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Abstract. Card-based protocols are used to perform cryptographic
tasks such as secure multiparty computation using a deck of physical
cards. While most of the existing protocols use a two-colored deck con-
sisting of red cards and black cards, Niemi and Renvall in 1999 con-
structed protocols for securely computing two-input Boolean functions
(such as secure logical AND and XOR computations) using a commonly
available standard deck of playing cards. Since this initial investigation,
two-input protocols with fewer cards and/or shuffles have been designed,
and by combining them, one can perform a secure computation of any
Boolean circuit. In this paper, we directly construct a simple card-based
protocol for the three-input AND computation. Our three-input AND
protocol requires fewer cards and shuffles compared to that required
when applying any existing two-input AND protocol twice to perform
the three-input AND computation. Our protocol is unique in the sense
that it is card minimal if we use two cards to encode a single bit.

Keywords: Card-based cryptography · Secure computation · Real-life
hands-on cryptography · Logical AND function

1 Introduction

Card-based protocols perform cryptographic tasks such as secure multiparty com-
putation using a deck of physical cards. Most existing studies in this line of
research use a two-colored deck consisting of indistinguishable red ♥ and black
♣ cards, whose backs have the same pattern ? . The Boolean values are usually
encoded as follows:

♣ ♥ = 0, ♥ ♣ = 1.
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If two face-down cards represent a bit x ∈ {0, 1} according to the above encoding
rule, then we call them a commitment to x and write it as follows:

? ?
︸ ︷︷ ︸

x

.

Previous research has proposed many card-based protocols that are capable
of securely computing Boolean functions such as the logical AND function. As
mentioned above, most prior studies have used a two-colored deck of cards (e.g.,
[1,2,4,5,7,16,24]); however, there are a few protocols that use a standard deck
of playing cards, as introduced below.1

1.1 Card-Based Protocols with a Standard Deck of Cards

In 1999, Niemi and Renvall [18] proposed card-based protocols for secure two-
input computations (such as computations of the logical AND and XOR) using
a commonly available standard deck of playing cards for the first time. Since
then, several protocols using such a standard deck have been proposed [6,9,10].

A typical deck of playing cards consists of 52 distinct cards excluding jokers;
hence, we assume the following deck of 52 numbered cards:

1 2 3 4 5 6 · · · 51 52 ,

where all their backs are identical ? .
Niemi and Renvall [18] considered, based on two cards i and j , 1 ≤ i <

j ≤ 52, an encoding scheme such that

i j = 0, j i = 1. (1)

That is, two cards can be represented as 0 if the left number is smaller than
the right one; otherwise, they are represented as 1. In this way, similar to the
two-colored case, we can consider a commitment to a bit x ∈ {0, 1} with two
numbered cards i and j , denoted by

? ?
︸ ︷︷ ︸

[x]{i,j}

.

Here, the set {i, j} is called a base of the commitment. We sometimes write

? ?
︸ ︷︷ ︸

[x]

without the description of a base if it is clear from context or there are multiple
possibilities for the base. Note that, swapping the two face-down cards of a given
1 There are other types of cards used for secure computations, such as polarizing

cards [29], polygon cards [30], triangle cards [28], and dihedral cards [27].
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commitment to x ∈ {0, 1} converts it into a commitment to the negation x̄ while
keeping the value of x secret; thus, a secure NOT computation is easy.

Based on this encoding, Niemi and Renvall [18] designed card-based proto-
cols. They were followed by a couple of research groups [6,10], whose advance-
ments will be detailed in the next subsection.

1.2 Existing Protocols

Table 1 presents the existing protocols for the secure computation of the two-
input AND function with a standard deck of cards. A protocol that terminates
in a finite number of steps is said to be finite, while a protocol with a runtime
that is finite in expectation is said to be Las Vegas; the fourth column of Table 1
indicates this.

Niemi and Renvall [18] proposed a Las Vegas two-input AND protocol using
five cards; four cards are used to represent input commitments and the remaining
card is an auxiliary one.2 In other words, given two commitments to bits a, b ∈
{0, 1} along with one additional card, their protocol produces a commitment to
a ∧ b without leaking (revealing) any information about a and b:

? ?
︸ ︷︷ ︸

[a]{1,2}

? ?
︸ ︷︷ ︸

[b]{3,4}

5 → · · · → ? ?
︸ ︷︷ ︸

[a∧b]

.

In the (original) Niemi–Renvall protocol [18], the base of the output commitment
is always {1, 2} and the expected number of required shuffles is 9.5; however,
Koch, Schrempp, and Kirsten [6] demonstrated that the expected number of
shuffles can be reduced to 7.5 if we allow the base of the output commitment
to be either {1, 4}, {1, 5}, or {4, 5}. In this paper, we refer this modified version
as to the Niemi–Renvall protocol. As will be seen in Sect. 2.4, this protocol uses
only a simple shuffle called a random cut (which is described in Sect. 2.2).

Later, Mizuki [10] proposed a finite two-input AND protocol with eight
cards.3 This protocol uses only a shuffle action called a random bisection cut
(which is described in Sect. 2.3), and the number of required shuffles is four.

In 2021, Koch, Schrempp, and Kirsten [6] proposed a Las Vegas two-input
AND protocol with four cards. This protocol uses only a random cut, and its
expected number of shuffles is six.

1.3 Contribution

Let us consider how to securely compute the three-input AND function:

? ?
︸ ︷︷ ︸

[a]{1,2}

? ?
︸ ︷︷ ︸

[b]{3,4}

? ?
︸ ︷︷ ︸

[c]{5,6}

· · · → · · · → ? ?
︸ ︷︷ ︸

[a∧b∧c]

.

2 Niemi and Renvall [18] also provided Las Vegas protocols for the secure computations
of XOR and copy.

3 Mizuki [10] also presented finite XOR and copy protocols.
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Table 1. The existing two-input AND protocols with a standard deck of cards

# of cards # of shuffles finite?

Niemi & Renvall [18] 5 7.5 (exp.)

Mizuki [10] 8 4 �
Koch & Schrempp & Kirsten [6] 4 6 (exp.)

Table 2. Three-input AND computations with a standard deck of cards

# of cards # of shuffles finite?

Mizuki [10] (twice) 10 8 �
Koch & Schrempp & Kirsten [6] (twice) 6 12 (exp.)

Ours 6 8.5 (exp.)

Computation of the three-input AND function can be performed by repeatedly
applying one of the three existing protocols [6,10,18] twice: First, one must
obtain a commitment to a ∧ b by applying a two-input protocol, and then apply
the protocol to the commitments to a∧ b and c. To perform this, the numbers of
required cards and shuffles by Mizuki’s protocol [10] or Koch et al.’s protocol [6]
are listed in Table 2.

In this study, we solicit a more efficient computation of the three-input AND.
The main contribution of this paper is the novelty of our protocol that directly
performs a secure three-input AND computation in a single application. Our
protocol is partly based on Niemi and Renvall’s two-input AND protocol [18].
Our protocol uses only six cards, which are necessary for three input commit-
ments; therefore, it uses the same number of cards as two runs of Koch et al.’s
protocol [6]. The expected number of shuffles required for our protocol is 8.5,
which is 3.5 fewer than the previous best six-card computation (see Table 2).

Overall, our proposed three-input AND protocol is “card-minimal” in the
sense that only six cards are necessary under the encoding rule (1). Additionally,
our protocol is simple because it uses only random cuts and random bisection
cuts as shuffles.

1.4 Outline

This paper is organized as follows: Sect. 2 describes basic terminology in card-
based cryptography and introduces the Niemi–Renvall protocol [18]. In Sect. 3,
we describe our three-input AND protocol. We conclude this paper in Sect. 4.

2 Preliminaries

In this section, we introduce the actions involved in card-based protocols as
well as practical shuffles, specifically the random cut and the random bisection
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cut, which will be used in our proposed protocol. Additionally, we explain the
two-input AND protocol constructed by Niemi and Renvall [18].

2.1 Actions

In card-based protocols, as they have been formalized in [7,13,15], there are the
following three main actions to be applied to a sequence of n cards.

Rearrangement. Apply some permutation π ∈ Sn to a sequence of n cards,
where Sn denotes the symmetric group of degree n. We write this action as
(perm, π):

1

?
2

? · · ·
n

?
(perm,π)−−−−−→

π−1(1)

?
π−1(2)

? · · ·
π−1(n)

? .

Turn. Turn over the t-th card (from the left) for t ∈ {1, . . . , n} in a sequence to
check the number of the card. We write this action as (turn, {t}):

1

?
2

? · · ·
t

? · · ·
n

?
(turn,{t})−−−−−−→

1

?
2

? · · ·
t

1 · · ·
n

? .

In this example, the numbered card displaying a 1 was revealed.
Shuffle. Apply a permutation π ∈ Π chosen uniformly randomly from a per-

mutation set Π ⊆ Sn. We write this action as (shuf,Π):

1

?
2

? · · ·
n

?
(shuf,Π)−−−−−→

π−1(1)

?
π−1(2)

? · · ·
π−1(n)

? .

Note that it is not possible for an observer to know which permutation in Π
was applied.

2.2 Random Cut

A random cut is a shuffling action (denoted by 〈·〉) that shifts a sequence of cards
cyclically and randomly. If a random cut is applied to a sequence of n cards, then
the resulting sequence becomes one of the following n sequences, each of which
occurs with a probability of 1/n:

〈

1

?
2

?
3

? · · ·
n−1

?
n

?

〉

−→

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

1

?
2

?
3

? · · ·
n−1

?
n

? ,
2

?
3

?
4

? · · ·
n

?
1

? ,
...

n−1

?
n

?
1

? · · ·
n−3
?

n−2
? ,

n

?
1

?
2

? · · ·
n−2
?

n−1
? .
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This random cut can be written, using a cyclic permutation σ = (1 2 3 · · · n), as

(shuf, {id, σ, σ2 , . . . , σn−1}),

where id denotes the identity permutation. Hereinafter, we use RC1,2,...,n to rep-
resent {id, σ, σ2 , . . . , σn−1}.

A random cut can be easily performed by human hands, and a secure imple-
mentation called the Hindu cut is well known [31,32].

2.3 Random Bisection Cut

A random bisection cut is a shuffling action invented by Mizuki and Sone [16] in
2009. This shuffle (denoted by [ · | · ]) bisects a sequence of 2n cards and randomly
swaps the two halves; the resulting sequence becomes one of the following two
sequences:

[ 1

? · · ·
n

?
∣

∣

∣

n+1

? · · ·
2n

?
]

→

⎧

⎪
⎨

⎪
⎩

1

? · · ·
n

?
n+1

? · · ·
2n

? ,
n+1

? · · ·
2n

?
1

? · · ·
n

? .

That is, the resulting sequence either remains the same as the original one or
becomes a sequence where the two halves are swapped with a probability of 1/2.
This random bisection cut can be written as follows:

(shuf, {id, (1 n+1)(2 n+2) · · · (n 2n)}).

Secure implementations using familiar tools were shown in [31,32]. The ran-
dom bisection cut has brought many efficient protocols (e.g., [11,12,14,19–21]).

2.4 The Niemi–Renvall Protocol

Given two commitments to a, b ∈ {0, 1} along with an additional card, the
Niemi–Renvall protocol [18] outputs a commitment to a∧ b. The procedure is as
follows.

1. Place the two input commitments and an additional card 5 and turn it over:

5 ? ?
︸ ︷︷ ︸

[a]{1,2}

? ?
︸ ︷︷ ︸

[b]{3,4}

→ ? ? ?
︸ ︷︷ ︸

[a]{1,2}

? ?
︸ ︷︷ ︸

[b]{3,4}

.

2. Rearrange the third and fourth cards:

1

?
2

?
3

?
4

?
5

? →
1

?
2

?
4

?
3

?
5

? .

Now, let us consider the order of 5 , 1 , and 4 in the rearranged sequence;
the order is 5 → 4 → 1 (apart from cyclic rotation) if and only if (a, b) =
(1, 1), i.e., a ∧ b = 1 (whereas the order is 5 → 1 → 4 if and only if
a ∧ b = 0). Therefore, we try to remove 2 and 3 in Steps 3 and 4.
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Table 3. The sequence after removing 2 and 3

(a, b) a ∧ b Sequence after Removing 2 and 3

(0, 0) 0 1 4 5 or 4 5 1 or 5 1 4

(0, 1) 0 1 4 5 or 4 5 1 or 5 1 4

(1, 0) 0 1 4 5 or 4 5 1 or 5 1 4

(1, 1) 1 1 5 4 or 4 1 5 or 5 4 1

3. Apply a random cut to the sequence of all cards:
〈

? ? ? ? ?
〉 → ? ? ? ? ? .

4. Turn over the first card; if it is 2 or 3 , then remove it. Otherwise, turn it
over. If there is still a 2 or 3 in the sequence, then return to Step 3.

5. The resulting sequence after removing 2 and 3 becomes one as presented in
Table 3. Apply a random cut to the sequence and then reveal the first card to
obtain the output commitment. (This step was developed by Koch et al. [6].)

? ? ?
(turn,{1})−−−−−−→

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

1 ? ?
︸ ︷︷ ︸

[a∧b]{4,5}

,

4 ? ?
︸ ︷︷ ︸

[a∧b]{1,5}

,

5 ? ?
︸ ︷︷ ︸

[a∧b]{1,4}

.

If the first card is 4 , then we obtain a commitment to the negation of a∧ b.
In this case, we apply the NOT computation to obtain a commitment to a∧b.

Correctness of this protocol is clear from the above description. Regarding
security, since a random cut is applied to the sequence in Step 3, the revealed
card in Step 4 is chosen randomly from the sequence. Therefore, no information
about the input is leaked. For example, if the number of cards in Step 3 is five,
the revealed card in Step 4 should be one in { 1 , 2 , 3 , 4 , 5 } with an equal
probability regardless of the input values. In the same manner, no information
about the input is leaked when the first card is revealed in Step 5. To summarize,
this protocol is correct and secure.

3 Our Three-Input AND Protocol

In this section, we present a three-input AND protocol that requires no addi-
tional card, i.e., is card-minimal and uses fewer shuffles as compared to the
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applications of previous protocols:

? ?
︸ ︷︷ ︸

[a]{1,2}

? ?
︸ ︷︷ ︸

[b]{3,4}

? ?
︸ ︷︷ ︸

[c]{5,6}

→ · · · → ? ?
︸ ︷︷ ︸

[a∧b∧c]

.

We begin by describing the idea behind our proposed protocol.

3.1 Idea

Observe the following simple fact about a ∧ b ∧ c:

a ∧ b ∧ c =

{

0 if c = 0,
a ∧ b if c = 1.

In other words, to construct a three-input AND protocol, it suffices to simulate
a two-input AND protocol if c = 1 and to always output 0 if c = 0. For this, we
borrow the idea behind the Niemi–Renvall protocol [18] introduced in Sect. 2.4.

Remember that their protocol swaps the third and fourth cards in Step 2;
this action reverses the order of 1 and 4 if and only if (a, b) = (1, 1), i.e., the
output is 1. That is, if we skip this step and perform the remaining steps, then
the output should be always 0. From this observation, it suffices to swap the
third and fourth cards if and only if c = 1 and then perform the remaining steps
of the protocol. Therefore, in the next subsection, we will describe how to swap
two cards according to the value of c (without knowing it).

3.2 Swapping by Value of Commitment

For a sequence of two cards along with a commitment to c ∈ {0, 1} whose base is
{i, j}, we want to swap the cards if c = 1 and we want to keep them unchanged
if c = 0, without leaking the value of c:

1

?
2

? ? ?
︸ ︷︷ ︸

[c]{i,j}

→

⎧

⎪
⎨

⎪
⎩

1

?
2

? if c = 0,
2

?
1

? if c = 1.

We call this the swap operation by the commitment to c. The swap operation
proceeds as follows (whose procedure is similar to the Mizuki XOR protocol [10]).

1. Assume a target sequence of two cards and a commitment to c (with i < j):

? ? ? ?
︸ ︷︷ ︸

[c]{i,j}

.
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2. Rearrange the second and third cards:

1

?
2

?
3

?
4

? →
1

?
3

?
2

?
4

? .

3. Apply a random bisection cut to the sequence of all cards:
[

? ?
∣

∣

∣ ? ?
]

→ ? ? ? ? .

4. Rearrange the second and third cards:

1

?
2

?
3

?
4

? →
1

?
3

?
2

?
4

? .

Observe that, depending on the value of c, the current sequence satisfies the
followings:

c = 0 ⇒

⎧

⎪
⎨

⎪
⎩

1

?
2

? i j (Prob. of 1/2),
2

?
1

? j i (Prob. of 1/2).

c = 1 ⇒

⎧

⎪
⎨

⎪
⎩

1

?
2

? j i (Prob. of 1/2),
2

?
1

? i j (Prob. of 1/2).

5. Turn over the third and fourth cards; i j or j i should appear with a
probability of 1/2.
(a) If i j appear, then output the first and second cards.
(b) If j i appear, then swap the first and second cards and then output

them.

3.3 Description of Our Protocol

We now present our three-input AND protocol.

1. Assume three input commitments to a, b, c ∈ {0, 1}:

? ?
︸ ︷︷ ︸

[a]{1,2}

? ?
︸ ︷︷ ︸

[b]{3,4}

? ?
︸ ︷︷ ︸

[c]{5,6}

.

2. Apply the swap operation by the commitment to c shown in Sect. 3.2 to the
second and third cards, as follows.
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(a) Rearrange the sequence:

1

?
2

?
3

?
4

?
5

?
6

? →
1

?
4

?
2

?
5

?
3

?
6

? .

(b) Apply a random bisection cut to the last four cards:

? ?
[

? ?
∣

∣

∣ ? ?
]

→ ? ? ? ? ? ? .

(c) Apply the inverse rearrangement of Step 2(a):

1

?
2

?
3

?
4

?
5

?
6

? →
1

?
3

?
5

?
2

?
4

?
6

? .

(d) Turn over the fifth and sixth cards: If 5 6 appear, then do nothing. If
6 5 appear, then swap the second and third cards.

3. Rearrange the sequence so that the first card becomes 5 appeared in the
previous step and then turn it over. Subsequently, apply Steps 3, 4, and 5 of
the Niemi–Renvall protocol [18] to the first five cards.

3.4 Correctness and Security

Here, we prove the correctness and security of our three-input AND protocol.
Observe that, in the sequence after Step 2 as listed in Table 4, the order of 1 4
is 4 → 1 if and only if a ∧ b ∧ c = 1 (whereas it is 1 → 4 if and only if
a ∧ b ∧ c = 0). From this, it suffices to remove 2 and 3 in the same manner
as the Niemi–Renvall protocol [18]. Therefore, our protocol can always output
a commitment to a ∧ b ∧ c by applying Steps 3, 4, and 5 of the Niemi–Renvall
protocol [18].

More formally, we prove this by using the KWH-tree [7] as in Figs. 1 and 2.
The KWH-tree is a tree-like diagram that shows the transitions of possible
sequences of cards along with their respective polynomials in a box, where actions
to be applied to the sequence are appended to an edge. In the figure, the probabil-
ity of (a, b, c) = (x, y, z) is denoted by Xxyz. A polynomial annotating a sequence
in a box such as 1/2X000 represents the conditional probability that the current
sequence is the one next to the polynomial, given what can be observed so far
on the table.

If the sum of all the polynomials in each box is equal to
∑

x,y,z∈{0,1}
Xxyz,

then it is guaranteed that no information about the input is leaked. The KWH-
tree of our protocol for Steps 1 and 2 is shown in Fig. 1. The KWH-tree for
Step 3 is shown in Fig. 2. From the figures, it can be easily confirmed that the
aforementioned condition is satisfied in each box, i.e., our protocol is secure.
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Table 4. The possible sequences after Step 2 in our protocol

(a, b, c) a ∧ b ∧ c Sequence After Step 2

(0, 0, 0) 0 1 2 3 4

(0, 0, 1) 0 1 3 2 4

(0, 1, 0) 0 1 2 4 3

(1, 0, 0) 0 2 1 3 4

(0, 1, 1) 0 1 4 2 3

(1, 0, 1) 0 2 3 1 4

(1, 1, 0) 0 2 1 4 3

(1, 1, 1) 1 2 4 1 3

Fig. 1. The KWH-tree for our three-input AND protocol (Steps 1 to 2)
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Fig. 2. The KWH-tree for our three-input AND protocol (Step 3), where X0 = X000 +
X001 + X010 + X011 + X100 + X101 + X110 and X1 = X111. The result action indicates
the positions of the output commitment.

4 Conclusion

In this study, we designed a simple three-input AND protocol using playing
cards by only using six cards; in other words, we do not need any additional
cards (aside from three input commitments). To the best of our knowledge, this
is the first type of protocol that can be used for directly computing a three-input
Boolean function with a standard deck of cards.

A natural open problem that presents itself from our research is the con-
struction of efficient AND protocols for more than three inputs. It would also
be interesting to investigate whether a finite AND protocol can be constructed
using only random cuts even for two inputs. Making use of a standard deck in
the “private permutation” setting (e.g., [8,17,22,33]) would be another interest-
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ing topic. In addition, it would be worthwhile to construct zero-knowledge proof
protocols working only on a standard deck for pencil puzzles, cf. [3,23,25,26].
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by JSPS KAKENHI Grant Number JP19J21153.
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