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Abstract. In this paper we study the computational complexity of com-
puting an evolutionary stable strategy (ESS) in multi-player symmetric
games. For two-player games, deciding existence of an ESS is complete
for Σp

2 , the second level of the polynomial time hierarchy. We show that
deciding existence of an ESS of a multi-player game is closely connected
to the second level of the real polynomial time hierarchy. Namely, we
show that the problem is hard for a complexity class we denote as ∃D ·∀R
and is a member of ∃∀R, where the former class restrict the latter by
having the existentially quantified variables be Boolean rather then real-
valued. As a special case of our results it follows that deciding whether
a given strategy is an ESS is complete for ∀R.

1 Introduction

First introduced by Maynard Smith and Price in [27,28], a central concept emerg-
ing from evolutionary game theory is that of an evolutionary stable strategy (ESS)
in a symmetric two-player game in strategic form. Each pure strategy of the game
is viewed as a type of possible individuals of a population. A mixed strategy of the
game then corresponds to describing the proportion of each type of individual of
the population, which as a simplifying assumption is considered to be infinite. The
population is engaged in a pairwise conflict where two individuals are selected at
random and receive payoffs depending on their respective types. The population
is expected to evolve in a way where strategies that achieve a higher payoff than
others will spread in the population. A strategy σ is an ESS if it outperforms any
“mutant” strategy τ �= σ adopted by a small fraction of the population. Otherwise
we say that σ may be invaded. An ESS is in particular a symmetric Nash equilib-
rium (SNE), but, unlike a SNE, it is not guaranteed to exist.

The Hawk-Dove game [28], presented with concrete payoffs in Fig. 1, is a
classic example where an ESS may explain the proportion of the population
tending to engage in aggressive behavior. The game has a unique SNE σ, where
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Fig. 1. Hawk-Dove game

the players choose Hawk with probability 1
2 , and this is in fact an ESS. Note

first that u(σ, σ) = (−1)
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2 . Consider now

any strategy profile τ that chooses Hawk with probability p. Then u(τ, σ) =
(−1 + 2)p/2 + (1 + 0)(1 − p)/2 = 1

2 as well. However, u(σ, τ) = 3
2 − 2p and

u(τ, τ) = 1 − 2p2, and thus u(σ, τ) − u(τ, τ) = 2(p − 1
2 )2, which means that σ

outperforms τ if p �= 1
2 .

While the two-player setting is the typical setting to study ESS, the concept
may in a natural way be generalized to the setting of multi-player games, as
established by Palm [33] and Broom, Cannings, and Vickers [11]. This allows
one to model populations that engage in conflicts involving more than two indi-
viduals. Many of the two-player games typically studied in the context of ESS
readily generalize to multi-player games, including the Hawk-Dove and Stag
Hunt games (cf. [12]). For a naturally occurring example, Broom and Rychtář
[12, Example 9.1] argue that the cooperative hunting method of carousel feeding
by killer whales may be modeled as a multi-player Stag Hunt game.

The computational complexity of computing an ESS was first studied by Etes-
sami and Lochbihler [19]. We shall denote the problem of deciding whether a given
symmetric game in strategic form has an ESS as ∃ESS and similarly the problem of
deciding whether a given strategy is an ESS of the given game as IsESS. Previous
work has been concerned only with two-player symmetric games in strategic form.
Etessami and Lochbihler proved that ∃ESS is hard both for NP and coNP and is
contained in Σp

2 . Nisan [32] showed that ∃ESS is hard for the class coDP, which
is the class of unions of languages from NP and coNP. From both works it also
follows that the problem IsESS is coNP-complete. Finally Conitzer [14] showed
Σp

2-completeness for ∃ESS. The direct but important consequence of these results
is that any algorithm for computing an ESS in a general game can be used to solve
Σp

2-complete problems. For instance, we cannot expect to be able to compute an
ESS in a simple way using a SAT solver.

One may observe that the above hardness results for two-player games also
generalize to apply to m-player games, for any fixed m ≥ 3. Note that, since a
reduction showing Σp

2-hardness must produce an m-player symmetric game, this
is not a trivial observation (in particular adding “dummy” players, each having a
single strategy, to a nontrivial symmetric game would result in a non-symmetric
game). One would however suspect that the problems ∃ESS and IsESS become
significantly harder for m-player games, when m ≥ 3. Namely, starting with the
work of Schaefer and Štefankovič [36], several works have shown that many nat-
ural decision problems concerning Nash equilibrium (NE) in 3-player strategic
form games are ∃R-complete [4–6,20,24]. These results stand in contrast to the
two-player setting, where the same decision problems are NP-complete [15,21].
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The class ∃R is the complexity class that captures the decision problem for
the existential theory of the reals [36], or alternatively, is the constant free
Boolean part of the real analogue NPR in the Blum-Shub-Smale model of com-
putation [10]. Clearly we have NP ⊆ ∃R, and from the decision procedure for
the existential theory of the reals by Canny [13] it follows that ∃R ⊆ PSPACE.
We consider it likely that NP is a strict subset of ∃R, which would mean that
the above mentioned decision problems concerning NE become strictly harder
as the number of players increase beyond two.

We confirm that the problems ∃ESS and IsESS indeed are likely to become
harder for multi-player games by proving hardness of the problems for discrete
complexity classes defined in terms of real complexity classes that we consider
likely to be stronger than Σp

2 and NP. Our results are perhaps most easily stated
in terms of the decision problem for the first order theory of the reals Th(R).
Just like the class ∃R corresponds to existential fragment Th∃(R) of Th(R),
we can consider classes ∀R and ∃∀R corresponding to the universal fragment
Th∀(R) and the existential-universal fragment Th∃∀(R) of Th(R), respectively.
It is easy to see that the problem ∃ESS belongs to ∃∀R and that IsESS belongs
to ∀R. We show that for 5-player games, the problem ∃ESS is hard for the
subclass of ∃∀R where the block of universal quantifiers is restricted to range
over Boolean variables. For the problem IsESS we completely characterize its
complexity for 5-player games by proving that the problem is also hard for
∀R. Our hardness results thus imply that any algorithm for computing an ESS
in a 5-player game can be used to solve quite general problems involving real
polynomials. In particular it indicates that computing an ESS is significantly
more difficult than deciding if a system of real polynomials has no solution,
which is a basic problem complete for ∀R.

Our proof of hardness for ∃ESS combines ideas of the Πp
2-completeness proof

of the problem MinmaxClique by Ko and Lin [26], the reduction from the
complement of MinmaxClique to ∃ESS for two-player games by Conitzer [14],
and the direct translation of solutions of a polynomial system to strategies of a
game by Hansen [24], in addition to new ideas.

We leave the problem of determining the precise computational complex-
ity of ∃ESS as an interesting open problem. The class ∃∀R is the natural real
complexity class generalization of Σp

2 . Together with Σp
2-completeness of ∃ESS

for the setting of two-player games, this might lead one to expect that ∃ESS
should be ∃∀R-hard for multi-player games. However, a basic property of the
set of evolutionary stable strategies is that any ESS is an isolated point in the
space of strategies [2, Proposition 3], which means that the set of evolutionary
stable strategies is always a discrete set. Expressing ∃ESS in Th∃∀(R), the uni-
versal quantifier range over all potential ESS and the existential quantifier over
potential invading strategies. The fact that the set of ESS is a discrete set could
possibly mean that the universal quantifier could be made discrete as well. We
also note that we do not even know whether ∃ESS is hard for ∃R, which is clearly
a prerequisite for ∃∀R-hardness.
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1.1 Other Related Work

Starting with the universality theorem of Mnëv [30], which in particular implies
that deciding whether an arrangement of pseudolines is stretchable is complete
for ∃R, a large number of problems are by now known to be complete for ∃R.
A crucial insight used for the first ∃R-completeness result concerning games by
Schaefer and Štefankovič [36] was that the ∃R-complete Quad remains complete
when asking for a solution of the polynomial system in the unit ball. This was also
used by Schaefer [35] to prove that deciding rigidity of linkages is ∀R-complete,
and similar insights were used by Abrahamsen, Adamaszek, and Miltzow in their
proof of ∃R-completeness of the classic art gallery problem [1].

So far much fewer results are known concerning larger fragments of the first-
order theory of the reals. Bürgisser and Cucker [10] study decision problems
about general semialgebraic sets and show that the problem of deciding whether
such a set contains an isolated point is hard for ∀R and contained in ∃∀R. Dob-
bins, Kleist, Miltzow, and Rz ↪ażewski [18] prove ∀∃R-completeness for certain
problems concerned with embedding graphs in the plane. For problems concern-
ing games, Gimbert, Paul, and Srivathsan [22] show that deciding whether in
a two-player extensive form game with imperfect recall a player has a behavior
strategy with positive payoff is hard both for ∃R and ∀R while being contained
in ∃∀R.

2 Preliminaries

2.1 Strategic Form Games

We present here basic definitions concerning strategic form games, mainly to
establish our notations. A finite m-player strategic form game G is given by
finite sets S1, . . . , Sm of actions (pure strategies) together with utility func-
tions u1, . . . , um : S1 × · · · × Sm → R. A choice of an action ai ∈ Si for each
player together forms a pure strategy profile a = (a1, . . . , am). Let Δ(Si) denote
the set of probability distributions on Si. A (mixed) strategy for player i is
then an element xi ∈ Δ(Si). We may conveniently identify an action ai with
the strategy that assigns probability 1 to ai. A strategy xi for each player
i together form a strategy profile x = (x1, . . . , xm). For fixed i we denote
by x−i the partial strategy profile (x1, . . . , xi−1, xi+1, . . . , xm) for all players
except player i, and if x′

i ∈ Δ(Si) we denote by (x′
i;x−i) the strategy profile

(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm). The utility functions extend to strategy profiles

by letting ui(x) = Ea∼x ui(a1, . . . , am). We shall also refer to ui(x) as the payoff
of player i. A strategy profile x is a Nash equilibrium (NE) if ui(x) ≥ ui(x′

i;x−i)
for all i and all x′

i ∈ Δ(Si). Every finite strategic form game G has an NE [31].
In this paper we shall only consider symmetric games. The game G is sym-

metric if all players have the same set S of actions and where the utility function
of a given player depends only on the action of that player (and not the identity
of the player) together with the multiset of actions of the other players. More
precisely we say that G is symmetric if there is a finite set S such that Si = S, for



Complexity of Multi-player Evolutionarily Stable Strategies 5

every i ∈ [m], and such that for every permutation π on [m], every i ∈ [m] and
every (a1, . . . , am) ∈ Sm it holds that ui(a1, . . . , am) = uπ−1(i)(aπ(1), . . . , aπ(m)).
It follows that a symmetric game G is fully specified by S and u1; for notational
simplicity we let u = u1. A strategy profile x = (x1, . . . , xm) is symmetric if
x1 = · · · = xm. If a symmetric strategy profile x is an NE it is called a symmet-
ric NE (SNE). Every finite strategic form symmetric game G has a SNE [31].

A single strategy σ ∈ Δ(S) defines the symmetric strategy profile σm. More
generally, given σ, σ1, . . . , σr ∈ Δ(S) and m1, . . . ,mr ≥ 1 with m1 + · · · + mr =
m−1, we denote by (σ;σm1

1 , . . . , σmr
r ) a strategy profile where player 1 is playing

using strategy σ and mi of the remaining players are playing using strategy σi,
for i = 1, . . . , r. By the assumptions of symmetry, the payoff u(σ;σm1

1 , . . . , σmr
r )

is well defined.

2.2 Evolutionary Stable Strategies

Our main object of study is the notion of evolutionary stable strategies as defined
by Maynard Smith and Price [28] for 2-player games and generalized to multi-
player games by Palm [33] and Broom, Cannings, and Vickers [11]. We follow
below the definition given by Broom et al.

Definition 1. Let G be a symmetric game given by S and u. Let σ, τ ∈ Δ(S).
We say that σ is evolutionary stable (ES) against τ if there is ετ > 0 such that
for all 0 < ε < ετ we have

u(σ; τm−1
ε ) > u(τ ; τm−1

ε ) , (1)

where τε = ετ +(1− ε)σ is the strategy that plays according to τ with probability
ε and according to σ with probability 1 − ε. We say that σ is an evolutionary
stable strategy (ESS) if σ is ES against every τ �= σ. If σ is not ES against τ we
also say that τ invades σ.

The supremum over ετ for which Eq. 1 holds is called the invasion barrier
for τ . If σ is an ESS and there exists εσ > 0 such that for all τ �= σ the invasion
barrier ετ for τ satisfies ετ ≥ εσ, we say that σ is an ESS with uniform invasion
barrier εσ. For 2-player games any ESS has a uniform invasion barrier [25].
Milchtaich [29] give a simple example of an ESS in a 4-player game without a
uniform invasion barrier.

The following simple lemma due to Broom et al. [11] provides a useful alter-
native characterization of an ESS.

Lemma 1. A strategy σ is ES against τ if and only if there exists 0 ≤ j <
m such that u(σ; τ j , σm−1−j) > u(τ ; τ j , σm−1−j) and that for all 0 ≤ i < j,
u(σ; τ i, σm−1−i) = u(τ ; τ i, σm−1−i).

For the case of 2-player games, this alternative characterization is actually the
original definition of an ESS given by Maynard Smith and Price [28], and the
definition of an ESS we use was stated for the case of 2-player games by Taylor
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and Jonker [37]. A straightforward corollary of the characterization is that if σ
is an ESS then σm is a SNE.

By the support of an ESS σ, Supp(σ), we refer to the set of pure strategies i
such that are played with non-zero probability under the strategy σ.

2.3 Real Computational Complexity

While we are mainly interested in the computational complexity of discrete prob-
lems, it is useful to discuss a model of computation operating on real-valued
input. We use this to define the complexity class ∃D · ∀R, used to formulate our
main result. Alternatively we may simply define this class in terms of a restric-
tion of the decision problem for the first-order theory of the reals, as explained
in the next subsection. The reader may thus defer reading this subsection.

A standard model for studying computational complexity in the setting of
reals is that of Blum-Shub-Smale (BSS) machines [7]. A BSS machine takes a
vector x ∈ R

n as an input and performs arithmetic operations and comparisons
at unit cost. In addition the machine may be equipped with a finite set of real-
valued machine constants. In this way a BSS machine accepts a real language
L ⊆ R

∞, where R
∞ =

⋃
n≥0 R

n. Imposing polynomial time bounds we obtain
the complexity classes PR and NPR for deterministic and nondeterministic BSS
machines, respectively, forming real-valued analogues of P and NP. Cucker [16]
defined the real analogue PHR of the polynomial time hierarchy formed by the
classes ΣR

k and ΠR

k , for k ≥ 1. The class ΣR

k+1 may be defined as real languages
accepted by a nondeterministic oracle BSS machine in polynomial time using an
oracle language from ΣR

k with ΣR

1 = NPR, and ΠR

k is simply the class of comple-
ments of languages of ΣR

k . For natural problems such as TSP or Knapsack with
real-valued input the search space remains discrete. Goode [23] introduced the
notion of digital nondeterminism (cf. [17]) restricting nondeterministic guesses
to the set {0, 1}, which when imposing polynomial time bounds define the class
DNPR. One may also define a polynomial hierarchy based on digital nondeter-
minism giving rise to classes DΣR

k and DΠR

k , for k ≥ 1.
Another convenient way to define the classes described above is by means

of complexity class operators (cf. [9,38]). Here we shall consider existential or
universal quantifiers over either real-valued or Boolean variables whose number
is bounded by a polynomial. For a real complexity class C, define ∃R · C as the
class of real languages L for which there exists L′ ∈ C and a polynomial p such
that x ∈ L if and only if ∃y ∈ R

≤p(|x|) : 〈x, y〉 ∈ L′. For a real (or discrete)
complexity class C, define ∃D · C as the class of real (or discrete) languages L
for which there exists L′ ∈ C and a polynomial p such that x ∈ L if and only
if ∃y ∈ {0, 1}≤p(|x|) : 〈x, y〉 ∈ L′. Replacing existential quantifiers with universal
quantifiers we analogously obtain definitions of classes ∀R · C and ∀D · C. We now
have that ΣR

k+1 = ∃R · ΠR

k , DΣR

k+1 = ∃D · DΠR

k , as well as Σp
k+1 = ∃D · Πp

k, for
k ≥ 1. We shall also consider mixing real and discrete operators. In such cases
one may not always have an equivalent definition in terms of oracle machines.
For instance, while ∃R · coDNP = NPDNPR

R
we can only prove the inclusion

∃D · coNPR ⊆ DNPNPR

R
and in particular we do not know if NPR ⊆ ∃D · coNPR.
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To study discrete problems we define the Boolean part of a real language L ⊆
R

∞ as BP(L) = L∩{0, 1}∗ and of real complexity classes C as BP(C) = {BP(L) |
L ∈ C}. The Boolean part of a real complexity class is thus a discrete complexity
class and may be compared with other discrete complexity classes defined for
instance using Turing machines. Furthermore, since we are interested in uniform
discrete complexity we shall disallow machine constants. Indeed, a single real
number may encode an infinite sequence of discrete advice strings, which for
instance implies that P/poly ⊆ BP(PR). For a class C defined above we denote
by C0 the analogously defined class without machine constants. Several classes
given by Boolean parts of constant free real complexity are defined specifically
in the literature. Most prominently is the class BP(NP0

R
) which also captures

the complexity of the existential theory of the reals. It has been named ∃R by
Schaefer and Štefankovič [36] as well as NPR by Bürgisser and Cucker [10];
we shall use the former notation ∃R. We further let ∀R = BP(coNP0

R
) as well

as ∃∀R = BP(ΣR,0
2 ) = ∃R · ∀R and ∀∃R = BP(ΠR,0

2 ) = ∀R · ∃R. We shall in
particular be interested in the class ∃D · ∀R. Clearly, from the definitions above
we have that this class contains both the familiar classes ∀R and Σp

2 and is
itself contained in ∃∀R. In fact ∃D · ∀R contains the class (Σp

2)
PosSLP, where

PosSLP is the problem of deciding whether an integer given by a division free
arithmetic circuit is positive, as introduced by Allender et al. [3]. This follows
since PPosSLP = BP(P0

R
) [3, Proposition 1.1], and thus

(Σp
2)

PosSLP = ∃D · ∀D · PPosSLP = ∃D · ∀D · BP(P0
R
)

⊆ ∃D · BP(∀R · P0
R
) = ∃D · BP(coNP0

R
) = ∃D · ∀R .

2.4 The First-Order Theory of the Reals

The discrete complexity classes BP(ΣR,0
k ) and BP(ΠR,0

k ) may alternatively be
characterized using the decision problem for the first-order theory of the reals.
We denote by Th(R) the set of all true first-order sentences over the reals. We
shall consider the restriction to sentences in prenex normal form

(Q1x1 ∈ R
n1) · · · (Qkxk ∈ R

nk) ϕ(x1, . . . , xk) , (2)

where ϕ is a quantifier free Boolean formula of equalities and inequalities of
polynomials with integer coefficients, where each Qi is one of the quantifiers ∃
or ∀, typically alternating, and gives rise to k blocks of quantified variables. The
restriction of Th(R) to formulas in prenex normal form with k being a fixed
constant and also Q1 = ∃ is complete for BP(ΣR,0

k ); when instead Q1 = ∀ it is
complete for BP(ΠR,0

k ). In particular, the existential theory of the reals Th∃(R),
where k = 1 and Q1 = ∃, is complete for ∃R. Similarly Th∀∃(R) where k = 2 and
Q1 = ∀ is complete for ∀∃R; when we furthermore restrict the first quantifier
block to Boolean variables the problem becomes complete for ∃D · ∀R.
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2.5 Real Polynomials with Discrete Quantification

In this section we shall prove that the following problem, ∀DHom4Feas(Δ), is
complete for the complexity class ∀D · ∃R. In Sect. 3 we use the complement of
this problem to prove our main result of ∃D · ∀R-hardness of ∃ESS.

Denote by Δn ⊆ R
n+1 the n-simplex {x ∈ R

n+1 | x ≥ 0 ∧ ∑n+1
i=1 xi = 1} and

similarly by Δn
c ⊆ R

n the corner n-simplex {x ∈ R
n | x ≥ 0 ∧ ∑n

i=1 xi ≤ 1}.

Definition 2 (∀DHom4Feas(Δ)). For the problem ∀DHom4Feas(Δ) we are
given as input rational coefficients ai,α, where i ∈ {0, . . . , n} and α ∈ [m]4

forming the polynomial

F (y, z) = F0(z) +
n∑

i=1

yiFi(z) ,

where

Fi(z) =
∑

α∈[m]4

ai,α

4∏

j=1

zαj
, for i = 0, . . . , n .

We are to decide whether for all y ∈ {0, 1}n there exists z ∈ Δm−1 such that
F (y, z) = 0.

The proof of ∀D · ∃R-hardness of ∀DHom4Feas(Δ) given below is mainly a
combination of existing ideas and proofs, and the reader may thus defer reading
it.

Theorem 1. The problem ∀DHom4Feas(Δ) is complete for ∀D · ∃R, and
remains ∀D · ∃R-hard even with the promise that for all y ∈ {0, 1}n and z ∈ R

m

it holds that F (y, z) ≥ 0.

Proof. We shall prove hardness of ∀DHom4Feas(Δ) by describing a general
reduction from a language L in ∀D · ∃R in several steps making use of reductions
that proves several problems involving real polynomials ∃R-hard. Consider first
the standard complete problem Quad for ∃R which is that of deciding if a
system of multivariate quadratic polynomials have a common root [8,36]. The
general reduction from a language L in ∃R to Quad works by treating the input
x as variables and computes, based only on |x| and not the actual value of x, a
system of quadratic polynomials qi(x, y), i = 1, . . . , 	, where y ∈ R

p(|x|) for some
polynomial p. The system has the property that for all x it holds that x ∈ L if
and only if there exists y such that qi(x, y) = 0, for all i.

Suppose now that L ∈ ∀D · ∃R. Then there is L′ in ∃R and a polynomial
p such that x ∈ L if and only if ∀y ∈ {0, 1}p(|x|) : 〈x, y〉 ∈ L′. On input x we
may apply the reduction from L′ to Quad and in this way obtain a system
of quadratic equations qi(x, y, z), i = 1, . . . , 	1 where z ∈ R

p1(|x|) such that
〈x, y〉 ∈ L′ if and only if there exists z ∈ R

p1(|x|) such that qi(x, y, z) = 0
for all i. At this point we may just treat x as fixed constants, and we view
the system as polynomials in variables (y, z), suppressing the dependence on
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x in the notation. Define n = p(|x|). We next introduce additional existentially
quantified variables w ∈ R

n, substitute wi for yi in all polynomials, and then add
new polynomials wi − yi, for i ∈ [n]. Renaming polynomials and bundling the
existentially quantified variables we now have a system of polynomials qi(y, z),
i ∈ [	2] where z ∈ R

m2 , where m2 ≤ p2(|x|) for some polynomial p2, such that
x ∈ L if and only if

∀y ∈ {0, 1}n∃z ∈ R
m2∀i ∈ [	2] : qi(y, z) = 0 ,

and where each polynomial qi depends on at most 1 coordinate of y.
For the next step we use that Quad remains ∃R-hard when asking for a

solution in the unit ball [34], or analogously in the corner simplex [24]. Apply-
ing the reduction of [24, Proposition 2] we first rewrite each variable zi as a
difference zi = z+i − z−

i of two non-negative real variables z+i and z−
i and

then introduce additional existentially quantified variables w0, . . . , wt for suit-
able t = O(log τ + m2), where τ is the maximum bitlength of the coefficients of
the given system. Then polynomials are added that together implement t steps of
repeated squaring of 1

2 , i.e. we add polynomials wt− 1
2 , and wj−1−wj , for j ∈ [t],

which means that any solution must then have w0 = 2−2t . In the given polyno-
mial system we now substitute zi by (z+i − z−

i )/w0 in each of the polynomials
and then multiply them by w2

0 to clear w0 from the denominators. For suitable
t this means that if for fixed y, the given system of polynomials has a solution
z ∈ R

m2 , then the transformed system has a solution (z+, z−, w) in Δ2m2+t+1
c .

Note also, that since the variables xi are not divided by w0, multiplying by w2
0

causes an increase in the degree of the polynomials, but the degree in the other
variables remains at most 2. Again, renaming polynomials and bundling the
existentially quantified variables we now have a system of polynomials qi(y, z),
i ∈ [	3] where z ∈ R

m3 , where m3 ≤ p3(|x|) for some polynomial p3, such that
x ∈ L if and only if

∀y ∈ {0, 1}n∃z ∈ Δm3
c ∀i ∈ [	3] : qi(y, z) = 0 ,

and where each polynomial qi depends on at most 1 coordinate of y.
The next step simply consists of homogenizing the polynomials in the exis-

tentially quantified variables z. For this we simply introduce a slack variable
zm3+1 = 1 − ∑m3

i=1 zi and homogenize by multiplying terms by
∑m3+1

i=1 zi or
∑m3+1

i=1

∑m3+1
j=1 zizj as needed. Letting q′

i be the homogenization of qi we now
have that x ∈ L if and only if

∀y ∈ {0, 1}n∃z ∈ Δm3∀i ∈ [	3] : q′
i(y, z) = 0 ,

and where each polynomial q′
i depends on at most 1 coordinate of y and are

homogeneous of degree 2 in the variables z.
For the final step we reuse the idea of the reduction from Quad to 4Feas,

which merely takes the sum of the squares of every given polynomial. Thus we
let

F (y, z) =
�3∑

i=1

(q′(y, z))2 .
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We note that (q′(y, z))2 ≥ 0 for all y and z and is homogeneous of degree 4
in the variables z. Further, since y2

j = yj for any yj ∈ {0, 1} we may replace
all occurrences of y2

j by yj thereby obtaining an equivalent polynomial (when
y ∈ {0, 1}n) of the form of Definition 2. We have that for every fixed y ∈ {0, 1}n

and all z ∈ R
m that F (y, z) = 0 if and only if qi(y, z) = 0 for all i. Thus x ∈ L

if and only if
∀y ∈ {0, 1}n∃z ∈ Δm3F (y, z) = 0 ,

which completes the proof of hardness. Let us also note that the definition of
F guarantees that F (y, z) ≥ 0 for all y ∈ {0, 1}n and z ∈ R

m it holds that
F (y, z) ≥ 0. Since on the other hand clearly ∀DHom4Feas(Δ) ∈ ∀D · ∃R the
result follows. ��

As a special case, (when there are no universally quantified variables) the
proof gives a reduction from the ∃R-complete problem Quad to the problem
Hom4Feas(Δ), where we are given as input a homogeneous degree 4 polynomial
F (z) in m variables with rational coefficients and are to decide whether there
exists z ∈ Δm−1 such that F (z) = 0. Also, we clearly have that Hom4Feas(Δ)
is a member of ∃R and therefore have the following result.

Theorem 2. The problem Hom4Feas(Δ) is complete for ∃R, and remains ∃R-
hard even when assuming that for all z ∈ R

m it holds that F (z) ≥ 0.

3 Complexity of ESS

In this section we shall prove our results for deciding existence of an ESS. In the
proof we will re-use a trick used by Conitzer [14] for the case of 2-player games,
where by duplicating a subset of the actions of a game we ensure that no ESS
can be supported by any of the duplicated actions as shown in the following
lemma. Here, by duplicating an action we mean that the utilities assigned to
any pure strategy profile involving the duplicated action is defined to be equal
to the utility for the pure strategy profile obtained by replacing occurrences of
the duplicated action by the original action. The precise property is as follows.

Lemma 2. Let G be an m-player symmetric game given by S and u. Suppose
that s, s′ ∈ S are such that for all strategies τ we have u(s; τm−1) = u(s′; τm−1).
Then s can not be in the support of an ESS σ.

Proof. Suppose σ is a strategy with s ∈ Supp(σ). Let σ′ be obtained from
σ by moving the probability mass of s to s′. From our assumption we then
have u(σ; τm−1) = u(σ′; τm−1) for all τ . In particular we have u(σ;σm−1

ε ) =
u(σ′;σm−1

ε ), for all ε > 0, where we have σε = εσ′ + (1 − ε)σ. This means that
σ′ invades σ and σ is therefore not an ESS. ��

We now state and prove the main result of this paper.

Theorem 3. ∃ESS is ∃D · ∀R-hard for 5-player games.
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Proof. We prove our result by giving a reduction from the complement of the
problem ∀DHom4Feas(Δ) to ∃ESS. It follows from Theorem 1 that the former
problem is complete for ∃D · ∀R. Thus let ai,α be given rational coefficients,
with i = 0, . . . , n and α ∈ [m]4, forming the polynomials F (y, z) and Fi(z), for
i = 0, . . . , n as in Definition 2. We may assume that for all y ∈ {0, 1}n and all
z ∈ R

m it holds that F (y, z) ≥ 0. Also, without loss of generality we may assume
that each Fi is symmetrized, i.e. that for all i and α, if π is a permutation on [4],
then defining π ·α ∈ [m]4 by (π ·α)i = απ(i), we have that ai,α = ai,π·α. Namely,
we may simply replace each coefficient ai,α by the average of all coefficients of the
form ai,π·α. This leaves the functions given by the expressions for Fi unchanged,
but crucially ensures that the game defined below is symmetric.

We next define a 5-player game G based on F . The strategy set is naturally
divided in three parts S = S1 ∪ S2 ∪ S3. These are defined as follows.

S1 = {(i, α, b) | i ∈ {0, . . . , n}, α ∈ [m]4, b ∈ {0, 1}}
S2 = {γ}
S3 = {1, . . . , m}

(3)

An action (i, α, b) of S1 thus identifies a term of Fi together with b ∈ {0, 1}, which
is supposed to be equal to yi. When convenient we may describe the actions of
S1 by pairs (t, b), where t = (i, α) for some i and α. The single action γ is used
for rewarding inconsistencies in the choices of b among strategies of S1. Finally,
a probability distribution on S3 will define an input z. Let M = (n + 1)m4 be
the total number of terms of F . Thus |S1| = 2M .

We shall duplicate all actions of S2∪S3 and let duplicates behave exactly the
same regarding the utility function defined below. By Lemma 2 it then follows
that any ESS σ of G must have Supp(σ) ⊆ S1. For simplicity we describe the
utilities of G without the duplicated actions.

When all players are playing an action of S1 we define

u((t1, b1), . . . , (t5, b5)) =

⎧
⎪⎨

⎪⎩

2 if t1 /∈ {t2, . . . , t5}
1 if t1 ∈ {t2, . . . , t5} and t1 = tj ⇒ b1 = bj

0 otherwise
. (4)

Before defining the remaining utilities, we consider the payoff of strategies
that play uniformly on the set of terms and according to a fixed assignment y.
Define the number T by

T = 2 − 4
M

+
6

M2
− 4

M3
+

1
M4

. (5)

Lemma 3. Let y ∈ {0, 1}n, let y0 ∈ {0, 1} be arbitrary, and define σy to be
the strategy that plays (i, α, yi) with probability 1

M for all α, and the remaining
strategies with probability 0. Then u(σ5

y) = T .

Proof. Note that 2−u(σ5
y) is precisely the probability of the union of the events

t1 = tj , where j = 2, . . . , 5, and tj is the term chosen by player j. For fixed
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t1, these events are independent and each occurs with probability 1
M . By the

principle of inclusion-exclusion we thus have

2 − u(σ5
y) =

4
M

− 6
M2

+
4

M3
− 1

M4
.

We will construct the game G in such a way that any ESS σ will have u(σ5) =
T . Making use of Lemma 3, we now define utilities when at least one player is
playing the action γ. In case at least two players are playing γ, these players
receive utility 0 while the remaining players receive utility T . In case exactly one
player is playing γ, the player receives utility T +1 in case there are two players
that play actions (i, α, b) and (i, α′, b′) with b �= b′; otherwise the player receives
utility T . In either case, when exactly one player is playing γ, the remaining
players receive utility T .

We finally define utilities when one player is playing an action from S1 and
the remaining four players are playing an action from S3. Suppose for simplicity
of notation that player j is playing action βj ∈ S3, for j = 1, . . . , 4, while player 5
is playing action (i, α, b). We let player 5 receive utility T . In case α = β the first
four players receive utility T −ai,α; otherwise they receive utility T . Here we use
that ai,α = ai,π·α for any permutation π on [4], to ensure that G is symmetric.

At this point we have only partially specified the utilities of the game G;
we simply let all remaining unspecified utilities equal T , thereby completing the
definition of G.

We are now ready to prove that G has an ESS if and only if there exists
y ∈ {0, 1}n such that F (y, z) > 0 for all z ∈ Δm−1. Suppose first that y ∈ {0, 1}n

exists such that F (y, z) > 0 for all z ∈ Δm−1. We define σ = σy as in Lemma 3
and show that any τ �= σ satisfies the conditions of Lemma 1 thereby proving
that σ is an ESS of G. Suppose that τ �= σ invades σ. Consider first playing
τ against σ4. From the proof of Lemma 3 it follows that playing a strategy of
form (i, α, b) against σ4 gives payoff T if b = yi and otherwise payoff strictly
below T . The strategies of S2 ∪ S3 all give payoff T against σ4. It follows that
to invade σ, τ can only play strategies from S1 contained in Supp(σ). Let us
write τ = δ1τ1 + δ2τ2 + δ3τ3 as a convex combination of strategies τj with
Supp(τj) ⊆ Sj , for j = 1, 2, 3. We shall consider playing τ against (τ, σ3) and
argue that τ1 = σ if δ1 > 0 and that δ2 = 0. Note first that if a strategy of S3 is
played, all players receive utility T , so we may focus on the case when all players
play using strategies from S1 ∪ S2. Suppose that δ1 > 0 and let pt = Prτ1 [t],
where t is a term of F . Using the principle of inclusion-exclusion we have

2 − u(τ1; τ1, σ3) =
∑

t

pt

[
3
M

− 3
M2

+
1

M3
+ pt

(
1 − 3

M
+

3
M2

− 1
M3

)]

=
3
M

− 3
M2

+
1

M3
+

(
1 − 3

M
+

3
M2

− 1
M3

)∑

t

p2t .

By Jensen’s inequality,
∑

t p2t ≥ M (
∑

t pt/M)2 = 1
M , with equality if and only

if pt = 1
M for all t. This means that u(τ1; τ1, σ3) ≤ T , with equality if and only
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if pt = 1
M for all t. Thus if τ1 �= σ, then u(τ1; τ1, σ3) < u(σ; τ1, σ3) = T , where

the last equality may be derived again using the principle of inclusion-exclusion.
Now, since Supp(τ1) ⊆ Supp(σ) when δ1 > 0, playing γ can give utility at most T
but gives utility 0 in case another player plays γ as well.

Combining these observations it follows that unless δ2 = 0 and τ1 = σ when
δ1 > 0 we have u(σ; τ, σ3) > u(τ ; τ, σ3). Thus we may now assume that this is
the case, i.e., that τ = δ1σ + δ3τ3. From the definition of G we now have that
u(τ ; τ j , σ4−j) ≤ u(σ; τ j , σ4−j) = T , for j = 1, 2, 3. For τ to invade σ it is thus
required that u(τ ; τ4) ≥ u(σ; τ4), and it follows from the definition of G that this
is equivalent to u(τ3; τ3

3 , σ) ≥ T . Now τ3 ∈ Δ(S3) = Δm−1 and by assumption
we have F (y, τ3) > 0. Furthermore we have u(τ3; τ3

3 , σ) = T − F (y, τ3)/M and
thus u(τ3; τ3

3 , σ) < T , which means σ is actually ES against τ .
Suppose now on the other hand that σ is an ESS of G. First, since we dupli-

cated the actions of S2 ∪ S3, it follows from Lemma 2 that Supp(σ) ⊆ S1. We
next show that for all terms t, if σ(t, b) > 0, then unless σ(t, 1 − b) = 0, σ can
be invaded. Suppose that t is a term of F , let p0 = σ(t, 0) and p1 = σ(t, 1), and
suppose that p0 > 0 and p1 > 0. Suppose without loss of generality that p0 ≥ p1.
Note now that

u((t, 0);σ4) − u((t, 1);σ4) = (1 − p1)4 − (1 − p0)4 ≥ 0 ,

which can be seen by noting that the left hand side of the equality does not
change when replacing all utilities of 2 by 1. Similarly

u((t, 0); (t, 0), σ3) − u((t, 1); (t, 1), σ3) = (1 − p1)3 − (1 − p0)3 ≥ 0 .

Define the strategy σ′ from σ by playing the strategy (t, 0) with probability p =
p0+p1, the strategy (t, 1) with probability 0, and otherwise according to σ. Then

u(σ′;σ4) − u(σ5) = (p0 + p1)u((t, 0);σ4) − p0u((t, 0);σ4) − p1u((t, 1);σ4)

= p1(u((t, 0);σ4) − u((t, 1);σ4)) ≥ 0 ,

and by definition, u((t, 0); (t, 1), σ3) = u((t, 1); (t, 0), σ3) = 0. Thus we have

u(σ′;σ′, σ3) − u(σ;σ′, σ3)

= (p0 + p1)2u((t, 0); (t, 0), σ3) − p0(p0 + p1)u((t, 0); (t, 0), σ3)

= (p0p1 + p21)u((t, 0); (t, 1), σ3) > 0.

which means that σ′ invades σ. Since σ is an ESS, this means that for each
term t there is bt ∈ {0, 1} such that σ plays (t, 1 − bt) with probability 0. Let
pt = σ(t, bt) and define the function h : R → R by h(p) = 4p−6p2+4p3−p4, and
note that d

dph(p) = 4(1 − p)3. By the principle of inclusion-exclusion we have

2 − u(σ5) =
∑

t

pth(pt) .

Suppose now there exists terms t and t′ such that pt < pt′ . Since h is strictly
increasing on [0, 1] we also have h(pt) < h(pt′), and therefore pth(pt)+pt′h(pt′) >
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pt′h(pt) + pth(pt′). Define σ′ to play t with probability pt′ , t′ with probability
pt, and otherwise according to σ. We then have

(2 − u(σ5)) − (2 − u(σ′;σ4)) = pt(h(pt) − h(pt′)) + pt′(h(pt′) − h(pt)) > 0 ,

and therefore u(σ′;σ4) > u(σ5), which means that σ′ invades σ. Since σ is an
ESS this means that pt = 1

M for all t. From the proof of Lemma 3 it then follows
that u(σ5) = T .

Suppose now that there exists i ∈ [n] and α, α′ such that b(i,α) �= b(i,α′). But
then u(γ;σ4) > T = u(σ5), which means that γ invades σ. Since σ is an ESS
there must exist y ∈ {0, 1}n (and some y0 ∈ {0, 1}) such that σ = σy, using the
notation of Lemma 3.

Finally, let z ∈ Δm−1 = Δ(S3). By definition of u we have u(z; zj , σ4−j) =
T = u(σ; zj , σ4−j), for all j ∈ {0, 1, 2}. Next u(z; z3, σ) = T − F (y, z)/M while
we have u(σ; z3, σ) = T . For σ to be ES against z we must thus have F (y, z) > 0,
and this concludes the proof. ��

The best upper bound on the complexity of ∃ESS we know is membership
of ∀∃R which easily follows from definitions. For the simpler problem IsESS of
determining whether a given strategy is an ESS we can fully characterize its
complexity.

Theorem 4. IsESS is ∀R-complete for 5-player games.

Proof. Clearly IsESS belongs to ∀R. To show ∀R-hardness we reduce from the
complement of the problem Hom4Feas(Δ) to IsESS. It follows from Theorem 2
that the former problem is complete for ∀R. From F we construct the game G
as in the proof of Theorem 3 letting n = 0. We let σ be the uniform distribution
on the set of actions (0, α, 0), where α ∈ [m]4. It then follows from the proof of
Theorem 3 that σ is an ESS of G if and only if F (z) > 0 for all z ∈ Δm−1. Since
we may assume that F (z) ≥ 0 for all z ∈ R

m this completes the proof. ��

4 Conclusion

We have shown the problem ∃ESS to be hard for ∃D ·∀R and member of ∃∀R. The
main open problem is to characterize the precise complexity of ∃ESS, perhaps
by improving the upper bound. Another point is that our hardness proofs con-
struct 5-player games, whereas the recent and related ∃R-completeness results
for decision problems about NE in multi-player games holds already for 3-player
games. This leads to the question about the complexity of ∃ESS and IsESS in
3-player and 4-player games. The reason that we end up with 5-player games is
that we construct a degree 4 polynomial in the reduction, rather than (a system
of) degree 2 polynomials as used in the related ∃R-completeness results. In both
cases a number of players equal to the degree is used to simulate evaluation of
a monomial and a last player is used to select the monomial. For our proof we
critically use that the degree 4 polynomial involved in the reduction may be
assumed to be non-negative.
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36. Schaefer, M., Štefankovič, D.: Fixed points, nash equilibria, and the existential
theory of the reals. Theory Comput. Syst. 60(2), 172–193 (2015). https://doi.org/
10.1007/s00224-015-9662-0

37. Taylor, P.D., Jonker, L.B.: Evolutionary stable strategies and game dynamics. Math.
Biosci. 40(1), 145–156 (1978). https://doi.org/10.1016/0025-5564(78)90077-9

38. Zachos, S.: Probabilistic quantifiers, adversaries, and complexity classes: an
overview. In: Selman, A.L. (ed.) Structure in Complexity Theory. LNCS, vol. 223,
pp. 383–400. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16486-
3 112

https://doi.org/10.1007/s00224-015-9662-0
https://doi.org/10.1007/s00224-015-9662-0
https://doi.org/10.1016/0025-5564(78)90077-9
https://doi.org/10.1007/3-540-16486-3_112
https://doi.org/10.1007/3-540-16486-3_112

	Computational Complexity of Multi-player Evolutionarily Stable Strategies
	1 Introduction
	1.1 Other Related Work

	2 Preliminaries
	2.1 Strategic Form Games
	2.2 Evolutionary Stable Strategies
	2.3 Real Computational Complexity
	2.4 The First-Order Theory of the Reals
	2.5 Real Polynomials with Discrete Quantification

	3 Complexity of ESS
	4 Conclusion
	References




