
Approximation and Complexity
of the Capacitated Geometric Median

Problem

Vladimir Shenmaier(B)

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract. In the Capacitated Geometric Median problem, we are given
n points in d-dimensional real space and an integer m, the goal is to
locate a new point in space (center) and choose m of the input points to
minimize the sum of Euclidean distances from the center to the chosen
points. We show that this problem admits an “almost exact” polynomial-
time algorithm in the case of fixed d and an approximation scheme PTAS
in high dimensions. On the other hand, we prove that, if the dimension
of space is not fixed, Capacitated Geometric Median is strongly NP-hard
and does not admit a scheme FPTAS unless P = NP.
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1 Introduction

We study the question of the polynomial-time solvability and approximability
of the Capacitated Geometric Median problem, which is formulated as follows.

Capacitated Geometric Median. Let X be a set of n points in space R
d,

m be a positive integer, and ‖.‖ denote the Euclidean norm. Find a center c ∈ R
d

and an m-element subset S ⊆ X to minimize the value of

cost(S, c) =
∑

x∈S

‖x − c‖.

This problem may also be referred to as Geometric Median with outliers. In
fact, it consists of finding a center c ∈ R

d minimizing the total distance from c
to m nearest input points.

In an equivalent version, we need to find a center c ∈ R
d and a subset S ⊆ X

of the maximun cardinality for which the value of cost(S, c) does not exceed a
given upper bound. It is easy to see that this “inverse” version is reduced to a
series of instances of the original Capacitated Geometric Median problem, with
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different values of m. On the other hand, the original problem is reduced to a
series of instances of the inverse version, with different cost bounds.

As in the usual Geometric Median problem, where m = n, the input points
represent clients or demand points, whereas the desired center represents a loca-
tion for placing a facility to serve the clients. The n−m clients which are removed
from this service in the solution are called outliers. The problem with outliers
arises naturally in the following situations.

• The facility to be placed at the center we are looking for has a limited capacity
and may not serve all the demand points.

• There is an upper limit for the transportation cost, so we need to remove a
minimum possible number of clients from the service to satisfy this limit.

• The data contains noise and errors. In this case, a few most distant clients
may exert a disproportionately strong influence over the final solution and
correspond to the least robust input points.

• The discovered outliers do not fit the rest of the data and they are worthy
of further investigation. In particular, once identified, they can be used to
discover anomalies in the data.

Related Work. Besides the practical considerations, the problem we study is
theoretically interesting. Strictly speaking, no polynomial-time algorithms are
known even for the usual Geometric Median problem, where we find the best
center for the whole set X, i.e., the geometric median of X. Finding this center is
complicated by the fact that, even for 5-element sets, the geometric median is not
expressible by radicals over the rationals [4]. However, one can say that the usual
Geometric Median problem is polynomially solvable “almost exactly” since, e.g.,
the randomized algorithm from [10] computes a (1 + ε)-approximate solution of
this problem in time O(

dn log3(n/ε)
)
. Moreover, by using constructions based

on random sampling, a (1 + ε)-approximate geometric median can be found in
time almost or completely independent of n [5,10,17].

In the case of arbitrary m ≤ n, the Capacitated Geometric Median problem
becomes much harder due to the exponential number of m-subsets S ⊆ X.
Applying random sampling to this problem seems to be effective only if m is
sufficiently large. In the general case, when m may be arbitrarily small, any
bounded number of random samples may “miss” good m-subsets.

ElGindy and Keil [12] consider the mentioned above version of the problem
where it is required to find a maximum-cardinality subset satisfying a given upper
bound for the cost value. They suggest an O(n2.5 log4 n)-time exact algorithm
for the 2-dimensional case with rectilinear distances.

Two well-known single location problems closest to Capacitated Geometric
Median are Smallest m-Enclosing Ball and m-Variance. The first consists of fin-
ding m input points minimizing the radius of the Euclidean ball enclosing these
points. In the second, we find m input points minimizing the sum of squared
distances from these points to their mean. In high dimensions, both problems
are strongly NP-hard [15,21,22] but admit approximation schemes PTAS with
running time O(

dn�1/ε�) [1] and O(
dn�2/ε�+1

)
[20], respectively.
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Another close problem is Geometric 2-Median, which consists of finding two
centers in space R

d minimizing the total Euclidean distance from the input
points to nearest centers. In high dimensions, this problem admits fast appro-
ximation schemes based on random sampling and coresets [5,6,9,17]. However,
the computational complexity of Geometric 2-Median is an open question.

A natural generalization of Capacitated Geometric Median is the problem of
finding k disjoint clusters of total cardinality m in an n-element input set and
selecting centers of these clusters to minimize the total distance from the cluster
centers to cluster elements. The discrete version of this problem, in which all the
centers must be selected from a given finite set, and also other similar problems
are considered in [7,8,11,16].

Our Contributions. Both algorithmic and complexity results for Capacitated
Geometric Median are given. First, we describe a randomized algorithm which,
with constant probability, computes a (1 + ε)-approximate solution of the prob-
lem in time O(

dn�(d+1)/2�m�(d+3)/2� log3(m/ε)
)
. Thus, in the case of fixed d, the

problem is solvable “almost exactly” in polynomial time. Next, we show that,
in high dimensions, Capacitated Geometric Median admits an approximation
scheme PTAS with running time O(

dn�log(2/ε)/ε�+1
)
.

On the other hand, we prove that, if the dimension of space is not fixed,
Capacitated Geometric Median is strongly NP-hard and does not admit an
approximation scheme FPTAS unless P = NP. In fact, it is proved for the spe-
cial case when m = n/2. The proof is done by a reduction from the Maximum
Bisection problem in a 3-regular graph.

2 Algorithms

In this section, we present two polynomial-time algorithms for finding close-to-
optimal solutions of the Capacitated Geometric Median problem, in fixed and
in high dimensions.

2.1 Algorithm for Fixed Dimensions

The first algorithm is based on the property that an optimal subset consists of
m input points nearest to some point in space. It allows to solve the problem
by enumerating the cells of the m-order Voronoi diagram of the input set and
finding geometric medians of the subsets defining these cells. A similar idea is
used in [2,23] for solving a number of related vector-subset problems.

Definition 1. Given an n-element set X ⊂ R
d and a non-empty subset S ⊂ X,

the Voronoi cell of S is the set

V (S,X) =
{
z ∈ R

d
∣∣ ‖z − x‖ < ‖z − y‖ for all x ∈ S, y ∈ X \ S

}
.

Given an integer m ∈ {1, . . . , n − 1}, the m-order Voronoi diagram of X is the
collection Vm(X) of all the non-empty Voronoi cells V (S,X), where S ⊂ X and
|S| = m, labeled by S.



Approximation and Complexity of the Capacitated Geometric Median 425

Fig. 1. The m-order Voronoi diagram of X = {A,B,C,D} for m = 2

Every Voronoi cell V (S,X) consists of the points of Rd for which the distances
to the elements of S are less than those to the other elements of X. This means
that V (S,X) is the polytope formed by the intersection of all the open half-
spaces

{
z ∈ R

d
∣∣ ‖z − x‖ < ‖z − y‖}

, x ∈ S, y ∈ X \ S (see Fig. 1).
It is easy to see that the closure V (S,X) of any non-empty cell V (S,X)

consists of the points z ∈ R
d satisfying the inequalities ‖z − x‖ ≤ ‖z − y‖ for all

x ∈ S, y ∈ X \ S. It immediately implies the following observation.

Fact 1. If p ∈ V (S,X), where S ⊂ X and |S| = m, then the set S consists of
m points of X closest to p.

Given a point p ∈ R
d, let Sm(p) be a set of m points of X closest to p (in

the case of ambiguity, we choose any of such sets). Obviously, if the distances
from p to different points of X are not equal, then Sm(p) is uniquely defined and
p ∈ V (Sm(p),X). It follows that the cells of Vm(X) cover at least all the points
of R

d lying outside the hyperplanes
{
z ∈ R

d
∣∣ ‖z − x‖ = ‖z − y‖}

, x, y ∈ X,
x �= y. Hence, the closures of these cells cover the whole space R

d.

Fact 2. [19] For any n-element set X ⊂ R
d, d ≥ 3, and m ∈ {1, . . . , n − 1},

the diagram Vm(X) consists of s = O(
n�(d+1)/2�m�(d+1)/2�) cells and can be

constructed in time O(s log n + n2md).

Fact 3. [18] For any n-element set X ⊂ R
2 and m ∈ {1, . . . , n−1}, the diagram

Vm(X) consists of O(mn) cells and can be constructed in time O(m2n log n).



426 V. Shenmaier

Based on the above facts, we suggest the following algorithm, which computes
an approximate solution of Capacitated Geometric Median.

Algorithm A1.
Input: a set X of n points in R

d; a parameter ε ∈ (0, 1).
Step 0. If d = 1, return a point x ∈ X and the set Sm(x) with the minimum
value of cost(Sm(x), x). If m = n, apply the algorithm from [10] to the whole
set X and return the resulting (1 + ε)-approximate geometric median of X.
Step 1. By using the algorithms from [18,19], construct the diagram Vm(X).
Step 2. For each cell C ∈ Vm(X), denote by S(C) the subset of X labeling C,
i.e., such that C = V (S(C),X). By using the algorithm from [10], find a point
p(C) which is a (1 + ε)-approximate geometric median of S(C).
Step 3. Output a point p(C) and the set S(C), C ∈ Vm(X), with the minimum
value of cost(S(C), p(C)).

Theorem 1. For any ε ∈ (0, 1), with constant probability, Algorithm A1 com-
putes a (1 + ε)-approximate solution of Capacitated Geometric Median in time
O(

dn�(d+1)/2�m�(d+3)/2� log3(m/ε)
)
.

Proof. If d = 1, the statement easily follows from the obvious fact that, for any
set of points on the real line, one of the points of this set is its geometric median.
If m = n, the statement is a direct corollary of the result of [10]. Next, let a
point c∗ ∈ R

d and a subset S∗ ⊂ X be an optimal solution of the problem in
the case when d ≥ 2 and m ≤ n − 1.

Since the closures of cells of Vm(X) cover the whole space R
d, there exists a

cell C ∈ Vm(X) whose closure contains c∗. Then, by Fact 1, the set S(C) consists
of m points of X closest to c∗. So

cost(S∗, c∗) ≥ cost(S(C), c∗) ≥ cost(S(C), μ(S(C))),

where μ(S(C)) is the geometric median of S(C). Therefore, the point μ(S(C))
and the set S(C) are also an optimum solution of the problem. But the set S(C)
is computed at Step 2 of Algorithm A1. Hence, the objective function value on
the output of this algorithm is at most

cost(S(C), p(C)) ≤ (1 + ε) cost(S(C), μ(S(C))) = (1 + ε) cost(S∗, c∗).

The time complexity of Algorithm A1 follows from Facts 2, 3, and the result
of [10]. The probability of success is defined by that of the algorithm from [10].
The theorem is proved. �

2.2 Algorithm for High Dimensions

If the dimension of space is not fixed, a more productive idea for finding appro-
ximate solutions of Capacitated Geometric Median is based on using the frame-
work from [24,25], which allows to compute a polynomial-cardinality set of points
containing approximations of every point of space with respect to the distances
to all n input points.
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Definition 2. Given a finite set X ⊂ R
d and ε > 0, a (1 + ε)-approximate

centers collection or, shortly, a (1 + ε)-collection for X is a set K ⊆ R
d such

that, for every point p ∈ R
d, there is a point p′ ∈ K for which the distances from

p′ to all the elements of X are at most 1 + ε of those from p.

Fact 4. [25] For any n-element set X ⊂ R
d and each fixed ε ∈ (0, 1], there exists

a (1 + ε)-collection for X which consists of N(n, ε) = O(
n�log(2/ε)/ε�) elements

and can be constructed in time O(
dN(n, ε)

)
.

Note that the cardinality of the (1 + ε)-collection mentioned in Fact 4 does
not depend on d, which is useful when we consider the case of high dimensions.
This result gives a universal approximation-preserving reduction of geometric
center-based problems with continuity-type objective functions to their discrete
versions, where the desired centers are selected from a polynomial-cardinality set
of points (see [24,25] for details). In the case of Capacitated Geometric Median,
this reduction leads to the following approximation algorithm.

Algorithm A2.
Input: a set X of n points in R

d; a parameter ε ∈ (0, 1].
Step 1. By using the algorithm from [25], construct a (1+ ε)-collection K for X.
Step 2. Output a point c ∈ K and the set Sm(c) with the minimum value of
cost(Sm(c), c).

Theorem 2. For any fixed ε ∈ (0, 1], Algorithm A2 finds a (1 + ε)-approximate
solution of Capacitated Geometric Median in time O(

dn�log(2/ε)/ε�+1
)
.

Proof. Let a point c∗ ∈ R
d and a subset S∗ ⊆ X be an optimal solution of the

problem. By the definition of a (1 + ε)-collection, the set K contains a point
c such that ‖c − x‖ ≤ (1 + ε) ‖c∗ − x‖ for all x ∈ X. It follows the inequality
cost(S∗, c) ≤ (1 + ε) cost(S∗, c∗). On the other hand, by the construction of the
set Sm(c), we have cost(Sm(c), c) ≤ cost(S∗, c). Hence, the objective function
value on the output of Algorithm A2 is at most (1 + ε) cost(S∗, c∗).

It remains to estimate the time complexity of this algorithm. By Fact 4, the
set K consists of N(n, ε) = O(

n�log(2/ε)/ε�) elements and can be constructed in
time O(

dN(n, ε)
)
. Each set Sm(.) can be computed in linear time by using the

known algorithm for finding an mth smallest value in an array [3]. It follows that
Algorithm A2 runs in time O(

dnN(n, ε)
)
. The theorem is proved. �

Remark 1. The above technique gives also an approximation scheme PTAS
for the more general problem in which we need to find a center c ∈ R

d and an
m-element subset S ⊆ X minimizing the value of

costw,α(S, c) =
∑

x∈S

w(x)‖x − c‖α(x),

where w(.) are any non-negative weights and α(.) are any non-negative degrees
bounded by arbitrary positive constant α. Indeed, it is easy to show that
a (1 + ε)α-approximate solution of this problem can be computed in time
O(

dn�log(2/ε)/ε�+1
)

by the version of Algorithm A2 which outputs a point c ∈ K
and the set Sm(c) with the minimum value of costw,α(Sm(c), c).
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3 Complexity

In this section, we prove that the Capacitated Geometric Median problem is
strongly NP-hard and does not admit an approximation scheme FPTAS unless
P = NP. The proof is done by a reduction from the well-known APX-hard
problem of finding a maximum bisection in a 3-regular graph [13].

Max-Bisection|3. Given a 3-regular n-vertex undirected graph G = (V,E),
where n is even. Find a partition of the set of its vertices into two equal-size
subsets S and V \S to maximize the number cut(S, V \S) of the edges with one
endpoint in S and the other in V \ S.

Let us define the instance of Capacitated Geometric Median corresponding
to an instance of Max-Bisection|3. Suppose that G is any 3-regular undirected
graph with a set of vertices V and a set of edges E, an input of Max-Bisection|3.
Fix arbitrary orientation on the edges of this graph, i.e., for every edge e ∈ E,
choose an endpoint of this edge which it is “outgoing from” and one which it is
“incoming to”. Next, we map each vertex v ∈ V to the point xv ∈ R

E∪V with
the following coordinates: xv(e) = 1 for every edge e ∈ E outgoing from v and
xv(e) = −1 for incoming ones; xv(v) = M , where M is some large integer which
will be specified later; all the other coordinates are zero (see Fig. 2). Define the
instance of Capacitated Geometric Median corresponding to the graph G as the
set X = {xv |v ∈ V } and the value m = n/2.

Fig. 2. Reduction scheme: constructing the vectors xv, v ∈ V

Idea of the Reduction. Setting the coordinates xv(v), v ∈ V , to a large value
M ensures that the geometric median of any subset Y ⊆ X becomes very close
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to its mean (Lemma 1) and the total distance from the mean to the elements
of Y has an almost affine dependence on the sum of pairwise squared distances
between these elements (see the proof of Lemma 2). At the same time, each
pairwise squared distance ‖xv − xu‖2 equals 2M2 + 4 + (1 + 1)2 = 2M2 + 8
for adjacent vertices v, u and 2M2 + 6 for non-adjacent ones. Based on these
observations, we will prove that, given an m-element subset of vertices S ⊆ V , the
value of cost(XS , μ(XS)), where XS = {xv |v ∈ S} and μ(XS) is the geometric
median of XS , monotonously depends on the number of inner edges in S and,
therefore, on the value of cut(S, V \S) (Lemma 3). So, if the set XS is an optimal
solution of the Capacitated Geometric Median problem on the set X, then the
set S is an optimal bisection in the graph G.

For any finite set Y ⊂ R
E∪V , denote by c(Y ) and μ(Y ) the mean and the

geometric median of this set, respectively:

c (Y ) =
1

|Y |
∑

x∈Y

x and μ (Y ) = arg min
c∈RE∪V

cost(Y, c).

Consider any subset of vertices S ⊆ V with arbitrary cardinality m ≥ 3. Let
�S be the number of inner edges in S. For every vertex v ∈ S, define the vector
zv = xv − c(XS) and the value ζv =

∑

e∈E

z2v(e). Then
∑

v∈S

zv is the zero vector

and the following estimates hold.

Property 1. For every vertex v ∈ S, we have (a) ζv < 3.38;

(b) ‖zv‖ =
√

A2 + ζv < A +
1.69
A

, where A = M

√
1 − 1

m
.

Proof. (a) Given a vector x ∈ R
E∪V , let E(x) = {e ∈ E |x(e) �= 0}. Then it

is easy to see that the set E(c(XS)) consists exactly of the edges connecting S
with V \S, while the set E(zv) consists of all the elements of E(c(XS)) and also
the edges connecting v with the other vertices of S. Hence, by the 3-regularity
of the graph G, we have |E(c(XS))| = 3m − 2�S and |E(zv)| = 3m − 2�S + Δv

S ,
where Δv

S is the degree of v in S. For Δv
S coordinates e ∈ E(zv), the values of

zv(e) are ±1; for 3 − Δv
S coordinates, these values are ±(1 − 1/m); for the other

coordinates from E(zv), these values are ±1/m. Then

ζv = Δv
S + (3 − Δv

S)
(
1 − 1

m

)2

+
3(m − 1) − 2�S + Δv

S

m2

= 3
(
1 − 1

m

)2

+
2Δv

S

m
− Δv

S

m2
+

3
m

− 3
m2

− 2�S

m2
+

Δv
S

m2
= 3 − 3

m
− 2�S

m2
+

2Δv
S

m
.

But �S ≥ Δv
S and Δv

S ≤ 3, so ζv ≤ 3 − 3
m

− 2Δv
S

m2
+

2Δv
S

m
≤ 3 +

3
m

− 6
m2

. The

latter is maximized when m = 4, therefore, we have ζv ≤ 27/8 < 3.38.

(b) It is easy to see that ‖zv‖2 = M2
(
1 − 1

m

)2

+ (m − 1)
(M

m

)2

+ ζv = A2 + ζv,

so ‖zv‖ =
√

A2 + ζv < A +
ζv

2A
. By (a), the latter is less than A +

1.69
A

. The
property is proved. �
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Next, we formulate the main geometric statement underlying the proposed
reduction. It claims that the distance between c(XS) and μ(XS) is close to zero
for large M .

Lemma 1. Suppose that A ≥ 200m. Then ‖μ(XS) − c(XS)‖ <
40
mA

.

The proof of Lemma 1 is omitted in this preliminary version. Based on this
lemma, we estimate the value of cost(XS , μ(XS)).

Lemma 2. Suppose that A ≥ 200m. Then, for some γ ∈ [−1, 1], we have

cost(XS , μ(XS)) = mA +
3(m − 1)

2A
+

�S

mA
+ γ

121m

A3
.

Proof. Let y = μ(XS) − c(XS) and δ = ‖y‖. Then, by the cosine theorem and
Property 1, the value of cost(XS , μ(XS)) equals

∑

v∈S

√
‖zv‖2 + ‖y‖2 − 2〈y, zv〉 =

∑

v∈S

√
A2 + ζv + δ2 − 2〈y, zv〉,

where 〈. , .〉 is the dot product. Next, Property 1, Lemma 1, and the condition
for A imply that

|ζv + δ2 − 2〈y, zv〉| < 3.38 +
( 40

mA

)2

+ 2
40
mA

(
A +

1.69
A

)
< 31

and
∣∣∣
ζv + δ2 − 2〈y, zv〉

A2

∣∣∣ <
31
A2

< 0.001. On the other hand, by using Taylor’s

theorem (in the Lagrange remainder form), we obtain the equation

√
1 + ε = 1 +

ε

2
− θ

ε2

7.99
for some θ ∈ [0, 1] if |ε| ≤ 0.001.

Therefore, we have

cost(XS , μ(XS)) =
∑

v∈S

A
(
1 +

ζv + δ2 − 2〈y, zv〉
2A2

− θv
(ζv + δ2 − 2〈y, zv〉)2

7.99A4

)
,

where θv ∈ [0, 1]. But
∑

v∈S

zv is the zero vector, so the sum of terms 〈y, zv〉 is

zero. Taking into account the inequalities δ <
40
mA

and |ζv + δ2 − 2〈y, zv〉| < 31,

it follows that cost(XS , μ(XS)) =

∑

v∈S

(
A +

ζv

2A

)
+ θ1

402

2mA3 − θ2
312m
7.99A3

= mA +
∑

v∈S

ζv

2A
+ γ

121m

A3
,

where θ1, θ2 ∈ [0, 1] and γ ∈ [−1, 1].
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Next, we estimate the value of
∑

v∈S

ζv. Given a vertex v ∈ S, define the vector

x̃v ∈ R
E such that x̃v(e) = xv(e) for every e ∈ E. Then each term ζv equals the

squared distance from the vector x̃v to the mean of these vectors. But it is well
known (e.g., see [14,20]) that the sum of such squared distances equals the sum
of all the pairwise squared distances divided by 2m:

∑

v∈S

ζv =
1

2m

∑

v∈S

∑

u∈S

‖x̃v − x̃u‖2.

At the same time, by the 3-regularity of the graph G and by the construction of
vectors x̃v, each pairwise squared distance ‖x̃v − x̃u‖2 equals

{
8 if the vertices v, u are adjacent,
6 otherwise.

So we have
∑

v∈S

ζv =
6(m2 − m) + 2�S · 2

2m
= 3(m − 1) +

2�S

m
. It follows the

required equation. The lemma is proved. �

Lemma 3. Let A ≥ 200m. Then cost(XS , μ(XS)) = f(M,m, cut(S, V \ S), γ),

where f(M,m, t, γ) = mA +
3m

2A
− t

2mA
+ γ

121m

A3
and γ ∈ [−1, 1].

Proof. By the 3-regularity of the graph G, we have cut(S, V \ S) = 3m − 2�S .
Then �S = (3m − cut(S, V \ S))/2 and, by Lemma 2, we obtain the required
equation. The lemma is proved. �

Theorem 3. Capacitated Geometric Median is strongly NP-hard and does not
admit an approximation scheme FPTAS unless P = NP.

Proof. Suppose that the graph G consists of n ≥ 6 vertices and set M = 124n.
Then m = n/2 ≥ 3 and A ≥ M

√
2/3 > 200m. By Lemma 3, it follows that

cost(XS , μ(XS)) = f(M,m, cut(S, V \ S), γ), where γ ∈ [−1, 1]. On the other

hand, since A > 200m, the absolute value of the term γ
121m

A3
in the expression

for f is at most
2 · 121
2002

< 0.01 times of the value
1

2mA
, the minimum possible

non-zero change of the term
cut(S, V \ S)

2mA
. Therefore, if the minimum median

cost over all the m-element subsets of X is attained on the set XS , then S is a
maximum bisection in the graph G.

Thus, Max-Bisection|3 is reduced to Capacitated Geometric Median. Taking
into account that M is an integer bounded by a polynomial in the length of the
input, it gives the strong NP-hardness of our problem.

Moreover, by the above, if cut(S, V \ S) ≤ cut(T, V \ T ) − 1, where S and T
are any m-element subsets of vertices, then

cost(XS , μ(XS)) − cost(XT , μ(XT )) >
1 − 2 · 0.01

2mA
>

0.98
nM

>
0.007
n2

.
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At the same time, Lemma 3 and the inequality A > 200m imply that, both cost

values, for XS and XT , are less than m
(
A +

3
400m

+
121

(200m)3
)

< mM = 62n2.

It follows that Capacitated Geometric Median is NP-hard to approximate within

a factor of 1 +
0.007
62n4

. But, for arbitrary polynomial poly(n), any approximation

scheme FPTAS allows to get a
(
1+

1
poly(n)

)
-approximation in polynomial time.

Hence, the existence of such schemes is impossible unless P = NP. The theorem
is proved. �

Remark 2. A slightly more complicated reduction to Capacitated Geometric
Median can be constructed from the problem of finding an m-element indepen-
dent set in a general graph (with arbitrary vertex degrees). Since the latter
problem is W[1]-hard with respect to the parameter m, this reduction additio-
nally gives the W[1]-hardness of our problem.

4 Conclusion

The question of the polynomial-time solvability and approximability of the
Capacitated Geometric Median problem is studied. We give a simple “almost
exact” polynomial-time algorithm for this problem in fixed dimensions and also
an approximation scheme PTAS for the general case. On the other hand, we
prove that the problem is strongly NP-hard and does not admit a scheme FPTAS
unless P = NP. A possible direction for future work is constructing an efficient
polynomial-time approximation scheme (EPTAS). Another interesting question
is the complexity of the closely related Geometric 2-Median problem.
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