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Abstract. We combine Solomonoff’s approach to universal prediction
with algorithmic statistics and suggest to use the computable mea-
sure that provides the best “explanation” for the observed data (in the
sense of algorithmic statistics) for prediction. In this way we keep the
expected sum of squares of prediction errors bounded (as it was for the
Solomonoff’s predictor) and, moreover, guarantee that the sum of squares
of prediction errors is bounded along any Martin-Löf random sequence.

Keywords: Kolmogorov complexity · Prediciton · Algorithmic
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1 Introduction

We consider probability distributions (or measures) on the binary tree, i.e., non-
negative functions P : {0, 1}∗ → R such that P (empty word) = 1 and P (x0) +
P (x1) = P (x) for every string x. We assume that all the values P (x) are rational;
P is called computable i f there exists an algorithm that on input x outputs P (x).

Consider the following prediction problem. Imagine a black box that gener-
ates bits according to some unknown computable distribution P on the binary
tree. Let x = x1 . . . xn be the current output of the black box. The predic-
tor’s goal is to guess the probability that the next bit is 1, i.e., the ratio
P (1|x) = P (x1)/P (x).

Ray Solomonoff suggested to use the universal semi-measure M (called also
the a priori probability) for prediction. Recall that a semi-measure S on the
binary tree (a continuous semi-measure) is a non-negative function S : {0, 1}∗ →
R such that S(empty word) ≤ 1 and S(x0) + S(x1) ≤ S(x) for every string x.
Semi-measures correspond to probabilistic processes that output a bit sequence
but can hang forever, so an output may be some finite string x; the proba-
bility of this event is S(x) − S(x0) − S(x1). A semi-measure S is called lower
semi-computable, or enumerable, if the set {(x, r) : r < S(x)} is (computably)
enumerable. Here x is a string and r is a rational number. Finally, a lower
semi-computable semi-measure M is called universal if it is maximal among all
semimeasures up to a constant factor, i.e., if for every lower semi-computable
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semi-measure S there exists c > 0 such that M(x) ≥ cS(x) for all x. Such a
universal semi-measure exists [6,8,9].1

Solomonoff suggested to use the ratio M(1|x) := M(x1)/M(x) to predict
P (1|x) for an unknown computable measure P . He proved the following bound
for the prediction errors.

Theorem 1 ([10]). For every computable distribution P and for every b ∈ {0, 1}
the following sum over all binary strings is finite:

∑

x

P (x) · (P (b|x) − M(b|x))2 < ∞. (1)

Moreover, this sum is bounded by O(K(P )), where K(P ) is the prefix complex-
ity of the computable measure P (the minimal length of a prefix-free program
corresponding P ).

Note that for semimeasure the probabilities to predict 0 and 1 do not sum up to
1, so the statements for b = 0 and b = 1 are not equivalent (but both are true).

The sum from Theorem 1 can be rewritten as the expected value of the
function D on the infinite binary sequences with respect to P , where D(ω) is
defined as

D(ω) =
∑

x is a prefix of ω

(P (b|x) − M(b|x))2.

This expectation is finite, therefore for P -almost all ω the value D(ω) is finite
and

P (b|x) − M(b|x) → 0.

when x is an increasing prefix of ω. One would like to have this convergence for
all Martin-Löf random sequences ω (with respect to measure P ), but this is not
guaranteed, since the null set provided by the argument above may not be an
effectively null set. An example from [5] shows that this is indeed the case.

Theorem 2 ([5]). There exist a specific universal semi-measure M, computable
distribution P and Martin-Löf random (with respect to P) sequence ω such that

P (b|x) − M(b|x) �→ 0.

for increasing prefixes x of ω.

Lattimore and Hutter generalized Theorem 2 by proving the same statement for
a wide class of universal semi-measures [7].

Trying to overcome this problem and get a good prediction for all Martin-Löf
random sequences, we suggest the following approach to prediction. For a finite
string x we find a distribution Q on the binary tree that is the best (in some
sense) explanation for x. The probabilities of the next bits are then predicted as
Q(0|x) and Q(1|x).
1 One may even require that the probabilities for finite outputs, i.e., the differences
S(x) − S(x0) − S(x1) are maximal, but we do not require this.
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This approach combines two advantages. The first is that the series of type
(1) also converges, though the upper bound for it (at least the one that we are
able to prove) is much greater than O(K(P )). The second property is that the
prediction error (defined as in Theorem 2) converges to zero for every Martin-Löf
random sequence.

Let us give formal definitions. The quality of the computable distribution
Q on the binary tree, considered as an “explanation” for a given string x, is
measured by the value 3K(Q)− log Q(x): the smaller this quantity is, the better
is the explanation. One can rewrite this exression as the sum

2K(Q) + [K(Q) − log Q(x)].

Here the expression in the square brackets can be interpreted as the length of
the two-part description of x using Q (first, we specify the hypothesis Q using its
shortest prefix-free program, and then, knowing Q, we specify x using arithmetic
coding; the second part requires about − log Q(x) bits). The first term 2K(Q) is
added to give extra preference to simple hypotheses; the factor 2 is needed for
technical reasons (in fact, any constant greater than 1 will work).

For a given x we select the best explanation (that makes this quality mini-
mal). Then we predict the probability that the next bit after x is b:

H(b|x) :=
Q(xb)
Q(x)

,

where Q is the best explanation for string x (or one of the best explanations if
there are several).

In this paper we prove the following results:

Theorem 3. For every computable distribution P the following sum over all
binary strings x is finite:

∑

x

P (x)(P (0|x) − H(0|x))2 < ∞.

Theorem 4. Let P be a computable measure and let ω be a Martin-Löf random
sequence with respect to P . Then

H(0|x) − P (0|x) → 0

for prefixes x of ω as the length of prefix goes to infinity.

We speak about the probabilities of zeros, but both P and Q are measures,
so this implies the same results for the probabilities of ones.

We prove that
∑

x is a prefix of ω

(H(0|x) − P (0|x))2 < ∞

(Theorem 7) that is the strengthening of Theorem 4.
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In [3] Hutter suggested a similar approach but without coefficient 3 for K(Q)
(see also [2,4]). For this approach he proved an analogue of Theorem 3 with
different proof technique.

In [5] the existence of a semi-computable measure satisfying Theorem 4 was
proved. However it is unknown (to the best of our knowledge) that this measure
also satisfied Theorem 3.

In the next section we prove Theorem 4.
In Sect. 3 we prove Theorem 3.
Finally, in Sect. 4 we consider the case when we know some information about

P . More precisely, we know that P belongs to some enumerable set of computable
measures. We suggest a similar approach for prediction in this case. We prove
analogues of Theorems 4 and 3 (Theorems 8 and 9) for this prediction method.
We achieved better (polynomial in complexity of P ) error estimations in these
theorems.

2 Prediction on Martin-Löf Random Sequences

Recall the Schnorr–Levin theorem [8, ch.5] that says that a sequence ω is random
with respect to a computable probability measure P if and only if the ratio
M(x)/P (x) is bounded for x that are prefixes of ω.

The same result can be reformulated in the logarithmic scale. Let us denote
by KA(x) the a priori complexity of x, i.e., �− log M(x)	 (the rounding is chosen
in this way to ensure upper semicomputability of KA). We have

KA(x) ≤ − log P (x) + O(1)

for every computable probability measure P , where O(1) depends on P but not
on x. Indeed, since M is maximal, the ratio P (x)/M(x) is bounded. Moreover,
since P (x) can be included in the mix for M(x) with coefficient 2−K(P ), we have

KA(x) ≤ − log P (x) + K(P ) + O(1)

with some constant in O(1) that does not depend on P (and on x). As we have
discussed in the previous section, the right-hand side includes the length of the
two-part description of x.

Let us call
d(x|P ) := − log P (x) − KA(x)

the randomness deficiency of a string x with respect to a computable measure
P . (There are several notions of deficiency, but we need only this one.). Then
we get

d(x|P ) ≥ −K(P ) − O(1)

so the deficiency is almost non-negative. The Schnorr–Levin theorem character-
izes Martin-Löf randomness in terms of deficiency:
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Theorem 5 (Schnorr–Levin).
(a) If a sequence ω is Martin-Löf random with respect to a computable discti-

bution P , then d(x|P ) is bounded for all prefixes x of ω.
(b) Otherwise (if ω is not random with respect to P ), then d(x|P ) → ∞ as

the length of a prefix x of ω increases.

Note that there is a dichotomy: the values dP (x) for prefixes x of ω either
are bounded or converge to infinity (as the length of x goes to infinity). We can
define randomness deficiency for infinite sequence ω as

d(ω |P ) := sup
x is prefix of ω

d(x|P );

it is finite if and only if ω is random with respect to P .
Let us also recall the following result of Vovk:

Theorem 6 ([12]). Let P and Q be two computable distributions. Let ω be a
Martin-Löf random sequence with respect both to P and Q. Then

P (0|x) − Q(0|x) → 0

for prefixes x of ω as the length of prefix goes to infinity.

We will prove this theorem (and even more exact statement) in the next
section.

Proof (Proof of Theorem 4)
Now we have a sequence ω that is Martin-Löf random with respect to some

computable measure P , so D = d(ω |P ) is finite. For each prefix x of ω we take
the best explanation Q that makes the expression

3K(Q) − log Q(x)

minimal. Note that P is among the candidates for Q, so this expression should
not exceed

3K(P ) − log P (x).

Since ω is random with respect to P and x is a prefix of ω, Schnorr–Levin
theorem guarantees that the latter expression

3K(P ) − log P (x) = KA(x) + OP (1)

where constant in OP depends on P but not on x. On the other hand, the
inequality KA(x) ≤ K(Q) − log Q(x) + O(1) implies that

3K(Q) − log Q(x) = 2K(Q) + K(Q) − log Q(x) ≥ 2K(Q) + KA(x) − O(1). (∗)

So measures Q with large K(Q) cannot compete with P , and there is only a
finite list of candidate measures for the best explanation Q. For some of these Q
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the sequence ω is Q-random with respect to Q, so one can use Vovk’s theorem
to get the convergence of predicted probabilities when these measures are used.

Still we may have some “bad” Q in the list of candidates for which ω is not
Q-random. However, the Schnorr–Levin theorem guarantees that for a bad Q
we have

− log Q(x) − KA(x) → ∞
if x is a prefix of ω of increasing length. So the difference between two sides of (∗)
goes to infinity as the length of x increases, so Q loses to P for large enough x (is
worse as an explanation of x). Therefore, only good Q will be used for prediction
after sufficiently long prefixes, and this finishes the proof of Theorem 4.

3 On the Expectation of Squares of Errors

In this section we prove Theorem 3. First we will prove some strengthening of
Theorem 6

Lemma 1. Let P and Q be computable distributions. and let M be a universal
semi-measure. Assume that for string x = x1 . . . xn and C > 0 it holds that
P (x), Q(x) ≥ M(x)/C. Then:

n−1∑

i=1

(P (xi|x1 . . . xi−1) − Q(xi|x1 . . . xi−1))2 = O(log C + K(P,Q)).

Proof (Proof of Theorem 6 from Lemma 1). According to one of definitions of
Martin-Löf randomness the values M(x)/P (x) and M(x)/Q(x) are bounded by
a constant. It reminds to use Lemma 1.

Proof (Proof of Lemma 1). Denote

pi = P (xi |x1 . . . xi−1), qi = Q(xi |x1 . . . xi−1).

Note that

P (x1 . . . xn) = p1p2 . . . pn, Q(x1 . . . xn) = q1q2 . . . qn.

Now consider the “intermediate” measure R for which the probability of 0 (or
1) after some x is the average of the same conditional probabilites for P and Q:

R(0|x1 . . . xi−1) =
P (0|x1 . . . xi−1) + Q(0|x1 . . . xi−1)

2
.

The corresponding ri = R(xi |x1 . . . xi−1) are equal to (pi + qi)/2.
Probability distribution R is computable and K(R) ≤ K(P,Q)+O(1). Hence,

it holds that R(x) ≤ 2K(P,Q)M(x) ≤ 2K(P,Q) · C · P (x). The similar inequality
holds for distribution Q. Therefore:

r1 · · · rn ≤ C · 2K(P,Q) · p1 · · · pn
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and
r1 · · · rn ≤ C · 2K(P,Q) · q1 · · · qn.

Multiplying we obtain:

(
p1 + q1

2
· · · pn + qn

2
)2 ≤ C2 · 22K(P,Q) · p1 · · · pn · q1 · · · qn.

These two inequalities show that the product of arithmetical means of pi and qi

is not much bigger than the product of their geometrical means, and this is only
possible if pi is close to qi (logarithm is a strictly convex function).

To make the argument precise, recall the bound for the logarithm function:

Lemma 2. For p, q ∈ (0, 1] we have

log
p + q

2
− log p + log q

2
≥ 1

8 ln 2
(p − q)2

Proof. Let us replace the binary logarithms by the natural ones; then the factor
ln 2 disappears. Note that the left hand side remains the same if p and q are
multiplied by some factor c ≥ 1 while the right side can only increase. So it is
enough to prove this for p = 1 − h and q = 1 + h for some h ∈ (0, 1), and this
gives

− ln(1 − h) + ln(1 + h)
2

≥ 1
2
h2;

and this happens because ln(1 − h) + ln(1 + h) = ln(1 − h2) ≤ −h2.

For the product of n terms we get the following bound:

Lemma 3. If for p1, . . . , pn, q1, . . . , qn ∈ (0, 1] we have

(
p1 + q1

2
· . . . · pn + qn

2

)2

≤ cp1 . . . pnq1 . . . qn,

then
∑

i(pi − qi)2 ≤ O(log c), with some absolute constant hidden in O(·)-
notation.

Proof. Taking logarithms, we get

2
∑

i

log
pi + qi

2
≤ log c +

∑

i

log pi +
∑

i

log qi,

and therefore

∑

i

(
log

pi + qi

2
− log pi + log qi

2

)
≤ 1

2
log c.

It remains to use Lemma 2 to get the desired inequality.
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To complete the proof of Lemma 1 it remains to take c := C2 · 22K(P,Q) in
Lemma 3.

Now we prove a strengthening of Theorem 4.

Theorem 7. Let P be a computable measure, let ω be a Martin-Löf random
sequence with respect to P such that d(ω|P ) = D.

Then
∑

xis a prefix of ω

(H(0|x) − P (0|x))2 = O((K(P ) + D) · 2
3K(P )+D+O(1)

2 ).

Proof. Assume that distribution Q is the best for some x = x1 . . . xn. Then

3K(Q) − log Q(x) ≤ 3K(P ) − log P (x). (2)

Since d(ω|P ) = D we obtain that

− log P (x) ≤ KA(x) + D. (3)

Therefore,

− log Q(x) ≤ 3K(P ) − log P (x) ≤ 3K(P ) + KA(x) + D , so

Q(x) ≥ M(x) · 2−3K(P )−D and

P (x) ≥ M(x) · 2−D.

We want to estimate
∑n

i=1(Q(0|x1 . . . xi)−P (0|x1 . . . xi))2 by Lemma 1. We can
use this lemma for C = 23K(P )+D.

From (2) and (3) it follows that

K(Q) ≤ 3K(P ) + D + O(1)
2

. (4)

Therefore by Lemma 1 we obtain

n−1∑

i=1

(Q(0|x1 . . . xi) − P (0|x1 . . . xi))2 = O(K(P ) + D).

In fact, we can not use this lemma for the last term (Q(0|x) − P (0|x))2. This
term we just bound by 1 1.

So, every probability distribution that is the best for some x “contributes”
O(K(P ) + D) in the sum

∑
xis a prefix of ω(H(0|x) − P (0|x))2. There are at most

2
3K(P )+D+O(1)

2 such distribution (by (4)), so we obtain the required estimation.

Recall the following well-known statement

Proposition 1. Let P be a computable distribution. Then the P -measure of all
sequences x such that d(ω|P ) ≥ D is not greater than 2−D.
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Proof (Proof of Theorem 3). Denote by Ω the set of all infinite sequences with
zeros and ones. Note that

∑

x

P (x)(P (0|x) − H(0|x))2 =
∫

(Ω,P )

∑

xis a prefix ofω

(H(0|x) − P (0|x))2.

By Theorem 7 we can estimate the sum in the integral for sequence ω with
d(x|ω) = D as O((K(P ) + D) · 2

3K(P )+D+O(1)
2 ). By Proposition 1 the measure of

sequences with such randomness deficiency is at most 2−D. So we can estimate
the integral as

∞∑

D=0

O((K(P ) + D) · 2
3K(P )+D+O(1)

2 )2−D = O(K(P )2
3K(P )

2 ).

(Recall that the P -measure of sequences that are not Martin-�Löf random with
respect to P is equal to 0, so they do not affect to the integral.)

4 Prediction for Enumerable Classes of Hypotheses

Assume that we have some information about distribution P . We know that
P belongs to some enumerable set A of computable distributions, (i.e. there is
an algorithm that enumerate programs that generate distributions from A). For
this case it is natural to consider the following measure of complexity measures
in A:

KA(P ) := K(iP ), where ip is the number of P in a computable enumeration of A.

If P has several numbers in an enumeration we choose iP with the smallest
complexity. (This definition does depend on the choice of a computable enu-
meration but this dependence is bounded by some additive constant.) Clearly,
KA(P ) ≥ K(P ) + O(1).

Now we can generalize our prediction method: for prediction of the next bit
of x we select Q ∈ A with the smallest value of 3KA(Q) − log Q(x) and predict
the next bit according to Q:

HA(x) :=
Q(xb)
Q(x)

.

In this section we show that if set A has some nice properties than some
analogues of previous theorems hold. Even more—we can get a better error
estimation. We assume that enumerable set A has the following property: if
P1, . . . , Pk ∈ A then their mixture P1+...Pk

k belongs to A. Moreover there exists
an algorithm that for given numbers of P1, . . . , Pk outputs the number of their
mixture.

(Further everywhere A is an enumerable set of computable distributions with
this property)
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Remark 1. Consider the following example of set A: the set of all provable (in
some proof system) computable distributions on the binary tree: so, for every
program p ∈ A there exists a proof that p(x) halts for every x, p(x) = p(x0) +
p(x1) and p(empty word) = 1. We guess that all using in practice computable
distributions are provable computable, so, in some sense we get better error
estimation “almost free”. Our discussion about practice might look unsuitable
because our prediction method is not computable. However, it can be considered
as limit best prediction based on (really used) MDL-principle.

Theorem 8. Let P ∈ A be a computable measure, let ω be a Martin-Löf random
sequence with respect to P such that d(ω|P ) = D.

Then
∑

x is a prefix of ω

(HA(0|x) − P (0|x))2 = O((KA(P ) + D) · poly(KA(P ) + D).

Theorem 9. For every computable distribution P ∈ A the following sum over
all binary strings x is finite:

∑

x

P (x)(P (0|x) − H(0|x))2 < poly(KA(P )).

The proofs of these theorems is in general the same as the proofs of Theorems 7
and 3, however some new tools are added. The difference is that we can get
better estimation on the number of possible best explanations for prefixes of
some sequence.

Lemma 4. Let x be a finite string. Assume that there are 2k probabilities
Q1, . . . Q2k ∈ A such that for every i it holds KA(Qi) ≤ a and Qi(x) ≥ 2−b.
Then there is probability distribution Q ∈ A such that

KA(Q) ≤ a − k + O(log a + k) and Q(x) ≥ 2−b−k.

Note that 3KA(Q) − log Q(x) ≤ 3 · (a − k + O(log a + k) + b + k) ≤ 3 · a − b for
big enough k. This means that string x can not has many “best” explanations.

Proof (of Lemma 4). Let enumerate all distributions of A with complexity at
most a by groups of size 2k−1 (the last group can be incomplete). The number of
such groups is O(2a−k). The complexity of every group is at most a−k+O(log a+
k). Indeed, to describe a group we need its ordinal number in an enumeration
and describe this enumeration (we need to know k, a and some enumeration of
A).

One of these complete group contains some Qi. Define Q as the mixture of
the distributions in this group. Since the group has complexity at most a − k +
O(log a + k) the same estimation holds for the complexity of Q. Since some Qi

belongs to the mixture it holds that Q(x) ≥ 2−b−k+1. Recall that Q belongs to
A because every mixture of distributions from A belongs to A.

Also we need the following lemma.
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Lemma 5. Let string s be a prefix of string h and let P be a computable distri-
bution such that d(s|P ) = D. Then d(h|P ) ≥ D − 2 log D + O(1).

(So, a prefix of a string that has small deficiency, has (almost as) small defi-
ciency).

In fact the proof of this lemma is the same as the proof of Theorem 124 in
[8].

Proof (Proof of Lemma 5). For each k consider the enumerable set of all finite
sequences that have deficiency greater than k. All the infinite continuations of
these sequences form an open set Sk, and P -measure of this set does not exceed
2−k. Now consider the measure Pk on Ω that is zero outside Sk and is equal
to 2kP inside Sk. That means that for every set U the value Pk(U) is defined
as 2k(U ∩ Pk). Actually, Pk is not a probability distribution according to our
definition, since Pk(ω) is not equal to 1. However, Pk can be considered as a
lower semicomputable semimeasure, if we change it a bit and let Pk(ω) = 1 (this
means that the difference between 1 and the former value of Pk(ω) is assigned
to the empty string).

Now consider the sum

S =
∑

k

1
2k2

Pk

It is a lower semicomputable semimeasure (the factor 2 in the denominator is
used to make the sum

∑
k

1
2k2 less than 1); again, we need to increase S so that

S(Ω) = 1. Then we have

− log S(x) ≤ − log P (x) − k + 2 log k + O(1)

for every string x that has a prefix with deficiency greater than k. Since S does
not exceed a priori probability (up to O(1)-factor), we get the desired inequality.

Proof (of Theorem 8)
Part 1. We claim that there are only poly(D+KA(P )) different distributions

that are the best for some prefix of ω.
Let x be a prefix of ω and Q is the best distribution for x. As in the proof of

Theorem 7 we obtain

KA(Q) ≤ 3KA(P ) + D + O(1)
2

, (5)

Q(x) ≥ M(x) · 2−3KA(P )−D

and hence
d(x|P ) ≤ 3KA(P ) + D. (6)

Let Q1, . . . , Qm be different and the best distribution for prefixes x1, . . . , xm

of ω.
We need to prove that m = poly(D + KA(P )).
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Fix some natural a and b. We can assume that K(Qi) = a and

b ≤ d(zi |Qi) < 2b.

Indeed, if we prove that there are only poly(D + K(P )) best distributions
with fixing complexity and randomness deficiency then the honest estimation of
m will be multiplied by poly(D + K(P )) because of (5) and (6).

Let zi be the shortest prefix among z1, . . . zm.
By Lemma 5 every Qj is “rather good” distribution for z: d(z |Qj) ≤

b + O(log b) and hence Qj(z) ≥ Qi(z) · 2−O(log b). By Lemma 4 there exists
a distribution from R ∈ A such that

KA(R) ≤ a − log m + O(log a + log m) and

R(z) ≥ Qi(z) · 2− log m−O(log b).

Since Qi is not worse distribution then R for z we have:

3 · KA(Qi) − log Qi(z) ≤ 3 · KA(R) − log R(z).

Therefore:
3a ≤ 3a − 2 log m + O(log b) and hence

log m ≤ O(log b) = O(log(KA(P ) + D).

That is proved our claim.
Part 2. To complete the proof we do the same things as in the proof of

Theorem 7.
If x = x1 . . . xn is a prefix of ω and Q is the best distribution for x then by

Lemma 1

n−1∑

i=1

(Q(0|x1 . . . xi)−P (0|x1 . . . xi))2 = O(KA(P )+D+K(P,Q) = O(KA(P )+D).

(In the last equation we use K(P,Q) = O(K(P )+K(Q)) = O(KA(P )+KA(Q)).)
So, every probability distribution that is the best for some x “contributes”
O(KA(P ) + D) in the sum

∑
x is a prefix of ω(HA(0|x) − P (0|x))2. There are

poly(D + KA(P )) such distributions, so we obtain the required estimation.

Proof (Proof of Theorem 9). The proof is the same as the proof of Theorem 3
but with using Theorem 8 instead of Theorem 7.

5 Open Questions

A natural question arises: can we get a better estimation in the last theorem
than O(K(P )2

3K(P )
2 )? We have exponential (in K(P )) estimation because it is

our estimation of the number of distributions that are the best for some x.
However, the author does not know an example of P -random sequence ω such



Predictions and Algorithmic Statistics for Infinite Sequences 295

that there are exponentially many (in terms of K(P ) and d(ω|P )) different best
distributions for prefixes of ω.

Algorithmic statistics [1,8,11] studies good distributions for strings among
distributions on finite sets. There exists a family of “standard statistics” that
cover all the best distributions for finite strings. It is interesting: are there the
same things for distributions on the binary tree?
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