of n blocks, the original file can be
recovered.

454 S. Wu et al.

2.2 Data Cache Allocation

In the erasure-coded scenario, due to the MDS code’s characteristics, the read
delay of the entire file is determined by the k-th arriving file block. Therefore,
when the current k-1 block contains a cached block, the traditional backup cache
mechanism can not accelerate file access. To solve this problem, Aggarwal V et
al. proposed a functional caching mechanism in [1]. In this caching mechanism,
the cache area stores the re-encoded blocks that still satisfy the MDS code’s
characteristics. With this caching mechanism, the cache block can always speed
up file access. Therefore, based on functional caching, this paper proposes a new
caching strategy for decoding delay optimization.

2.3 File Read Probability

Unlike traditional file access, for erasure-encoded files, the read request is uncer-
tain, because of the characteristics of its MDS code, not every block must respond
to the read request [10]. Therefore, we set a probability value for each block to
represent its response probability when the read-write agent sends requests for a
file. If the sum of all block probabilities is k, then there are k file block responses
per access on average. The file access frequency and file block read probability
are directly related to the storage node load. Therefore, this paper takes the read
probability distribution as the optimization variables and converts it into a file
placement strategy.

2.4 Motivation

In the distributed file system, due to the uneven frequency of data access, there
are often severe data hot spots. For erasure-encoded files, because of its MDS
code character and decoding overhead, traditional optimization techniques are
not sufficient [3]. Secondly, many optimizations for erasure codes tend to pay
more attention to the transmission delay, while the decoding delay is less studied
or ignored. However, Fig. 1(a) shows that the decoding delay is significant com-
pared to the transmission delay. And the results in Fig. 1(b) show a strong linear
relationship between the decoding delay and the number of redundant blocks,
which indicates there is room for optimization of the decoding delay. In order to
maintain data consistency and high performance, many current distributed file
systems such as HDFS use write-once design, in which the read operations are
much more popular than write. Therefore, our work mainly focuses on the read
operations.

3 Design and Implementation

3.1 Data Cache Allocation Using Simulated Annealing

There are two problems with the functional cache [1]: first, the re-encode process
increases the encoding workload and write delay. Second, it does not have any

Optimizing Data Caching and Placement Using Erasure Coding 455

(a) transmission and decoding delay (b) decoding delay and number

Fig. 1. Early experiment results

optimization in terms of decoding delay. Placing the re-encoded block in the
cache area increases the probability that it participates in decoding greatly.
Therefore, we limit the file blocks stored in the cache area to the original blocks.
For the allocation of the cache area, we define the selection matrix mtx, which
indicates which file blocks are selected to enter the cache area, where the elements
can only take 0 or 1. The elements with value of 1 represent the file block where
file i can be placed on node j. To search for the optimal selection matrix mtx,
we continuously reducing the cost C as shown in Eq. 1, where α is scale factor,
P is the read probability distribution, indicating the probability of sending a file
block read request for file i on node j, λ is the read frequency of each file.

C = α · mean(
m∑

i=1

pij · mtxij · λi) + (1 − α) · std(
m∑

i=1

pij · mtxij · λi) (1)

Then we use the search algorithm based on simulated annealing to find a
near-optimal cache allocation scheme. The algorithm has a chance to accept
a worse solution than the current optimal solution, which can prevent it from
falling into the local optimal. Simultaneously, the algorithm’s random factors
will gradually decrease with the increase of the number of iterations to ensure
the final convergence of the algorithm.

3.2 Building File Read Delay Model

When accessing erasure-coded files, the read-write agent reads a file in two steps:
transmission and decoding. The decoding process starts only after the transmis-
sion of the k-th block is completed. Therefore, this paper will model the two
processes and combine them as the read delay model.

The upper limit O of the weighted average read delay of all files is as shown
in Eq. 2, where Ūi and T̄i represent transmission delay and decoding delay.

O =
m∑

i=1

λi∑m
i=1 λi

(Ūi + T̄i) (2)

456 S. Wu et al.

Transmission Delay Model. This paper cites a read latency estimation for-
mula based on queuing theory proposed in [13], which has been mentioned and
verified in many works [1,13,14]. But in order to combine it with the decoding
delay, we added a subscript k to represent the difference between the original
block and the redundant block.

First the statistics required in the model need to be calculated as follows.
the average value of each node’s transmission time E[Xj] in Eq. 3, variance
σ2
i in Eq. 4, the total request amount of node j Λj in Eq. 5, the second-order

origin moment Γ 2
j in Eq. 7, the third-order origin moment Γ 3

j in Eq. 8. And μj

represents the service rate of node j. ρj in Eq. 6 representing the request strength.

E[Xj] =
1
μj

(3)

σ2
i = E[X2

j] − E[Xj]2 (4)

Λj =
m∑

i=1

(Pij1 + Pij2)λi (5)

ρj = Λjμj (6)

Γ 2
j = E[X2

j] (7)

Γ 3
j = E[X3

j] (8)

where Xj is the transmission delay of a single file block, λi is the file access
rate. The optimization variable Pijk represents the probability of sending a read
request to file i on node j, where k represents the block type (k = 1 represents
the original block, and k = 2 represents redundant block). m represents the total
number of files, and n represents the total number of nodes.The transmission
delay Ūi is as shown in Eq. 9:

Ūi = zi+
n∑

j=1

Pij1 + Pij2

2
(E[Qj]−zi)+

n∑

j=1

Pij1 + Pij2

2

√
(E[Qj] − zi)2 + V ar[Qj]

(9)
where zi is an auxiliary variable. Besides, Qj represents the total transmission
delay of reading file blocks on node j. The form of E[Qj] and V ar[Qj] is as
defined in Eq. 10 and 11:

E[Qj] =
1
μj

+
ΛjΓ

2
j

2(1 − ρj)
(10)

V ar[Qj] = σ2
j +

ΛjΓ
3
j

3(1 − ρj)
+

Λ2
j (Γ

2
j)2

4(1 − ρj)2
(11)

Optimizing Data Caching and Placement Using Erasure Coding 457

Decoding Delay Model. The encoding and decoding process of the erasure
code is essentially matrix multiplication operation. The coding matrix is com-
posed of an identity matrix and a redundant matrix. After multiplying with the
data matrix, the original blocks and the redundant blocks are obtained. Pick any k
blocks from them, and then take the corresponding rows from the coding matrix
to form a residual matrix, and inverse it to get the recovery matrix. Use the
recovery matrix to recover the original data matrix. However, the original blocks
do not need to be calculated during the recovery process, and other lost blocks
need to be calculated. So there is a linear relationship between the number of
redundant blocks and the decoding delay. A mathematical model is established
to estimate the decoding delay T̄i and its form is as defined in Eq. 12:

T̄i = η
Si

ki + ri

m∑

i=1

λi(1 · ri,Cached +
n∑

j=1

Pij2) (12)

The decoding time is positively correlated with the load of the agent, the
file block size, the number of redundant blocks participating in decoding. For
file i, the redundant blocks in cache will certainly participate in decoding, other
redundant blocks of this file will participate in decoding according to probability.
Where η is the scale factor, S is the file size, ki and ri are the original and
redundant blocks of file i. To minimize decoding delay, let ri,Cached = 0. Then
the form of T̄i turns into Eq. 13.

T̄i = η
Si

ki + ri

m∑

i=1

λi(
n∑

j=1

Pij2) (13)

3.3 Formulating the Optimization Problem

In order to find the probability distribution under which the lowest average read
delay can be achieved, a convex optimization problem needs to be formulated.
We use Eq. 2 as the objective function. Read probability distribution P and
the auxiliary variable z are used as optimization variables. And constraints are
added as follows.

Pij1 · Pij2 = 0 (14)
m∑

i=1

di ≤ C (15)

n∑

j=1

Pij1 · Pij2 = ki − di + 1 (16)

ceil(P..1 + P..2) = ¬mtx (17)

To minimize the read delay and reduce the complexity of the transmission
delay model, we use Eq. 14 to ensure that a node can only store one block of a

458 S. Wu et al.

file at most. Inequality 15 ensures the sum of the number of blocks of all files
in the cache cannot be greater than the capacity of the cache area, where di is
the number of blocks of file i in the cache, and C is the capacity of the cache.
Equation 16 ensures the sum of the read probability of each file on all nodes plus
the number of blocks already in the cache minus redundant request equals to k.
Add an additional redundant read request is to reduce the influence of straggler.
Equation 17 ensures that the read probability distribution obtained must meet
the premise of the previous cache allocation. The convex optimization problem
is defined as 18.

min

m∑

i=1

λi∑m
i=1 λi

(Ūi + T̄i)

s.t. 14, 15, 16, 17
var. Pijk, zi

(18)

3.4 Solving the Convex Optimization Problem

This subsection introduces the challenges of this optimization problem and the
solutions we proposed. First of all, the constraints of the real number range and
the integer constraint di coexist in the constraint conditions, which belong to
the mixed-integer constraint problem. Usually, it is difficult to find the optimal
solution for this type of problem directly. Secondly, the optimization problem has
two sets of variables, reading probability distribution P and auxiliary variable
z. It is difficult to optimize both at the same time.

Our solution to the integer mixed constraint problem is to decompose the
originally unified problem into two stages: cache allocation and storage node
data placement. When the cache allocation strategy is determined, the variable
di becomes a constant, Eq. 15 will be satisfied, and Eq. 16 becomes a real range
constraint. Therefore, there is no integer constraint.

And inspired by other work [1,13,14], this paper uses a method called alter-
nate optimization to solve the two sets of variable problem. It alternately opti-
mizes two sets of variables until the objective function converges.

Then the mapping relationship between the optimal solution and the data
placement strategy must be established. First, according to the variable di, the
corresponding number of blocks of each file are put into the cache area. The
original blocks are placed preferentially. Secondly, if the block probability of
requesting a file to a node is not 0, the corresponding block must be prepared.
In sum, our approach optimizes reading delay by placing data according to the
data placement strategy and initiating file requests based on the solution of
Eq. 18.

4 Evaluation

4.1 Experimental Setup

We evaluate the distributed file system Alluxio with our proposed approaches on
a cluster of 10 nodes. The cluster contains one Master node, one Client node (as a

Optimizing Data Caching and Placement Using Erasure Coding 459

read-write agent), and eight Slave nodes. There are 3 types of configuration of the
slave nodes, including one model1 (Intel Xeon Phi 7210, 200 GB Memory, 12TB
HDD), four model2 (Intel Xeon E5-2620 V4, 12 GB Memory, 100 GB HDD),
and three model3 (Intel Xeon E5-2620 V2, 8 GB Memory, 200 GB HDD). The
network bandwidth is 1gbps between all nodes.

4.2 File Read Latency Optimization

We test and analyze the overall file access latency and the latency of the two
stages it contains. We test and compare common random strategies, round-robin
strategies, the optimization strategy sprout proposed in [1], and our optimization
strategy. They are written down as random, round, sprout, opt, respectively.
According to our cluster size, we set the standard parameters of erasure coding
in the experiment to (k, n) = (4, 8). The reading probability λ of each file are
taken as 0.009, 0.011, 0.01, 0.012, 0.014, 0.013. The capacity of the cache area is 8
file blocks. The file sizes are randomly selected between 25 MB and 250 MB. For
smaller files, they are usually merged into bigger files in distributed file systems
to achieve better performance.

Average Block Transmission Delay. Accessing a file requires obtaining a
sufficient number of file blocks before entering the next stage of the decoding
process. Therefore, the read delay of a file block dramatically affects the entire
file’s overall access delay. As shown in Fig. 2(a), we evaluate the file block access
delay under different data access patterns.

(a) blockfetching
delay

(b) decode delay (c) file read delay

Fig. 2. Different types of delays under four different data access patterns.

The results show that the round-robin strategy has the longest block read
delay among all strategies. This is because under the round-robin strategy, the
density of access requests received by a single slave node fluctuates periodically.
Therefore, when the slave node is busy, it will slow down the transmission process

460 S. Wu et al.

of a series of file blocks. The random strategy alleviates this periodicity, so the
block read delay decreases.

The opt strategy reaches the best of all strategies. The reasons are as follows.
In the sprout strategy, cache allocation and transmission delay optimization
problems are simultaneously modeled in an optimization problem. But in this
article, these two problems are divided into two steps. This method significantly
reduces the complex constraints in the optimization problem and the difficulty
of solving. And a more reasonable cache allocation scheme makes the file block
read delay have a better optimization effect. Compared with the other three
strategies, the opt strategy reduces the average block read latency by 36.9%,
45.6%, and 27.9%, respectively.

We also evaluate and analyze the change in the average read latency of file
blocks for each strategy with different cache sizes, as is shown in Fig. 3.

Fig. 3. Impact of data cache capacity on block read delay.

We use ms/MB to express the average block read delay to eliminate the
impact of the delay change caused by the file block size. It can be seen that,
overall, the increased capacity of the cache area under each strategy will reduce
the average read latency of the file block. The average decline rate of each strat-
egy are 10.3%, 5.5%, 6.5%, 6.9%, indicating that opt strategy reaches the highest
cache utilization efficiency.

Decoding Delay. We count the decoding delays of the four strategies under
various file sizes and express them through the cumulative decoding delay of the
entire test process.

As shown in Fig. 2(b), decoding delay of random and round-robin strategies
increase rapidly with the size of the files. The decoding delay of the round-robin
strategy is the longest, and the frequency of occurrence of redundant blocks
during reading is periodic. When the read-write agent is busy at decoding, the
decoding process of each file is slowed down; when it is idle, the decoding capa-
bility is wasted. Therefore, the total decoding delay is greatly increased. The
random strategy eases this periodicity. The optimization of the request queue
by the sprout strategy further eases the periodicity mentioned above. At the
same time, because we place redundant blocks on nodes with lower IO band-
width, the optimization process reduces the probability of requests on low IO
bandwidth nodes, which indirectly reduces the number of redundant blocks,

Optimizing Data Caching and Placement Using Erasure Coding 461

which also reduces decoding delay. But because there is no specialized optimiza-
tion for decoding delay, there is still optimization space. Opt strategy has been
specifically optimized for decoding delay. While ensuring the request queue’s
optimization effect, it also greatly reduces the number of redundant blocks. So
opt strategy achieves the lowest decoding delay among the four strategies. Com-
pared with the other three strategies, opt strategy reduces the decoding delay
by 36.1%, 46.3%, and 30.9%, respectively.

Average File Read Delay. The average file reading delay is a comprehensive
reflection of the strategy optimization effect. It is the composite result of the
previous average block read delay and decoding delay.

As shown in Fig. 2(c), due to the disadvantages of the previous average block
read delay and decoding delay, the round-robin strategy has the longest file access
delay among all four strategies. The random strategy is slightly lower than the
round-robin strategy. The sprout strategy optimizes the request queue to reduce
the average file read delay significantly. Finally, due to the more detailed opti-
mization of opt strategy, including cache allocation, file block transmission delay
optimization, and decoding delay optimization, we obtain the lowest file read
delay among all strategies. After standardizing the file read latency according to
file size, opt strategy reduces the file read latency on average of 29.8%, 32.6%,
and 19.9% compared to the other three strategies.

4.3 Parameter Sensitivity Analysis

Redundancy. Higher redundancy has better reliability, but it is usually inferior
in decoding delay and file size. During the experiment, we found that redundancy
is an important factor that affects the decoding delay optimization effect. We
use the form of decoding delay at different k values in Fig. 4 to show the effect
of varying redundancy on the optimization effect of decoding delay. The redun-
dancy is 5/8, 4/8, 3/8. As the redundancy reducing, the gap between various
strategies is decreasing. That is because as the proportion of redundant blocks
decreases, the optimization for redundant blocks in the optimization strategy
gradually disappears. Finally, the decoding delay approaches the unoptimized
strategy.

Fig. 4. Decoding delay under different settings of parameter k.

462 S. Wu et al.

Straggler. The straggler is a widespread problem in distributed file systems
and distributed computing frameworks. Once a straggler appears in the system,
the entire task is often slowed down due to the bucket effect. Opt optimization
strategy uses redundant read requests to reduce the impact of a straggler.We
artificially restrict slave2. Its network bandwidth was limited to 100mbps to
simulate the situation of a straggler.

Fig. 5. File read delay when encountering straggler.

As shown in Fig. 5, in the case of a straggler, the file read delay of each
strategy increases. But opt strategy initializes a redundant read request before
the end of the transmission process. Before the last file block arrives, it can enter
the decoding stage, greatly reducing the straggler impact. Therefore, in this
particular case, compared to the other three strategies, opt strategy decreases
the file read delay by 67.5%, 66.9%, 48.0%.

5 Related Work

Liao et al. proposed a data layout strategy for distributed file systems based on
data access frequency in [7]. This method first analyzes the history information
of block access sequence of a specific application, and then uses the k partition
algorithm to divide the files into multiple groups according to the frequency of
data access. Afterward, the data is distributed in groups. In short, this newly
proposed data placement strategy makes the data evenly distributed, and the
data block access rate tends to be balanced.

Vaneet Aggarwal et al. proposed a functional caching method to minimize
service delay in erasure code storage clusters in [1]. This paper optimizes the
caching mechanism in the erasure code storage system. Making the cache blocks
in the cache and the data blocks in the cluster constitute a decoding combination
that conforms to the MDS code. And optimizing the data placement according
to the file access delay.

HE and others investigated the redundancy setting of the Hadoop cluster
in [4]. The default number of backups used in HDFS is 3. That is, each file
block must be stored three times. A higher number of backups means higher
storage resource consumption, but it also brings higher data availability and
data locality. Therefore, a backup method is proposed in the article to backup
more frequently accessed files to improve the performance of data access.

Optimizing Data Caching and Placement Using Erasure Coding 463

6 Conclusion

To address the long file read delay in distributed file system using erasure-coding
based redundancy policy, we propose a new data cache allocation mechanism and
data placement strategy using simulated annealing and convex optimization,
respectively. In addition, we implement our approach in real-world distributed
file system Alluxio. The experiment results show that our approach can effec-
tively reduce the file read delay by an average of 29.8%, 32.6%, and 19.9%,
compared to traditional random, round and sprout data placement strategies.

Acknowledgements. This work is supported by National Key Research and Devel-
opment Program of China (Grant No. 2020YFB1506703), National Natural Science
Foundation of China (Grant No. 62072018), and the Open Project Program of the
State Key Laboratory of Mathematical Engineering and Advanced Computing (Grant
No. 2019A12).

References

1. Aggarwal, V., Chen, Y.F.R., Lan, T., Xiang, Y.: Sprout: a functional caching
approach to minimize service latency in erasure-coded storage. IEEE/ACM Trans.
Networking 25(6), 3683–3694 (2017)

2. Aghayev, A., Weil, S., Kuchnik, M., Nelson, M., Ganger, G.R., Amvrosiadis, G.:
File systems unfit as distributed storage backends: lessons from 10 years of ceph
evolution. In: Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pp. 353–369 (2019)

3. Bao, H., Wang, Y., Xu, F.: An adaptive erasure code for jointcloud storage of
internet of things big data. IEEE Internet Things J. 7(3), 1613–1624 (2019)

4. Ciritoglu, H.E., et al.: Investigation of replication factor for performance enhance-
ment in the hadoop distributed file system. In: Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, pp. 135–140 (2018)

5. Ding, C., Tang, C.: Infinite families of near mds codes holding t-designs. IEEE
Trans. Inf. Theor. (2020)

6. Li, Z., Lv, M., Xu, Y., Li, Y., Xu, L.: D3: deterministic data distribution for
efficient data reconstruction in erasure-coded distributed storage systems. In: 2019
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp.
545–556. IEEE (2019)

7. Liao, J., Cai, Z., Trahay, F., Peng, X.: Block placement in distributed file systems
based on block access frequency. IEEE Access 6, 38411–38420 (2018)

8. Mazumdar, S., Seybold, D., Kritikos, K., Verginadis, Y.: A survey on data storage
and placement methodologies for cloud-big data ecosystem. J. Big Data 6(1), 15
(2019). https://doi.org/10.1186/s40537-019-0178-3

9. Mohan, L.J., Rajawat, K., Parampalli, U., Harwood, A.: Optimal placement for
repair-efficient erasure codes in geo-diverse storage centres. J. Parallel Distrib.
Comput. 135, 101–113 (2020)

10. Nicolaou, N., Cadambe, V., Prakash, N., Konwar, K., Medard, M., Lynch, N.:
Ares: adaptive, reconfigurable, erasure coded, atomic storage. In: 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS), pp. 2195–
2205. IEEE (2019)

https://doi.org/10.1186/s40537-019-0178-3

464 S. Wu et al.

11. Rashmi, K., Chowdhury, M., Kosaian, J., Stoica, I., Ramchandran, K.: Ec-
cache: load-balanced, low-latency cluster caching with online erasure coding. In:
12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), pp. 401–417 (2016)

12. Veeraiah, D., Rao, J.N.: An efficient data duplication system based on hadoop dis-
tributed file system. In: 2020 International Conference on Inventive Computation
Technologies (ICICT), pp. 197–200. IEEE (2020)

13. Xiang, Y., Lan, T., Aggarwal, V., Chen, Y.F.R.: Joint latency and cost optimiza-
tion for erasure-coded data center storage. IEEE/ACM Trans. Networking 24(4),
2443–2457 (2015)

14. Yu, Y., Huang, R., Wang, W., Zhang, J., Letaief, K.B.: Sp-cache: load-balanced,
redundancy-free cluster caching with selective partition. In: SC18: International
Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 1–13. IEEE (2018)

15. Zhang, X., Cai, Y., Liu, Y., Xu, Z., Dong, X.: Nade: nodes performance awareness
and accurate distance evaluation for degraded read in heterogeneous distributed
erasure code-based storage. J. Supercomputing, pp. 1–30 (2019)

Towards Optimizing Deduplication
on Persistent Memory

Yichen Li, Kewen He, Gang Wang(B), and Xiaoguang Liu(B)

College of Computer Science, Nankai University, Tianjin, China
{liyc,hekw,wgzwp,liuxg}@nbjl.nankai.edu.cn

Abstract. Data deduplication is an effective method to reduce data
storage requirements. In data deduplication process, fingerprint identifi-
cation may cause frequent on-disk fingerprint lookups which hurt perfor-
mance seriously. Some locality-aware approaches were proposed to tackle
this issue. Recently, the Persistent Memory (PM) brings low latency and
high bandwidth, and has become a hotspot in data storage. Dedupli-
cation systems with fingerprints stored on PM will provide extremely
fast on-disk fingerprint lookup, and therefore traditional locality-aware
approaches designed for slow devices are likely no longer valid.

In this paper, we model the traditional locality-aware approaches and
analyze their performance on PM. Inspired by the analysis, we propose
an optimized PM-based fingerprint identification scheme in which the
fingerprint cache is replaced with a simple, low-cost read buffer, and the
order of the Bloom filter and the read buffer is swapped. The experimen-
tal results on real PM devices show that, compared with the traditional
locality-aware approaches, the proposed scheme improves the fingerprint
identification throughput by 1.2–2.3 times.

Keywords: Data deduplication · Persistent memory · Fingerprint
identification · Bloom filter · Cache

1 Introduction

Data deduplication is a popular method for data reduction, which can greatly
save storage space and network bandwidth by eliminating duplicate data. Typ-
ically, data deduplication consists of four steps: data chunking, fingerprinting,
fingerprint identification, and data storing. Specifically, a deduplicated system
firstly divides the data stream into data chunks (normally 4 KB–128 KB), and
calculates their unique fingerprints using a cryptographically secure hash sig-
nature (e.g. MD5, SHA-1, SHA-256), and then identifies redundant chunks by
comparing their fingerprints and finally, unique data will be stored.

This work is partially supported by National Science Foundation of China
(U1833114, 61872201, 61702521); Science and Technology Development Plan of Tianjin
(18ZXZNGX00140, 18ZXZNGX00200).

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
X. He et al. (Eds.): NPC 2020, LNCS 12639, pp. 465–477, 2021.
https://doi.org/10.1007/978-3-030-79478-1_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79478-1_39&domain=pdf
https://doi.org/10.1007/978-3-030-79478-1_39

466 Y. Li et al.

Fingerprint identification is a key step in deduplication and is also an I/O
intensive step. In general, DRAM is not large enough to hold all the fingerprints,
and hence we must store them on disk. Therefore, on-disk lookup for fingerprints
will become a serious bottleneck of the entire system. Locality-aware approaches
such as DDFS [1] were proposed to reduce the accesses to low-speed disk by using
Bloom filter and cache, which can achieve a very high cache hit rate due to good
temporal and/or spatial locality in data streams. This kind of approach has
been widely used in deduplication systems to improve fingerprint identification
performance in which fingerprints are stored on HDD or SSD.

Recently, the development of persistent memory (PM) has attracted a lot of
attention. The latency of PM is several orders magnitude lower than those of SSD
and HDD. Therefore, if we build deduplication systems by storing fingerprints
on PM rather than SSD and HDD, looking up fingerprints will take much less
time. Traditional locality-aware approaches designed for slow devices like HDD
and SSD aiming to reduce on-disk lookup may be not effective for deduplication
systems based on PM. In such systems, the performance bottleneck may be
transferred from disk I/O to other parts.

In this paper, we model the traditional locality-aware approach and analyze
its performance on PM. Inspired by the analysis, we propose two optimization
strategies for deduplication with PM. The contributions of this paper are as
follows.

– We model the typical locality-aware fingerprint identification approach and
analyze the impact of PM on its performance.

– We find out that the overhead of fingerprint cache is two heavy for dedupli-
cation with PM and propose to replace it with a simple and low-cost read
buffer to exploit the spatial locality in data streams more effectively.

– We find out that Bloom filter becomes a significant performance bottleneck
of fingerprint lookup and propose to adjust the order of Bloom filter and read
buffer for highly duplication data to overcome this problem.

– We conduct experiments on real-world datasets and show that the proposed
optimizations improves the throughput by 1.2–2.3 times.

The remainder of this paper is organized as follows. Section 2 surveys the
related work and Sect. 3 presents our motivation. Section 4 models the finger-
print identification and analyze the performance on PM. Section 6 presents the
experimental results of different fingerprint identification algorithms. Section 7
concludes the paper.

2 Background and Related Work

2.1 Data Deduplication

Since data deduplication is generally applied to where a huge amount of data
is involved, we have to store all fingerprints on disk rather than in DRAM.
Therefore, fingerprint identification may cause frequent accesses to low-speed

Towards Optimizing Deduplication on Persistent Memory 467

disks, which becomes a severe bottleneck of data deduplication. There are many
researches focusing on this problem [1–6], in which a number of locality-aware
approaches are proposed. It is found that redundant data tend to reappear as
similar sequences in real-world workload, which is called the spatial locality.
Data Domain Deduplication File System (DDFS) [1] is one of the earliest dedu-
plication systems exploiting the spatial locality in workload. DDFS uses Bloom
filters and Locality Preserved Caching (LPC) to reduce disk I/O. Since tradi-
tional cache algorithms do not work well for caching fingerprints, LPC is designed
to exploit the spatial locality in workload to eliminate the disk I/O bottleneck
in deduplication. By combining Bloom filter and LPC, DDFS reduces 99% of
disk accesses in fingerprint identification.

Lazy Exact Deduplication [6] is another locality-aware approach. Dedupli-
cation systems such as DDFS look up fingerprints on disk whenever a cache
miss occurs, so they are called “eager” deduplication in [6]. The lazy deduplica-
tion, however, buffers the incoming fingerprints and then searches for them on
disk in batch. The basic idea is to combine multiple fingerprint lookup into one
singer on-disk lookup. The lazy strategy can significantly reduce the number of
on-disk lookups but increases the overhead of in-memory cache operations. In
general, because most data streams to be deduplicated have excellent locality,
locality-aware approaches are widely used in deduplication [1,6,8].

2.2 Persistent Memory

Persistent Memory (PM) provides low latency, high bandwidth, persistence and
byte-addressability, and thus has attracted a lot of attention to exploring its
performance. In recent years, there have been a lot of studies on programming
models [9], file systems [10], data structures [11], and key-value store [12] on
PM. Table 1 shows the performance of PM devices. Recent search [8] shows
that real PM device, Intel Optane DC Persistent Memory Module [13], exhibits
100∼300 ns random or sequential read latency which is 2∼4× longer than
DRAM’s. Considering the limited write endurance and capacity of persistent
memory, data deduplication may become an important part of PM in the future.

Table 1. Storage device latency and bandwidth

Device Latency Bandwidth

DRAM 60 ns 64 GB/s

PM 300 ns–1µs 5–10 GB/s

SSD 50µs–80µs 250 MB/s

HDD 10 ms 2.6 MB/s

NV-dedup [14] implements an in-line deduplication system based on the Per-
sistent Memory File System (PMFS). It proposes a fine-grained metadata table
and lightweight consistency strategy for metadata store in persistent memory.

468 Y. Li et al.

Regardless of the DRAM capacity, NV-dedup indexing all fingerprints in DRAM,
and therefore the spatial locality in data streams is not considered in this work.
However, with the help of the traditional locality-aware approaches, we can
improve the performance of fingerprint identification on a huge amount of data.

3 Motivation

For deduplication systems storing fingerprints on PM, due to extremely low
access latency, the traditional locality-aware approaches designed for slow devices
may be no longer suitable now. To better understand the effect of the traditional
approaches on PM, we conducted experiments on Intel’s Optane PMM, as the
details are shown in Sect. 6. We have the following observations.

Fingerprint lookup on PM is very fast. Compared with HDD, the over-
all fingerprint identification time is reduced by more than 90% with PM. More-
over, it is very fast to look up fingerprints on PM, which is only 3% of the total
time. Even if we directly look up fingerprints on PM without any filtering and
caching, the performance is much better than that on HDD

Traditional locality-aware approaches become less effective. With
the traditional locality-aware approaches, the fingerprint identification time is
reduced at most by 40% on PM. However, for HDD, it can improve perfor-
mance by hundreds of times [1]. In other words, the traditional locality-aware
approaches still work with PM, but far less effective than with HDD.

Bloom filter and cache become the main bottlenecks. The Bloom filter
and cache can avoid 99% on-disk lookup, which is very important for deduplica-
tion systems using HDD. However, they take over 90% of the overall time when
storing fingerprints on PM, which become the new bottlenecks in deduplication.

4 Modeling and Analysis

In this section, we focus on locality-aware approaches for deduplication, which
adopts Bloom filter and locality-preserved cache. Specifically, those kinds of
approaches first check whether the fingerprint is duplicate by using a Bloom
filter. A negative answer means that the fingerprint is definitely not in the fin-
gerprint set, and a positive answer indicates that it is very likely in the set so
that a cache lookup needs to be performed next. However, false positives exist,
which will cause unnecessary cache misses and disk accesses, just to find that the
fingerprints are unique. Cache missing will cause a fingerprint lookup on disk. If
the fingerprint exists, some of its neighbor fingerprints will be prefetched to the
cache together to increase the cache hit rate. According to the results of Bloom
filter lookup, fingerprint identification can be divided into three cases.

a) Negative: A negative answer given by the Bloom filter means that the
data chunk is unique and no further search in cache and on disk is needed.
Therefore we have Eq. (1) that shows the negative search time Tn. Nn is the
number of negative answers and LB is the latency of a single lookup in Bloom

Towards Optimizing Deduplication on Persistent Memory 469

filter. Bloom filter can greatly reduce access to fingerprints index on disk by
identifying most unique data chunks.

Tn = Nn × LB . (1)

b) True positive: True positives indicate that the data chunks are actually
duplicate. The time Ttp of this case is shown in Eq. (2). Ntp(= Nd) is both the
number of false positive answers and the number of duplicate fingerprints. LC

and LD are the latency of a single lookup in cache and on disk respectively.
Rmiss refers to the cache miss rate. Therefore, the last two terms of Eq. (2)
denote the time taken by looking up fingerprints further in cache and on disk
respectively. We will analyze the impact of cache on performance later in this
section.

Ttp = Ntp × LB + Nd × LC + Nd × Rmiss × LD. (2)

c) False positive: Here, the data blocks are unique but judged to be dupli-
cate. Therefore, we still need to search their fingerprints further in cache and
on disk although it is impossible to find them. False positives waste a lot of
time and hence should be reduced by increasing the size of Bloom filter. The
lookup time Tfp of false positives is given by,

Tfp = Nfp × (LB + LC + LD) = Nu × Rfp × (LB + LC + LD), (3)

where Nfp (= Nu × Rfp) refers to the false positive rate of Bloom filter, Nu

is the number of unqiue fingerprints. Therefore, if the total fingerprints is N
(= Nu + Nd), the total time for fingerprint identification is,

T =Tn + Ttp + Tfp

=N × LB + (Nu ×Rfp + Nd) × LC + (Nu ×Rfp + Nd ×Rmiss) × LD.
(4)

We can see from Eq. (4) that the main effect of Bloom filter on the fingerprint iden-
tification time is the lookup latency LB and the false positive rate Rfp. The larger
the two factors are, the longer the identification time is. LB is determined by the
hash computation used in the Bloom filter, and Rfp mainly depends on the rel-
ative size of the Bloom filter to the data. For the systems storing fingerprints on
HDD and SSD, since LB and LC is much lower than the disk access latency LD, so
previous work concerning fingerprint identification optimization mainly focused
on decreasing Rfp, that is, decreasing the number of disk accesses. However, we
can’t infinitely increase the size of the Bloom filter to decrease Rfp.

When we store fingerprints on PM, LD becomes very close to LB and LC , and
thus Eq. (4) is no longer dominated by the third term. To optimize fingerprint
identification, we need to find a good trade-off between the time taken by the
Bloom filter itself (the first term) and the time saved by its low false positive
rate (the last two terms). A big and complex Bloom filter will decrease the false
positive rate effectively and then reduce in-cache and on-disk lookup time, but
the improvement may be offset by its own cost. According to our experimental
results in Sect. 6, as the size of Bloom filter grows, the fingerprint identification

470 Y. Li et al.

time doesn’t change appreciably. This indicates that a smaller Bloom filter is
enough for deduplication with PM.

Similarly, the cache algorithms also take time themselves, especially the com-
plicated ones. When HDD/SSD is used to store fingerprints, the on-disk lookup
time saved by cache is much higher than that spent in cache lookup, and there-
fore a cache is necessary for fingerprint identification. However, when PM is
introduced, we must carefully trade off between the two parts of time (the sec-
ond and the third terms in Eq. (4)). An effective but high-cost cache algorithm
may not suitable for deduplication with PM. For example, in [6], a highly effec-
tive cache algorithm is proposed. However, our experimental results show that,
compared with another simpler but faster cache algorithm, it causes performance
degradation in PM-based systems because of its high overhead. We found that
even a simple cache algorithm like LRU is too heavy for fingerprint identification
with PM. This inspires us to turn to a lightweight approach to exploit spatial
locality in data streams, which may slightly increase the third term in Eq. (4)
but significantly decrease the second term.

5 Design Choices

According to previous analyses, we can draw the following conclusions helpful
to design an optimized fingerprint identification method with PM.

– Lookup in Bloom filter takes much time, and thus reducing the amount of
work performed on Bloom filter may improve the overall performance.

– Cache lookup and cache prefetching latency are important now. Cache algo-
rithms such as the one used in lazy exact deduplication are too heavy for
deduplication with PM.

Fig. 1. Design with PM

Inspired by these conclusions, we proposed a fingerprints identification frame-
work as Fig. 1 shows, in which we adopt the following design choices.

Towards Optimizing Deduplication on Persistent Memory 471

a) Read buffer: We replace the relatively heavy fingerprint cache with a
simple, low-cost read buffer to exploit the spatial locality in workload. We use
a simple hash table to implement the read buffer. When we find a duplicate
fingerprint on PM, we load its subsequent fingerprints together to DRAM (in
our experiments, 50 neighbor fingerprints are prefetched). If the buffer is full,
the oldest fingerprints in the buffer will be replaced without using any cache
eviction algorithm. So a prefetching is quite light, only involves one memcpy
from PM to DRAM. No other operations and data structures are involved to
increase the hit rate. A buffer lookup needs only a simple hash table search.
In general, traditional cache algorithms such as LRU are designed under the
consideration of the temporal locality, which needs dedicated data structures
and operations to record the least recently used information to determine
which old item should be replaced. But a simple read buffer doesn’t have these
overhead. Despite sacrificing a certain hit rate, it still improves performance
by saving the above costs. Our experimental results show that read buffer
can still obtain a hit rate of about 90% which indicates effective exploitation
of the spatial locality in data streams. Moreover, its own cost is much lower
than the traditional cache, and then the overall performance is improved.
b) Log-structured fingerprints table: To preserve the spatial locality of
the data layout, we use a log-structured fingerprints store on PM. A cuckoo
hash table indexed by fingerprints is also deployed on PM. A newly arrived
fingerprint is appended to the fingerprints store. Therefore, for adjacent data
chunks in the data stream, their fingerprints are also neighbors in the log-
structured store. We can just prefetch consecutive fingerprints from PM to
DRAM to exploit the spatial locality, and only a single memcpy operation
needs to be performed, which is very fast. The cuckoo hash provides fast
fingerprint lookups.
c) Adjusting the order of operations: After replacing the heavy cache
with a lightweight read buffer, we found that the time spent in this part
becomes much shorter than that taken by Bloom filter. This observation
inspires us to swap the order of the read buffer and the Bloom filter. Although
this brings more lookups in the read buffer, the additional time contributes
little to the overall time. Meanwhile, the work on Bloom filter is cut down
drastically, which may reduce the overall time,

T
′
= N ×LC + (Nu +Nd ×Rmiss) ×LB + (Nu ×Rfp +Nd ×Rmiss) ×LD, (5)

where we ignore the difference between the miss rates of the two procedures
here for simplicity. Compared with Eq. (4), we can see that the performance is
improved, that is T

′
< T , if and only if the following inequality holds,

N × LC + (Nu + Nd × Rmiss) × LB < N × LB + (Nu × Rfp + Nd) × LC , (6)

that is,

LC

LB
<

Nd × (1 − Rmiss)
Nu × (1 − Rfp)

≈ Nd × (1 − Rmiss)
Nu

≈ Rd × (1 − Rmiss)
1 − Rd

, (7)

where Rd (≈ Nd

N) is the duplication rate of the dataset. So, if the duplication
rate Rd meets:

472 Y. Li et al.

Rd >
LC

LB × (1 − Rmiss) + LC
, (8)

adjusting the order of the read buffer and Bloom filter can effectively improve
the performance. The larger Rd is, the more effective the new order is.

6 Experimental Results

6.1 Experiment Settings

We conducted our experiments on a machine equipped with two 18-core Intel
Xeon Gold 5220 processors run at 2.2 GHz. The machine has 4 Intel Optane DC
persistent memory (128 GB each) installed in socket 0. The ext4-DAX file system
is mounted on the PM devices. A Seagate 4TB HDD is also used for comparison.
All the code is compiled using GCC 4.8.5. We use PMDK to map files into virtual
address space and use clflush and mfence to persist fingerprints to PM.

We used two datasets to evaluate our deduplication methods. Src refers to
the source code of CentOS, Fedora, Ubuntu, etc., which is collected from a server
at Nankai University1. The total size is 272.12 GB and the duplication rate is
53.12%. FSL refers to the snapshots of students’ home directories published by
the File system and Storage Lab (FSL) at Stony Brook University [15]. We
randomly select a part of data within 7-day intervals from the year 2011 and
20142. The total size is 101.037 GB and the duplication rate is 20.69%.

We implemented the traditional lazy and eager methods for comparison. We
implemented our new design for PM based on the eager method but replace the
fingerprint cache with a simple read buffer and swap the order of the Bloom
filter and the read buffer. We call it the buffer method. We only measure and
compare the fingerprint identification time.

6.2 Overall Performance

Fig. 2. Fingerprint identification time

1 http://ftp.nankai.edu.cn/.
2 http://tracer.filesystems.org/.

http://ftp.nankai.edu.cn/
http://tracer.filesystems.org/

Towards Optimizing Deduplication on Persistent Memory 473

We first evaluate the fingerprint identification time on HHD and PM. To ensure
a very low false positive rate, the Bloom filter uses 6 hash functions and has a size
of 1 GB. Figure 2 shows the results. Locality-oblivious refers to the method
that searches the fingerprints directly on PM. Buffer-F refers to the method
that adopts a lightweight read buffer. Buffer-L is based on Buffer-F and further
swaps the order of the read buffer and Bloom filter.

Fig. 3. Breakdown of fingerprint identification time with PM

From Fig. 2(a) we can see that, when fingerprints are stored on HDD, both
locality-aware methods perform better than the buffer method because of a much
higher cache hit rate and the lazy method performs the best because it signifi-
cantly reduces disk I/O through batch lookup. The buffer method is 3–4 times
slower than the locality-aware methods. When we store fingerprints PM, the
overall fingerprint identification time is reduced by up to 97.23%, which mainly
due to the extremely low latency of PM. The locality-aware method still works
with PM and reduces at most 32% of time compared with Locality-oblivious.
However, the gap is much narrower than that with HDD. For both datasets
on PM, the buffer method performs best and the lazy method performs worst
(excluding Local-oblivious), which is consistent with our analysis. For dataset
Src with a higher duplication rate, Buffer-L performs best and is 1.7–2.3 times
faster than the locality-aware methods and 2.7 faster than Local-oblivious. How-
ever, for FSL dataset with a low duplication rate, Buffer-L is not so effective
and even slower than the eager method. Buffer-F performs best, which is 1.2–
2.1 times faster than the locality-aware methods. It is worth noting that the lazy
method takes nearly the same time as Locality-oblivious, which is mainly due
to the high cost of the cache algorithm.

Figure 3 shows the breakdown of fingerprint identification time. Different
from fingerprint identification on HDD, lookup on PM only accounts for 2% of
the overall time. Lookup in Bloom filter and cache takes up 52.8% and 44.8% of
the total time respectively in Eager . With a read buffer, lookup on PM takes
a little more time but the time spent in cache is effectively reduced. Although
a certain hit rate is sacrificed, the low latency of the read buffer significantly
reduces the overall time. For dataset Src, adjusting the order of the Bloom filter
and read buffer can effectively reduce the time cost in the Bloom filter but

474 Y. Li et al.

increases a small amount of in-cache lookup time. As a result, the overall time
is effectively reduced. However, for the dataset FSL, adjusting the order may
cause performance degradation. For data with a low duplication rate, the Bloom
filter is much more important than the read buffer. Adjusting the order reduces
few lookups in the Bloom filter but increases much more lookups in read buffer.

To summarize, with fast PM, the fingerprint identification process takes much
less time. Traditional locality-aware approaches still work but the performance
bottleneck is transferred from disk I/O to in-memory operations. To further
optimize fingerprint identification, a low-cost read buffer should be used in dedu-
plication systems. Other methods such as adjustment of the order between the
Bloom filter and read buffer are effective for some specific workloads.

6.3 Quantitative Analysis

Table 2. Performance details of different methods

Dataset Src FSL

Method Eager Buffer Eager Buffer

Rfp 1.5% 1.1%

Rhit 98.65% 94.89% 99.17% 95.16%

LB 0.1531µs 0.1517µs 0.139µs 0.141µs

LC 0.14241µs 0.0366µs 0.13457µs 0.0378µs

LD 0.38901µs (PM)

We tested the values of the parameters involved in our analytical model described
in Sect. 4 with two datasets on our experimental platform. Table 2 shows the
results. For convenience, we rewrite Eq. (4) as,

T = N × LB + Nd × LC + Nu × Rfp × (LC + LD) + Nd × Rmiss × LD. (9)

With fixed LD, the first and second terms respectively refer to the contri-
bution of the lookup latency in the Bloom filter and cache on the overall time.
The third and fourth terms refer to the effect of the cache hit rate and false
positive rate respectively. We substitute the parameter values of the buffer and
eager methods with dataset src into Eq. (9), and we obtain,

TEager
PM = 0.15 × N + 0.14 × Nd + 0.0079 × Nu + 0.00525 × Nd, (10)

TBuffer
PM = 0.15 × N + 0.03 × Nd + 0.00615 × Nu + 0.019 × Nd. (11)

The coefficients of the third and fourth terms in Eq. (10) is much smaller than
those of the first and second terms, which means that the lookup latency in the
Bloom filter and Cache becomes the main factor affecting the overall fingerprint
identification time. In contrast, in Eq. (11), although a certain amount of extra

Towards Optimizing Deduplication on Persistent Memory 475

PM accesses is introduced (that is, the fourth term is increased), the lookup
time in cache/buffer is greatly reduced (that is, the second term is effectively
reduced). As a result, identification for duplicate fingerprints takes much less
time. This conclusion is also true for the dataset FSL, what’s more, for datasets
with a higher duplication rate, the read buffer is more effective.

It worth noting that reordering the Bloom filter of read buffer is effective for
dataset Src but less effective for dataset FSL, we substitute the values of LB ,
LC and Rhit into Eq. (8),

LC

LB × (1 − Rmiss) + LC
=

0.0378
0.141 × 0.9516 + 0.0378

= 21.9%. (12)

which means that the reordering strategy improves the performance only when
the duplicate rate of the dataset is higher than 21.9%. However, the duplicate
rate of FSL is smaller than 21.9%, therefore reordering does not work here. Since
the hit rate and lookup latency may change with different datasets, swapping
the order between the Bloom filter and read buffer is more suitable for datasets
with high duplication rate.

6.4 Bloom Filter Size

Fig. 4. Impact on Bloom filter size

As we analyzed in Sect. 4, the Bloom filter can effectively filter out the unique
data chunks. However, a low false positive rate may not be essential for dedu-
plication systems with PM. We explore how the size of the Bloom filter impacts
the performance. We can see from Fig. 4 that Buffer-L performs best on Src
and Buffer-F performs best on FSL at all Bloom filter sizes. When the Bloom
filter is large enough (32 MB–1024 MB), the false-positive rate is low. Therefore
the performance gap between different methods is narrow, and the main factor
that affects the overall performance is the read buffer or cache.

However, when the Bloom filter is between 32 MB and 8 MB, the overall fin-
gerprint identification time Eager and Buffer-F is reduced as the size of the
Bloom filter becomes smaller. We found that the Bloom filter smaller than 32 MB

476 Y. Li et al.

achieves a lower lookup latency, it may benefit from CPU L3 Cache. That is,
a smaller Bloom filter leads to less CPU cache misses. Although on-PM lookup
time increases, due to a large number of lookup on the Bloom filter becomes
faster, the overall performance gets much improvement. As a result, With a size
of 8 MB, Buffer-F and Buffer-L perform the same with an extremely low
lookup latency in Bloom filter. When the Bloom filter is much smaller (8 MB-1
MB), due to the extremely high false positive rate, it needs much more PM
accesses to identifies the fingerprints, resulting in severe performance degrada-
tion.

In summary, the fingerprint identification with PM is not sensitive to the
size of the Bloom filter, which is consistent with our modeling. A small and fast
bloom filter may perform better in deduplication systems.

7 Conclusion

In this paper, we model the typical locality-aware fingerprint identification app-
roach to better understand the performance of the deduplication system with
PM. With PM, the identification time becomes extremely low, the hit rate of
cache and the positive rate of the Bloom filter is less important for deduplication.
We propose a simple and low-cost read buffer which obtains better performance
by exploiting the spatial locality of data and adjusting the order of Bloom filter
and read buffer to improve the performance of deduplication. Experiment results
show that the read buffer based method effectively saves the fingerprint identifi-
cation time. It is 1.2×–2.3× faster than the traditional locality-aware approach.

References

1. Zhu, B., Li, K., Patterson, R.H.: Avoiding the disk bottleneck in the data domain
deduplication file system. In Fast 8, 1–14 (2008)

2. Xia, W., Jiang, H., Feng, D., Hua, Y.: SiLo: a similarity-locality based near-exact
deduplication scheme with low RAM overhead and high throughput. In USENIX
ATC, pp. 26–30 (2011)

3. Bhagwat, D., Eshghi, K., Long, D.D., Lillibridge, M.: Extreme binning: Scalable,
parallel deduplication for chunk-based file backup. In: Proceedings of the MAS-
COTS 2009, pp. 1–9. IEEE (2009)

4. Debnath, B.K., Sengupta, S., Li, J.: ChunkStash: speeding up inline storage dedu-
plication using flash memory. In: USENIX ATC, pp. 1–16 (2010)

5. Lillibridge, M., Eshghi, K., Bhagwat, D., Deolalikar, V., Trezis, G., Camble, P.:
Sparse indexing: large scale, inline deduplication using sampling and locality. In
Fast 9, 111–123 (2009)

6. Ma, J., Stones, R.J., Ma, Y., Wang, J., Ren, J., Wang, G., Liu, X.: Lazy exact
deduplication. ACM Trans. Storage (TOS) 13(2), 1–26 (2017)

7. Meister, D., Kaiser, J., Brinkmann, A.: Block locality caching for data deduplica-
tion. In: Proceedings of the Fast., pp. 1–12 (2013)

8. Yang, J., et al.: An empirical guide to the behavior and use of scalable persistent
memory. In Proceedings of the FAST (2020)

Towards Optimizing Deduplication on Persistent Memory 477

9. Rudoff, A.: Persistent memory programming. Login: Usenix Mag. 42(2), 34–40
(2017)

10. Xu, J., Swanson, S.: NOVA: a log-structured file system for hybrid volatile/non-
volatile main memories. In: 14th USENIX Conference on File and Storage Tech-
nologies (FAST 2016), pp. 323–338 (2016)

11. Nam, M., Cha, H., Choi, Y. R., Noh, S. H., Nam, B.: Write-optimized dynamic
hashing for persistent memory. In: 17th USENIX Conference on File and Storage
Technologies (FAST 2019), pp. 31–44 (2019)

12. Lepers, B., Balmau, O., Gupta, K., Zwaenepoel, W.: KVell: the design and imple-
mentation of a fast persistent key-value store. In: Proceedings of the 27th ACM
SOSP, pp. 447–461 (2019)

13. Beeler, B.: Intel optane dc persistent memory module (pmm) (2019)
14. Wang, C., et al.: Nv-dedup: high-performance inline deduplication for non-volatile

memory. IEEE Trans. Comput. 67(5), 658–671 (2017)
15. Tarasov, V., Mudrankit, A., Buik, W., Shilane, P., Kuenning, G., Zadok, E.: Gen-

erating realistic datasets for deduplication analysis. In: USENIX ATC, pp. 261–272
(2012)

Author Index

An, Hong 276
An, Zhongqi 395

Bai, Xiaofeng 159
Bai, Yang 420

Cao, Wei 3
Chen, Haiyan 68
Chen, Hanhua 373
Chen, Junshi 276
Chen, Li 386
Chen, Liang 297
Chen, Liqiong 140
Chen, Tianba 80
Cheng, Baolei 407
Cui, Qiao 128

Dai, Shangshang 128
Di, Zhanyuan 263
Ding, Yufei 92
Dong, Cong 251
Dong, Dezun 420
Dong, Hui 407
Dong, Xiao 3
Dou, Xinglei 386
Du, Xiaoyong 288
Du, Zhen 395

Fan, Guisheng 297
Fan, Guoqing 140
Fan, Jianxi 407
Fang, Jianbin 231
Feng, Boyuan 92
Feng, Xiaobing 3
Fu, Yinjin 243

Gong, Rui 437
Gong, Xiaoli 386
Guan, Yong 117
Guo, Kun 140
Guo, Xing 92

Hadrich, Amal 55
Han, Yaopeng 43

Han, Zhe 17
He, Kewen 465
He, Mujun 263
Hou, Kaixi 170
Hu, Dinghuang 420
Hu, Xiao 191, 203
Huang, Ahui 191
Huang, Jianzhong 128
Huang, Shan 420
Huang, Wenhao 339
Huang, Yitong 92

Ji, Haonan 170
Jiang, Bo 43
Jiang, Jingfei 17
Jiang, Qingcai 276
Jiang, Su 310
Jiang, Zhengwei 43
Jin, Hai 373
Jin, Zongze 349

Kang, Ziyang 437

Li, Chen 147
Li, Cheng 68
Li, Guangli 3
Li, Jiansong 3
Li, Mingyue 117
Li, Ning 43
Li, Wei 80, 452
Li, Xinyu 386
Li, Yewen 217
Li, Yichen 465
Li, Yunchun 80, 452
Liao, Xiangke 420
Lin, Jiazao 288
Liu, Binbin 251
Liu, Fan 349
Liu, Haidi 288
Liu, Hao 386
Liu, Lei 3, 386
Liu, Wanqi 217
Liu, Weifeng 170, 231
Liu, Xiaoguang 465

Liu, Yuling 43
Liu, Zhiqiang 17
Liu, Zhong 68
Liu, Zitan 276
Lu, Jianzhuang 147
Lu, Shibo 170
Lu, Zhigang 43
Lu, Zhonghai 203
Luan, Zerong 452
Luo, Jingwen 323
Luo, Li 437

Ma, Huihui 231
Ma, Sheng 68
Makhlouf, Amel Meddeb 55
Mu, Weimin 349

Peng, Shaoliang 30
Peng, Yuanxi 191

Qi, Deyu 339
Qi, Huamei 310
Qu, Lianhua 437
Qu, Zhengyu 231
Quan, Wei 182

Shao, En 263
Shao, Zhenzhou 117
Shen, Li 105
Shi, Zhiping 117
Song, Huajun 159
Sun, Hui 128
Sun, YuKang 80
Sun, Zhigang 182

Tan, Guangming 217
Tang, Lu 182
Tian, Tian 191

Vinter, Brian 170

Wang, Gang 465
Wang, Hao 170
Wang, Lei 437
Wang, Qiong 105
Wang, Weiping 349
Wang, Xiaoqi 30
Wang, Xueying 3
Wang, Yan 407
Wang, Yiran 310

Wei, Jinhui 147
Wu, Jia 310, 323, 361
Wu, Shuhan 452
Wu, Sijie 373
Wu, Yang 243
Wu, Yuzhou 323
Wu, Zheng 276

Xiang, Changbo 159
Xing, Jing 395
Xu, Jinwei 17
Xu, Qingyu 288
Xu, Weixia 437

Yan, Jinli 182
Yang, Chunmeng 310
Yang, Hailong 452
Yang, Shengjie 386
Yang, Yaning 30
Yang, Yi 182
Yang, Zhijie 437
Yu, GengHua 361
Yu, Huiqun 297
Yu, Mengshan 297
Yu, Qi 147
Yu, Shuiying 373
Yu, Xiaosong 231
Yuan, Ninghui 105

Zang, Dawei 217
Zarai, Faouzi 55
Zhai, Jidong 288
Zhang, Changjian 339
Zhang, Chen 43
Zhang, Dunbo 105
Zhang, Feng 288
Zhang, Longlong 191
Zhang, Mingde 288
Zhang, Xiao 251
Zhang, Yanyong 92
Zhang, Yu 92
Zhang, Yun 349
Zhang, Ziyu 276
Zhao, Junhao 251
Zhao, Junyan 140
Zhao, Xiaoqiang 17
Zhao, Yunping 147
Zhou, Jingya 407
Zhu, Weilin 349
Zhuang, QingHe 361

480 Author Index

	Preface
	Organization
	Contents
	Accelerator
	Compiler-Assisted Operator Template Library for DNN Accelerators
	1 Introduction
	2 Design
	2.1 User-View Abstraction
	2.2 Memory Abstraction
	2.3 Computation Abstraction

	3 Implementation
	3.1 Expression Template
	3.2 Compiler-Assisted Optimizations

	4 Performance Evaluation
	4.1 Benchmarks and Baselines
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	References

	A Dynamic Mapping Model for General CNN Accelerator Based on FPGA
	1 Introduction
	2 Related Work
	3 CNN Basics and Matrix Multiplication
	3.1 2D and 3D Convolution
	3.2 Dilated Convolution
	3.3 Mapping Convolutions to Matrix Multiplications

	4 Accelerator Architecture Design
	4.1 MAC Array and Buffer Setting
	4.2 Dynamic Mapping Model

	5 Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusions
	References

	A Dynamic Protection Mechanism for GPU Memory Overflow
	1 Introduction
	2 Background
	2.1 CUDA Programming Model
	2.2 Unified Memory
	2.3 GPU Allocator Optimization

	3 Design Overview
	3.1 Buffer Structure
	3.2 Overview of the System

	4 Implementation
	4.1 Memory Allocation
	4.2 Buffer Structure Construction
	4.3 Buffer Overflow Detection

	5 Evaluation
	5.1 Experiment Setup
	5.2 Performance Analysis

	6 Conclusion
	References

	AI
	MTLAT: A Multi-Task Learning Framework Based on Adversarial Training for Chinese Cybersecurity NER
	1 Introduction
	2 Related Work
	2.1 NER
	2.2 Adversarial Training

	3 Methodology
	3.1 Adversarial Training
	3.2 Encoding Layer
	3.3 Training

	4 Experiments
	4.1 Datasets
	4.2 Comparison Methods
	4.3 Hyper-Parameter Settings

	5 Results and Analysis
	5.1 Results on the Chinese Cybersecurity NER Dataset
	5.2 Results on Chinese General NER Datasets
	5.3 Case Study

	6 Conclusion
	References

	Learning-Based Evaluation of Routing Protocol in Vehicular Network Using WEKA
	1 Introduction
	2 Related Work
	3 Proposed Solution
	3.1 Improved Protocol Description
	3.2 Machine Learning Algorithms Description

	4 Evaluation Results
	5 Conclusion
	References

	Accelerating Large-Scale Deep Convolutional Neural Networks on Multi-core Vector Accelerators
	1 Introduction
	2 Background and Related Work
	2.1 The Architecture of Vector Accelerator
	2.2 Related Work

	3 Algorithm Mapping of CNN on Vector Accelerator
	3.1 Computation Method for Converting Convolution Operations to Large-Scale Matrix Multiplication
	3.2 Vectorization Method of Valid Convolution Layer
	3.3 Vectorization Method of Same Convolution Layer
	3.4 Vectorization Method of Pooling Layer
	3.5 Vectorization Method of Fully Connected Layer

	4 Experimental Results and Performance Analysis
	4.1 Performance of Convolution Layers
	4.2 Performance of Fully Connected Layers
	4.3 Performance of Pooling Layers
	4.4 Performance Comparison

	5 Conclusion
	References

	M-DRL: Deep Reinforcement Learning Based Coflow Traffic Scheduler with MLFQ Threshold Adaption
	1 Introduction
	2 Coflow Scheduling Model Without Prior Knowledge
	2.1 Background
	2.2 Coflow Scheduling Based on MLFQ

	3 Data-Driven MLFQ Threshold Setting Using DRL
	3.1 DRL Formulation
	3.2 Algorithm Design

	4 Evaluation
	4.1 Workload
	4.2 Evaluation Metrics
	4.3 Simulation Result

	5 Related Work
	6 Conclusion
	References

	A Close Look at Multi-tenant Parallel CNN Inference for Autonomous Driving
	1 Introduction
	2 Background and Related Work
	3 Design of MPInfer
	3.1 Overview of MPInfer
	3.2 Design Goals
	3.3 Design Issues

	4 Evaluation
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Conclusion
	References

	A Multi-model Super-Resolution Training and Reconstruction Framework
	1 Introduction
	2 Related Work
	2.1 Super-Resolution
	2.2 Image Classification

	3 Multi-model SR Training and Reconstruction Framework
	3.1 Pruning Layer
	3.2 Classification Layer
	3.3 Fusion Layer

	4 Experiments
	4.1 Environment Setup
	4.2 Experiment Details

	5 Conclusion
	References

	Deep Visible and Thermal Image Fusion with Cross-Modality Feature Selection for Pedestrian Detection
	1 Introduction
	2 Proposed Method
	2.1 Two-Branch Feature Extraction Backbone Network with Squeeze-Excitation Module
	2.2 Cross-Modality Feature Selection Module
	2.3 Optimization

	3 Experimental Results
	3.1 Experimental Setup
	3.2 Comparison with the State-of-the-Art Methods
	3.3 Ablation Study

	4 Conclusion
	References

	LCache: Machine Learning-Enabled Cache Management in Near-Data Processing-Based Solid-State Disks
	1 Introduction
	2 Background and Related Work
	2.1 Near-Data Processing Storage Device
	2.2 Cache Management

	3 Overview System
	4 System Implementation
	4.1 Machine Learning Module
	4.2 Proactive Update Function
	4.3 Read and Write Operation

	5 Experimental Setup and Evaluation
	5.1 Experimental Setup
	5.2 Performance Evaluation

	6 Conclusion
	References

	Security Situation Prediction of Network Based on Lstm Neural Network
	1 Introduction
	2 ONS2P Algorithm
	3 Experiment
	4 Related Works
	5 Conclusion
	References

	Algorithm
	Dynamic GMMU Bypass for Address Translation in Multi-GPU Systems
	1 Introduction
	2 Background
	2.1 Programming Models
	2.2 Remote Data Access Mechanisms
	2.3 Address Translation Architectures

	3 Motivation
	4 GMMU Bypass
	5 Methodology
	5.1 Experimental Setup
	5.2 Workloads

	6 Evaluation
	6.1 Performance
	6.2 Analysis
	6.3 Hardware Cost

	7 Related Work
	7.1 Address Translation on GPU
	7.2 Performance Optimization for Multi-GPU Systems

	8 Conclusion
	References

	Parallel Fast DOA Estimation Algorithm Based on SML and Membrane Computing
	1 Introduction
	2 Mathematical Model and SML
	2.1 Array Signal Model
	2.2 Stochastic Maximum Likelihood Algorithm

	3 SML Based on Membrane Computing
	3.1 Membrane Division of the Solution Space
	3.2 Intra-membrane Local Search Parallel Algorithm
	3.3 Global Optimization Strategy
	3.4 DOA Estimation Step Based on Membrane Computing

	4 Simulation and Performance Analysis
	5 Conclusion
	References

	Segmented Merge: A New Primitive for Parallel Sparse Matrix Computations
	1 Introduction
	2 Related Work
	2.1 Parallel Segmented Sum
	2.2 Parallel Segmented Scan
	2.3 Parallel Segmented Sort

	3 Segmented Merge and Its Parallel Algorithm
	3.1 Definition of Segmented Merge
	3.2 Serial Algorithm for Segmented Merge
	3.3 Simple Parallel Algorithm for Segmented Merge
	3.4 Improved Parallel Algorithm for Segmented Merge on GPU

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Performance of SpTRANS Using Segmented Merge
	4.3 Performance of SpGEMM Using Segmented Merge

	5 Conclusion
	References

	A Hierarchical Model of Control Logic for Simplifying Complex Networks Protocol Design
	1 Introduction
	2 Motivation and Related Works
	2.1 Motivation
	2.2 Related Works

	3 DoubleDeck Model Overview
	4 Experiment
	5 Conclusion
	References

	Architecture and Hardware
	FPGA-Based Multi-precision Architecture for Accelerating Large-Scale Floating-Point Matrix Computing
	1 Introduction
	2 The Parallel Block Matrix Computing Algorithm and Linear Array
	3 Multi-precision Floating-Point Matrix Computing Based on a Unified Structure
	3.1 Two Parallel Single-Precision Floating-Point Matrix Computing
	3.2 Four Parallel Half-Precision Floating-Point Matrix Computing
	3.3 Multi-precision Floating-Point Multiply-Accumulate (Subtract) Functional Component
	3.4 Implementation for Multi-precision MCA Unit Core and MCA System

	4 Experimental Results and Discussions
	4.1 Synthesis Results
	4.2 Performance Analysis
	4.3 Discussion

	5 Conclusions
	References

	A Configurable Hardware Architecture for Runtime Application of Network Calculus
	1 Introduction
	2 Related Work
	3 Configurable Hardware Architecture
	3.1 Micro-architecture for Function f Ø f (Arrival Curve)
	3.2 Sampling-Based Micro-architecture for Arrival Curve
	3.3 Micro-architecture for Function f Ø g
	3.4 Micro-architecture for Function f⊗g
	3.5 Unified Micro-architecture with Function Configuration

	4 FPGA Implementation and Evaluation
	4.1 Performance Optimization
	4.2 Scalability and Overhead
	4.3 Comparison with Software Implementation

	5 System Prototype and Case Study
	6 Conclusion
	References

	FEB3D: An Efficient FPGA-Accelerated Compression Framework for Microscopy Images
	1 Introduction
	2 Background
	2.1 B3D Algorithm
	2.2 FPGA and OpenCL

	3 Design and Implementation
	3.1 The Co-design Framework
	3.2 Hardware Optimized Design
	3.3 Further Optimizations

	4 Experiment and Evaluation
	4.1 Experimental Setup
	4.2 Results and Analysis

	5 Related Work
	6 Conclusion
	References

	NUMA-Aware Optimization of Sparse Matrix-Vector Multiplication on ARMv8-Based Many-Core Architectures
	1 Introduction
	2 Background
	2.1 Parallel Sparse Matrix-Vector Multiplication
	2.2 NUMA Architecture of the Phytium 2000+ Processor
	2.3 Hypergraph Partitioning

	3 NUMA-Aware SpMV Alogrithm
	4 Performance and Analysis
	4.1 Experimental Setup and Dataset
	4.2 NUMA-Aware SpMV Performance
	4.3 Preprocessing Overhead (Hypergraph Partitioning Runtime)

	5 Related Work
	6 Conclusions
	References

	CARAM: A Content-Aware Hybrid PCM/DRAM Main Memory System Framework
	1 Introduction
	2 System Design of CARAM
	2.1 The Overview of System Architecture
	2.2 Line Deduplication Processing

	3 Evaluation
	4 Conclusions
	References

	Big Data and Cloud
	Optimization of RDMA-Based HDFS Data Distribution Mechanism
	1 Introduction
	2 Related Work
	3 Background and Motivation
	3.1 HDFS Introduction
	3.2 The Writing Process of Original HDFS
	3.3 RDMA Introduction

	4 The Design and Implementation of JUCX HDFS
	5 Evaluation
	5.1 Experimental Setup
	5.2 Single Replica
	5.3 Multiple Replicas

	6 Conclusion
	References

	Reducing the Time of Live Container Migration in a Workflow
	1 Introduction
	2 Background and Motivation
	2.1 Live Migration
	2.2 Motivation

	3 Overview of Architecture
	4 Building Migration Engine
	4.1 Migration Engine
	4.2 Modification to Docker
	4.3 Case Study: Analysis of Container Migration Time Reduction

	5 Optimizing Migration Tool
	5.1 Workflow Migration

	6 Experiment and Evaluation
	6.1 Methodology
	6.2 Optimization of Container Startup
	6.3 Test on Workflow Migration

	7 Related Work
	8 Conclusion
	References

	RDMA-Based Apache Storm for High-Performance Stream Data Processing
	1 Introduction
	2 Background and Motivation
	2.1 Parallel Processing of Data Streams
	2.2 Message Processing Structure
	2.3 InfiniBand and RDMA
	2.4 Analysis

	3 Design
	3.1 Messaging Transport Layer and Basic Model
	3.2 JXIO-based Implementation
	3.3 DiSNI-Based Implementation

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 The Effect of Message Size on Performance
	4.3 The Impact of Distributed Scale on Performance

	5 Conclusion
	6 Related Work
	References

	Payment Behavior Prediction and Statistical Analysis for Shared Parking Lots
	1 Introduction
	2 Background and Motivation
	3 Payment Behavior Prediction and Statistical Analysis
	4 Experiment
	5 Conclusion
	References

	Edge Computing
	Location-Based Service Recommendation for Cold-Start in Mobile Edge Computing
	1 Introduction
	2 Related Work
	3 Motivation
	4 Multidimensional Inverse Similarity Recommendation Algorithm Based on CF
	4.1 QoS Prediction
	4.2 Service Recommendation
	4.3 Algorithm Design

	5 Experiment
	5.1 Experiment Environment and Datasets
	5.2 Experimental Design
	5.3 Experiment Results

	6 Conclusion
	References

	An Adaptive Delay-Limited Offloading Scheme Based on Multi-round Auction Model for Mobile Edge Computing
	1 Introduction
	2 Related Work
	2.1 Offloading Scheme with the Goal of Reducing Latency
	2.2 Offloading Scheme with the Goal of Reducing Energy Consumption
	2.3 Offloading Scheme with the Trade-Off Between Latency and Energy Consumption

	3 Adaptive Delay-Limited Offloading Scheme Based on Multi-round Auction Model
	3.1 Scenario Description
	3.2 Calculation Model
	3.3 Multi-round Auction Model
	3.4 Adaptive Delay-Limited Mechanism

	4 Simulation Results and Analysis
	5 Conclusion
	References

	An Efficient Data Transmission Strategy for Edge-Computing-Based Opportunistic Social Networks
	1 Introduction
	2 System Model
	2.1 Community Definition
	2.2 Data Transmission Model

	3 Simulation and Analysis
	4 Conclusion
	References

	Emering
	Shadow Data: A Method to Optimize Incremental Synchronization in Data Center
	1 Introduction
	2 Background and Related Work
	2.1 Incremental Synchronization
	2.2 Related Work

	3 The Design of Shadow Data
	3.1 What Makes the CPU Load in the Data Center
	3.2 Why Shadow Data
	3.3 What Is Shadow Data

	4 Evaluation
	4.1 Experiment Setup
	4.2 CPU Load of the Data Center
	4.3 Sacrifice of Disk on Local Node

	5 Conclusion
	References

	DROAllocator: A Dynamic Resource-Aware Operator Allocation Framework in Distributed Streaming Processing
	1 Introduction
	2 Framework
	2.1 Overview
	2.2 Node Resources Predictor
	2.3 Node Clusterer
	2.4 Resource Aware Scheduler

	3 Experiments
	3.1 Datasets and Settings
	3.2 Metrics
	3.3 Results

	4 Conclusion
	References

	A Medical Support System for Prostate Cancer Based on Ensemble Method in Developing Countries
	1 Introduction
	2 Design of Medical Support System
	2.1 Overall Requirements and Framework of the System
	2.2 Detailed Description of the Medical Support System

	3 Experiment
	3.1 Dataset and Models' Training
	3.2 Analysis of the Results of Experiments
	3.3 Relevant Analysis Based on the System

	4 Conclusion
	References

	The Entry-Extensible Cuckoo Filter
	1 Introduction
	2 Related Work
	2.1 Static Structures
	2.2 Dynamic Structures

	3 Entry-Extensible Cuckoo Filter
	3.1 Overview
	3.2 Entry-Level Extension
	3.3 Operations of E2CF
	3.4 Fine-Grained Splitting

	4 Analysis of E2CF
	4.1 Query Performance
	4.2 False Positive Rate

	5 Performance
	5.1 Experiment Setups
	5.2 Results

	6 Conclusion
	References

	Monitoring Memory Behaviors and Mitigating NUMA Drawbacks on Tiered NVM Systems
	1 Introduction
	2 The Art of Our Design-3pt
	2.1 SysMon-N - Sampling Memory Systems with NVM
	2.2 N-Policy - for NVM

	3 Effectiveness of N-Policy on Bandwidth and Latency
	References

	Network
	TPL: A Novel Analysis and Optimization Model for RDMA P2P Communication
	1 Introduction
	2 Background
	2.1 Low-Level Details Related to RDMA P2P Communication Performance
	2.2 Optimization Method Focusing on Hardware View and Single Message Transmission Process

	3 TPL: Analysis and Optimization Model of RDMA P2P Communication Performance
	3.1 Transmission Efficiency of a Single Message
	3.2 Parallelism of WQE Submission and Handling
	3.3 Load Balance Between CPU and NIC
	3.4 Relation Between Three Dimensions

	4 Optimization Algorithm Design Based on TPL
	4.1 TPL-Based Systematic Analysis and Single-Dimensional Optimization
	4.2 TPL-Based Multi-dimensional Optimization

	5 Evaluation
	5.1 Testing and Analysis of Dynamic Signal Period
	5.2 Throughput Test of ORCL-Advanced

	6 Related Work
	7 Conclusion
	References

	Connectivity and Routing Algorithm of the Data Center Network HSDC
	1 Introduction
	2 Preliminaries
	2.1 Terminology and Notation
	2.2 Topological Structure of Hn

	3 Connectivity and Tightly Super Connectivity of Hn
	4 Shortest Routing Algorithm
	5 Conclusions
	References

	CCRP: Converging Credit-Based and Reactive Protocols in Datacenters
	1 Introduction
	2 Background and Motivation
	2.1 DCN Needs the Credit-Based Protocols
	2.2 The Challenges of Deploying Credit-Based Protocols in DCNs

	3 CCRP Design
	3.1 Basic Idea
	3.2 ECN-Based Feedback Control
	3.3 Parameter Choice
	3.4 Endhost and Switch Mechanism

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Storage
	CompressedCache: Enabling Storage Compression on Neuromorphic Processor for Liquid State Machine
	1 Introduction
	2 Background and Motivation
	2.1 Liquid State Machine
	2.2 Compressed Sparse Storage Formats
	2.3 Motivation

	3 Compressed Sparse Set Associative Cache
	3.1 Details of the Method
	3.2 Metadata Overhead

	4 CSSAC-Improved Architecture
	4.1 Hardware Neuron

	5 Experiment Setup
	5.1 Simulation Infrastructure
	5.2 Hardware Implementation
	5.3 Datasets
	5.4 Measurements

	6 Evaluation
	6.1 Discard Ratio Sensitivity Analysis on Number of Sets
	6.2 Compression Effect Sensitivity Analysis on Weight Data Width
	6.3 Power Consumption Evaluation
	6.4 Performance Evaluation

	7 Related Work
	8 Conclusion
	References

	ODCP: Optimizing Data Caching and Placement in Distributed File System Using Erasure Coding
	1 Introduction
	2 Background and Motivation
	2.1 Erasure Coding
	2.2 Data Cache Allocation
	2.3 File Read Probability
	2.4 Motivation

	3 Design and Implementation
	3.1 Data Cache Allocation Using Simulated Annealing
	3.2 Building File Read Delay Model
	3.3 Formulating the Optimization Problem
	3.4 Solving the Convex Optimization Problem

	4 Evaluation
	4.1 Experimental Setup
	4.2 File Read Latency Optimization
	4.3 Parameter Sensitivity Analysis

	5 Related Work
	6 Conclusion
	References

	Towards Optimizing Deduplication on Persistent Memory
	1 Introduction
	2 Background and Related Work
	2.1 Data Deduplication
	2.2 Persistent Memory

	3 Motivation
	4 Modeling and Analysis
	5 Design Choices
	6 Experimental Results
	6.1 Experiment Settings
	6.2 Overall Performance
	6.3 Quantitative Analysis
	6.4 Bloom Filter Size

	7 Conclusion
	References

	Author Index

