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1 Introduction

Many applications and areas in science study phenomena sharing the common
requirement of minimizing more than one objective simultaneously. In general,
the solution of these problems has to address conflicting interests of the involved
agents. Hence, we turn our attention to modeling a degree of competition and
noncooperative behavior leading to Nash games. This concept has been successfully
applied to a variety of applications in economics and in the context of networks, see
[9, 11] and additionally [35] for the combinatorial branch of optimization. In many
practical cases, the actions of the players in these games are restricted by equilibrium
constraints establishing a reinforced linkage between the diverging interests. As we
know from the mathematical treatment of optimal control and design problems, this
coupling is usually resolved as an operator equation. However, in the context of
partial differential equation (PDE)-constrained optimization, this type of concept
has not yet been frequently studied.

We start by motivating N agent games. In this context, mathematically speaking,
a set of N agents (or players) solve each an individual minimization problem to find
their respective optimal strategy. For player i, this reads as

minimizeui∈Ui
ad
Ji (ui, u−i ) over ui ∈ Ui,

where Ui
ad ⊂ Ui , with Ui a Banach space, is the set of feasible strategies. The

functional Ji is specific for the player and involves his strategy ui as well as the
(given) strategies of all other players denoted as u−i . Here and in the following, the
combined vector of all strategies is usually denoted as u = (ui, u−i ) without any
permutation of components. A vector u ∈ U with U = U1 × · · · × UN is called a
Nash equilibrium if every strategy chosen by an agent is his optimal choice given
the strategies of the other agents. This yields

ui ∈ argminu′i∈Ui
ad

{
Ji (u

′
i , u−i ) over u′i ∈ Ui

}
for all i = 1, . . . , N. (1.1)

The problem of finding such a strategy vector is then called a Nash equilibrium
problem (NEP). In this setting, the influence of the other players’ actions is
limited to the objectives, whereas the strategy sets remain unchanged. Allowing
the other players to also influence the set of feasible strategies leads to a set-valued
strategy mapping Ci : U−i

ad
−→−→Ui

ad in the underlying optimization problems. A Nash
equilibrium is then a point u ∈ Uad with Uad = U1

ad × . . .× UN
ad satisfying

ui ∈ argminu′i∈Ci(u−i )

{
Ji (u

′
i , u−i ) over u′i ∈ Ui

}
for all i = 1, . . . , N.

Finding a solution for the latter type of problem is also known as Generalized Nash
equilibrium problem (GNEP). Correspondingly, we assume the strategy mapping to
be structured as

Ci(u−i ) =
{
u′i ∈ Ui

ad : g(u′i , u−i ) ∈ K
}
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with g : U → X and K ⊆ X a nonempty, closed, convex subset of some Banach
space X. In principle, it is possible to incorporate several mappings gi : U → Xi ,
but we want to keep our presentation concise. Therefore, in our context, a (GNEP)
is given by

ui ∈ argmin{Ji (u
′
i , u−i ) subject to u′i ∈ Ui

ad and g(u′i , u−i ) ∈ K} (1.2)

for all i = 1, . . . , N . Concerning the general constraint, we are particularly inter-
ested in constraints on the state variable y that is generated through a continuous
solution mapping S : U → Y involving the entirety of the players strategies via
y = S(u). Here, the set Y is again a Banach space. The origin of this operator might
be a PDE or the minimization of an underlying parametrized optimization problem.
Moreover, we assume in our setting that the players’ objectives are separable of the
type

Ji (ui, u−i ) = J 1
i (S(ui, u−i ))+ J 2

i (ui).

Here J 1
i only depends on the state, e.g., by a data-fitting, respectively, tracking-type

term, and J 2
i only on the control, e.g., in the form of a regularization or control

cost. Note that by this setting a coupling between the players is established via the
objectives. The dependence of the feasible sets occurs through the presence of a state
constraint G(y) ∈ K , which might stem from a physical or technical consideration.
Hence, a (GNEP) in our setting has the general form

minimizeui ,y J 1
i (y)+ J 2

i (ui) over ui ∈ Ui, y ∈ Y

subject to ui ∈ Ui
ad and G(y) ∈ K with y = S(ui, u−i ).

(1.3)

Here, the continuous mapping G : Y → X, together with the set K , models the
state constraint, leading to the relation g = G ◦ S. This model is flexible enough
to allow for a wide variety of different mathematical and practical applications.
However, some aspects discussed hereafter are more conveniently described using
the more abstract setting of (1.2) rather than (1.3). We will, hence, switch between
these formulations keeping their formal relation in mind.

As previously mentioned, the operator S may originate from a broad variety of
problems including (possibly nonlinear) PDEs, Vis, or complementarity problems.
Throughout, we assume the solution mapping to be a singleton, meaning that given
u the state y = y(u) is unique. This does not need to be the case in general. Our
model may thus be seen as closely related to multi-leader-follower games (MLFG)

that are investigated within the scope of this report, as well.
Mathematical games involve a broad variety of challenges, including existence,

characterization of equilibria via first-order systems, as well as numerical analysis
and solvers. Moreover, in many applications, problem data are uncertain, occurring,
e.g., as random parameters. This gives rise to risk-related formulations of the
involved PDE-constrained minimization as well as (G)NEP. In this chapter, we study
in particular risk-averse agents by modeling appropriate individual objectives.
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2 Nash Games Involving Nonlinear Operator Equations

We study the following Nash game with a linear operator equations and compare
[21]:

minimize J 1
i (y)+ J 2

i (ui) over ui ∈ Ui, y ∈ Y,

subject to ui ∈ Ui
ad and Ay = b + Bu in W.

(2.1)

Here, Y is as before, W a Banach space, b ∈ W fixed, A ∈ L(Y,W) an invertible,
bounded linear operator, and B ∈ L(U,W) a bounded, linear operator involving
the strategies of all players at once. This motivates the solution operator S(u) =
A−1(b + Bu) of the state equation Ay = b + Bu.

First, we study existence of an equilibrium of (2.1). Here, the coupling of
the minimization problems of the individual agents prevents using a technique
associated with a single minimization problem. Rather we need to invoke fixed-
point theory for set-valued operators. For this, we reformulate (1.1) as

u ∈ B(u), (2.2)

with B(u) := �N
i=1Bi (u−i ), and Bi (u−i ) = argmin

{
Ji (u

′
i , u−i ) : u′i ∈ Ui

ad

}
. Here,

the best response mapping B : Uad ⇒ Uad assigns to every given strategy the
Cartesian product of all players’ feasible strategies yielding the optimal value. The
existence proof of a solution to (2.2) uses a result of Kakutani, Fan and Glicksberg:

Theorem 2.1 (cf. [14]) Given a closed point-to-(nonvoid)-convex-set mapping � :
Q ⇒ Q of a convex compact subset Q of a convex Hausdorff linear topological
space into itself, then there exists a fixed point x ∈ �(x).

Two assumptions are crucial in the above theorem: (i) the convexity assumption
on the values of the mapping and (ii) the compactness of the underlying set. In
our situation, (i) becomes a topological condition regarding the set of minimizers
for the players’ optimization problems. This property is guaranteed when the
(reduced) objective functional is convex. Concerning (ii), in finite dimensions,
the compactness is guaranteed by closedness and boundedness. In our infinite-
dimensional setting, however, this condition is usually not fulfilled with respect to
the strong topology. Hence, we require a transition to the weak topology leading to
a strengthened condition on the closedness of the graph of the operator.

In order to apply Theorem 2.1, let J 1
i , J

2
i be convex, continuous, functionals.

Moreover, let J 2
i or S be completely continuous on their respective domains.

Additionally, let Ui be a reflexive, separable Banach space and Ui
ad a nonempty,

closed, and bounded subset of Ui . Then, the latter is also compact with respect to
the weak topology. These conditions guarantee the existence of an equilibrium by
applying the theorem.
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We next come to the (GNEP) in [21], which reads

minimize J 1
i (y)+ J 2

i (ui) over ui ∈ Ui, y ∈ Y,

subject to ui ∈ Ui
ad and y ∈ K with

Ay = b + Bu in W,

(2.3)

with a continuous embedding Y ↪→ X. Let

Ci(u−i ) :=
{
u′i ∈ Ui

ad : S(u′i , u−i ) ∈ K
}

denote the associated set-valued strategy map, with C again the Cartesian product.
This setting adds another difficulty to the existence proof, as we are now confronted
with moving sets of feasible strategies. Hence, the selection of sequences in the
range of the operator to prove the closedness property of the best response map
becomes an issue. To address this challenge, we notice that the condition restricting
the players’ feasible strategies is the same for all players. Hence, one is able to
formulate the overall set of feasible strategies as

F = {u ∈ Uad : S(u) ∈ K} .

It is worth noting that the set F characterizes the whole strategy mapping via

u′i ∈ Ci(u−i ) ⇔ (u′i , u−i ) ∈ F

for all i = 1, . . . , N , which implies in particular Fix(C) = F , where Fix(·) denotes
the set of fixed points of a map. In fact, this observation applies already to the more
general setting of (1.2) and allows us to introduce the strengthened solution concept
of variational equilibria. It relates to a strategy vector u ∈ F solving the fixed-point
problem

u ∈ B̂(u), (2.4)

with B̂ : F → F , and B̂(u) = argmin
{∑N

i=1 Ji (u
′
i , u−i ) over u′ ∈ F

}
. In this

formulation, only a single minimization process occurs. It is straightforward to
prove that every variational equilibrium is also a Nash equilibrium. Consequently,
providing existence for the operator B̂ is sufficient. To apply Theorem 2.1, we note
that due to the linearity of S the joint set of feasible strategies is convex as well. If
a (GNEP) has in addition only convex objectives, then it is referred to as a jointly
convex Nash game.

Nonlinear PDEs lead to an underlying operator equation of the type

A(y) = b + B(u) in W,
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with a nonlinear operator A : Y → W and again a bounded linear B : U → W .
Now the solution mapping S : U → Y is nonlinear. In contrast to the previously
discussed case, convexity of the reduced objectives is not necessarily fulfilled. Of
course, the same holds in the generalized case for values of the strategy set C as
well as for the joint set of strategy vectors F . Hence, the existence proof becomes
a very delicate task. One option to proceed is the identification of combinations
of objectives and operator equations that still guarantee the required convexity
conditions. In this context, it is interesting to discuss the necessary structure first
for mere optimization problems and then for Nash games. If not otherwise stated,
the subsequent results of the following subsection will be made available in [19]
together with their proofs.

2.1 On the Convexity of Optimal Control Problems Involving
Nonlinear Operator Equations

In the following, we investigate generalized operator equations of the type

w ∈ A(y) in W.

This setting allows us to treat also variational inequalities (VIs). Here, w ∈ W

is a given control and y ∈ Y the associated state. To ensure well-posedness, we
assume that the set-valued operator A : Y ⇒ W has a single-valued inverse A−1 :
W → Y with the entire space W as its domain. Moreover, associated with Y and
W , let K ⊆ Y , respectively, KW ⊆ W denote nonempty, closed, and convex cones.
These cones induce preorder relations ≤K and ≤KW

on their respective spaces by
y0 ≤K y1 :⇔ y1 − y0 ∈ K for y0, y1 ∈ K (and analogously for W ). Using
these relations, it is possible to generalize the convexity notion from functionals to
operators, and further even to set-valued operators between Banach spaces, cf. [5,
Subsection 2.3.5].

Definition 2.2 Let X1, X2 be topological vector spaces with L ⊆ X2 a nonempty
closed, convex cone inducing a preorder relation as described above. A set-valued
mapping � : X1 ⇒ X2 is called L-convex, if for all t ∈ (0, 1) and x0, x1 ∈ X1 the
relation

t�(x1)+ (1 − t)�(x0) ⊆ �(tx1 + (1 − t)x0)+ L

holds. Additionally, � is called L-concave if it is (−L)-convex.

Our next aim is to identify conditions on the operator A that guarantee that the
solution operator A−1 : W → Y is L-convex.
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Theorem 2.3 Let Y,W be Banach spaces, both equipped with closed and convex
cones L ⊆ Y and LW ⊆ W , respectively. Let A : Y ⇒ W be a set-valued operator
fulfilling the following assumptions:

(i) The operator A is LW -concave in the sense of Definition 2.2.
(ii) The mapping A−1 : W → Y is single-valued with domain domA = W , and it

is LW -L-isotone (compare also to [4, Section 1.2]), i.e.,

for w1, w0 ∈ W with w2 ≥LW
w1 it holds that A−1(w2) ≥L A−1(w1).

Then, the mapping A−1 : W → Y is L-convex.

We illustrate the previous Theorem 2.3 by two examples.

Example Let d ∈ N\{0} and D ⊆ R
d be an open, bounded domain with Lipschitz

boundary. Consider the operator

A(y) := −�y +N(y) (2.5)

on the Sobolev space Y = H 1
0 (D) with W = H−1(D). Let N be a superposition

operator N : L2(D) → L2(D) induced by a concave, nondecreasing function on R.
We set L := {

ϕ ∈ H 1
0 (D) : ϕ ≥ 0 a.e. on D

}
together with LW := L+ with

L+ =
{
ξ ∈ H−1(D) : 〈ξ, ϕ〉

H−1,H 1
0
≥ 0 for all ϕ ∈ H 1

0 (D) with ϕ ≥ 0 a.e. on D
}
.

Then, A is LW -concave: Indeed, let t ∈ (0, 1) and y0, y1 ∈ H 1
0 (D) and ϕ ∈ L be

arbitrarily chosen; then we have

〈tA(y1)+ (1 − t)A(y0)− A(ty1 + (1 − t)y0), ϕ〉H−1,H 1
0

= (tN(y1)+ (1 − t)N(y0)−N(ty1 + (1 − t)y0), ϕ)L2(D) ≤ 0,

showing the concavity of A. Moreover, the operator A is invertible and isotone in
the LW -L-sense. The first property can be deduced from the monotonicity of the
operator N together with the coercivity of the Laplacian. To see the latter, choose
w0, w1 ∈ W with w0 ≤LW

w1, and let y0, y1 ∈ Y be the solution of wj = A(yj )

for j = 0, 1. Testing the difference of the equations by (y0 − y1)
+ yields

0 ≥ −‖∇(y0 − y1)
+‖2

L2(D)
− (N(y0)−N(y1), (y0 − y1)

+)L2(D)

= 〈A(y1)− A(y0), (y0 − y1)
+〉H 1

0 ,H
−1 = 〈w1 − w0, (y0 − y1)

+〉H 1
0 ,H

−1 ≥ 0,

which implies y1 ≥ y0 a.e. and hence the isotonicity of A−1, which gives us finally
the L-convexity of the solution operator A−1.
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In the previous example, (2.5) relates to semilinear elliptic PDEs and hence
addresses a constraint that has been widely discussed in the optimal control literature
(cf. [42] for a general overview and [7, 30] for more recent research activities). An
extension to semilinear parabolic equations is possible; see, e.g., [31, Chapter 3,
Section 2]. Theorem 2.3 can be applied to VIs as well; see [32, Lemma 4.1] for a
first result. In contrast, here we provide a more general result.

Example Let Y be a reflexive vector lattice with order cone L, i.e., Y is a reflexive
Banach space and L a nonempty, closed, and convex cone with L∩(−L) = {0}, and
consider an L+-concave, semicontinuous, and strongly monotone operator A : Y ⇒
Y ∗. Moreover, assume A to be strictly T-monotone, i.e., 〈A(y+z)−A(y), (−z)+〉 <
0 for z with (−z)+ �= 0. Let M ⊆ Y be a nonempty, closed, convex set, and lower
bounded, i.e., M +L ⊆ M and for all y0, y1 ∈ M and min(y0, y1) ∈ M . Moreover,
let w ∈ Y ∗ be given. We consider the following VI:

Find y ∈ M : w ∈ A(y)+NM(y).

Then, one can show that the associated solution operator S : Y ∗ → Y is L-convex.

These examples illustrate the power of the proposed concept, which allows us to
next consider optimization problems of the type

minimize J 1(y)+ J 2(u) over u ∈ U, y ∈ Y,

subject to u ∈ Uad and y ∈ K with

b + Bu ∈ A(y) in W,

(2.6)

which may represent a model for a single agent’s decision process. In order to
guarantee the convexity of (2.6), we assume the convexity of both parts J 1 and J 2,
respectively. Additionally, we assume the isotonicity of J 1 on Y , i.e., y0 ≤L y1 ⇒
J 1(y0) ≤ J 1(y1). Considering single-valuedness, the L-convexity of the solution
operator S(u) := A−1(b+B(u)) reads S(tu1+(1−t)u0) ≤L tS(u1)+(1−t)S(u0).
Hence, J 1◦S is convex and so is the entire objective as well. For a nonempty, closed,
convex set K ⊆ Y with K − L ⊆ K , the indicator functional iK : Y → [0,+∞] is
isotone and convex. Thus, the convexity of the set of feasible controls in (2.6) can
be stated as the following intersection of closed, convex sets:

{u ∈ Uad : S(u) ∈ K} = Uad ∩ {u ∈ U : iK(S(u)) ≤ 0}.

Under these conditions, the convexity of the optimization problem (2.6) is guaran-
teed. We illustrate this by the following optimization of doping profiles; cf. [28].

Example Let D ⊆ R
2 be a given, bounded, open domain with Lipschitz boundary

and Do ⊆ D an open subset. For a function z ∈ L2(�), we denote z2+ :=
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max(0, z)2. Consider

min
u∈Uad

1

2

∫

Do

(S(u)+ 1)2+dx + α

2

∫

D

u2dx, (2.7)

where S : L2(D) → H 1(D) is the solution operator of the following PDE:

−κ�y + sinh(y) = −Bu− b in D, κ
∂y

∂n
= 0 on ∂D,

with B the (linear) solution operator of the PDE

−r�d + d = u in D, r
∂d

∂n
= 0 on ∂D,

and Uad := {u ∈ L2(D) : 0 ≤ u ≤ 1 a.e. on D}. Note that by the use of
the Trudinger–Moser inequality (cf. [34]), the function sinh(y) lies in L2(D) for
y ∈ H 1

0 (D). Assume further that b ≥ 0 a.e. on D. Then the solution operator
is L-convex. To see this, define the auxiliary operator A : H 1(D) → H−1(D),
〈A(y),w〉H−1,H 1 := (∇y,∇w)L2 + (N(y),w)L2 , with

N(y) =
{
y, if y ≥ 0
sinh(y), else

as a superposition operator. Recalling the result corresponding to (2.5), we see that
the operator N is induced by a monotone and concave function on R. Hence, the
solution map is L-convex. The solution operator of the auxiliary problem and S

coincide, because both operators are sign preserving. Since u ≥ 0 a.e. by feasibility,
we get Bu ≥ 0 a.e. and together with b ≥ 0 a.e. on D the nonnegativity of the
solutions. Hence, the operators sinh and N coincide. Thus, we see that S is indeed L-
convex on Uad. Moreover, the objective is convex and isotone yielding the convexity
of (2.7).

We would now like to derive first-order optimality conditions for (2.6). For this
purpose, we extend the subdifferential concept from convex and nonsmooth analysis
to vector-valued operators. For an element y∗ ∈ L+ with

L+ := {z∗ ∈ Y ∗ : 〈z∗, y〉 ≥ 0 for all y ∈ L},

we define the subdifferential of the solution operator S : U → Y in direction y∗ as

∂S(u)(y∗) := ∂〈y∗, S( · )〉(u). (2.8)

Due to the L-convexity of S also the functional u �→ 〈y∗, S(u)〉 is convex. Hence,
the above expression (2.8) is well defined and reads as a scalarizing formulation;
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compare [33, Theorem 1.90]. Note that this object is closely linked to the (Fréchet)
coderivative (cf. [33, Definition 1.32], which is defined for a set-valued operator
F : X1 ⇒ X2 as

D∗F(x1, x2)(x
∗
2 ) :=

{
x∗1 ∈ X∗

1 : (x∗1 ,−x∗2 ) ∈ Ngph(F )(x1, x2)
}
,

where Ngph(F )(x1, x2) denotes the (Fréchet) normal cone of gph(F ) in (x1, x2) ∈
gph(F ), the graph of F ; see [5] for more details. In the case of a nonempty, closed,
convex set, the Fréchet normal cone and its corresponding notion from convex
analysis coincide. Using the mapping SL : U ⇒ Y defined by SL(u) := S(u)+ L,
we obtain for our notation in (2.8) the equivalent formulation

∂S(u)(y∗) = {u∗ ∈ U∗ : (u∗,−y∗) ∈ Ngph(SL)(u, S(u))},

where we use y∗ ∈ K+. This concept allows for the following type of chain rule. In
its formulation, D denotes the set of arguments of a set-valued map with nonempty
image, and core the core of a set; see, e.g., [5, Definition 2.72] and [6, Subsection
4.1.3] for definitions and details.

Theorem 2.4 Let U, Y be Banach spaces, the latter one equipped with a closed,
convex cone L. Let f2 : U → R ∪ {+∞} and f1 : Y → R ∪ {+∞} be convex,
proper, lower semicontinuous functionals, and moreover let f1 be L-isotone. Let the
operator S : U → Y beL-convex. Then, the functional f1◦S+f2 : U → R∪{+∞}
is convex. Furthermore, consider u ∈ D(∂f2) with S(u) ∈ D(∂f1) and let one of the
following two conditions hold:

(i) Let S be locally bounded and the following constraint qualification hold

0 ∈ core (dom f2 × dom f1 − gph(S)) .

(ii) Let S be semicontinuous and the following constraint qualification hold

0 ∈ core (S (dom f2)− dom f1) .

Then, the following chain rule holds for the subdifferential of the composed
objective:

∂(f1 ◦ S + f2)(u) = ∂S(u)
(
∂f1(S(u))

)
+ ∂f2(u).

The proposed chain rule in Theorem 2.4 as well as the proof and the other results
of Sect. 2 will be made available in [19]. Using the functionals f2 = J 2 + iUad and
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f1 = J 1 + iC , we obtain the first-order system

−q ∈ ∂J 2(u)+NUad(u),

y∗ ∈ ∂J 1(y)+NK(y),

q ∈ ∂S(u)(y∗).

(2.9)

Theorem 2.4 enables one to derive necessary and sufficient optimality conditions
even for constraints involving PDEs, VIs, or complementarity problems admitting a
nonsmooth solution operator. Of course, not all optimal control problems will fit into
the above framework and might not meet the assumptions required in Theorem 2.1.
Hence, it might be worthwhile investigating the use of more general fixed-point
results. One possibility in this direction is the Eilenberg–Montgomery Theorem (cf.
[8]) where a weaker topological assumption replaces convexity. The application
of this result still requires a characterization of the solution set for the players’
optimization problems. This, however, is ongoing research.

3 Nash Games Using Penalization Techniques

The direct application of the nonsmooth approach in the previous section may be
delicate for many Nash games. We therefore draw our attention to a characterization
of first-order conditions for (1.3) involving a continuously differentiable solution
operator. Indeed, let A : Y → W be an invertible, continuously differentiable
operator with an everywhere invertible derivative. In the following, let K denote
a nonempty, closed convex cone, and G a constraint map. The first-order system for
a Nash equilibrium of the game associated with

minimize J 1
i (y)+ J 2

i (ui) over ui ∈ Ui, y ∈ Y subject to

ui ∈ Ui
ad and G(y) ∈ K with

A(y) = b + Bu

(3.1)

for i = 1, . . . , N can be derived by the proposition of a constraint qualification of
Robinson–Zowe–Kurcyusz type (RZK) (see [45]). In this setting, it reads

(
DG(y) ◦DA(y)−1 ◦ Bi

)
Ui

ad −K(G(y)) = X for all i = 1, . . . , N. (3.2)
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The first-order system then becomes

0 = ∂iJ
2
i (ui)+ B∗

i pi + λi in U∗
i ,

A(y) = b + Bu in W,

DA(y)∗pi = ∂yJ
1
i (y)−DG(y)∗μi in Y ∗,

λi ∈ NUi
ad
(ui) in U∗

i ,

X∗ ⊇ K+ � μi ⊥ G(y) ∈ K ⊆ X for all i = 1, . . . , N.

(3.3)

In the case of a variational equilibrium, the single non-decoupling optimization
process leads to a (possibly weaker) constraint qualification formulated as

(
DG(y) ◦DA(y)−1 ◦ B

)
Uad(u)−K(G(y)) = X. (3.4)

This leads to a special instance of (3.3) where all multipliers μi ∈ X∗, i = 1, . . . , N ,
coincide, i.e., μi = μ for all i ∈ {1, . . . , N} in (3.3). In many situations involving
function spaces, higher regularity of the state is needed to guarantee the constraint
qualification. This on the other hand leads to a reduced regularity of the multiplier(s)
μ(i) and subsequently also of the adjoint states pi in practice. The above results of
the subsequent ones in this section can be found in [18], if not stated otherwise.

3.1 �-Convergence

Next we use the notion of -convergence to approximate our state-constrained Nash
game by a sequence of simpler Nash games with a weakened form of the state
constraint.

First we introduce a unified view on the different notions of equilibria discussed
here.

Definition 3.1 Let a Banach space U and a functional E : U × U → R be given.
A point u ∈ U is called equilibrium, if

E(u, u) ≤ E(u′, u) holds for all u′ ∈ U.

The first component in the functional fulfills the task of a control variable, whereas
the second one acts as a parameter and hence establishes a feedback mechanism.
Note that the dependence of the domain of the reduced functional E(·, u) on
u is possible. Recalling the definition of the strategy mapping C as C(u) =∏N

i=1 Ci(u−i ) with Ci(u−i ) = {u′i ∈ Ui
ad : g(u′i , u−i ) ∈ K} and g = G ◦ S as

the composition of state constraint and solution operator, we reobtain by the choice
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of functionals

E(u′, u) =
N∑

i=1

Ji (u
′
i , u−i )+ iC(u)(u

′) =
N∑

i=1

(
Ji (u

′
i , u−i )+ iCi(u−i )(u

′
i )
)

=
N∑

i=1

(
Ji (u

′
i , u−i )+ iUi

ad
(ui)+ iK(g(u′i , u−i ))

)

(3.5)

and

Ê(u′, u) =
N∑

i=1

Ji (u
′
i , u−i )+ iF (u′)

=
N∑

i=1

(
J (u′i , u−i )+ iUi

ad
(u′i )

)
+ iK(g(u′i , u−i ))

(3.6)

the notion of Nash, respectively, variational equilibria. Our aim now is to generalize
-convergence to equilibrium problems of the above form.

Definition 3.2 Let U be a Banach space and let T denote either the strong or weak
topology on U . A sequence of functionals En : U × U → R is called -convergent
to a functional E : U × U → R if the following two conditions hold:

(i) For all sequences un
T→ u, it holds E(u, u) ≤ lim infn→∞ En(un, un).

(ii) For all u′ ∈ U and all sequences un
T→ u, there exists a sequence u′n

T→ u′ such
that E(u′, u) ≥ lim supn→∞ En(u′n, un).

Of course, it is as well possible to combine the strong and weak topology in
Definition 3.2. Note that the classical notion of -convergence for a minimization
problem is a special case of the above. The following convergence result holds true.

Proposition 3.3 Let En be a -convergent sequence of functionals as in Defini-
tion 3.1 with limit E . Then, every accumulation point of a sequence of corresponding
equilibria (un)n∈N is an equilibrium of the limit.

Our intention is to address the state constraint by applying a penalization
technique. Therefore, the constraint g(u) ∈ K encoded in the indicator function
is substituted by a continuously differentiable penalty function β : X → [0,+∞),

β(x) = 0 if and only if x ∈ K,
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scaled by a penalty parameter γ > 0. This leads to the formulation of the penalized
functionals corresponding to the (GNEP) as

Eγ (v, u) =
N∑

i=1

(
Ji (vi, u−i )+ γβ(g(vi, u−i ))

)
+ iUad(v),

as well as to the variational equilibrium problem

Êγ (v, u) =
N∑

i=1

Ji (vi, u−i )+ γβ(g(v))+ iUad(v).

Using the definition of the state as well as the composition g = G ◦ S, this leads to
the penalized Nash game

minimize J 1
i (ui)+ J 2

i (y)+ γβ(G(y)) over ui ∈ Ui, y ∈ Y

subject to ui ∈ Ui
ad with A(y) = b + Bu,

(3.7)

and in a similar fashion to the penalized variational equilibrium problem

minimize
N∑

i=1

(
J 1
i (yi)+ J 2

i (u
′
i )
)
+ γβ(G(y)) over u′i ∈ Ui, yi ∈ Y and y ∈ Y

subject to u′i ∈ Ui
ad and A(yi) = b + B(u′i , u−i ) as well as

A(y) = b + Bu′.
(3.8)

The definition of the states yi and y comes from the presence of the terms
S(u′i , u−i ) in the state-related functionals J 1

i and of the expression S(u′) occurring
in β ◦ G for the penalization of the constraint u′ ∈ F . Moreover, we assume in
the terms of the abstract setting (1.2) that the functionals u �→ Ji (ui, u−i ) are
continuous with respect to the strong topology on Ui and the weak one on U−i , i.e.,
for all sequences uni → ui and un−i ⇀ u−i it holds that Ji (u

n
i , u

n
−i ) → Ji (ui, u−i ).

This condition can usually be guaranteed for a wide variety of applications as in
the setting of (1.3) by complete continuity of the solution map S together with
continuity of the mappings J i

1 on Y and J i
2 on Ui . With these conditions at hand, it

is possible to derive the -convergence of (3.6) and by proposing dom(C) = Uad
also the -convergence of (3.5).

Turning to the derivation of a first-order system for the penalized problems,
we assume for convenience that J 1

i , J
2
i , i = 1, . . . , N , are all continuously
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differentiable. In both equilibrium cases, this leads to the following system:

0 = ∂iJ
2
i (ui)+ B∗

i pi + λi in U∗
i ,

A(y) = b + Bu in W,

DA(y)∗pi = DJ 1
i (y)−DG(y)∗μ in Y ∗,

λi ∈ NUi
ad
(ui) in U∗

i ,

μ = −γDβ(G(y)) in X∗.

(3.9)

In fact, for a jointly convex game, the first-order system would not only be necessary,
but also sufficient implying the equivalence of the two penalized equilibrium
problems. Assuming for the moment that at least the functionals J 2

i are strongly
convex, we find the strong monotonicity of the first derivative ∂iJ

2
i : Ui → U∗

i and
hence the unique solvability of the VI

Find ui ∈ Ui : u∗i ∈ ∂J 2
i (ui)+NUad(ui),

given an arbitrary u∗i ∈ U∗
i . This problem admits a Lipschitz-continuous solution

operator denoted by Pi : U∗
i → Ui . In the simplest case of J 2

i (ui) = 1
2‖ui‖2

Ui
for

a separable Hilbert space Ui , this map reads as a composition with the projection
mapping on Uad. Often, the system can be rewritten as a fixed-point problem

u = T (u)

with T : Uad → Uad defined by T (u) = (T1(u), . . . , TN(u)) and

Ti(u) = Pi(−B∗i pi) with pi = pi(y) = DA(y)−∗
(
∂yJ

1
i (y)+ γDG(y)∗Dβ(G(y))

)
,

and y = S(u) = A−1(b + Bu). Since this is a fixed-point problem involving only
a single-valued operator—in contrast to the formulation for Nash and variational
equilibria—the existence question does not suffer from a lack of topological
characterization of its values and can thus be treated with classical Schauder-type
results, cf. [44, Theorem IV.7.18]. Using the described penalization technique, one
is hence able to propose a generalized solution concept that is also suitable for a
numerical treatment of the state constraint by motivating a path-following technique.
The idea is to observe the solution(s) of the above first-order system for a range of
penalty parameters γ ∈ [γmin,+∞) leading to the path

P =
{
(γ, uγ , yγ , pγ , μγ , λγ ) ∈ [γmin,+∞)× U × Y × (W ∗)N ×X × U∗

such that (uγ , yγ , pγ , μγ , λγ ) solves (3.9)
}
.
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From the numerical viewpoint, it is interesting to study the behavior of the solutions
of (3.9) for γ → +∞. As a first step toward a path analysis, we study the
boundedness of the path. This is next done in the fully abstract setting only.

Lemma 3.4 Let the mappings v �→ ∂iJi (vi, v−i ) (in the fully abstract setting)
be bounded for all i = 1, . . . , N (i.e., images of bounded sets are bounded). If
additionally the RZK condition (3.4) holds, then the path P is bounded.

Using this result, it is straightforward to utilize reflexivity and the Banach–
Alaoglu theorem to obtain the existence of weakly and weakly* converging
subsequences. The next result guarantees that the corresponding limits are the
desired solutions.

Theorem 3.5 Let the condition (3.4) as well as the boundedness condition of
Lemma 3.4 be fulfilled, and let moreover the following additional assumptions
hold:

(i) The first derivatives of the objectives Ji with respect to the players’ strategy
satisfy for every weakly convergent sequence uni ⇀ u∗i in U the property

〈∂iJi (u
∗
i , u

∗−i ), u
∗
i 〉Ui,U

∗
i
≤ lim sup

n→+∞
〈∂iJi (u

n
i , u

n
−i ), u

n
i 〉Ui,U

∗
i
.

(ii) The mapping g : U → X is strongly continuous and uniformly Fréchet
differentiable on every bounded set, i.e., on very bounded subset M ⊆ U holds
that

lim‖h‖X→0
sup
u∈M

‖g(u+ h)− g(u)−Dg(u)h‖X
‖h‖U = 0.

Then, every path has a limiting point (u∗, q∗, λ∗, μ∗) along a subsequence,
and every limiting point fulfills the necessary first-order condition for a Nash
equilibrium (resp. variational equilibrium).

Together with the existence for solutions to the first-order system for the penalized
system (3.9), the combined fulfillment of the conditions guarantees the existence of
a point fulfilling the first-order system for (VEP) and hence especially for (GNEP).

This procedure sketches the numerical treatment of the (GNEP) problem (2.4).
Besides identifying a suitable algorithm to solve the system (3.9), also an adaptive
parameter update technique is needed; compare [21] for the latter. Here take a highly
related approach leading to the definition of the value functions

Wγ (u
γ ) = inf

u′∈Uad

Eγ (u′, uγ ) = inf
u′∈Uad

N∑

i=1

(
Ji (u

′
i , u

γ

−i )+ γβ(g(u′i , u
γ

−i ))
)

=
N∑

i=1

inf
u′i∈Ui

ad

(
Ji (u

′
i , u

γ

−i )+ γβ(g(u′i , u
γ

−i ))
)

(3.10)
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and analogously for the penalized (VEP)

Ŵγ (u
γ ) = inf

u′∈Uad

(
N∑

i=1

Ji (u
′
i , u

γ

−i )+ γβ(g(u′))
)

. (3.11)

One observes that Eγ (uγ , uγ ) − Wγ (u
γ ) ≥ 0 and Êγ (uγ , uγ ) − Ŵγ (u

γ ) ≥ 0,
with equality only if uγ is a solution of the penalized Nash game, respectively,
(VEP). Using the defined value functionals, we seek to evaluate the effect of an
increase of γ on the behavior of our solution. Therefore, we consider the functional
γ̃ �→ Wγ̃ (uγ ) respectively γ̃ �→ Ŵγ̃ (uγ ). For a local description of the behavior,
we extract first-order information by providing bounds for the upper and lower limits
for the directional derivative of the proposed functionals.

Lemma 3.6 Let J 1
i , J

2
i be continuous functionals, and let the best response

mapping with respect to the penalty parameter γ̃ , i.e.,

γ̃ �→ Bγ̃ (uγ ) = argmin

⎧
⎨

⎩

N∑

i=1

(
Ji (u

′
i , u

γ
−i

)+ γ̃ β(g(u′i , u
γ
−i

))
)
over u′ ∈ Uad

⎫
⎬

⎭
and

γ̃ �→ B̂γ̃ (uγ ) = argmin

⎧
⎨

⎩

N∑

i=1

Ji (u
′
i , u

γ
−i

)+ γ̃ β(g(u′)) over u′ ∈ Uad

⎫
⎬

⎭

be nonempty-valued. Let uγ ∈ Uad be an equilibrium for the penalized (GNEP)
in (3.7), respectively, (VEP) in (3.8). Then, the difference quotients satisfy

0 ≤ lim inf
η↘0

W(γ + η)−W(γ )

η
≤ lim sup

η↘0

W(γ + η)−W(γ )

η
≤ Nβ(g(uγ )) and

0 ≤ lim inf
η↘0

Ŵ(γ + η)− Ŵ(γ )

η
≤ lim sup

η↘0

Ŵ(γ + η)− Ŵ(γ )

η
≤ β(g(uγ )).

If, moreover, the best response map γ̃ �→ Bγ̃ (uγ ), respectively, γ̃ �→ B̂γ̃ (uγ ),
is single-valued and continuous, then the functional W , respectively Ŵ , is even
differentiable withW ′(γ ) = Nβ(g(uγ )), respectively Ŵ ′(γ ) = β(g(uγ )).

Hence, the composition of the penalty and the state constraint serves as a way to
adjust the penalty parameter for each step of the path-following procedure by

γ �→ γ + max

(
πpath

β(g(uγ ))
, ε

)

with a fixed parameter πpath > 0. Using this technique, strong violations of the state
constraint resulting in a big penalty term induce a more timid update, whereas low
values cause a more aggressive behavior. The update is safeguarded with a fixed
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upper bound ε > 0 for the case of very low values of the penalty functional. If
the value is zero, then the algorithm terminates since it has found a solution of
the original (GNEP), respectively, (VEP). The results of Sect. 3 together with the
corresponding proofs and details will be made available in [18].

With this outline of an algorithm, we end the discussion of deterministic Nash
equilibria and turn our attention to the case involving uncertainties.

4 PDE-Constrained GNEPs Under Uncertainty

4.1 Motivation

Most real-world problems in the natural sciences, engineering, economics, and
finance are subject to uncertainty. This inherent stochasticity arises from a number
of unavoidable factors, which range from noisy measurements and data acquisition
to ambiguity in the choice of model and its underlying exogenous parameters.
Consequently, we must incorporate random parameter into our mathematical mod-
els. Within the framework of PDE-constrained decision problems, we are then
confronted with the task of optimizing systems of random partial differential
equations.

In order to ensure these new infinite-dimensional stochastic decision problems
yield robust solutions to outliers or potentially catastrophic events, we appeal to the
theory of risk-averse optimization, which has been widely developed over the last
several decades within the (finite dimensional) stochastic programming community,
see, e.g., [41] and many references therein. Furthermore, using risk models in the
context of Nash equilibrium problems allows us to model the preferences of the
agents more accurately by assuming they have well-defined risk preferences.

Nevertheless, the literature on risk-averse PDE-constrained optimization was
extremely scarce until recently [13, 24–28]. Therefore, in order to tackle risk-
averse PDE-constrained GNEPs, it has been necessary to first develop the theory,
approximation, and algorithms for the optimization setting. These results can now
be leveraged for the NEP and ultimately GNEP setting.

In what follows, we will first present the recent theory of risk-averse PDE-
constrained optimization in which the risk preferences of the individual agents
are modeled by convex risk measures. Following this, we will apply the theory
to a model risk-averse PDE-constrained Nash equilibrium problem. This will
more clearly delineate the differences between the optimization and game-theoretic
frameworks. We then present the recent approach in [25] for smoothing nonsmooth
risk measures that is interesting from a theoretical perspective, but also useful
for gradient-based optimization algorithms. In particular, we will see that epi-
regularization of risk measures is an essential component of the primal–dual risk
minimization algorithm recently developed in [27].
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4.2 Additional Notation and Preliminary Results

In addition to the notation introduced above, we recall several further concepts
necessary for the coming discussions. Unless otherwise stated, these are considered
standing assumptions in the text below.

Let (�,F ,P) be a complete probability space where � is an arbitrary set of
outcomes, F ⊆ 2� is the associated σ -algebra of events, and the set function P :
F → [0, 1] is a probability measure. We employ the standard abbreviations “a.e.”
and “a.a.” for “almost everywhere” and “almost all” with respect to P, respectively.
If necessary, we will append these by P and write P-a.e. or P-a.a. As F is fixed,
we write “F-measurable” simply as “measurable” if clear in context. Since we will
often deal with Banach-space-valued random terms, we recall that a random element
X in a Banach space X is a measurable mapping X : � → X , where X is endowed
with the Borel σ -algebra. We denote expectation by E[X].

We assume that the control space U is a real reflexive Banach space and denote
the set of admissible decisions by Uad ⊂ U . The latter is assumed to be a nonempty,
closed, and convex set. In the context of Nash equilibrium problems, Uad is assumed
to be bounded as well. The physical domain for the deterministic PDE solutions
will be denoted by D ⊂ R

d . We assume that D is an open and bounded set with
Lipschitz boundary ∂D. The associated state space for the deterministic solutions
will be denoted by V := H 1(D) (or H 1

0 (D)), where H 1(D) is the usual Sobolev
space of L2(D)-functions with weak derivatives in L2(D) [1].

The natural function-space setting for solutions of random PDEs is in classical
Bochner spaces, cf. [17]. We recall that the Bochner space Lp(�,F ,P;W)

comprises all measurable functions that map � into some Banach space W with
p finite moments for p = [1,∞). When p = ∞, L∞(�,F ,P;W) is the space of
all essentially bounded W -valued measurable functions. The norms are given by

‖v‖Lp(�,F ,P;W) = E
[‖v‖pW

]1/p
for p ∈ [1,∞)

‖v‖L∞(�,F ,P;W) = ess sup
ω∈�

‖v(ω)‖W .

When W = R, we set Lp(�,F ,P;R) = Lp(�,F ,P). In our optimization and
equilibrium settings, the random objective maps U into X := Lp(�,F ,P) for
some p ∈ [1,∞). Whenever it is clear, we simply write X .

As discussed in Sect. 4.1, we model risk-averse behavior by means of risk
measures. There is a vast literature on the subject of risk measures and their usage
in optimization. In our models, the individual agents’ problems are assumed to take
the form:

min
u∈Uad

R[J (S(u))] + ℘(u),
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where R is a nonlinear, typically nonsmooth, functional on X . We refer the
interested reader to [41, Chap. 6.] and the references therein as a starting point.
For our purposes, it will suffice to introduce two general classes of risk measures
here, each of which follows the standard axiomatic approach as in [3, 12, 39].
We start by recalling the definition of a regular measure of risk as suggested by
Rockafellar and Uryasev in [39]. The conditions below were postulated as minimal
regularity properties for risk measures in the context of optimization. A functional
R : X → R where R := (−∞,∞] is a regular measure of risk provided is proper,
closed, convex and satisfies R[C] = C for all constant random variables C ∈ R,
and R is risk averse: R[X] > E[X] for all nonconstant X ∈ X . Therefore, the
expected value is not a regular measure of risk in this setting. This is reasonable
from the perspective that setting R = E would indicate neutrality to risk and not
yield a robust solution.

Perhaps the most well-known risk measures are the coherent risk measures.
These were introduced in a systematic way in [3] as a means of axiomatizing
the behavior of risk-averse decision makers. The risk measure R is coherent
provided:

(C1) Subadditivity: If X,X′ ∈ X , then R[X +X′] ≤ R[X] +R[X′].
(C2) Monotonicity: If X,X′ ∈ X and X ≥ X′ almost surely, then R[X] ≥ R[X′].
(C3) Translation equivariance: If C ∈ R and X ∈ X , then R[X+C] = R[X]+C.
(C4) Positive homogeneity: If C ∈ [0,∞) and X ∈ X , then R[CX] = CR[X].
A rather popular coherent risk measure is the conditional or average value at risk
(CVaR or AVaR). Given a risk or confidence level β ∈ (0, 1), the average value at
risk of a random variable X is the average of the associated quantiles F−1

α (X) over
α ∈ (β, 1). Here, we have

F−1
α (X) = VaRβ(X) := inf {x ∈ R : FX(x) ≥ β} ,

i.e., the value at risk of X at confidence level β, and

AVaRβ(X) := 1

1 − β

∫ 1

β

VaRα(X) dα.

This gives a measure of the tail of the distribution of X. It is particularly well suited
in the context of risk-averse optimization as a means of accounting for tail events.
CVaR can be written in several ways; for optimization, we use

AVaRβ(X) = inf
t∈R

{
t + 1

1 − β
E[(X − t)+]

}
, (4.1)

where (x)+ := max{0, x} [38]; the (smallest) minimizer in (4.1) is VaRβ(X).
As shown in [25, Thm 1], the only coherent risk measures that are continuously

Fréchet differentiable are expectations. Therefore, regardless of how smooth the
objective or control state mappings are, any risk-averse PDE-constrained opti-
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mization problem using coherent regular risk measures is an infinite-dimensional
nonsmooth optimization problem.

4.3 Risk-Averse PDE-Constrained Optimization: Theory

We now focus on developing the theory for the “single-player” setting. We start by
considering the following abstract optimization problem:

min
u∈Uad

R[J (S(u))] + ℘(u). (4.2)

Here, u ∈ U represents the decision variable (controls, parameters, designs,
etc.), Uad is the associated feasible set, ℘ is a deterministic cost function, R is
a risk measure as in Sect. 4.2, J is a random objective in the form of a general
superposition operator, and S(u) is the solution mapping for the random PDE.

As motivation for the chosen setting, we recall the class of random PDEs
considered in [28] (in strong form): For u ∈ U and P−a.e. ω ∈ �, y = S(u)

solves

−∇ · (κ(ω)∇y(ω))+ c(ω)y(ω)+N(y(ω), ω) = [B(ω)u] + b(ω), in D

κ(ω)
∂y

∂n
(ω) = 0, on ∂D.

(4.3)

Here, we assume κ, c, b are random elements in an appropriate Bochner space and
the operator N is a potentially nonlinear maximal monotone operator. B(ω) maps u
into the image space of the differential operator.

Returning to the abstract setting, it was shown in [26] that a number of basic
regularity assumptions need to be imposed on R, J , S, ℘, and Uad in order to prove
the existence of a solution and derive optimality conditions for (4.2). The inclusion
of stochasticity and the nonlinearity and nonsmoothness of R add a further level of
complexity not seen in deterministic problems. We impose the following conditions
on S and J throughout.

Assumption 4.1 (Properties of the Solution Map) It holds that

1. S(u) : � → V is strongly F-measurable for all u ∈ Uad.
2. There exists an increasing function ρ : [0,∞) → [0,∞) and C ∈ Lq(�,F ,P)

with C ≥ 0, q ∈ [1,∞] such that

‖S(u)‖V ≤ Cρ(‖u‖U) P−a.e. ∀u ∈ Uad.

3. If un ⇀ u in Uad, then S(un) ⇀ S(u) in V P−a.e.
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Each of these assumptions is minimal. For example, if S(u) is not measurable,
then R◦J ◦S is meaningless. The second assumption can be seen as an integrability
requirement. Since J is typically a nonlinear operator, it is essential for S to possess
such properties. The latter condition appears to be the weakest condition needed
(along with the assumption on R, J , etc. below) to prove the existence of a solution.
As shown in [24, Sec. 2.2], Assumption 4.1 implies:

1. S(u) ∈ Lq(�,F ,P;V ) for all u ∈ Uad.
2. By letting

V := Lq(�,F ,P;V ),

we have S(un) ⇀ S(u) in V for any {un} ⊂ Uad such that un ⇀ u.

Furthermore, in order to derive optimality conditions, S needs to be continuously
differentiable.

Assumption 4.2 There exists an open set W ⊆ U with Uad ⊆ W such that the
solution map u �→ S(u) : W → V is continuously Fréchet differentiable.

The results in [24] indicate that we could slightly weaken this to Hadamard
directional differentiability, which would allow us to consider risk-averse control
of random elliptic variational inequalities in the future.

Continuing, we will assume that the random objective J is the result of a
superposition of some possibly random integral functional J and an element y ∈ V .
The necessary, and in part sufficient, conditions needed for J are given below.

Assumption 4.3 (Properties of J : V ×� → R) It holds that

1. J is a Carathéodory function, i.e., J (·, ω) is continuous for P−a.e. ω ∈ � and
J (u, ·) is measurable for all v ∈ V .

2. If 1 ≤ p, q < ∞, then there exists a ∈ Lp(�,F ,P) with a ≥ 0 P−a.e. and
c > 0 such that

|J (v, ω)| ≤ a(ω)+ c‖v‖q/pU . (4.4)

If 1 ≤ p < ∞ and q = ∞, then the uniform boundedness condition holds: for
all c > 0, there exists γ = γ (c) ∈ Lp(�,F ,P) such that

|J (v, ω)| ≤ γ (ω) P−a.e. ∀ v ∈ V, ‖v‖V ≤ c. (4.5)

3. J (·, ω) is convex for P−a.e. ω ∈ �.

It follows from a well-known result due to Krasnosel’skii, see, e.g., [29], [43,
Thm 19.1], see also Theorem 4 in [15], that Assumption 4.3.1–2 guarantees J :
V → Lp(�,F ,P) continuously. These are necessary and sufficient and cannot be
weakened. For several examples of objectives that satisfy Assumption 4.3, we refer
to [26, Sec. 3.1]. Finally, the convexity assumption guarantees Gâteaux directional
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differentiability. If this is not available, then additional assumptions must be made
on the partial derivatives of J with respect to u. We gather the related main
statements on J from [26] here for the reader’s convenience.

Theorem 4.4 (Continuity and Gâteaux Differentiability of J ) Let Assump-
tion 4.3.1–2 hold. Then J : V → Lp(�,F ,P) is continuous. Furthermore, if
Assumption 4.3.1–3 holds, then J is Gâteaux directionally differentiable.

Since the objective functional in (4.2) is of the form R ◦ J ◦ S, Theorem 4.4
is not strong enough to guarantee the necessary smoothness properties of J as
a nonlinear operator from V into Lp(�,F ,P) that would provide us with first-
order optimality conditions. This requires further regularity conditions. The weakest
type of directional differentiability that allows a chain rule is Hadamard directional
differentiability, cf. [40]. In the current setting, this can be demonstrated if J
is locally Lipschitz, see [26, Cor. 3.10]. For the development of function-space-
based optimization algorithms, in particular the convergence analysis, we generally
need continuous Fréchet differentiability. This can be proven provided the partial
derivatives of ∂uJ (·, ω) satisfy a Hölder continuity condition, see [26, Thm. 3.11].

We now have a sufficient amount of structure to prove existence of optimal
solutions to (4.2). The following lemma is essential.

Lemma 4.5 (Weak Lower-Semicontinuity of the Composite Objective) Let
Assumptions 4.1 and 4.3 hold. If R : L1(�,F ,P) → R is proper, closed,
monotonic, convex, and subdifferentiable at J (S(u)) for some u ∈ Uad, then
the composite functional (R ◦ J ◦ S) : Uad → R is weakly lower semicontinuous
at u ∈ Uad.

Using Lemma 4.5, we can now prove existence of solutions.

Theorem 4.6 (Existence of Optimal Solutions) Let Assumptions 4.1, 4.2, and 4.3
hold. Let R : L1(�,F ,P) → R be a proper, closed, convex, and monotonic risk
measure, and let ℘ : U → R be proper, closed, and convex. Finally, suppose either
Uad is bounded or u �→ R(J (S(u)))+℘(u) is coercive. Then, (4.2) has a solution.

Next, we can also derive a general first-order optimality condition. The essential
point here is the regularity condition on R, which guarantees the composite reduced
objective function R ◦J ◦ S is Hadamard directionally differentiable. The standard
regularity assumptions: finiteness or int domR �= ∅ are considerably mild given the
types of risk measures used in practice.

Theorem 4.7 (A General Optimality Condition) Suppose that in addition to the
assumptions of Theorem 4.6, the risk measure R is either finite on L1(�,F ,P) or
int domR �= ∅. Moreover, assume that J : V → Lp(�,F ,P) is locally Lipschitz
and ℘ is Gâteaux directionally differentiable. Then for any optimal solution u�
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to (4.2), the following first-order optimality condition holds:

sup
ϑ∈∂R(J (S(u�)))

E[J ′(S(u�); S(u�)′δu) ϑ] + ℘′(u�; δu) ≥ 0, ∀δu ∈ TUad(u
�),

(4.6)

where TUad(u
�) is the contingent cone to Uad at u�, which is defined by

TUad(u
�) := {

d ∈ U
∣∣ ∃ τk ↓ 0, ∃ dk → d in U : z� + τkdk ∈ Uad ∀k

}
.

For illustration of (4.6), let p = 2, U = L2(D), S(u�) = A−1(Bu� + b) and

J (y, ω) = J (y) := 1

2
‖y − yd‖2

L2(D)
and ℘ = ν

2
‖u‖2

L2(D)
,

where A−1 is a linear isomorphism from V∗ into V , B ∈ L(U,V∗), and b ∈
V∗; then (4.6) unfolds into a somewhat more familiar form: If u� is an optimal
solution of (4.2), then there exists an adjoint state p� ∈ V∗ and a subgradient
ϑ� ∈ L∞(�,F ,P) such that

(
u� − 1

ν
E[B∗p�ϑ�], u− u�

)

U

≥ 0, ∀u ∈ Uad,

R[X] −R[J (y�)] − E[ϑ�(X − J (y�))] ≥ 0, ∀X ∈ L1(�,F ,P),

Ay� − Bu� + b = 0,

A∗p� − yd + y� = 0.

(4.7)

This provides us with the interesting fact that the optimal control is the projection
onto Uad of the expectation of adjoint term B∗p�, where the expectation has been
adjusted according to the risk preference expressed in R via the subgradient ϑ�.
The latter is often referred to as the “risk indicator” in the literature for obvious
reasons. In the case of AVaRβ , the numerical experiments in [24] indicate that
P(suppϑ�) = 1 − β. Therefore, the majority of support is used to treat tail events.
Note also that when designing first-order methods for such problems, this fact
allows a significant reduction in the number of PDEs solved per iteration required
to calculate the reduced gradient.

For a more challenging example, we recall the setting from [28] in (4.3) in more
detail. Among the most difficult aspects of the assumptions used to prove existence
of a solution and derive optimality conditions are the conditions placed on the
solution mapping S. In [28], we postulate several verifiable assumptions. To this
aim, we suppose that S(u) is the solution of a general parametric operator equation:
For each u ∈ U , find y(ω) = [S(u)](ω) ∈ U such that

e(y, u;ω) := A(ω)y + N(y, ω)− B(ω)u− b(ω) � 0 for a.a. ω ∈ �. (4.8)
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We impose the following assumptions on the operators.

Assumption 4.8 (Pointwise Characterization of the Problem Data in (4.8))

1. Let A : � → L(V , V ∗) satisfy A(ω) is monotone for a.a. ω ∈ � and there exists
γ > 0 and a random variable C : � → [0,∞) with C > 0 a.e. such that

〈A(·)y, y〉U∗,U ≥ C‖y‖1+γ

V a.e. ∀ y ∈ V. (4.9)

2. Let b : � → V ∗.
3. Let N : V × � ⇒ V ∗ satisfy N(·, ω) is maximal monotone with N(0, ω) = {0}

for a.a. ω ∈ �.
4. Let B : � → L(U, V ∗) be completely continuous for a.a. ω ∈ �.

Since these conditions are taken to be pointwise in ω, they can be viewed as the
minimal data assumptions that are imposed when considering optimization of ellip-
tic semilinear equations. The following assumption is essential for measurability
issues. It is unclear if it can be weakened. Ultimately, the coefficients and mappings
used to define A,N, etc. will dictate the integrability of S(u).

Assumption 4.9 (Measurability and Integrability of the Operators in (4.3)) Let
Assumption 4.8 hold and suppose there exists s, t ∈ [1,∞] with

1 + 1

γ
≤ s < ∞ and t ≥ s

γ (s − 1)− 1

such that A(·)y ∈ Ls(�,F ,P;V ∗) for all y ∈ V , N(·, ω) is single-valued and
continuous for a.a. ω ∈ � and N(y, ·) ∈ Ls(�,F ,P;V ∗) for all y ∈ V , B ∈
Ls(�,F ,P;L(U, V ∗)), b ∈ Ls(�,F ,P;V ∗) and C−1 ∈ Lt(�,F ,P).

Finally, we require assumptions on N to derive optimality conditions.

Assumption 4.10 (Differentiability of N(·, ω)) In addition to Assumption 4.9, we
assume that N(·, ω) is single-valued and continuously Fréchet differentiable from
V into V ∗ for a.a. ω ∈ � with partial derivative N′(y, ω), which defines a bounded,
nonnegative linear operator from V into V ∗ a.e. for all y ∈ V . Moreover, we assume
that A and y �→ N(y, ·) are continuous maps from V into Ls(�,F ,P;V ∗) and
y �→ N′(y, ·) is a continuous map from V into Lqs/(q−s)(�,F ,P;L(V , V ∗)).

We gather the main results in [28, Sec. 2.3] here for the reader’s convenience.

Theorem 4.11 (Properties of the Solution Mapping S(u)) Under the standing
assumptions, the following statements hold.

1. If Assumption 4.8 holds, then A(ω) + N(·, ω) is surjective from V into V ∗ for
a.a. ω ∈ �. In particular, there exists a unique solution S(u) to (4.8) such that
[S(u)](ω) ∈ V for a.a. ω ∈ �.
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2. If in addition Assumption 4.9 holds and we let

q := sγ

1 + s/t
, (4.10)

then S(u) ∈ V := Lq(�,F ,P;V ) for all u ∈ V . Furthermore, if uk ⇀ u in
U , then S(uk) → S(u) in V a.e. and S(uk) → S(u) in V , i.e., S is completely
continuous.

3. If in addition Assumption 4.10 holds, then u �→ S(u) is continuously Fréchet
differentiable from U into V .
We now return to a concrete example and cast (4.3) in the form (4.8).

Example Define the linear elliptic operator A(ω) by

〈A(ω)y, v〉V ∗,V =
∫

D

{κ(ω, x)∇y(x) · ∇v(x)+ c(ω, x)y(x)v(x)} dx,

for y, v ∈ V . Analogously, we let N(·, ω) be the nonlinear operator given by

〈N(y, ω), v〉V ∗,V =
∫

D

N(y(x), ω, x)v(x) dx,

where N : R×�×D → R. The right-hand side can be defined by

〈B(ω)u, v〉V ∗,V =
∫

D
[B(ω)u](x)v(x) dx and 〈b(ω), v〉V ∗,V =

∫

D
b(ω, x)v(x) dx,

where B : � → L(U,L2(D)) and b ∈ V∗.
Assuming that κ(ω, ·), c(ω, ·) ∈ L∞(D) for a.a. ω ∈ � and for a.a. ω ∈ �,

x ∈ D, satisfy: there exist κ0 > 0 and c0 > 0 such that

κ0 ≤ κ(ω, x) and c0 ≤ c(ω, x),

then the conditions in Assumptions 4.8 and 4.9 on A are satisfied with γ = 1,
C = min{κ0, c0}, s = 2, t = ∞. For N, we at least need N(·, ω, x) :
R → R to be continuous and monotonically increasing with N(0, ω, x) = 0
for a.a. ω ∈ � and a.a. x ∈ D. This would yield the monotonicity requirement
in Assumption 4.8, which would be the case for a nonlinearity of the type:
N(u, ω, x) = c(ω, x)(sinh(u) − u). Otherwise, we can obtain continuity via the
usual growth conditions of Krasnosel’skii as in, e.g., Theorems 1 and 4 in [15] or
the comprehensive monograph [2]. Similarly, if we have b(ω, ·) ∈ Lr(D) with
r > d/2 for a.a. ω ∈ �, then Assumption 4.8.2 holds and if B is, e.g., the
canonical embedding operator from L2(D) into H 1(D)∗, then Assumption 4.8.3
also holds. For Assumption 4.9, we could require b ∈ L∞(�,F ,P;L2(D))

and κ, c ∈ L∞(�,F ,P;L∞(D)). This assumption would not hold for N when
generated by the hyperbolic sine unless V was replaced by a more regular space,
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e.g., H 2(D). However, if d = 2 and ∂D is sufficiently regular, then by the Sobolev
embedding theorems we could still use V = H 1(D) when N is generated by
monotone polynomials of arbitrary degree.

Behind all of these technical details lie the hypotheses imposed by measurable
selection theorems, e.g., Filippov’s theorem, which generally require the random
elements to map into separable spaces. The integrability conditions are then derived
using the monotonicity of the operators. Therefore, one should be rather careful
when generating new examples from deterministic PDE models as they may not
always be well defined in the stochastic setting.

Finally, we conclude this section by noting that many example problems used
in the literature consider linear elliptic PDE under uncertainty. This drastically
simplifies the measurability, integrability, continuity, and differentiability issues for
the solution mapping S. Building on the properties of the solution operator and
requirements on the objective functionals J discussed above, one can derive similar
measurability, integrability, and (weak) continuity results for the adjoint equations
and ultimately an optimality system as in the linear case shown above.

4.4 A Risk-Averse PDE-Constrained Nash Equilibrium
Problem

We may now formulate a model risk-averse PDE-constrained Nash equilibrium
problem. Using the results of the previous section, we prove existence of a Nash
equilibrium and derive optimality conditions. In what follows, we consider the
following setting: For each i = 1, . . . , N (N > 1), we assume:

1. Ui := L2(D), Ui
ad :=

{
v ∈ Ui | ai ≤ v ≤ bi a.e. D

}
, ai, bi ∈ L2(D) : ai < bi .

2. Ji(y, ω) := 1
2‖y − yid‖2

L2(D)
, yid ∈ L2(D); ℘(u) := νi

2 ‖u‖2
L2(D)

νi > 0.

3. S : U1 × · · · × UN → V is the solution mapping for the random PDE given
by (4.8) under Assumptions 4.8 and 4.9 such that A is defined as in Example 4.3,
i.e., uniformly elliptic with γ = 1, C = min{κ0, c0}, s = 2, t = ∞; N ≡ 0;
b ∈ V∗; and B : U1 × · · · × UN → V∗ satisfies

Bu = B1u1 + . . .BNuN,

where Bi , i = 1, . . . , N , is defined as in Assumptions 4.8 and 4.9. In particular,

S(u) := A−1

(
∑

i

Biui + b

)

.
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4. Ri : L1(�,F ,P) → R is a regular coherent measure of risk, e.g., AVaRβ .

Under these assumptions, we consider the associated risk-averse PDE-constrained
Nash equilibrium problem (NEP) in which the ith player’s problem takes the form

min
ui∈Ui

ad

Ri (Ji (S(ui, u−i )))+ ℘(ui) over ui ∈ Ui. (4.11)

Using the Kakutani–Fan–Glicksberg fixed-point theorem (Theorem (2.1) above,
[14]), we can demonstrate that this problem admits a Nash equilibrium.

Theorem 4.12 (Existence of a Risk-Averse Nash Equilibrium) The Nash equi-
librium problem whose individual players each solve a variant of (4.11) admits a
solution in the form of a pure strategy Nash equilibrium.

Proof We need to verify the conditions of Theorem 2.1. Since each Ui is infinite-
dimensional, we view each Ui

ad as metrizable compact locally convex topological
vector spaces as in [20, 21]. This is possible since Ui

ad is a norm bounded, closed,
and convex set in a separable Hilbert space. Next, we define the best response
mappings:

Bi (u−i ) := arg minui∈Ui
ad
Ri (Ji (S(ui, u−i )))+ ℘(ui) over ui ∈ Ui.

We need to show that each Bi has nonempty, bounded, and convex images in Ui .
The risk measure Ri is proper, closed, convex, and monotonic. Since Ri is

defined on all of L1(�,F ,P), it is finite everywhere and therefore continuous
and consequently subdifferentiable; in particular at Ji (S(ui, u−i )) for any feasible
strategy vector (ui, u−i ). The tracking-type functional considered here can easily
be shown to satisfy all the necessary assumptions outlined above; see [24] or [26].
Concerning S, we note that for any fixed u−i ∈ U−i

ad , we have B(0, u−i ) =∑
j �=i Bj uj . The latter term can be taken on the right-hand side of the PDE as a

perturbation of b. Clearly, this “new” constant term is in V∗. It light of this, we can
readily verify the necessary assumptions for continuity and differentiability with
respect to ui required in Theorem 4.11.

It follows that R ◦ J ◦ S : Ui → R is weakly lower semicontinuous (cf.
Lemma 4.5). The existence of solutions results from the fact that ℘ is coercive and
Ri ◦Ji ◦S nonnegative (cf. Theorem 4.6). Furthermore, since Ri is a monotone risk
measure, it preserves the pointwise convexity of the integrand J ◦ S. Therefore, the
set of all optimal solutions is convex and, by hypothesis on Ui

ad, bounded. Therefore,
we conclude that Bi has nonempty, convex, bounded images in Ui

ad.
Next, define B : U1

ad × · · · × UN
ad ⇒ U1

ad × · · · × UN
ad by

B(u) := B1(u−1)× · · · × BN(u−N).
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Suppose that (uk, vk) ∈ gphB such that (uk, vk) ⇀ (ū, v̄). This means in particular
that for all k we have vki ∈ Bi (u

k
−i ), i.e.,

(Ri ◦ Ji ◦ S)(vki , uk−i )+ ℘(vki ) ≤ (Ri ◦ Ji ◦ S)(w, uk−i )+ ℘(w) ∀w ∈ Ui
ad.

In the current setting

S(u) = A−1

(
∑

i

Biui + b

)

= A−1Biui + A−1b +
∑

j �=i

A−1Bj uj .

As shown in Lemma 2.1 [28], each Bi is completely continuous from Ui into
L2(�,F ,P;V ∗) = V∗. Therefore, we have Biv

k
i → Bi v̄i and Bj u

k
j → Bj ūj

strongly in V∗ for each i and each j �= i. It immediately follows from that
S(vki , u

k
−i ) → S(v̄i , ū−i ) and for any w ∈ Ui

ad S(w, uk−i ) → S(w, ū−i ).
Next, since Ri and Ji are continuous on their respective spaces, we have

(Ri ◦ Ji ◦ S)(vki , uk−i ) → (Ri ◦ Ji ◦ S)(v̄i , ū−i )

(Ri ◦ Ji ◦ S)(w, uk−i ) → (Ri ◦ Ji ◦ S)(w, ū−i ).

Then due to the weak lower semicontinuity of ℘ on Ui , it follows that

(Ri ◦ Ji ◦ S)(v̄i , ū−i )+ ℘(v̄i) ≤ (Ri ◦ Ji ◦ S)(w, ū−i )+ ℘(w) ∀w ∈ Ui
ad,

i.e., v̄i ∈ Bi (ū−i ). Hence, the noncooperative game admits a Nash equilibrium.  !
Remark 4.13 The previous proof can easily be extended to more complicated PDE
models and objective functions. However, for nonlinear operators N, we need to
extend the results in Sect. 2 to the stochastic setting.

Given the explicit structure of the current setting, we can also derive optimality
conditions for the NEP. Moreover, we can show that this specific problem reduces
to a special kind of equilibrium problem in which the risk indicators are determined
simultaneously by a single “risk trader.”

Theorem 4.14 (Optimality Conditions) Let ū be a Nash equilibrium for (4.11).
Then for each i = 1, . . . , N there exists a pair (p�

i , ϑ
�
i ) ∈ V × L∞(�,F ,P) such

that the following conditions hold: ϑ� ∈ ∂Ri[Ji (y
�)] and

(
u�i −

1

νi
E[B∗

i p
�
i ϑ

�
i ], w − u�i

)

Ui

≥ 0, ∀w ∈ Ui
ad,

Ay� − Bu� + b = 0,

A∗p�
i − yid + y� = 0.

(4.12)
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Proof This follows from Sect. 4.3 and the definition of a Nash equilibrium.  !
System (4.12) leads to a useful reformulation. For each i, the adjoint states p�

i

split into the sum of a joint adjoint state q� := A−∗y� and a fixed i-dependent term
ỹid := −A−∗yid , where ỹid is now stochastic. Then, for each i, we have

1

νi
E[B∗

i p
�
i ϑ

�
i ] =

1

νi
E[B∗

i (q
� + ỹid )ϑ

�
i ] =

1

νi
E[B∗

i q
�ϑ�

i ] +
1

νi
E[B∗

i ỹ
i
dϑ

�
i ]

︸ ︷︷ ︸
=:ĉi

.

By defining Giu := 1
νi

B∗
i A−∗A−1Bu and gi := 1

νi
B∗
i A−∗A−1b, the variational

inequality in (4.12) can be written as

(u�i − (E[ϑ�
i Giu

�] + ci(ϑ
�
i )), v − u�i )Ui ≥ 0 ∀v ∈ Ui

ad,

where ci(ϑi) := E[ϑigi] − ĉi . Summing over i, we obtain

N∑

i=1

(u�i − (E[ϑ�
i Giu

�] + ci(ϑ
�
i )), vi − u�i )Ui ≥ 0 ∀v ∈ Uad. (4.13)

Conversely, if the previous inequality holds, then by using the variations

(v�1, . . . , vi, . . . , v
�
N) = v ∈ Uad = U1

ad × · · · × UN
ad

for each i = 1, . . . , N (leaving only vi to vary), we recover the individual
inequalities. We will refer to (4.13) as the “aggregate player’s problem.” Letting
ProjUi

ad
denote the metric projection onto Ui

ad, this can be formulated as a single

nonsmooth equation in the product space U = U1 × · · · × UN : Find u� ∈ U :
∀i = 1, . . . , N

u�i = ProjUi
ad

[
E[ϑ�

i Giu
�] + cI (ϑ

�
i )
]
. (4.14)

Continuing, since Ri is assumed to be a coherent risk measure, we have

ϑ�
i ∈ argmax

ϑ∈Ai

E[ϑJi (y
�)],

where Ai := dom(R∗
i ) is the domain of the Fenchel conjugate R∗

i of Ri . It is then
easy to show that all of the subdifferential inequalities can be joined into a single
maximization problem:

max

{
N∑

i=1

E[ϑiJi (A−1(Bu� + b))], over ϑ ∈ A

}

, (4.15)
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where A := A1×· · ·×AN . Problem (4.15) always has a solution since the objective
is a bounded linear functional and A is a weakly-∗ sequentially compact, closed, and
convex set. Inspired by the terminology in [37], we will refer to (4.15) as the “risk
trader’s problem.”

We have thus proven that the risk-averse PDE-constrained NEP can be under-
stood as a type of MOPEC (multiple optimization problems with equilibrium
constraints) comprising a single aggregate player, who solves a well-posed varia-
tional inequality in u given a fixed risk indicator vector ϑ , and a risk trader who
spreads the risk of the decision vector u over the components of ϑ in light of the
various objectives Ji and risk preferences Ai .

Even in this special case, it is difficult to immediately select an appropriate
solution algorithm. Perhaps the main challenge lies in the fact that the risk trader’s
problem does not have a unique solution. One remedy for this to ensure a unique ϑ

for a given u is to replace the objective in (4.15) by

E[ϑiJi (A−1(Bu� + b))] − ε

2
E[ϑ2

i ] ε > 0. (4.16)

This was suggested in [24] for treating the nonsmooth risk measure AVaRβ

in the context of PDE-constrained optimization under uncertainty. It was later
demonstrated that such a regularization is a special case of the deeper theory of
epi-regularization of risk measures in [25]. We briefly discuss this notion below.

4.5 Risk-Averse PDE-Constrained Decision Problems: Smooth
Approximation

As a means of circumventing the unacceptably slow performance of classical nons-
mooth optimization algorithms such as subgradient methods or bundle methods, we
proposed smoothing approaches in [24] and [25]. An alternative viewpoint can be
found by exploiting the structure of a specific class of coherent risk measures and
using an interior-point approach as in [13]. In addition, the analysis in the previous
section indicates yet another reason to consider some form of variational smoothing
in the context of stochastic PDE-constrained equilibrium problems.

We briefly give the details of epi-regularization as it has proven to be a versatile
tool not only for smoothing risk measures but also for analyzing new optimization
methods for risk-averse PDE-constrained optimization, cf. [27]. Let � : X → R be
a proper, closed, and convex functional and R a regular measure of risk. Then for
ε > 0, we define the epi-regularized measure of risk as

R�
ε [X] = inf

Y∈X

{
R[X − Y ] + ε�

[
ε−1Y

]}
= inf

Y∈X

{
R[Y ] + ε�

[
ε−1(X − Y )

]}
.
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As mentioned above, the regularization in (4.16) is equivalent to using the func-
tion �[X] = 1

2E[X2]. Another import example can be seen by setting X =
L2(�,F ,P), R = AVaRβ , and �[X] := E[X] + 1

2E[X2]. This results in

R�
ε [X] = inf

t∈R
{
t + E

[
vβ,ε(X − t)

]}
,

which is continuously Fréchet differentiable and in which the scalar function vβ,ε is
given by

vβ,ε(x) =

⎧
⎪⎪⎨

⎪⎪⎩

− ε
2 , if x ≤ −ε

1
2ε x

2 + x, if x ∈
(
−ε,

εβ
1−β

)

1
1−β

(
x − εβ2

2(1−β)

)
, if x ≥ εβ

1−β
.

Epi-regularization has a number of advantageous properties. For example, we can
show that the sequence of functionals

{
R�

ε

}
ε>0 converges in the sense of Mosco to

R. Furthermore, under certain assumptions on J and ℘, we can show that weak
accumulation points of approximate minimizers z�ε are optimal for (4.2) and weak
accumulation points of approximate stationary points are stationary for (4.2). For
more on this topic, we refer to the forthcoming publication [25].

4.6 Risk-Averse PDE-Constrained Optimization: Solution
Methods

In this final section, we outline the main components of the recently proposed
primal–dual risk minimization algorithm in [27]. This is an all purpose optimization
algorithm for minimizing risk measures in the context of PDE-constrained optimiza-
tion under uncertainty.

In general, the individual problems in our risk-averse setting have the form:

min
x∈Xad

{g(x)+�(G(x))} , (4.17)

where g is a deterministic objective function, G is an uncertain objective function,
and � is a functional that maps random variables into the real numbers. The
functional � is typically convex, positively homogeneous, and monotonic with
respect to the natural partial order on the space of random variables.

Let � : Y → R, where Y = L2(�,F ,P). As shown in [41, Th. 6.5], there exists
a nonempty, convex, closed, and bounded set A ⊆ {θ ∈ Y∗ | θ ≥ 0 a.s.} such that a
convenient bi-dual representation of � is available:

�(X) = sup
θ∈A

E[θX]. (4.18)
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Moreover, � is continuous and subdifferentiable, cf. [41, Prop. 6.6], and A =
∂�(0).

Using these facts, (4.17) exhibits a familiar structure in which, by introducing
the Lagrangian-type function  (x, λ) := g(x) + E[λG(x)], we can consider the
minimax reformulation:

min
x∈Xad

sup
λ∈A

 (x, λ). (4.19)

We can then develop a method similar to the classical method of multipliers [16, 36].
To this end, we introduce the (dual) generalized augmented Lagrangian:

L(x, λ, r) := max
θ∈A

{
 (x, θ)− 1

2r
E[(λ− θ)2]

}
. (4.20)

Now, using several techniques from convex analysis, it can be shown that

L(x, λ, r) = g(x)+ min
Y∈Y

{
�(G(x)− Y )+ E[λY ] + r

2
E[Y 2]

}
. (4.21)

In other words, L is the objective in (4.17) with � replaced by a multiplier-
dependent epi-regularization, where the regularizer is

�r,λ(Y ) = E[λY ] + r
2E[Y 2].

Furthermore, letting

!(x, λ, r) := ProjA(rG(x)+ λ),

where ProjA : Y → Y is the projection onto A, L attains the closed form

L(x, λ, r) = g(x)+ E[λG(x)] + r

2
E[G(x)2] − 1

2r
E[{(Id − ProjA)(rG(x)+ λ)}2].

For many risk measures of interest, e.g., mean-plus-semideviation or convex
combinations of mean and AVaR [27, Sec. 5.1], the optimization problem (4.17)
can be rewritten so that �(Y) = E[(Y )+]. Therefore, the projection operator ProjA
can be easily evaluated. For more general coherent risk measures, A can be split into
box constraints and a simple normalizing constraint that is treatable with a Lagrange
multiplier, cf. [27, Sec. 5.2].

The basic algorithm is given in Algorithm 1. A detailed implementable version
allowing for inexact subproblem solves, and multiplier-update strategies can be
found in [27] (Algorithm 2). A full convergence theory for the primal and dual
updates in both convex and nonconvex settings in infinite-dimensional spaces is
given in [27, Sec. 4]. Here, the convergence of the primal variables exploits a number
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of powerful results arising in the theory of epi-regularization. For the dual variables,
a regularity condition that postulates the existence of a saddle point is needed.

Algorithm 1 Primal–dual risk minimization
1. Initialize: Given x0 ∈ Xad, r0 > 0, and λ0 ∈ A.
2. While(“Not Converged”)

(a) Compute xk+1 ∈ Xad as approximate minimizer of L(·, λk, rk).
(b) Set λk+1 = !(xk+1, λk, rk).
(c) Update rk+1.

3. End While

Returning to our game-theoretic setting in Sect. 4.4, we see a clear link to the
risk trader’s problem (4.15). As mentioned in Sect. 4.4, (4.15) does not admit a
unique solution. This makes the numerical solution of the game, in its original
form as well as the proposed reduced from, very challenging. The suggestion
in (4.16) indicates that we could handle this aspect by applying an epi-regularization
technique to the risk measures. Though the suggestion given there is viable, the
favorable convergence behavior of Algorithm 1 given in [27, Sec. 4] indicates
that the multiplier-dependent epi-regularization update in the primal–dual algorithm
is probably better suited (clearly algorithmically motivated). We thus propose
a method that successively solves the aggregate player’s game using an update
formula for ϑ similar to the !-operator in the primal–dual algorithm. This avenue
of thought will be the focus of future work. Nevertheless, the epi-regularization
technique does not rule out the possibility that the associated system of nonlinear
and semismooth equations admits distinct solutions. A possible remedy to this issue
can be found in the recent publication [10].

5 Outlook

Generalized Nash equilibrium problems with PDE constraints represent a challeng-
ing class of infinite-dimensional equilibrium problems. Beyond the deterministic
convex setting involving linear elliptic or parabolic PDEs, major theoretical and
algorithmic challenges arise. Nevertheless, we have shown that it is still possible to
treat some GNEPs involving semilinear, nonsmooth, and even mutlivalued forward
problems by appealing to the notions of generalized convexity and isotonic map-
pings. Due to a lack of convexity, we have chosen to derive stationarity conditions
using the versatile limiting variational calculus in the sense of Mordukhovich. In
doing so, we have been able to push the boundaries of existence and optimality
theory in the deterministic setting beyond linear state systems. Therefore, we may
now build upon these advances toward the development of function-space-based
numerical methods similar to [20, 21]. The recent results in [23] on augmented
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Lagrangian-type methods (also developed within the priority program) may also
prove to be useful here.

As outlined above, the stochastic risk-averse setting is now poised to transfer
the results from the newly developed theory of risk-averse PDE-constrained opti-
mization [13, 24–28] to the setting of noncooperative strategic games. This will be
the focus for the remainder of the project duration. In addition to the algorithmic
strategy mentioned above, there are several open theoretical questions relating to
variational convergence in the context of strategic games and asymptotic statistical
properties of Nash equilibrium in the vein of [41, Chap. 5]. Some progress on related
stability issues using probability metrics has been made in the recent Master’s thesis
[22]. In addition, the results from the deterministic nonlinear case can be folded into
the stochastic setting by using the results in [27] for risk-averse control of semilinear
equations. Finally, in order to treat even jointly convex state-constrained risk-averse
PDE-constrained GNEPs, a sufficient theory of PDE-constrained optimization
under uncertainty with state constraints is under development.
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