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Preface

This volume of the International Series of Numerical Mathematics presents research
results obtained in the first funding phase of the Special Priority Program (SPP)
1962 on Nonsmooth and Complementarity Based Distributed Parameter Systems:
Simulation and Hierarchical Optimization from 2016 to 2019. The program was
funded by the Deutsche Forschungsgemeinschaft (DFG). Within the funding period,
24 projects located at many universities and research institutions across Germany,
involving also a tandem project which was co-funded by the Swiss National Fund
(SNF) with one project partner in Lugano, unfolded various research activities,
leading to more than 100 preprints as well as several workshops and exchange
activities in particular for young researchers. The SPP 1962 also co-organized
the International Conference on Continuous Optimization (ICCOPT) which was
held in Berlin from August 5 to 8, 2019, preceded by a summer school for early
career researchers from August 3 to 4, 2019. The coordination project for the entire
program (supported scientifically by Amal Alphonse and Michael Hintermüller)
was located at the Weierstrass Institute for Applied Analysis and Stochastics in
Berlin.

The main mathematical theme of the SPP1962 is non-smoothness as many of
the most challenging problems in the applied sciences involve non-differentiable
structures as well as partial differential operators, thus leading to non-smooth
distributed parameter systems. The non-smoothness considered in this SPP typically
arises:

(i) Directly in the problem formulation
(ii) Through inequality constraints, nonlinear complementarity, or switching sys-

tems
(iii) As a result of competition and hierarchy

In fact, very challenging applications for (i) come from frictional contact
problems, or non-smooth constitutive laws associated with physical processes such
as Bean’s critical state model for the magnetization of superconductors, which
leads to a quasi-variational inequality (QVI) problem; for (ii) are related to non-
penetration conditions in contact problems, variational inequality problems, or

v



vi Preface

inequality constraints in optimization problems, which, upon proper re-formulation,
lead to complementarity problems and further, by means of non-linear complemen-
tarity problem (NCP) functions, to non-smooth systems similar to (i); and for (iii)
come from multi-objective control systems or leader-follower principles, as they
can be found in optimal system design in robotics and biomechanics. Modeling
“competition” often leads to generalized Nash equilibrium problems (GNEPs) or
partial differential games. Moreover, modeling “hierarchy” results in mathematical
programs with equilibrium constraints (MPECs), a class of optimization problems
with degenerate, non-smooth constraints. All of these problems are highly nonlinear,
lead to QVIs, and represent rather novel mathematical structures in applications
based on partial differential operators. In these and related applications, the
transition from smoothing or simulation-based approaches to genuinely non-smooth
techniques or to multi-objective respectively hierarchical optimization is crucial.

Fundamental difficulties in non-smooth partial differential systems, associated
optimization, and hierarchical problems are of analytical as well as algorithmic and
numerical nature. For instance, for QVIs, the existence and stability of solutions is
a major challenge, whereas MPECs suffer from a lack of existence of Lagrange
multipliers due to constraint degeneracy, which hinders the derivation of proper
stationarity conditions. Numerical challenges, which are present in all non-smooth
problems of this SPP, involve the stability of discretization/model reduction schemes
or severe mesh dependence of algorithms. In order to overcome these difficulties,
the goals of this SPP are to advance tools from non-smooth and set-valued analysis
and to build a basis for stable numerical approximation/discretization schemes that
enable the design of algorithms with mesh independent convergence. The SPP 1962
also aims to address the influence of parameters, which enter the above applied
problems and which either range within a specified set or result from hierarchy.
The former leads to robust optimization in form of deterministic MPECs, which
challenge the characterization of stationary points and the development of efficient
solvers. Hierarchical problems (or MPECs) contain variables which enter into
lower-level problems as parameters. Summarizing, the research program of the SPP
leads to a modern treatment of non-smooth problems and will therefore shape future
applications in the field.

Corresponding to the above goals, each subsequent section of this volume
presents the findings of projects within the SPP.

Berlin, Germany Michael Hintermüller



Contents

Error Bounds for Discretized Optimal Transport and Its Reliable
Efficient Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Sören Bartels and Stephan Hertzog

Numerical Methods for Diagnosis and Therapy Design of
Cerebral Palsy by Bilevel Optimal Control of Constrained
Biomechanical Multi-Body Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Hans Georg Bock, Ekaterina Kostina, Marta Sauter, Johannes P. Schlöder,
and Matthias Schlöder

ROM-Based Multiobjective Optimization of Elliptic PDEs via
Numerical Continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Stefan Banholzer, Bennet Gebken, Michael Dellnitz, Sebastian Peitz,
and Stefan Volkwein

Analysis and Solution Methods for Bilevel Optimal Control Problems . . . . 77
Stephan Dempe, Felix Harder, Patrick Mehlitz, and Gerd Wachsmuth

A Calculus for Non-smooth Shape Optimization with
Applications to Geometric Inverse Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Marc Herrmann, Roland Herzog, Stephan Schmidt, and José Vidal-Núñez

Rate-Independent Systems and Their Viscous Regularizations:
Analysis, Simulation, and Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Roland Herzog, Dorothee Knees, Christian Meyer, Michael Sievers,
Ailyn Stötzner, and Stephanie Thomas

Generalized Nash Equilibrium Problems with Partial Differential
Operators: Theory, Algorithms, and Risk Aversion . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Deborah Gahururu, Michael Hintermüller, Steven-Marian Stengl,
and Thomas M. Surowiec

Stability and Sensitivity Analysis for Quasi-Variational Inequalities . . . . . . 183
Amal Alphonse, Michael Hintermüller, and Carlos N. Rautenberg

vii



viii Contents

Simulation and Control of a Nonsmooth Cahn–Hilliard
Navier–Stokes System with Variable Fluid Densities . . . . . . . . . . . . . . . . . . . . . . . . 211
Carmen Gräßle, Michael Hintermüller, Michael Hinze, and Tobias Keil

Safeguarded Augmented Lagrangian Methods in Banach Spaces . . . . . . . . . 241
Christian Kanzow, Veronika Karl, Daniel Steck, and Daniel Wachsmuth

Decomposition and Approximation for PDE-Constrained
Mixed-Integer Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Mirko Hahn, Christian Kirches, Paul Manns, Sebastian Sager,
and Clemens Zeile

Strong Stationarity for Optimal Control of Variational
Inequalities of the Second Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Constantin Christof, Christian Meyer, Ben Schweizer, and Stefan Turek

Optimizing Fracture Propagation Using a Phase-Field Approach . . . . . . . . . 329
Andreas Hehl, Masoumeh Mohammadi, Ira Neitzel,
and Winnifried Wollner

Algorithms for Optimal Control of Elastic Contact Problems
with Finite Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Anton Schiela and Matthias Stöcklein

Algorithms Based on Abs-Linearization for Non-smooth
Optimization with PDE Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Olga Weiß, Andrea Walther, and Stephan Schmidt

Shape Optimization for Variational Inequalities of Obstacle
Type: Regularized and Unregularized Computational Approaches. . . . . . . . 397
Volker H. Schulz and Kathrin Welker

Extensions of Nash Games in Finite and Infinite Dimensions with
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Jan Becker, Alexandra Schwartz, Sonja Steffensen, and Anna Thünen

Stress-Based Methods for Quasi-Variational Inequalities
Associated with Frictional Contact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Bernhard Kober, Gerhard Starke, Rolf Krause, and Gabriele Rovi

An Inexact Bundle Method and Subgradient Computations for
Optimal Control of Deterministic and Stochastic Obstacle Problems . . . . . 467
Lukas Hertlein, Anne-Therese Rauls, Michael Ulbrich, and Stefan Ulbrich

Maxwell Variational Inequalities in Type-II Superconductivity . . . . . . . . . . . . 499
Malte Winckler and Irwin Yousept



Error Bounds for Discretized Optimal
Transport and Its Reliable Efficient
Numerical Solution

Sören Bartels and Stephan Hertzog

Abstract The discretization of optimal transport problems often leads to large
linear programs with sparse solutions. We derive error estimates for the approxi-
mation of the problem using convex combinations of Dirac measures and devise
an active-set strategy that uses the optimality conditions to predict the support
of a solution within a multilevel strategy. Numerical experiments confirm the
theoretically predicted convergence rates and a linear growth of effective problem
sizes with respect to the variables used to discretize given data.

Keywords Optimal transport · Sparsity · Optimality conditions · Error bounds ·
Iterative solution

Mathematics Subject Classification (2020) 65K10, 49M25, 90C08

1 Introduction

The goal in optimal transportation is to transport a measure μ into a measure ν

with minimal total effort with respect to a given cost function c. This optimization
problem can be formulated as an infinite-dimensional linear program. One way
to find optimal solutions is to approximate the transport problem by (finite-
dimensional) standard linear programs. This can be done by approximating the
measures μ and ν by convex combinations of Dirac measures, and we prove that this
leads to accurate approximations of optimal costs. The size of these linear programs
grows quadratically in the size of the supports of these approximations, i.e., if M
and N are the number of atoms on which the approximations are supported, then
the size of the linear programs is MN . Thus, they can only be solved directly on
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2 S. Bartels and S. Hertzog

coarse grids, i.e., typically only for approximations with a few thousand atoms. It is
another goal of this article to devise an iterative strategy that automatically identifies
the support of a solution using auxiliary problems of comparable sizes. For other
approaches to the numerical solution of optimal transport problems, we refer the
reader to [1–3, 5, 14]; for details on the mathematical formulation and its analytical
features we refer the reader to [8, 17, 18].

Our error estimate follows from identifying convex combinations of Dirac
measures supported in the nodes of a given triangulation as approximations of
probability measures via the adjoint of the standard nodal interpolation operator
defined on continuous functions. Thereby, it is possible to quantify the approxima-
tion quality of a discretized probability measure in the operator norm related to a
class of continuously differentiable functions.

Using the fact that if c is strictly convex and μ has a density, the support of
optimal solutions is contained in a lower-dimensional set, we expect that the linear
programs have a sparse solution, i.e., the number of nonzero entries in the solution
matrix is comparable to M+N . Related approaches have previously been discussed
in the literature, cf. [12, 15]. In this article, we aim at investigating a general strategy
that avoids assumptions on an initial guess or a coarse solution and particular
features of the cost function and thus leads to an efficient solution procedure that
is fully reliable.

The optimality conditions for standard linear programs characterize the optimal
support using the Lagrange multipliers φ and ψ which occur as solutions of the
dual problem. Given approximations of those multipliers, we may restrict the full
linear program to the small set of atoms where those approximations satisfy the
characterizing equations of the optimal support up to some tolerance, with the
expectation that the optimal support is contained in this set. If the solution of the
corresponding reduced linear program satisfies the optimality conditions of the
full problem, a global solution is found. Otherwise, the tolerance is increased to
enlarge the active set of the reduced problem, and the procedure is repeated. Good
approximations of the Lagrange multipliers result from employing a multilevel
scheme and in each step prolongating the dual solutions computed on a coarser
grid to the next finer grid.

Our numerical experiments reveal that this iterative strategy leads to linear
programs whose dimensions are comparable to M + N . The optimality conditions
have to be checked on the full product grid which requires O(MN) arithmetic
operations. These are however fully independent and can be realized in parallel. The
related algorithm of [12] avoids this test and simply adds atoms in a neighbourhood
of a coarse-grid solution. This is an efficient strategy if a good coarse-grid solution
is available. Similar approaches have been discussed in [9, 11, 16].

Another alternative is the method presented in [15] where the concept of
shielding neighbourhoods is introduced. Solutions which are optimal in a shielding
neighbourhood are analytically shown to be globally optimal. Strategies to construct
those sets are presented for several cost functions. However, each cost function
requires a particular strategy to find the neighbourhoods, depending on its geometric
structure. Critical for the efficiency of the algorithm is the sparsity of shielding
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neighbourhoods for which theoretical bounds and intuitive arguments are given,
confirmed by numerical experiments.

The efficiency of our numerical scheme can be greatly increased if it is combined
with the methods from [12] or [15]. In this case, the activation of atoms is only done
within the described neighbourhoods of the support of a current approximation. This
is expected to be reliable once asymptotic convergence behaviour is observed.

The outline of this article is as follows. The general optimal transport problem,
its discretization, optimality conditions, and sparsity properties are discussed in
Sect. 2. A rigorous error analysis for optimal costs based on the approximation
of marginal measures via duality is carried out in Sect. 3. Section 4 devises the
multilevel active-set strategy for efficiently solving the linear programs arising from
the discretization. The efficiency of the algorithm and the optimality of the error
estimates are illustrated via numerical experiments in Sect. 5.

2 Discretized Optimal Transport

We describe in this section the general mathematical framework for optimal trans-
port problems, their discretization, optimality conditions, and sparsity properties of
optimal transport plans.

2.1 General Formulation

The general form of an optimal transport problem seeks a probability measure π ∈
M(X × Y ) called a transport plan on probability spaces X and Y such that its
projections onto X and Y coincide with given probability measures μ ∈ M(X)

and ν ∈ M(Y ), respectively, called marginals, and such that it is optimal in the set
of all such measures for a given continuous cost function c : X × Y → R. The
minimization problem thus reads

(̂P)

{

Minimize ̂I [π ] = ∫∫

X×Y c(x, y) dπ(x, y)

subject to π ∈M(X × Y ), π ≥ 0, PXπ = μ, PYπ = ν.

Here, PXπ and PYπ are defined via PXπ(A) = π(A×Y ) and PYπ(B) = π(X×B)
for measurable sets A ⊂ X and B ⊂ Y , respectively. This formulation may be
regarded as a relaxation of the problem of determining a transport map T : X→ Y

which minimizes a cost functional in the set of bijections between X and Y subject
to the constraint that the measure μ is pushed forward by T into the measure ν:

(P )

{

Minimize I [T ] = ∫

X
c(x, T (x)) dμ(x)

subject to T bijective and T#μ = ν.
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Here, the pushforward measure T#μ is the measure on Y defined via T#μ(B) =
μ(T −1(B)) for all measurable sets B ⊂ Y . In the case that μ and ν have densities
f ∈ L1(X) and g ∈ L1(Y ), the relation T#μ = ν is equivalent to the identity

g ◦ T detDT = f,

which is a Monge–Ampère equation if T = ∇� for a convex potential �. Since the
formulation (P ) does not provide sufficient control on variations of transport maps
to pass to limits in the latter equation, it is difficult to establish the existence of
solutions directly. In fact, optimal transport maps may not exist, e.g., when a single
Dirac mass splits into a convex combination of several Dirac masses. The linear
program (̂P) extends the formulation (P ) via graph measures π = (id× T )#μ and
admits solutions. In the case of a strictly convex cost function c it can be shown that
optimal transport plans correspond to optimal transport maps, i.e., optimal plans are
supported on graphs of transport maps, provided that μ has a density. In this sense
(̂P) is a relaxation of (P ); we refer the reader to [8, 17, 18] for details.

2.2 Discretization

In the case where the marginals are given by convex combinations of Dirac measures
supported in atoms (xi)i=1,...,M ⊂ X and (yj )j=1,...,N ⊂ Y , respectively, i.e.,

μh =
M
∑

i=1

μihδxi , νh =
N
∑

j=1

ν
j
hδyj ,

we have that admissible transport plans π are supported in the set of pairs of atoms
(xi, yj ). Indeed, if A × B ⊂ X × Y with (xi, yj ) �∈ A × B, i.e., xi �∈ A for all
i ∈ {1, 2, . . . ,M} or yj �∈ B for all j ∈ {1, 2, . . . , N}, then one of the inequalities

π(A× B) ≤ π(A× Y ) = μh(A) = 0,

π(A× B) ≤ π(X × B) = νh(B) = 0,

holds, and we deduce π(A×B) = 0. By approximating measuresμ and ν by convex
combinations of Dirac measures μh and νh, we therefore directly obtain a standard
linear program that determines the unknown matrix πh ∈ R

M×N :

(̂Ph)

{

Minimize ̂Ih[πh] = ∑M
i=1

∑N
j=1 c(xi, yj )π

ij
h

subject to πh ≥ 0,
∑N

j=1 π
ij
h = μih,

∑M
i=1 π

ij
h = ν

j
h.

The rigorous construction of approximating measures μh and νh via duality argu-
ments will be described below in Sect. 3. Weak convergence of discrete transport
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plans to optimal transport plans can be established via abstract theories, cf. [12, 18]
for details.

2.3 Optimality Conditions

Precise information about the support of an optimal discrete transport plan πh is
provided by the Lagrange multipliers corresponding to the marginal constraints.
Including these in a Lagrange functional ̂Lh leads to

̂Lh[πh;φh,ψh] = ̂Ih[πh] +
M
∑

i=1

φih

(

μih −
N
∑

j=1

π
ij
h

)

+
N
∑

j=1

ψ
j
h

(

ν
j
h −

M
∑

i=1

π
ij
h

)

=
M
∑

i=1

N
∑

j=1

π
ij
h

(

c(xi, yj )− φih − ψ
j
h

)+
M
∑

i=1

φihμ
i
h +

N
∑

j=1

ψ
j
hν

j
h.

Minimization in πh ≥ 0 and maximization in φh and ψh provide the condition

c(xi, yj )− φih − ψ
j
h ≥ 0,

and the implication

φih + ψ
j
h < c(xi, yj ) 
⇒ π

ij
h = 0,

which determines the support of the discrete transport plan πh.

2.4 Sparsity

The Knott–Smith theorem and generalizations thereof state that optimal transport
plans are supported on c-cyclically monotone sets, cf. [18]. In particular, if c is
strictly convex and if the marginal μ has a density, then optimal transport plans are
unique and supported on the graph of the c-subdifferential of a c-convex function �.
For the special case of a quadratic cost function, it follows that � is a solution of the
Monge–Ampère equation for which regularity properties can be established, cf. [7,
17]. Hence, in this case it is rigorously established that the support is contained in
a lower-dimensional submanifold. Typically, such a quantitative behaviour can be
expected but may be false under special circumstances. We refer the reader to [6]
for further details on partial regularity properties of transport maps.

On the discrete level, it is irrelevant to distinguish measures with or without
densities since the action of a discrete measure on a finite-dimensional set Vh of
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continuous functions can always be identified with an integration, i.e., we associate
a well defined density fh ∈ Vh by requiring that

∫

X

vhfh dx = 〈μh, vh〉,

for all vh ∈ Vh. The properties of optimal transport plans thus apply to the discrete
transport problem introduced above. Asymptotically, these properties remain valid
provided that we have fh → f in L1(X) for a limiting density f ∈ L1(X).

3 Error Analysis

We derive an error estimate for the approximation of the continuous problem (̂P)

by the discrete problem (̂Ph) by appropriately interpolating measures. For this we
follow [13] and assume that we are given a triangulation Th with maximal mesh-
size h > 0 of a closed domain U ⊂ R

d which represents X or Y with nodes

Nh = {z1, z2, . . . , zL}

and associated nodal basis functions (ϕz : z ∈ Nh). With the corresponding
nodal interpolation operator onto the set of elementwise affine, globally continuous
functions given by

Ih : C(U)→ S1(Th), Ihv =
∑

z∈Nh

v(z)ϕz,

we define approximations I∗h	 of measures 	 ∈M(U) � C(U)∗ via

〈I∗h	, u〉 = 〈	, Ihu〉 =
∑

z∈Nh

u(z)〈	, ϕz〉,

i.e., we have the representation

I∗h	 =
∑

z∈Nh

	zδz

with 	z = 〈	, ϕz〉. Standard nodal interpolation estimates imply that we have, cf. [4],

∣

∣〈	 − I∗h	, u〉
∣

∣ = ∣

∣〈	, u− Ihu〉
∣

∣ ≤ cIh
1+α‖u‖C1,α(U)‖	‖M(U),

for all u ∈ C1,α(U). Analogously, we can approximate measures on the product
space X × Y with triangulations TX,h and TY,h, nodes NX,h and NY,h, and
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interpolation operators IX,h and IY,h, respectively, via

〈I∗X⊗Y,hπ, r〉 = 〈π, IX⊗Y,hr〉 =
∑

(x,y)∈NX,h×NY,h

r(x, y)〈π, ϕx ⊗ ϕy〉,

for all r ∈ C(X × Y ). In the following error estimate, we abbreviate the
optimal values of the minimization problems (̂P) and (̂Ph) by minπ≥0 ̂I [π ] and
minπh≥0 ̂Ih[πh], respectively.

Proposition 3.1 Assume that μh = I∗X,hμ and νh = I∗Y,hν. If c ∈ C1,α(X × Y )

with α ∈ [0, 1] we then have

min
π≥0

̂I [π ] − min
πh≥0

̂Ih[πh] ≤ cIh
1+α‖c‖C1,α(X×Y ).

If for every π̂h that is admissible in (̂Ph) we have that the measure

π̂ = π̂h + dx ⊗ (ν − νh)+ (μ− μh)⊗ dy

is nonnegative, then the converse estimate also holds.

Proof

(i) Assume that minπ≥0 ̂I [π ] ≤ minπh≥0 ̂Ih[πh]. The interpolant π̂h = I∗X×Y,hπ
of a solution π for (̂P) is admissible in (̂Ph) since

〈I∗X⊗Y,hπ, v ⊗ 1〉 = 〈π, IX,hv ⊗ 1〉 = 〈μ, IX,hv〉 = 〈I∗X,hμ, v〉 = 〈μh, v〉,

for every v ∈ C(X), i.e., PXπ̂h = μh. Analogously, we find that PY π̂h = νh.
This implies that

min
πh≥0

̂Ih[πh] −min
π≥0

̂I [π ] ≤ ̂Ih[π̂h] − ̂I [π ]

= 〈π̂h − π, c〉 ≤ cIh
1+α‖c‖C1,α(X×Y ),

where we used that ‖π‖M(X×Y ) = 1.
(ii) If conversely we have minπ≥0 ̂I [π ] ≥ minπh≥0 ̂Ih[πh] we let πh be a discrete

solution and consider the measure

π̂ = πh + dx ⊗ (ν − νh)+ (μ− μh)⊗ dy,

which is nonnegative and satisfies

〈π̂ , r〉 = 〈πh, r〉 +
∫

X

〈ν − νh, r(x, ·)〉 dx +
∫

Y

〈μ− μh, r(·, y)〉 dy,
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for all r ∈ C(X × Y ). We have that

〈π̂ , v ⊗ 1〉 = 〈μh, v〉 +
∫

Y

〈μ− μh, v〉 dy = 〈μ, v〉,

i.e., PXπ̂ = μ. Analogously, we find that PY π̂ = ν. Therefore, π̂ is admissible
in the minimization problem (̂P) and hence

min
π≥0

̂I [π ] − min
πh≥0

̂Ih[πh] ≤ ̂I [π̂ ] − ̂I [πh]

=
∫

X

〈ν − νh, c(x, ·)〉 dx +
∫

Y

〈μ− μh, c(·, y)〉 dy

≤ cIh
1+α( max

x∈X ‖c(x, ·)‖C1,α(Y ) +max
y∈Y ‖c(·, y)‖C1,α(X)

)

≤ cIh
1+α‖c‖C1,α(X×Y ),

where we used the property ‖μ‖M(X) = ‖ν‖M(Y ) = 1. ��
The estimate can be improved if assumptions on the transport plan are made.

Remark 3.2

(i) For the polynomial cost function cp(x, y) = (1/p)|x − y|p, 1 ≤ p < ∞, we
have cp ∈ C1,α(X×Y ) for α = min{1, p− 1}, so that the derived convergence
rate is subquadratic if p < 2. If the transport plan is supported away from
the diagonal {x = y}, along which the differentiability of cp is limited, then
quadratic convergence applies.

(ii) The assumption on the nonnegativity of the measure π̂ is a condition on
the regularity of the marginals μ and ν. It can be rigorously established,
e.g., if μ and ν have densities that are piecewise affine or convex. More
generally, suitable constructions may be necessary that may decrease the order
of convergence.

A similar error estimate is expected to hold if the measures μ and ν are
approximated via piecewise affine densities fh and gh as this corresponds to a
rescaling of coefficients and the use of quadrature in the cost functional.

Remark 3.3 Alternatively to the above discretization, transport plans can be approx-
imated via discrete measures πh which have densities ph ∈ S1(TX,h) ⊗ S1(TY,h),
i.e.,

〈πh, r〉 =
∫∫

X×Y
r(x, y)ph(x, y) d(x, y)
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with

ph(x, y) =
M
∑

i=1

N
∑

j=1

p
ij
h ϕxi (x)ϕyj (y).

We associate discrete densities fh ∈ S1(TX,h) and gh ∈ S1(TY,h)with the marginals
μ and ν via

(fh, vh)h = 〈μ, vh〉, (gh,wh)h = 〈ν,wh〉,

for all vh ∈ S1(TX,h) and wh ∈ S1(TY,h) and with (discrete) inner products (·, ·)h
on C(X) and C(Y ), e.g., if μ and ν have densities f and g, then fh and gh may
be defined as their L2 projections. If the inner products involve quadrature, then we
have

(fh, vh)h =
∫

X

IX,h[fhvh] dx =
M
∑

i=1

βifh(xi)vh(xi),

where βi =
∫

X
ϕxi dx and it follows that

fh(xi) = β−1
i 〈μ, ϕxi 〉

for i = 1, 2, . . . ,M . Analogously, we have gh(yj ) = γ−1
j 〈ν, ϕyj 〉. The coefficients

are thus scaled versions of the coefficients used above. Using quadrature in the cost
functional leads to

I [πh] =
∫∫

X×Y
c(x, y)ph(x, y) d(x, y) ≈

M
∑

i=1

N
∑

j=1

c(xi, yj )p
ij
h βiγj .

Again, the coefficients here are scaled versions of the coefficients πijh used above.

A reduced convergence rate applies for the approximation using piecewise
constant finite element functions.

Remark 3.4 Approximating measures by measures with densities that are element-
wise constant, i.e.,

〈μh, v〉 =
∑

T ∈Th
μTh

∫

T

v dx,

we obtain a reduction of the convergence rate by one order.
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4 Active-Set Strategy

For a subset of atoms specified via an index set

A ⊂ {1, . . . ,M} × {1, . . . , N}

which is admissible in the sense that there exists π̂h with

∑

j=1,...,N, (i,j)∈A
π̂
ij
h = μih,

∑

i=1,...,M, (i,j)∈A
π̂
ij
h = ν

j
h,

we restrict to discrete transport plans that are supported on A and hence consider
the following reduced problem:

(̂Ph,A)

{

Minimize ̂Ih,A[πh] =
∑

(i,j)∈A c(xi, yj )π
ij
h

subject to πh ≥ 0,
∑

j,(i,j)∈A π
ij
h = μih,

∑

i,(i,j)∈A π
ij
h = ν

j
h.

The following proposition provides a sufficient condition for the definition of an
active set that leads to an accurate reduction.

Proposition 4.1 Assume that we are given approximations ˜φh and ˜ψh of exact
discrete multipliers φh and ψh with

‖˜φh − φh‖L∞(X) + ‖˜ψh − ψh‖L∞(Y ) ≤ εas .

If the set of active atoms A on X × Y is defined via

A = {

(i, j) : ˜φih + ˜ψ
j
h ≥ c(xi, yj )− 2casεas

}

with cas ≥ 1, then the minimization problem (̂Ph,A) is an accurate reduction of
(̂Ph) in the sense that their solution sets coincide.

Proof Let πh be a solution of the nonreduced problem (̂Ph) and let φh,ψh be
corresponding Lagrange multipliers. If πijh �= 0 for the pair (i, j) ∈ {1, . . . ,M} ×
{1, . . . , N}, then we have c(xi, yj ) = φih + ψ

j
h and hence

˜φih + ˜ψ
j
h = ˜φih − φih + ˜ψ

j
h − ψ

j
h + c(xi, yj ) ≥ c(xi, yj )− 2casεas.

This implies that (i, j) ∈ A and πh is admissible in the reduced formulation (̂Ph,A).
��

Proposition 4.1 suggests a multilevel iteration realized in the subsequent algo-
rithm where the Lagrange multipliers of a coarse-grid solution are used as approx-
imations for the multipliers on a finer grid which serve to guess the support of
the optimal transport plan. If the optimality conditions are not satisfied up to a
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mesh-dependent tolerance, then the variable activation tolerance is enlarged and the
solution procedure repeated. Because of the quasioptimal quadratic convergence
behaviour of the employed P1 finite element method, a quadratic tolerance is used.

Algorithm 1 (Multilevel Active Set Strategy) Choose triangulations TX,h and TY,h
of X and Y with maximal mesh-size h > 0. Let θact > 0, 0 < hmin < h, and
copt > 0. Choose functions ˜φh ∈ S1(TX,h) and ˜ψh ∈ S1(TY,h).
(1) Define the set of activated atoms via

A = {

(i, j) : ˜φih + ˜ψ
j
h ≥ c(xi, yj )− θacth

2}

and enlarge A to guarantee feasibility.
(2) Solve the reduced problem (̂Ph,A) and extract multipliers φh and ψh.
(3) Check optimality conditions up to tolerance copth2 on the full set of atoms, i.e.,

whether

φih + ψ
j
h ≤ c(xi, yj )+ copth

2

is satisfied for all (xi, yj ) ∈ NX,h ×NY,h.
(4) If optimality holds and h > hmin then refine triangulations TX,h and TY,h,

prolongate functions φh and ψh to the new triangulations with new mesh-size
h← h/2 to update ˜φh and ˜ψh, set θact ← θact /2, and continue with (1).

(5) If optimality fails, then set θact ← 2θact and continue with (1).
(6) Stop if optimality holds and h ≤ hmin.

Various modifications of Algorithm 1 are possible that may lead to improvements
of its practical performance.

Remark 4.2

(i) The activation parameter θact is adapted during the procedure, i.e., the
parameter is increased if optimality fails on a given level. To avoid activating
too many atoms initially, θact is decreased whenever a new level is reached.

(ii) The quadratic tolerance in the verification of the optimality conditions turned
out to be sufficient to obtain a quadratic convergence of optimal costs and of
the Lagrange multipliers in our experiments.

(iii) The initial parameter θact can be optimized on the coarsest mesh by repeatedly
reducing it until optimality fails.

5 Numerical Experiments

In this section, we illustrate our theoretical investigations via several experiments.
We implemented Algorithm 1 in MATLAB and used the optimization package
GUROBI, cf. [10], to solve the linear programs. The experiments were run on a
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standard personal computer. Integrals were evaluated using a three-point trapezoidal
rule on triangles. The employed triangulations result from uniform refinements of
an initial coarse triangulation and are represented via their refinement level k ∈ N

so that the maximal mesh-size satisfies h ∼ 2−k . The number of nodes in the
triangulations of the spaces X and Y are referred to by M and N , respectively. The
measured CPU times reported below are provided to compare different strategies.

5.1 Problem Specifications

We consider four different transport problems specified via the sets X and Y and the
marginals μ and ν together with different polynomial cost functions

cp(x, y) = 1

p
|x − y|p,

where p ∈ {3/2, 2, 3}. These choices are prototypical for subquadratic, quadratic,
and superquadratic costs leading to singular, linear, and degenerate cost gradients,
respectively. In the special case of a quadratic cost function solutions for the optimal
transport problem can be constructed using the Monge–Ampère equation

detD2� = f

g ◦ ∇�
and the relations for the transport map and the multipliers

T = ∇�, φ(x) = |x|2
2

−�(x), ψ(y) = |y|2
2

−�∗(y),

with the convex conjugate �∗(y) = supx x · y − �(x) of �, cf. [18] for details.
Moreover, we then have the optimal cost

I [T ] = I [∇�] =
∫

X

c2(x,∇�(x)) dμ(x).

The first example is one-dimensional and allows for a simple visualization of the
transport map.

Example 1 (One-Dimensional Transport) Let X = Y = [0, 1] and μ and ν be
defined via the densities

f (x) = 2

3
(x + 1), g(y) = 1,
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respectively. For p = 2 the optimal transport plan is given by the transport map
T = ∇� with the potential

� : [0, 1] → R, x �→ 1

9
x3 + 1

3
x2,

and the Lagrange multiplier φ satisfies

φ(x) = 1

6
x2 − 1

9
x3.

The optimal cost for p = 2 is given by I [T ] = 1/540.

Our second example concerns the transport between two rectangles with a
differentiable transport map.

Example 2 (Smooth Transport Between Rectangles) Define X = [0, 1]2 and
�(x1, x2) = x2

1 + x3
2 and set Y = ∇�(X) = [0, 2] × [0, 3] and g = 1. The

Monge–Ampère equation determines

f (x1, x2) = 12x2,

so that the optimal cost value for p = 2 is given by I [∇�] = 43/10.

In order to compare our algorithm to the results from [12], we incorporate
Example 4.1 from that article.

Example 3 (Setting from [12]) On X = Y = [−1/2, 1/2]2, let μ and ν be defined
by the densities

f (x1, x2) = 1+ 4(q ′′(x1)q(x2)+ q(x1)q
′′(x2))

+ 16(q(x1)q(x2)q
′′(x1)q

′′(x2)− q ′(x1)
2q ′(x2)

2)

and g = 1, where

q(z) =
(

− 1

8π
z2 + 1

256π3 +
1

32π

)

cos(8πz)+ 1

32π2 z sin(8πz).

For p = 2 we obtain an exact solution via the Monge–Ampère equation.

The final example describes the splitting of a square into two rectangles.

Example 4 (Discontinuous Transport) Let X = [−1/2, 1/2]2 and Y =
([−3/2,−1] ∪ [1, 3/2]) × [−1/2, 1/2] be equipped with the constant densities
f = 1 and g = 1. For any strictly convex cost function, optimal transport maps T
isometrically map the left half of the square to the rectangle on the left side and the
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other half to the one on the right, i.e., up to identification of Lebesgue functions,

T (x1, x2) =
{

(x1 + 1, x2) if x1 > 0,

(x1 − 1, x2) if x1 < 0.

For p = 2 we have T = ∇� with

�(x1, x2) = x2
1 + x2

2

2
+ |x1|,

with corresponding Lagrange multiplier φ(x1, x2) = −|x1|.
Figure 1 shows characteristic features of the four examples. In particular, in the

upper left plot of Fig. 1 the transport plan is the graph of a monotone function and
we illustrated an activated set of atoms of a discretization that approximates the
graph.

Fig. 1 Characteristic features of the transport problems defined in Examples 1–4 (from left to
right and top to bottom): (i) optimal transport plan given by a graph together with activated atoms
and discrete support for k = 5 in Example 1, (ii) optimal transport map T = ∇� in Example 2
interpreted as a vector field, (iii) oscillating density f in Example 3, (iv) piecewise affine optimal
transport plan T in Example 4
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5.2 Complexity Considerations

A crucial quantity to determine the efficiency of our devised method is the growth
of the cardinalities of the activated sets. In Table 1 we display for Examples 1–4 the
corresponding numbers on different triangulations and for different cost functions.
We observe that in all experiments the size of the activated sets grows essentially
linearly in strong contrast to the quadratic growth of the theoretical number of
unknowns of the corresponding discrete transport problem. A slight deviation of
this behaviour occurs in Example 2 for p = 3 where the increase of the active-set
size is larger than the expected factor 4. We note that we observed a reduction of
the active-set sizes by factors of approximately 2−d compared to the sizes obtained
with the algorithm from [12] for generic choices of parameters. Because of the very
few required redefinitions of the active set, particularly for p ≥ 2, we conclude that
the optimality conditions provide a precise prediction of the supports even if only

Table 1 Total number of nodes M + N , number of unknowns in the full optimization problem
MN , and cardinalities of activated sets at optimality with number of tolerance increases in brackets
in Examples 1–4 on triangulations with refinement level k and different cost functions cp(x, y)

Ex. 1 k = 7 k = 8 k = 9 k = 10

M +N 258 514 1026 2050

MN 16,641 66,049 263,169 1,050,625

p = 3/2 763 (0) 1531 (0) 3067 (0) 6139 (0)

p = 2 763 (0) 1531 (0) 3067 (0) 6139 (0)

p = 3 763 (0) 1539 (0) 3114 (0) 6442 (0)

Ex. 2 k = 3 k = 4 k = 5 k = 6

M +N 506 1906 7394 29,122

MN 34,425 467,313 6,866,145 105,189,825

p = 3/2 6268 (8) 27846 (1) 179,594 (2) 745,713 (1)

p = 2 3929 (0) 15,729 (0) 63,115 (0) 252,951 (0)

p = 3 8085 (2) 56,703 (2) 255,965 (1) 1,847,207 (2)

Ex. 3 k = 3 k = 4 k = 5 k = 6

M +N 162 578 2178 8450

MN 6561 83,521 1,185,921 17,850,625

p = 3/2 1389 (0) 20,787 (7) 58,575 (1) 183,465 (1)

p = 2 1589 (0) 5755 (0) 24,018 (0) 103,100 (0)

p = 3 1495 (0) 6319 (0) 26,205 (0) 106,857 (0)

Ex. 4 k = 3 k = 4 k = 5 k = 6

M +N 171 595 2,211 8,515

MN 7290 88,434 1,221,858 18,125,250

p = 3/2 1346 (0) 6384 (0) 24,135 (0) 95,240 (0)

p = 2 1654 (0) 6921 (0) 29,106 (0) 120,153 (0)

p = 3 1274 (0) 5602 (0) 21,353 (0) 85,463 (0)
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Table 2 Total CPU time in
seconds on k-th level in
Examples 1–4 with different
polynomial cost functions
cp(x, y)

Ex. 1 k = 7 k = 8 k = 9 k = 10

p = 3/2 0.0575 0.1357 0.4281 1.1840

p = 2 0.0603 0.1288 0.3294 1.0257

p = 3 0.0593 0.1345 0.3943 1.3115

Ex. 2 k = 3 k = 4 k = 5 k = 6

p = 3/2 0.2063 0.8805 6.9296 49.5964

p = 2 0.2187 0.5262 2.4734 21.1738

p = 3 0.2584 1.6697 7.3599 97.7239

Ex. 3 k = 3 k = 4 k = 5 k = 6

p = 3/2 0.1090 0.7655 1.5510 9.5078

p = 2 0.1106 0.1718 0.7735 4.6622

p = 3 0.1410 0.1886 0.8557 5.6919

Ex. 4 k = 3 k = 4 k = 5 k = 6

p = 3/2 0.1192 0.1777 0.8014 4.9880

p = 2 0.1054 0.1766 0.6771 4.0459

p = 3 0.1214 0.1700 0.7194 4.8851

approximations of the multipliers are available, i.e., this property appears to be very
robust with respect to perturbations of the multipliers.

In Table 2 we display the total CPU time needed to solve the optimization
problem on the k-th level. This includes the repeated activation of atoms, the
repeated solution of the reduced linear programs, and the verification of the
optimality conditions. We observe a superlinear growth of the numbers. These are
dominated by the times needed to solve the linear programs whereas the (non-
parallelized) verification of the optimality conditions was negligible in all tested
situations.

5.3 Experimental Convergence Rates

In Figs. 2 and 3 we show for Examples 1 and 2 the error in the approximation of the
optimal cost, i.e., the quantities

δh =
∣

∣ min
π≥0

̂I [π ] − min
πh≥0

̂Ih[πh]
∣

∣

and the error in the approximation of the Lagrange multiplier φ, i.e., the quantities

εh = ‖IX,hφ − φh‖L∞(X).

If the exact optimal cost or the multiplier was not known, i.e., if p �= 2, we used an
extrapolated reference value or considered the difference IX,hφh/2−φh to define δh
and εh, respectively. We tested different polynomial costs and considered sequences
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Fig. 2 Experimental convergence of optimal costs in Examples 1 (left) and 2 (right) for different
cost functions on sequences of uniformly refined triangulations
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Fig. 3 Experimental convergence rates of the discrete multiplier φh in Examples 1 (left) and 2
(right) for different cost functions on sequences of uniformly refined triangulations
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Table 3 Experimental errors εh = ‖Ihφ − φh‖L∞(X) for discretizations using P 1 and P 0
approximations of densities in Example 3 with p = 2

εh h ∼ 2−5 h ∼ 2−6 h ∼ 2−7 h ∼ 2−8 h ∼ 2−9

P 1 (Alg. 1) 0.00781 0.00238 0.00086 – –

P 0 [12] 0.00721 0.00892 0.00689 0.00241 0.00148

of uniformly refined triangulations. Because of the relation

h ∼ (M +N)−1/d ,

a quadratic convergence rate O(h2) corresponds to a slope −2/d with respect to
the total number of nodes M + N . Figure 2 confirms the estimate from Propo-
sition 3.1 and additionally shows that the quadratic convergence rate is optimal.
The experimental results also reveal that the employed quadratic tolerance in the
verification of the optimality conditions in Algorithm 1 is sufficient to preserve
the convergence rate of the linear program using the full set of atoms. Figure 3
indicates that quadratic convergence in L∞(X) also holds for the approximation of
the Lagrange multiplier φ provided this quantity is sufficiently regular. In particular,
we observe here a slower convergence behaviour for p = 3/2.

In [12] an approximately linear convergence rate in L∞ of the multipliers
has been reported for Example 3 which is consistent with the piecewise constant
approximation of densities of measures used in that article, cf. Remark 3.4. In
particular, discrete duality yields that the Lagrange multipliers occurring in the
discretized optimal transport problems are discretized in the same spaces. For our
discretization using continuous, piecewise affine approximations we obtain a nearly
quadratic experimental convergence rate in this example as well, as can be seen in
Table 3 in which we also display the errors from [12].
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Abstract In this chapter, we describe how to use mathematical optimization for
diagnosis and treatment planning of cerebral palsy. We give background information
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Assuming that, as a consequence of nature evolutionary process, natural gaits are
optimal with respect to a certain performance criterion, the gait itself is modeled
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1 Introduction

The project emerged from the long-standing collaboration with the MotionLab
[41] of the Department of Orthopaedics and Trauma Surgery of the Heidelberg
University Hospital. The aim of the project is to investigate the involved medical
challenges in detail, to transfer them to adequate mathematical tasks, and to develop
a mathematical and numerical framework for

• Inverse problems to support proper diagnosis and
• Parameter optimization and optimal control problems (OCPs) to improve the

planning of interventions

for patients with CP. The ultimate goal is to provide routinely applicable mathemat-
ical tools for the medical doctors.

1.1 Cerebral Palsy

We give some medical background to characterize the problem environment the
proposed mathematical methods have to fit in. CP describes a wide range of
disorders that are caused by problems before, during, and after birth, such as
oxygen deficiency. It is the most frequent cause of motor disability among children
in Europe representing 700,000 citizens. The prevalence of CP in Europe ranges
between 1.5 and 3.0 cases per 1000 live births [3]. The disease affects muscle
tone, posture, and eventually leads to deformed joints and skeleton. The abnormal
muscle tones often combined with permanently contracting spastic muscles cause
the typical so-called crouched or scissored gait.

There is robust evidence for deterioration in gross motor function and deteri-
oration in walking ability during childhood. Although no specific treatment can
remediate the neurological disorder that causes complex functional impairment,
there are multiple therapies that aim at improving a patient’s activity and participa-
tion in daily life. Orthopedic surgery is a key component in the clinical management
of musculoskeletal pathologies in CP. Different interventions are applied to avoid
progressive worsening of musculoskeletal impairments, improve gait patterns, and
thus, a patient’s quality of life.

Many CP patients have to undergo multiple surgeries during their treatment. As
stated in [3], to avoid the so-called birthday syndrome, which is the correction of
one deviation after another occurring with growth, the current treatment approach is
to perform a single event multi-level surgery to manage musculoskeletal deformities
in CP. This avoids the highly frequent hospitalization of the children, but makes a
prediction of the outcome much harder, since many factors—also interacting with
each other—play a role.

One crucial question is of course which treatment shall be applied to which
patient. In the past, besides looking at the patient’s gait visually, doctors used
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static data like X-ray photographs to decide which surgery should be applied.
Sometimes this resulted in patients whose standing posture looked more “healthy,”
but who tragically lost their ability to walk. The philosophy nowadays is to consider
also dynamic data. Clinical gait analysis provides information on spatiotemporal,
kinematics, and kinetic data, but still does not tell what happens inside the patient
and how to treat him or her.

Therefore, diagnosis and decision for a treatment still depend strongly on
the experience of the medical doctors. Although many patients show improved
treatment outcomes now, according to [37] and the references therein there is still
a significant fraction of patients (around 23%) who experience negative outcome
after surgery despite following the treatment recommendations from clinical gait
analysis. Therefore including additional mathematical analysis on 3D gait data to
provide direct information on surgically adjustable parameters may help to further
improve the clinical decision making.

From the medical point of view, major questions in the current research of CP
are:

• Improved understanding of the principles behind a CP patient’s gait: Calibrating
a dynamic gait model by measurements of the patient’s gait will not only provide
estimates of kinematic and dynamic parameters but also of state and torque
histories to support diagnosis;

• Treatment planning based on a personalized predictive model: Depending on
the medical options for interventions and physiotherapy, it is very important
to predict and optimize any alteration’s effect on the patient’s gait based on a
theoretical model capturing the main characteristics of a CP patient’s gait;

• Criteria to evaluate the success of possible treatments: Currently, one can assess
the result of a therapy only by looking at the gait before and after a medical
treatment—including CP—and comparing the resulting gait with those of a
healthy subject, e.g., as in the Gait Profile Score [4]. This favors “good looking
gaits,” although it is not at all clear, which changes are indeed beneficial for
specific patients. As of today, criteria for success like improved stability are only
a conjecture.

In this project, we contribute to the first two questions using mathematical methods.

1.2 Modeling Approach

Mathematically, tackling the problem results in highly non-smooth bilevel optimiza-
tion, resp., OCPs, which will be sketched in the following. As a model of a patient’s
gait, we propose a biomechanical optimal control model, in which the actuator
torques are generated by the CP patient according to certain optimization criteria,
which need to be identified.
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Level 1 The underlying dynamics are given by a multi-body system (MBS) of
mechanics, where the torques of the rotational joints are the result of more complex
muscle operations. The resulting equations of motion are the solution of a classical
variational problem subject to numerous state constraints (e.g. knee stroke, non-
self-penetration, collision avoidance, ground contact), and can be written in form of
a differential algebraic equation (DAE) system with implicit discontinuities of states
and the right-hand side caused by activating and deactivating constraints. This is a
dynamical process with complementarity constraints in itself, and complex switch-
ing structures are expected. In case of collisions, e.g. when a foot hits the ground,
not only the right-hand side of the DAE is discontinuous (type changes occur
whenever inequality constraints become active or inactive), but also the velocity
states themselves jump at state-dependent switching points. As OCPs constrained
by differential equations with implicitly defined, state-dependent discontinuities are
notoriously difficult to solve, the modeling and analysis of biomechanical motions
under state inequality constraints represents a significant non-smooth problem, that
is why we present adequate optimization algorithms for the switched systems. In
order to catch the CP gait characteristics, the developed model captures the full 3D
motion and can be extended for a sufficiently detailed foot and muscle model.

Level 2 Since the gait is the result of an autonomous decision of a person on the
controls generating torques and forces, depending on a combination of optimization
criteria (such as stability, energy efficiency, or comfort), state and control inequality
constraints, and given—complex—physiological parameters, we model it as an
OCP for the underlying dynamics of Level 1. Naturally, the constraints lead to
additional non-smoothness and complementarity constraints.

To treat the real medical problem for CP patients, however, requires to include at
least one additional optimization level. Two bilevel problems are considered:

Level 3A—Inverse Optimal Control The essential role of this mathematical model
for the human gait is to provide a non-invasive diagnosis tool looking into
what happens inside the patient, based on measurements of the gait—identifying
kinematic parameters such as joint displacements and skeleton deformations, and
in particular torque histories as well as a (parameterized) optimization criterion
supporting medical diagnosis. Mathematically this results in a parameter estimation
problem with an OCP as constraint.

Level 3B—Robustified Optimal Control Once the dynamic model is calibrated to a
CP patient’s individual data and a sensitivity analysis is performed which indicates
the most significant deficiencies compared to healthy subjects, the model can be
used to evaluate and eventually improve the effect of a planned surgical intervention
or physiotherapy, thus analyzing predictively the effect of altered physiological
parameters on the patient’s motion. To improve reliability, the OCP needs to be
robustified to account for the inaccurate knowledge of the model or the intervention
as well as the patient’s reaction.
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2 Modeling the Human Body

The human musculoskeletal system is very complex, comprising more than 200
bones and 400 muscles, tissue of different solidity and flexibility, etc. This great
complexity makes it indispensable to perform (partially drastic) simplifications
in order to make the model accessible to the use of numerical methods with an
acceptable computational time. Hence, we follow the line of research in [15, 18, 33]
and model the human body as a rigid MBS. The body is represented by a set
of rigid segments of different sizes, masses, and inertias, connected with joints.
As every human is different, this model needs to be personalized. For instance,
De Leva [11] reports anthropometric data for segment center locations, segment
masses, and inertia depending on gender, weight, and height of a subject. Data like
this together with further processing can be used to create individualized models,
which are sufficiently close to reality for our purposes. Depending on the task which
shall be performed using this model, some parts of the human body demand for a
more detailed modeling. This is in particular true for those parts of a patient’s body
which are most effected by the disease resp. which shall be altered during a medical
treatment, but also those, which have a major impact on the patient’s gait.

2.1 Rigid Multi-Body Systems

We give a short review on rigid MBS dynamics, based on [13, 14], where the
interested reader can find more details. We restrict this review to MBSs of which the
topology can be described by a tree. The dynamics of these systems can be expressed
by means of generalized coordinates, a non-unique minimal set of coordinates which
already comprise the joints constraints. The number of generalized coordinates
needed to describe a multi-body system is also called degree of freedom.

We denote the generalized coordinates at time point t by q(t), the generalized
velocities q̇(t) by v(t), the generalized accelerations q̈(t) by a(t), the generalized
forces by τ(t), and body specific parameters by p. When possible without causing
confusion, we omit the argument t for the sake of simplicity. The equations of
motion for an unconstrained multi-body system can then be expressed by

H(q, p)q̈ + C(q, v, p) = τ, (2.1)

where H(·) is the generalized inertia matrix, which agglomerates all segment
inertias in a suitable way, depending on the current configuration q of the system,
and C(·) is the Coriolis term, also called generalized bias force.

In case of external contacts, in addition constraining forces act on the MBS
in order to satisfy the constraint describing the external contact, which can be
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expressed in the form

g(q, p) = 0. (2.2)

The equations of motion then read as

H(q, p)a + C(q, v, p) = τ +G(q, p)T λ,

g(q, p) = 0,
(2.3)

where G(·) = ∂g
∂q

is the contact Jacobian, and λ is the constraint force arising from
the constraint (2.2). This can be expressed in form of a DAE of differential index 3,
which can be reduced to index 1 by differentiating (2.2) twice. The resulting DAE
is then given by

q̇ = v, (2.4a)

v̇ = a, (2.4b)
(

H(q, p) G(q, p)T

G(q, p) 0

)(

a

−λ
)

=
(

τ − C(q, v, p)

γ (q, v, p)

)

, (2.4c)

with γ (q, v, p) = −
((

∂G
∂q

)

v
)

v being the contact Hessian. If we ensure

g(q, p) = 0 ,
d

dt
g(q, p) = 0 (2.5)

for all time instances, the analytical solutions of (2.3) and (2.4) coincide. In fact,
because of (2.4c), it is sufficient to satisfy these constraints at the initial time point.

When the external contact changes, e.g. when a foot hits the ground after
swinging freely before, a collision impact might occur, which transfers the velocities
before the impact, v(t−), to the velocities after the impact, v(t+). Throughout our
work, we assume this impact to be perfectly inelastic, which has been proven to give
a quite good approximation of reality for humans walking on ground with standard
feet and soles [34]. The discontinuities in the velocities are then given by

(

H(q, p) G(q, p)T

G(q, p) 0

)(

v(t+)
−�

)

=
(

H(q, p)v(t−)
0

)

, (2.6)

where G(·) is the contact Jacobian belonging to the constraints acting after the
impact, and � is the contact impulse.

Setting up the equations of motion for a given MBS by hand is cumbersome and
error-prone, and practically impossible for half-way complex models. Therefore,
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the use of software libraries is advisable. Different formalisms and corresponding
computational tools exist, all having their pros and cons. In this project, we decided
to use the formalism of Featherstone [13], who proposes to use 6D spatial vectors
instead of two 3D vectors, describing the linear and angular aspects of a rigid
body’s motion. Using this notation, algorithms can be stated more concise, which
makes them easier to implement and reduces one possible source of error. A
bunch of efficient algorithms, among these the famous Articulated Body Algorithm,
expressed in the 6D notation is provided in [13], and the software package RBDL
[14] implements these algorithms and many more MBS features. This package has
proven its efficiency in many optimal control applications, cf. e.g. [16, 30, 31], and
is thus well-suited for our purposes.

2.2 Detailed Submodules

In view of the complexity of the human body, it is important to set up a task-
adequate model, and to focus mainly on the most relevant parts of the body. As we
are interested in walking and gait patterns, foot–ground contact is of major concern.
Furthermore, since muscle weakness and spasticity are frequently occurring issues
in CP, and many medical treatments affect the patient’s muscles, a sufficiently
detailed muscle model should be included to reflect the disease and possible
treatments.

2.2.1 Foot Modeling and Ground Contact

For the proper modeling of CP patient’s gait, which may be significantly different
from that of a healthy person, it is of central importance to have a sufficiently detailed
foot model, which reproduces the physics of the ground contact qualitatively and
quantitatively correctly because the foot forms the only boundary between the
MBS and the ground while walking. Possible models range from finite-element
approximations of continuum mechanics models, e.g. Halloran et al. [17], to
surrogate models like (3D-) volumetric contact models, e.g. Brown et al. [6], and
rigid foot–ground contact models, e.g. Felis at al. [16], Ren et al. [35]. In view of
the incorporation into complex bilevel optimization problems, it is also necessary to
take the computational complexity of the involved model into account. Therefore,
we decided to use point contacts in our first approach where we capture the typical
gait of a CP patient with club feet, or pes equinus, where the heel never touches
the ground while walking. This choice is underpinned by a recent publication of
Kleesattel et al. [24] where they used also a foot–ground contact model based on
point contacts for sprinting motions supporting only the forefoot.



28 H. G. Bock et al.

2.2.2 Muscle Modeling

The generalized forces τ in (2.4)—besides the included gravitational forces—
summarize the effect of all involved muscle–tendon complexes as well as passive
forces like damping or reset forces caused by stiffness in any sense. The more
detailed we model the muscle itself, the better we understand how the resulting
generalized forces are generated, and in particular, how muscle specific pathologies
influence the gait. Simply speaking, the generalized forces are written as a function
of other influencing quantities u,

τ = τ(u, p)

which lie on a deeper level in the formation of the resulting forces, and of course
of parameters p. Whatever influencing quantity is used, it will serve as control in
the OCP describing the human gait, see Sect. 3. An introduction to muscle modeling
can be found in [32] and the references therein.

2.3 Biomechanical Model for CP Patients

To capture the main characteristics of a CP patient’s gait, we consider a model with
14 segments including the pelvis as basis segment with six degrees of freedom (three
for the translational and three for the rotational motion), see Fig. 1. Furthermore,
the upper body consists of a middle and an upper trunk, a head, and two lower and
upper arms connected by joints. We decided these joints to be fixed in an average
position because the motion capture data from the Heidelberg MotionLab [41] only
include motions of the lower body. On the contrary, the rotational joints of the lower

Fig. 1 Biomechanical model for CP patients with 14 segments
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body are mandatory for any basic MBS model of a CP patient due to the truly
three dimensional pathological gait. Therefore, not only the hip joints connecting the
thighs with the pelvis but also the knee and ankle joints connecting the thighs with
the shanks and the shanks with the feet have three degrees of freedom. This results
in a biomechanical model with 24 degrees of freedom, hence 48 states x = (q, v),
and 18 torques as controls u = τ in the OCP describing the human gait, see Sect. 3.
In our first approach, the foot contact is modeled as a totally inelastic collision at a
point located at the toe. Together with the three dimensional ankle joints the typical
pathological gait of CP patients with club feet, or pes equinus, can be captured.
Concerning this deformity for the foot, the heel never touches the ground while
walking.

As we are interested in a personalized model the biomechanical model for a
specific CP patient includes the inertia of each segment, which is estimated based on
anthropometric data for segment locations of center of mass, segment masses, and
radii of gyration mainly taken from De Leva [11] depending on gender, height and
total mass of this subject, and the segment lengths computed from motion capture
data of this patient from the Heidelberg MotionLab.

The prototypical MBS implementation of the basic CP model (Fig. 1) using the
RBDL framework allows a flexible incorporation of detailed submodules such as
foot modeling and ground contact, and muscle modeling as described in Sect. 2.2.

3 Modeling the Human Gait

A common assumption is that the human gait is the result of an autonomous decision
of a person on the controls generating torques and forces, depending on a combina-
tion of optimization criteria (such as stability, energy efficiency, or comfort), state
and control inequality constraints, and given—complex—physiological parameters.
Therefore, optimization serves as a guiding principle of bipedal locomotion of
humans [34], and hence it can be mathematically formulated as an OCP where
the dynamics of biomechanical MBS are described by the nonlinear differential
algebraic equation systems (2.4) and (2.6). Optimization based generation of human
walking and running has been studied, e.g., by Ackermann and van den Bogert [1],
Felis et al. [15, 16], Schultz and Mombaur [38], Kleesattel et al. [25], Hu [21],
Suleiman et al. [40].

3.1 A Multi-Phase Optimal Control Approach

The human gait cycle can be divided into different phases or model stages.
Hence, we formulate a multi-phase OCP which generates the actuator torques and
incorporates a switched, phase-wise defined differential equation system for one
gait cycle of a patient with CP. Assuming a ground contact as in the CP gait model
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described in Sect. 2.3 with one contact point at each foot double support phases,
single support phases of the right foot and single support phases of the left foot
arise. Since double support phases are short compared with single support phases,
we consider three single support phases and the transition phases in-between on the
time horizon T = [t0, tf ] with the time grid t0 < t1 = t2 < t3 = t4 < t5 = tf
and the model stage indices ms ∈ {0, 1, 2, 3, 4}: a first single support phase right,
ms = 0, on the interval [t0, t1], transition phase left, ms = 1, at time point t1 = t2,
single support phase left, ms = 2, on [t2, t3], transition phase right, ms = 3, at
t3 = t4 and second single support phase right, ms = 4, on [t4, tf ]. In each single
support phase, ms ∈ {0, 2, 4}, the dynamics of the MBS are formulated by the
differential algebraic equation system (2.4). At the end of a single support phase of
one foot the respective other foot touches the ground and an impact occurs where we
have to cope with discontinuities of the velocities. These velocities at the transition
phases, ms ∈ {1, 3}, can be computed by (2.6). For ease of notation, we write the
dynamics in compact notation

F(t, x(t), ẋ(t), u(t), p, σ (x(t), p)) = 0 a.e. t ∈ T , (3.1)

with state variables x = (q, v), controls u = τ , system parameters p, and switching
functions σ(x(t), p). Possible jumps of the states on impact are expressed by

x(t+s ) = �
(

x(t−s ), p
)

if ts ∈ �,

where � denotes the set of time instances where a component of σ(·) changes its
sign. Let us note, in this multi-phase optimal control approach the switching struc-
ture is known a priori. Furthermore, constraints on the MBS dynamics described
by (3.1) have to be considered. At initial time t0 we have to enforce that the right
foot touches the ground g(q, p) = 0 and that d

dt
g(q, p) = 0 holds, see Sect. 2.1.

During single support phases, ms ∈ {0, 2, 4}, it has to be ensured that the swinging
foot does not penetrate the ground. When the foot touches the ground and an impact
occurs, i.e. ms ∈ {1, 3}, the first condition requires the z-component of the contact
point of the foot entering the contact phase to be 0, and the second condition needs
the z-component of the velocities in the global frame of the same contact point to
be negative. Additional constraints have to be taken into account to describe the
initial and terminal orientation and position of the pelvis and the orientation of the
joints. Furthermore, simple bounds on the variables x and the controls u have to
be considered. All constraints and stage transition conditions can be summarized in
nonlinear mixed control-state constraints

0 ≤ c(x(t), u(t), p) a.e. t ∈ T ,

and nonlinear equality and inequality multi-point constraints

0 = req(x(t0), . . . , x(tf ), p),

0 ≤ rieq(x(t0), . . . , x(tf ), p).
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In the optimal control framework, which describes human locomotion, we assume
that the objective function can be formulated as a linear combination of different
optimality criteria φk(·). For the CP gait we consider four different optimization
criteria

φ(x(tf ), u, p, α) :=
3

∑

k=0

αkφk(x(tf ), u, p), (3.2)

including stability, energy consumption, abduction/adduction in the hip, and inter-
nal/external rotation in the joints of the lower body, where the third and fourth
criterion can be interpreted as convenience criteria. The weights α are not known in
advance and, therefore, have to be determined by consideration of motion capture
data of a CP patient’s gait in an inverse OCP, see Sect. 4.1. For the sake of a clearer
presentation of the OCP (3.3) for the CP gait the objective function in (3.2) does
not include Lagrange terms. However, in the following we define the criteria for one
model stage, ms ∈ {0, 2, 4}, in Lagrange form which can be easily transformed in a
Mayer term by introducing an additional ordinary differential equation (ODE).

The stability criterion φ0(·) minimizes the distance between the y-component
of the hip joint position of the supported leg P s

h and the y-component of the
corresponding contact point of the foot P s

c in global coordinates in each single
support phase

φ0 :=
∫ tms+1

tms

([P s
h(q(t))]y − [P s

c (q(t))]y
)2
dt.

The second criterion φ1(·)minimizes the overall energy consumption on each single
support phase. It is defined as the squared and summed up integrals over all torques
uj , j ∈ J

φ1 :=
∫ tms+1

tms

∑

j∈J

(

uj (t)
)2
dt.

Because CP patients often have an adduction deformity in the hip joints which is
often very painful, we consider an abduction/adduction criterion φ2(·) as the third
optimization criterion

φ2 :=
∫ tms+1

tms

∑

j∈J1

(

uj (t)
)2
dt,

where we sum up and integrate over the squared torques uj , j ∈ J1 ⊂ J , which are
related to abduction and adduction in the hip joints. Internal and external rotations
in the joints are represented in the last criterion φ3(·) by minimizing the squared
and summed up integrals over the corresponding torques uj , j ∈ J2 ⊂ J , in each
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single support phase

φ3 :=
∫ tms+1

tms

∑

j∈J2

(

uj (t)
)2
dt.

With the four optimization criteria, we have a suitable set which can be extended in
the future in close collaboration with our medical partner. The OCP describing the
pathological gait of CP patients can now mathematically be formulated as

min
x,u

φ(x(tf ), u, p, α) :=
3

∑

k=0

αkφk(x(tf ), u, p)

s.t. 0 = F(t, x(t), ẋ(t), u(t), p, σ (x(t), p)) a.e. t ∈ T , (3.3a)

x(t+s ) = �
(

x(t−s ), p
)

if ts ∈ �, (3.3b)

0 ≤ c(x(t), u(t), p) a.e. t ∈ T , (3.3c)

0 = req(x(t0), . . . , x(tf ), p), (3.3d)

0 ≤ rieq(x(t0), . . . , x(tf ), p). (3.3e)

In Fig. 2 one solution of such an OCP is visualized with the weights α =
(0.999999, 10−6, 0.0, 0.0) and some fixed initial and terminal states x using motion
capture data of a CP patient’s gait. This result was achieved by applying the “direct
multiple shooting” method for discretization [8] and an efficient structure exploit-
ing sequential quadratic programming implementation in the software package
MUSCOD-II [29].

Augmenting the CP model by a more detailed submodel for the foot–ground
contact, more phases have to be taken into account which consequently results in a
more complex switching structure of the system. This multi-phase optimal control
approach then can still be appropriate at Level 3A considering an inverse OCP where
motion capture data is available and hence the structure of the different phases is
known. But at least in the case of treatment planning at Level 3B this approach is
not sufficient and an optimal control approach which allows an altered switching
structure is needed, see Sect. 3.2.

Fig. 2 Visualization of an OCP solution with the weights α = (0.999999, 1E − 6, 0.0, 0.0) and
some fixed initial and terminal states x using motion capture data of a CP patient’s gait
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3.2 A Mixed-Integer Optimal Control Approach

The multi-phase approach presented in the last section has the great advantage, that,
assuming a fixed switching structure resp. order of phases, the use of a switch-
detecting integrator can be avoided. Instead, the stage durations are optimized as
well, which is a much easier task. However, there are situations, in which the
switching structure is not known a priori, especially when it comes to treatment
planning and the prediction of a resulting gait after surgery in CP.

For instance, a common syndrome of CP is pes equinus, a deformity concerning
the foot, which has the consequence, that the heel never touches the ground while
walking. This behavior is non-desirable, and its remediation is a frequent goal
of medical interventions. Despite the impressive progress in surgeries in CP it
is a priori not clear, whether the undesired behavior will change or not, and
consequently, if the foot–ground contact and in particular the involved contact points
will change as a result of a treatment. Different combinations of contact points while
walking in turn would imply a different order of model phases and therefore an
altered switching structure.

One possibility to overcome this issue is to consider a free-phase formulation,
which optimizes the order of model phases along with differential states and
controls. For the sake of a handy notation, the model dynamics are assumed to be
given by autonomous ODEs. The time horizon T = [t0, tf ] is assumed to be fixed
without loss of generality. We enumerate all possible model phases and introduce
phase-indicator functions ωj : T → {0, 1} with the property

ωj (t) = 1 ⇐⇒ model is in phase j.

A change of model phases from a phase j1 to a phase j2 �= j1 is then denoted by
j1 →ω j2, and the set of switching points, which we assume to be finite, by S(ω).
Whenever the model phase changes, jumps in the differential states are possible,
and reflected by the jump-functions �j1,j2 , mapping the differential states before
the change to the differential states after the change. The free-phase formulation of
our problem can then be stated in form of a mixed-integer optimal control problem
(MIOCP)

min
x,u,ω

φ(x(tf ))

s.t. ẋ(t) = f j (x(t), u(t), p) if ωj (t) = 1 a.e. t ∈ T , (3.4a)

x(t+s ) = �j1,j2

(

x(t−s ), p
)

if j1 →ω j2 at ts ∈ S(ω), (3.4b)

0 ≤ cj (x(t), u(t), p) if ωj (t) = 1 a.e. t ∈ T , (3.4c)

0 ≤ d(x(t), u(t), p) a.e. t ∈ T , (3.4d)

0 ≤ r(x(t0), x(tf ), p), (3.4e)
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where the constraints (3.4b)–(3.4e) are written as multi-dimensional inequality con-
straints, thus including equality constraints as well. The mode-specific constraints
are encoded in cj (·), and can be used to characterize the model phases.

Now the advantage of the problem formulation (3.4) is, that it optimizes the
switching strategy, i.e. the order of phases, as well, and therefore it is theoretically
suited for our purposes. Unfortunately, solving MIOCPs is much harder than solving
multi-stage OCPs, especially if jumps in the differential states are involved.

In order to tackle problem (3.4), we developed a novel strategy for the solution
of MIOCPs with switches, state jumps, and also switching costs. We consider
a discretized version of the problem, use partial outer convexification [36] for
the ODE, and further also convexify the jump-condition (3.4b), which raises the
need for a regularization term, which can be interpreted as the penalized number
of switches. The continuous problem is then tackled by solving a sequence of
discretized problems, where we refine the grid successively. Details can be found
in [22], and an application of the approach to walking motions is described in [23].

4 Two Bilevel Problems for Diagnosis and Therapy Design
of Cerebral Palsy

In this section, we present two bilevel OCPs—one for diagnosis and one for therapy
design of CP.

4.1 An Inverse Optimal Control Problem for Diagnosis of
Cerebral Palsy

One of the aims is to provide a non-invasive diagnosis tool by fitting system
parameters p, weights α, and solutions of the gait model of a CP patient to
measurement data η from the Heidelberg MotionLab. Mathematically, this results
in an inverse OCP of the form

min
x,u,p,α

�[x, u, p; η] :=
∑

ij

1

2

(

ηij −Mj(t
m
i ; x(tm), u(tm), p)
γij

)2

s.t. x, u solution of

min
x,u

φ(x(tf ), p,α) :=
∑

k
αkφk(x(tf ), p)

s.t. 0 = F(t, x(t), ẋ(t), u(t), p, σ (x(t), p)) a.e. t ∈ T ,

x(t+s ) = �
(

x(t−s ), p
)

if ts ∈ �,

0 ≤ c(x(t), u(t), p) a.e. t ∈ T ,
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0 = req (x(t0), . . . , x(tf ), p),

0 ≤ rieq (x(t0), . . . , x(tf ), p),

1 =
∑

k
αk, 0 ≤ αk ∀k,

bl ≤ p ≤ bu,

where we consider a parameter estimation problem on the upper level constrained
by the lower level OCP (3.3) modeling the human gait described in Sect. 3. The
standard choice for the cost function is the l2 formulation which describes the
deviation of the model response M(·) depending on the state and control vectors
at measurement times tm from the measurements η with standard deviation γ .
However, l1 and Huber formulations as in Kostina et al. [5, 27] can be used to take
into account possible outliers in the data. The covariance analysis of the parameter
estimates can be performed based on methods by Bock et al. [7, 9] and Kostina et
al. [28].

In view of the complexity of problems such as the inverse OCP, the solution
methods of choice are simultaneous approaches. These methods mainly rely on
the reformulation of the lower level OCP of Level 2 by its optimality conditions,
which serve as a constraint to the upper level parameter estimation problem.
This means that the lower level problem is solved together with the upper level
optimization problem. One possibility is to reformulate the lower level OCP, after
discretization, by its Karush-Kuhn-Tucker (KKT) optimality conditions. Because
inequality constraints are included in the reformulated inverse OCP, it results in the
generation of a mathematical program with complementarity constraints (MPCC).
Current research in the development of numerical methods for solving the arising
MPCC in the context of human locomotion can be found in the work of Albrecht et
al. [2] where different regularization and lifting strategies are compared for handling
the complementarity constraints in a simple dynamic model moving from a start
to a goal position without paying attention to the complex dynamical problem of
taking individual steps. Furthermore, Hatz et al. [20] proposed a “direct all-at-once”
approach which was successfully applied in a first analysis of a CP patient’s gait
[18].

Due to the potentially lower computational effort, we follow the “direct all-
at-once” approach which can be sketched as follows: First we parametrize and
discretize the continuous problem, then replace the discretized and parametrized
lower level OCP by its necessary optimality conditions, and solve the resulting
nonlinear programming problem (NLP) with a Gauss–Newton-type method resp.
a Newton-type method.

For discretization the infinite dimensional controls u are locally approximated by
basis functions with finite support on a suitable time grid t0 = τ0 < τ1 < . . . <

τm = tf . The discretized control variables are denoted by wi, i = 0, . . . , m − 1.
Furthermore, we assume that the mixed control-state constraints are only satisfied
at the time points τ0, . . . , τm. The states x are parametrized based on the “direct
multiple shooting” method [8], si, i = 0, . . . , m on the same time grid. This results
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in the large-scale but structured discrete lower level OCP

min
y

φ(sm, p, α) :=
∑

k
αkφk(sm, p)

s.t. 0 = x(τi+1; τi, si , wi, p)− si+1,∀i = 0, . . . , m− 1,

0 ≤ c(y, p),

0 = req(s0, . . . , sm, p),

0 ≤ rieq(s0, . . . , sm, p),

with y = (s0, . . . , sm,w0, . . . , wm−1). As a second step, the lower level OCP is
replaced by its KKT optimality conditions

0 = x(τi+1; τi, si , wi, p)− si+1,∀i = 0, . . . , m− 1,

0 ≤ c(y, p),

0 = req(s0, . . . , sm, p),

0 ≤ rieq(s0, . . . , sm, p),

0 = ∇yL(y, p, α, λ, μ),
0 ≤ μ,

0 = μT c(y, p),

where the Lagrangian is given by L(y, p, α, λ, μ) and λ,μ are the Lagrange
multipliers for equalities resp. inequalities.

The upper level problem is solved using the “all-at-once” approach with a Gauss–
Newton-type method for the inverse OCP with the discretized lower level OCP as
constraint.

min
y,p,α,λ,μ

�[y, p; η] (4.1a)

s.t. 0 = x(ti+1; ti , si , wi, p)− si+1,∀i = 0, . . . , m− 1, (4.1b)

0 ≤ c(y, p), (4.1c)

0 = req(s0, . . . , sm, p), (4.1d)

0 ≤ rieq(s0, . . . , sm, p), (4.1e)

0 = ∇yL(y, p, α, λ, μ), (4.1f)

0 ≤ μ, (4.1g)

0 = μT c(y, p), (4.1h)
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1 =
∑

k
αk, 0 ≤ αk ∀k, (4.1i)

bl ≤ p ≤ bu. (4.1j)

The inverse OCP (4.1) is indeed an MPCC. The complementarity constraints
0 = μT c(y, p), μ ≥ 0, c(y, p) ≥ 0 of (4.1) fail to satisfy standard constraint
qualifications at any feasible point [10]. This leads to degenerate quadratic programs
such that appropriate strategies for handling the complementarity constraints have
to be considered. To tackle this difficulty, the lifting approach based on [19] has
been implemented.

4.2 A Robustified Optimal Control Problem for Therapy
Design of Cerebral Palsy

In this subsection, we describe how to design a computational testing environment
for ex ante evaluation and assessment of potential surgery plans. Recall the
parameterized optimal control models for the human gait described in Sect. 3. We
set up problems in a way, that a medical treatment, being a change of the physiology,
can be reflected by a change of parameters p in the model. This way, a change of
parameters would possibly lead to a different solution of the OCP and thus cause a
different gait, which could then be assessed by the medical doctors in charge. Note
though, that in this scenario we need to make assumptions on the objective function,
which in fact might also depend on p in an unknown fashion.

One major challenge is the adequate modeling of a considered treatment as a
change of parameters in the model, reflecting all significant changes, but neglecting
that ones, which are of less importance, this way keeping the mathematical model
tractable. There exists a large variety of surgeries applied to CP patients in order
to improve the gait pattern. These interventions comprise osseous procedures
like derotational osteotomies, where tibia and/or femur are rotated in order to
remediate torsional deformities, but also soft tissue procedures like tendon transfers
or tendon/muscle lengthenings. A list of the main surgical treatments in CP for gait
patterns can be found in [3]. The used gait model should be chosen tailored to the
considered medical procedure. If we are for instance interested in muscle or tendon
lengthenings, the gait model should contain a muscle model appropriate to that task,
see Sect. 2.2.2.

Another major issue we need to take care of is the robustness of the mathematical
prediction model against uncertainties. Such uncertainties might originate from
many sources, like modeling errors, inaccurately performed treatments, but also
perturbed muscle activity by the patients itself, caused by the neurological disorder
resulting from the disease. Hence, we robustify the parameterized OCP modeling the
gait against possible perturbations in parameters as well as controls, and the solution
of the resulting problem then describes the best possible gait under consideration
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of these perturbations. This way we can ensure, that a planned medical treatment
still achieves good results in occurrence of expectable disturbances, and thus is
reasonable.

As in our case, the decision for a treatment has great impact on the patients’
lives, we do not want to gamble, and therefore refrain from using probabilistic robust
optimization models, but take a conservative approach. The robustified problem then
reads as

min
x,u

max
(δp,δu)∈U

φ(x(tf ))

s.t. 0 = F(x(t), ẋ(t), u(t)+ δu(t), p + δp, σ (x(t)) a.e. t ∈ T ,

x(t+s ) = �
(

x(t−s ), p + δp
)

if ts ∈ �,

0 ≤ c(x(t), u(t)+ δu(t), p + δp) a.e. t ∈ T ,

0 ≤ r(x(t0), x(tf ), p + δp),

where � denotes the set of time instances, where a component of σ(·) changes its
sign, and U is the uncertainty set, which has to be chosen carefully and in close
cooperation with the medical doctors.

In order to solve this problem, we develop a linear approximation, assuming the
perturbations are small enough, as in [12, 26]. In case this assumption is not valid,
also second order approximations as in [39] need to be taken into account.

5 Conclusions and Outlook

We have given some background information on the disease CP to which we
contribute and described the involved medical challenges in detail to be able
to transfer them to adequate mathematical tasks. A detailed description of the
rigid MBS model for the human body capturing the main characteristics of CP
patients and the corresponding dynamics have been given. Assuming that human
locomotion can be modeled as the solution of an OCP, we have presented two
approaches describing the gait itself: a multi-phase OCP with a fixed sequence
of single supporting and double supporting phases tailored to recorded gaits of
CP patients, and an MIOCP appropriate for intervention planning with the great
advantage that the switching structure does not have to be known a priori. These
optimal control formulations can serve as the lower level of two bilevel problems:
an inverse OCP for diagnosis and a robustified OCP for intervention planning. For
these mathematical and numerical frameworks, detailed descriptions and adequate
solution approaches are proposed. The described bilevel OCPs are a first step in
supporting the physicians in proper diagnosis and improving treatment planning and
therapy measures for patients with CP. An augmentation of the present MBS model



CP Diagnosis and Treatment Planning 39

for CP patients, e.g., by a more detailed foot model or a muscle model, affects all
levels of the bilevel OCPs with the need of exploiting the resulting structure and
thus will be pursued in future research.
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Abstract Multiobjective optimization plays an increasingly important role in
modern applications, where several objectives are often of equal importance. The
task in multiobjective optimization and multiobjective optimal control is therefore
to compute the set of optimal compromises (the Pareto set) between the conflicting
objectives. Since the Pareto set generally consists of an infinite number of solutions,
the computational effort can quickly become challenging which is particularly
problematic when the objectives are costly to evaluate as is the case for models
governed by partial differential equations (PDEs). To decrease the numerical effort
to an affordable amount, surrogate models can be used to replace the expensive PDE
evaluations. Existing multiobjective optimization methods using model reduction
are limited either to low parameter dimensions or to few (ideally two) objectives. In
this chapter, we present a combination of the reduced basis model reduction method
with a continuation approach using inexact gradients. The resulting approach can
handle an arbitrary number of objectives while yielding a significant reduction in
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1 Introduction

The dilemma of deciding between multiple, equally important goals is present
in almost all areas of engineering and economy. A prominent example comes
from production, where we want to produce a product at minimal cost while
simultaneously preserving a high quality. In the same manner, multiple goals are
present in most technical applications, maximizing the velocity while minimizing
the energy consumption of electric vehicles [24] being only one of many examples.
These conflicting goals result in multiobjective optimization problems (MOPs) [9],
where we want to optimize all objectives simultaneously. Since the objectives are
in general contradictory, there exists an infinite number of optimal compromises.
The set of these compromise solutions is called the Pareto set, and the goal in
multiobjective optimization is to approximate this set in an efficient manner, which
is significantly more expensive than solving a single-objective problem. Due to this,
the development of efficient numerical approximation methods is an active area of
research, and methods range from scalarization [9, 14] over set-oriented approaches
[8] and continuation [14] to evolutionary algorithms [7]. Recent advances have
paved the way to new challenging application areas for multiobjective optimization
such as feedback control or problems constrained by partial differential equations
(PDEs); cf. [22] for a survey.

In the presence of PDE constraints, the computational effort can quickly become
infeasible such that special means have to be taken in order to accelerate the
computation. To this end, computationally cheap approximations of the original
problem, so-called surrogate models, form a promising approach for significantly
reducing the computational effort. A widely used approach is to directly construct a
mapping from the parameter to the objective space using as few function evaluations
of the expensive model as possible, cf. [6, 30] for extensive reviews. In the case
of PDE constraints, an alternative approach is via dimension reduction techniques
such as Proper Orthogonal Decomposition (POD) [18, 29] or the reduced basis
(RB) method [11]. In these methods, a small number of high-fidelity solutions is
used to construct a low-dimensional surrogate model for the PDE which can be
evaluated significantly faster while guaranteeing convergence using error estimates.
In recent years, several methods have been proposed where model reduction
is used in multiobjective optimization and optimal control. In [17] and [16],
scalarization using the so-called weighted sum method was combined with RB
and POD, respectively. In [1, 2], convex problems were solved using reference
point scalarization and POD, and set-oriented approaches were used in [3, 4]. A
comparison of both was performed in [23] for the Navier–Stokes equations.

In this chapter we combine an extension of the continuation methods presented in
[14, 27] to inexact gradients (Sect. 2) with a reduced basis approach for elliptic PDEs
(Sect. 3). To deal with the error introduced by the RB approach, we combine the
KKT conditions for MOPs with error estimates for the RB method to obtain a tight
superset of the Pareto set. For the example considered here, the proposed method
yields a speed-up factor of approximately 63 compared to the direct solution of
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the expensive problem (Sect. 4). Additionally, our approach allows us to control the
quality of the result by controlling the errors for each objective function individually.

2 A Continuation Method for MOPs with Inexact Objective
Gradients

In this section, we will begin by briefly introducing the basic concepts of multiob-
jective optimization upon which we will build in this chapter (see [9, 14] for detailed
introductions). Afterwards, we will discuss the continuation method for MOPs and
present two modifications of it that can deal with inexact gradient information.

2.1 Multiobjective Optimization

The goal of multiobjective optimization is to minimize several conflicting criteria at
the same time. In other words, we want to minimize an objective J = (J1, . . . , Jk) :
R
n → R

k that is vector valued. It maps the variable space Rn to the image space
R
k . In contrast to single-objective optimization (i.e., k = 1), there exists no natural

total order of the image space R
k for k > 1. As a result, the classical concept of

optimality has to be generalized:

Definition 2.1

(a) ū ∈ R
n is called (globally) Pareto optimal if there is no other point u ∈ R

n

such that Ji(u) ≤ Ji(ū) for all i ∈ {1, . . . , k} and Jj (u) < Jj (ū) for some
j ∈ {1, . . . , k}.

(b) The set P of all Pareto optimal points is called the Pareto set. Its image under
J is the Pareto front.

The Pareto set is the solution of the multiobjective optimization problem (MOP)

min
u∈Rn

J (u). (MOP)

Constrained MOPs can be formulated analogously by restricting u in Definition 2.1
to a subset U ⊆ R

n. Similar to the scalar-valued case, if J is differentiable, we
can use the derivative of J to obtain necessary conditions for Pareto optimality, the
Karush–Kuhn–Tucker (KKT) conditions [14]:

Theorem 2.2 Let ū be a Pareto optimal point of (MOP). Then there exist multipli-
ers

α ∈ �k :=
{

α ∈ (R≥0)k :
k

∑

i=1

αi = 1

}
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such that

DJ(ū)�α =
k

∑

i=1

αi∇Ji(ū) = 0. (KKT)

For k = 1, this reduces to the well-known optimality condition ∇J (ū) = 0. If J
is non-convex, then the points satisfying (KKT) form a proper superset of the Pareto
set P :

Definition 2.3 If ū ∈ R
n and ᾱ ∈ �k satisfy (KKT), then ū is called Pareto

critical with corresponding KKT vector ᾱ, containing the KKT-multipliers ᾱi , i ∈
{1, . . . , k}. The set Pc of all Pareto critical points is called the Pareto critical set.

When solving an MOP, an initial step can be to compute the Pareto critical set.
This set possesses additional structure which can be exploited in numerical schemes.
Introducing the function

F : Rn × (R>0)k → R
n+1, (u, α) �→

(∑k
i=1 αi∇Ji(u)

1−∑k
i=1 αi

)

,

we see that Pareto critical points and their corresponding KKT vectors can be
described as the zero level set of F . As shown by Hillermeier [14], this has the
following implication:

Theorem 2.4 Let J be twice continuously differentiable.

(a) LetM := {(u, α) ∈ R
n × (R>0)k : F(u, α) = 0}. If the Jacobian of F has full

rank everywhere, i.e.,

rk(DF(u, α)) = n+ 1 ∀(u, α) ∈M, (2.1)

then M is a (k − 1)-dimensional differentiable submanifold of Rn+k . The
tangent space of M at (u, α) is given by

T(u,α)M = ker(DF(u, α)).

(b) Let (u, α) ∈ M such that (2.1) holds in (u, α). Then there is an open set U ⊆
R
n × R

k with (u, α) ∈ U such that M ∩ U is a manifold as in (a). In other
words, M locally possesses a manifold structure in all points satisfying (2.1).

Theorem 2.4 forms the basis for the continuation method we use in this chapter.
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2.2 Continuation Method with Exact Gradients

We only give a brief description of the method here and refer to [27] and [14]
for details. By Theorem 2.4, the Pareto critical set is—except for the boundary—
the projection of the differentiable manifold M ⊆ R

n × R
k onto its first n

components. In [10] it has been shown that generically, this also holds for the
first-order approximations, i.e., the projection of the tangent space of M yields the
tangent cone of Pc. Given a Pareto critical point ū ∈ Pc, this means that we can find
first-order candidates for new Pareto critical points in the vicinity of ū by moving in
the projected tangent space of M. The idea of the continuation method is to do this
iteratively to explore the entire Pareto critical set.

Instead of approximating Pc by a set of points, we use a set-oriented numerical
approach; cf. [27] for details. This has the key advantage that it is easy to check
whether a certain part of the set has already been computed, which is difficult when
working with points. Additionally, a covering of Pc by boxes makes it easy to
obtain (and exploit) its topological properties. In the approach, we evenly divide
the variable space R

n into hypercubes or boxes B with radius r > 0:

B(r) := {[−r, r]n + (2i1r, . . . , 2inr)
� : (i1, . . . , in) ∈ Z

n}. (2.2)

Remark 2.5 For ease of notation and readability, we will only consider the case
where points u ∈ R

n are contained in single boxes. In other words, we only consider
the case where u is in the interior of a box and not in the intersection of multiple
boxes. Since this is the generic case, this has no impact on the numerical methods
we will propose later. �

For u ∈ R
n, let B(u, r) be the box containing u. We want to compute the subset

of B(r) covering the Pareto critical set for a given radius r , i.e.,

Bc(r) := {B ∈ B(r) : Pc ∩ B �= ∅}.

Since we are interested in a covering via boxes instead of an approximation via
points, when moving in a tangent direction of the critical set, we will search for
tangent boxes instead of single points. For u ∈ R

n let

N(u, r) := {B ∈ B(r) : B(u, r) ∩ B �= ∅}

be the set of neighboring boxes of B(u, r). Starting from a box B(ū, r) containing
a critical point ū with KKT vector ᾱ, we want to explore the neighboring boxes
covering the projected tangent space at ū, i.e.,

B′(ū, r) = {B ′ ∈ B(r) : B ′ ∈ N(ū, r), B ′ ∩ ū+ pru(T(ū,ᾱ)M) �= ∅}. (2.3)

Here, pru : Rn+k → R
n is the projection of the tangent space onto the first n

components, i.e., the variable space. The typical situation is visualized in Fig. 1.



48 S. Banholzer et al.

Fig. 1 Tangent boxes (black)
of the initial box (grey)
containing ū, which is
contained in the Pareto
critical set Pc (dashed). The
red line indicates the
projection of the tangent
space of M onto the variable
space

As the tangent space of the Pareto critical set is only a linear approximation,
a corrector step is required to verify that a given tangent box actually contains
part of the Pareto critical set. This means that there has to be at least one u ∈ B

satisfying (KKT). To this end, for a box B, we consider the problem

min
u∈B,α∈�k

‖DJ(u)�α‖2
2 (PC-Box)

Let θ(B) be the optimal value of this problem. Then obviously

θ(B) = 0 ⇔ B ∩ Pc �= ∅.

In particular, if θ(B) = 0 and (ū, ᾱ) is the solution of (PC-Box), then ū is Pareto
critical with corresponding KKT vector ᾱ. After solving (PC-Box) in each tangent
box, all boxes with θ(B) = 0 are added to a queue and a new iteration of the method
is started with the first element in the queue. The method stops when the queue is
empty, i.e., when there is no neighboring box of the current set of boxes that contains
part of the Pareto critical set. For the remainder of this chapter, we will refer to this
method as the exact continuation method.

2.3 Continuation Method with Inexact Gradients

Using ROM to solve the state equation of an MOP of an elliptic PDE will introduce
an error in the objective functions and the corresponding gradients, which has
to be taken into account in order to ensure Pareto criticality of the solution. We
here present a method that calculates a tight superset of the Pareto critical set
via numerical continuation, using upper bounds for the errors in the approximated
gradients. Formally, we now assume that for each gradient ∇Ji , we only have an
approximation ∇J ri such that



ROM-Based MOO of Elliptic PDEs via Numerical Continuation 49

sup
u∈Rn

∥

∥∇Ji(u)−∇J ri (u)
∥

∥

2 ≤ εi, i ∈ {1, . . . , k}, (2.4)

with upper bounds ε = (ε1, . . . , εk)
� ∈ R

k . Let Pc and P r
c be the Pareto critical

sets corresponding to (∇Ji)i and (∇J ri )i , respectively. The following lemma shows
how these error bounds translate to error bounds for the KKT conditions:

Lemma 2.6 Let ū ∈ R
n be Pareto critical for J with KKT vector ᾱ ∈ �k . Then

‖DJr(ū)�ᾱ‖2 ≤
k

∑

i=1

ᾱiεi ≤ ‖ε‖∞.

Proof From the estimate

∥

∥

∥DJ
r(ū)�ᾱ

∥

∥

∥

2
=

∥

∥

∥DJ
r(ū)�ᾱ −DJ(ū)�ᾱ

∥

∥

∥

2
=

∥

∥

∥

∥

∥

k
∑

i=1

(∇J ri (ū)−∇Ji(ū))�ᾱi
∥

∥

∥

∥

∥

2

≤
k

∑

i=1

∥

∥∇J ri (ū)−∇Ji(ū)
∥

∥

2 ᾱi ≤
k

∑

i=1

ᾱiεi ≤ ‖ε‖∞

we derive the claim. ��
Remark 2.7 Lemma 2.6 can be generalized to equality and inequality constrained
MOPs using the constrained version of the optimality conditions from [14]. In
this case, in the norm on the left-hand side of the inequality in Lemma 2.6, one
additionally has to add a linear combination of the gradients of the equality and
inequality constraints. �

Lemma 2.6 shows that we have to weaken the conditions for Pareto criticality of
the reduced objective function to obtain a superset of the actual Pareto critical set
Pc. Formally, let

P r
1 :=

{

u ∈ R
n : min

α∈�k

‖DJr(u)�α‖2
2 ≤ ‖ε‖2∞

}

,

P r
2 :=

{

u ∈ R
n : min

α∈�k

(

‖DJr(u)�α‖2
2 − (α�ε)2

)

≤ 0

}

.

P r
1 was also considered in [21] in the context of descent directions, where the

solution of minα∈�k
‖DJr(u)�α‖2

2 is the squared length of the steepest descent
direction in u. The condition for a point being in P r

1 only depends on the maximal
error ‖ε‖∞ and can be seen as a relaxed version of the KKT conditions for the
inexact objective function. In contrast to this, the condition in P r

2 actually considers
the individual error bounds. By Lemma 2.6,
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Pc ⊆ P r
2 ⊆ P r

1 and P r
c ⊆ P r

2 ⊆ P r
1 ,

i.e., both P r
1 and P r

2 are supersets of Pc and P r
c (the points ū for which the inexact

gradients satisfy (KKT)). In fact, P r
2 is a tight superset of Pc in the following sense:

Lemma 2.8 Let ũ ∈ P r
2 . Then there is some continuously differentiable J̃ : Rn →

R
k with

sup
u∈Rn

‖∇J̃i (u)−∇J ri (u)‖2 ≤ εi ∀i ∈ {1, . . . , k}

such that ũ is Pareto critical for J̃ .

Proof Let

α̃ ∈ argminα∈�k

(

‖DJr(u)�α‖2
2 − (α�ε)2

)

,

ν := DJr(ũ)�α̃,

g(u) := −
(

1

α̃�ε

n
∑

i=1

νiui

)

ε,

J̃ (u) := J r(u)+ g(u).

Since ũ ∈ P r
2 by assumption, we have ‖ν‖2 ≤ α̃�ε. Thus

‖∇J̃i (u)−∇J ri (u)‖2 = ‖∇gi(u)‖2 = εi

α̃�ε
‖ν‖2 ≤ εi ∀u ∈ R

n and ∀i ∈ {1, . . . , k},

and

DJ̃ (ũ)�α̃ = ν +
k

∑

i=1

α̃i∇gi(ũ) = ν −
k

∑

i=1

α̃i
εi

α̃�ε
ν = 0,

which proves the lemma. ��
Lemma 2.8 shows that for each point ũ in P r

2 , there is an objective function
satisfying the error bounds (2.4) for which ũ is Pareto critical. As a result, P r

2 is the
tightest superset of Pc we can hope for if we only have the estimates in (2.4). The
following example shows both supersets for a simple MOP (cf. [21]).

Example Let

J r : R2 → R
2, u �→

(

(u1 − 1)2 + (u2 − 1)4

(u1 + 1)2 + (u2 + 1)2

)

.
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Fig. 2 P r
1 and P r

2 for different error bounds ε. (a) ε = ε1 = (0.2, 0.05)�. (b) ε = ε2 = (0, 0.2)�

We consider the two error bounds ε1 = (0.2, 0.05)� and ε2 = (0, 0.2)�. The
corresponding supersets P r

1 and P r
2 are shown in Fig. 2.

As ‖ε1‖∞ = ‖ε2‖∞ = 0.2, P r
1 is identical for both error bounds. Considering

each component of J r individually, the critical points of J r1 and J r2 are located at
u1 = (1, 1)� and u2 = (−1,−1)�, respectively. For P r

2 , we see that the difference
between P r

c and P r
2 becomes smaller the closer we get to the critical point of

the objective function with the smaller error bound. This can be expected, as the
influence (or weight) of ∇J ri (u) in the KKT conditions (KKT) becomes larger the
closer u is to ui . In particular, in Fig. 2b, the difference between P r

2 and P r
c at (1, 1)�

becomes zero, as ε2
1 = 0. ♦

If we set εi = ‖ε‖∞ for all i ∈ {1, . . . , k}, then P r
1 = P r

2 . Thus, we will from
now on only consider P r

2 . As shown in the previous example, the “dimension” of
P r

2 is higher than the “dimension” of P r
c . More precisely, P r

2 contains the closure of
an open subset of Rn, which is shown in the following lemma:

Lemma 2.9 Let ∇J ri be continuous for all i ∈ {1, . . . , k}. Let

A :=
{

u ∈ R
n : min

α∈�k

(

‖DJr(u)�α‖2
2 − (α�ε)2

)

< 0

}

.

Then

(a) P r
2 is closed. In particular, A ⊆ P r

2 .
(b) A is open.
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Proof

(a) The case P r
2 = ∅ is trivial, so we assume that P r

2 �= ∅. Let ū ∈ P r
2 . Then there is

a sequence (ui)i ∈ P r
2 with limi→∞ ui = ū. Consider the sequence (αi)i ∈ �k

with

αi ∈ argminα∈�k

(

‖DJr(ui)�α‖2
2 − (α�ε)2

)

.

By compactness of �k , we can assume w.l.o.g. that there is some ᾱ ∈ �k with
limi→∞ αi = ᾱ. Let

� : Rn ×�k → R, (u, α) �→ ‖DJr(u)�α‖2
2 − (α�ε)2.

By our assumption, � is continuous. From �(ui, αi) < 0 for all i ∈ N it
follows that �(ū, ᾱ) ≤ 0, which yields ū ∈ P r

2 .
(b) The case A = ∅ is again trivial such that we assume A �= ∅. Let ū ∈ A with

ᾱ ∈ argminα∈�k

(

‖DJr(ū)�α‖2
2 − (α�ε)2

)

.

Let ψ : Rn → R, u �→ ‖DJr(u)�ᾱ‖2
2 − (ᾱ�ε)2. Then ψ(ū) < 0 and by our

assumption, ψ is continuous. Therefore, there is some open set U ⊆ R
n with

ū ∈ U such that ψ(u) < 0 for all u ∈ U . Since

min
α∈�k

(

‖DJr(u)�α‖2
2 − (α�ε)2

)

≤ ψ(u) < 0 ∀u ∈ U

we have U ⊆ A such that A is open. ��
We will now present two strategies for the numerical computation of P r

2 .
Analogously to the case with exact gradients, we will approximate P r

2 via the box
covering

Br
c(r) := {B ∈ B(r) : B ∩ P r

2 �= ∅}.

2.3.1 Strategy 1

The idea of our first method is to mimic the exact continuation method to calculate
Br
c . For this, there are mainly two modifications we have to make:

1. By Lemma 2.9, P r
2 is not a lower-dimensional object in R

n, so it makes no sense
to use tangent information to find first-order candidates as in (2.3). Instead, we
have to consider all neighboring boxes.

2. The problem (PC-Box) has to be replaced by a problem that checks the defining
inequality of P r

2 .
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As a replacement for (PC-Box), we consider the following problem:

min
u∈B,α∈�k

‖DJ(u)�α‖2
2 − (α�ε)2. (εPC-Box)

Let θε(B) be the optimal value of this problem. Note that θε(B) < 0 is
sufficient to verify that a box B contains part of P r

2 . As a result, we do not need
to solve (εPC-Box) exactly. For example, when using an iterative method for the
solution of (εPC-Box), we can stop when the function value is negative. The above
mentioned changes yield Algorithm 1.

Algorithm 1 Strategy 1: box-continuation algorithm with inexact gradients
Given: Radius r > 0 of boxes.

1: Choose an initial point u0 ∈ P r
2 and initialize B = {B(u0, r)} and a queue Q = {u0}.

2: whileQ �= ∅ do
3: Remove the first element ū from Q.
4: for B ′ ∈ N(ū, r) \ B do
5: Solve (εPC-Box) for B ′. Let θε(B ′) be the optimal value and (u′, α′) be

the solution.
6: if θε(B ′) ≤ 0 then
7: Add u′ to Q and B ′ to B.
8: end if
9: end for

10: end while

Due to the loss of low-dimensionality of P r
2 , the formulation of the continuation

method becomes much simpler. As a consequence, it is straightforward to show that
Algorithm 1 yields the desired covering Br

c(r).
When executing the exact continuation method directly using inexact gradients

(i.e., forgetting about the inexactness) and comparing it to Algorithm 1 (with the
same box radius), the former will generally be much faster than the latter. A suitable
way to evaluate the run time is to compare the number of times Problems (PC-Box)
and (εPC-Box) need to be solved, respectively, as they require the majority of
the computing time and are equally difficult to solve. (Here, we assume that both
problems are solved with equal precision.) For each box added to the collection
B in either algorithm, one of these problems has to be solved. Consequently, the
longer run time of Algorithm 1 is partly due to the fact that P r

2 is a superset of P r
c ,

which means that more boxes are required to cover P r
2 than P r

c . However, even if the
error bounds ε are small such that P r

2 and P r
c are almost equal, Algorithm 1 will be

slower. This is due to the fact that instead of only the tangent boxes, all neighboring
boxes have to be tested with (εPC-Box) in each loop of Algorithm 1. While this
does not matter in the interior of P r

2 (as all neighboring boxes are in fact in P r
2 in

that case), it is very inefficient at the boundary of P r
2 . This is the motivation for the

second strategy.
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2.3.2 Strategy 2

By Lemma 2.9, P r
2 has the same dimension as the space of variables Rn. This means

that it can be described much more efficiently by its topological boundary ∂P r
2 .

To be more precise, Rn \ ∂P r
2 consists of different connected components that lie

either completely inside or completely outside P r
2 . So if we know ∂P r

2 , we merely
have to test one point of each connected component if it is contained in P r

2 or not
to completely determine P r

2 . Therefore, the idea of our second strategy is to only
compute ∂P r

2 .
Let

ϕ : Rn → R, u �→ min
α∈�k

(

‖DJr(u)�α‖2
2 − (α�ε)2

)

. (2.5)

This map is well-defined since �k is compact, i.e., the minimum always exists.
By Lemma 2.9, we have ∂P r

2 ⊆ ϕ−1(0). Our goal is to compute ϕ−1(0) via a
continuation approach. To this end, we first have to show that ϕ is differentiable.
We will do this by investigating the properties of the optimization problem in (2.5),
i.e., of the problem

min
α∈Rk

ω(α),

s.t.

k
∑

i=1

αi = 1, (2.6)

αi ≥ 0 ∀i ∈ {1, . . . , k},

for

ω(α) := ‖DJr(u)�α‖2
2 − (α�ε)2 = α�(DJ r(u)DJ r(u)� − εε�)α.

This leads to the following result.

Theorem 2.10 Let ū ∈ ϕ−1(0) such that (2.6) has a unique solution ᾱ ∈ �k with
ᾱi > 0 for all i ∈ {1, . . . , k}. Let (2.6) be uniquely solvable in a neighborhood of
ū. Then there is an open set U ⊆ R

n with ū ∈ U such that ϕ|U is continuously
differentiable.

Proof See Appendix A. ��
For a standard continuation approach, we also have to show that ϕ−1(0) is a

manifold. By the Level Set Theorem (cf. [19], Corollary 5.14), to properly show
that ϕ−1(0) is a manifold in a neighborhood of some ū ∈ ϕ−1(0), we would have
to show that Dϕ|U(ū) �= 0 (cf. (A.5)). From the theoretical point of view, this poses
a problem as there is no obvious way to achieve this. In practice however, we can
test this by checking if the norm of Dϕ|U(ū) is below a certain threshold. If this
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is the case, and if ϕ−1(0) is indeed not a manifold, we again have to consider all
neighboring boxes as tangent boxes as in strategy 1. Otherwise, if Dϕ|U(ū) �= 0,
we can compute the tangent space Tū of ϕ−1(0) at ū via

Tū = ker(Dϕ(ū)).

Finally, in analogy to (PC-Box) and (εPC-Box), we will use the following problem
to test if a box B contains part of ∂P r

2 :

min
u∈B ϕ(u)

2. (∂εPC-Box)

The resulting continuation method is presented in Algorithm 2.

Remark 2.11

1. Since for every evaluation of ϕ the solution of the quadratic problem (2.6) has to
be computed, (∂εPC-Box) is significantly more difficult to solve than (εPC-Box).
Additionally, we are looking for the points u where ϕ(u) = 0, i.e., where
the problem (2.6) is not positive definite. This increased difficulty of Strat-
egy 2 is compensated by the fact that far fewer boxes have to be checked
with (∂εPC-Box) than with (εPC-Box) in Strategy 1.

2. When all εi = ε̄ are equal, ϕ(u) = −ε̄2 for all u ∈ P r
c , i.e., ϕ is constant

on the Pareto critical set P r
c . This means that local solvers may fail to find a

minimum of ϕ when the box B in (∂εPC-Box) has a nonempty intersection with
P r . An obvious but expensive way to circumvent this problem is to start the
local solver multiple times with different initial points. Alternatively, one can
use sufficient conditions for a box B containing part of ϕ−1(0) before actually
solving (∂εPC-Box). For example, by the intermediate value theorem, if there are
two points in B where ϕ has different sign, we immediately know that ϕ(u) = 0
for some u ∈ B. (But note that for this method, we still need to find a point in
ϕ−1(0) ∩ B to be able to calculate the tangent space of ϕ−1(0)).

3. In practice, error bounds which are zero can cause problems for the stability of
Strategy 2. For example, in Fig. 2b, the width of P r

2 becomes arbitrarily small
near (1, 1)�. As a result, Strategy 2 may jump between different parts of the
boundary and thus miss certain parts. Additionally, since the boundary of P r

2
typically intersects the Pareto critical set Pc in this case, (∂εPC-Box) may be
difficult to solve (as in 2.). Thus, in practice, one should use error bounds that are
slightly larger than zero, even if the corresponding gradients are exact. �



56 S. Banholzer et al.

Algorithm 2 Strategy 2: boundary-continuation algorithm for inexact gradients
Given: Radius r > 0 of boxes.

1: Choose an initial point u0 ∈ ∂P r
2 and initialize B = {B(u0, r)} and a queue Q = {u0}.

2: whileQ �= ∅ do
3: Remove the first element ū from Q.
4: If ‖Dϕ(ū)‖2 is small set T = R

n. Otherwise, compute the tangent space
T = ker(Dϕ(ū)).

Predictor:
5: Find all neighboring boxes of B(ū, r) that have a nonempty intersection

with ū+ T and have not been considered before, i.e.,

B′(ū, r) = {B ′ ∈ B(r) : B ′ ∩ B(ū, r) �= ∅, B ′ ∩ ū+ T �= ∅} \ B.

Corrector:
6: for B ′ ∈ B′(ū, r) do
7: Solve (∂εPC-Box) for B ′. Let θ(B ′) be the optimal value and u′ be the

solution.
8: if θ(B ′) = 0 then
9: Add u′ to Q and B ′ to B.

10: end if
11: end for
12: end while

2.4 Globalization Approach

Note that all algorithms presented in this section so far approximate either Pc,
P r

2 , or ∂P r
2 by starting in an initial point u0 and then locally exploring in all

(tangent) directions. Thus, if the set we want to approximate is disconnected, we can
only compute the connected component that contains u0. In the following, we will
describe how we can solve this problem, i.e., how our methods can be globalized.

As mentioned earlier, an advantage of using boxes in the continuation method
instead of points is the fact that it is easy to detect whether a region has already been
explored. In particular, this allows us to start the continuation in multiple initial
points at the same time, by simply adding all of them to the queue Q in step 1 of
Algorithms 1 or 2 (and initializing the covering B with the corresponding boxes).
As a result, to globalize our methods, we merely have to find an initial set U0 of
points such that the intersection of U0 with each connected component is nonempty.

For obtaining an initial set, we make use of the optimization problems that
verify if a box contains part of the set we want to approximate, i.e., the prob-
lems (PC-Box), (εPC-Box), and (∂εPC-Box). The idea is to consider a box covering
as in (2.2) with large radius R and then simply test each box for relevant points
using these problems. Let B0 be a compact superset of the set that we want to
approximate (i.e., of Pc, P r

2 or ∂P r
2 ), e.g., a large outer box. For ease of notation,

we assume that B0 is a union of boxes in B(R). For the case of the Pareto critical set
Pc, i.e., the globalization of the exact continuation method, the resulting method is
presented in Algorithm 3. The corresponding globalization methods for Algorithm 1
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and 2 are obtained by replacing (PC-Box) in step 3 by (εPC-Box) and (∂εPC-Box),
respectively.

Algorithm 3 Global initialization
Given: Outer box B0, Radius R > 0 of boxes.

1: Initialize U0 = ∅.
2: for B ∈ B(R) with B ∩ B0 �= ∅ do
3: Solve (PC-Box) for B. Let θ(B) be the optimal value and ū be the solution.
4: if θ(B) = 0 then
5: Add ū to U0.
6: end if
7: end for

The radius R has to be chosen such that for each connected component, there
is at least one box in our covering that only has an intersection with the desired
component. In theory,R can obviously become very small if two different connected
components are very close to each other. In this case, Algorithm 3 becomes
infeasible to use, as the number of boxes that have to be tested becomes too large.
In practice however, the components are often sufficiently far apart such that a large
radius is sufficient and only few boxes have to be considered.

For the globalization of the exact continuation method and Algorithm 1, we only
have to take the non-connectivity of Pc and P r

2 into account. For Algorithm 2, an
additional problem may arise since the boundary ∂P r

2 does not necessarily need
to be smooth. Non-smoothness of ∂P r

2 is caused by points in which ϕ is not
differentiable. (By Theorem 2.10, these are points where the solution of (∂εPC-Box)
is not unique.) In these points, ∂P r

2 does not possess a tangent space, and our method
will be unable to continue. As a result, we have to ensure in the initialization of
Algorithm 2 that we choose an initial point in U0 on each smooth component of
∂P r

2 . Visually, these can be thought of as the faces of P r
2 .

We conclude this section with some remarks on the practical use of Algorithm 3.

Remark 2.12

1. For MOPs with a high-dimensional variable space, Algorithm 3 quickly becomes
infeasible due to the exponential growth of the number of boxes in B(R). For
these cases, an initialization based on points instead of boxes should be used,
for example by applying methods from global optimization to modified versions
of (PC-Box), (εPC-Box), and (∂εPC-Box), where u is not constrained to a box
B.

2. Instead of directly looping over all boxes in step 2 of Algorithm 3, in some
cases it might be more beneficial to first execute a few steps of the subdivision
algorithm (cf. [8]) to quickly discard boxes that are far away from the Pareto
critical set. �
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3 Multiobjective Optimization of an Elliptic PDE Using the
RB Method

In this section, we will present a multiobjective (parameter) optimization problem
of an elliptic advection-diffusion-reaction equation and show how the reduced basis
method can be applied in view of the continuation method for inexact gradients from
Sect. 2.3 (see Algorithms 1 and 2).

3.1 Multiobjective Optimization of an Elliptic PDE

Given a domain � ⊂ R
d , d ∈ {2, 3}, which is divided into m′ pairwise disjoint

subdomains � = �1∪̇ . . . ∪̇�m′ , we consider the problem

min
y,u

J (y, u) :=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
2

∥

∥y − y1
d

∥

∥

2
L2(�)

...

1
2

∥

∥

∥y − yk−1
d

∥

∥

∥

2

L2(�)
1
2 ‖u‖2

Rm

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(MPOP)

s.t.

−∇ ·
[(

∑m′
i=1 κiχ�i

(x)
)

∇y(x)
]

+ c b(x) · ∇y(x)+ r y(x) = f (x) for x ∈ �,

∂y
∂η
(x) = 0 for x ∈ ∂�,

(EPDE)

and the bilateral box constraints

ua ≤ u ≤ ub, (BC)

where u = (u1, . . . , um) = (κ1, . . . , κm′ , c, r) ∈ R
m is the parameter of dimension

m := m′ + 2, Uad := {u ∈ R
m | ua ≤ u ≤ ub} is the admissible parameter set, and

y ∈ L2(�) =: H is the state variable.
For every i ∈ {1, . . . , m′} the parameter κi is the diffusion coefficient on the

subdomain �i . The vector field b ∈ L∞(�,Rd) is the given advection, whose
strength and orientation can be controlled by the parameter c ∈ R. Moreover,
the reaction coefficient is given by the parameter r > 0, and f ∈ H is the
inhomogeneity on the right-hand side of the equation. On the boundary, we impose
homogeneous Neumann boundary conditions.

The cost functions J1, . . . ,Jk−1 : H×R
m → R are of tracking type with respect

to the desired states y1
d , . . . , y

k−1
d ∈ H , and the cost function Jk : H × R

m → R

measures the parameter cost.
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Setting V := H 1(�) and using the parameter-dependent bilinear form a(u; ·, ·) :
V × V → R defined by

a(u;ϕ,ψ) :=
m

∑

i=1

uiai(ϕ, ψ)

:=
m′
∑

i=1

κi

∫

�i

∇ϕ(x) · ∇ψ(x) dx + c

∫

�

b(x) · ∇ϕ(x)ψ(x) dx

+ r

∫

�

ϕ(x)ψ(x) dx,

for all u ∈ R
m and ϕ,ψ ∈ V , and the linear functional F : V → R given by

F(ϕ) := 〈f, ϕ〉H for all ϕ ∈ V , we can write (EPDE) in its weak formulation as:
Find y ∈ V such that

a(u; y, ϕ) = F(ϕ) for all ϕ ∈ V (3.1)

is satisfied. It is possible to show the unique solvability of (3.1) under some
conditions on the parameter u.

Theorem 3.1 There are κmin ∈ (0,∞)m
′
, cmin, cmax ∈ R with cmin < cmax and

rmin ∈ (0,∞) such that (3.1) has a unique solution y(u) ∈ V for every parameter
u = (κ, c, r) ∈ R

m with κ > κmin, cmin < c < cmax and r > rmin.

Proof It is straightforward to show that for all parameters u ∈ R
m the bilinear

form a(u; ·, ·) and the linear functional F are continuous, and that there are κmin ∈
(0,∞)m

′
, cmin, cmax ∈ R with cmin < cmax and rmin ∈ (0,∞) such that a(u; ·, ·)

is coercive for all u = (κ, c, r) ∈ R
m with κ > κmin, cmin < c < cmax and r >

rmin. Now the Lax–Milgram Theorem can be applied to show the unique solvability
of (3.1). ��

With Theorem 3.1 in mind, we can introduce the solution operator of the elliptic
PDE.

Definition 3.2 Define the set Ueq := (κmin,∞)× (cmin, cmax)× (rmin,∞) with the
constants from Theorem 3.1. Let S : Ueq → V ↪→ H be defined as the solution
operator of (3.1), i.e., the function y := S(u) solves the weak formulation (3.1) for
any parameter u ∈ Ueq.

Remark 3.3 In the following, we suppose that it holds Uad ⊂ Ueq. �
Using the explicit dependence of the state y on the parameter u for all u ∈ Ueq,

the essential cost functions J1, . . . , Jk : Ueq ⊂ R
m → R can be defined.

Definition 3.4 For any i ∈ {1, . . . , k} let the essential cost function Ji : Ueq ⊂
R
m → R be given by Ji(u) := Ji (S(u), u) for all u ∈ Ueq.
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For applying the continuation method from Sect. 2, which is based on The-
orem 2.4, to solve this multiobjective parameter optimization problem, the cost
functions J1, . . . , Jk need to be twice continuously differentiable. This is the
statement of the next lemma.

Lemma 3.5 The cost functions J1, . . . , Jk : Ueq ⊂ R
m → R are twice

continuously differentiable.

Proof It is clear that the cost function Jk is twice continuously differentiable.
Furthermore, it is possible to show that the solution operator S of (3.1) is twice
continuously differentiable (this can be shown by rewriting (3.1) in the form
e(y, u) = 0 and then using the implicit function theorem, cf. [15, Section 1.6]).
From this, it immediately follows that the cost functions J1, . . . , Jk−1 are twice
continuously differentiable as well. ��

For later use, we need an explicit formula for the gradients ∇J1, . . . ,∇Jk .
Therefore, we introduce the so-called adjoint equation for all i ∈ {1, . . . , k − 1}:
Find p ∈ V such that it holds

a(u;ϕ, p) = 〈yid − S(u), ϕ〉H for all ϕ ∈ V. (3.2)

With the same arguments as in Theorem 3.1, it is possible to show that (3.2) has a
unique solution for all u ∈ Ueq.

Definition 3.6 Denote by Ai : Ueq → V ↪→ H the solution operator of the adjoint
Eq. (3.2) for all i ∈ {1, . . . , k − 1}.

Now a small computation shows that

J ′i (u)h = 〈S(u)− yid ,S ′(u)h〉H = ∂ua(u;S(u),Ai (u))h,

which yields

∇Ji(u) =
⎛

⎜

⎝

∂ua(u;S(u),Ai (u))e1
...

∂ua(u;S(u),Ai (u))em

⎞

⎟

⎠ =
⎛

⎜

⎝

a1(S(u),Ai (u))
...

am(S(u),Ai (u))

⎞

⎟

⎠ (3.3)

for all i ∈ {1, . . . , k − 1}. Lastly, it is obvious that ∇Jk(u) = u.

3.2 The Reduced Basis Method

For computing the Pareto critical set of the problem (MPOP) by the exact con-
tinuation method introduced in Sect. 2.2, the problem (PC-Box) has to be solved
numerous times. However, already one gradient evaluation of all cost functions
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∇J1(u), . . . ,∇Jk(u) involves the solution of one state and k − 1 adjoint equations.
Thus, using a finite element discretization for the weak formulations (3.1) and (3.2),
which leads to large linear equation systems, is numerically very costly and time
consuming. Therefore, the use of reduced-order modelling (ROM) is a common
tool to lower the computational costs.

The idea of ROM is to use a low-dimensional subspace V r ⊂ V as a surrogate
for the infinite-dimensional space V in the weak formulations (3.1) and (3.2). Given
a finite-dimensional reduced-order space V r ⊂ V , the reduced-order state equation
reads: Find yr ∈ V r such that

a(u; yr , ϕ) = F(ϕ) for all ϕ ∈ V r (3.4)

is satisfied.
With the same arguments as in Theorem 3.1 it can be shown that (3.4) has

a unique solution for all u ∈ Ueq. Therefore, we can follow the procedure of
Sect. 3.1 and introduce the solution operator Sr : Ueq → V r ⊂ V ↪→ H of
the ROM state equation (3.4) and consequently the ROM essential cost functions
J r1 , . . . , J

r
k , which are defined by J ri (u) := Ji (Sr (u), u) for all u ∈ Ueq and all

i ∈ {1, . . . , k}. Again, it can be shown that the functions J r1 , . . . , J
r
k are twice

continuously differentiable so that they fit into the framework of Theorem 2.4. The
gradient of the cost functions can also be displayed by the reduced-order adjoint
equations

a(u;ϕ, pr) = 〈yid − Sr (u), ϕ〉H for all ϕ ∈ V r, (3.5)

for all i ∈ {1, . . . , k − 1}, whose solution operator we denote by Ar
i : Ueq → V r ⊂

V ↪→ H . With this definition it holds

∇J ri (u) =
⎛

⎜

⎝

∂ua(u;Sr (u),Ar
i (u))e1

...

∂ua(u;Sr (u),Ar
i (u))em

⎞

⎟

⎠ =
⎛

⎜

⎝

a1(Sr (u),Ar
i (u))

...

am(Sr (u),Ar
i (u))

⎞

⎟

⎠ (3.6)

for all i ∈ {1, . . . , k − 1}. Moreover, we have ∇J rk (u) = u = ∇Jk(u).
In this paper, we use a particular model-order reduction technique, namely the

reduced basis (RB) method (see e.g. [13, 25, 26]). In the RB method, the snapshot
space V r is spanned by solutions of the state equation and the adjoint equations
to different parameter values u ∈ Uad. The reduced basis is then given by an
orthonormal basis (�1, . . . , �N) of the space V r .

By using the RB method we introduce an error in the state equation, which
transfers to the cost functions, its gradients, and eventually to the Pareto critical
set, which we want to compute. In Sect. 2.3, two strategies were presented to deal
with the inflicted inexactness in the gradients of the multiobjective optimization
problem. Both are based on the estimates (2.4) for the errors in the gradients of
the cost functions. Thus, when applying the RB method we need to ensure these
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estimates. This is done by using the well-known greedy algorithm (cf. [5]). Given
a sufficiently fine finite parameter training set P ⊂ Uad, new solution snapshots
are computed until the error in the gradients of all cost functions is smaller than
the predefined error tolerance for all parameters in P . The parameter for the new
snapshots is thereby chosen as the one for which the error in the gradient is the
largest. The procedure is summarized in Algorithm 4.

Algorithm 4 Greedy algorithm
Given: Parameter set P ⊂ Uad , greedy tolerances ε1, . . . , εk > 0.

1: Choose u ∈ P , compute S(u),A1(u), . . . ,Ak−1(u).
2: Set V r = span{S(u),A1(u), . . . ,Ak−1(u)} and compute the reduced basis by orthonormal-

ization.
3: while maxu∈P maxi∈{1,...,k−1}

∥

∥∇Ji(u)− ∇J ri (u)
∥

∥

2 > εi do
4: Choose (ū, i) = arg maxu∈P, i∈{1,...,k−1}

∥

∥∇Ji(u)− ∇J ri (u)
∥

∥

2.
5: Compute S(ū) and Ai (ū).
6: Set V r = span {V r ∪ {S(ū),Ai (ū)}} and compute the reduced basis by

orthonormalization.
7: end while

3.3 Error Estimation for the Gradients

In the greedy procedure in Algorithm 4, the error between the full-order and the
reduced-order gradients has to be evaluated. There are two strategies to do so.

1. The full-order gradients are computed and stored at the beginning of the greedy
procedure. Therefore, in each greedy iteration, only the reduced-order gradients
have to be computed and the error can be easily evaluated. Of course, this implies
large computational costs at the beginning of the greedy procedure. This method
is called strong greedy algorithm (cf. [5, 12]).

2. An a posteriori error estimator for the errors in the gradient is used, which
can be efficiently evaluated. This results in computational costs for the greedy
algorithm, which only depend on the reduced-order dimension N .

To be able to follow the second strategy, we introduce a rigorous a posteriori error
estimator for the error in the gradient of the cost functions.

Using the gradient representations (3.3) and (3.6), we can write for i ∈
{1, . . . , k − 1}

∥

∥∇Ji(u)−∇J ri (u)
∥

∥

2
2 =

m
∑

j=1

∣

∣aj (S(u),Ai (u))− aj (Sr (u),Ar
i (u))

∣

∣

2
.

Due to the bilinearity and the continuity of a1, . . . , am and the triangle inequality,
we can further write
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∣

∣aj (S(u),Ai (u))− aj (Sr (u),Ar
i (u))

∣

∣

≤ ∣

∣aj (S(u)− Sr (u),Ar
i (u))

∣

∣+ ∣

∣aj (S(u)− Sr (u),Ai (u)−Ar
i (u))

∣

∣

+ ∣

∣aj (Sr (u),Ai (u)−Ar
i (u))

∣

∣ (3.7)

≤Cj
(∥

∥S(u)− Sr (u)
∥

∥

V

∥

∥Ar
i (u)

∥

∥

V
+ ∥

∥S(u)− Sr (u)
∥

∥

V

∥

∥Ai (u)−Ar
i (u)

∥

∥

V

+ ∥

∥Sr (u)
∥

∥

V

∥

∥Ai (u)−Ar
i (u)

∥

∥

V

)

(3.8)

for all j ∈ {1, . . . , m}.
Therefore, we need a posteriori error estimators for the state and the adjoint

equations in order to be able to estimate the approximation error induced in the
gradients. To this end, we use the following well-known estimators (cf. [26]):

∥

∥S(u)− Sr (u)
∥

∥

V
≤ ‖rS(u)‖V ′

α(u)
=: �S(u),

∥

∥Ai (u)−Ar
i (u)

∥

∥

V
≤

∥

∥rAi
(u)

∥

∥

V ′
α(u)

+�S(u) =: �Ai
(u),

where the residuals rS(u) and rAi
(u) are given by

〈rS(u), ϕ〉V ′,V := F(ϕ)− a(u;Sr (u), ϕ) for all ϕ ∈ V,

〈rAi
(u), ϕ〉V ′,V := 〈yid − Sr (u), ϕ〉H − a(u;ϕ,Ar

i (u)) for all ϕ ∈ V.

For methods on how to estimate α(u) and to evaluate the terms ‖rS(u)‖V ′ and
∥

∥rAi
(u)

∥

∥

V ′ efficiently, we refer for example to [26].

Remark 3.7 Since Jk = J rk , the gradients of the two functions also coincide, so that
the ∇Jk is approximated exactly by ∇J rk . �

4 Numerical Results

In this section, we will numerically investigate the application of the continuation
method presented in Sect. 2 to the PDE-constrained multiobjective optimization
problem using the reduced basis method in Sect. 3.

For the discretization of the state and adjoint equations, we used linear finite
elements with 714 degrees of freedom.
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4.1 Generation of the Reduced Basis

For investigating the generation of the reduced basis by the greedy algorithm in
Algorithm 4, we consider the MPOP

(

J1(u)

J2(u)

)

=
(

1
2

∥

∥S(u)− y1
d

∥

∥

2
H

1
2 ‖u‖2

R4

)

(4.1)

with u = (κ1, κ2, c, r), �1 = (0, 1) × (0, 0.5), �2 = (0, 1) × (0.5, 1), and the
admissible parameter set

Uad = {u = (κ1, κ2, c, r) ∈ R
4 | 0.2 ≤ κi ≤ 5 (i = 1, 2), c = 0, r = 0.5}.

The reason for setting c = 0 in this example is that the coercivity constant α(u)
of the bilinear form a(u; ·, ·) is explicitly given by α(u) = min{κ1, κ2, r} for all
u ∈ Uad , so that we expect a good efficiency of the error estimator of both the state
and adjoint equations. This is verified by the results shown in Fig. 3a, where the
efficiency of the error estimator for both equations is shown for a given reduced basis
for 1000 randomly chosen parameter values. However, the resulting efficiency of
the error estimator for the error in the gradient is between 103 and 106 (see Fig. 3b)
and thus not well-suited for a greedy procedure, which depends on a good error
estimation. The huge overestimation of the error estimator is mainly due to the use
of the triangle inequality (3.7) and the continuity estimates (3.8), as can be seen in
Fig. 3b.

Compared to the strong greedy algorithm, we can see in Table 1 that this
overestimation results in far more basis elements than actually needed to reach the
given error bound. Since we want to investigate the influence of the error bounds in
the estimate (2.4) on the problem, we want that the estimate (2.4) is satisfied sharply

0 200 400 600 800 1000
100

101

Overestimation of errors in state and adjoint equation

State Equation
Adjoint Equation

(a)

0 200 400 600 800 1000
100

102

104

106
Overstimation of gradient errors

Estimate 3.7
Estimate 3.8
Error Estimator

(b)

Fig. 3 Overestimations for 1000 randomly selected parameter values. (a) State and adjoint
equation. (b) Gradient



ROM-Based MOO of Elliptic PDEs via Numerical Continuation 65

Table 1 Number of basis
functions for different error
bounds

Error bound Strong greedy Error estimate

ε = 1e − 6 24 56

ε = 1e − 5 20 50

ε = 1e − 4 16 40

ε = 1e − 3 12 32

ε = 1e − 2 12 26

ε = 1e − 1 10 20

by the RB. Therefore, we will not use the error estimator to generate the basis, but
instead use the strong greedy algorithm.

4.2 Application of the Continuation Methods to an MPOP

For the numerical investigation of the continuation method applied to a PDE-
constrained multiobjective parameter optimization problem together with the use
of the reduced basis method, we consider the MPOP

⎛

⎜

⎜

⎝

J1(u)

J2(u)

J3(u)

J4(u)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

1
2 ‖S(u)− S((0.7, 0.8, 0.5))‖2

H
1
2 ‖S(u)− S((2, 0.5, 0.5))‖2

H
1
2 ‖S(u)− S((3,−0.5, 0.5))‖2

H
1
2 ‖u‖2

R3

⎞

⎟

⎟

⎠

(4.2)

with u = (κ, c, r) and

Uad = {u = (κ, c, r) ∈ R
3 | 0.5 ≤ κ ≤ 3, −1 ≤ c ≤ 1, r = 0.5},

i.e., the reaction parameter r is a constant so that we only optimize the diffusivity in
the whole domain � and the strength and orientation of the advection field b. Thus,
this can be seen as a problem with two parameters.

As described before, the reduced basis is generated by the strong greedy
Algorithm 4, where the error bounds ε1, . . . , ε4 are chosen in accordance with the
estimate (2.4). As a reference, the exact solution of (4.2) (via exact continuation and
FEM discretization of the weak formulations) is shown in Fig. 4.

Remark 4.1 Since (4.2) is constrained to a box, we have to use a constrained version
of the exact continuation method (cf. [14]) to calculate Pareto critical points that lie
on the boundaries of (4.2). But note that for this example, all Pareto critical points
on the boundary are also Pareto critical if we ignore the constraints. In other words,
for each Pareto critical point ū on the boundary, there is a sequence of Pareto critical
point in the interior that converges to ū. By continuity of DJ , the gradients of the
(active) inequality constraints in the KKT conditions can be ignored. As a result, we
can treat (4.2) as an unconstrained problem that we only solve in a certain area. �
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Fig. 4 The Pareto critical set
of (4.2)

Fig. 5 Results of Strategy 1 (left) and 2 (right) for the MPOP (4.2) with ε =
(0.03, 0.03, 0.01, 0.01)

As a first test, we will compare the time needed to compute the exact solution
of (4.2) with the time needed for Strategy 1 and 2. For the error bounds, we choose
ε = (0.03, 0.03, 0.01, 0.01), and for the box radius we choose r = 3−0.5

29 ≈ 0.0049.
The results are shown in Fig. 5.

All three methods were implemented in Matlab. For the solution of the sub-
problems (PC-Box), (εPC-Box), and (∂εPC-Box), the SQP-Algorithm of fmincon
was used. (For increased stability during the continuation, each subproblem where
the SQP-Algorithm found an optimal value larger than zero was restarted using
the Interior-Point-Method and the Active-Set-Method of fmincon). The runtime,
number of boxes, and number of subproblems needed are shown in Table 2. When
comparing Strategy 1 and Strategy 2, we see that Strategy 2 needs about 20 times
fewer boxes and solutions of subproblems than Strategy 1. This is to be expected,
since Strategy 2 only computes a covering of the boundary of P r

2 , i.e., of a lower-
dimensional set. When comparing the actual runtime, Strategy 2 is about 5 times
faster than Strategy 1, since the subproblems in Strategy 2 are more expensive to
solve than the ones in Strategy 1 (cf. Remark 2.11). Finally, Strategy 2 is about 63
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Table 2 Comparison of the performance of the exact continuation method, Strategy 1, and
Strategy 2 for Example (4.2). The number of subproblems is split up into subproblems for the
continuation and initialization (cf. Sect. 2.4)

Algorithm # Boxes # Subproblems Runtime (in seconds)

Exact cont. 15916 18721+ 25 17501s

Strategy 1 21750 24490+ 25 1426s

Strategy 2 899 1027+ 225 276s

times faster than the exact continuation method with FEM discretization, illustrating
the large increase in efficiency we gain from our approach.

Although it is a lot quicker to use inexact gradients from ROM instead of
the exact gradients via FEM, it is important to keep in mind that our methods
are computing a superset of the actual Pareto critical set. For example, in Fig. 5,
the right side of the lower connected component is only approximated poorly by
P r

2 . Therefore, we will now investigate the influence of the error bounds ε =
(ε1, ε2, ε3, ε4) on P r

2 , by applying Strategy 2 with reduced bases for different values
of ε. Note that in all our tests we set ε4 = 0.01, although the error in the gradient of
the fourth cost function is zero for all parameters. This is done to make the solution
of (∂εPC-Box) in line 7 of Algorithm 2 numerically stable (cf. Remark 2.11).

The results of our experiment can be seen in Fig. 6. Generally, as expected, the
boundary ∂P r

2 encloses the Pareto critical set Pc sharper and sharper for decreasing
ε. Moreover, we observe that it is crucial to choose an ε which is not too large:
For the value ε = (0.1, 0.1, 0.1, 0.01) the shape of the boundary ∂P r

2 implies that
the set P r

2 is connected, i.e., we lose the topological information that the Pareto
critical set actually consists of two connected components. Decreasing ε to ε =
(0.0885, 0.0885, 0.0885, 0.01) we are in the limit case in which the boundary ∂P r

2
touches the box constraints at around (2.3, 1), so that this is the approximate ε for
which we regain the basic topological information of a disconnected Pareto critical
set.

If we compare the results for ε = (0.03, 0.03, 0.03, 0.01), ε = (0.03, 0.03,
0.01, 0.01), and ε = (0.03, 0.01, 0.01, 0.01), the influence of changing one
component of ε becomes obvious. For ε = (0.03, 0.03, 0.03, 0.01) the set ∂P r

2
encloses the set Pc quite sharply at the upper connected component and at the left
part of the lower connected component, where the second and third component of
the corresponding KKT-multipliers α are small. On the other hand, in the right part
of the lower connected component of Pc, where the second and third component of
the corresponding KKT-multipliers are relatively large, the deviation of ∂P r

2 to Pc
is still large. Consequently, first reducing ε3 and then also ε2 from 0.03 to 0.01 leads
to a clearly visible sharper enclosing of this part of Pc.
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Fig. 6 Results of Strategy 2 for different values of ε

5 Conclusion and Outlook

In this chapter, we present a way to efficiently solve multiobjective parameter
optimization problems of elliptic PDEs by combining the reduced basis method
from PDE-constrained optimization with the continuation approach from multi-
objective optimization, which computes a box covering of the Pareto critical set.
Using the RB method in this setting introduces an error in the objective functions
and their gradients that has to be considered when solving the MPOP. To this
end, we require that the reduced basis guarantees error bounds for the gradients
of the objective functions. These error bounds are then incorporated into the KKT
optimality conditions for MOPs to derive a tight superset P r

2 of the actual Pareto
(critical) set. This superset can be computed using a straightforward modification of
the continuation method for MOPs (Strategy 1). Since P r

2 has the same dimensions
as the variable space of the MOP, we afterwards present a second method that only
computes the boundary ∂P r

2 of P r
2 (Strategy 2). We do this by showing that ∂P r

2
can be written as the level set of a differentiable mapping, which again enables the
use of a continuation approach to compute it. For constructing the reduced basis, we
use a greedy procedure which incorporates, and thus ensures, the error bounds for
the gradients of the objective functions.

Our numerical tests show that the presented a posteriori error estimator for the
error in the gradients is not well-suited for the application in a greedy procedure
due to its bad efficiency. Therefore, a strong greedy algorithm is used to build the
reduced basis. Concerning the solution of the MPOP we investigate two aspects:
First, the runtimes of our methods are compared. In our case, Strategy 1 is about 13
times and Strategy 2 about 63 times faster than the exact solution of the MPOP (via
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the classical continuation method with FEM discretization). Second, the influence
of the error bound for the gradients of the objective functions is investigated. As
expected, a smaller error bound leads to a tighter covering of the Pareto critical set.
Moreover, we observe that single components of the error bound strongly influence
the tightness of the covering in areas, in which the corresponding components of the
KKT-multipliers are large. Thus, by individually adapting the single components of
the error bound, we can nicely control the tightness of the covering.

For future work, there are some theoretical and practical aspects that should be
investigated further:

• As mentioned in Remark 2.11, in certain situations there can be difficulties when
solving the problem (∂εPC-Box). In these situations, specialized methods that
take these difficulties into account should be developed and used instead of
standard methods for constrained optimization.

• If the number of objectives of the MPOP is larger than the number of variables, it
may be possible to combine our approaches in this chapter with the hierarchical
decomposition of the Pareto critical set presented in [10].

• The development of a more efficient a posteriori error estimator for the error
in the gradients of the objective functions would allow to use it in the greedy
procedure. In that way, the expensive strong greedy procedure would be avoided
in the offline phase. One way to do so might be the application of localized RB
methods, see e.g. [20].

• As explained in the globalization approach in Sect. 2.4, we have to use multiple
initial points to ensure that we find all connected components of P r

2 (and faces
of ∂P r

2 ). Due to the local nature of the continuation method, this approach can
potentially be parallelized, increasing the efficiency of our methods even more.

• If a decision maker is present with a certain preference, it may be worth to steer
our continuation method in a direction that results from that preference instead
of approximating the complete Pareto set. For the case with exact gradients, this
was done in [28].

Acknowledgments This research was funded by the DFG Priority Programme 1962 “Non-smooth
and Complementarity-based Distributed Parameter Systems”.

Appendix A: Proof of Theorem 2.10

To prove Theorem 2.10, we first have to investigate some of the properties of the
optimization problem (2.6). This problem is quadratic with linear equality and
inequality constraints. We will first investigate the uniqueness of the solution in
the following lemma.

Lemma A.1 Let u ∈ ϕ−1(0) and let α1 and α2 be two solutions of (2.6) with
α1 �= α2. Then ω(α) = 0 for all α ∈ span({α1, α2}) and
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span({α1, α2}) ∩ ker(DJ (u)�) �= ∅. (A.1)

Proof For c1, c2 ∈ R \ {0} we have

ω(c1α
1 + c2α

2)

= (c1α
1 + c2α

2)�(DJ r(u)DJ r(u)� − εε�)(c1α
1 + c2α

2)

= c2
1ω(α

1)+ 2(c1α
1�DJr(u)DJ r(u)�c2α

2 − c1α
1�εε�c2α

2)+ c2
2ω(α

2)

= 2(c1α
1�DJr(u)DJ r(u)�c2α

2 − c1α
1�εε�c2α

2)

= 2c1c2((DJ
r(u)�α1)�(DJ r(u)�α2)− (ε�α1)(ε�α2)).

From ω(α1) = ω(α2) = 0 it follows that ε�α1 = ‖DJr(u)�α1‖ and ε�α2 =
‖DJr(u)�α2‖. Let � be the angle between DJr(u)�α1 and DJr(u)�α2. Then

ω(c1α
1 + c2α

2)

= 2c1c2(cos(�)‖DJr(u)�α1‖‖DJr(u)�α2‖ − ‖DJr(u)�α1‖‖DJr(u)�α2‖)
= 2c1c2(cos(�)− 1)‖DJr(u)�α1‖‖DJr(u)�α2‖. (A.2)

Assume cos(�) �= 1 (i.e., cos(�) − 1 < 0), ‖DJr(u)�α1‖ �= 0, and
‖DJr(u)�α2‖ �= 0. If we choose c1 = t and c2 = 1 − t for t ∈ (0, 1), then
tα1 + (1− t)α2 ∈ �k and ω(tα1 + (1− t)α2) < 0, which contradicts u ∈ ϕ−1(0).
If ‖DJr(u)�α1‖ = 0 or ‖DJr(u)�α2‖ = 0, then (A.1) holds for ᾱ = α1 or
ᾱ = α2, respectively. If cos(�) − 1 = 0, then DJr(u)�α1 and DJr(u)�α2 are
linearly dependent, so there are c̄1, c̄2 ∈ R \ {0} such that DJr(u)�ᾱ = 0 for
ᾱ = c̄1α

1 + c̄2α
2. In particular, in any case we must have ω(α) = 0 for all

α ∈ span({α1, α2}). ��
The previous lemma implies that for k = 2, the solution of (2.6) for u ∈ ϕ−1(0)

is non-unique iff DJr(u)DJ r(u)� − εε� = 0. For k > 2, we can only have non-
uniqueness if (A.1) holds. If we consider the dimensions of the spaces in (A.1), we
see that in the generic case, it can only hold if

dim(span({α1, α2}) ∩ ker(DJ (u)�)) ≥ 1

⇔ 2+ k − rk(DJ(u)�)− k ≥ 1

⇔ rk(DJ(u)�) ≤ 1,

i.e., if all gradients of the objectives are linearly dependent in u. This motivates us
to assume that in general, the solution of (2.6) is unique for almost all u ∈ ϕ−1(0).

We will now investigate the differentiability of ϕ. Our strategy is to apply the
implicit function theorem to the KKT conditions of (2.6) to obtain a differentiable
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function φ that maps a point u ∈ R
n onto the solution of (2.6) in u. This would

imply the differentiability of ϕ via concatenation with ω. An obvious problem
here is the fact that (2.6) has inequality constraints which, when activated or
deactivated under variation of u, lead to non-differentiabilities in φ. Note that an
inequality constraint being active means that one component of α is zero, i.e., one
of the objective functions has no impact on the current problem. Thus, for our
theoretical purposes, if there is an active inequality constraint in (2.6) we will just
ignore the corresponding objective function. This approach is strongly related to the
hierarchical decomposition of the Pareto critical set (cf. [10]).

For the reasons mentioned above, we will now consider the case where the
solution of (2.6) is strictly positive in each component. The following lemma shows
a technical result that will be used in a later proof.

Lemma A.2 Let u ∈ ϕ−1(0) and let ᾱ ∈ �k be a solution of (2.6) with αi > 0
∀i ∈ {1, . . . , k}. Then ᾱ is unique if and only if there is no β ∈ R

k \ {0} with
ω(β) = 0 and

∑k
i=1 βi = 0.

Proof We will show that α is non-unique if and only if there is some β ∈ R
k with

ω(β) = 0 and
∑k

i=1 βi = 0.
⇒: Let α̃ be another solution of (2.6). Then, as in the proof of Lemma A.1,

we must have ω(c1ᾱ + c2α̃) = 0 for all c1, c2 ∈ R. This means we can choose
β = ᾱ − α̃.
⇐: Let β ∈ R

k with ω(β) = 0 and
∑k

i=1 βi = 0. Let s > 0 be small enough
such that ᾱ + sβ ∈ �k . Then, as in (A.2), we have

ω(ᾱ + sβ) = 2s(cos(�)− 1)‖DJr(u)�ᾱ‖‖DJr(u)�β‖ ≤ 0.

Since by assumption ϕ(u) = 0 we must have ω(ᾱ + sβ) = 0, so ᾱ + sβ is another
solution of (2.6). ��

To be able to use the KKT conditions of (2.6) to obtain its solution, we have to
make sure that these conditions are sufficient. Since (2.6) is a quadratic problem, this
means we have to show that the matrix in the objective ω is positive semidefinite.

Lemma A.3 Let u ∈ ϕ−1(0) and let ᾱ ∈ �k be the unique solution of (2.6)
with ᾱi > 0 ∀i ∈ {1, . . . , k}. Then ω(β) ≥ 0 for all β ∈ R

k . In particular,
DJ(u)DJ(u)� − εε� is positive semidefinite.

Proof Assume there is some β ∈ R
k with ω(β) < 0, i.e., ε�β > ‖DJr(u)�β‖.

We distinguish between two cases:

Case 1:
∑k

i=1 βi = 0: Similar to the proof of Lemma A.1 we get

ω(ᾱ + sβ) < 2s((DJ r(u)�ᾱ)�(DJ r(u)�β)− (ε�ᾱ)(ε�β))

< 2s(cos(�)− 1)‖DJr(u)�ᾱ‖‖DJr(u)�β‖ ≤ 0
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for all s > 0. In particular, since ᾱ is positive, there is some s̄ > 0 such that
ᾱ + s̄β ∈ �k with ω(ᾱ + s̄β) < 0, which is a contradiction.

Case 2:
∑k

i=1 βi �= 0. W.l.o.g. assume that
∑k

i=1 βi = 1. Consider

ω̄ : R→ R, s �→ ω(ᾱ + s(β − ᾱ)).

Then ω̄(0) = 0 and ω̄(1) < 0. By assumption, we must have ω̄(s) > 0 for all s such
that ᾱ + s(β − ᾱ) ∈ �k . By continuity of ω̄ there must be some s∗ with ω̄(s∗) = 0.
Let β̄ := ᾱ + s∗(β − ᾱ). Using (A.2) we get

ω(ᾱ + ts∗(β − ᾱ)) = ω((1− t)ᾱ + t β̄)

= 2t (1− t)(cos(�)− 1)‖DJr(u)�ᾱ‖‖DJr(u)�β̄‖ ≤ 0

for all t ∈ (0, 1), which is a contradiction. ��
The previous results now allow us to prove Theorem 2.10.

Theorem 2.10 Let ū ∈ ϕ−1(0) such that (2.6) has a unique solution ᾱ ∈ �k with
ᾱi > 0 for all i ∈ {1, . . . , k}. Let (2.6) be uniquely solvable in a neighborhood of
ū. Then there is an open set U ⊆ R

n with ū ∈ U such that ϕ|U is continuously
differentiable.

Proof The KKT conditions for (2.6) are

(DJ (u)DJ(u)� − εε�)α −
⎛

⎜

⎝

λ+ μ1
...

λ+ μk

⎞

⎟

⎠ = 0,

k
∑

i=1

αi − 1 = 0,

αi ≥ 0 ∀i ∈ {1, . . . , k}, (A.3)

μi ≥ 0 ∀i ∈ {1, . . . , k},
μiαi = 0 ∀i ∈ {1, . . . , k}.

for λ ∈ R and μ ∈ R
k . By Lemma A.3 these conditions are sufficient for optimality.

By our assumption there is an open set U ′ with ū ∈ U ′ such that the solution of (2.6)
is unique and positive. Thus, on U ′, (A.3) is equivalent to

(DJ (u)DJ(u)� − εε�)α −
⎛

⎜

⎝

λ
...

λ

⎞

⎟

⎠
= 0,
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k
∑

i=1

αi − 1 = 0,

for some λ ∈ R. This system can be rewritten as G(u, (α, λ)) = 0 for

G : Rn × R
k+1 → R

k+1, (u, (α, λ)) �→
(

(DJ (u)DJ(u)� − εε�)α − (λ, . . . , λ)�
∑k

i=1 αi − 1

)

.

Derivating G with respect to (α, λ) yields

D(α,λ)G(u, (α, λ)) =
(

(DJ (u)DJ(u)� − εε�) (−1, . . . ,−1)�
(1, . . . , 1) 0

)

∈ R
(k+1)×(k+1).

Let λ̄ ∈ R such that G(ū, (ᾱ, λ̄)) = 0. (Note that uniqueness of ᾱ implies
uniqueness of λ̄ here.) For D(α,λ)G(ū, (ᾱ, λ̄)) to be singular, there would have to
be some v = (v1, v2) ∈ R

k+1 with

0 = D(α,λ)G(ū, (ᾱ, λ̄))v =
(

(DJ (ū)DJ (ū)� − εε�)v1 − (v2, . . . , v2)�
∑k

i=1 v
1
i

)

and thus

0 = v1�(DJ (ū)DJ (ū)� − εε�)v1 − v1�(v2, . . . , v2)�

= v1�(DJ (ū)DJ (ū)� − εε�)v1 − v2

k
∑

i=1

v1
i

= w(v1).

By Lemma A.2, this is a contradiction to the assumption that ᾱ is a unique solution
of (2.6). So D(α,λ)G(ū, (ᾱ, λ̄)) has to be regular. This means we can apply the
implicit function theorem to obtain open setsU ⊆ U ′ ⊆ R

n, V ⊆ R
k+1 with ū ∈ U ,

(ᾱ, λ̄) ∈ V and a continuously differentiable function φ = (φα, φλ) : U → V with

G(u, (α, λ)) = 0 ⇔ (α, λ) = φ(u) ∀u ∈ U, (α, λ) ∈ V.

In particular,

ϕ|U(u) = min
α∈�k

(

‖DJ(u)�α‖2 − (α�ε)2
)

= ‖DJ(u)�φα(u)‖2 − (φα(u)
�ε)2,

(A.4)
so ϕ|U is continuously differentiable. ��
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Remark A.4 From the proof of Theorem 2.10 we can even derive an explicit
formula for the derivative of ϕ|U in ū: First of all, the derivative of the implicit
function φ is given by

Dφ(ū)

= −G(α,λ)(ū, (ᾱ, λ̄))
−1Gu(ū, (ᾱ, λ̄))

= −
(

DJ(ū)DJ (ū)� − εε� −1k×1

11×k 0

)−1

·
⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

ᾱ�DJ(ū)∇2J1(ū)
...

ᾱ�DJ(ū)∇2Jk(ū)

01×n

⎞

⎟

⎟

⎟

⎠

+
(

DJ(ū)
∑k

i=1 ᾱi∇2Ji(ū)

01×n

)

⎞

⎟

⎟

⎟

⎠

.

By applying the chain rule to (A.4), we obtain

Dϕ|U(ū)

= 2(DJ (ū)�ᾱ)�
k

∑

i=1

ᾱi∇2Ji(ū)+
(

2(DJ (ū)�ᾱ)�DJ(ū)� − 2(ᾱ�ε)ε�
)

Dφα(ū)

= 2(DJ (ū)�ᾱ)�
k

∑

i=1

ᾱi∇2Ji(ū)+ 2ᾱ�
(

DJ(ū)DJ (ū)� − εε�
)

Dφα(ū)

= 2(DJ (ū)�ᾱ)�
k

∑

i=1

ᾱi∇2Ji(ū)+ 2(λ̄, . . . , λ̄)Dφα(ū). (A.5)

�
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Analysis and Solution Methods for
Bilevel Optimal Control Problems

Stephan Dempe, Felix Harder, Patrick Mehlitz, and Gerd Wachsmuth

Abstract In this chapter, we first provide an overview of literature addressing
the so-called bilevel optimal control problems which are hierarchical optimization
problems with two decision makers where at least one of them has to solve an
optimal control problem of ODEs or PDEs. By means of two examples from inverse
PDE control, we demonstrate how problem-tailored regularization and relaxation
approaches can be used to infer necessary optimality conditions in bilevel optimal
control. Finally, we present an algorithm which can be used to solve a class of bilevel
optimal control problems to global optimality.

Keywords Bilevel optimal control · Global optimization · Inverse optimal
control · Optimality conditions · Solution algorithm
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1 Introduction

A bilevel programming problem is an optimization problem (the so-called upper
level problem) whose objective functional and feasible region depend implicitly on
the solution set of a given parametric mathematical program (the so-called lower
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level problem). In abstract form, the upper level problem can be stated as

J (w, z) → min
w,z

w ∈ W

z ∈ �(w),

where, for each w, �(w) denotes the solution set of the lower level problem

j (w, z) → min
z

z ∈ Z(w).

Above, J, j : W × Z → R are given functionals on the product of two Banach
spaces W and Z ,W ⊂W is the so-called upper level feasible set, and the set-valued
mapping Z : W ⇒ Z assigns to each w ∈ W the set of lower level feasible points
Z(w) ⊂ Z . The decision order in bilevel programming is given as follows. First,
the upper level decision maker, the so-called leader, chooses an instance w ∈ W .
Afterwards, the lower level decision maker, the so-called follower, is capable
of computing the solution set �(w). Finally, the leader evaluates his objective
functional. Noting that the leader is allowed to choose arbitrary elements of �(w),
the above formulation of a bilevel programming problem reflects a cooperative
behavior of both decision makers which is related to the so-called optimistic
approach of bilevel optimization. Naturally, bilevel programming problems are not
convex even if all the data is convex. Furthermore, transformations which convert
the hierarchical model into a single-level program turn out to invoke nonsmoothness
and irregularity which is why bilevel programs are generally challenging from
the theoretical and numerical point of view. On the other hand, several real-
world applications e.g. from chemical engineering, road pricing, gas shipment,
and parameter reconstruction naturally result in mathematical models of bilevel
structure. A detailed introduction to the topic of bilevel programming can be found
in [2, 9, 13, 42] while a comprehensive overview of existing literature is presented
in [10]. The latter comprises a list of more than 1350 published books, PhD-theses,
and research articles concerned with bilevel optimization.

In bilevel optimal control (BOC), bilevel optimization problems are considered
where at least one of the decision makers has to solve an optimal control problem of
ordinary or partial differential equations (ODEs and PDEs) , see [23, 29, 43, 44] for
an introduction to optimal control. Therefore, models from BOC generally unite the
intrinsic difficulties of bilevel programming and optimal control, see [32]. In [3, 4],
the authors discuss the situation where the upper level decision maker has to solve
an optimal control problem of ODEs while certain penalty costs resulting from the
associated terminal state are computed at the lower level stage. The investigation
of such models is motivated by underlying applications from gas balancing in
energy networks. The estimation or reconstruction of parameters in optimal control
problems of ODEs or PDEs is considered theoretically in [12, 19, 20, 24, 46, 47].
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These so-called inverse optimal control problems, where only the lower level
decision maker has to solve an optimal control problem, arise e.g. in the context of
human locomotion, multi-agent scheduling, or aircraft control, see [1, 14, 36, 40].
Finally, it is also possible that both decision makers need to face optimal control
problems at their respective decision level, see [33, 39]. Problems of this type model
e.g. the time-dependent coupling of container crane movements, see [27].

In order to tackle bilevel optimal control problems theoretically or numerically,
one generally aims for the elimination of the hierarchical structure first. In the
literature on bilevel programming, three corresponding approaches are suggested
for that purpose. First, whenever the lower level solution is uniquely determined
for each choice of the parameter, one could exploit the implicitly given associated
solution operator in order to plug the lower level solution into the upper level
problem, see [19, 30]. Second, one can replace the lower level problem by means
of necessary and sufficient optimality conditions of Karush–Kuhn–Tucker (KKT)
type, see [24, 33], which results in a mathematical problem with complementarity
constraints (MPCC) in function spaces, see e.g. [5, 8, 16, 17, 33, 34], whenever the
lower level problem comprises (generalized) inequality constraints. Third, one could
exploit the implicitly given optimal value function of the lower level problem, which
assigns to each parameter the associated lower level globally minimal function
value, in order to formulate a single-level surrogate problem, see [3, 4, 12, 39].

Here, we want to demonstrate by means of two examples from inverse optimal
PDE control how optimality conditions in bilevel optimal control can be derived via
a regularization and relaxation approach, respectively. Furthermore, we present an
algorithm which solves a specific class of inverse optimal control problems to global
optimality. All these considerations are based on [12, 19].

2 Two Example Problems

In this section, we introduce two example problems from inverse optimal control
where finitely many real parameters in the objective functional of an optimal control
problem need to be reconstructed from measurements of optimal state and control.

For a bounded domain � ⊂ R
d , d ∈ {1, 2, 3}, with Lipschitz boundary � ⊂

R
d , functions ua, ub ∈ L∞(�) satisfying ua(x) < ub(x) for almost all x ∈ �, a

regularization parameter σ > 0, and a parameter vector α ∈ R
n, we consider the

lower level parametric optimal control problem

f (α, y, u)+ σ
2 ‖u‖2

L2(�)
→ min

y,u

y ∈ H 1
0 (�), u ∈ L2(�),

−�y = u,

ua ≤ u ≤ ub a.e. on �,

(Pf (α))
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where f : Rn ×H 1
0 (�)× L2(�)→ R is a twice differentiable functional which is

jointly convex in its second and third argument. Below, we will specify two typical
choices for f . The equation −�y = u has to be understood in weak sense, i.e.
in H−1(�) := H 1

0 (�)
�. For later use, we introduce the set of admissible controls

Uad ⊂ L2(�) via

Uad := {u ∈ L2(�) | ua(x) ≤ u(x) ≤ ub(x) f.a.a. x ∈ �}.

Let (yo, uo) ∈ H 1
0 (�) × L2(�) be a pair of observed optimal state and control

of (Pf (α)) for an unknown parameter vector α. Then it is reasonable to consider the
superordinate upper level problem

1
2‖y − yo‖2

L2(�)
+ ϑ

2 ‖u− uo‖2
L2(�)

→ min
α,y,u

α ∈ R
n, y ∈ H 1

0 (�), u ∈ L2(�),

α ∈ �,

(y, u) ∈ �f (α).

(IOCf )

Noting that we aim for the identification of the unknown vector α in (Pf (α)), (IOCf )
may be referred to as an inverse optimal control problem. Above, ϑ ≥ 0 is a weight
parameter, � ⊂ R

n represents the standard simplex given by

� := {α ∈ R
n |α ≥ 0,

∑n
i=1αi = 1},

and �f (α) ⊂ H 1
0 (�) × L2(�) denotes the solution set of (Pf (α)) associated with

the parameter α. We would like to mention that replacing � by any other polytope
(a bounded intersection of finitely many halfspaces) �̃ ⊂ R

n+ does not change
the subsequently stated theory. Similarly, the objective function of (IOCf ) can be
replaced by any continuously differentiable, convex function.

We focus our attention on two possible choices for the function f . First, we
investigate the function f1 : Rn ×H 1

0 (�)× L2(�)→ R given by

f1(α, y, u) := ∑n
i=1αi hi(y, u), (2.1)

where h1, . . . , hn : H 1
0 (�) × L2(�) → R are given convex functions satisfying

additional assumptions that are specified in Sect. 3.2.1. In the associated problem
(IOCf1 ), we aim to restore the precise form of the lower level objective function
which is given as an unknown convex combination of given reference functionals.
Second, let f2 : Rn ×H 1

0 (�)× L2(�)→ R be given by

f2(α, y, u) := 1
2

∥

∥y −∑n
i=1αi gi

∥

∥

2
L2(�)

, (2.2)
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where g1, . . . , gn ∈ L2(�) are given shape functions. In this scenario, (IOCf2 )
is used to reconstruct the desired state within a classical tracking-type objective
functional.

Remark 2.1 We note that for fixed parameter α ∈ �, (Pf1(α)) and (Pf2(α))
are convex optimization problems which naturally means that the minimization
is performed globally at the lower level stage. In classical bilevel programming,
the lower level problem always has to be solved to global optimality even if the
latter problem is not convex, see [9]. Particularly, locally optimal solutions of the
lower level problem which are not globally optimal do not yield feasible points
of the underlying bilevel programming problem. As a result, numerical bilevel
programming with non-convex lower level problem is rather challenging since
classical methods, which generally only can guarantee local optimality at the lower
level stage, may turn out to compute infeasible points.

Remark 2.2 It is not difficult to show that the optimization problems (Pf1(α))
and (Pf2(α)) possess uniquely determined solutions for fixed α ∈ �. Following
arguments provided in [19] and [12], the associated single-valued solution operators
are continuous as mappings from � to H 1

0 (�) × L2(�). As a consequence, both
programs (IOCf1 ) and (IOCf2 ) possess a global minimizer.

Due to the above remark, it is reasonable to introduce mappings ψy : � →
H 1

0 (�) and ψu : �→ L2(�) such that (ψy(α), ψu(α)) is the uniquely determined
solution of (Pf (α)) for each parameter α ∈ � and (depending on the context)
f ∈ {f1, f2}.

3 Optimality Conditions

3.1 Definition of Optimality Systems for (IOCf )

Since solutions of the lower level problem can be characterized by the KKT
conditions of the lower level problem where the respective Lagrange multipliers
are uniquely determined, (IOCf ) is equivalent to

1
2‖y − yo‖2

L2(�)
+ ϑ

2 ‖u− uo‖2
L2(�)

→ min
α,y,u,p,λ

α ∈ R
n, y, p ∈ H 1

0 (�), u, λ ∈ L2(�),

α ∈ �,

Dyf (α, y, u)−�p = 0,

Duf (α, y, u)+ σu− p + λ = 0,

−�y = u,

(u, λ) ∈ gphNUad .

(3.1)
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Here, gphNUad denotes the graph of the set-valued mapping NUad : L2(�) ⇒
L2(�) which assigns to each u ∈ L2(�) the associated normal cone NUad(u) in
the sense of convex analysis. Thus, this set possesses the representation

gphNUad =
{

(u, λ) ∈ Uad × L2(�)

∣

∣

∣

∣

∣

λ ≥ 0 a.e. on {ua < u}
λ ≤ 0 a.e. on {u < ub}

}

.

Note that derivatives w.r.t. α do not appear in the constraints of (3.1), since α is
not an optimization variable of the lower level problem. If we consider the MPCC-
Lagrangian of (3.1) and the roots of its partial derivatives, we arrive (after some
substitutions and using the pointwise structure of Uad and NUad ) at the system in the
following definition.

Definition 3.1 A feasible point (ᾱ, ȳ, ū) ∈ R
n×H 1

0 (�)×L2(�) of (IOCf ) is said
to be weakly stationary (W-stationary) for (IOCf ) whenever there exist multipliers
p̄ ∈ H 1

0 (�), λ̄ ∈ L2(�), z̄ ∈ R
n, μ̄, ρ̄ ∈ H 1

0 (�), and w̄, ξ̄ ∈ L2(�) which satisfy

0 = D2
yαf (ᾱ, ȳ, ū)

�(μ̄)+D2
uαf (ᾱ, ȳ, ū)

�(w̄)+ z̄, (3.2a)

0 = ȳ − yo +D2
yyf (ᾱ, ȳ, ū)

�(μ̄)+D2
uyf (ᾱ, ȳ, ū)

�(w̄)−�ρ̄, (3.2b)

0 = ϑ(ū− uo)+D2
yuf (ᾱ, ȳ, ū)

�(μ̄)+D2
uuf (ᾱ, ȳ, ū)

�(w̄)+ σw̄ − ρ̄ + ξ̄ ,

(3.2c)

0 = −�μ̄− w̄, (3.2d)

z̄ ∈ N�(ᾱ), (3.2e)

0 = Dyf (ᾱ, ȳ, ū)−�p̄, (3.2f)

0 = Duf (ᾱ, ȳ, ū)+ σ ū− p̄ + λ̄, (3.2g)

λ̄ ≥ 0 a.e. on I a+(ū), (3.2h)

λ̄ ≤ 0 a.e. on I b−(ū), (3.2i)

ξ̄ = 0 a.e. on I a+(ū) ∩ I b−(ū), (3.2j)

w̄ = 0 a.e. on {λ̄ �= 0}. (3.2k)

Above, we used

I a+(ū) := {ua < ū}, I b−(ū) := {ū < ub}.

If these multipliers additionally satisfy the condition

ξ̄ w̄ ≥ 0 a.e. on �, (3.3)
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then (ᾱ, ȳ, ū) is referred to as Clarke-stationary (C-stationary). For pointwise
Mordukhovich-stationarity (pM-stationarity) of (ᾱ, ȳ, ū), we require that the condi-
tions

ξ̄ w̄ = 0 ∨ (ξ̄ < 0 ∧ w̄ < 0) a.e. on {λ̄ = 0} ∩ {ū = ua},
ξ̄ w̄ = 0 ∨ (ξ̄ > 0 ∧ w̄ > 0) a.e. on {λ̄ = 0} ∩ {ū = ub}

(3.4)

hold for the multipliers which solve the W-stationarity system. Finally, (ᾱ, ȳ, ū) is
said to be strongly stationary (S-stationary) if it is W-stationary and the conditions

ξ̄ ≤ 0 ∧ w̄ ≤ 0 a.e. on {λ̄ = 0} ∩ {ū = ua},
ξ̄ ≥ 0 ∧ w̄ ≥ 0 a.e. on {λ̄ = 0} ∩ {ū = ub}

(3.5)

hold for the associated multipliers.

Note that (3.2f)–(3.2i) just provide the lower level optimality conditions which
guarantee that (ᾱ, ȳ, ū, p̄, λ̄) is a feasible point of the complementarity-constrained
optimization problem (3.1).

By definition, the subsequently stated relations hold between the stationarity
notions introduced above for each feasible point of (IOCf ):

S-stationary 
⇒ pM-stationary 
⇒ C-stationary 
⇒ W-stationary.

Clearly, this is not surprising since the additional conditions (3.3), (3.4), and (3.5)
which characterize C-, pM-, and S-stationarity, respectively, were obtained by
transferring the associated counterparts from finite-dimensional complementarity
programming pointwise to the setting at hand. In Sect. 3.4, we will comment on
the observation that this approach is not compatible with the underlying tools of
variational analysis when Mordukhovich’s stationarity concept is investigated. C-
stationarity-type systems turn out to provide reliable first-order necessary optimality
conditions for different classes of equilibrium problems in function spaces, see
e.g. [12, 17, 19, 21, 22], while it is an open question whether this holds for
associated Mordukhovich-stationarity-type systems as well, see e.g. [45]. Second-
order sufficient optimality conditions for such problems are classically based on
S-stationary points, see e.g. [7, 28].

In order to specify the system (3.2) to the settings in (IOCf1 ) and (IOCf2 ), the
derivatives of f1 and f2 from (2.1) and (2.2) have to be computed, respectively. For
f1, we have

D2
yαf1(α, y, u)

�(μ) = (Dyhi(y, u)(μ))
n
i=1,

D2
uαf1(α, y, u)

�(w) = (Duhi(y, u)(w))
n
i=1
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for each μ ∈ H 1
0 (�) and w ∈ L2(�). The expressions for D2

yyf1, D2
yuf1, D2

uyf1,

D2
uuf1, Dyf1, and Duf1 can be obtained by simple linearity. Next, let us specify the

appearing derivatives of the function f2. First, we note that f2 does not depend on u
which is why the derivatives Duf2, D2

uαf2, D2
uyf2, D2

uuf2, and D2
yuf2 vanish. For

the remaining derivatives, we obtain

Dyf2(α, y, u) = y −∑n
i=1αigi,

D2
yαf2(α, y, u)

�(μ) = (−〈gi, μ〉L2(�))
n
i=1,

D2
yyf2(α, y, u)

�(μ) = μ

for each μ ∈ H 1
0 (�).

3.2 Regularization Approach

In this subsection, we discuss how optimality conditions for the problem (IOCf1 )
can be achieved by penalizing the lower level control constraints in the objective
function of the lower level problem. Our goal is to derive (under reasonable
assumptions) C-stationarity of all local minimizers associated with (IOCf1 ).

The results in this subsection are based on [19].

3.2.1 Assumptions and Properties of the Lower Level Problem

In order to proceed with our analysis, some assumptions on the functions hi are
necessary. For each i ∈ {1, . . . , n}, we require that there exists a function θ(i) : �×
R× R→ R such that

• hi(y, u) =
∫

�
θ(i)(x, y(x), u(x))dx for all y ∈ H 1

0 (�) and u ∈ L2(�),
• θ(i)(x, ·, ·) : R× R→ R is convex for all x ∈ �,
• θ(i)(x, ·, ·) ∈ C2(R2) for all x ∈ �,
• D2

yyθ
(i)(·, ·, ·),D2

yuθ
(i)(·, ·, ·),D2

uuθ
(i)(·, ·, ·) : � × R × R → R are uniformly

bounded,
• θ(i)(·, y, u) : �→ R is measurable for all fixed y, u ∈ R, and
• θ(i)(·, 0, 0),Dyθ

(i)(·, 0, 0),Duθ
(i)(·, 0, 0) ∈ L∞(�).

These conditions impose a pointwise structure on the functions hi . However,
due to the appearance of the Laplace operator, we are faced with non-pointwise
effects for the optimal control problem (Pf1(α)). We mention that weaker but more
complicated conditions on the functions hi are available in [19].

In the subsequent lemma, we discuss the continuity and smoothness properties of
the lower level solution maps ψy : � → H 1

0 (�) and ψu : � → L2(�) associated
with (Pf1(α)). The proofs for these results can be found in [19].
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Lemma 3.2

1. The solution maps ψu : � → L2(�) and ψy : � → H 1
0 (�) are Lipschitz

continuous.
2. The solution maps ψu : � → L2(�) and ψy : � → H 1

0 (�) are directionally
differentiable.

3.2.2 C-Stationarity for Local Minimizers

The upcoming result can be shown by exploiting the second statement of
Lemma 3.2. We refer to [19, Theorem 3.2] for details and a proof.

Theorem 3.3 Consider the unconstrained case Uad := L2(�). Then each local
minimizer of (IOCf1) is S-stationary.

This result is useful for obtaining C-stationarity of local solutions in the presence
of control constraints. In order to do that, for a penalty parameter k > 0, we consider
the regularization

f1(α, y, u)+ σ
2 ‖u‖2

L2(�)
+ k#(u) → min

y,u

y ∈ H 1
0 (�), u ∈ L2(�),

−�y = u

(Pf1(k, α))

of (Pf1(α)). Here, the function # : L2(�) → R is a function that penalizes the
control constraints u ∈ Uad and is defined as

∀u ∈ L2(�) : #(u) :=
∫

�

[

π(ua(x)− u(x))+ π(u(x)− ub(x))
]

dx,

where π : R→ R is given by

∀s ∈ R : π(s) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 s ≤ 0,

2s3 − s4 0 < s < 1,

2s − 1 s ≥ 1.

Note that π is twice continuously differentiable and that its second-order derivative
is bounded. Thus, k# satisfies the assumptions in Sect. 3.2.1. Due to the absence of
control constraints, the solution operators ψy

k : �→ H 1
0 (�) and ψu

k : �→ L2(�)

of the problem (Pf1(k, α)) are differentiable. Thus, they can be considered as a
regularization of the (in general non-differentiable) solution operators ψy and ψu.
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The regularized bilevel problem can be written as

1
2‖ψy

k (α)− yo‖2
L2(�)

+ ϑ
2 ‖ψu

k (α)− uo‖2
L2(�)

→ min
α

α ∈ �.

(IOCf1(k))

Let us assume that (ᾱ, ȳ, ū) is a unique global minimizer of (IOCf1 ). We denote
the global solution of (IOCf1(k)) by αk . Since there are no control constraints
in (Pf1(k, α)), we can apply Theorem 3.3 to (IOCf1(k)). Then we get multipliers
pk, μk, ρk ∈ H 1

0 (�), zk ∈ R
n, λk, ξk, wk ∈ L2(�) that satisfy (3.2). Note that we

have λk = ξk = 0 since I a+(ψu
k (αk)) = I b−(ψu

k (αk)) = � holds. The idea for
obtaining C-stationarity of (ᾱ, ȳ, ū) is to observe the behavior of this stationarity
system for (IOCf1(k)) as k →∞.

The result is given in the following theorem.

Theorem 3.4 There exist p̄ ∈ H 1
0 (�), λ̄ ∈ L2(�) such that the convergences

αk → ᾱ in R
n, (3.6a)

ψ
y
k (αk)→ ȳ in H 1

0 (�), (3.6b)

ψu
k (αk)→ ū in L2(�), (3.6c)

pk → p̄ in H 1
0 (�), (3.6d)

k D#(ψu
k (αk))→ λ̄ in L2(�) (3.6e)

hold for k → ∞. Additionally, there exist μ̄, ρ̄ ∈ H 1
0 (�), ξ̄ , w̄ ∈ L2(�), z̄ ∈ R

n

such that we obtain the convergences

zk → z̄ in R
n, (3.6f)

μk → μ̄ in H 1
0 (�), (3.6g)

ρk → ρ̄ in H 1
0 (�), (3.6h)

wk ⇀ w̄ in L2(�), (3.6i)

k D2#(ψu
k (αk))wk ⇀ ξ̄ in L2(�) (3.6j)

along a subsequence. The limits satisfy (3.2) and (3.3).

Let us give a sketch of the proof. As a first step, one can show the con-
vergences (3.6a), (3.6b), and (3.6c), mostly using standard methods, see [19,
Lemmas 4.1 and 4.2]. Next, we can use continuity properties of D(y,u)f (α, y, u) to
obtain (3.6d), (3.6e), with the limits satisfying (3.2f) and (3.2g). The complementar-
ities (3.2h) and (3.2i) follow from pointwise arguments, see [19, Lemma 4.3]. Next,
one can show that {wk}k∈N is bounded in L2(�) so that we can conclude (3.6i).
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Then the system of S-stationarity for (IOCf1(k)) can be used to obtain the
convergences (3.6f), (3.6g), (3.6h), and (3.6j) as well as the conditions (3.2a)–(3.2e).
We refer to [19, Lemma 4.4] for details. To complete the system of W-stationarity,
the conditions (3.2j), (3.2k) need to be shown. This can be done with the help of
Egorov’s theorem and (3.6e), (3.6j), see [19, Lemma 4.5, Lemma 4.6]. Finally,
after some calculations and using the nonnegativity of D2

uuf (αk, ψ
u
k (αk), ψ

y
k (αk)),

it turns out that (3.3) also holds, see [19, Lemma 4.7].
In order to generalize Theorem 3.4 from unique global solutions to local

minimizers of (IOCf1 ), we can utilize a standard localization argument whose proof
is sketched below.

Theorem 3.5 Let (ᾱ, ȳ, ū) ∈ R
n×H 1

0 (�)×L2(�) be a local minimizer of (IOCf ).
Then it is a C-stationary point of this program.

We just present the idea of a proof here. By assumption, ᾱ is a local minimizer of

min
α

{

1
2‖ψy(α)− yo‖2

L2(�)
+ ϑ

2 ‖ψu(α)− uo‖2
L2(�)

∣

∣

∣α ∈ �
}

.

Hence, we find some neighborhood U ⊂ R
n of ᾱ such that (ᾱ, ȳ, ū) is the unique

global minimizer of the inverse optimal control problem

1
2‖α − ᾱ‖2

Rn + 1
2‖y − yo‖2

L2(�)
+ ϑ

2 ‖u− uo‖2
L2(�)

→ min
α,y,u

α ∈ R
n, y ∈ H 1

0 (�), u ∈ L2(�),

α ∈ � ∩ U,
(y, u) ∈ �f1(α).

Noting that the derivative of α �→ 1
2‖α − ᾱ‖2

Rn vanishes at ᾱ while we have
N�∩U(ᾱ) = N�(ᾱ), the above considerations can be used to show that (ᾱ, ȳ, ū)
is indeed C-stationary for (IOCf1 ).

3.3 Relaxation Approach

Here, we illustrate how necessary optimality conditions for (IOCf2 ) can be derived.
These considerations are based on [12]. We are going to strike a path which is
essentially different from the one which was used in Sect. 3.2 and which exploits the
so-called optimal value function ϕ : Rn → R of (Pf2(α)). This function is defined
via

∀α ∈ R
n : ϕ(α) := min

y,u

{

f2(α, y, u)+ σ
2 ‖u‖2

L2(�)

∣

∣

∣−�y = u, u ∈ Uad

}

,
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i.e. ϕ assigns to each parameter vector α ∈ R
n the globally minimal objective value

of (Pf2(α)). Due to Remark 2.2, there are continuous mappings ψy : � → H 1
0 (�)

and ψu : � → L2(�) such that (ψy(α), ψu(α)) is the unique solution of (Pf2(α))
for each α ∈ �. Thus, we have ϕ(α) = f2(α, ψ

y(α), ψu(α))+ σ
2 ‖ψu(α)‖2

L2(�)
for

each α ∈ �which shows that ϕ is continuous on�. It is easy to see that the domains
of ψy and ψu can be extended to the whole space R

n without losing continuity, i.e.
ϕ is continuous everywhere. Observing that the functional f2 is jointly convex w.r.t.
all variables, one can easily check that ϕ is a convex function as well. Additionally,
[12, Lemma 4.3] guarantees the continuous differentiability of ϕ.

3.3.1 The Optimal Value Reformulation and Its Relaxation

By definition of ϕ, it is obvious that

1
2‖y − yo‖2

L2(�)
+ ϑ

2 ‖u− uo‖2
L2(�)

→ min
α,y,u

α ∈ R
n, y ∈ H 1

0 (�), u ∈ L2(�),

α ∈ �,

f2(α, y, u)+ σ
2 ‖u‖2

L2(�)
− ϕ(α) ≤ 0,

−�y = u,

u ∈ Uad

(OVR)

is equivalent to (IOCf2 ). We refer to (OVR) as the optimal value reformulation
of (IOCf2 ). Although (OVR) is a smooth single-level optimization problem, we
cannot simply tackle it with the aid of suitable KKT-type optimality conditions since
reasonable constraint qualifications which apply to (OVR) fail to hold at all of its
feasible points, see [12, Section 5.1].

In order to deal with this issue, we relax the feasible set of (OVR). Therefore,
we choose a sequence {εk}k∈N of positive relaxation parameters tending to zero as
k →∞ and consider

1
2‖y − yo‖2

L2(�)
+ ϑ

2 ‖u− uo‖2
L2(�)

→ min
α,y,u

α ∈ R
n, y ∈ H 1

0 (�), u ∈ L2(�),

α ∈ �,

f2(α, y, u)+ σ
2 ‖u‖2

L2(�)
− ϕ(α) ≤ εk,

−�y = u,

u ∈ Uad.

(OVR(εk))
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The following lemma parallels [12, Lemma 5.2].

Lemma 3.6 Fix k ∈ N. Then Robinson’s constraint qualification is valid at each
feasible point of (OVR(εk)).

For details regarding Robinson’s constraint qualification, we refer the interested
reader to the monograph [6]. It is not difficult to check that (OVR(εk)) possesses an
optimal solution for each k ∈ N, see [12, Lemma 5.3]. In the upcoming theorem,
whose proof can be found in [12] as well, we study the behavior of a sequence of
global minimizers associated with (OVR(εk)).

Theorem 3.7 For each k ∈ N, let (ᾱk, ȳk, ūk) ∈ R
n × H 1

0 (�) × L2(�) be a
global minimizer of (OVR(εk)). Then the sequence {(ᾱk, ȳk, ūk)}k∈N possesses a
convergent subsequence whose limit point is a global minimizer of (OVR) and,
thus, of (IOCf2 ).

Noting that ϕ is only implicitly given while (OVR(εk)) is a non-convex program
for each k ∈ N, Theorem 3.7 seems to be of limited practical use at the first glance.
However, as we will see later, this result plays a crucial role for the successful
derivation of stationarity conditions for (IOCf2 ). For that purpose, let us state the
KKT conditions of (OVR(εk)) for fixed k ∈ N at one of its global minimizers
(ᾱk, ȳk, ūk) ∈ R

n × H 1
0 (�) × L2(�). Due to Lemma 3.6, this system, which is

given by

zk + γk

(

(

〈∑n
i=1(ᾱk)igi − ȳk, gj

〉

L2(�)

)n

j=1
− ϕ′(ᾱk)

)

= 0,

ȳk − yo + γk
(

ȳk −∑n
i=1(ᾱk)igi

)−�pk = 0,

ϑ(ūk − uo)+ γkσ ūk − pk + λk = 0,

zk ∈ N�(ᾱk),

0 ≤ γk ⊥ 1
2‖ȳk −

∑n
i=1(ᾱk)igi‖2

L2(�)
+ σ

2 ‖ūk‖2
L2(�)

− ϕ(ᾱk)− εk ≤ 0,

λk ∈ NUad(ūk)

(3.7)

for multipliers zk ∈ R
n, γk ∈ R, pk ∈ H 1

0 (�), and λk ∈ L2(�), indeed provides a
necessary optimality condition.

3.3.2 C-Stationarity for Local Minimizers

Our goal is now to show that each local minimizer of (IOCf2 ) is C-stationary in
the sense of Definition 3.1. In order to do so, we exploit the relaxation approach
described above. Therefore, we pick a sequence {εk}k∈N of positive relaxation
parameters tending to zero as k →∞ and fix a sequence {(ᾱk, ȳk, ūk)}k∈N ⊂ R

n ×
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H 1
0 (�)× L2(�) of global minimizers associated with (OVR(εk)) that converges in

norm to a global minimizer (ᾱ, ȳ, ū) ∈ R
n × H 1

0 (�) × L2(�) of (IOCf2 ). Due to
Sect. 3.3.1, there are multipliers zk ∈ R

n, γk ∈ R, pk ∈ H 1
0 (�), and λk ∈ L2(�)

which satisfy (3.7). Furthermore, let us note that the conditions

ψy(ᾱk)−∑n
i=1(ᾱk)igi −�φp(ᾱk) = 0,

σψu(ᾱk)− φp(ᾱk)+ φλ(ᾱk) = 0,

φλ(ᾱk) ∈ NUad(ψ
u(ᾱk))

hold for each k ∈ N where φp : � → H 1
0 (�) and φλ : � → L2(�) denote the

Lagrange multiplier mappings of (Pf2(α)) which are continuous since the solution
mappings ψy : � → H 1

0 (�) and ψu : � → L2(�) possess this property. As the
upcoming lemma shows, we can combine all these multipliers in a deft way such
that by taking the limit k → ∞, a reasonable stationarity condition is obtained for
(ᾱ, ȳ, ū), see [12, Lemma 5.5].

Lemma 3.8 Under the assumptions made above, there exist multipliers z̄ ∈ R
n,

μ̄, ρ̄ ∈ H 1
0 (�), and w̄, ξ̄ ∈ L2(�) such that the convergences

zk → z̄ in R
n,

γk(ȳk − ψy(ᾱk)) → μ̄ in H 1
0 (�),

pk − γkφ
p(ᾱk) → ρ̄ in H 1

0 (�),

γk(ūk − ψu(ᾱk)) ⇀ w̄ in L2(�),

λk − γkφ
λ(ᾱk) ⇀ ξ̄ in L2(�)

hold along a subsequence. Furthermore, these multipliers satisfy (3.2a)–(3.2e).

Furthermore, it is possible to show that the multipliers from Lemma 3.8
already satisfy the remaining C-stationarity conditions. This follows exploiting
the convergences from Lemma 3.8, the definition of the normal cone, and some
pointwise arguments, see [12, Lemmas 5.6, 5.7 and Remark 5.1].

Lemma 3.9 The multipliers w̄, ξ̄ ∈ L2(�) from Lemma 3.8 additionally satisfy the
conditions (3.2j), (3.2k), and (3.3).

Noting that the conditions (3.2f)–(3.2i) just characterize lower level optimality of
(ȳ, ū) for the fixed parameter ᾱ, the above lemmas show that the global minimizer
(ᾱ, ȳ, ū) is C-stationary for (IOCf2 ).

Finally, we are in position to derive C-stationarity of all local minimizers
associated with (IOCf2 ) by performing a localization as sketched after Theorem 3.5.

Theorem 3.10 Let (ᾱ, ȳ, ū) ∈ R
n × H 1

0 (�) × L2(�) be a local minimizer of
(IOCf2 ). Then it is a C-stationary point of this program.
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3.4 Variational Analysis Approach and
Mordukhovich-Stationarity

Noting that the derivatives Dyf2 and Duf2 are linear mappings, the feasible set
of the complementarity program (3.1) is characterized via linear maps (apart from
the challenging variational structure of the set gphNUad ). That is why results from
finite-dimensional programming, see e.g. [15, Theorem 3.9], suggest that local
minimizers of (IOCf2 ) could be already pM-stationary which is a stronger condition
than C-stationarity, see Definition 3.1.

In order to come up with this enhanced stationarity system, one may think of
the following variational analysis approach promoted in [37]: Local minimizers
of (IOCf2 ) satisfy a first-order necessary optimality condition comprising the
derivative of the objective as well as the limiting normal cone to the feasible set.
The latter can be expressed in terms of the constraining data function’s derivatives
and the limiting normal cone to the set gphNUad under validity of suitable constraint
qualifications comprising the so-called sequential normal compactness of gphNUad

at the reference point. However, noting that this set is a non-trivial decomposable
set, see [41, Section 6.4] for an introduction, one obtains from [34, 35] that the
limiting normal cone to gphNUad at one of its points (u, λ) is given by

{

(ξ, w) ∈ L2(�)2

∣

∣

∣

∣

∣

ξ = 0 a.e. on I a+(u) ∩ I b−(u)
w = 0 a.e. on {λ �= 0}

}

while gphNUad is nowhere sequentially normally compact, see [31]. Thus, the
variational analysis approach yields at most W-stationarity of the local minimizers
associated with (IOCf2 ). This is a very weak result, since we already know C-
stationarity of local minimizers due to Theorem 3.10. In view of the outstanding
success of variational analysis in finite dimensions, this deficiency in the infinite-
dimensional case is quite surprising. It remains an open question whether local
minimizers of (IOCf2 ) satisfy the aforementioned pM-stationarity conditions from
Definition 3.1. Similar arguments apply to (IOCf1 ).

Another example for the limited use of the variational analysis approach in
function space optimization has been reported in [18]. In this paper, the authors
show that the limiting normal cone to the complementarity set

{

(y, η) ∈ H 1
0 (�)×H−1(�)

∣

∣

∣ y ≥ 0, η ≤ 0, 〈y, η〉H 1
0 (�)

= 0
}

is uncomfortably large whenever the dimension of the underlying domain � is
at least 2. This negative result addresses e.g. the optimal control of the obstacle
problem which is a hierarchical optimization problem in function spaces, see [17]
for an overview. Exploiting the variational analysis approach, satisfactory optimality
conditions can only be obtained in case d = 1 since H 1

0 (�) is continuously
embedded into C(�) in this situation, see [26] for details.
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3.5 Comments on Biactivity and S-Stationarity

We check that the biactive set has measure zero unless some rather strict assump-
tions on the data are fulfilled. To simplify the considerations, we suppose that the
control bounds ua and ub are constants, and we restrict the discussion to f2 defined
in (2.2). Further, we require g1, . . . , gn ∈ H 2(�) for the data. Now, let (ᾱ, ȳ, ū) be
a W-stationary point satisfying (3.2). We shall need the regularity ȳ, p̄ ∈ H 2(�)

which is satisfied under moderate assumptions on �.
Now, we consider the biactive set Ba := {λ̄ = 0} ∩ {ū = ua}. On this set, (3.2g)

implies

0 = λ̄ = p̄ + σ ū = p̄ + σ ua.

Hence, Stampacchia’s lemma implies −�p̄ = σ �ua = 0 a.e. on Ba . Thus, the
adjoint equation (3.2f) gives

0 = ȳ −∑n
i=1ᾱi gi

a.e. on Ba . Applying Stampacchia’s lemma again yields

ua = ū = −�ȳ = −∑n
i=1ᾱi �gi a.e. on Ba.

For most choices of the data gi , the set on which such a condition can be satisfied
is a null set and this implies that Ba is a null set. A similar argumentation applies
to Bb := {λ̄ = 0} ∩ {ū = ub}. Moreover, it is clear that every W-stationary point is
already S-stationary if these biactive sets have measure zero.

However, it is possible to construct examples possessing a biactive set and for
which local minimizers may fail to be S-stationary, see [19, Example 3.4].

4 Numerical Solution

A typical route for the solution of bilevel optimization problems is to solve
regularized or relaxed problems and pass to the limit with the regularization or
relaxation parameter. However, this approach delivers only very weak convergence
results. In particular, if only local solutions of the regularized or relaxed problems
are computed, then the limit point may fail to be a local solution to the bilevel
problem.
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4.1 Global Solution Algorithm for (IOCf2)

A first idea about how to solve (IOCf2 ) is presented in Theorem 3.7: For a sequence
{εk}k∈N of positive relaxation parameters tending to zero as k →∞, we could aim
for the global solution of the associated sequence of surrogate problems (OVR(εk))
since the sequence of computed minimizers converges along a subsequence to a
global minimizer of (IOCf2 ). However, noting that the optimal value function ϕ is
only implicitly known while (OVR(εk)) is a non-convex program for each k ∈ N,
this approach does not seem to be too promising although it motivates to take a
closer look at the potential of the optimal value reformulation (OVR) concerning
the numerical solution of (IOCf2 ).

On the other hand, we need to observe that due to the convexity of ϕ, (OVR) is
a so-called DC-problem where DC abbreviates difference of convex functions, see
[25] for an overview of DC-programming. Clearly, in (OVR), concavity is hidden
only in −ϕ. In order to exploit this observation for the construction of a solution
algorithm, we aim for the construction of a piecewise affine approximation of the
function ϕ from above which is refined during each iteration of the method. The
resulting relaxed surrogate problems then can be decomposed into finitely many
convex subproblems which can be solved to global optimality with ease. This idea
is inspired by techniques from finite-dimensional bilevel programming, see [11,
Section 4].

Let A := {α1, . . . , αm} ⊂ R
n be a nonempty set satisfying � ⊂ int convA and

consider the function ξA : convA→ R given by

ξA(α) := min
ν

{

∑m
j=1νj ϕ(α

j )

∣

∣

∣ ν ≥ 0,
∑m

j=1νj = 1,
∑m

j=1νjα
j = α

}

for each α ∈ convA. By convexity of ϕ, we easily see that ξA approximates ϕ from
above on convA. Furthermore, we have ϕ(αj ) = ξA(α

j ) for all j = 1, . . . , m.
Noting that ξA is the optimal value function of a linear parametric optimization
problem where the parameter only appears at the right hand side of the constraints,
ξA is piecewise affine and convex, see [38, Section 6]. Particularly, convA can be
decomposed into finitely many so-called regions of stability where ξA is affine,
respectively. All these properties motivate the formulation of Algorithm 1.

Under the postulated assumptions, it is not difficult to show that (OVR(Ak))
possesses a global minimizer for each k ∈ N which can be computed by
decomposition of (OVR(Ak)) into finitely many convex subproblems exploiting the
regions of stability associated with ξAk

. By construction of the algorithm, we have

∀α ∈ � : ϕ(α) ≤ ξAk′ (α) ≤ ξAk
(α)

for any two natural numbers k, k′ ∈ N satisfying k ≤ k′. Thus, with increasing
iteration counter k, the relaxation (OVR(Ak)) gets tighter. Finally, let us mention
that due to the choice of A1 ⊂ R

n, there exists a constant L > 0 such that all
the functions ξAk

, k ∈ N, are Lipschitz continuous on � with modulus L, see [12,
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Algorithm 1 Computation of global minimizers to (IOCf2 )
S1. Let A1 ⊂ R

n be a finite set such that � ⊂ int convA1 is valid and set k := 1.
S2. Compute a global minimizer (ᾱk, ȳk, ūk) of the optimization problem

1
2‖y − yo‖2

L2(�)
+ ϑ

2 ‖u− uo‖2
L2(�)

→ min
α,y,u

α ∈ R
n, y ∈ H 1

0 (�), u ∈ L2(�),

α ∈ �,

f2(α, y, u)+ σ
2 ‖u‖2

L2(�)
− ξAk

(α) ≤ 0,

−�y = u,

u ∈ Uad.

(OVR(Ak))

S3. Compute ϕ(ᾱk). If f2(ᾱk, ȳk, ūk)+ σ
2 ‖ūk‖2

L2(�)
= ϕ(ᾱk) holds, then the point (ᾱk, ȳk, ūk)

is a global minimizer of (OVR) (and, thus, of (IOCf2 )) and the algorithm terminates. Otherwise,
set Ak+1 := Ak ∪ {ᾱk} as well as k �→ k + 1 and go to S2.

Section 6.1] for details. This property is crucial in order to prove the subsequently
stated theorem, see [12, Theorem 6.1].

Theorem 4.1 Either, Algorithm 1 terminates after finitely many steps having com-
puted a global minimizer of (OVR) and, thus, of (IOCf2), or it produces a sequence
{(ᾱk, ȳk, ūk)}k∈N ⊂ R

n × H 1
0 (�) × L2(�) of global minimizers of (OVR(Ak)).

This sequence possesses a convergent subsequence and all accumulation points are
global minimizers of (OVR) and, thus, of (IOCf2 ).

4.2 Numerical Example

A numerical example for the solution of (IOCf2 ) is given in [12, Section 6.2]. In
this section, we present a different numerical example. We use the data

� = (0, 1)2, g1(x) = 4 sin(π x1), ua ≡ −10,

n = 2, g2(x) = 3 sin(π x2), ub ≡ 10,

σ = 10−2, yo = 0.1 g1 + 0.5 g2 ϑ = 0.

The upper level objective in (IOCf2 ) is replaced by

(α, y, u) �→ 1
2‖y − yo‖2

L2(�)
+ ϑ

2 ‖u− uo‖2
L2(�)

+ τ�α,
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i.e. we have added a linear term w.r.t. α with τ = (−2, 0)�. Furthermore, we
replaced the standard simplex � by the unit simplex �̃ ⊂ R

2 given by

�̃ := conv

{(

0
0

)

,

(

1
0

)

,

(

0
1

)}

.

In Algorithm 1, we use the starting set

A1 :=
{(−1/2
−1/2

)

,

(

3/2
0

)

,

(

0
3/2

)

,

(

0
0

)

,

(

1
0

)

,

(

0
1

)}

.

In Fig. 1, we show the reduced objective function γ : �̃→ R, i.e. the map given
by

∀α ∈ �̃ : γ (α) := 1
2‖ψy(α)− yo‖2

L2(�)
+ ϑ

2 ‖ψu(α)− uo‖2
L2(�)

+ τ�α.

It can be seen that this function is not convex and possesses at least two local
minimizers. In order to reduce the curvature of the optimal value function, which
also increases its approximability, we perform a curvature reduction. That is, we
replace the lower level objective f2 by the function

(α, y, u) �→ f2(α, y, u)− 1
2 α

�H α,

where H ∈ R
2×2 is a suitably chosen matrix depending on the initial data of the

lower level problem. We note that this transformation does not change the lower
level solution set since f2 is only shifted by a quadratic term in α while we minimize
only w.r.t. y and u at the lower level stage. Although the adjusted lower level
objective functional is not jointly convex anymore, it is still jointly convex on

{

(α, y, u) ∈ R
2 ×H 1

0 (�)× L2(�)

∣

∣

∣−�y = u
}

Fig. 1 Reduced objective function (left) and optimal value function with curvature reduction
(right) of the problem given in Sect. 4.2
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which is enough for the above theory to work. In practice, it turned out that
performing a curvature reduction on ϕ significantly reduces the total number of
iterations in Algorithm 1. Regarding the example discussed here, using curvature
reduction saves about 25% of the total number of iterations. Even more convincing
results were obtained for the example from [12, Section 6.2] where the curvature
reduction saves more than 80% of the total number of iterations. The details of
this approach, particularly the precise choice of the matrix H , can be found in [12,
Section 6.2]. The optimal value function with reduced curvature is shown in Fig. 1.

Moreover, we exploit the following modifications in Algorithm 1 in order to
increase its performance. We remark that the convergence result Theorem 4.1 carries
over to this modified version.

• In Step 3 of the algorithm, we do not only add ᾱk to Ak , but also all three
midpoints of the edges of the region of stability in which ᾱk lies. This increases
the approximation quality of ξAk+1 .

• In order to speed-up the computations, the finitely many convex subproblems of
(OVR(Ak)) are solved in parallel.

Let us describe the results of Algorithm 1. Since we are solving a relaxed
optimization problem in each iteration, we obtain lower bounds on the optimal value
of the bilevel problem (IOCf2 ). On the other hand, calculating γ (ᾱk) yields upper
bounds. Since ᾱk is the solution of the relaxed problem, the true value γ (ᾱk) can be
quite large. Therefore, we denote by α̂k the best known point of γ in iteration k, i.e.

α̂k := arg minα∈{ᾱ1,...,ᾱk} γ (α).

This yields a decreasing upper bound γ (α̂k). We record the Euclidean distances
‖ᾱ − ᾱk‖R2 and ‖ᾱ − α̂k‖R2 in Fig. 2, and one can believe that ᾱk → ᾱ holds for
ᾱ ≈ (0.3306, 0.6694) as predicted by Theorem 4.1.

5 Future Perspectives

Let us comment about future research directions. First of all, it is important to
understand the role of pM-stationarity, in which the additional sign conditions (3.4)
are required. In fact, we are going to investigate if this is a necessary optimality
condition or if it is possible to construct an example for which (3.4) is violated at
the minimizer. It is also necessary to study second-order optimality conditions. Par-
ticularly, sufficient second-order optimality conditions are important for checking
stability of solutions.

The most important feature of Algorithm 1 is its guaranteed convergence toward
global minimizers of the non-convex problem (IOCf2 ). The main ingredient in the
construction is the convexity of the optimal value function ϕ. Here, it should be
checked whether this requirement can be relaxed and how this algorithm can be
applied to different instances of (IOCf ).
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Fig. 2 Errors of ᾱk (blue crosses) and α̂k (red line)

A challenging topic for future research is the numerical analysis of Algorithm 1.
In particular, it would be nice to couple the iterations of Algorithm 1 with an
adaptive refinement strategy which guarantees the convergence toward the global
solution of the continuous problem.
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A Calculus for Non-smooth Shape
Optimization with Applications to
Geometric Inverse Problems

Marc Herrmann, Roland Herzog, Stephan Schmidt, and José Vidal-Núñez

Abstract We are concerned with a class of non-smooth shape optimization prob-
lems involving the total variation of the normal vector field along the shape’s
boundary in their objective. The discrete version of the total variation functional
on triangulated surfaces promotes a separation into flat and non-flat regions. Appli-
cations include mesh denoising problems as well as geometric inverse problems.

Keywords Non-smooth shape optimization · Total variation · Non-smooth
geometries · Geometric inverse problems · Consistent discretization

1 Introduction

This survey article is concerned with a class of non-smooth shape optimization prob-
lems. Specifically, we consider applications of the total variation (TV) functional,
applied to the normal vector field along the shape’s boundary. As a preliminary step,
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we also address image denoising and inpainting problems on stationary surfaces
which are not subject to optimization.

The total variation (TV) functional is popular as a regularizer in imaging and
inverse problems; see for instance Rudin et al. [33], Chan et al. [12], Bachmayr
and Burger [2], Langer [27], and Vogel [34, Chapter 8]. For a real-valued function
u ∈ W 1,1(�) on a bounded domain � ⊂ R

d , the TV-seminorm is defined as

|u|T V (�) :=
∫

�

|∇u|s dx, (1.1)

where | · |s denotes the s-norm of vectors in R
d for some s ∈ [1,∞]. The

most frequent choices are s = 2 (isotropic case) and s = 1 (anisotropic case).
Definition (1.1) extends to less regular functions whose distributional gradient exists
only in the sense of measures. In this more general case, we have the representation

|u|T V (�) = sup

{∫

�

u div p dx : p ∈ C∞c (�;Rd), |p|s∗ ≤ 1

}

, (1.2)

where s∗ = s/(s − 1) denotes the conjugate of s. Equation (1.2) is known as a dual
representation of |u|T V (�).

In order to further discuss issues of duality, we introduce the space

H (div;�) :=
{

v ∈ L2(�;Rd) : div v ∈ L2(�)
}

, (1.3)

equipped with the norm

‖v‖H (div;�) :=
(

‖v‖2
L2(�;Rd )

+ ‖div v‖2
L2(�)

)1/2
. (1.4)

It is well known that H (div;�) agrees with the closure of C∞(�;Rd) w.r.t. (1.4).
We refer the reader to [16, Chapter I] or [30, Chapter 3] for a thorough background.

A class of classical TV-L2 image reconstruction problems can be cast as
⎧

⎪

⎨

⎪

⎩

Minimize
1

2

∫

�

|Ku− f |2 dx + α

2

∫

�

|u|2 dx + β |u|T V (�)
over u ∈ BV (�).

(1.5)

The space BV (�) contains functions of bounded variation and the operator K ∈
L(L2(�)) appearing in (1.5) expresses available a-priori knowledge about the
relation between the image u to be reconstructed and the observed data f . Common
examples include K = id for classical image denoising [33], K = masking for
inpainting problems [13, Chapter 6.5], K = blur for deblurring problems [8, 14],
and K = coarsen for un-zooming problems [29]. We assume that α > 0 holds,
or else that K is injective and has closed range. Consequently, B := α id+K∗K
is a coercive operator in L(L2(�)). Here and throughout, id denotes the identity
mapping.
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It was shown in Hintermüller and Kunisch [24] that the following problem serves
as a Fenchel predual for (1.5):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Minimize
1

2
‖div p +K∗f ‖2

B−1

over p ∈ H (div;�)
subject to |p|1 ≤ β a.e. on �.

(1.6)

Here we utilize the abbreviation ‖w‖2
B−1 = (w,B−1w)L2(�) = (w,w)B−1 . Solving

the predual problem has a number of advantages compared to solving the primal
problem directly. First, we do not have to employ a non-smooth algorithm since, in
contrast to (1.5), (1.6) is smooth. The second issue concerns the discretization of
the regularization term in (1.5), which is not immediate and can be avoided through
the treatment of the predual problem (1.6). Third, as was pointed out in Bartels [4],
the finite element solution of minimization problems in BV spaces may suffer from
low convergence rates.

The work summarized in this survey generalizes (1.5) and (1.6) in various
directions. In Sect. 2 we consider image denoising and inpainting problems on
stationary surfaces and prove the equivalence of (1.5) and (1.6) in the proper
differential geometric setting. We also formulate a function space interior point
approach for the solution of the predual problem. Numerical results utilizing a con-
forming discretization by Raviart–Thomas (RT) surface finite elements of various
polynomial degrees are presented. Unfortunately, the straightforward discretization
does not allow for a convenient primal-dual pairing on the level of finite element
coefficients, except for the case of lowest-order elements. We therefore discuss in
Sect. 2.4 a discrete version of the TV-seminorm tailored to discretizations of (1.5) by
piecewise polynomials (DG finite elements) and of (1.6) by RT finite elements. Our
formulation admits a convenient primal-dual pairing also for higher-order elements,
which is important for efficient numerical algorithms.

In Sect. 3 we consider shape optimization problems featuring the total variation
of the normal vector field n along the shape’s boundary as part of the objective
functional. We pay particular attention to the case of triangulated surfaces, in which
the normal vector is piecewise constant and its total variation is concentrated in
jumps across inter-element edges. For the solution of this non-smooth problem, we
formulate a variant of the split Bregman algorithm [18], which falls into the category
of ADMM methods (alternating direction method of multipliers). Each iteration
consists of a shape optimization, a variation minimization, and a Lagrange multiplier
update step. Since each normal vector is an element of the sphere S2 due to its
unit length, we formulate the method in a Riemannian framework. Interestingly, the
variation minimization step can be solved explicitly by shrinkage operations in the
appropriate tangent spaces to S2. We present numerical results for problems whose
objective does or does not depend on the state of a partial differential equation (PDE)
defined on the volume � enclosed by its boundary �.
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2 Image Reconstruction on Surfaces

In this section, we mainly focus on Herrmann et al [23] where we analyzed the total
variation and its application to image reconstruction problems on smooth surfaces.
We consider the image reconstruction problem

⎧

⎪

⎨

⎪

⎩

Minimize
1

2

∫

S

|Ku− f |2 ds + α

2

∫

S

|u|2 ds + β|u|T V (S)
over u ∈ BV (S),

(2.1)

where S ⊂ R
3 is a smooth, compact, orientable, and connected surface without

boundary. Moreover, S is endowed with a Riemannian metric g. This problem
was proposed in Lai and Chan [26] as an analogue of the TV–L2 reconstruction
model (1.5) for images on smooth surfaces. In the following Sect. 2.1 we define the
space of functions of bounded variation BV (S) and derive in Sect. 2.2 a predual
representation of (2.1). This leads to a convex quadratic problem with pointwise
constraints in H (div; S). The predual of problem (2.1) can be solved by a variety
of methods, including for instance primal-dual Chambolle–Pock [11] and split
Bregman iterations [18]. We analyze, however, its solution by means of a function
space interior point method. Finally, we present in Sect. 2.4 a discrete version of
the total variation functional which has been proposed in Herrmann et al. [22]
specifically in the context of higher-order finite element discretizations by piecewise
polynomial, globally discontinuous (DG) functions. This part is presented in the flat
domain setting (1.5) but can be extended to (2.1) on surfaces as well.

2.1 Functions of Bounded Variation on Surfaces

Let C∞(S) denote the space of smooth, real-valued functions on the surface
S and let C∞c (S) be the subspace of functions of compact support. Moreover,
C∞(S; T (S)) denotes the space of smooth vector fields, i.e., sections of the tangent
bundle over S. As usual, the support of a function f is defined as

supp f := cl {p ∈ S : f (p) �= 0}

with clC denoting the closure of a set C ⊂ S.
For 1 ≤ p < ∞ the Lebesgue space Lp(S) is defined as the completion of

C∞(S) w.r.t. the norm

‖f ‖Lp(S) :=
(∫

S

|f |p ds

)1/p

. (2.2)
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We refer the reader, e.g., to Hebey [20, Ch. 1.2] for more details. Naturally, this
definition extends to vector fields f ∈ Lp(S; T (S)), which are endowed with the
norm

‖f ‖Lp(S;T (S)) :=
(∫

S

|f |pg ds

)1/p

.

The spaces L2(S) and L2(S; T (S)) are Hilbert spaces w.r.t. the usual inner products
(·, ·)L2(S) and (·, ·)L2(S;T (S)).

We are now in the position to recall the definition of functions of bounded
variation on smooth, compact, connected surfaces. Background material on BV
functions on flat domains can be found, for instance, in Giusti [17], Ziemer [35,
Ch. 5] or Attouch et al. [1, Ch. 10]. The following definition can be found in Lai
and Chan [26, Sect. 3.1] or Ben-Artzi and LeFloch [5, Sect. 4].

Definition 2.1 A function u ∈ L1(S) belongs to BV (S) if the TV-seminorm
defined by

|u|T V (S) := sup

{∫

S

u div η ds : η ∈ C∞(S; T (S)) : |η(s)|g ≤ 1

}

(2.3)

is finite. The space BV (S) is endowed with the norm

‖u‖BV (S) = ‖u‖L1(S) + |u|T V (S), u ∈ BV (S). (2.4)

Notice that in (2.3), η is a smooth vector field with pointwise norm (induced by
the Riemannian metric g) bounded by one. It can be shown that BV (S) ↪→ L2(S)

holds.

2.2 Dual Representation

The derivation of a pair of primal/dual problems for TV–L2 is not straightforward
due to the lack of reflexivity of BV spaces. For the flat case, it was shown in
Hintermüller and Kunisch [24] that the predual problem (1.6), posed in H (div),
is the appropriate concept. A formal version of this problem on smooth surfaces
was proposed in Lai and Chan [26]. A rigorous analysis was provided in Herrmann
et al. [23], where the following result can be found. As before, we set

B := α id+K∗K ∈ L(L2(S)). (2.5)
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Theorem 2.2 The Fenchel dual problem of

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Minimize
1

2
‖div p +K∗f ‖2

B−1

over p ∈ H (div; S)
subject to |p|g ≤ β a.e. on S

(2.6)

is equivalent to (2.1). Moreover, if p is an optimal solution to (2.6) and u is optimal
to (2.1), then

B u = div p +K∗f. (2.7)

A natural discretization of the surface S is given in terms of a triangulation
into flat triangles. Consequently, it is natural to discretize u in terms of piecewise
polynomials, i.e., discontinuous finite elements on this triangulation. Then the
discretization of the non-smooth term |u|T V (S) is not straightforward, at least not
for linear or higher-order finite element functions. We come back to this issue in
Sect. 2.4. Finally, as observed previously in Carter [9], Chambolle [10], Chan et al.
[12], Hintermüller and Kunisch [24], we mention that the predual variable p serves
as an edge detector and thus is a quantity of interest. The image u can be recovered
from p using (2.7).

Problem (2.6) features nonlinear inequality constraints |p|g ≤ β. It can
be solved, e.g., by a function space logarithmic barrier method as proposed in
Herrmann et al. [23]. To this end, we consider the following family of convex
problems for a decreasing sequence of barrier parameters μ↘ 0:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Minimize
1

2
‖div p +K∗f ‖2

B−1 − μ

∫

S

ln
(

β2 − |p|2g
)

ds

over p ∈ H (div; S)
subject to |p|g ≤ β a.e. on S.

(2.8)

For any fixed barrier parameter μ > 0, problem (2.8) can be solved using Newton’s
method. The following result characterizes optimality for (2.8).

Theorem 2.3 For every μ > 0, problem (2.8) possesses a unique solution p ∈
H (div; S). The vector field p ∈ H (div; S) is the unique solution for (2.8) if and
only if |p|g ≤ β holds a.e. on S and

(

div p +K∗f, div δp
)

B−1 + μ

∫

S

2 (p, δp)g
β2 − |p|2g

ds = 0 (2.9)

for all δp ∈ H (div; S).
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2.3 Implementation Details and Numerical Results

We implemented a discrete version of the barrier method in FENICS [28]. We
discretized the data f in the finite element space DGr on the triangulated surface,
consisting of piecewise polynomials of degree up to r . The dual variable is
discretized using H (div; S)-conforming discretization by surface Raviart–Thomas
(RT) finite elements of degree r + 1, see Raviart and Thomas [32], Ern and
Guermond [15, Chapter 1.4.7] or Logg et al. [28, Ch. 3.4.1]. To recover the image u
from p by (2.7) we choose matching polynomial degrees, i.e., u ∈ DGr .

We reproduce here three results from Herrmann et al. [23]. The first is a classical
gray-scale denoising problem with K = id on the geometry depicted in Fig. 1,
consisting of 354,330 triangles and 177,167 vertices. We choose the polynomial
degree r = 2 for this case. The image data f is scaled to [0, 1]. We add artificial
noise based on a normal distribution with standard deviation σ = 0.1 and zero
mean to each entry in the coefficient vector representing f . The denoising results
for parameters α = 0 and β = 0.3 are shown in Fig. 1.

The second example is a color denoising problem. The geometry consists of
100,000 triangles and 50,002 vertices. Due to the fine features on the sole and a
leathery texture on the outside, we utilize a polynomial degree r = 3 here. Noise is
added in the same way to each of the RGB channels as described for the gray-scale
test case above. The denoising results for parameters α = 0 and β = 0.5 are shown
in Fig. 2. The denoising procedure was conducted individually per RGB channel.

We conclude this subsection mentioning a third numerical experiment based on
color inpainting in the shoe geometry. We simulate a 3% loss of data, as shown in
Fig. 3. Contrary to the denoising situation, K∗K is no longer invertible and α > 0
is required. Results for α = 0.1 are given in Fig. 3.

2.4 Discrete Total Variation

Primal-dual algorithms constitute a popular class of methods for the solution of
TV–L2 and related problems. Their efficient implementation relies on a convenient

Fig. 1 Duck test case: noise free (left) and noisy (middle) texture and denoising result (right) for
α = 0 and β = 0.3. The object was kindly scanned by the Rechenzentrum of Würzburg University
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Fig. 2 Shoe test case: noise free (left) and noisy (middle) originals and denoising result (right) for
α = 0 and β = 0.5

Fig. 3 Shoe with missing texture (left) and TV-inpainting solutions for α = 0.1, β = 0.7 (middle),
and β = 1.0 (right)

dual representation of the TV-seminorm in an appropriate discretized setting. As we
mentioned previously, this is not obvious for discretizations by higher-order finite
element functions.

For simplicity of the presentation, we restrict the discussion now to TV–L2 on
flat domains � rather than surfaces. We consider discretizations of problem (1.5)
where u ∈ DGr (�), i.e., images are represented as piecewise polynomials of degree
at most r on a given triangulation of �. We assume a geometrically conforming
mesh throughout, i.e., hanging nodes are excluded.

In the particular case where u ∈ DG0(�), the gradient ∇u is a collection of
line measures concentrated on the interior edges E of the triangulation. Indeed,
∇u|E = �u�E nE holds, where �u�E is the scalar jump of u across E, and nE is the
edge normal. The latter can have either of the two orientations.

The TV-seminorm of u ∈ DG0(�) in the isotropic case (s = 2) is easily seen to
be

|u|T V (�) =
∑

E

∣

∣�u�E
∣

∣ |E|, (2.10)
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where |E| is the length of the edge E. It has been proved for the lowest-order case
r = 0 that (2.10) can also be characterized as

|u|T V (�) = sup

{∫

�

u div p dx : p ∈ RT 0
1 , |p · nE | ≤ 1 for all interior edges E

}

,

(2.11)

see for instance Bartels [3, 4]. Here RT1(�) is the lowest-order Raviart–Thomas
finite element space on the same triangulation which underlies DG0(�). Moreover,
RT 0

1 (�) is the subspace of functions satisfying p · n = 0 along the boundary ∂�.
The observation that the dual representation (2.11) utilizes only a finite dimen-

sional subspace of H (div;�) is important, particularly for primal/dual or purely
dual numerical approaches for problem (1.5). It motivated us to consider in
Herrmann et al. [22] primal/dual representations for discretizations by higher-order
finite elements, and specifically for u ∈ DGr (�) with 0 ≤ r ≤ 4, and for general
s ∈ [1,∞]. In this case, it is not hard to see that the TV-seminorm (1.2) can be
evaluated as

|u|T V (�) =
∑

T

∫

T

|∇u|s dx +
∑

E

∫

E

|��u��|s ds, (2.12)

where T is a triangle and ��u�� denotes the vector-valued jump of a function in normal
direction across an interior edgeE of the triangulation. Unfortunately, as soon as the
polynomial degree exceeds r = 0, (2.12) does not possess a dual representation such
as (2.11), for which it suffices to let p range over a finite subspace of H (div;�).
We therefore propose to replace (2.12) by the approximate analogue

|u|DTV (�) :=
∑

T

∫

T

IT
{|∇u|s

}

dx +
∑

E

∫

E

IE
{|��u��|s

}

ds, (2.13)

which we term the discrete TV-seminorm. Here IT and IE are local interpolation
operators into the polynomial spaces Pr−1(T ) and Pr (E), respectively. In terms of
the standard Lagrangian bases {ϕT,i} and {ϕE,j } of these spaces, they are defined as

∫

T

IT
{|∇u|s

}

dx =
r (r+1)/2

∑

i=1

|∇u(xT,i)|s cT ,i ,

∫

E

IE
{|��u��|s

}

ds =
r+1
∑

j=1

|�u�(xE,j )| |nE |s cE,j ,
(2.14)

where the weights are given by

cT ,i :=
∫

T

ϕT,i dx and cE,j :=
∫

E

ϕE,j ds. (2.15)
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In virtue of the fact that ∇u|T ∈ Pr−1(T )
2 and �u� ∈ Pr (E), it is clear that

| · |DTV (�) is indeed a seminorm on DGr (�), provided that all weights cT ,i and
cE,j are non-negative. As shown in Herrmann et al. [22, Lemma 3.1], this is the
case for the polynomial degrees 0 ≤ r ≤ 4 under consideration. We thus obtain the
following dual representation of |u|DTV (�), whose proof can be found in Herrmann
et al. [22, Theorem 3.2].

Theorem 2.4 Suppose 0 ≤ r ≤ 4. Then for any u ∈ DGr (�), the discrete TV-
seminorm (2.13) satisfies

|u|DTV (�) = sup

{∫

�

u div p dx : p ∈ RT 0
r+1(�),

|σ T ,i(p)|s∗ ≤ cT ,i for all T , i = 1, . . . , r (r + 1)/2,

|σE,j (p)| ≤ |nE |s cE,j for all E, j = 1, . . . , r + 1

}

.

(2.16)

In (2.16), σ T ,i and σE,j are a standard set of degrees of freedom for the Raviart–
Thomas space RTr+1(�), namely

σ T ,i(p) :=
∫

T

ϕT,i p dx, i = 1, . . . , r (r + 1)/2, (2.17a)

σE,j (p) :=
∫

E

ϕE,j (p · nE) ds, j = 1, . . . , r + 1. (2.17b)

Observe that for r = 0, Eq. (2.16) boils down to (2.11).
As an application for the discrete total variation and its dual formulation, we

focus on the resolution of the following discrete TV–L2 problem:

Minimize
1

2
‖u− f ‖2

L2(�0)
+ β |u|DTV (�). (DTV-L2)

This problem is a pure denoising problem when�0 = � and a combined inpainting
and denoising problem when �0 � �. Using Theorem 2.4, then Fenchel dual
of (DTV-L2) can be derived in a straightforward way.

Theorem 2.5 Let 0 ≤ r ≤ 4. Then the dual problem of (DTV-L2) is

Minimize
1

2
‖div p + f ‖2

L2(�0)
s.t. p ∈ βP , (DTV-L2-D)

where the admissible set is

P :=
{

p ∈ RT 0
r+1(�) : |σ T ,i(p)|s∗ ≤ cT ,i for all T and all i,

|σE,j (p)| ≤ |nE |s cE,j for all E and all j
}

. (2.18)
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Notice p ∈ βP means that p satisfies constraints as in (2.18) but with cT ,i and
cE,j replaced by β cT,i and β cE,j , respectively. As in Sect. 2.2, we can recover the
(unique) solution of the primal problem from the solution of the dual problem in
case �0 = � as follows:

u = div p + f ∈ DGr (�). (2.19)

In case �0 � �, the primal and dual solutions are, in general, not unique.
Having established the dual problem gives us the opportunity of applying purely

dual methods [23, 24], or primal-dual algorithms, including Chambolle–Pock [11]
and split Bregman [18]. In what follows, we focus on the latter two and refer the
reader to the extended preprint Herrmann et al. [21] for a full account, including
TV–L1 problems. Our goal is to show that these methods can be applied to
solve (DTV-L2) for polynomial degrees 1 ≤ r ≤ 4 in an equally efficient way
as for the standard setting r = 0. We also aim to exhibit the benefits of polynomial
orders r ≥ 1 for image quality, both for denoising and inpainting applications. We
restrict the discussion to the isotropic case s = 2 and r ∈ {0, 1, 2} and refer the
reader to Herrmann et al. [22] for more results.

In our tests, we use the two images displayed in Fig. 4, and we measure image
quality according to the common peak signal-to-noise ratio, shortened by PSNR.
Our first numerical example is the denoising images in DGr (�). We represent
(interpolate) the non-discrete image displayed in Fig. 4 (middle) in the space
DGr (�) for r = 0, 1, 2. We show the convergence results for the split Bregman
and Chambolle–Pock methods in Table 1. We employed the primal-dual gap in
combination with a measure of dual infeasibility as a stopping criterion for both
algorithms, see Herrmann et al. [22] for details. As we can see from the PSNR
value, the quality of the reconstructed image is best for r = 1 and drops again for
r = 2. These results, however, have to be interpreted in the light of the fact that we
added noise to each coefficient of the image, i.e., the image data is more corrupted
in case of r = 2.

We continue with the denoising of low-resolution images. Here, we work with
the cameraman image presented in Fig. 4 (left) and apply the split Bregman method

Fig. 4 Left: Cameraman pixel test image. Middle: Non-discrete test image. Right: Mesh used to
represent the image in the middle
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Table 1 Comparison of the
performance of split Bregman
(SB) vs Chambolle–Pock
(CP) for the denoising
problem in various
discretizations

Space Algorithm Iterations Time [s] PSNR

DG0 SB 37 1.6 32.031

CP 128 3.4 31.987

DG1 SB 57 5.8 36.092

CP 91 6.7 33.480

DG2 SB 41 9.3 31.896

CP 223 35.1 31.066

Table 2 Performance of split Bregman (SB) for the low-resolution denoising problem in various
discretizations

Space Algorithm Iterations Time [s] PSNR

DG0 SB 20 6.3 19.333

DG2 SB 101 84.3 20.855

Table 3 Performance of
Chambolle–Pock for
the (DTV-L2) inpainting
problem in various
discretizations

Space Algorithm Iterations Time [s] PSNR

DG0 CP 2031 47.7 23.617

DG1 CP 697 49.0 26.788

DG2 CP 2286 354.0 26.385

because it performed slightly better than Chambolle–Pock in the previous denoising
example. More precisely, we consider a low resolution of the cameraman image,
which was obtained by interpolating the 256×256 pixel image onto a 64×64 square
pixel grid with crossed diagonals. As shown in Table 2 and [22, Figure 7.4], the use
of higher-order polynomial functions can partially compensate the loss of geometric
resolution.

Finally, we demonstrate the utility of discrete algorithms for the purpose of
denoising and inpainting. To this end, we consider the non-discrete “ball” image and
randomly delete two thirds of all cells, which subsequently serves as the inpainting
region�\�0. Noise is added to the remaining data and we solve problem (DTV-L2)
in DGr (�) for r ∈ {0, 1, 2}. In this case, Chambolle–Pock performs better than split
Bregman; see Table 3. Clearly, the higher-order results produce images closer to the
original than the recovery in DG0, which is reflected in the PSNR values.

3 Shape Optimization Using Total Variation of the Normal
Vector Field

In this section, we discuss the total variation of the normal vector field of a discrete
surface � as a regularizer for shape optimization problems. This regularizer was
first introduced in Bergmann et al. [6]. We demonstrate its utility in mesh denoising
and geometric inverse problems. To solve these problems, we propose a Riemannian
ADMM iteration, which generalizes the split Bregman algorithm for total variation
problems from Goldstein and Osher [18].
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3.1 Total Variation of Normal

Our total variation approach is tailored to the most common representation of
discrete surfaces, by meshes consisting of flat triangles T and straight sided edgesE.
We assume geometric conformity, i.e., no hanging nodes are allowed. These surface
representations give rise to piecewise constant normal fields n, whose variation is
concentrated in spontaneous changes across edges between triangles. We assume
that each edge E has an arbitrary but fixed orientation, so that the normal vectors of
its two neighboring triangles can be referenced as n+E,n

−
E . All normals are elements

of the unit sphere S2 = {v ∈ R
3 : |v|2 = 1}. The latter is a smooth manifold

equipped with a Riemannian metric g, which we take here to be the pullback of the
Euclidean metric from R

3.
An important detail in our approach is us measuring the distance between

neighboring normals geodesically. On S2, the logarithmic map logn+E
n−E ∈ Tn+E

S2,

which specifies the unique tangent vector at n+E such that the shortest geodesic
departing from n+E in that direction will reach n−E at unit time, is given explicitly
by

logn+E
n−E = arccos

(

(n+E)
�n−E

) n−E − (n+E
�
n−E)n

+
E

∣

∣n−E − (n+E
�
n−E)n

+
E

∣

∣

g

.

The logarithmic map is well-defined whenever n+E �= −n−E . The distance between
these two normals amounts to

d(n+E,n
−
E) := ∣

∣ logn+E
n−E

∣

∣

g
= arccos

(

(n+E)
�n−E

)

, (3.1)

which agrees with the angle between them. Similar to (2.10), we define the total
variation of the normal as

|n|T V (�) :=
∑

E

d(n+E,n
−
E)|E| =

∑

E

| logn+E
n−E |g|E|, (3.2)

where |E| is the Euclidean length of the straight edge E. Note that we are again
facing a non-differentiable regularization term. The non-differentiability occurs for
surfaces having at least one pair of neighboring normals that are equal, i.e., n+E =
n−E , indicating to a flat patch of two or more neighboring triangles.

3.2 Mesh Denoising

Meshes are widely employed in computer graphics and computer vision. There they
are used to capture digital surface data, and they can approximate general surfaces
with arbitrary geometry. Moreover, meshes are easy to obtain via 3D scanning
devices and they are easy to store and manipulate by software. Even when using
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high-fidelity scanners, measurement errors are bound to be present in the data,
which motivates the use of preprocessing steps in order to clean up the mesh before
further computations. The process of removing such errors while preserving relevant
features is known as mesh denoising.

The main difficulty in removing undesired noise from a mesh is that both, noise
and sharp features, are considered high frequency signals from the point of view of
imaging processing. This issue makes it difficult to distinguish between them. The
aforementioned problem has been of interest in the community of image processing
since late in the 1980s, and many algorithms and approaches for mesh denoising
have been developed so far. We refer to Botsch et al. [7] for a survey in denoising
algorithms.

We consider the problem of denoising a noisy mesh �̃, which is topologically
identical to �. That is, a triangle T̃ of �̃ can be written as the image T̃ =
{(id+V �)(s), s ∈ T }, where T is the triangle of the unknown surface mesh �

corresponding to T̃ and V � is an affine transformation. Similar to (DTV-L2), we
arrive at

Minimize
1

2
‖V �‖2

L2(�)
+ β

∑

E

| logn+E
n−E |g|E|, (3.3)

where the vertex positions of � serve as optimization variables.

Riemannian Split Bregman Method To address the non-smoothness of (3.2) and
due to the similarity with (DTV-L2), we propose a Riemannian split Bregman
method. To this end, we introduce the following new variable dE per edge:

dE = logn+E
n−E ∈ Tn+E

S2.

To couple the new variable into the problem, we propose the following augmented
Lagrangian formulation:

L(�, d, b) := 1

2
‖V �‖2

L2(�)
+ β

∑

E

|dE |g|E| +γ
2

∑

E

∣

∣dE − logn+E
n−E − bE

∣

∣

2
g
|E|,

(3.4)

where each bE ∈ Tn+E
S2 is a Lagrange multiplier and the vectors d and b are

simply the collections of their entries dE, bE ∈ Tn+E
S2, one per edge E. The

main difference to an ADMM method in Hilbert spaces is that the vectors dE
and bE have values in the tangent space Tn+E

S2. This necessitates an update of the
Lagrange multiplier estimates bE whenever the vertex positions of � and thus the
normal vectors are changing. These updates are realized via parallel transport of a
tangent vector from one tangent space to another, along the unique shortest geodesic
connecting the base points. Specifically, the parallel transport Pn→n′ : TnS2 →



Non-smooth Shape Optimization 115

Tn′S2 is given by

Pn→n′(ξ) = ξ − ξ�(logn n′)
arccos(n�n′)

(logn n′ + logn′ n), (3.5)

see for instance Hosseini and Uschmajew [25] and Persch [31, Section 2.3.1].
Apart from these necessary adaptations, the main idea of the split Bregman method
remains to successively minimize (3.4) w.r.t. each variable, � and d, independently
in addition to using a simple update formula for the vector of Lagrange multipli-
ers b.

Instead of minimizing (3.4) w.r.t. the vertex positions defining � to a certain
accuracy, in practice we only perform one gradient step per iteration. This is in line
with Goldstein and Osher [18], where a Gauss–Seidel sweep is proposed. We obtain
the sensitivity information for this gradient step via automatic differentiation w.r.t.
the vertex positions available in the FENICS framework, see Ham et al. [19].

Afterwards, the minimization of (3.4) w.r.t. d can be done explicitly by one
vectorial shrinkage operation per edge E in the respective tangent space Tn+E

S2.
We refer the reader to Bergmann et al. [6] for more details.

We present numerical experiments confirming the performance of our approach.
For this purpose, we use as a benchmark the well-known “fandisk” geometry, where
noise was added in normal direction with standard deviation σ = 0.2. The results
obtained can be seen in Fig. 5.

3.3 Inverse Problem

Finally, we demonstrate the utility of the total variation of the normal as a regularizer
in an inverse problem of electrical impedance tomography (EIT) type.

EIT Model Problem Traditionally, EIT problems are modeled with Neumann
(current) boundary conditions, and the internal conductivity is an unknown function
across the entire domain. In order to focus on the demonstration of the utility of (3.2)
as a regularizer in geometric inverse problems, we consider a simplified situation
in which we seek to reconstruct a perfect conductor inside a domain of otherwise
homogeneous electrical properties. Hence, we arrive at the following problem:

Minimize
1

2

r
∑

i=1

∫

�2

|ui − zi |2 ds + β |n|T V (�1)

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−�ui = 0 in �,

∂ui

∂n
= 0 on �1,

∂ui

∂n
+ α ui = fi on �2.

(3.6)
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Fig. 5 Top left: original geometry, top right: noisy geometry, bottom left: result for β = 10−4 and
γ = 10−1, bottom right: result for β = 10−6 and γ = 10−3

The unknowns of the problem are (u1, . . . , ur , �1). Here, �1 denotes the unknown
inclusion in the interior of �, and ui is the electric potential generated by the
boundary forcing fi for i = 1, . . . , r . The tracking data are surface measurements
zi on the known outer boundary �2. We treat the PDE state ui as directly dependent
on �1 and the sensitivities of ui(�1) are eliminated via an adjoint approach.

We present numerical results for the impedance tomography model problem
described in the previous section. The state u and adjoint state were discretized
using piecewise linear, globally continuous finite elements on a tetrahedral grid of�
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Fig. 6 Initial shape, TV-regularized reconstruction without noise and TV-regularized reconstruc-
tion with noise. The color on the outer shell denotes the support of each source term for i =
1, . . . , 48 in (3.6)

minus the volume enclosed by �1. The mesh has 4429 vertices and 41272 tetrahedra.
The algorithmic parameters are β = 10−6, γ = 10−1, and α = 10−5. Each fi is
constant with value 1.0 on its support, which is shown color-coded in Fig. 6.

We also show in Fig. 6 the reconstruction results for �1 obtained in the noise-
free setting and with noise. In the latter case, we added normally distributed random
noise with zero mean and standard deviation σ = 10−2 per degree of freedom on
the fixed measurement surface �2 for each of the r = 48 simulations of the forward
model (3.6). The amount of noise has to be interpreted in relation to the range of
values for the simulated state, which is

max
s∈�2

ui(s)− min
s∈�2

ui(s) ≈ 0.3, i = 1, . . . , r.

In each case, the initial guess for �1 was the surface of the ball B0.5(0) while the
true solution is a cube. As can be seen from Fig. 6, the total variation functional
helps to reconstruct this shape quite nicely.

4 Conclusion and Outlook

The main aspect of this work is to survey TV-based regularizers fostering non-
smoothness in a range of reconstruction problems. To this end, both image and
surface problems are considered. With respect to images, we discussed a (pre-)dual
denoising scheme for images on surfaces. This approach is subsequently adapted to
a discrete setting with higher-order finite elements by introducing a discrete total
variation concept, which allows for a convenient dual problem. Numerical results
are provided both for flat images as well as on surfaces.

Concerning three dimensional geometric reconstruction problems, we defined
the total variation of the normal vector field as a regularizer. This adds the additional
difficulty that the unknown is now a geometric object. Furthermore, the input to
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the regularizer, i.e., the surface normal, has values in a manifold, the unit sphere.
Hence, previously introduced algorithms need to be adapted to operate in the
appropriate Riemannian setting, which includes parallel transport to compensate
shifting tangent spaces when the unknown surface is updated. The survey concludes
with an application in electrical impedance tomography.

As an outlook into the future, the methodologies reviewed above can all
be used as a starting point to extend a variety of approaches originating from
mathematical imaging to the reconstruction of surfaces, when the corresponding
algorithms are adapted to work both on and with manifolds. Such examples could
include directional effects into the TV concept or the inpainting of meshes, where
subregions of the mesh are missing, a problem naturally and frequently arising in
3D scanning of objects with non-convex parts.
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Abstract This chapter provides a survey on the analysis, simulation, and optimal
control of a class of non-smooth evolution systems that appears in the modeling
of dissipative solids. Our focus is on models that include internal constraints, such
as a flow rule in plasticity, and that account for the temperature dependence of the
respective materials. We discuss here two cases, namely purely rate-independent
models and viscously regularized models coupled to the temperature equation.
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1 Introduction

This chapter provides a survey on the analysis, simulation, and optimal control of
a class of non-smooth evolution systems that appears in the modeling of dissipative
solids. Our focus is on models that include internal constraints, such as a flow
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rule in plasticity, and that account for the temperature dependence of the respective
materials. We discuss here two cases, namely purely rate-independent models and
viscously regularized models coupled to the temperature equation.

Due to the internal constraints, the evolution of dissipative solids typically shows
a non-smooth behavior. In the case of rate-independent models, one even has to
deal with solutions that are discontinuous in time. All this is caused by a complex
interplay of a non-smooth dissipation and a typically non-convex energy. For these
reasons, the simulation of such systems is still a challenging topic, and the analytic
frame and the numerical tools for optimal control thereof are not yet fully developed.

This chapter is structured as follows: We first give a short introduction to rate-
independent systems and discuss different solution concepts (Sect. 2) for such
systems. The class of solutions that we are focusing on in this chapter is the class
of (parametrized) balanced viscosity solutions (BV solutions). In order to shorten
the notation, we restrict ourselves to the semilinear case, [38]. Section 3 is devoted
to the discussion of different discretization strategies for such systems. Here, we
present results for the abstract semilinear case as well as results for concrete systems
formulated in terms of partial differential equations and variational inequalities. In
Sect. 4, we then describe first results on the optimal control of problems with rate-
independent systems as constraints. Finally, in Sect. 5, we switch to rate-dependent
systems that are coupled with the temperature equation.

2 Rate-Independent Systems and Solution Concepts

Within certain regimes, the behavior of many dissipative solids can be assumed
to be rate-independent. Rate independence means that rescaling both the applied
forces and the solutions in time in the same way implies that the rescaled solutions
solve the rescaled model equations. Prominent examples are quasi-static elasto-
plasticity, brittle damage or fracture, and shape memory alloys. Setting up the
models in the framework of generalized standard materials [16], one assumes
that the actual state of a mechanical structure is completely described by the
displacement field belonging to some state space U and some internal variables
belonging to a state space Z . These internal variables describe on a macroscopic
level the inner structure of the material and reflect the loading history. Constraints
like friction laws or flow rules imply that the resulting model typically consists of a
balance of linear momentum that is coupled with a doubly nonlinear differential
inclusion characterizing the evolution of the internal variable z. Given a stored
energy functional E : [0, T ] × U × Z → R that depends on the time via time-
dependent loads and a dissipation potential R : Z → [0,∞], the evolution in
the quasi-static case (i.e., inertia terms and viscoelastic behavior are neglected) is
characterized by the following system:

u(t) = arg min
v∈U

E(t, v, z(t)), (BM)

0 ∈ ∂R(ż(t))+DzE(t, u(t), z(t)) in Z∗. (RIS)
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In this section, we assume that R is convex and positively homogeneous of degree
one, and hence, the system (BM)–(RIS) is rate-independent. Generalizations do
exist, where for instance the state space Z is replaced by a metric space and where
the potential R is replaced by a dissipation distance, see [29].

The analytic properties of the system (BM)–(RIS) depend significantly on the
convexity properties of the energy potential E . If E is quadratic and uniformly con-
vex in the pair (u, z), then classical results guarantee the existence and uniqueness of
solutions to (BM)–(RIS) that are Lipschitz continuous in time. We refer the reader
to [6] for the general theory on evolution systems involving maximal monotone
operators and to [14, 17], where similar results were derived for models for elasto-
plasticity. We subsequently denote all curves (u, z) ∈ W 1,∞(0, T ;U × Z) such
that (BM)–(RIS) hold for almost all t ∈ [0, T ] as differential solutions.

The picture changes completely when the energy E is not convex in (u, z). This
is for instance the case for damage models of Ambrosio–Tortorelli type, for finite
strain elasto-plasticity, or for rate-independent versions of ferroelectric models [12,
27, 45]. In the non-convex case, global solutions that are continuous with respect to
time do not exist even if the loading path is smooth in time. Hence, suitable notions
of weak solutions are necessary, which allow for discontinuities and at the same
time are enhanced by jump criteria selecting physically reasonable discontinuities.
In addition, there is a need for numerical algorithms that reliably approximate the
type of solution one is interested in.

In the seminal paper [37], the authors introduced the notion of Global Energetic
Solutions (GES) for rate-independent systems. In our context, a curve t �→
(u(t), z(t)) is a GES if the following global stability condition (S) and energy
dissipation balance (E) are satisfied for all t ∈ [0, T ]:

E(t, u(t), z(t)) ≤ E(t, v, ζ )+R(ζ − z(t)) for all v ∈ U , ζ ∈ Z, (S)

E(t, u(t), z(t))+ dissR(z; [0, t]) = E(0, z(0))+
∫ t

0
∂tE(r, u(r), z(r)) dr. (E)

Here, dissR(z; [0, t]) corresponds to the total variation of the trajectory of z

measured in terms of the dissipation functional R. This concept was successfully
applied to various models from continuum mechanics, and the existence of GES is
nowadays well established for a variety of models involving non-convex energies.
This concept also proves to be very flexible when studying limits of families of rate-
independent systems depending on parameters. In particular, tools from the calculus
of variations such as �-convergence can be applied to investigate such systems, see
[30].

However, due to the global minimality condition (S), global energetic solutions
tend to develop discontinuities that could be considered as nonphysical since
solutions might jump across energy barriers. As an alternative, the authors of [11]
proposed to start from a viscously regularized version of (RIS) of the type

0 ∈ ∂R(żγ (t))+ γ żγ (t)+DzE(t, uγ (t), zγ (t)) (2.1)
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and to study the limit as the viscosity parameter γ tends to zero. This approach
was intensively investigated in the last 12 years leading to the notion of balanced
viscosity solutions (BV solutions). We refer the reader to [31, 32] for results in
an abstract setting, to [8] for an application in plasticity and to [20, 23], where
a corresponding analysis was carried out for fracture and damage models. In
comparison with GES, BV solutions tend to jump as late as possible and hence
are substantially different from GES in the non-convex case.

There are different ways of characterizing BV solutions. For this survey article,
let us deal with the following parametrized version, where we introduce a further
space V such that Z ⊂ V:

Definition 2.1 A tuple (S, t̂ , û, ẑ) with ẑ ∈ W 1,∞(0, S;V) ∩ L∞(0, S;Z), S > 0
and t̂ ∈ W 1,∞(0, S;R) is a V-parametrized BV solution if t̂ (0) = 0, t̂ (S) = T ,
t̂ ′(s) ≥ 0, t̂ ′(s)+‖ẑ(s)‖V ≤ 1 for a.a. s ∈ (0, S), û(s) ∈ arg minv∈U E(t̂(s), v, ẑ(s))
for all s, and if there exists a measurable function λ : (0, S) → [0,∞) such that
the complementarity condition and the inclusion here below are satisfied for almost
all s

λ(s) ≥ 0, λ(s)t̂ ′(s) = 0, (2.2)

0 ∈ ∂R(ẑ′(s))+ λ(s)ẑ′(s)+DzE(t̂(s), û(s), ẑ(s)). (2.3)

The solution is V-normalized if in addition t̂ ′(s)+ ‖ẑ′(s)‖V = 1 for a.a. s.

Let us stress that there is a certain flexibility in representing parametrized
solutions. In order to arrive at (2.2)–(2.3), one introduces the arc-length-type
parameter sγ (t) := t + ∫ t

0‖żγ (r)‖Vdr and reformulates (2.1) in terms of this new
variable. The limit γ → 0 then leads to V-parametrized BV solutions. Alternatively,
one could for instance use the stronger Z-reparametrization where everywhere in
the previous definitions V has to be replaced with Z , or parametrizations relying on
the so-called vanishing viscosity contact potential

p(v, ξ) := R(v)+ ‖v‖V distV∗(−ξ, ∂R(0)). (2.4)

In this case, sγ (t) := t + ∫ t

0 p(żγ (r),DzE(r, uγ (r), zγ (r)))dr , and the normaliza-
tion condition in the limit reads t̂ ′(s) + p(ẑ′(s),DzE(t̂(s), û(s), ẑ(s))) = 1. Each
of these reparametrizations has its (analytical) advantages and disadvantages. The
stronger the norms in the parametrization the more regular the limit functions are
in the parametrized picture. However, only a reparametrization by the vanishing
viscosity contact potential implies that limits of vanishing viscosity sequences are
already normalized [32], which up to now is an essential ingredient for the study
of optimal control problems with BV solutions as constraints [22], see also Sect. 4.
This cannot be guaranteed a priori for the other choices.

Alternative notions of solutions that in some sense lie between GES and BV
solutions were discussed in [24], where jumps across small energy barriers are
admissible, and in [33], where special scalings in the vanishing viscosity procedure
are prescribed. Let us finally mention that GES, BV solutions and the solutions
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introduced in [33] belong to the class of local solutions, the most general definition
of solutions for rate-independent systems. Adapted to the notation here, a pair
(u, z) : [0, T ] → U × Z is a local solution if for almost all t we have (BM), the
local stability condition −DzE(t, u(t), z(t)) ∈ ∂R(0) and the energy dissipation
estimate (E) with ≤ instead of= (for all t). We refer the reader to [29] for a detailed
overview on different solution concepts for rate-independent systems.

3 Discretization Schemes for Rate-Independent Systems and
Their Convergence

3.1 The Semilinear Setting

In this section, we will simplify the model by assuming that the energy potential E
depends on the internal variable z alone, and not on the displacement field. In order
to set up the model, let the state space Z be a separable Hilbert space that fulfills
the embeddings

Z ⊂⊂ V ⊂ X (3.1)

for another separable Hilbert space V and a Banach space X , that is, Z is compactly
embedded into V and continuously embedded into X . We are working with a
semilinear model, [38], meaning that the energy potential consists of a quadratic
leading term and a lower order non-convexity, as well as a linear term that is given
by the external load &. To be more precise, let A ∈ Lin(Z,Z∗) be a linear, self-
adjoint, and bounded operator and F : Z → [0,∞) a nonlinearity such that
E : [0, T ] × Z → R is given by

E(t, z) := 1
2 〈Az, z〉Z∗,Z + F(z)− 〈&(t), z〉V∗,V = I(z)− 〈&(t), z〉V∗,V , (3.2)

where

I : Z → R, I(z) = 1
2 〈Az, z〉Z∗,Z + F(z)

depends on the state z alone. Here, we assume that A is Z-elliptic, i.e., there exists
a constant α > 0 such that

∀z ∈ Z : 〈Az, z〉 ≥ α‖z‖2
Z .

The non-convexity F is assumed to fulfill the following:

F ∈ C2(Z,R) with F ≥ 0, (3.3)

DzF ∈ C1(Z,V∗), (3.4)
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∃q ≥ 1 : ‖DzF(z)v‖V∗ ≤ C(1+ ‖z‖qZ )‖v‖Z, (3.5)

F : Z → R and DzF : Z → Z∗ are weakly continuous. (3.6)

Furthermore, if not otherwise stated, we assume in this section that the initial state
z0 ∈ Z and the external load & are compatible in the sense that

z0 ∈ Z, & ∈ H 1((0, T );V∗) and DzE(0, z0) = DzI(z0)− &(0) ∈ V∗. (3.7)

Finally, let the dissipation potential R : X → [0,∞) be convex, continuous,
positively homogeneous of degree one, and bounded by ‖ · ‖X , i.e.,

∃c, C > 0∀x ∈ X : c‖x‖X ≤ R(x) ≤ C‖x‖X . (3.8)

As a consequence of the assumptions (3.1), (3.3)–(3.5), and (3.8), I is λ-convex on
sublevels, meaning that the following holds true (cf. [19, Lemma 1.1]): For every
ρ > 0, there exists λ = λ(ρ) > 0 such that for all z1, z2 ∈ Z with ‖zi‖Z ≤ ρ we
have the estimate

I(z2)− I(z1) ≥ 〈DzI(z1), z2 − z1〉Z∗,Z + α
2 ‖z1 − z2‖2

Z − λR(z2 − z1)‖z2 − z1‖V .
(3.9)

In this setting, (BM)–(RIS) reduce to the problem: Find z : [0, T ] → Z with z(0) =
z0 such that for almost all t ∈ (0, T ), we have

0 ∈ ∂R(ż(t))+ DzE(t, z(t)) . (3.10)

The existence of V-parametrized BV solutions is guaranteed by [32, Theorem 3.12].

3.2 Discretization Schemes, Abstract Semilinear Setting

Several different discretization schemes are proposed in the literature for the
approximation of (3.10). In order to simplify the notation, we assume an equidistant
partition of [0, T ], i.e., for N ∈ N we define τN := T/N and tNk = kτ for
0 ≤ k ≤ N .

Global energetic solutions can be approximated by the following time incremen-
tal global minimization scheme:

zN0 := z0, zNk ∈ Arg min{ E(tNk , z)+R(z− zNk−1) ; z ∈ Z }, 1 ≤ k ≤ N ,

(3.11)

and we refer the reader to [29] for details.
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In order to approximate BV solutions, the most natural approach is to introduce
a time-discrete version of the viscous system (2.1) and to pass to the limit τN → 0,
γ → 0 simultaneously. This results in the following (implicit Euler) scheme: Let
z
N,γ

0 := z0. Then for 1 ≤ k ≤ N

z
N,γ

k ∈ Arg min{ E(tNk , z)+R(z− z
N,γ

k−1)+ γ

2τN
‖z− z

N,γ

k−1‖2
V ; z ∈ Z } .

(3.12)

If τN → 0, γ → 0, and τN/γ → 0, then (subsequences of) suitable interpolants
of the points (z

N,τ
k )k converge to BV solutions, see for instance [32, Theorem

3.12]. However, in practice, it is often difficult to find a good relation between
the parameters τN and γ such that the right jump behavior is already visible for
rather coarse discretizations. See, e.g., [21], where a crack propagation model was
analyzed.

As a first alternative to the previously discussed method, a local minimization
scheme was proposed and analyzed in [11]. There, the idea is to discretize the
system in the parametrized picture that results in a scheme that has a time-adaptive
character: Let τ > 0 and zτ0 = z0, tτ0 = 0. For k ≥ 1, determine zτk ∈ Z and tτk by

zτk ∈ Arg min{ E(tτk−1, v)+R(v − zτk−1) ; v ∈ Z, ‖v − zτk−1‖V ≤ τ } (3.13a)

tτk = min
{

tτk−1 + τ − ‖zτk − zτk−1‖V , T
}

. (3.13b)

While this question was not addressed in [11], it was shown in [19] that for each
τ > 0 the final time T is reached after a finite number of incremental minimization
steps N(τ). Moreover, the Z-length of the polygonal path defined by the points
(zτk )0≤k≤N(τ) is uniformly bounded w.r.t. τ , i.e., supτ>0

∑N(τ)
k=1 ‖zτk − zτk−1‖Z <∞.

Let us parametrize the polygonal path as follows: With Sτ := T + ∑N(τ)
k=1 ‖zτk −

zτk−1‖V and sτk := kτ , let ẑτ : [0, Sτ ] → Z and t̂τ : [0, Sτ ] → [0, T ] denote the
affine interpolants related to the points (zτk )k and (tτk )k with ẑτ (sτk ) = zτk and similar
for t̂τ .

Theorem 3.1 For every vanishing sequence (τn)n∈N, there exists a subsequence
and a V-parametrized BV solution (S, t̂ , ẑ) in the sense of Definition 2.1 such that

Sτ → S, t̂τ
∗
⇀ t̂ inW 1,∞((0, S);R) and ẑτ ∗

⇀ ẑ inW 1,∞((0, S);V)∩L∞(0, S;Z).
We refer the reader to [11] for a proof in the finite-dimensional case and to [19,
Theorem 2.5] for the semilinear case introduced above.

If one wants to avoid the local minimization in (3.13a), an alternative is given
by the following ansatz: Let η > 0. Determine (zNk )0≤k≤N with zN0 := z0 from the
following incremental minimization scheme, where tNk = kτN , zk,0 := zNk−1, and
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i ≥ 1:

zk,i ∈ Arg min{ I(tNk , v)+
η

2
‖v − zk,i−1‖2

V +R(v − zk,i−1) ; v ∈ Z },
(3.14a)

zNk := lim
i→∞ zk,i (weak limit in Z). (3.14b)

Again it is shown in [19] that for τ → 0 and η → ∞ suitable interpolants
of (zNk )k∈N converge to parametrized BV solutions. In order to construct the
interpolating curves, also the intermediate points (zk,i)i∈N are taken into account
in the proof. Observe that thanks to estimate (3.9) the minimization problem (3.14a)
is uniformly convex provided that η is large enough. Combining Theorem 3.7 and
Theorem 4.5 from [19], incremental solutions of (3.14a)–(3.14b) still converge to
BV solutions if one replaces (3.14b) by a stopping criterion of the type “stop if
‖zk,i − zk,i−1‖V ≤ δ” and defines zNk := zk,i . It is shown that for each k after a
finite number of steps the stopping criterion is active and that for τN , δ → 0 and
η → ∞ interpolating curves converge to BV solutions. Scheme (3.14a)–(3.14b)
is inspired by an ansatz discussed in [3], where instead of (3.14a) the authors work
with zk,i ∈ Arg min{ I(tNk , v)+ η

2‖v−zk,i−1‖2
V+R(v−zNk ) ; v ∈ Z }. For τN → 0

but η > 0 fixed, they show the convergence of (subsequences of) interpolants to
local solutions.

Apart from standard a priori estimates that follow from discrete versions of an
energy dissipation balance, the essential ingredient for the convergence proofs is a
uniform (with respect to the discretization parameters) estimate of the arc length
of the interpolating curves in Z , i.e., an estimate of the type

∑N
k=1

∑

i‖zk,i −
zk,i−1‖Z ≤ C for (3.14a)–(3.14b) or

∑N
k=1‖zτk − zτk−1‖Z ≤ C for (3.13a). The

derivation of such estimates involves similar arguments as for the vanishing viscos-
ity analysis of general rate-independent systems. The incremental system is then
reformulated in a parametrized picture, and limits are identified via compactness
arguments and weak convergence principles.

Just like for the choice of the viscous regularization term in the vanishing
viscosity ansatz in (2.1), there is a certain flexibility in choosing the norm (e.g., V-
norm or Z-norm) in (3.13a) as well as in the quadratic terms in (3.12) and (3.14a).
Clearly, different choices will lead to different limit models. However, one could
consider the choice of the norm as a further degree of freedom in order to set up a
physically reasonable model.

Let us finally address alternate minimization approaches (staggered schemes).
Such schemes are widely used for coupled systems in the framework of generalized
standard materials when two or more variables are involved. The basic idea is
to freeze the variables alternatingly and to calculate the other variables from
the resulting subsystem. However, for the case when the whole system or a
subsystem shows rate-independent behavior and when the energy is not convex,
a convergence analysis was initiated only recently. In [42, 43], the convergence of
discrete solutions generated by an alternate minimization scheme to semistable local



Rate-Independent Systems and Their Viscous Regularizations 129

solutions was shown, a slightly stronger notion than the notion of local solution.
For the purely rate-independent case, a first convergence proof was given in [18]
for the Ambrosio–Tortorelli damage model and in [19] for an abstract semilinear
setting. In the Ambrosio–Tortorelli model, the underlying energy is non-convex but
separately uniformly convex in the displacement and the damage variable. The main
observation in [18] is that even without introducing any viscosity terms into the
minimization scheme the discrete solutions converge to BV-type solutions.

Let us finally illustrate the abovementioned schemes with the following finite-
dimensional example (Z = V = X = R) from [19]:

I(t, z) := 5z2 − t2

2(0.1+ z2)
, R(v) := 10|v|, z0 = 1 and T = 1.5 .

(3.15)

In Fig. 1 (left), the set { (t, z) ; −DI(t, z) ∈ ∂R(0) } is marked in gray. The figure
shows the global energetic solution (blue, calculated with (3.11), N = 100), the BV
solution (purple, calculated with (3.13), τ = 90 and N(τ) ≈ 150), and a viscous
approximation (green, calculated with (3.12), N = 100, γ = √

T/N). The right
graph in Fig. 1 shows the interpolants (ẑτ , t̂τ ) corresponding to (3.13) as functions
of the arc- length parameter s. One clearly sees the region, where t̂τ is constant,
while ẑτ is decreasing. This corresponds to the vertical transition of the purple curve
in the left picture and to a jump discontinuity of z with respect to the true physical
time.
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Fig. 1 Left: Global energetic solution (blue), BV solution (purple), and viscous approximation
(green) as functions of time t ; Right: BV solution ẑ (purple, decreasing) and t̂ (orange, increasing)
as functions of the arc-length parameter s
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3.3 A Priori Estimates, Abstract Semilinear Setting

While Theorem 3.1 shows that the local minimization scheme (3.13) is able to
approximate parametrized solutions, in the sense that every accumulation point
of approximations with increasingly finer step size τ is an element of this class
of solutions, this section is concerned with a priori estimates for approximations
using (3.13). For the notion of energetic solutions, this has been worked out in
[25, 36] using the global incremental minimization (3.11) instead of the local one
in (3.13) and assuming that the energy E is uniformly convex. The authors show
that the error of the approximation compared to the unique global energetic solution
is of order O(√τ), where τ denotes the fineness of the discretization in time.
For quadratic and coercive energies, this result has been extended to O(τ ) in [26]
and more general in [4], see also [1] for the special case of elasto-plasticity. In
contrast, to the best of our knowledge, there exist no such results for the concept
of parametrized solutions. One major difficulty here is due to the fact that the
parametrized solutions are defined in the extended state space, each with their own
artificial time. In the convex case, one can handle this problem by retransforming
the solution back into the physical time and comparing it to the unique differential
solution to obtain an a priori estimate. Hence, again, the main assumption is the (at
least local) uniform convexity of the energy functional. Without this assumption,
solutions are, in general, not unique, so that it is not clear if any of the solutions
is preferred by the algorithm (see Figure 1 in [34]). However, one cannot expect a
convergence result going beyond Theorem 3.1 without further assumptions. Thus,
in addition to the assumptions in Sect. 3.1, we require the energy functional to fulfill
E(t, ·) ∈ C

2,1
loc (Z;R), that is to say, for all r > 0 there exists C(r) ≥ 0 such that for

all z1, z2 ∈ BZ (0, r) it holds

〈[D2
zE(t, z1)−D2

zE(t, z2)
]

v, v〉Z∗,Z ≤ C(r)‖z1 − z2‖Z‖v‖2
Z .

Note that, due to the structure of the energy functional I, the constant C(r) does
not depend on the time t and, moreover, this assumption holds iff F ∈ C

2,1
loc (Z;R).

At first, we also assume that E is (globally) κ-uniformly convex, i.e., there exists a
κ > 0 such that for all t ∈ [0, T ] it holds

〈D2
zE(t, z)v, v〉Z∗,Z ≥ κ‖v‖2

Z ∀z, v ∈ Z.

On the one hand, this condition implies that there exists a unique differential solution
to the rate-independent system, and on the other hand, it allows us to prove that
tk+1 > tk for all iterations k, provided that the Lipschitz constant of the external
load is sufficiently small, see Theorem 3.2. This is crucial in order to define the
following affine interpolant for t ∈ [tk−1, tk):

zτ (t) := zk−1 + t − tk−1

tk − tk−1
(zk − zk−1) (3.16)
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for which we obtain the following:

Theorem 3.2 Let E(t, ·) ∈ C
2,1
loc (Z;R) be κ-uniformly convex. Moreover, let & ∈

W 2,1([0, T ];V∗) with |&|Lip < κ . Then, the sequence {zτ }τ>0 of retransformed
discrete parametrized solutions converges to the unique (differential) solution z and
satisfies the a priori error estimate

‖zτ (t)− z(t)‖Z ≤ K τ ∀t ∈ [0, T ], (3.17)

where K = K(α, κ, &, z0, T ,F , ‖A‖L(Z,Z∗)) > 0 is independent of τ .

Note that due to the 1−homogeneity of R, the time can always be rescaled in such a
way that the condition on the Lipschitz constant of & is fulfilled. Under the specified
assumptions, we thus obtain an optimal rate of convergence for the iterated local
minimization scheme. However, if the energy is globally uniformly convex, then a
local minimum of (3.13) is also a global one, so that the localization in (3.13) is
obsolete. This, however, changes if the energy is not globally but locally uniformly
convex w.r.t. some evolution z. By this, we mean that for z : [0, T ] → Z with
z ∈ W 1,∞([0, T ];Z), there exist κ,� > 0, independent of t , such that E(t, ·) is
κ-uniformly convex on B�(z(t)) for all t ∈ [0, T ], i.e.,

〈D2
zE(t, z̃)v, v〉Z∗,Z ≥ κ‖v‖2

Z ∀z̃ ∈ BZ (z(t),�), v ∈ Z. (3.18)

In this case, an a priori estimate like (3.17), in general, no longer holds for the
global minimization scheme, see Fig. 2 (a global energetic and a differential solution
must not even coincide, see [47]). In contrast, the affine interpolant of the local
minimization iterates defined as in (3.16) still fulfills the following a priori estimate:

Theorem 3.3 Let z ∈ C0,1([0, T ];Z) be a (differential) solution with
−DzE(0, z0) ∈ ∂R(0). Furthermore, let E be locally κ-uniformly convex around z
with radius� > 0 and assume that & ∈ W 2,1([0, T ];V) with |&|Lip < κ . Then there
exists a constant Kloc > 0, independent of τ , such that, for the back-transformed
discrete parametrized solution zτ : [0, T ] → Z and all τ ≤ τ̄ with τ̄ sufficiently
small, it holds:

‖zτ (t)− z(t)‖Z ≤ Kloc τ ∀t ∈ [0, T ]. (3.19)

Figure 2, which is based on the example in [34, Section 4.2], shows exactly this
situation. Here, the approximation using the global minimization scheme produces
a jump, whereas the discrete solution obtained by (3.13) nicely approximates the
differential solution with an error of order O(τ ). The gray regions have the same
meaning as in Fig. 1 (left). The example was calculated with R(v) = |v|, I(t, z) =
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Fig. 2 Left: Errors for the approximation of a parametrized solution using the local minimization
scheme depending on the step size τ ; Right: Corresponding differential solution (black) as well
as the numerical approximations of a global energetic solution (blue) and BV solution (red) as
functions of the time t

1
2z

2 + F(z)− &(t)z with &(t) = −1/2(t − 3/2)2 + 3/2 and

F(z) =
{

2z3 − 5/2z2 + 1 z ≥ 0

−2z3 − 5/2z2 + 1 z < 0
.

3.4 Finite-Element Discretization and Numerical Realization

This section is devoted to the numerical realization of the local minimization
scheme (3.13). Additionally to the time discretization, we also employ a spatial
discretization Zh ⊂ Z using finite elements. Moreover, we allow for a further
approximation Rh of the dissipation functional R. The overall algorithm reads as
follows:

Algorithm 1 (Fully Discrete Local Minimization)

1: Set zτ0 = Ph(z0), t0 = 0, and k = 1
2: while tk < T do
3: Compute zτk as solution of

zτk ∈ arg min{E(tτk−1, z)+Rh(z− zτk−1) : z ∈ Zh, ‖z− zτk−1‖V ≤ τ }
(3.20)

4: Time update:

tτk = min{tτk−1 + τ − ‖zτk − zτk−1‖V , T } (3.21)
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5: Set k = k + 1.
6: end while

Herein, Ph denotes the Ritz projection, i.e.,

Ph(u) ∈ Zh , a(Ph(u), v) = a(u, v) ∀v ∈ Zh ,

where a is the bilinear form induced by A. Before we turn to the numerical results
obtained by Algorithm 1, we note that under suitable assumptions on the spatial
discretization and the approximation Rh, see [35], we obtain the following result,
which is based on the analysis for Theorem 3.1.

Theorem 3.4 (Convergence Toward Parametrized Solutions) There exists a
sequence {τn, hn}n∈N ⊂ R+ × R+ converging to zero such that the affine
interpolants generated by the fully discrete local minimization Algorithm 1 and the
artificial end time Sτn,hn satisfy

Sτn,hn → S, (3.22)

t̂τn,hn
∗
⇀ t̂ in W 1,∞((0, S);R), (3.23)

ẑτn,hn
∗
⇀ ẑ in W 1,∞((0, S);V) ∩ L∞((0, S);Z), (3.24)

ẑτn,hn(s) ⇀ ẑ(s) in Z for every s ∈ [0, S] (3.25)

and the limit (t̂ , ẑ) is a V-parametrized solution.
Moreover, every accumulation point (t̂ , ẑ) of time incremental sequences in the

sense of (3.22)–(3.25) is a V-parametrized solution.

The results shown below are generated by Algorithm 1 for the following problem
data (see [35]):

• � = [0, 1]2 and Z = H 1
0 (�), V = L2(�), as well as X = L1(�).

• The operator A within the energy functional is set to A = −- : H 1
0 (�) →

H−1(�), so that the coercivity constant α equals Poincaré’s constant.
• The nonlinearity F in the energy is defined as the well-known double-well

potential

F(z) := 48
∫

�

(

1− z(x)2
)2dx.

• The external loads are only depending on t and given by

&(t, x) = &(t) := −48 sin(2πt), (t, x) ∈ [0, T ] ×�.

• The dissipation functional is given by the L1-norm, i.e., R(v) = ‖v‖L1(�).
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While we choose linear finite elements for the spatial discretization, the discrete
dissipation potential Rh : Zh → R is defined by

Rh(zh) :=
∫

�

Nh
∑

i=1

|zi |ϕi(x)dx, (3.26)

wherein zi denotes the coefficient vector of zh w.r.t. the nodal basis ϕi , i.e., zh(x) =
∑Nh

i=1 zi ϕi(x). This has the advantage that the convex subdifferential of Rh can
be expressed componentwise. In addition, the first-order optimality system for the
discretized optimization problem, see [35, Lemma 4.2], can be solved numerically
by a semismooth Newton method. The corresponding numerical results (with z0 ≡ 0
and T = 1) are shown in Fig. 3. For a detailed explanation hereof, see [35]. Note
that the viscous behavior of the system during the jump time t ≈ 0.6724 can be
nicely observed (see Fig. 3c–i and Fig. 4).

4 Optimal Control of Rate-Independent Systems

Concerning the optimization and optimal control of rate-independent systems, the
literature is rather scarce, in particular with regard to non-convex energies. If the
energy is convex, then several results are known, concerning existence of optimal
solutions as well as optimality conditions. In the uniformly convex case, all notions
of solutions introduced above are basically equivalent and the rate-independent
system holds in its strong form (BM)–(RIS). Moreover, in this case, (BM)–(RIS)
admit a unique solution that gives rise to the definition of an associated solution
operator, the control-to-state mapping & �→ (u, z). In this way, optimal control
problems governed by (BM)–(RIS) with convex energy can be transformed into
a problem in the control variable only, frequently termed the reduced problem. This
sometimes called implicit programming approach is widely used.

The situation changes completely if one relaxes the convexity assumptions or
even turns to non-convex energies, and at this point, the literature becomes rather
scarce. When it comes to non-convex energies, an entirely new challenge comes
into play, namely the many different notions of solutions for the state system and
the lack of uniqueness of the corresponding solutions. Existence results for optimal
control problems in the GES setting are proven in [9, 10, 41, 48]. A first result in
the setting of BV solutions was derived in [22], and we shortly summarize here the
challenges.

Let us study an optimal control problem governed by (3.10), where the external
load & is the control variable. We remain within the semilinear setting introduced in
Sect. 3.1 and restrain the problem to an admissible set consisting of all normalized
parametrized BV solutions of (3.10). Independently of the solution concept under
consideration, solutions of (3.10) are not unique in general, which is due to the
non-convexity of the energy. In order to show existence of an optimal control, it is
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Fig. 3 Computed parametrized solution to the problem described in Sect. 3.4. Figure 3–3i shows
the viscous transition corresponding to the discontinuity at time t ≈ 0.6724. (a) t = 0.00. (b)
t = 0.01. (c) t = 0.6724. (d) t = 0.6724. (e) t = 0.6724. (f) t = 0.6724. (g) t =0.6724. (h)
t = 0.6724. (i) t =0.6729. (j) t =1.00
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Fig. 4 Evolution of the
physical time as a function of
the artificial time. The
physical time stands still
during the viscous transitions
at time t ≈ 0.01 and
t ≈ 0.6724
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therefore necessary to show sequential closedness of the set-valued control-to-state
map as well as a compactness result.

To be more precise, for z0 and & that are compatible in the sense of (3.7), we
define the admissible set

Mad := { (S, t̂ , ẑ, &) |
(S, t̂ , ẑ) is a normalized p-parametrized BV solution for (z0, &) }

and consider the optimal control problem

min J (S, ẑ, &) := j (ẑ(S))+ α‖&‖H 1(0,T ;V∗)
s.t. (S, t̂ , ẑ, &) ∈ Mad.

}

. (4.1)

Here, α > 0 is a fixed Tikhonov parameter and j : V → R is continuous and
bounded from below, e.g., j (z) := ‖z − zdes‖V for a desired end state zdes ∈ V .
As already mentioned in Sect. 2, there are different options for the representation
of parametrized solutions, and only the reparametrization based on the vanishing
viscosity contact potential p defined in (2.4) guarantees that the accumulation points
of vanishing viscosity sequences are normalized. Since the optimal control problem
calls for normalized solutions, we rely on the p-parametrization for the rest of this
section. This leads to the following adjustments in the definition of BV solutions:

Definition 4.1 A tuple (S, t̂ , ẑ) with ẑ ∈ AC∞([0, S];X ) ∩ L∞(0, S;Z), S > 0
and t̂ ∈ W 1,∞(0, S;R) is a p-parametrized BV solution if the following holds: The
set

G := {s ∈ [0, S] | distV (−DzE(t̂(s), ẑ(s)), ∂R(0)) > 0} (4.2)

is relatively open and ẑ ∈ W
1,1
loc(G;V), DzE(t̂(·), ẑ(·)) ∈ L∞loc(G;V∗). Further-

more, t̂ ′(s) + R[ẑ′](s) + ‖ẑ′(s)‖VdistV (−DzE(t̂(s), ẑ(s)), ∂R(0)) ≤ 1 for a.a.
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s ∈ (0, S), t̂ (0) = 0, t̂ (S) = T , t̂ ′(s) ≥ 0, and there exists a measurable function
λ : (0, S) → [0,∞) with λ(s) = 0 on (0, S) \ G such that the complementarity
condition and the inclusion here below are satisfied

f.a.a. s ∈ (0, S) : t̂ ′(s)distV (−DzE(t̂(s), ẑ(s)), ∂R(0)) = 0 (4.3)

f.a.a. s ∈ G : 0 ∈ ∂R(ẑ′(s))+ λ(s)ẑ′(s)+DzE(t̂(s), ẑ(s)). (4.4)

The solution is p-normalized if in addition

t̂ ′(s)+R[ẑ′](s)+ ‖ẑ′(s)‖VdistV (−DzE(t̂(s), ẑ(s)), ∂R(0)) = 1 for a.a. s.

It is important to note here that, since the norms involved in the reparametrization
are relatively weak, the resulting limit cannot be shown to be differentiable w.r.t. the
norm on V on the entire interval [0, S]. Instead, we are dealing with the so-called
generalized metric derivative, which for z ∈ AC∞([0, S],X ) is defined by

R[z′](s) := lim
h↘0

R((z(s + h)− z(s))/h) ∈ R.

It is shown in [2, Thm 1.1.2] that R[z′](s) exists almost everywhere and that R[z′] ∈
L∞(0, S).

Theorem 4.2 Let α > 0 be a fixed Tikhonov parameter, z0 ∈ Z be chosen such
that there exists & ∈ H 1(0, T ;V∗) such that (z0, &) complies with (3.7), and let
j : V → R be bounded from below and continuous. Then, the optimal control
problem (4.1) has a globally optimal solution.

The proof of this existence theorem relies on the (weak) sequential compactness
of solution sets, to be more precise of sets of the type

Mρ :=
{

(S, t̂ , ẑ) ; ∃ z0, & such that (3.7) and ‖z0‖Z + ‖&‖H 1((0,T );V∗) ≤ ρ hold

and (S, t̂ , ẑ) is a normalized p-parametrized BV solution for (z0, &)
}

for ρ > 0.
The key ingredient for proving compactness of the solution sets Mρ is an a priori

estimate for the driving forces DzE(t̂ , ẑ) in the space V∗, which is based on the
inclusion (4.4). This estimate is trivial on the complement of the set G from (4.2),
since ∂R(0) is a bounded set in V∗, but poses a major challenge on the set G. This
can be remedied in the following way: thanks to (4.3), we know that the external
load & ◦ t̂ is a constant on each connected component of G, which we denote by
&∗ ∈ V∗. For each such component, we can therefore find a reparametrization such
that the transformed functions z̃ are solutions of the autonomous system

0 ∈ ∂R( ˙̃z(t))+ ˙̃z(t)+DI (̃z(t))− 〈&∗, z̃(t)〉V∗,V for t > 0. (4.5)



138 R. Herzog et al.

The essential estimates are then derived for the viscous model (4.5) and subse-
quently transferred to the original one. We refer the reader to [22] for the details.

5 Optimal Control of Thermo-Viscoplasticity

In this section, we elaborate on a system of thermo-visco(elasto)plasticity at small
strains with linear kinematic hardening and von Mises yield condition. This topic is
motivated by a multitude of important applications, where thermo-plastic material
behavior leads to severe damage and material fatigue. We exemplarily mention
thermally induced creeping, which occurs for instance in the operation of power
plants, whose turbine blades deform permanently under the influence of stresses
and heat. This process may eventually cause thermo-mechanical fatigue, cf. e.g.,
[5, 28, 44]. Another instance is the behavior of steel columns exposed to fire, cf.
[46]. The high temperatures lead to a substantial damage of the material such that
its yield strength is significantly decreased, a phenomenon known as creep buckling
of the columns. This is regarded one of the main reasons for the collapse of the
World Trade Center in New York on 2001/9/11, see [7].

The temperature part of these models is naturally rate-dependent, whereas many
plasticity models are rate-independent. However, as a first step toward these coupled
rate-dependent/rate-independent models, we consider a viscous regularization of
the elasto-plastic system. This regularization is two-fold, and it applies to both the
viscoplastic flow rule and the balance of momentum. The associated regularization
parameters are ν > 0 and γ > 0, respectively.

The overall system we consider is as follows:

stress–strain relation: σ = C
(

ε(u)− p − t(θ)
)

, (5.1)

conjugate forces: χ = −Hp, (5.2)

viscoplastic flow rule: γ ṗ + ∂ṗD(ṗ, θ) . [σ + χ ] , (5.3)

balance of momentum: − div
(

σ + ν ε(u̇)
) = �, (5.4)

heat equation: 	 cp θ̇ − div(κ ∇θ) = r + ν ε(u̇) : ε(u̇)+ (σ + χ) : ṗ

− θ t ′(θ) : C(ε(u̇)− ṗ).

(5.5)

The unknowns are the stress σ , back-stress χ , plastic strain p, displacement u, and
temperature θ . Further, C and H denote the elastic and hardening moduli, respec-
tively, and ε(u) denotes the symmetrized gradient or linearized strain associated
with u. The temperature-dependent term t(θ) expresses thermally induced strains.
D denotes the dissipation function and is assumed to be convex and positively
homogeneous of degree one. The right-hand sides � and r represent mechanical and
thermal volume and boundary loads, respectively. 	, cp, and κ describe the density,
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specific heat capacity, and thermal conductivity of the material. For the derivation
of the system (5.1)–(5.5) and more on its physical background, we refer the reader
to [39, Chapter 22 and 23]. Observe that (5.2) and (5.3) play the role of (BM),
while (5.1) and (5.4) correspond to a viscoelastic version of (RIS).

We analyzed the well-posedness of (5.1)–(5.5) in the presence of mixed essential
and natural boundary conditions for the temperature and the elastic displacement
equations. The details along with the full set of assumptions are given in [13,
Theorem 10]. The proof utilizes maximal parabolic regularity results and Banach’s
fixed-point theorem, applied to a reduced problem formulated in the temperature
variable θ alone. We also established the weak sequential continuity of the control-
to-state map (�, r) �→ (u,p, θ) in appropriate spaces. This allowed us to deduce the
existence of optimal controls for a range of problems; see [13, Section 4].

In the follow-up paper [15], differentiability properties of the control-to-state
map (�, r) �→ (u,p, θ) were investigated. Under similar assumptions as in [13],
we established its local Lipschitz continuity as well as directional differentiability.
Together, this implies the Hadamard differentiability of the control-to-state map.
Moreover, owing to a result by [40], the map is Fréchet differentiable on a dense
set.

Based on these findings, a nonlinear conjugate gradient method for the solution of
optimal control problems associated with (5.1)–(5.5) was devised and implemented
in the dissertation [49]. The forward system was solved using a semi-implicit Euler
scheme in time and an appropriate finite-element discretization in space. Under
the assumption that the iterates occurring in an optimization method are points of
differentiability, an adjoint representation of the gradient of the discretized problem
was derived and, subsequently, a nonlinear conjugate gradient scheme with line
search implemented.

We report here on one particular setting and associated numerical results. We
refer the reader to [49, Chapter 7] for full details. The two-dimensional geometry
is a square disc with a circular hole depicted in Fig. 5. Due to symmetry, the actual
computational domain is only a quarter of the disc.

Fig. 5 Geometry of a square
disc with a hole. Symmetry
boundary conditions are
applied, and only a quarter of
the disc is used as the
computational domain Ω
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Fig. 6 Temperatures associated with computed controls in the three settings (left: no heating,
middle: heating at the hole, right: heating at the hole and the right boundary) at two different
points in time during the heating phase

The goal in this chapter was to obtain a uniform final displacement of the upper
boundary after the process and subsequent cooling. To this end, mechanical traction
forces are applied at the upper boundary, whose evolution in time and spatial
distribution are subject to optimization. We compare the achievement of this goal in
three settings. The first setting does not apply heating, while the second and third
settings allow for additional heating at the hole, and at the hole and on the right
boundary, respectively. In these cases, the thermal control acts as a second control
variable. The computed mechanical controls, as well as the associated temperature
and plastic strain in the three settings, are shown in Figs. 6 and 7 for two different
points in time.
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Fig. 7 Frobenius norm of the plastic strain |p| and computed mechanical controls (boundary
tractions) in the three settings (left: no heating, middle: heating at the hole, right: heating at the
hole and the right boundary) at the same points in time as in Fig. 6
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1 Introduction

Many applications and areas in science study phenomena sharing the common
requirement of minimizing more than one objective simultaneously. In general,
the solution of these problems has to address conflicting interests of the involved
agents. Hence, we turn our attention to modeling a degree of competition and
noncooperative behavior leading to Nash games. This concept has been successfully
applied to a variety of applications in economics and in the context of networks, see
[9, 11] and additionally [35] for the combinatorial branch of optimization. In many
practical cases, the actions of the players in these games are restricted by equilibrium
constraints establishing a reinforced linkage between the diverging interests. As we
know from the mathematical treatment of optimal control and design problems, this
coupling is usually resolved as an operator equation. However, in the context of
partial differential equation (PDE)-constrained optimization, this type of concept
has not yet been frequently studied.

We start by motivating N agent games. In this context, mathematically speaking,
a set of N agents (or players) solve each an individual minimization problem to find
their respective optimal strategy. For player i, this reads as

minimizeui∈Ui
ad
Ji (ui, u−i ) over ui ∈ Ui,

where Ui
ad ⊂ Ui , with Ui a Banach space, is the set of feasible strategies. The

functional Ji is specific for the player and involves his strategy ui as well as the
(given) strategies of all other players denoted as u−i . Here and in the following, the
combined vector of all strategies is usually denoted as u = (ui, u−i ) without any
permutation of components. A vector u ∈ U with U = U1 × · · · × UN is called a
Nash equilibrium if every strategy chosen by an agent is his optimal choice given
the strategies of the other agents. This yields

ui ∈ argminu′i∈Ui
ad

{

Ji (u′i , u−i ) over u′i ∈ Ui

}

for all i = 1, . . . , N. (1.1)

The problem of finding such a strategy vector is then called a Nash equilibrium
problem (NEP). In this setting, the influence of the other players’ actions is
limited to the objectives, whereas the strategy sets remain unchanged. Allowing
the other players to also influence the set of feasible strategies leads to a set-valued
strategy mapping Ci : U−i

ad
−→−→Ui

ad in the underlying optimization problems. A Nash
equilibrium is then a point u ∈ Uad with Uad = U1

ad × . . .× UN
ad satisfying

ui ∈ argminu′i∈Ci(u−i )
{

Ji (u′i , u−i ) over u′i ∈ Ui

}

for all i = 1, . . . , N.

Finding a solution for the latter type of problem is also known as Generalized Nash
equilibrium problem (GNEP). Correspondingly, we assume the strategy mapping to
be structured as

Ci(u−i ) =
{

u′i ∈ Ui
ad : g(u′i , u−i ) ∈ K

}
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with g : U → X and K ⊆ X a nonempty, closed, convex subset of some Banach
space X. In principle, it is possible to incorporate several mappings gi : U → Xi ,
but we want to keep our presentation concise. Therefore, in our context, a (GNEP)
is given by

ui ∈ argmin{Ji (u′i , u−i ) subject to u′i ∈ Ui
ad and g(u′i , u−i ) ∈ K} (1.2)

for all i = 1, . . . , N . Concerning the general constraint, we are particularly inter-
ested in constraints on the state variable y that is generated through a continuous
solution mapping S : U → Y involving the entirety of the players strategies via
y = S(u). Here, the set Y is again a Banach space. The origin of this operator might
be a PDE or the minimization of an underlying parametrized optimization problem.
Moreover, we assume in our setting that the players’ objectives are separable of the
type

Ji (ui, u−i ) = J 1
i (S(ui, u−i ))+ J 2

i (ui).

Here J 1
i only depends on the state, e.g., by a data-fitting, respectively, tracking-type

term, and J 2
i only on the control, e.g., in the form of a regularization or control

cost. Note that by this setting a coupling between the players is established via the
objectives. The dependence of the feasible sets occurs through the presence of a state
constraint G(y) ∈ K , which might stem from a physical or technical consideration.
Hence, a (GNEP) in our setting has the general form

minimizeui ,y J 1
i (y)+ J 2

i (ui) over ui ∈ Ui, y ∈ Y

subject to ui ∈ Ui
ad and G(y) ∈ K with y = S(ui, u−i ).

(1.3)

Here, the continuous mapping G : Y → X, together with the set K , models the
state constraint, leading to the relation g = G ◦ S. This model is flexible enough
to allow for a wide variety of different mathematical and practical applications.
However, some aspects discussed hereafter are more conveniently described using
the more abstract setting of (1.2) rather than (1.3). We will, hence, switch between
these formulations keeping their formal relation in mind.

As previously mentioned, the operator S may originate from a broad variety of
problems including (possibly nonlinear) PDEs, Vis, or complementarity problems.
Throughout, we assume the solution mapping to be a singleton, meaning that given
u the state y = y(u) is unique. This does not need to be the case in general. Our
model may thus be seen as closely related to multi-leader-follower games (MLFG)
that are investigated within the scope of this report, as well.

Mathematical games involve a broad variety of challenges, including existence,
characterization of equilibria via first-order systems, as well as numerical analysis
and solvers. Moreover, in many applications, problem data are uncertain, occurring,
e.g., as random parameters. This gives rise to risk-related formulations of the
involved PDE-constrained minimization as well as (G)NEP. In this chapter, we study
in particular risk-averse agents by modeling appropriate individual objectives.
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2 Nash Games Involving Nonlinear Operator Equations

We study the following Nash game with a linear operator equations and compare
[21]:

minimize J 1
i (y)+ J 2

i (ui) over ui ∈ Ui, y ∈ Y,

subject to ui ∈ Ui
ad and Ay = b + Bu in W.

(2.1)

Here, Y is as before, W a Banach space, b ∈ W fixed, A ∈ L(Y,W) an invertible,
bounded linear operator, and B ∈ L(U,W) a bounded, linear operator involving
the strategies of all players at once. This motivates the solution operator S(u) =
A−1(b + Bu) of the state equation Ay = b + Bu.

First, we study existence of an equilibrium of (2.1). Here, the coupling of
the minimization problems of the individual agents prevents using a technique
associated with a single minimization problem. Rather we need to invoke fixed-
point theory for set-valued operators. For this, we reformulate (1.1) as

u ∈ B(u), (2.2)

with B(u) := #N
i=1Bi (u−i ), and Bi (u−i ) = argmin

{

Ji (u′i , u−i ) : u′i ∈ Ui
ad

}

.Here,
the best response mapping B : Uad ⇒ Uad assigns to every given strategy the
Cartesian product of all players’ feasible strategies yielding the optimal value. The
existence proof of a solution to (2.2) uses a result of Kakutani, Fan and Glicksberg:

Theorem 2.1 (cf. [14]) Given a closed point-to-(nonvoid)-convex-set mapping � :
Q ⇒ Q of a convex compact subset Q of a convex Hausdorff linear topological
space into itself, then there exists a fixed point x ∈ �(x).

Two assumptions are crucial in the above theorem: (i) the convexity assumption
on the values of the mapping and (ii) the compactness of the underlying set. In
our situation, (i) becomes a topological condition regarding the set of minimizers
for the players’ optimization problems. This property is guaranteed when the
(reduced) objective functional is convex. Concerning (ii), in finite dimensions,
the compactness is guaranteed by closedness and boundedness. In our infinite-
dimensional setting, however, this condition is usually not fulfilled with respect to
the strong topology. Hence, we require a transition to the weak topology leading to
a strengthened condition on the closedness of the graph of the operator.

In order to apply Theorem 2.1, let J 1
i , J

2
i be convex, continuous, functionals.

Moreover, let J 2
i or S be completely continuous on their respective domains.

Additionally, let Ui be a reflexive, separable Banach space and Ui
ad a nonempty,

closed, and bounded subset of Ui . Then, the latter is also compact with respect to
the weak topology. These conditions guarantee the existence of an equilibrium by
applying the theorem.
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We next come to the (GNEP) in [21], which reads

minimize J 1
i (y)+ J 2

i (ui) over ui ∈ Ui, y ∈ Y,

subject to ui ∈ Ui
ad and y ∈ K with

Ay = b + Bu in W,

(2.3)

with a continuous embedding Y ↪→ X. Let

Ci(u−i ) :=
{

u′i ∈ Ui
ad : S(u′i , u−i ) ∈ K

}

denote the associated set-valued strategy map, with C again the Cartesian product.
This setting adds another difficulty to the existence proof, as we are now confronted
with moving sets of feasible strategies. Hence, the selection of sequences in the
range of the operator to prove the closedness property of the best response map
becomes an issue. To address this challenge, we notice that the condition restricting
the players’ feasible strategies is the same for all players. Hence, one is able to
formulate the overall set of feasible strategies as

F = {u ∈ Uad : S(u) ∈ K} .

It is worth noting that the set F characterizes the whole strategy mapping via

u′i ∈ Ci(u−i )⇔ (u′i , u−i ) ∈ F

for all i = 1, . . . , N , which implies in particular Fix(C) = F , where Fix(·) denotes
the set of fixed points of a map. In fact, this observation applies already to the more
general setting of (1.2) and allows us to introduce the strengthened solution concept
of variational equilibria. It relates to a strategy vector u ∈ F solving the fixed-point
problem

u ∈ ̂B(u), (2.4)

with ̂B : F → F , and ̂B(u) = argmin
{

∑N
i=1 Ji (u′i , u−i ) over u′ ∈ F

}

. In this

formulation, only a single minimization process occurs. It is straightforward to
prove that every variational equilibrium is also a Nash equilibrium. Consequently,
providing existence for the operator ̂B is sufficient. To apply Theorem 2.1, we note
that due to the linearity of S the joint set of feasible strategies is convex as well. If
a (GNEP) has in addition only convex objectives, then it is referred to as a jointly
convex Nash game.

Nonlinear PDEs lead to an underlying operator equation of the type

A(y) = b + B(u) in W,
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with a nonlinear operator A : Y → W and again a bounded linear B : U → W .
Now the solution mapping S : U → Y is nonlinear. In contrast to the previously
discussed case, convexity of the reduced objectives is not necessarily fulfilled. Of
course, the same holds in the generalized case for values of the strategy set C as
well as for the joint set of strategy vectors F . Hence, the existence proof becomes
a very delicate task. One option to proceed is the identification of combinations
of objectives and operator equations that still guarantee the required convexity
conditions. In this context, it is interesting to discuss the necessary structure first
for mere optimization problems and then for Nash games. If not otherwise stated,
the subsequent results of the following subsection will be made available in [19]
together with their proofs.

2.1 On the Convexity of Optimal Control Problems Involving
Nonlinear Operator Equations

In the following, we investigate generalized operator equations of the type

w ∈ A(y) in W.

This setting allows us to treat also variational inequalities (VIs). Here, w ∈ W

is a given control and y ∈ Y the associated state. To ensure well-posedness, we
assume that the set-valued operator A : Y ⇒ W has a single-valued inverse A−1 :
W → Y with the entire space W as its domain. Moreover, associated with Y and
W , let K ⊆ Y , respectively, KW ⊆ W denote nonempty, closed, and convex cones.
These cones induce preorder relations ≤K and ≤KW

on their respective spaces by
y0 ≤K y1 :⇔ y1 − y0 ∈ K for y0, y1 ∈ K (and analogously for W ). Using
these relations, it is possible to generalize the convexity notion from functionals to
operators, and further even to set-valued operators between Banach spaces, cf. [5,
Subsection 2.3.5].

Definition 2.2 Let X1, X2 be topological vector spaces with L ⊆ X2 a nonempty
closed, convex cone inducing a preorder relation as described above. A set-valued
mapping � : X1 ⇒ X2 is called L-convex, if for all t ∈ (0, 1) and x0, x1 ∈ X1 the
relation

t�(x1)+ (1− t)�(x0) ⊆ �(tx1 + (1− t)x0)+ L

holds. Additionally, � is called L-concave if it is (−L)-convex.

Our next aim is to identify conditions on the operator A that guarantee that the
solution operator A−1 : W → Y is L-convex.
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Theorem 2.3 Let Y,W be Banach spaces, both equipped with closed and convex
cones L ⊆ Y and LW ⊆ W , respectively. Let A : Y ⇒ W be a set-valued operator
fulfilling the following assumptions:

(i) The operator A is LW -concave in the sense of Definition 2.2.
(ii) The mapping A−1 : W → Y is single-valued with domain domA = W , and it

is LW -L-isotone (compare also to [4, Section 1.2]), i.e.,

for w1, w0 ∈ W with w2 ≥LW w1 it holds that A−1(w2) ≥L A−1(w1).

Then, the mapping A−1 : W → Y is L-convex.

We illustrate the previous Theorem 2.3 by two examples.

Example Let d ∈ N\{0} and D ⊆ R
d be an open, bounded domain with Lipschitz

boundary. Consider the operator

A(y) := −�y +N(y) (2.5)

on the Sobolev space Y = H 1
0 (D) with W = H−1(D). Let N be a superposition

operator N : L2(D)→ L2(D) induced by a concave, nondecreasing function on R.
We set L := {

ϕ ∈ H 1
0 (D) : ϕ ≥ 0 a.e. on D

}

together with LW := L+ with

L+ =
{

ξ ∈ H−1(D) : 〈ξ, ϕ〉
H−1,H 1

0
≥ 0 for all ϕ ∈ H 1

0 (D) with ϕ ≥ 0 a.e. on D
}

.

Then, A is LW -concave: Indeed, let t ∈ (0, 1) and y0, y1 ∈ H 1
0 (D) and ϕ ∈ L be

arbitrarily chosen; then we have

〈tA(y1)+ (1− t)A(y0)− A(ty1 + (1− t)y0), ϕ〉H−1,H 1
0

= (tN(y1)+ (1− t)N(y0)−N(ty1 + (1− t)y0), ϕ)L2(D) ≤ 0,

showing the concavity of A. Moreover, the operator A is invertible and isotone in
the LW -L-sense. The first property can be deduced from the monotonicity of the
operator N together with the coercivity of the Laplacian. To see the latter, choose
w0, w1 ∈ W with w0 ≤LW w1, and let y0, y1 ∈ Y be the solution of wj = A(yj )

for j = 0, 1. Testing the difference of the equations by (y0 − y1)
+ yields

0 ≥ −‖∇(y0 − y1)
+‖2

L2(D)
− (N(y0)−N(y1), (y0 − y1)

+)L2(D)

= 〈A(y1)− A(y0), (y0 − y1)
+〉H 1

0 ,H
−1 = 〈w1 − w0, (y0 − y1)

+〉H 1
0 ,H

−1 ≥ 0,

which implies y1 ≥ y0 a.e. and hence the isotonicity of A−1, which gives us finally
the L-convexity of the solution operator A−1.
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In the previous example, (2.5) relates to semilinear elliptic PDEs and hence
addresses a constraint that has been widely discussed in the optimal control literature
(cf. [42] for a general overview and [7, 30] for more recent research activities). An
extension to semilinear parabolic equations is possible; see, e.g., [31, Chapter 3,
Section 2]. Theorem 2.3 can be applied to VIs as well; see [32, Lemma 4.1] for a
first result. In contrast, here we provide a more general result.

Example Let Y be a reflexive vector lattice with order cone L, i.e., Y is a reflexive
Banach space and L a nonempty, closed, and convex cone with L∩(−L) = {0}, and
consider an L+-concave, semicontinuous, and strongly monotone operator A : Y ⇒
Y ∗. Moreover, assumeA to be strictly T-monotone, i.e., 〈A(y+z)−A(y), (−z)+〉 <
0 for z with (−z)+ �= 0. Let M ⊆ Y be a nonempty, closed, convex set, and lower
bounded, i.e., M +L ⊆ M and for all y0, y1 ∈ M and min(y0, y1) ∈ M . Moreover,
let w ∈ Y ∗ be given. We consider the following VI:

Find y ∈ M : w ∈ A(y)+NM(y).

Then, one can show that the associated solution operator S : Y ∗ → Y is L-convex.

These examples illustrate the power of the proposed concept, which allows us to
next consider optimization problems of the type

minimize J 1(y)+ J 2(u) over u ∈ U, y ∈ Y,

subject to u ∈ Uad and y ∈ K with

b + Bu ∈ A(y) in W,

(2.6)

which may represent a model for a single agent’s decision process. In order to
guarantee the convexity of (2.6), we assume the convexity of both parts J 1 and J 2,
respectively. Additionally, we assume the isotonicity of J 1 on Y , i.e., y0 ≤L y1 ⇒
J 1(y0) ≤ J 1(y1). Considering single-valuedness, the L-convexity of the solution
operator S(u) := A−1(b+B(u)) reads S(tu1+(1−t)u0) ≤L tS(u1)+(1−t)S(u0).
Hence, J 1◦S is convex and so is the entire objective as well. For a nonempty, closed,
convex set K ⊆ Y with K − L ⊆ K , the indicator functional iK : Y → [0,+∞] is
isotone and convex. Thus, the convexity of the set of feasible controls in (2.6) can
be stated as the following intersection of closed, convex sets:

{u ∈ Uad : S(u) ∈ K} = Uad ∩ {u ∈ U : iK(S(u)) ≤ 0}.

Under these conditions, the convexity of the optimization problem (2.6) is guaran-
teed. We illustrate this by the following optimization of doping profiles; cf. [28].

Example Let D ⊆ R
2 be a given, bounded, open domain with Lipschitz boundary

and Do ⊆ D an open subset. For a function z ∈ L2(�), we denote z2+ :=
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max(0, z)2. Consider

min
u∈Uad

1

2

∫

Do

(S(u)+ 1)2+dx + α

2

∫

D

u2dx, (2.7)

where S : L2(D)→ H 1(D) is the solution operator of the following PDE:

−κ�y + sinh(y) = −Bu− b in D, κ
∂y

∂n
= 0 on ∂D,

with B the (linear) solution operator of the PDE

−r�d + d = u in D, r
∂d

∂n
= 0 on ∂D,

and Uad := {u ∈ L2(D) : 0 ≤ u ≤ 1 a.e. on D}. Note that by the use of
the Trudinger–Moser inequality (cf. [34]), the function sinh(y) lies in L2(D) for
y ∈ H 1

0 (D). Assume further that b ≥ 0 a.e. on D. Then the solution operator
is L-convex. To see this, define the auxiliary operator A : H 1(D) → H−1(D),
〈A(y),w〉H−1,H 1 := (∇y,∇w)L2 + (N(y),w)L2 , with

N(y) =
{

y, if y ≥ 0
sinh(y), else

as a superposition operator. Recalling the result corresponding to (2.5), we see that
the operator N is induced by a monotone and concave function on R. Hence, the
solution map is L-convex. The solution operator of the auxiliary problem and S

coincide, because both operators are sign preserving. Since u ≥ 0 a.e. by feasibility,
we get Bu ≥ 0 a.e. and together with b ≥ 0 a.e. on D the nonnegativity of the
solutions. Hence, the operators sinh andN coincide. Thus, we see that S is indeedL-
convex on Uad. Moreover, the objective is convex and isotone yielding the convexity
of (2.7).

We would now like to derive first-order optimality conditions for (2.6). For this
purpose, we extend the subdifferential concept from convex and nonsmooth analysis
to vector-valued operators. For an element y∗ ∈ L+ with

L+ := {z∗ ∈ Y ∗ : 〈z∗, y〉 ≥ 0 for all y ∈ L},

we define the subdifferential of the solution operator S : U → Y in direction y∗ as

∂S(u)(y∗) := ∂〈y∗, S( · )〉(u). (2.8)

Due to the L-convexity of S also the functional u �→ 〈y∗, S(u)〉 is convex. Hence,
the above expression (2.8) is well defined and reads as a scalarizing formulation;
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compare [33, Theorem 1.90]. Note that this object is closely linked to the (Fréchet)
coderivative (cf. [33, Definition 1.32], which is defined for a set-valued operator
F : X1 ⇒ X2 as

D∗F(x1, x2)(x
∗
2 ) :=

{

x∗1 ∈ X∗
1 : (x∗1 ,−x∗2 ) ∈ Ngph(F )(x1, x2)

}

,

where Ngph(F )(x1, x2) denotes the (Fréchet) normal cone of gph(F ) in (x1, x2) ∈
gph(F ), the graph of F ; see [5] for more details. In the case of a nonempty, closed,
convex set, the Fréchet normal cone and its corresponding notion from convex
analysis coincide. Using the mapping SL : U ⇒ Y defined by SL(u) := S(u)+ L,
we obtain for our notation in (2.8) the equivalent formulation

∂S(u)(y∗) = {u∗ ∈ U∗ : (u∗,−y∗) ∈ Ngph(SL)(u, S(u))},

where we use y∗ ∈ K+. This concept allows for the following type of chain rule. In
its formulation, D denotes the set of arguments of a set-valued map with nonempty
image, and core the core of a set; see, e.g., [5, Definition 2.72] and [6, Subsection
4.1.3] for definitions and details.

Theorem 2.4 Let U, Y be Banach spaces, the latter one equipped with a closed,
convex cone L. Let f2 : U → R ∪ {+∞} and f1 : Y → R ∪ {+∞} be convex,
proper, lower semicontinuous functionals, and moreover let f1 be L-isotone. Let the
operator S : U → Y beL-convex. Then, the functional f1◦S+f2 : U → R∪{+∞}
is convex. Furthermore, consider u ∈ D(∂f2) with S(u) ∈ D(∂f1) and let one of the
following two conditions hold:

(i) Let S be locally bounded and the following constraint qualification hold

0 ∈ core (dom f2 × dom f1 − gph(S)) .

(ii) Let S be semicontinuous and the following constraint qualification hold

0 ∈ core (S (dom f2)− dom f1) .

Then, the following chain rule holds for the subdifferential of the composed
objective:

∂(f1 ◦ S + f2)(u) = ∂S(u)
(

∂f1(S(u))
)

+ ∂f2(u).

The proposed chain rule in Theorem 2.4 as well as the proof and the other results
of Sect. 2 will be made available in [19]. Using the functionals f2 = J 2 + iUad and
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f1 = J 1 + iC , we obtain the first-order system

−q ∈ ∂J 2(u)+NUad(u),

y∗ ∈ ∂J 1(y)+NK(y),

q ∈ ∂S(u)(y∗).

(2.9)

Theorem 2.4 enables one to derive necessary and sufficient optimality conditions
even for constraints involving PDEs, VIs, or complementarity problems admitting a
nonsmooth solution operator. Of course, not all optimal control problems will fit into
the above framework and might not meet the assumptions required in Theorem 2.1.
Hence, it might be worthwhile investigating the use of more general fixed-point
results. One possibility in this direction is the Eilenberg–Montgomery Theorem (cf.
[8]) where a weaker topological assumption replaces convexity. The application
of this result still requires a characterization of the solution set for the players’
optimization problems. This, however, is ongoing research.

3 Nash Games Using Penalization Techniques

The direct application of the nonsmooth approach in the previous section may be
delicate for many Nash games. We therefore draw our attention to a characterization
of first-order conditions for (1.3) involving a continuously differentiable solution
operator. Indeed, let A : Y → W be an invertible, continuously differentiable
operator with an everywhere invertible derivative. In the following, let K denote
a nonempty, closed convex cone, and G a constraint map. The first-order system for
a Nash equilibrium of the game associated with

minimize J 1
i (y)+ J 2

i (ui) over ui ∈ Ui, y ∈ Y subject to

ui ∈ Ui
ad and G(y) ∈ K with

A(y) = b + Bu

(3.1)

for i = 1, . . . , N can be derived by the proposition of a constraint qualification of
Robinson–Zowe–Kurcyusz type (RZK) (see [45]). In this setting, it reads

(

DG(y) ◦DA(y)−1 ◦ Bi
)

Ui
ad −K(G(y)) = X for all i = 1, . . . , N. (3.2)
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The first-order system then becomes

0 = ∂iJ
2
i (ui)+ B∗i pi + λi in U∗

i ,

A(y) = b + Bu in W,

DA(y)∗pi = ∂yJ
1
i (y)−DG(y)∗μi in Y ∗,

λi ∈ NUi
ad
(ui) in U∗

i ,

X∗ ⊇ K+ . μi ⊥ G(y) ∈ K ⊆ X for all i = 1, . . . , N.

(3.3)

In the case of a variational equilibrium, the single non-decoupling optimization
process leads to a (possibly weaker) constraint qualification formulated as

(

DG(y) ◦DA(y)−1 ◦ B
)

Uad(u)−K(G(y)) = X. (3.4)

This leads to a special instance of (3.3) where all multipliersμi ∈ X∗, i = 1, . . . , N ,
coincide, i.e., μi = μ for all i ∈ {1, . . . , N} in (3.3). In many situations involving
function spaces, higher regularity of the state is needed to guarantee the constraint
qualification. This on the other hand leads to a reduced regularity of the multiplier(s)
μ(i) and subsequently also of the adjoint states pi in practice. The above results of
the subsequent ones in this section can be found in [18], if not stated otherwise.

3.1 �-Convergence

Next we use the notion of �-convergence to approximate our state-constrained Nash
game by a sequence of simpler Nash games with a weakened form of the state
constraint.

First we introduce a unified view on the different notions of equilibria discussed
here.

Definition 3.1 Let a Banach space U and a functional E : U × U → R be given.
A point u ∈ U is called equilibrium, if

E(u, u) ≤ E(u′, u) holds for all u′ ∈ U.

The first component in the functional fulfills the task of a control variable, whereas
the second one acts as a parameter and hence establishes a feedback mechanism.
Note that the dependence of the domain of the reduced functional E(·, u) on
u is possible. Recalling the definition of the strategy mapping C as C(u) =
∏N

i=1 Ci(u−i ) with Ci(u−i ) = {u′i ∈ Ui
ad : g(u′i , u−i ) ∈ K} and g = G ◦ S as

the composition of state constraint and solution operator, we reobtain by the choice
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of functionals

E(u′, u) =
N
∑

i=1

Ji (u′i , u−i )+ iC(u)(u
′) =

N
∑

i=1

(

Ji (u′i , u−i )+ iCi(u−i )(u
′
i )
)

=
N
∑

i=1

(

Ji (u′i , u−i )+ iUi
ad
(ui)+ iK(g(u

′
i , u−i ))

)

(3.5)

and

̂E(u′, u) =
N
∑

i=1

Ji (u′i , u−i )+ iF (u
′)

=
N
∑

i=1

(

J (u′i , u−i )+ iUi
ad
(u′i )

)

+ iK(g(u
′
i , u−i ))

(3.6)

the notion of Nash, respectively, variational equilibria. Our aim now is to generalize
�-convergence to equilibrium problems of the above form.

Definition 3.2 Let U be a Banach space and let T denote either the strong or weak
topology on U . A sequence of functionals En : U × U → R is called �-convergent
to a functional E : U × U → R if the following two conditions hold:

(i) For all sequences un
T→ u, it holds E(u, u) ≤ lim infn→∞ En(un, un).

(ii) For all u′ ∈ U and all sequences un
T→ u, there exists a sequence u′n

T→ u′ such
that E(u′, u) ≥ lim supn→∞ En(u′n, un).

Of course, it is as well possible to combine the strong and weak topology in
Definition 3.2. Note that the classical notion of �-convergence for a minimization
problem is a special case of the above. The following convergence result holds true.

Proposition 3.3 Let En be a �-convergent sequence of functionals as in Defini-
tion 3.1 with limit E . Then, every accumulation point of a sequence of corresponding
equilibria (un)n∈N is an equilibrium of the limit.

Our intention is to address the state constraint by applying a penalization
technique. Therefore, the constraint g(u) ∈ K encoded in the indicator function
is substituted by a continuously differentiable penalty function β : X→ [0,+∞),

β(x) = 0 if and only if x ∈ K,
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scaled by a penalty parameter γ > 0. This leads to the formulation of the penalized
functionals corresponding to the (GNEP) as

Eγ (v, u) =
N
∑

i=1

(

Ji (vi, u−i )+ γβ(g(vi, u−i ))
)

+ iUad(v),

as well as to the variational equilibrium problem

̂Eγ (v, u) =
N
∑

i=1

Ji (vi, u−i )+ γβ(g(v))+ iUad(v).

Using the definition of the state as well as the composition g = G ◦ S, this leads to
the penalized Nash game

minimize J 1
i (ui)+ J 2

i (y)+ γβ(G(y)) over ui ∈ Ui, y ∈ Y

subject to ui ∈ Ui
ad with A(y) = b + Bu,

(3.7)

and in a similar fashion to the penalized variational equilibrium problem

minimize
N
∑

i=1

(

J 1
i (yi)+ J 2

i (u
′
i )
)

+ γβ(G(y)) over u′i ∈ Ui, yi ∈ Y and y ∈ Y

subject to u′i ∈ Ui
ad and A(yi) = b + B(u′i , u−i ) as well as

A(y) = b + Bu′.
(3.8)

The definition of the states yi and y comes from the presence of the terms
S(u′i , u−i ) in the state-related functionals J 1

i and of the expression S(u′) occurring
in β ◦ G for the penalization of the constraint u′ ∈ F . Moreover, we assume in
the terms of the abstract setting (1.2) that the functionals u �→ Ji (ui, u−i ) are
continuous with respect to the strong topology on Ui and the weak one on U−i , i.e.,
for all sequences uni → ui and un−i ⇀ u−i it holds that Ji (uni , un−i )→ Ji (ui, u−i ).
This condition can usually be guaranteed for a wide variety of applications as in
the setting of (1.3) by complete continuity of the solution map S together with
continuity of the mappings J i1 on Y and J i2 on Ui . With these conditions at hand, it
is possible to derive the �-convergence of (3.6) and by proposing dom(C) = Uad
also the �-convergence of (3.5).

Turning to the derivation of a first-order system for the penalized problems,
we assume for convenience that J 1

i , J
2
i , i = 1, . . . , N , are all continuously
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differentiable. In both equilibrium cases, this leads to the following system:

0 = ∂iJ
2
i (ui)+ B∗i pi + λi in U∗

i ,

A(y) = b + Bu in W,

DA(y)∗pi = DJ 1
i (y)−DG(y)∗μ in Y ∗,

λi ∈ NUi
ad
(ui) in U∗

i ,

μ = −γDβ(G(y)) in X∗.

(3.9)

In fact, for a jointly convex game, the first-order system would not only be necessary,
but also sufficient implying the equivalence of the two penalized equilibrium
problems. Assuming for the moment that at least the functionals J 2

i are strongly
convex, we find the strong monotonicity of the first derivative ∂iJ 2

i : Ui → U∗
i and

hence the unique solvability of the VI

Find ui ∈ Ui : u∗i ∈ ∂J 2
i (ui)+NUad(ui),

given an arbitrary u∗i ∈ U∗
i . This problem admits a Lipschitz-continuous solution

operator denoted by Pi : U∗
i → Ui . In the simplest case of J 2

i (ui) = 1
2‖ui‖2

Ui
for

a separable Hilbert space Ui , this map reads as a composition with the projection
mapping on Uad. Often, the system can be rewritten as a fixed-point problem

u = T (u)

with T : Uad → Uad defined by T (u) = (T1(u), . . . , TN(u)) and

Ti(u) = Pi(−B∗i pi) with pi = pi(y) = DA(y)−∗
(

∂yJ
1
i (y)+ γDG(y)∗Dβ(G(y))

)

,

and y = S(u) = A−1(b + Bu). Since this is a fixed-point problem involving only
a single-valued operator—in contrast to the formulation for Nash and variational
equilibria—the existence question does not suffer from a lack of topological
characterization of its values and can thus be treated with classical Schauder-type
results, cf. [44, Theorem IV.7.18]. Using the described penalization technique, one
is hence able to propose a generalized solution concept that is also suitable for a
numerical treatment of the state constraint by motivating a path-following technique.
The idea is to observe the solution(s) of the above first-order system for a range of
penalty parameters γ ∈ [γmin,+∞) leading to the path

P =
{

(γ, uγ , yγ , pγ , μγ , λγ ) ∈ [γmin,+∞)× U × Y × (W ∗)N ×X × U∗

such that (uγ , yγ , pγ , μγ , λγ ) solves (3.9)
}

.
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From the numerical viewpoint, it is interesting to study the behavior of the solutions
of (3.9) for γ → +∞. As a first step toward a path analysis, we study the
boundedness of the path. This is next done in the fully abstract setting only.

Lemma 3.4 Let the mappings v �→ ∂iJi (vi, v−i ) (in the fully abstract setting)
be bounded for all i = 1, . . . , N (i.e., images of bounded sets are bounded). If
additionally the RZK condition (3.4) holds, then the path P is bounded.

Using this result, it is straightforward to utilize reflexivity and the Banach–
Alaoglu theorem to obtain the existence of weakly and weakly* converging
subsequences. The next result guarantees that the corresponding limits are the
desired solutions.

Theorem 3.5 Let the condition (3.4) as well as the boundedness condition of
Lemma 3.4 be fulfilled, and let moreover the following additional assumptions
hold:

(i) The first derivatives of the objectives Ji with respect to the players’ strategy
satisfy for every weakly convergent sequence uni ⇀ u∗i in U the property

〈∂iJi (u∗i , u∗−i ), u∗i 〉Ui,U∗
i
≤ lim sup

n→+∞
〈∂iJi (uni , un−i ), uni 〉Ui,U∗

i
.

(ii) The mapping g : U → X is strongly continuous and uniformly Fréchet
differentiable on every bounded set, i.e., on very bounded subsetM ⊆ U holds
that

lim‖h‖X→0
sup
u∈M

‖g(u+ h)− g(u)−Dg(u)h‖X
‖h‖U = 0.

Then, every path has a limiting point (u∗, q∗, λ∗, μ∗) along a subsequence,
and every limiting point fulfills the necessary first-order condition for a Nash
equilibrium (resp. variational equilibrium).

Together with the existence for solutions to the first-order system for the penalized
system (3.9), the combined fulfillment of the conditions guarantees the existence of
a point fulfilling the first-order system for (VEP) and hence especially for (GNEP).

This procedure sketches the numerical treatment of the (GNEP) problem (2.4).
Besides identifying a suitable algorithm to solve the system (3.9), also an adaptive
parameter update technique is needed; compare [21] for the latter. Here take a highly
related approach leading to the definition of the value functions

Wγ (u
γ ) = inf

u′∈Uad

Eγ (u′, uγ ) = inf
u′∈Uad

N
∑

i=1

(

Ji (u′i , u
γ

−i )+ γβ(g(u′i , u
γ

−i ))
)

=
N
∑

i=1

inf
u′i∈Ui

ad

(

Ji (u′i , u
γ

−i )+ γβ(g(u′i , u
γ

−i ))
)

(3.10)
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and analogously for the penalized (VEP)

̂Wγ (u
γ ) = inf

u′∈Uad

(

N
∑

i=1

Ji (u′i , u
γ

−i )+ γβ(g(u′))
)

. (3.11)

One observes that Eγ (uγ , uγ ) − Wγ (u
γ ) ≥ 0 and ̂Eγ (uγ , uγ ) − ̂Wγ (u

γ ) ≥ 0,
with equality only if uγ is a solution of the penalized Nash game, respectively,
(VEP). Using the defined value functionals, we seek to evaluate the effect of an
increase of γ on the behavior of our solution. Therefore, we consider the functional
γ̃ �→ Wγ̃ (uγ ) respectively γ̃ �→ ̂Wγ̃ (uγ ). For a local description of the behavior,
we extract first-order information by providing bounds for the upper and lower limits
for the directional derivative of the proposed functionals.

Lemma 3.6 Let J 1
i , J

2
i be continuous functionals, and let the best response

mapping with respect to the penalty parameter γ̃ , i.e.,

γ̃ �→ Bγ̃ (uγ ) = argmin

⎧

⎨

⎩

N
∑

i=1

(

Ji (u′i , u
γ
−i )+ γ̃ β(g(u′i , u

γ
−i ))

)

over u′ ∈ Uad

⎫

⎬

⎭

and

γ̃ �→ ̂Bγ̃ (uγ ) = argmin

⎧

⎨

⎩

N
∑

i=1

Ji (u′i , u
γ
−i )+ γ̃ β(g(u′)) over u′ ∈ Uad

⎫

⎬

⎭

be nonempty-valued. Let uγ ∈ Uad be an equilibrium for the penalized (GNEP)
in (3.7), respectively, (VEP) in (3.8). Then, the difference quotients satisfy

0 ≤ lim inf
η↘0

W(γ + η)−W(γ )

η
≤ lim sup

η↘0

W(γ + η)−W(γ )

η
≤ Nβ(g(uγ )) and

0 ≤ lim inf
η↘0

̂W(γ + η)− ̂W(γ )

η
≤ lim sup

η↘0

̂W(γ + η)− ̂W(γ )

η
≤ β(g(uγ )).

If, moreover, the best response map γ̃ �→ Bγ̃ (uγ ), respectively, γ̃ �→ ̂Bγ̃ (uγ ),
is single-valued and continuous, then the functional W , respectively ̂W , is even
differentiable withW ′(γ ) = Nβ(g(uγ )), respectively ̂W ′(γ ) = β(g(uγ )).

Hence, the composition of the penalty and the state constraint serves as a way to
adjust the penalty parameter for each step of the path-following procedure by

γ �→ γ +max

(

πpath

β(g(uγ ))
, ε

)

with a fixed parameter πpath > 0. Using this technique, strong violations of the state
constraint resulting in a big penalty term induce a more timid update, whereas low
values cause a more aggressive behavior. The update is safeguarded with a fixed
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upper bound ε > 0 for the case of very low values of the penalty functional. If
the value is zero, then the algorithm terminates since it has found a solution of
the original (GNEP), respectively, (VEP). The results of Sect. 3 together with the
corresponding proofs and details will be made available in [18].

With this outline of an algorithm, we end the discussion of deterministic Nash
equilibria and turn our attention to the case involving uncertainties.

4 PDE-Constrained GNEPs Under Uncertainty

4.1 Motivation

Most real-world problems in the natural sciences, engineering, economics, and
finance are subject to uncertainty. This inherent stochasticity arises from a number
of unavoidable factors, which range from noisy measurements and data acquisition
to ambiguity in the choice of model and its underlying exogenous parameters.
Consequently, we must incorporate random parameter into our mathematical mod-
els. Within the framework of PDE-constrained decision problems, we are then
confronted with the task of optimizing systems of random partial differential
equations.

In order to ensure these new infinite-dimensional stochastic decision problems
yield robust solutions to outliers or potentially catastrophic events, we appeal to the
theory of risk-averse optimization, which has been widely developed over the last
several decades within the (finite dimensional) stochastic programming community,
see, e.g., [41] and many references therein. Furthermore, using risk models in the
context of Nash equilibrium problems allows us to model the preferences of the
agents more accurately by assuming they have well-defined risk preferences.

Nevertheless, the literature on risk-averse PDE-constrained optimization was
extremely scarce until recently [13, 24–28]. Therefore, in order to tackle risk-
averse PDE-constrained GNEPs, it has been necessary to first develop the theory,
approximation, and algorithms for the optimization setting. These results can now
be leveraged for the NEP and ultimately GNEP setting.

In what follows, we will first present the recent theory of risk-averse PDE-
constrained optimization in which the risk preferences of the individual agents
are modeled by convex risk measures. Following this, we will apply the theory
to a model risk-averse PDE-constrained Nash equilibrium problem. This will
more clearly delineate the differences between the optimization and game-theoretic
frameworks. We then present the recent approach in [25] for smoothing nonsmooth
risk measures that is interesting from a theoretical perspective, but also useful
for gradient-based optimization algorithms. In particular, we will see that epi-
regularization of risk measures is an essential component of the primal–dual risk
minimization algorithm recently developed in [27].
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4.2 Additional Notation and Preliminary Results

In addition to the notation introduced above, we recall several further concepts
necessary for the coming discussions. Unless otherwise stated, these are considered
standing assumptions in the text below.

Let (�,F ,P) be a complete probability space where � is an arbitrary set of
outcomes, F ⊆ 2� is the associated σ -algebra of events, and the set function P :
F → [0, 1] is a probability measure. We employ the standard abbreviations “a.e.”
and “a.a.” for “almost everywhere” and “almost all” with respect to P, respectively.
If necessary, we will append these by P and write P-a.e. or P-a.a. As F is fixed,
we write “F-measurable” simply as “measurable” if clear in context. Since we will
often deal with Banach-space-valued random terms, we recall that a random element
X in a Banach space X is a measurable mapping X : �→ X , where X is endowed
with the Borel σ -algebra. We denote expectation by E[X].

We assume that the control space U is a real reflexive Banach space and denote
the set of admissible decisions by Uad ⊂ U . The latter is assumed to be a nonempty,
closed, and convex set. In the context of Nash equilibrium problems, Uad is assumed
to be bounded as well. The physical domain for the deterministic PDE solutions
will be denoted by D ⊂ R

d . We assume that D is an open and bounded set with
Lipschitz boundary ∂D. The associated state space for the deterministic solutions
will be denoted by V := H 1(D) (or H 1

0 (D)), where H 1(D) is the usual Sobolev
space of L2(D)-functions with weak derivatives in L2(D) [1].

The natural function-space setting for solutions of random PDEs is in classical
Bochner spaces, cf. [17]. We recall that the Bochner space Lp(�,F ,P;W)

comprises all measurable functions that map � into some Banach space W with
p finite moments for p = [1,∞). When p = ∞, L∞(�,F ,P;W) is the space of
all essentially bounded W -valued measurable functions. The norms are given by

‖v‖Lp(�,F ,P;W) = E
[‖v‖pW

]1/p
for p ∈ [1,∞)

‖v‖L∞(�,F ,P;W) = ess sup
ω∈�

‖v(ω)‖W .

When W = R, we set Lp(�,F ,P;R) = Lp(�,F ,P). In our optimization and
equilibrium settings, the random objective maps U into X := Lp(�,F ,P) for
some p ∈ [1,∞). Whenever it is clear, we simply write X .

As discussed in Sect. 4.1, we model risk-averse behavior by means of risk
measures. There is a vast literature on the subject of risk measures and their usage
in optimization. In our models, the individual agents’ problems are assumed to take
the form:

min
u∈Uad

R[J (S(u))] + ℘(u),
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where R is a nonlinear, typically nonsmooth, functional on X . We refer the
interested reader to [41, Chap. 6.] and the references therein as a starting point.
For our purposes, it will suffice to introduce two general classes of risk measures
here, each of which follows the standard axiomatic approach as in [3, 12, 39].
We start by recalling the definition of a regular measure of risk as suggested by
Rockafellar and Uryasev in [39]. The conditions below were postulated as minimal
regularity properties for risk measures in the context of optimization. A functional
R : X → R where R := (−∞,∞] is a regular measure of risk provided is proper,
closed, convex and satisfies R[C] = C for all constant random variables C ∈ R,
and R is risk averse: R[X] > E[X] for all nonconstant X ∈ X . Therefore, the
expected value is not a regular measure of risk in this setting. This is reasonable
from the perspective that setting R = E would indicate neutrality to risk and not
yield a robust solution.

Perhaps the most well-known risk measures are the coherent risk measures.
These were introduced in a systematic way in [3] as a means of axiomatizing
the behavior of risk-averse decision makers. The risk measure R is coherent
provided:

(C1) Subadditivity: If X,X′ ∈ X , then R[X +X′] ≤ R[X] +R[X′].
(C2) Monotonicity: If X,X′ ∈ X and X ≥ X′ almost surely, then R[X] ≥ R[X′].
(C3) Translation equivariance: If C ∈ R and X ∈ X , then R[X+C] = R[X]+C.
(C4) Positive homogeneity: If C ∈ [0,∞) and X ∈ X , then R[CX] = CR[X].
A rather popular coherent risk measure is the conditional or average value at risk
(CVaR or AVaR). Given a risk or confidence level β ∈ (0, 1), the average value at
risk of a random variable X is the average of the associated quantiles F−1

α (X) over
α ∈ (β, 1). Here, we have

F−1
α (X) = VaRβ(X) := inf {x ∈ R : FX(x) ≥ β} ,

i.e., the value at risk of X at confidence level β, and

AVaRβ(X) := 1

1− β

∫ 1

β

VaRα(X) dα.

This gives a measure of the tail of the distribution of X. It is particularly well suited
in the context of risk-averse optimization as a means of accounting for tail events.
CVaR can be written in several ways; for optimization, we use

AVaRβ(X) = inf
t∈R

{

t + 1

1− β
E[(X − t)+]

}

, (4.1)

where (x)+ := max{0, x} [38]; the (smallest) minimizer in (4.1) is VaRβ(X).
As shown in [25, Thm 1], the only coherent risk measures that are continuously

Fréchet differentiable are expectations. Therefore, regardless of how smooth the
objective or control state mappings are, any risk-averse PDE-constrained opti-
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mization problem using coherent regular risk measures is an infinite-dimensional
nonsmooth optimization problem.

4.3 Risk-Averse PDE-Constrained Optimization: Theory

We now focus on developing the theory for the “single-player” setting. We start by
considering the following abstract optimization problem:

min
u∈Uad

R[J (S(u))] + ℘(u). (4.2)

Here, u ∈ U represents the decision variable (controls, parameters, designs,
etc.), Uad is the associated feasible set, ℘ is a deterministic cost function, R is
a risk measure as in Sect. 4.2, J is a random objective in the form of a general
superposition operator, and S(u) is the solution mapping for the random PDE.

As motivation for the chosen setting, we recall the class of random PDEs
considered in [28] (in strong form): For u ∈ U and P−a.e. ω ∈ �, y = S(u)

solves

−∇ · (κ(ω)∇y(ω))+ c(ω)y(ω)+N(y(ω), ω) = [B(ω)u] + b(ω), in D

κ(ω)
∂y

∂n
(ω) = 0, on ∂D.

(4.3)

Here, we assume κ, c, b are random elements in an appropriate Bochner space and
the operator N is a potentially nonlinear maximal monotone operator. B(ω) maps u
into the image space of the differential operator.

Returning to the abstract setting, it was shown in [26] that a number of basic
regularity assumptions need to be imposed on R, J , S, ℘, and Uad in order to prove
the existence of a solution and derive optimality conditions for (4.2). The inclusion
of stochasticity and the nonlinearity and nonsmoothness of R add a further level of
complexity not seen in deterministic problems. We impose the following conditions
on S and J throughout.

Assumption 4.1 (Properties of the Solution Map) It holds that

1. S(u) : �→ V is strongly F-measurable for all u ∈ Uad.
2. There exists an increasing function ρ : [0,∞)→ [0,∞) and C ∈ Lq(�,F ,P)

with C ≥ 0, q ∈ [1,∞] such that

‖S(u)‖V ≤ Cρ(‖u‖U) P−a.e. ∀u ∈ Uad.

3. If un ⇀ u in Uad, then S(un) ⇀ S(u) in V P−a.e.
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Each of these assumptions is minimal. For example, if S(u) is not measurable,
then R◦J ◦S is meaningless. The second assumption can be seen as an integrability
requirement. Since J is typically a nonlinear operator, it is essential for S to possess
such properties. The latter condition appears to be the weakest condition needed
(along with the assumption on R, J , etc. below) to prove the existence of a solution.
As shown in [24, Sec. 2.2], Assumption 4.1 implies:

1. S(u) ∈ Lq(�,F ,P;V ) for all u ∈ Uad.
2. By letting

V := Lq(�,F ,P;V ),

we have S(un) ⇀ S(u) in V for any {un} ⊂ Uad such that un ⇀ u.

Furthermore, in order to derive optimality conditions, S needs to be continuously
differentiable.

Assumption 4.2 There exists an open set W ⊆ U with Uad ⊆ W such that the
solution map u �→ S(u) : W → V is continuously Fréchet differentiable.

The results in [24] indicate that we could slightly weaken this to Hadamard
directional differentiability, which would allow us to consider risk-averse control
of random elliptic variational inequalities in the future.

Continuing, we will assume that the random objective J is the result of a
superposition of some possibly random integral functional J and an element y ∈ V .
The necessary, and in part sufficient, conditions needed for J are given below.

Assumption 4.3 (Properties of J : V ×�→ R) It holds that

1. J is a Carathéodory function, i.e., J (·, ω) is continuous for P−a.e. ω ∈ � and
J (u, ·) is measurable for all v ∈ V .

2. If 1 ≤ p, q < ∞, then there exists a ∈ Lp(�,F ,P) with a ≥ 0 P−a.e. and
c > 0 such that

|J (v, ω)| ≤ a(ω)+ c‖v‖q/pU . (4.4)

If 1 ≤ p < ∞ and q = ∞, then the uniform boundedness condition holds: for
all c > 0, there exists γ = γ (c) ∈ Lp(�,F ,P) such that

|J (v, ω)| ≤ γ (ω) P−a.e. ∀ v ∈ V, ‖v‖V ≤ c. (4.5)

3. J (·, ω) is convex for P−a.e. ω ∈ �.

It follows from a well-known result due to Krasnosel’skii, see, e.g., [29], [43,
Thm 19.1], see also Theorem 4 in [15], that Assumption 4.3.1–2 guarantees J :
V → Lp(�,F ,P) continuously. These are necessary and sufficient and cannot be
weakened. For several examples of objectives that satisfy Assumption 4.3, we refer
to [26, Sec. 3.1]. Finally, the convexity assumption guarantees Gâteaux directional
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differentiability. If this is not available, then additional assumptions must be made
on the partial derivatives of J with respect to u. We gather the related main
statements on J from [26] here for the reader’s convenience.

Theorem 4.4 (Continuity and Gâteaux Differentiability of J ) Let Assump-
tion 4.3.1–2 hold. Then J : V → Lp(�,F ,P) is continuous. Furthermore, if
Assumption 4.3.1–3 holds, then J is Gâteaux directionally differentiable.

Since the objective functional in (4.2) is of the form R ◦ J ◦ S, Theorem 4.4
is not strong enough to guarantee the necessary smoothness properties of J as
a nonlinear operator from V into Lp(�,F ,P) that would provide us with first-
order optimality conditions. This requires further regularity conditions. The weakest
type of directional differentiability that allows a chain rule is Hadamard directional
differentiability, cf. [40]. In the current setting, this can be demonstrated if J
is locally Lipschitz, see [26, Cor. 3.10]. For the development of function-space-
based optimization algorithms, in particular the convergence analysis, we generally
need continuous Fréchet differentiability. This can be proven provided the partial
derivatives of ∂uJ (·, ω) satisfy a Hölder continuity condition, see [26, Thm. 3.11].

We now have a sufficient amount of structure to prove existence of optimal
solutions to (4.2). The following lemma is essential.

Lemma 4.5 (Weak Lower-Semicontinuity of the Composite Objective) Let
Assumptions 4.1 and 4.3 hold. If R : L1(�,F ,P) → R is proper, closed,
monotonic, convex, and subdifferentiable at J (S(u)) for some u ∈ Uad, then
the composite functional (R ◦ J ◦ S) : Uad → R is weakly lower semicontinuous
at u ∈ Uad.

Using Lemma 4.5, we can now prove existence of solutions.

Theorem 4.6 (Existence of Optimal Solutions) Let Assumptions 4.1, 4.2, and 4.3
hold. Let R : L1(�,F ,P) → R be a proper, closed, convex, and monotonic risk
measure, and let ℘ : U → R be proper, closed, and convex. Finally, suppose either
Uad is bounded or u �→ R(J (S(u)))+℘(u) is coercive. Then, (4.2) has a solution.

Next, we can also derive a general first-order optimality condition. The essential
point here is the regularity condition on R, which guarantees the composite reduced
objective function R ◦J ◦ S is Hadamard directionally differentiable. The standard
regularity assumptions: finiteness or int domR �= ∅ are considerably mild given the
types of risk measures used in practice.

Theorem 4.7 (A General Optimality Condition) Suppose that in addition to the
assumptions of Theorem 4.6, the risk measure R is either finite on L1(�,F ,P) or
int domR �= ∅. Moreover, assume that J : V → Lp(�,F ,P) is locally Lipschitz
and ℘ is Gâteaux directionally differentiable. Then for any optimal solution u�
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to (4.2), the following first-order optimality condition holds:

sup
ϑ∈∂R(J (S(u�)))

E[J ′(S(u�); S(u�)′δu) ϑ] + ℘′(u�; δu) ≥ 0, ∀δu ∈ TUad(u
�),

(4.6)

where TUad(u
�) is the contingent cone to Uad at u�, which is defined by

TUad(u
�) := {

d ∈ U
∣

∣ ∃ τk ↓ 0, ∃ dk → d in U : z� + τkdk ∈ Uad ∀k
}

.

For illustration of (4.6), let p = 2, U = L2(D), S(u�) = A−1(Bu� + b) and

J (y, ω) = J (y) := 1

2
‖y − yd‖2

L2(D)
and ℘ = ν

2
‖u‖2

L2(D)
,

where A−1 is a linear isomorphism from V∗ into V , B ∈ L(U,V∗), and b ∈
V∗; then (4.6) unfolds into a somewhat more familiar form: If u� is an optimal
solution of (4.2), then there exists an adjoint state p� ∈ V∗ and a subgradient
ϑ� ∈ L∞(�,F ,P) such that

(

u� − 1

ν
E[B∗p�ϑ�], u− u�

)

U

≥ 0, ∀u ∈ Uad,

R[X] −R[J (y�)] − E[ϑ�(X − J (y�))] ≥ 0, ∀X ∈ L1(�,F ,P),
Ay� − Bu� + b = 0,

A∗p� − yd + y� = 0.

(4.7)

This provides us with the interesting fact that the optimal control is the projection
onto Uad of the expectation of adjoint term B∗p�, where the expectation has been
adjusted according to the risk preference expressed in R via the subgradient ϑ�.
The latter is often referred to as the “risk indicator” in the literature for obvious
reasons. In the case of AVaRβ , the numerical experiments in [24] indicate that
P(suppϑ�) = 1 − β. Therefore, the majority of support is used to treat tail events.
Note also that when designing first-order methods for such problems, this fact
allows a significant reduction in the number of PDEs solved per iteration required
to calculate the reduced gradient.

For a more challenging example, we recall the setting from [28] in (4.3) in more
detail. Among the most difficult aspects of the assumptions used to prove existence
of a solution and derive optimality conditions are the conditions placed on the
solution mapping S. In [28], we postulate several verifiable assumptions. To this
aim, we suppose that S(u) is the solution of a general parametric operator equation:
For each u ∈ U , find y(ω) = [S(u)](ω) ∈ U such that

e(y, u;ω) := A(ω)y + N(y, ω)− B(ω)u− b(ω) . 0 for a.a. ω ∈ �. (4.8)
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We impose the following assumptions on the operators.

Assumption 4.8 (Pointwise Characterization of the Problem Data in (4.8))

1. Let A : �→ L(V , V ∗) satisfy A(ω) is monotone for a.a. ω ∈ � and there exists
γ > 0 and a random variable C : �→ [0,∞) with C > 0 a.e. such that

〈A(·)y, y〉U∗,U ≥ C‖y‖1+γ
V a.e. ∀ y ∈ V. (4.9)

2. Let b : �→ V ∗.
3. Let N : V × � ⇒ V ∗ satisfy N(·, ω) is maximal monotone with N(0, ω) = {0}

for a.a. ω ∈ �.
4. Let B : �→ L(U, V ∗) be completely continuous for a.a. ω ∈ �.

Since these conditions are taken to be pointwise in ω, they can be viewed as the
minimal data assumptions that are imposed when considering optimization of ellip-
tic semilinear equations. The following assumption is essential for measurability
issues. It is unclear if it can be weakened. Ultimately, the coefficients and mappings
used to define A,N, etc. will dictate the integrability of S(u).

Assumption 4.9 (Measurability and Integrability of the Operators in (4.3)) Let
Assumption 4.8 hold and suppose there exists s, t ∈ [1,∞] with

1+ 1

γ
≤ s <∞ and t ≥ s

γ (s − 1)− 1

such that A(·)y ∈ Ls(�,F ,P;V ∗) for all y ∈ V , N(·, ω) is single-valued and
continuous for a.a. ω ∈ � and N(y, ·) ∈ Ls(�,F ,P;V ∗) for all y ∈ V , B ∈
Ls(�,F ,P;L(U, V ∗)), b ∈ Ls(�,F ,P;V ∗) and C−1 ∈ Lt(�,F ,P).

Finally, we require assumptions on N to derive optimality conditions.

Assumption 4.10 (Differentiability of N(·, ω)) In addition to Assumption 4.9, we
assume that N(·, ω) is single-valued and continuously Fréchet differentiable from
V into V ∗ for a.a. ω ∈ � with partial derivative N′(y, ω), which defines a bounded,
nonnegative linear operator from V into V ∗ a.e. for all y ∈ V . Moreover, we assume
that A and y �→ N(y, ·) are continuous maps from V into Ls(�,F ,P;V ∗) and
y �→ N′(y, ·) is a continuous map from V into Lqs/(q−s)(�,F ,P;L(V , V ∗)).

We gather the main results in [28, Sec. 2.3] here for the reader’s convenience.

Theorem 4.11 (Properties of the Solution Mapping S(u)) Under the standing
assumptions, the following statements hold.

1. If Assumption 4.8 holds, then A(ω) + N(·, ω) is surjective from V into V ∗ for
a.a. ω ∈ �. In particular, there exists a unique solution S(u) to (4.8) such that
[S(u)](ω) ∈ V for a.a. ω ∈ �.
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2. If in addition Assumption 4.9 holds and we let

q := sγ

1+ s/t
, (4.10)

then S(u) ∈ V := Lq(�,F ,P;V ) for all u ∈ V . Furthermore, if uk ⇀ u in
U , then S(uk) → S(u) in V a.e. and S(uk) → S(u) in V , i.e., S is completely
continuous.

3. If in addition Assumption 4.10 holds, then u �→ S(u) is continuously Fréchet
differentiable from U into V .
We now return to a concrete example and cast (4.3) in the form (4.8).

Example Define the linear elliptic operator A(ω) by

〈A(ω)y, v〉V ∗,V =
∫

D

{κ(ω, x)∇y(x) · ∇v(x)+ c(ω, x)y(x)v(x)} dx,

for y, v ∈ V . Analogously, we let N(·, ω) be the nonlinear operator given by

〈N(y, ω), v〉V ∗,V =
∫

D

N(y(x), ω, x)v(x) dx,

where N : R×�×D → R. The right-hand side can be defined by

〈B(ω)u, v〉V ∗,V =
∫

D
[B(ω)u](x)v(x) dx and 〈b(ω), v〉V ∗,V =

∫

D
b(ω, x)v(x) dx,

where B : �→ L(U,L2(D)) and b ∈ V∗.
Assuming that κ(ω, ·), c(ω, ·) ∈ L∞(D) for a.a. ω ∈ � and for a.a. ω ∈ �,

x ∈ D, satisfy: there exist κ0 > 0 and c0 > 0 such that

κ0 ≤ κ(ω, x) and c0 ≤ c(ω, x),

then the conditions in Assumptions 4.8 and 4.9 on A are satisfied with γ = 1,
C = min{κ0, c0}, s = 2, t = ∞. For N, we at least need N(·, ω, x) :
R → R to be continuous and monotonically increasing with N(0, ω, x) = 0
for a.a. ω ∈ � and a.a. x ∈ D. This would yield the monotonicity requirement
in Assumption 4.8, which would be the case for a nonlinearity of the type:
N(u, ω, x) = c(ω, x)(sinh(u) − u). Otherwise, we can obtain continuity via the
usual growth conditions of Krasnosel’skii as in, e.g., Theorems 1 and 4 in [15] or
the comprehensive monograph [2]. Similarly, if we have b(ω, ·) ∈ Lr(D) with
r > d/2 for a.a. ω ∈ �, then Assumption 4.8.2 holds and if B is, e.g., the
canonical embedding operator from L2(D) into H 1(D)∗, then Assumption 4.8.3
also holds. For Assumption 4.9, we could require b ∈ L∞(�,F ,P;L2(D))

and κ, c ∈ L∞(�,F ,P;L∞(D)). This assumption would not hold for N when
generated by the hyperbolic sine unless V was replaced by a more regular space,
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e.g., H 2(D). However, if d = 2 and ∂D is sufficiently regular, then by the Sobolev
embedding theorems we could still use V = H 1(D) when N is generated by
monotone polynomials of arbitrary degree.

Behind all of these technical details lie the hypotheses imposed by measurable
selection theorems, e.g., Filippov’s theorem, which generally require the random
elements to map into separable spaces. The integrability conditions are then derived
using the monotonicity of the operators. Therefore, one should be rather careful
when generating new examples from deterministic PDE models as they may not
always be well defined in the stochastic setting.

Finally, we conclude this section by noting that many example problems used
in the literature consider linear elliptic PDE under uncertainty. This drastically
simplifies the measurability, integrability, continuity, and differentiability issues for
the solution mapping S. Building on the properties of the solution operator and
requirements on the objective functionals J discussed above, one can derive similar
measurability, integrability, and (weak) continuity results for the adjoint equations
and ultimately an optimality system as in the linear case shown above.

4.4 A Risk-Averse PDE-Constrained Nash Equilibrium
Problem

We may now formulate a model risk-averse PDE-constrained Nash equilibrium
problem. Using the results of the previous section, we prove existence of a Nash
equilibrium and derive optimality conditions. In what follows, we consider the
following setting: For each i = 1, . . . , N (N > 1), we assume:

1. Ui := L2(D), Ui
ad :=

{

v ∈ Ui | ai ≤ v ≤ bi a.e. D
}

, ai, bi ∈ L2(D) : ai < bi .
2. Ji(y, ω) := 1

2‖y − yid‖2
L2(D)

, yid ∈ L2(D); ℘(u) := νi
2 ‖u‖2

L2(D)
νi > 0.

3. S : U1 × · · · × UN → V is the solution mapping for the random PDE given
by (4.8) under Assumptions 4.8 and 4.9 such that A is defined as in Example 4.3,
i.e., uniformly elliptic with γ = 1, C = min{κ0, c0}, s = 2, t = ∞; N ≡ 0;
b ∈ V∗; and B : U1 × · · · × UN → V∗ satisfies

Bu = B1u1 + . . .BNuN,

where Bi , i = 1, . . . , N , is defined as in Assumptions 4.8 and 4.9. In particular,

S(u) := A−1

(

∑

i

Biui + b

)

.
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4. Ri : L1(�,F ,P)→ R is a regular coherent measure of risk, e.g., AVaRβ .

Under these assumptions, we consider the associated risk-averse PDE-constrained
Nash equilibrium problem (NEP) in which the ith player’s problem takes the form

min
ui∈Ui

ad

Ri (Ji (S(ui, u−i )))+ ℘(ui) over ui ∈ Ui. (4.11)

Using the Kakutani–Fan–Glicksberg fixed-point theorem (Theorem (2.1) above,
[14]), we can demonstrate that this problem admits a Nash equilibrium.

Theorem 4.12 (Existence of a Risk-Averse Nash Equilibrium) The Nash equi-
librium problem whose individual players each solve a variant of (4.11) admits a
solution in the form of a pure strategy Nash equilibrium.

Proof We need to verify the conditions of Theorem 2.1. Since each Ui is infinite-
dimensional, we view each Ui

ad as metrizable compact locally convex topological
vector spaces as in [20, 21]. This is possible since Ui

ad is a norm bounded, closed,
and convex set in a separable Hilbert space. Next, we define the best response
mappings:

Bi (u−i ) := arg minui∈Ui
ad
Ri (Ji (S(ui, u−i )))+ ℘(ui) over ui ∈ Ui.

We need to show that each Bi has nonempty, bounded, and convex images in Ui .
The risk measure Ri is proper, closed, convex, and monotonic. Since Ri is

defined on all of L1(�,F ,P), it is finite everywhere and therefore continuous
and consequently subdifferentiable; in particular at Ji (S(ui, u−i )) for any feasible
strategy vector (ui, u−i ). The tracking-type functional considered here can easily
be shown to satisfy all the necessary assumptions outlined above; see [24] or [26].
Concerning S, we note that for any fixed u−i ∈ U−i

ad , we have B(0, u−i ) =
∑

j �=i Bj uj . The latter term can be taken on the right-hand side of the PDE as a
perturbation of b. Clearly, this “new” constant term is in V∗. It light of this, we can
readily verify the necessary assumptions for continuity and differentiability with
respect to ui required in Theorem 4.11.

It follows that R ◦ J ◦ S : Ui → R is weakly lower semicontinuous (cf.
Lemma 4.5). The existence of solutions results from the fact that ℘ is coercive and
Ri ◦Ji ◦S nonnegative (cf. Theorem 4.6). Furthermore, since Ri is a monotone risk
measure, it preserves the pointwise convexity of the integrand J ◦ S. Therefore, the
set of all optimal solutions is convex and, by hypothesis onUi

ad, bounded. Therefore,
we conclude that Bi has nonempty, convex, bounded images in Ui

ad.
Next, define B : U1

ad × · · · × UN
ad ⇒ U1

ad × · · · × UN
ad by

B(u) := B1(u−1)× · · · × BN(u−N).
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Suppose that (uk, vk) ∈ gphB such that (uk, vk) ⇀ (ū, v̄). This means in particular
that for all k we have vki ∈ Bi (uk−i ), i.e.,

(Ri ◦ Ji ◦ S)(vki , uk−i )+ ℘(vki ) ≤ (Ri ◦ Ji ◦ S)(w, uk−i )+ ℘(w) ∀w ∈ Ui
ad.

In the current setting

S(u) = A−1

(

∑

i

Biui + b

)

= A−1Biui + A−1b+
∑

j �=i
A−1Bj uj .

As shown in Lemma 2.1 [28], each Bi is completely continuous from Ui into
L2(�,F ,P;V ∗) = V∗. Therefore, we have Bivki → Bi v̄i and Bj ukj → Bj ūj
strongly in V∗ for each i and each j �= i. It immediately follows from that
S(vki , u

k
−i )→ S(v̄i , ū−i ) and for any w ∈ Ui

ad S(w, u
k
−i )→ S(w, ū−i ).

Next, since Ri and Ji are continuous on their respective spaces, we have

(Ri ◦ Ji ◦ S)(vki , uk−i )→ (Ri ◦ Ji ◦ S)(v̄i , ū−i )
(Ri ◦ Ji ◦ S)(w, uk−i )→ (Ri ◦ Ji ◦ S)(w, ū−i ).

Then due to the weak lower semicontinuity of ℘ on Ui , it follows that

(Ri ◦ Ji ◦ S)(v̄i , ū−i )+ ℘(v̄i) ≤ (Ri ◦ Ji ◦ S)(w, ū−i )+ ℘(w) ∀w ∈ Ui
ad,

i.e., v̄i ∈ Bi (ū−i ). Hence, the noncooperative game admits a Nash equilibrium. ��
Remark 4.13 The previous proof can easily be extended to more complicated PDE
models and objective functions. However, for nonlinear operators N, we need to
extend the results in Sect. 2 to the stochastic setting.

Given the explicit structure of the current setting, we can also derive optimality
conditions for the NEP. Moreover, we can show that this specific problem reduces
to a special kind of equilibrium problem in which the risk indicators are determined
simultaneously by a single “risk trader.”

Theorem 4.14 (Optimality Conditions) Let ū be a Nash equilibrium for (4.11).
Then for each i = 1, . . . , N there exists a pair (p�i , ϑ

�
i ) ∈ V × L∞(�,F ,P) such

that the following conditions hold: ϑ� ∈ ∂Ri[Ji (y�)] and
(

u�i −
1

νi
E[B∗i p�i ϑ�i ], w − u�i

)

Ui

≥ 0, ∀w ∈ Ui
ad,

Ay� − Bu� + b = 0,

A∗p�i − yid + y� = 0.

(4.12)
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Proof This follows from Sect. 4.3 and the definition of a Nash equilibrium. ��
System (4.12) leads to a useful reformulation. For each i, the adjoint states p�i

split into the sum of a joint adjoint state q� := A−∗y� and a fixed i-dependent term
ỹid := −A−∗yid , where ỹid is now stochastic. Then, for each i, we have

1

νi
E[B∗i p�i ϑ�i ] =

1

νi
E[B∗i (q� + ỹid )ϑ

�
i ] =

1

νi
E[B∗i q�ϑ�i ] +

1

νi
E[B∗i ỹidϑ�i ]

︸ ︷︷ ︸

=:ĉi

.

By defining Giu := 1
νi
B∗iA−∗A−1Bu and gi := 1

νi
B∗iA−∗A−1b, the variational

inequality in (4.12) can be written as

(u�i − (E[ϑ�i Giu
�] + ci(ϑ

�
i )), v − u�i )Ui ≥ 0 ∀v ∈ Ui

ad,

where ci(ϑi) := E[ϑigi] − ĉi . Summing over i, we obtain

N
∑

i=1

(u�i − (E[ϑ�i Giu
�] + ci(ϑ

�
i )), vi − u�i )Ui ≥ 0 ∀v ∈ Uad. (4.13)

Conversely, if the previous inequality holds, then by using the variations

(v�1, . . . , vi, . . . , v
�
N) = v ∈ Uad = U1

ad × · · · × UN
ad

for each i = 1, . . . , N (leaving only vi to vary), we recover the individual
inequalities. We will refer to (4.13) as the “aggregate player’s problem.” Letting
ProjUi

ad
denote the metric projection onto Ui

ad, this can be formulated as a single

nonsmooth equation in the product space U = U1 × · · · × UN : Find u� ∈ U :
∀i = 1, . . . , N

u�i = ProjUi
ad

[

E[ϑ�i Giu
�] + cI (ϑ

�
i )

]

. (4.14)

Continuing, since Ri is assumed to be a coherent risk measure, we have

ϑ�i ∈ argmax
ϑ∈Ai

E[ϑJi (y�)],

where Ai := dom(R∗
i ) is the domain of the Fenchel conjugate R∗

i of Ri . It is then
easy to show that all of the subdifferential inequalities can be joined into a single
maximization problem:

max

{

N
∑

i=1

E[ϑiJi (A−1(Bu� + b))], over ϑ ∈ A

}

, (4.15)
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where A := A1×· · ·×AN . Problem (4.15) always has a solution since the objective
is a bounded linear functional and A is a weakly-∗ sequentially compact, closed, and
convex set. Inspired by the terminology in [37], we will refer to (4.15) as the “risk
trader’s problem.”

We have thus proven that the risk-averse PDE-constrained NEP can be under-
stood as a type of MOPEC (multiple optimization problems with equilibrium
constraints) comprising a single aggregate player, who solves a well-posed varia-
tional inequality in u given a fixed risk indicator vector ϑ , and a risk trader who
spreads the risk of the decision vector u over the components of ϑ in light of the
various objectives Ji and risk preferences Ai .

Even in this special case, it is difficult to immediately select an appropriate
solution algorithm. Perhaps the main challenge lies in the fact that the risk trader’s
problem does not have a unique solution. One remedy for this to ensure a unique ϑ
for a given u is to replace the objective in (4.15) by

E[ϑiJi (A−1(Bu� + b))] − ε

2
E[ϑ2

i ] ε > 0. (4.16)

This was suggested in [24] for treating the nonsmooth risk measure AVaRβ

in the context of PDE-constrained optimization under uncertainty. It was later
demonstrated that such a regularization is a special case of the deeper theory of
epi-regularization of risk measures in [25]. We briefly discuss this notion below.

4.5 Risk-Averse PDE-Constrained Decision Problems: Smooth
Approximation

As a means of circumventing the unacceptably slow performance of classical nons-
mooth optimization algorithms such as subgradient methods or bundle methods, we
proposed smoothing approaches in [24] and [25]. An alternative viewpoint can be
found by exploiting the structure of a specific class of coherent risk measures and
using an interior-point approach as in [13]. In addition, the analysis in the previous
section indicates yet another reason to consider some form of variational smoothing
in the context of stochastic PDE-constrained equilibrium problems.

We briefly give the details of epi-regularization as it has proven to be a versatile
tool not only for smoothing risk measures but also for analyzing new optimization
methods for risk-averse PDE-constrained optimization, cf. [27]. Let � : X → R be
a proper, closed, and convex functional and R a regular measure of risk. Then for
ε > 0, we define the epi-regularized measure of risk as

R�
ε [X] = inf

Y∈X

{

R[X − Y ] + ε�
[

ε−1Y
]}

= inf
Y∈X

{

R[Y ] + ε�
[

ε−1(X − Y )
]}

.



176 D. Gahururu et al.

As mentioned above, the regularization in (4.16) is equivalent to using the func-
tion �[X] = 1

2E[X2]. Another import example can be seen by setting X =
L2(�,F ,P), R = AVaRβ , and �[X] := E[X] + 1

2E[X2]. This results in

R�
ε [X] = inf

t∈R
{

t + E
[

vβ,ε(X − t)
]}

,

which is continuously Fréchet differentiable and in which the scalar function vβ,ε is
given by

vβ,ε(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− ε
2 , if x ≤ −ε

1
2ε x

2 + x, if x ∈
(

−ε, εβ
1−β

)

1
1−β

(

x − εβ2

2(1−β)
)

, if x ≥ εβ
1−β .

Epi-regularization has a number of advantageous properties. For example, we can
show that the sequence of functionals

{

R�
ε

}

ε>0 converges in the sense of Mosco to
R. Furthermore, under certain assumptions on J and ℘, we can show that weak
accumulation points of approximate minimizers z�ε are optimal for (4.2) and weak
accumulation points of approximate stationary points are stationary for (4.2). For
more on this topic, we refer to the forthcoming publication [25].

4.6 Risk-Averse PDE-Constrained Optimization: Solution
Methods

In this final section, we outline the main components of the recently proposed
primal–dual risk minimization algorithm in [27]. This is an all purpose optimization
algorithm for minimizing risk measures in the context of PDE-constrained optimiza-
tion under uncertainty.

In general, the individual problems in our risk-averse setting have the form:

min
x∈Xad

{g(x)+�(G(x))} , (4.17)

where g is a deterministic objective function, G is an uncertain objective function,
and � is a functional that maps random variables into the real numbers. The
functional � is typically convex, positively homogeneous, and monotonic with
respect to the natural partial order on the space of random variables.

Let � : Y → R, where Y = L2(�,F ,P). As shown in [41, Th. 6.5], there exists
a nonempty, convex, closed, and bounded set A ⊆ {θ ∈ Y∗ | θ ≥ 0 a.s.} such that a
convenient bi-dual representation of � is available:

�(X) = sup
θ∈A

E[θX]. (4.18)
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Moreover, � is continuous and subdifferentiable, cf. [41, Prop. 6.6], and A =
∂�(0).

Using these facts, (4.17) exhibits a familiar structure in which, by introducing
the Lagrangian-type function &(x, λ) := g(x) + E[λG(x)], we can consider the
minimax reformulation:

min
x∈Xad

sup
λ∈A

&(x, λ). (4.19)

We can then develop a method similar to the classical method of multipliers [16, 36].
To this end, we introduce the (dual) generalized augmented Lagrangian:

L(x, λ, r) := max
θ∈A

{

&(x, θ)− 1

2r
E[(λ− θ)2]

}

. (4.20)

Now, using several techniques from convex analysis, it can be shown that

L(x, λ, r) = g(x)+ min
Y∈Y

{

�(G(x)− Y )+ E[λY ] + r

2
E[Y 2]

}

. (4.21)

In other words, L is the objective in (4.17) with � replaced by a multiplier-
dependent epi-regularization, where the regularizer is

�r,λ(Y ) = E[λY ] + r
2E[Y 2].

Furthermore, letting

�(x, λ, r) := ProjA(rG(x)+ λ),

where ProjA : Y → Y is the projection onto A, L attains the closed form

L(x, λ, r) = g(x)+ E[λG(x)] + r

2
E[G(x)2] − 1

2r
E[{(Id− ProjA)(rG(x)+ λ)}2].

For many risk measures of interest, e.g., mean-plus-semideviation or convex
combinations of mean and AVaR [27, Sec. 5.1], the optimization problem (4.17)
can be rewritten so that �(Y) = E[(Y )+]. Therefore, the projection operator ProjA
can be easily evaluated. For more general coherent risk measures, A can be split into
box constraints and a simple normalizing constraint that is treatable with a Lagrange
multiplier, cf. [27, Sec. 5.2].

The basic algorithm is given in Algorithm 1. A detailed implementable version
allowing for inexact subproblem solves, and multiplier-update strategies can be
found in [27] (Algorithm 2). A full convergence theory for the primal and dual
updates in both convex and nonconvex settings in infinite-dimensional spaces is
given in [27, Sec. 4]. Here, the convergence of the primal variables exploits a number
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of powerful results arising in the theory of epi-regularization. For the dual variables,
a regularity condition that postulates the existence of a saddle point is needed.

Algorithm 1 Primal–dual risk minimization
1. Initialize: Given x0 ∈ Xad, r0 > 0, and λ0 ∈ A.
2. While(“Not Converged”)

(a) Compute xk+1 ∈ Xad as approximate minimizer of L(·, λk, rk).
(b) Set λk+1 = �(xk+1, λk, rk).
(c) Update rk+1.

3. End While

Returning to our game-theoretic setting in Sect. 4.4, we see a clear link to the
risk trader’s problem (4.15). As mentioned in Sect. 4.4, (4.15) does not admit a
unique solution. This makes the numerical solution of the game, in its original
form as well as the proposed reduced from, very challenging. The suggestion
in (4.16) indicates that we could handle this aspect by applying an epi-regularization
technique to the risk measures. Though the suggestion given there is viable, the
favorable convergence behavior of Algorithm 1 given in [27, Sec. 4] indicates
that the multiplier-dependent epi-regularization update in the primal–dual algorithm
is probably better suited (clearly algorithmically motivated). We thus propose
a method that successively solves the aggregate player’s game using an update
formula for ϑ similar to the �-operator in the primal–dual algorithm. This avenue
of thought will be the focus of future work. Nevertheless, the epi-regularization
technique does not rule out the possibility that the associated system of nonlinear
and semismooth equations admits distinct solutions. A possible remedy to this issue
can be found in the recent publication [10].

5 Outlook

Generalized Nash equilibrium problems with PDE constraints represent a challeng-
ing class of infinite-dimensional equilibrium problems. Beyond the deterministic
convex setting involving linear elliptic or parabolic PDEs, major theoretical and
algorithmic challenges arise. Nevertheless, we have shown that it is still possible to
treat some GNEPs involving semilinear, nonsmooth, and even mutlivalued forward
problems by appealing to the notions of generalized convexity and isotonic map-
pings. Due to a lack of convexity, we have chosen to derive stationarity conditions
using the versatile limiting variational calculus in the sense of Mordukhovich. In
doing so, we have been able to push the boundaries of existence and optimality
theory in the deterministic setting beyond linear state systems. Therefore, we may
now build upon these advances toward the development of function-space-based
numerical methods similar to [20, 21]. The recent results in [23] on augmented
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Lagrangian-type methods (also developed within the priority program) may also
prove to be useful here.

As outlined above, the stochastic risk-averse setting is now poised to transfer
the results from the newly developed theory of risk-averse PDE-constrained opti-
mization [13, 24–28] to the setting of noncooperative strategic games. This will be
the focus for the remainder of the project duration. In addition to the algorithmic
strategy mentioned above, there are several open theoretical questions relating to
variational convergence in the context of strategic games and asymptotic statistical
properties of Nash equilibrium in the vein of [41, Chap. 5]. Some progress on related
stability issues using probability metrics has been made in the recent Master’s thesis
[22]. In addition, the results from the deterministic nonlinear case can be folded into
the stochastic setting by using the results in [27] for risk-averse control of semilinear
equations. Finally, in order to treat even jointly convex state-constrained risk-averse
PDE-constrained GNEPs, a sufficient theory of PDE-constrained optimization
under uncertainty with state constraints is under development.
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Abstract We discuss various aspects of quasi-variational inequalities (QVIs)
related to their sensitivity analysis and optimal control. Starting with the necessary
functional framework and existence results for elliptic QVIs of obstacle type,
we study stability of the solution map taking the source term onto the set of
solutions: we show that certain realisations of the map have appropriate continuity
properties. We then focus on showing that a notion of directional derivative exists
for QVIs and we characterise this derivative as a monotone limit of directional
derivatives associated to particular variational inequalities. The differentiability
theory is illustrated with a novel application in thermoforming. Using the stability
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1 Introduction

Quasi-variational inequalities (QVIs) are generalisations of variational inequalities
(VIs) where the constraint set associated to the inequality depends itself on the a
priori unknown solution. In the elliptic setting, they have the general form

given f ∈ V ∗, find y ∈ K(y) : 〈A(y)− f, y − v〉 ≤ 0 ∀v ∈ K(y),

where K(·) is the constraint set map (full details of all terms and spaces appearing
in this inequality will be given in Sect. 2). As such, QVIs are generally much more
complicated than VIs due to the fact that the constraint set is parametrised by
the solution as well as due to the extra source of potential nonlinearity and non-
smoothness. In general, solutions to such QVIs are also non-unique, giving rise to a
set-valued solution map which causes additional technical difficulties.

QVIs were first studied by Bensoussan and Lions [11, 25] for stochastic impulse
control problems, and they arise in a variety of other applications in the physical
and social sciences and economics. These include generalised Nash equilibrium
problems [13, 19, 31], magnetisation of superconductors [8, 22, 34, 37], the growth
of sandpiles [9, 33, 35, 36], and networks of lakes and rivers [10, 33, 35], and
thermoforming [2]. More generally, QVIs play an important role in the modelling of
complex phenomena where compliancy and state-dependent bounds are important
features.

The solution-dependent constraint set, which is the defining feature of QVIs,
means that special attention must be paid for the development of existence results
and solution algorithms. In this chapter, we shall outline (and in places detail)
contributions that we have made [1–4] to the stability/sensitivity analysis and
optimal control of QVIs of obstacle type. We will focus on elliptic QVIs here for
simplicity, but we also shall mention where appropriate related parabolic results
from our recent work [3].

We start in Sect. 2 with the fundamental functional framework and existence
results for QVIs, and we also point out a common erroneous technique found in
some literature. In Sect. 3, we discuss continuity and sensitivity properties of the
solution map associated to QVIs. An application of QVIs and their sensitivity
analysis in thermoforming is given in Sect. 3.4, and a numerical experiment will
be presented. Section 4 discusses some optimal control problems and the existence
thereof, making use of the stability results acquired in the previous section. We finish
in Sect. 5 with a few words on the current and future work.

2 QVIs: Mathematical Setting and Existence

We focus on the following functional setting and problem class. We consider a
Hilbert space V that is continuously and densely embedded into the Hilbert space
H := L2(Ω) where Ω ⊂ R

N is a Lipschitz domain. We usually denote the inner
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product on H by (·, ·). Define the convex cone H+ := L2(Ω)+, which is the set
of almost everywhere non-negative elements of L2(Ω). Every x ∈ H admits a
decomposition x = x+ − x− ∈ H+ −H+ with (x+, x−) = 0 where x+ denotes the
orthogonal projection of x onto H+. The infimum and supremum of x, y ∈ H are
defined as sup(x, y) := x + (y − x)+ and inf(x, y) := x − (x − y)+, respectively.
Finally, we assume that

y ∈ V 
⇒ y+ ∈ V and ∃κ > 0 : ‖y+‖V ≤ κ‖y‖V ∀y ∈ V

and that sup(0, ·) and inf(0, ·) are continuous with respect to the weak and strong
topologies of V .

Note that the ordering in H induces an ordering in the dual space V ∗: if f, g ∈
V ∗, we say f ≤ g if 〈f, φ〉 ≤ 〈g, φ〉 for all φ ∈ V+ := V ∩ H+, and define
V ∗+ := {f ∈ V ∗ : f ≥ 0}.

Suppose that A : V → V ∗ is an operator which is:

1. Homogeneous of order 1, i.e.,

A(λu) = λA(u) ∀u ∈ V, λ > 0

2. Lipschitz continuous, i.e., there exists C > 0 such that

‖A(u)− A(v)‖V ∗ ≤ C‖u− v‖V ∀u, v ∈ V

3. Uniformly monotone, i.e., there exists c > 0 such that

〈A(u)− A(v), u− v〉 ≥ c‖u− v‖2
V ∀u, v ∈ V

4. Strictly T-monotone, i.e.,1

〈A(u)− A(v), (u− v)+〉 > 0 ∀u, v ∈ V : (u− v)+ �= 0.

Example 2.1 (Prototypical Sobolev Space Setting) The typical realisation of the
above is based on the Sobolev space V = H 1

0 (Ω), and A = −Δ is taken to be
the Laplacian, which is defined for functions u, v ∈ H 1

0 (Ω) through the action

〈−Δu, v〉 :=
∫

Ω

∇u · ∇v dx.

We can also consider V = H 1(Ω) with appropriate modifications to A.

1In particular, if A is linear, this is equivalent to 〈Ay−, y+〉 ≤ 0 for all y ∈ V , and we have the
availability of maximum principles for A.



186 A. Alphonse et al.

We define a constraint set map K : H ⇒ V by

K(v) := {w ∈ V : w ≤ Φ(v)},

where:

1. Φ : H → H is a given increasing map.
2. There exist fmin, fmax ∈ V ∗ such that

the data f ∈ V ∗ satisfies fmin ≤ f ≤ fmax and Φ(v) ≥ A−1(fmin) ∀v ∈ V.

We are now in position to state the precise problem we are interested in.

Problem (PQVI) Given f ∈ V ∗ as above, find y ∈ K(y) such that

〈A(y)− f, y − v〉 ≤ 0 ∀v ∈ K(y). (PQVI)

2.1 Existence of Solutions: Order Approach

We describe now an approach based on order that was pioneered by Tartar to prove
existence of solutions to a class of QVIs [38], [7, Chapter 15, §15.2].

We say that a map R : H → H has a subsolution y if y ≤ R(y); a supersolution
is defined with the reverse inequality. The following general result for existence
of fixed points for increasing maps is the fundamental tool to prove existence of
solutions to problem (PQVI). The theorem essentially states that an increasing map
that possesses a subsolution y1 and a supersolution y2 has a fixed point between y1
and y2, and furthermore, there are minimal and maximal fixed points in [y1, y2].
Theorem 2.2 (Tartar–Birkhoff) Let R : H → H be increasing, and suppose that
there exist y, y ∈ H such that

y ≤ y, y ≤ R(y), and R(y) ≤ y.

Then the set of fixed points of R in the interval [y, y] is non-empty, and there exist
smallest and largest (defined through the ordering given above) fixed points.

By our assumptions on Φ and f , it follows that

y := A−1(fmin) and y := A−1(fmax)

are sub- and supersolutions (due to the comparison principle for VIs), respectively,
of the map

T (·) := S(f,K(·)), (1)
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where, given a set C ⊂ V , the notation S(f,C) is defined as the unique solution to
the variational inequality

find y ∈ C : 〈A(y)− f, y − v〉 ≤ 0 ∀v ∈ C. (2)

Clearly, T maps H into V and is increasing (thanks again to the comparison
principle), and hence, the previous theorem can be applied and we deduce the
existence of solutions to (PQVI).

Definition 2.3 If we define the set Aad := {g ∈ V ∗ : fmin ≤ g ≤ fmax}, we then
have the minimal and maximal solution operators

m : Aad → V and M : Aad → V

that take elements of Aad to minimal and maximal solutions to (PQVI) on the interval
[y, y].
We shall discuss the stability of these minimal and maximal solution maps later.

2.2 Existence of Solutions: Iteration Approach

Let (V ,H, V ∗) be now a Gelfand triple, so that V ↪→ H ↪→ V ∗ with the first
embedding continuous and dense and where H is identified with its dual H ∗.
Defining the sub- and supersolution y and y as above and the map T as (1), consider
the iterations

mn+1 := T (mn), Mn+1 := T (Mn),

m0 := y, M0 := y.

We will write an ↑ a to mean that an → a and an ≥ an−1 for all n ∈ N; an ↓
a is defined with the obvious modification. The next result shows that the above
sequences converge to the expected limits.

Proposition 2.4 (Theorem 4 in [4]) Suppose that Φ : V → V is completely
continuous. Then mn ↑ m(f ) and Mn ↓ M(f ) in H and mn → m(f ) and
Mn → M(f ) in V .

Proof We only sketch the proof and refer the reader to the proof of [4, Theorem 4]
for the full details. We find that {mn} and {Mn} are monotonically increasing and
decreasing, respectively, and additionally mn,Mn ∈ [y, y]. Furthermore,

mn ↑ m∗, Mn ↓ M∗ in H and mn ⇀ m∗, Mn ⇀ M∗ in V
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for some M∗,m∗ ∈ V . Note that M∗ ≤ Φ(Mn−1) so that

c‖Mn −M∗‖2
V ≤ 〈AMn − AM∗,Mn −M∗〉 ≤ 〈f − AM∗,Mn −M∗〉,

hence Mn → M in V . Provided that Φ : H → H is continuous, it is not hard to
prove that M∗ is a solution to (PQVI), i.e., M∗ = S(f,K(M∗)). Since M(f ) is the
maximum solution to (PQVI) on [y, y], M∗ ≤ M(f ). Further, since M(f ) ≤ y, by
repeated iteration of T on the previous inequality, we have that M(f ) ≤ M∗, i.e.,
M(f ) = M∗.

In order to prove that m∗ = m(f ), the additional assumption that Φ : V → V

be completely continuous is required. With this, vn := min(m∗, Φ(mn−1)) satisfies
vn → m∗ in V and vn ≤ Φ(mn−1). Hence,

c‖mn − vn‖2
V ≤ 〈Amn − Avn,mn − vn〉 ≤ 〈f − Avn,mn − vn〉,

where we have used that mn = S(f,K(mn−1)); thus mn → m∗ in V . From
mn ≤ Φ(mn−1), and since strong convergence in H preserves order, we have
m∗ ≤ Φ(m∗). Choose v ≤ Φ(m∗) arbitrary and define vn := min(v,Φ(mn−1)), so
that vn → m∗ in V and vn ≤ Φ(mn−1). Then

〈Am∗ − f,m∗ − v〉 = lim
n→∞〈Amn − f,mn − vn〉 ≤ 0,

that is, m∗ is a solution to (PQVI) within [y, y]. Hence, by definition of m(f ), we
have m(f ) ≤ m∗, and from y ≤ m(f ) and the consecutive iteration of T on the
previous inequality, we have m∗ ≤ m(f ), i.e., m∗ = m(f ). ��

2.3 Miscellaneous: A Pitfall

Before we proceed further, it is useful to warn the reader of a common mistake that
appears in the literature which is based on trying to extend the theorem of Lions and
Stampacchia in [26] to the QVI framework.

First observe the following. Provided that Φ : V → V is Lipschitz, we can
consider the change of variable z = y : −Φ(v), and it is straightforward to prove
via the monotonicity of A that T satisfies

‖T (v1)− T (v2)‖V ≤ 1

c
‖AΦ(v1)− AΦ(v2)‖V ′ ≤ C

c
LΦ‖v1 − v2‖V .

Hence for

C

c
LΦ < 1,
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the map T has a unique fixed point and the iteration yn+1 = T (yn) converges to
this fixed point for any initial y0 ∈ V . The extent of the usage of this technique is
limited to the exact case described here (also note that if V = H 1

0 (Ω), then, the
assumptions here also imply that Φ(v) = 0 on ∂Ω in the sense of the trace).

Now, let PK(y) : V → V ⊂ K(y) be the projection map, i.e., for any v ∈ V ,
PK(y)(v) is the unique element in K(y) such that

‖PK(y)(v)− v‖V = inf
w∈K(y) ‖w − v‖V .

Let i : V → V ∗ denote the canonical isomorphism defined as 〈iu, v〉V ∗,V :=
(u, v)V (note that the inner product is in V ), and its inverse i−1 := j is the Riesz
map for V . The solution to (PQVI) is equivalently determined by y ∈ V satisfying
y = Bρ(y) where

Bρ(y) := PK(y)(y − ρj (A(y)− f ))

for any ρ > 0. In the case where Φ(y) ≡ φ, we have

‖Bρ(v)− Bρ(w)‖V ≤
√

1− 2ρc + ρ2C2‖v − w‖V .

A significant proportion of the literature on QVIs is based on trying to extend this
result to the quasi-variational setting. This approach relies on the hard assumption

‖PK(y)(w)− PK(z)(w)‖V ≤ η‖y − z‖V (3)

for some 0 < η < 1 and all y, z,w in a bounded set in V (this should not be
confused with the non-expansive nature of the map z �→ PK(y)(z)). In general, (3)
is not valid, and the only framework (in our setting) where it seems to work is in
the obstacle-type case with Φ : V → V , in which case the projection map can be
rewritten in simpler terms:

PK(y)(w) = Φ(y)+ P{z∈V :z≤0}(w −Φ(y)). (4)

It is necessary for this representation that Φ preserves the V regularity, and for
example, if V = H 1

0 (Ω) and Φ : V → L2(Ω) \H 1
0 (Ω), this is no longer valid.

In the case (4) holds, the map Bρ satisfies

‖Bρ(v)− Bρ(w)‖V ≤ (2LΦ +
√

1− 2ρc + ρ2C2)‖v − w‖V ,

and in order for this to be contractive, a first observation is that we require

C

c
LΦ <

1

2
.
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This is a much more restrictive and convoluted approach than the iterative approach
described above where only CLΦ/c < 1 is required! Furthermore, the linear
convergence rate (in case of a contraction) in this case is worse than the contraction
approach, given by CLΦ/c.

The reason why condition (3) fails in a general setting can be answered by a
result of Attouch and Wets in [6]. For any closed, non-empty, and convex set K in
V , we define the distance function of an element y ∈ V to the set K as

d(y,K) := inf
z∈K ‖z− y‖V ,

and for two closed, non-empty, and convex sets K1,K2, we define the excess
function e as

e(K1,K2) := sup
z∈K1

d(z,K2).

For any ρ ≥ 0, the ρ-Hausdorff distance between K1 and K2 is given by

hausρ(K1,K2) := sup(e(Kρ
1 ,K2), (e(K

ρ
2 ,K1)),

where Kρ
i := Ki ∩ ρB, i = 1, 2, and B is the open unit ball centred at zero.

Theorem 2.5 (Attouch–Wets [6, Proposition 5.3]) Let V be a Hilbert space and
K1,K2 any two closed, convex, non-empty subsets of V . For y0 ∈ V , we have that

‖PK1(y0)− PK2(y0)‖V ≤ ρ1/2hausρ(K1,K2)
1/2

for ρ := ‖y0‖ + d(y0,K1)+ d(y0,K2).

The 1/2 exponent in the right-hand side expression is optimal, and examples (even
in finite dimensions) can be found where equality holds. In order to understand
how this result fully translates into our class of maps y �→ K(y), consider the
following example. Let Ω = (0, 1) and V = {v ∈ H 1(Ω) : v(0) = 0} with norm
‖v‖2

V := ∫

Ω
|v′|2 dx. Suppose that Ki := {v ∈ V : |∇v| ≤ φi} with φ2 > φ1 > 0

constants. Then, we see from the calculations in [1] that if Φ : V → R is Lipschitz,
then we can only obtain

‖PK(y)(y0)− PK(w)(y0)‖V ≤ C‖y − w‖1/2
V .

3 Sensitivities

Sensitivity analysis of QVIs refers to concepts such as the continuity, stability, and
directional differentiability of solution maps associated to the QVI in consideration.
Such questions of sensitivity are of prime importance for optimal control. Indeed,
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in order to show existence of optimal controls for problems with QVI constraints,
arguments related to the direct method of the calculus of variations require
continuity of some kind for the control-to-state map (which typically is the map
that takes the source term into solution of the QVI). Moreover, one must keep in
mind that, as mentioned, solutions to QVIs are generally non-unique; hence, there
are (at least) two routes of investigation here:

1. Study sensitivity of a particular selection mechanism that picks a particular
solution

2. Study sensitivity of the whole set-valued solution map, e.g., via tools from set-
valued analysis

We initially take the first approach and study the sensitivity of the minimal and
maximal selection mechanisms (these were introduced in Sect. 2.1 and studied in
Sect. 2.2).

3.1 Stability for Minimal and Maximal Solution Maps

We state our fundamental result concerning the behaviour of the maps f �→ m(f )
and f �→ M(f ) that we obtained in [4]. Given a constant ν > 0, we define the space

L∞ν (Ω) := {z ∈ L∞(Ω) : z ≥ ν a.e. in Ω}.

Theorem 3.1 (Theorem 5 of [4]) Let {fn} in L∞ν (Ω) be such that:

1. 0 ≤ fn ≤ F for some F ∈ V ∗ with F ≥ 0
2. [y, y] = [0, A−1F ]
3. lim fn = f ∗ in L∞(Ω) for some f ∗

Suppose also thatΦ : V ∩H+ → H+ satisfies the following assumption: if vn ⇀ v

in V , then one of the following holds:

(a) Φ(vn)→ Φ(v) in L∞(Ω), or Φ(vn)→ Φ(v) in V
(b) Φ(vn)→ Φ(v) in H , and if v ∈ V ∩ H+, then Φ(v) ∈ V and QΦ(v) ≥ 0 in

V , for some strongly monotone Q ∈ L(V , V ∗), such that 〈Qv−, v+〉 ≤ 0 for
all v ∈ V

Then if λΦ(y) ≥ Φ(λy) for any λ > 1 and y ∈ V ∩H+, we have

m(fn)→ m(f ∗)inH and m(fn) ⇀ m(f ∗)inV. (5)

M(fn)→ M(f ∗)inH and M(fn) ⇀ M(f ∗)inV. (6)

This result states that under some compactness and homogeneity-type assumptions
on Φ, the maps m and M are (weakly) continuous, that is, the minimal and maximal
solution maps are stable with respect to perturbations in the source term. This is
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essential for the existence of optimal control problems related to the maps m and M
that we shall discuss later.

3.2 Directional Differentiability

Having studied continuity, in this section, we consider the differential stability of
the solution map associated to (PQVI). The framework for such results requires some
additional structure on the spaces associated to the QVI that we now state.

Let X be a locally compact topological space, countable at infinity, with ξ a
Radon measure on X. Suppose V is a Hilbert space and H := L2(X; ξ) and |u| ∈ V

whenever u ∈ V , and let A : V → V ∗ now be linear (in addition to the assumptions
previously introduced) and denote by a : V × V → R the bilinear form generated
by A. We further assume that

V ∩ Cc(X) ⊂ Cc(X) and V ∩ Cc(X) ⊂ V are dense embeddings, (7)

and thus (V , a) is a regular form [14, §1.1]. This setting means that we can define
capacity, quasi-continuity, and related notions, see [27, §3] and [17, §3]. For some
concrete examples of V and A, see [27, §3] and [2, §1.2].

In order to present the differential theory for QVIs, we first recall the correspond-
ing theory for VIs which has been fully investigated in, e.g., [17, 27, 41]. Given an
obstacle φ ∈ V+, define the set

K := {w ∈ V : w ≤ φ},

and given a source term f ∈ V ∗, define by S : V ∗ → V the map S(f ) := S(f,K)
with the latter defined in (2). The well-known notions of the tangent cone and the
critical cone (from convex analysis) associated to K are given, respectively, by

TK(y) := {ϕ ∈ V : ϕ ≤ 0 q.e. on {y = φ}} and KK(y) := TK(y) ∩ [f − Ay]⊥.
(8)

The fundamental result of Mignot [28, Theorem 3.3] guarantees directional differ-
entiability of S, and it reads as follows: given f ∈ V ∗ and d ∈ V ∗, there exists a
function S′(f )(d) ∈ V such that

S(f + td) = S(f )+ tS′(f )(d)+ o(t) ∀t > 0

holds where t−1o(t)→ 0 as t → 0+ in V and δ := S′(f )(d) satisfies the VI

δ ∈ KK(y) : 〈Aδ − d, δ − v〉 ≤ 0 ∀v ∈ KK(y), where y = S(f ).

Furthermore, the directional derivative δ = δ(d) is positively homogeneous in d.
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One says that strict complementarity holds if the critical cone simplifies to the
linear subspace

KK(y) = SK(y) := {ϕ ∈ V : ϕ = 0 q.e. on {y = φ}}. (9)

In this case, δ satisfies not (just) a VI but a variational equality due to the
relaxation of constraints on the test functions for the inequality. Formally, strict
complementarity arises when the biactive set {Ay − f = 0} ∩ {y − φ = 0} is
empty; see [15, 16, 18] for some technical details regarding biactivity. Under strict
complementarity, Mignot showed [27, Theorem 3.4] that the derivative δ above is
in fact a Gâteaux derivative: δ = δ(d) is linear in d and it satisfies

δ ∈ SK(y) : 〈Aδ − d, v − δ〉 = 0 ∀v ∈ SK(y).

Let us now return to the QVI setting and try to extend the above results to this
case. Let Φ : H → V ⊂ H be increasing with Φ(0) ≥ 0. Given f ∈ V ∗, consider
(PQVI):

y ∈ K(y) : 〈Ay − f, y − v〉 ≤ 0 ∀v ∈ K(y), (10)

where K(y) := {v ∈ V : v ≤ Φ(y)}. We study the map Q : V ∗+ ⇒ V , the set-valued
solution map taking f �→ y. To show that this map is directionally differentiable
(in some sense), the first idea that comes to mind is to rewrite (10) by relegating the
obstacle onto the source term and then to apply the theory of Mignot. Indeed, the
function ŷ := (id−Φ)y solves

ŷ ∈ K0 : 〈A(id−Φ)−1ŷ − f, ŷ − φ〉 ≤ 0 ∀φ ∈ K0,

with K0 := {w ∈ V : w ≤ 0}; however, in general, the operator A(id−Φ)−1 is no
longer linear, nor coercive nor T-monotone, so the VI theory is not applicable and
another method is needed.

Our idea in [2] is the following: approximate the solution q(t) ∈ Q(f + td)

of the perturbed QVI by a sequence {qn(t)} of solutions of VIs, obtain differential
formulae for those VIs involving directional derivatives {αn} and remainder terms
{on(t)}, and then pass to the limit to obtain an expansion formula relating elements
of Q(f + td) to elements of Q(f ). Some finesse is needed in this procedure in order
to handle the issues that arise, which we enumerate here:

1. The derivation of the expansion formulae for the above-mentioned VI iterates
qn(t) must relate q(t) to a solution y ∈ Q(f ), and recursion plays a highly
nonlinear role in the relationship between one iterate and the next.

2. Obtaining uniform bounds on the directional derivatives; the derivatives
satisfy a VI, but this still requires the handling of a recurrence inequality (unless
some regularity is available, see [2, §4.3]).
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3. Identifying the limit of the higher order terms as a higher order term; this
step involves the commutation of two limits: one as t → 0+ and one as n→∞,
and such commutation generally requires uniform convergence.

The iteration scheme mentioned above requires some further restrictions on the data
f and the direction d that the derivative is taken in. We take f ∈ V ∗+ and define
ȳ ∈ V as the (non-negative) weak solution of the unconstrained problem Aȳ = f.

In a similar fashion, define q̄(t) ∈ V as the solution of the unconstrained problem
with the perturbed right-hand side: Aq̄(t) = f + td.

Since the mapping Φ plays an inextricable role in defining the obstacle and we
are considering sensitivity of QVIs, it is natural that further regularity is required
of Φ. These further assumptions will be introduced below where we state the main
theorem of [2], but first let us define

KK(y)(y, α) := Φ ′(y)(α)+KK(y)(y),

which can be thought of as a translated critical cone.

Theorem 3.2 (cf. Theorem 1 of [2]) Let f, d ∈ V ∗+. Given y ∈ Q(f ) ∩ [0, ȳ],
assume the following:

(A1) The map Φ : V → V is Hadamard directionally differentiable.2

(A2) Either

(A2a) Φ : V → V is completely continuous, or
(A2b) V = H 1(Ω), X = Ω , where Ω is a bounded Lipschitz domain,

Φ : L∞+ (Ω) → L∞+ (Ω) and is concave with Φ(0) ≥ c > 0, and
f, d ∈ L∞+ (Ω).3

(A3) The map Φ ′(v) : V → V is completely continuous (for fixed v ∈ V ).
(L1) There exists ε > 0 such that

∥

∥Φ ′(z)(v)
∥

∥

V
≤ CΦ ‖v‖V ∀z ∈ Bε(y), ∀v ∈ V

with

CΦ <
c

c + C
,

where C and c are the constants of boundedness and coercivity of A,
respectively.

2In fact, (A1) can be weakened significantly by requiring Hadamard differentiability of Φ only
around the point y, i.e., locally, as in assumption (L1).
3In this case, solutions of the QVI (10) are unique [23].
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Then, there exists q(t) ∈ Q(f + td) ∩ [y, q̄(t)] and α = α(d) ∈ V+ such that

q(t) = y + tα + o(t) ∀t > 0

holds where t−1o(t)→ 0 as t → 0+ in V and α satisfies the QVI

α ∈ KK(y)(y, α) : 〈Aα − d, v − α〉 ≥ 0 ∀v ∈ KK(y)(y, α).

The directional derivative α = α(d) is positively homogeneous in d.

Note that the assumption (L1) depends on the specific function y, that is, it is a local
condition. It imposes certain restrictions: when Φ is linear, it enforces a smallness
condition on the (operator) norm of Φ that enforces uniqueness of solutions of the
QVI. However, it does not necessarily rule out the multi-valued setting when Φ is
nonlinear.

Remark 3.3 Assumption (L1) in Theorem 3.2 implies the following (used in the
proof of [2, Lemma 5.7]): there exists T0 > 0 such that for all n,

∥

∥Φ ′(y + tαn + λon(t))on(t)
∥

∥

V
≤ CΦ ‖on(t)‖V ∀t ≤ T0. (11)

This is the necessary statement needed to prove that the limit of the higher order
terms on(t) is a higher order term itself. Let us see why it holds. For convenience,
let CX := Cc−1, which is such that CΦCX < 1. Fix an ε > 0 and take

t ≤ c(1− CΦCX)ε

2 ‖d‖V ∗ . (12)

The sequence {qn(t)} is defined as follows: set q0(t) ≡ y and for n ≥ 1, qn(t) is the
unique solution of the VI

q ∈ K(qn−1(t)) : 〈Aq − (f + td), q − v〉 ≤ 0 ∀v ∈ K(qn−1(t)),

where K(w) := {v ∈ V : v ≤ Φ(w)} is as defined before. Let us show by induction
that each qn(t) lies in a closed ball around y of radius ε/2 (with respect to the norm
in V ) for such t . We have the estimate

‖q1(t)− y‖V ≤ c−1t ‖d‖V ∗ ≤ ε

2
,

i.e., q1(t) ∈ Bε/2(y). Suppose the claim holds for the (n − 1)th term. Regarding
qn(t), we estimate by testing the inequality for qn(t) with y − Φ(y) + Φ(qn−1(t))

and the inequality for y with qn(t)−Φ(qn−1(t))+Φ(y):

〈Aqn(t)− (f + td), qn(t)− y +Φ(y)−Φ(qn−1(t))〉 ≤ 0,

〈Ay − f, y − qn(t)+Φ(qn−1(t))−Φ(y)〉 ≤ 0,
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whence adding, we obtain

〈A(qn(t)− y)− td, qn(t)− y +Φ(y)−Φ(qn−1(t))〉 ≤ 0.

This leads to

c ‖qn(t)− y‖2
V ≤ C ‖qn(t)− y‖V

∥

∥Φ(y)−Φ(qn−1(t))
∥

∥

V
+ t ‖d‖V ∗ ‖qn(t)− y‖V

+ t〈d,Φ(y)−Φ(qn−1(t))〉
≤ C ‖qn(t)− y‖V

∥

∥Φ(y)−Φ(qn−1(t))
∥

∥

V
+ t ‖d‖V ∗ ‖qn(t)− y‖V

since d ≥ 0 and y ≤ qn−1(t) and Φ is increasing, giving the bound

‖qn(t)− y‖V ≤
C

c
‖Φ(y)−Φ(qn−1(t))‖V +

t

c
‖d‖V ∗ .

Now, recalling CX and using the mean value theorem [32, §2, Proposition 2.29]

‖qn(t)− y‖V ≤ c−1t ‖d‖V ∗ + CX
∥

∥Φ(qn−1(t))−Φ(y)
∥

∥

V

≤ c−1t ‖d‖V ∗ + sup
λ∈(0,1)

CX
∥

∥Φ ′(λqn−1(t)+ (1− λ)y)(qn−1(t)− y)
∥

∥

V

≤ c−1t ‖d‖V ∗ + CΦCX
∥

∥qn−1(t)− y
∥

∥

V

(applying the assumption thanks to the induction hypothesis)

≤ c−1t ‖d‖V ∗ (1+ CΦCX + (CΦCX)
2 + . . .+ (CΦCX)

n−1)

≤ c−1t ‖d‖V ∗
1− CΦCX

(by the formula for a geometric series)

≤ ε

2
,

and hence, qn(t) ∈ Bε/2(y) for all n as long as t satisfies (12). Now the term inside
the norm on the left-hand side of the desired inequality (11) is

Φ ′(u+ tαn + λon(t)) = Φ ′(λqn(t)+ (1− λ)(u+ tαn)). (13)

Observe that for λ ∈ (0, 1)

‖λqn(t)+ (1− λ)(u+ tαn)− u‖V = ‖λ(qn(t)− u)+ (1− λ)tαn‖V
≤ ε

2
+ t ‖αn‖V

≤ ε

2
+ tC∗,
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where C∗ is the uniform bound (see [2, §5.1]) on {αn}. Thus, if t satisfies (12) and
satisfies

t ≤ ε

2C∗
,

then λqn(t)+ (1− λ)(u+ tαn) ∈ Bε(u) for all n. This implies from (13), using the
assumption, that (11) holds as long as

t ≤ min

(

c(1− CΦCX)ε

2 ‖d‖V ∗ ,
ε

2C∗

)

. (14)

Remark 3.4 The result in the general multi-valued setting given in Theorem 3.2
is a differentiability result for a specific selection mechanism that associates to a
function y ∈ Q(f ) a function q(t) ∈ Q(f + td) (the precise mechanism is given
in [2, §3.2.1]). A useful variant of the theorem would be to obtain the result for the
mapping that selects the minimal or maximal solution to the QVI, i.e., if M(f ) ∈
Q(f ) is the maximal solution of the QVI with source term f , is M directionally
differentiable? A difficulty lies in the approximation scheme we use; in the proof of
Theorem 3.2, we chose q0 = y; instead, we could choose q0 = y0, where 0 ≤ y0 ≤
ȳ, which leads to the equality

qn(t) = yn(t)+ t α̂n + ôn(t)

where yn = S(f,K(yn−1)). The main problem is in dealing with the limiting
behaviour of the higher order terms ôn(t), which now depends on the base point
yn which depends on n. This fact constrains us in this direction. Further details can
be found in [2, Remark 3.9].

Under a notion similar to strict complementarity, we obtain a regularity result on the
directional derivative. In this setting, we say that strict complementarity holds if the
set KK(y)(y,w) simplifies to

KK(y)(y,w) = SK(y)(y,w) := {ϕ ∈ V : ϕ = Φ ′(y)(w) q.e. on {y = Φ(y)}}.

Theorem 3.5 (Theorem 2 of [2]) In the context of Theorem 3.2, if strict comple-
mentarity holds, then the derivative α satisfies

α ∈ SK(y)(y, α) : 〈Aα − d, α − v〉 = 0 ∀v ∈ SK(y)(y, α).

In this case, if h �→ Φ ′(v)(h) is linear, α = α(d) satisfies α(c1d1 + c2d2) =
c1α(d1)+ c2α(d2) for constants c1, c2 > 0 and directions d1, d2 ∈ V ∗+.

It is worth restating Theorem 3.2 in the case when Q : V ∗+ ⇒ V is single-valued
(i.e., the QVI problem has a unique solution).
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Theorem 3.6 Suppose Q is single-valued and let the hypotheses of Theorem 3.2
hold given f, d ∈ V ∗+. There exists a function Q′(f )(d) ∈ V+ such that

Q(f + td) = Q(f )+ tQ′(f )(d)+ o(t) ∀t > 0

holds where t−1o(t)→ 0 as t → 0+ in V and Q′(f )(d) satisfies the QVI given in
Theorem 3.2.

We of course recover the results of Mignot in [27] in the case where Φ is a constant
mapping (the VI setting).

3.3 Parabolic QVIs

The authors have recently studied the above issues for the case of parabolic QVIs in
[3]. There, we consider time-dependent QVIs of the form

find z : z(t) ≤ Φ(z)(t) :
∫ T

0
〈z′(t)+ Az(t)− f (t), z(t)− v(t)〉 ≤ 0 ∀v : v(t) ≤ Φ(z)(t)

and show that solutions exist in certain Bochner spaces under appropriate assump-
tions. These solutions have been shown to be given as a limit related to elliptic QVIs
arising from the time discretisation of the problem [3, Theorem 2.9], or as limit of
solutions of parabolic VIs [3, Theorems 3.8 and 3.10]. Directional differentiability is
also proved [3, Theorem 5.15] in much the same way as in the elliptic case using the
recently obtained results in [12] on the directional differentiability of parabolic VIs.
More details can be found in [3] (we do not elaborate here for reasons of space).

3.4 Application to Thermoforming

We present an application of QVIs to thermoforming that was initially proposed
by the authors in [2]. Thermoforming aims to manufacture products by heating a
membrane or plastic sheet to its pliable temperature and then forcing the membrane
onto a mould, commonly made of aluminium or an alloy of aluminium, which
deforms the membrane and enables it to take on the shape of the mould. The process
is applied to create both large structures (such as car panels) and microscopic
products (such as microfluidic structures). Research into the modelling and accurate
numerical simulation of thermoforming can be seen in [21] and [40].

The contact problem associated with the heated membrane and the mould can
be described through a VI problem (assuming perfect sliding of the membrane
with the mould as in [5]). However, a complex physical phenomenon occurs when
the heated sheet is forced into contact with the mould: the mould is not at the
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same temperature as the plastic sheet (it might be relatively cold with respect to
membrane) and this triggers heat transfer with hard-to-predict consequences (e.g.,
it changes the polymer viscosity, see, for example, [24]). In practice, the thickness
of the thermoformed piece can be controlled locally by the mould structure and its
initial temperature distribution [24], and the non-uniform temperature distribution
of the polymer sheet has a substantial effect on the results [29].

The size of the common mould material aluminium is highly sensitive to
heat fluctuations; aluminium has a relatively high thermal expansion volumetric
coefficient and this implies that there is a dynamic change in the mould (the
obstacle) as the polymer sheet is forced in contact with it. This determines a
compliant obstacle-type problem like in [30], and hence, the overall process is
a QVI with underlying nonlinear PDEs determining the heat transfer and the
volume change in the obstacle. In what follows, we consider this compliant obstacle
behaviour whilst simultaneously making various simplifying assumptions in order
to study a basic but nevertheless meaningful model.

3.4.1 The Model

We restrict the analysis to the 1D case for the sake of simplicity, but we provide
2D numerical tests. Let Φ0 : [0, 1] → R

+ be the (parametrised) mould shape that
we wish to reproduce through a sheet (or membrane). The membrane lies below the
mould and is pushed upwards through some process f (such as vacuum and/or air
pressure). We make the following simplifying physical assumptions:

1. The temperature for the membrane is a prescribed constant.
2. The mould grows affinely with respect to changes in its temperature.
3. The temperature of the mould is subject to diffusion, convection, and boundary

conditions arising from the insulated boundary, and it depends on its vertical
distance to the membrane.

The thermoforming process is a time evolution system, but the setting described
by the previous assumptions is appropriate for one time step in the time semi-
discretisation.

We denote the position of the mould and membrane by Φ(u) and u, respectively,
and T will stand for the temperature of the mould. Let us define the spaces W =
H 1(0, 1) and H = L2(0, 1), and let either

A = −ΔN + I and V = H 1(0, 1) or A = −ΔD and V = H 1
0 (0, 1)
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in the case of Neumann or Dirichlet boundary conditions,4 respectively, for the
membrane u. The system we consider is the following:

u ∈ V : u ≤ Φ(u), 〈Au− f, u− v〉 ≤ 0 ∀v ∈ V : v ≤ Φ(u) (15)

kT −ΔT = g(Φ(u)− u) on [0, 1]
(16)

∂νT = 0 on {0, 1}
(17)

Φ(u) = Φ0 + LT, on [0, 1]
(18)

where f ∈ H+ is given, k > 0 is a constant, Φ0 ∈ V , L : W → V is a bounded
linear operator such that

for every Ω0 ⊂ Ω , if u ≤ v a.e. on Ω0 then Lu ≤ Lv a.e. on Ω0,

and g : R → R is decreasing and C2 with g(0) = M > 0 a constant, 0 ≤ g ≤ M

and g′ bounded. Thus when the membrane and mould are in contact or are close to
each other, there is a maximum level of heat transfer onto the mould, whilst when
they are sufficiently separated, there is no heat exchange. An example of g is a
smoothing of the function

G(r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 : if r ≤ 0

1− r : if 0 < r < 1

0 : if r ≥ 1.

(19)

Note that the local increasing property of L stated above is equivalent to

vLv ≥ 0 a.e. for all v ∈ W. (20)

The system above is derived as follows: consideration of the potential energy of
the membrane will show that [5] u solves the VI (15) with the QVI nature arising
from assuming that heat transfer occurs between the membrane and the mould. If
we let T̂ : Γ → R be the temperature of the mould defined on the curve

Γ := {(r,Φ(u)(r)) : r ∈ [0, 1]} ⊂ R
2

4Zero Dirichlet conditions arise from clamping the membrane at its ends.
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(a 1D hypersurface in 2D), our modelling assumptions directly imply that

kT̂ (x)−ΔΓ T̂ (x) = g(x2 − u(x1)) for x = (r,Φ(u)(r)) ∈ Γ, (21)

where the notation xi means the ith component of x. We reparametrise by T (r) =
T̂ (r,Φ(r)) and simplify (21) to obtain (16).

3.4.2 Properties and Existence for the System

We now show that the system above has a solution, and we check that the QVI in
the system fits into the framework described in Sects. 2 and 3, which in particular
requires us to check a number of assumptions on Φ.

First, plugging (18) into (16), we obtain

kT −ΔT = g(LT +Φ0 − u) on [0, 1],
∂νT = 0 on {0, 1}. (22)

Monotonicity properties of the right-hand side allow us to prove that for every u ∈
H , there exists a unique solution T ∈ W to Eq. (22). From (18), this then implies
that Φ : H → V .

Lemma 3.7 It holds that Φ(0) ≥ 0 a.e.

Proof Note that Φ(0) = Φ0 + LT |u=0 =: Φ0 + LT0, where

kT0 −ΔT0 = g(LT0 +Φ0) on [0, 1],
∂νT0 = 0 on {0, 1}.

Test this equation with T −0 and use the sign on g to obtain T0 ≥ 0. The claim follows
by the local increasing property of L. ��
Lemma 3.8 The map Φ : H → H is increasing.

Proof Since Φ(u) = LT (u)+Φ0, it suffices to show that u �→ T (u) is increasing.
Take the solutions T1 and T2 of Eq. (22) corresponding to u = u1 ∈ H and u =
u2 ∈ H with u1 ≤ u2, take the difference of the equations and test with (T1−T2)

+:

∫

k|(T1 − T2)
+|2 + |∇(T1 − T2)

+|2

=
∫

(g(LT1 +Φ0 − u1)− g(LT2 +Φ0 − u2))(T1 − T2)
+

=
∫

{T1≥T2}
(g(LT1 +Φ0 − u1)− g(LT2 +Φ0 − u2))(T1 − T2).
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On the area of integration, LT1 ≥ LT2 and thus LT1 +Φ0 − u1 ≥ LT2 +Φ0 − u2
pointwise a.e. Since g is decreasing, g(LT1+Φ0−u1)−g(LT2+Φ0−u2) ≤ 0, and
hence, the above integral is non-positive. Therefore, (T1 − T2)

+ = 0 in H giving
T1 ≤ T2 on Ω . Applying L to both sides and using the increasing property, we find
the result. ��
Theorem 3.9 (Theorem 7 of [2]) There exists a solution (u, T ,Φ(u)) to the system
(15), (16), (17), (18).

Proof By Lemmas 3.7 and 3.8, we see that 0 is a subsolution and A−1f is a
supersolution (since it is assumed that f ≥ 0) for the map associated to the QVI
(15), and thus by the Tartar–Birkhoff result, there exists a solution u to (15). This
then uniquely determines T (u) and thus Φ(u), and consequently, (16) has a solution
T . ��
Now, before we discuss compactness of Φ, let us give the following continuous
dependence result for two solutions T1, T2 corresponding to data u1, u2:

min(k, 1) ‖T1 − T2‖2
W

≤ Lip(g)
(

‖L‖L(W,H)
‖T1 − T2‖2

W + ‖u1 − u2‖H ‖T1 − T2‖H
)

. (23)

We use the hypothesis

Lip(g) ‖L‖L(W,H) < min(1, k) (24)

at various points.

Lemma 3.10 If (24) holds, Φ : V → V is completely continuous.

Proof Suppose that un ⇀ u in V and consider the solutions Tn and T correspond-
ing to data un and u, respectively. The estimate (23) implies

min(k, 1) ‖Tn − T ‖2
W ≤ Lip(g)

(

‖L‖L(W,H) ‖Tn − T ‖2
W + ‖u− un‖H ‖Tn − T ‖H

)

.

Thus under the condition in the lemma, we can move the first term on the RHS onto
the LHS, divide by ‖Tn − T ‖ , and then take the limit to see that Tn → T in W and
by continuity of L : W → V that Φ(un)→ Φ(u) in V . ��
Theorem 3.11 (Theorem 8 of [2]) If g′′ is bounded from above, Φ : V → V

is Fréchet differentiable at a solution u given by Theorem 3.9. Furthermore,
Φ ′(u)(d) := −Lδ, where δ satisfies the PDE

(k −Δ)δ − g′(Φ(u)− u)Lδ = g′(Φ(u)− u)d.
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The idea of the proof (which we skip here) is to apply the implicit function theorem
to the map F : V ×W → W ∗ defined by

〈F(u, T ), ϕ〉W ∗,W = k

∫

T ϕ +
∫

∇T∇ϕ −
∫

g(LT +Φ0 − u)ϕ.

Corollary 3.12 Let (24) hold. Then assumptions (A1), (A2a), and (A3) are satisfied.
If also

min(1, k)−1 ‖L‖L(W,V )

∥

∥g′
∥

∥∞ <
1

2
,

then (L1) is satisfied.

Proof It remains for us to show the latter two assumptions. Let us see why the
mapping d �→ Φ ′(u)(d) is completely continuous. Let dn ⇀ d in V . Using
continuous dependence, we find

min(1, k) ‖δn − δm‖W ≤ ∥

∥g′
∥

∥∞ ‖dn − dm‖H ,

and thus δn converges strongly in W .
Take b ∈ V and h : (0, T )→ V a higher order term. Then by boundedness of L,

∥

∥Φ ′(u+ tb + λh(t))(h(t))
∥

∥

V
≤ C min(1, k)−1

∥

∥g′
∥

∥∞ ‖h(t)‖H ,

which vanishes in the limit after division by t . By the previous theorem, we see that

∥

∥Φ ′(z)(d)
∥

∥

V
≤ ‖L‖L(W,V )

‖δ‖W ≤ min(1, k)−1 ‖L‖L(W,V )

∥

∥g′
∥

∥∞ ‖d‖H ,

which by assumption leads to (L1). ��

3.4.3 Numerical Implementation Details

We simulate (15)–(18) on the 2D domain [0, 1]×[0, 1]with homogeneous Dirichlet
conditions for the QVI. We approximate the QVI (15) by a penalised equation and
numerically solve the system

Au+ αmax(0, u− y)− f = 0

kT −ΔT − g(y − u) = 0

∂νT = 0

y −Φ0 − LT = 0

(25)
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for a large parameter α (as α →∞, the solution of (25) converges to the solution of
(15)–(18)). We use a finite difference scheme with N2 uniformly distributed nodes
and meshsize h = 1/(N + 1) with N = 256. The system (25) is discretised and
solved via a semismooth Newton method applied to the mapping

F : V ×W × V → V ∗ ×W ∗ × V, (u, T , y) �→ F(u, T , y)

defined by the left-hand side of (25). For this purpose, the derivative

F′(u, T , y)(v, τ, z) =

⎛

⎜

⎜

⎝

Av + αmax′(0, u− y)(v − z)

kτ −Δτ − g′(y − u)(z− v)

∂ντ

z− Lτ

⎞

⎟

⎟

⎠

is needed in order to obtain the next iterate through the Newton update scheme.
Here, max′(0, u−y) denotes the Newton derivative of the maximum function, given
by §8.3 in [20] as

max′(0, u) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if u < 0

δN if u = 0

1 if u > 0,

where δN ∈ [0, 1] is arbitrary; we pick δN = 0.1. An approximation to the
directional derivative of the QVI solution mapping was computed by first smoothing
the nonlinearity in the first equation of (25) by a function maxg and differentiating
it with respect to f in a direction d:

Au′(f )(d)+ αmax′g(0, u− y)u′(f )(d)− d = 0.

This equation was solved and was checked to be within a tolerance of 10−4 of the
difference quotient

u(f + 10−5d)− u(f )

10−5 .

We take the source term f ≡ 102. The nonlinearity g appearing in the source term
for the T equation is selected as a piecewise smooth smoothing of (19), see Fig. 1.

The operator L is chosen as the superposition mapping

(Lv)(x) = 5.25× 10−3ρ(x)v(x) =: CLρ(x)v(x),

where ρ : [0, 1] × [0, 1] → R is a smooth bump function with ‖ρ‖∞ = 1 and
‖∇ρ‖∞ ≤ √

50. Let us check the condition of Corollary 3.12 that assures (L1). We
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Fig. 1 Plot of the function g and its derivative

see that, given our choice of g and k,

min(1, k)−1 ‖L‖L(W,V )

∥

∥g′
∥

∥∞ = 40

3
‖L‖L(W,V ) ,

where the operator norm on the right-hand side can be estimated by the calculation

‖Lv‖2
V =

∫

|CLϕ|2|v|2 + |∇(CLϕv)|2 ≤ C2
L(‖ϕ‖2∞ + ‖∇ϕ‖2∞) ‖v‖2

W ,

so that the right-hand side does not exceed 40CL
√

51/3, and hence, assumption
(L1) holds if CL < 3/80

√
51 ≈ 0.00525. As for the “initial” mould Φ0, we define

w : [0, 1] → R by

w(r) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

5(r/N − 1/10) if N/10 ≤ r ≤ 3N/10

1 if 3N/10 < r < 7N/10

1− 5(r/N − 7/10) if 7N/10 ≤ r ≤ 9N/10

0 otherwise

(26)

and set Φ0(r, t) = w(r)w(t), see Fig. 2.
The directional derivative is taken in the direction χA, the characteristic function

of the set A = {(x, y) : x > 1/2}. The remaining parameters appearing in the
physical model are k = 1, α = 108, κ = 10, and s = 1. The initial iterate
(u0

h, T
0
h , y

0
h) = (0.9×Φ0, 0.2, 10) is used. The Newton iterates, (ujh, T

j
h , y

j
h), were

assumed to converge if ‖F(u
j
h, T

j
h , y

j
h)‖L2 < 4× 10−9, for some j , and we denote

the solution as (uh, Th, yh).

3.4.4 Numerical Results

See Table 1 for the numerical results. The third column in the table refers to the
error of the approximate solution (uh, Th, yh) in that it measures the L2 norm of
F(uh, Th, yh), and likewise for the fourth column. One can see that a relatively
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Fig. 2 The initial mould Φ0

Table 1 Numerical results

# Newton iterations L2 error in solution L2 error in solution
No. of nodes to solve system (25) of system of derivative

256 14 3.96× 10−9 1.96× 10−15

low number of Newton iterations are performed to obtain an accurate solution. The
results of the experiment are visualised in Fig. 3:

• The effect of the temperature interplay between the membrane and the mould can
be immediately seen: Φ0 (Fig. 2) grows and becomes more curved and smoothed
out, which is natural given that the membrane is initially placed below the mould
and is pushed upwards.

• The model produces a membrane u that appears to be a good fit for the
thermoforming process; it can be observed to be similar to the final mould, which
is confirmed by the images of the coincidence sets.

• The directional derivative is coloured yellow and red; red refers to the parts of
the domain corresponding to the coincidence set {u = y}.

4 Control of QVIs

In applications, one is typically interested in confining the solution set Q(f ) to a
certain interval [y, y] for some given y, y ∈ H . For example, consider again the
thermoforming application of Sect. 3.4. Here, one may want to control the heating
in order to produce a mould shape that is close to a desired mould but within some
threshold of acceptability.
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Fig. 3 Computation results. (a) Final mould y. (b) Difference between y and Φ0. (c) Membrane
u. (d) Membrane u on the coincidence set. (e) The directional derivative. (f) Top-down view of the
coincidence set

Given a control force f , we consider the following optimal control problem:

Minimise J (O, f ) := J1(Tsup(O), Tinf(O))+ J2(f ) over (O, f ) ∈ 2H × U,

subject to f ∈ Uad and y ∈ O := {z ∈ V : z solves PQVI}.
(P)

Here, Uad ⊂ U ⊂ V ∗ is the set of admissible controls where U is a given Hilbert
space, J1 : H ×H → R and J2 : U → R, and for y, y ∈ H , we have the set-valued
map

Tsup(O) :=
{

supz∈O∩[y,y] z, O ∩ [y, y] �= ∅,
y, otherwise,

and analogously

Tinf(O) :=
{

infz∈O∩[y,y] z, O ∩ [y, y] �= ∅,
y, otherwise.

Problems of type (P) had not yet been considered in the literature before us, and
they pose several formidable challenges. For instance, the existence of solutions is
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highly delicate due to the dependence y �→ K(y) and the fact that y = y(f ). As
a consequence, the direct method of the calculus of variations is only applicable
if certain convergence properties of the constraint set can be guaranteed. Another
delicacy is related to the potential set-valuedness of the solution of the QVI in
the constraint system of (P). This fact necessitates the identification of a suitable
selection mechanism such as the maximal or minimal solution, if available at all.
We note, however, that in the special case where Tinf(Q(f )) and Tsup(Q(f )) also
belong to Q(f ), they are the minimal and maximal solutions, respectively, to (PQVI)
in V ∩ [y, y]. Then, the proof of existence of solutions to (P) reduces to a stability
result for this minimal and maximal solution to the QVI of interest. With the aid of
Sect. 2, we can now formulate the result that proves the well-posedness of (P̃). We
assume that U ⊂ L∞(Ω) and in particular that

Uad ⊂ {f ∈ L∞ν (Ω) : f ≤ F },

for some F ∈ V ∗. As in previous sections y = 0 and y = A−1F , so that m(f ) and
M(f ) are defined as the minimal and maximal solutions, respectively, of the QVI in
(PQVI). Hence, the reduced version of (P) is given by

minimise J1(m(f ),M(f ))+ J2(f ),

subject to f ∈ Uad.
(P̃)

The existence to (P̃) (and hence, (P)) is now shown in the following result, which,
given Theorem 3.1, is just an application of the direct method of the calculus of
variations.

Theorem 4.1 (Theorem 6 of [4]) Suppose that J1 : V × V → R is weakly lower
semicontinuous and J2 : L∞(Ω) → R is continuous, and both are bounded from
below. In addition, suppose that for each α > 0 the set

{f ∈ Uad : J2(f ) ≤ α}

is sequentially compact in L∞(Ω), and that Φ satisfies the assumptions of
Theorem 3.1. Then, problem (P̃) and (hence) problem (P) admit solutions.

5 Outlook

A natural next step is to study the derivation of stationarity conditions for optimal
control problems with QVI constraints, and indeed, this is an ongoing work by the
authors. When trying to obtain strong stationarity conditions, the requirement of
a signed source term and signed direction in the differentiability result of Sect. 3
implies that the associated optimal control problem necessarily has constraints on
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the control, and it is known [39] that such conditions cannot be obtained in cases
where the admissible control set does not satisfy some requirements that do not hold
in this case. Therefore, the differentiability result has to be extended in some sense
to cover more general source terms and directions, and as mentioned, this is a topic
of work under preparation.

One may also then study optimal control problems related to parabolic QVIs
making use of our work in [3].
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Simulation and Control of a Nonsmooth
Cahn–Hilliard Navier–Stokes System
with Variable Fluid Densities

Carmen Gräßle, Michael Hintermüller, Michael Hinze, and Tobias Keil

Abstract We are concerned with the simulation and control of a two-phase flow
model governed by a coupled Cahn–Hilliard Navier–Stokes system involving a
nonsmooth energy potential. We establish the existence of optimal solutions and
present two distinct approaches to derive suitable stationarity conditions for the
bilevel problem, namely C- and strong stationarity. Moreover, we demonstrate
the numerical realization of these concepts at the hands of two adaptive solution
algorithms relying on a specifically developed goal-oriented error estimator. In
addition, we present a model order reduction approach using proper orthogonal
decomposition (POD-MOR) in order to replace high-fidelity models by low-order
surrogates. In particular, we combine POD with space-adapted snapshots and
address the challenges that are the consideration of snapshots with different spatial
resolutions and the conservation of a solenoidal property.
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1 Introduction

We consider the simulation and control for multiphase flows governed by a Cahn–
Hilliard Navier–Stokes (CHNS) system with nonsmooth homogeneous free energy
densities utilizing a diffuse interface approach. The free energy is a double-
obstacle potential according to [14]. The resulting problem belongs to the class of
mathematical programs with equilibrium constraints (MPECs) in function space.

Even in finite dimensions, this problem class is well known for its constraint
degeneracy [52, 54]. Due to the presence of the variational inequality constraint,
classical constraint qualifications (see, e.g., [67]) fail, which prevents the appli-
cation of Karush–Kuhn–Tucker (KKT) theory in Banach space for the first-order
characterization of an optimal solution by (Lagrange) multipliers. As a result,
stationarity conditions for this problem class are no longer unique (in contrast
to KKT conditions); compare [40, 41] in function space and, e.g., [60] in finite
dimensions. They rather depend on the underlying problem structure and/or on the
chosen analytical approach.

The simulation of two-phase flows with matched densities is rather well under-
stood in the literature, see, e.g., [45]. In contrast, there exist different approaches
to model the case of fluids with non-matched densities. These range from quasi-
incompressible models with non-divergence-free velocity fields, see, e.g., [51], to
possibly thermodynamically inconsistent models with solenoidal fluid velocities, cf.
[21]. In this chapter, we study the incompressible and thermodynamically consistent
model presented in [6]. We refer to [3, 11, 12, 27, 29] for additional analytical and
numerical results for some of these models.

Stable numerical schemes for the thermodynamically consistent diffuse interface
model according to [6] are developed in [29, 34]. A fully integrated adaptive finite-
element approach for the numerical treatment of the Cahn–Hilliard system with a
nonsmooth free energy is developed in [37]. This approach is extended in [35] to a
fully practical adaptive solver for the coupled Cahn–Hilliard Navier–Stokes system.

While there are numerous publications concerning the optimal control of the
phase separation process itself, i.e., the distinct Cahn–Hilliard system, see, e.g.,
[14, 18, 25, 37, 42, 65], there has been considerably less research on the control
of the Cahn–Hilliard Navier–Stokes system. Some of the few publications in this
field address the case of matched densities and a nonsmooth homogeneous free
energy density (double-obstacle potential), see [43, 44]. We also mention the recent
articles [26] that treat the control of a nonlocal Cahn–Hilliard Navier–Stokes system
in two dimensions, [61] and [30], which include numerical convergence results for
the optimal control of the model developed in [29].

From a numerical point of view, the simulation and especially the optimal
control of the coupled Cahn–Hilliard Navier–Stokes system are challenging tasks
with regard to the computation times and the storage effort. For this reason,
we apply model order reduction using Proper Orthogonal Decomposition (POD-
MOR) in order to replace the high-fidelity models by low-order surrogates. We
follow a simulation-based approach according to [58], where the snapshots are
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generated by finite-element simulations of the system. In particular, we utilize
space-adapted snapshots, which leads to the challenge that, in a discrete formulation,
the snapshots are vectors of different lengths due to the different spatial resolutions.
A consideration of the problem setting from an infinite-dimensional view according
to [28] allows the combination of POD with spatially adapted snapshots. Moreover,
we utilize a Moreau–Yosida regularization of the Cahn–Hilliard system and observe
that the accuracy of the reduced-order model depends on the smoothness of
the approximated object. Finally, we consider POD-MOR for the Navier–Stokes
part. The use of space-adapted finite elements has the consequence that a weak-
divergence-free property only holds in the current adapted finite-element space.
In order to guarantee stability of the resulting reduced-order model, in [32] two
solution approaches are proposed.

Regarding physical applications, we point out that the CHNS system is used to
model a variety of situations. These range from the aforementioned solidification
process of liquid metal alloys, cf. [22], or the simulation of bubble dynamics,
as in Taylor flows [1], or pinch-offs of liquid–liquid jets [48], to the formation
of polymeric membranes [66] or to protein crystallization, see, e.g., [49] and the
references therein. Furthermore, the model can be easily adapted to include the
effects of surfactants such as colloid particles at fluid–fluid interfaces in gels and
emulsions used in food, pharmaceutical, cosmetic, or petroleum industries [2, 55].

This chapter is organized as follows. After introducing the problem setting in
Sect. 2, we formulate the associated optimal control problem with respect to a
semi-discrete system in Sect. 3.1. We proceed by securing the existence of global
solutions and characterizing these solutions via suitable stationarity conditions in
Sects. 3.2, 3.3, and 3.4. A goal-oriented error estimator is derived in Sect. 3.5, and
we present two distinct numerical solution algorithms based on our analytical results
in Sect. 3.6 and 3.7, which incorporate an adaptive mesh refinement technique. In
Sect. 4, we focus on model order reduction with Proper Orthogonal Decomposition.
The POD method in Hilbert spaces is explained in Sect. 4.1 and comprises the case
of space-adapted snapshots. In Sect. 4.2, we derive a POD reduced-order model for
the Cahn–Hilliard system and provide a numerical example in Sect. 4.3. Moreover,
in Sect. 4.4, we consider POD-MOR with space-adapted snapshots for the Navier–
Stokes equations. We conclude this chapter with a brief outlook on associated future
research topics in Sect. 5.

2 Problem Setting

Let us specify the problem setting. We denote by � an open bounded domain
with Lipschitz boundary ∂�, and T > 0 is a given end time. We are concerned
with the coupled Cahn–Hilliard Navier–Stokes (CHNS) system according to [6]
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given by

∂t (ρ(ϕ)v)+ div(v ⊗ ρ(ϕ)v)− div(2η(ϕ)ε(v))+∇p

+div(v ⊗− ρ̂2 − ρ̂1

2
m(ϕ)∇μ)− μ∇ϕ = 0 in (0, T )×�,

(2.1a)

divv = 0 in (0, T )×�,

(2.1b)

∂tϕ + v∇ϕ − div(m(ϕ)∇μ) = 0 in (0, T )×�,

(2.1c)

−σε�ϕ + σ

ε
(∂�0(ϕ)− κϕ)− μ . 0 in (0, T )×�,

(2.1d)

v = ∂nϕ = ∂nμ = 0 on (0, T )× ∂�,

(2.1e)

v(0, ·) = va in �, (2.1f)

ϕ(0, ·) = ϕa in �. (2.1g)

We denote by v the velocity and by p the pressure of the fluid, which is
governed by the Navier–Stokes equations (2.1a)–(2.1b). The density ρ depends
on the order parameter ϕ given by the Cahn–Hilliard equations (2.1c)–(2.1d)
via

ρ(ϕ) = ρ1 + ρ2

2
+ ρ2 − ρ1

2
ϕ. (2.2)

The mobility m and the viscosity η are variable and depend on the phase field ϕ.
By μ, we denote the chemical potential. The surface tension σ > 0, the interface
parameter ε > 0, and the parameter κ > 0 are given constants. Furthermore, initial
conditions va and ϕa for the velocity and phase field are given, respectively. By �0,
we denote the convex part of the free energy potential �(ϕ) := (�0(ϕ) − κ

2ϕ
2).

Depending on the underlying applications, there exist different modeling choices
for �0. In this chapter, we focus on the double-obstacle potential introduced in
(3.2). Possible other choices include the double-well potential �(ϕ) = κ

2 (1 − ϕ2)2

and the logarithmic potential �(ϕ) = (1 + ϕ) ln(1 + ϕ) + (1 − ϕ) ln(1 − ϕ) −
κ
2ϕ

2.
An important property of the above CHNS system is its thermodynamical

consistency. It is possible to derive a (dissipative) energy estimate by testing (2.1a),
(2.1b), (2.1c), and (2.1d) with v, p, μ, and ∂tϕ, which yields

∂tE(v, ϕ)+ 2
∫

�

η(ϕ)|ε(v)|2dx +
∫

�

m(ϕ)|∇μ|2dx ≤ 0, (2.3)
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where the total energy E is given by the sum of the kinetic and the potential energy,
i.e.,

E(v, ϕ) =
∫

�

ρ(ϕ)
|v|2

2
dx + σε

2

∫

�

|∇ϕ|2
2

dx + σ

ε
�(ϕ). (2.4)

Besides mirroring the physical property that the total energy of a closed system is
non-increasing, inequality (2.3) also serves as a very valuable analytical tool, e.g.,
to secure the boundedness of solutions to (2.1).

3 Optimal Control of the Semi-Discrete CHNS System

In the following, we study the optimal control of a semi-discrete variant of the
Cahn–Hilliard Navier–Stokes system (2.1), where the free energy density is related
to the double-obstacle potential, see (3.2) below. This yields an optimal control
problem for a family of coupled systems in each time instant of a variational
inequality of fourth order and the Navier–Stokes equations. The time discretization
is chosen in such a way that the thermodynamical consistency of the system (cf.
(2.3)) is maintained.

We ensure the existence of feasible and globally optimal points for the respective
optimal control problem and provide a first characterization of those points via
a stationarity system of limiting E-almost C-stationary types. We proceed with a
thorough analysis of the sensitivity and differentiability properties of the associated
control-to-state operator that culminates in the presentation of a strong stationarity
system.

Our analytical results are subsequently supplemented by the development and
demonstration of two numerical solution algorithms, which compute discrete
approximations of C-stationary or strong stationary points of the optimal control
problem (3.2) below. In order to handle the tremendous computational effort caused
by repeatedly solving the large-scale Navier–Stokes systems, we incorporate an
adaptive mesh refinement strategy based on a goal-oriented error estimator.

3.1 The Semi-Discrete CHNS System and the Optimal Control
Problem

Let us start by presenting the underlying time discretization of the CHNS system
and by imposing some common assumptions on the related physical data. For this
purpose, we choose an arbitrary time step size τ > 0 and denote the total number
of time instants by K ∈ N. Moreover, we introduce a distributed force u on the
right-hand side of the Navier–Stokes equations.
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Definition 3.1 (Semi-Discrete CHNS System) For a given initial state (ϕ−1, v0) =
(ϕa, va) ∈

(

H 2
∂n
(�) ∩K

)

×H 2
0,σ (�;Rn), we say that a triple

(ϕ, μ, v) = ((ϕi)
K−1
i=0 , (μi)

K−1
i=0 , (vi)

K−1
i=1 )

in H 2
∂n
(�)K ×H 2

∂n
(�)K ×H 1

0,σ (�;Rn)K−1 solves the semi-discrete CHNS system

with respect to a given control u = (ui)
K−1
i=1 ∈ L2(�;Rn)K−1, if for all φ ∈ H

1
(�)

and ψ ∈ H 1
0,σ (�;Rn) we have that

〈

ϕi+1 − ϕi

τ
, φ

〉

+ 〈vi+1∇ϕi, φ〉+ (m(ϕi)∇μi+1,∇φ) = 0, (3.1a)

(∇ϕi+1,∇φ)+ 〈ai+1, φ〉 − 〈μi+1, φ〉 − 〈κϕi, φ〉 = 0, (3.1b)
〈

ρ(ϕi)vi+1 − ρ(ϕi−1)vi

τ
, ψ

〉

H−1
0,σ ,H

1
0,σ

− (vi+1 ⊗ ρ(ϕi−1)vi,∇ψ)

+
(

vi+1 ⊗ ρ2 − ρ1

2
m(ϕi−1)∇μi,∇ψ

)

+ (2η(ϕi)ε(vi+1), ε(ψ))

− 〈μi+1∇ϕi, ψ〉H−1
0,σ ,H

1
0,σ
= 〈ui+1, ψ〉H−1

0,σ ,H
1
0,σ
,

(3.1c)

with ai ∈ ∂�0(ϕi). The first two equations are supposed to hold for every 0 ≤
i + 1 ≤ K − 1, and the last equation holds for every 1 ≤ i + 1 ≤ K − 1.

The corresponding solution operator is denoted by S� , i.e., (ϕ, μ, v) ∈ S�(u).

In the above definition, the boundary conditions (2.1e) and the solenoidality of the
velocity field (2.1b) are integrated in the chosen function spaces

Hk
0,σ (�;Rn) :=

{

f ∈ Hk(�;Rn) ∩H 1
0 (�;Rn) : divf = 0, a.e. on �

}

,

Hk
∂n
(�) :=

{

f ∈ Hk(�) : ∂nf|∂� = 0 on ∂�
}

, k ≥ 2,

for ϕ,μ and v. Furthermore, the definition already includes the inherent regularity
properties of ϕ and μ, which anticipates the results of Theorem 3.4 below.

Moreover, the semi-discrete CHNS system involves three time instants (i −
1, i, i + 1), and (ϕ0, μ0) is characterized in an initialization step by the (decoupled)
Cahn–Hilliard system only. At the subsequent time instants, the strong coupling of
the Cahn–Hilliard and Navier–Stokes system is maintained.

In this chapter, we consider non-degenerate mobility and viscosity coefficients
m, η ∈ C2(R), i.e., 0 < c1 ≤ minx∈R{m(x), η(x)}. We further assume that m and
η, as well as their derivatives up to second order, are bounded, which is typically
satisfied if they originate from a practical application.
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As noted above, the free energy density is related to the double-obstacle potential.
In other words, the functional �0 : H 1(�) → R is given by �0(ϕ) :=
∫

�
ι[ψ1;ψ2](ϕ(x))dx, where ι[ψ1;ψ2] denotes the indicator function of [ψ1;ψ2], i.e.,

ι[ψ1;ψ2] :=
⎧

⎨

⎩

+∞ if z < ψ1,

0 if ψ1 ≤ z ≤ ψ2,

+∞ if z > ψ2,

ψ1 < 0 < ψ2. (3.2)

As a consequence, the inclusion (3.1b) ensures that the order parameter ϕi is
contained in [ψ1;ψ2] almost everywhere (a.e.) on � for every time instant −1 ≤
i ≤ K − 1, assuming that the initial data is well posed in the sense that

ϕa ∈ K :=
{

v ∈ H 1(�) : ψ1 ≤ v ≤ ψ2 a.e. in �
}

. (3.3)

In order to formulate the optimal control problem associated to (3.1), we
introduce an objective functional J : X → R defined on

X := H 1(�)K ×H 1(�)K ×H 1
0,σ (�;Rn)K−1 × L2(�;Rn)K−1

and assume that J is convex, weakly lower semi-continuous, Fréchet differentiable,
and partially coercive.

Definition 3.2 We study the optimal control problem

minJ (ϕ, μ, v, u) over (ϕ, μ, v, u) ∈ X
s.t. (ϕ, μ, v) ∈ S�(u).

(3.4)

For our numerical computations below, we consider the specific functional

J (ϕ, μ, v, u) := 1

2
‖ϕK−1 − ϕd‖2 + ξ

2
‖u‖2 , ξ > 0, (3.5)

where ϕd ∈ L2(�) represents a desired state. The so-called tracking type functional,
which is used in various applications, clearly satisfies the above assumptions.

3.2 Existence of Feasible and Globally Optimal Points

One of the main requirements for the existence of solutions to (3.4) is the
boundedness of the state. In our setting, this property follows from the energetic
stability of the chosen discretization in time. More precisely, we have the following



218 C. Gräßle et al.

(dissipative) energy law for the total energy

E(v, ϕ, ϕ−1) =
∫

�

ρ(ϕ−1)
|v|2

2
dx +

∫

�

|∇ϕ|2
2

dx +�(ϕ), (3.6)

associated with the semi-discrete CHNS system (3.1). For more details on the proof
of Lemma 3.3 and the other results of this subsection, we refer the reader to [39].

Lemma 3.3 (Energy Estimate for a Single Time Step) Let ϕi, ϕi−1 ∈ H 2
∂n
(�) ∩

K, μi ∈ H 2
∂n
(�), vi ∈ H 1

0,σ (�;Rn) and ui+1 ∈ (H 1
0,σ (�;Rn))∗ be given.

If (ϕi+1, μi+1, vi+1) ∈ H 1(�)×H 1(�)×H 1
0,σ (�;Rn) satisfies the system (3.1),

then the corresponding total energy is bounded by

E(vi+1, ϕi+1, ϕi)+
∫

�
ρ(ϕi−1)

∣

∣vi+1 − vi
∣

∣

2

2
dx +

∫

�

∣

∣∇ϕi+1 − ∇ϕi
∣

∣

2

2
dx

+ τ

∫

�
2η(ϕi)

∣

∣ε(vi+1)
∣

∣

2
dx + τ

∫

�
m(ϕi)

∣

∣∇μi+1
∣

∣

2
dx +

∫

�
κ
(ϕi+1 − ϕi)

2

2

≤ E(vi, ϕi , ϕi−1)+
〈

ui+1, vi+1
〉

H−1
0,σ ,H

1
0,σ

. (3.7)

It should be noted that the density is always positive, since ϕi is contained in K for
every i. Consequently, all the terms of the left-hand side of the inequality are always
nonnegative such that Lemma 3.3 indeed ensures that the energy of the next time
step is non-increasing if the external force ui+1 is absent.

Lemma 3.3 allows us to verify the existence of solutions to the CHNS system
(3.1) via the repeated application of Schaefer’s fixed point theorem. The proof
further involves arguments from PDE theory and monotone operator theory.

Theorem 3.4 (Existence of Feasible Points) Let u ∈ L2(�;Rn)K−1 be given.
Then the semi-discrete CHNS system admits a solution (ϕ, μ, v) ∈ H 2

∂n
(�)K ×

H 2
∂n
(�)K ×H 2

0,σ (�;Rn)K−1.

The last theorem also ensures an additional regularity of the state, which is
necessary to guarantee that the system (3.1) is well posed for each time step. The
proof relies on the regularity theory for Navier–Stokes equations and variational
inequalities.

By Theorem 3.4, the feasible set of problem (3.4) is non-empty. Then, the
existence of globally optimal points can be verified via standard arguments from
optimization theory.

Theorem 3.5 (Existence of Global Solutions) The optimization problem (3.4)
possesses a global solution.
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3.3 E-Almost C-Stationary Points

After securing the existence of solutions to the optimal control problem (3.4), we
target a more precise characterization of globally and/or locally optimal points via
necessary optimality conditions. This lays the foundation to the development of
efficient numerical solution methods in the subsequent subsections.

As a first step, we establish a limiting E-almost C-stationarity system. For this
purpose, we additionally assume that J ′ is a bounded mapping and that ∂J

∂u
satisfies

the following weak lower-semicontinuity property

〈∂J
∂u

(ẑ), û
〉

≤ lim inf
k→∞

〈∂J
∂u

(ẑ(k)), û(k)
〉

,

where the sequence ẑ(k) converges weakly in the space H 2
∂n
(�)K × H 2

∂n
(�)K ×

H 1
0,σ (�;Rn)K−1×L2(�;Rn)K−1 toward a limit point ẑ. Here and in the following,

z represents the primal variables, i.e., ẑ := (ϕ̂, μ̂, v̂, û).
The derivation is based on a penalization of the lower-level problem, where

the double-obstacle potential is approximated by certain smooth double-well-type
potentials �k, k ∈ N. This gives rise to a family of smooth auxiliary nonlinear
programs (P�k

) for which the following necessary optimality system can be derived
via a well-known result from Zowe and Kurcyusz [67, Theorem 4.1].

Theorem 3.6 (First-Order Optimality Conditions for Smooth Potentials) Let z
be a minimizer of the auxiliary problem (P�k

).

Then, there exist (p, r, q, λ) ∈ H 1(�)K × H 1(�)K × H 1
0,σ (�;Rn)

K−1 ×
H

1
(�)∗

K
, with λi := � ′′

k (ϕi+1)
∗ri , such that

−1

τ
(pi − pi−1)+m′(ϕi)∇μi+1 · ∇pi − div(pivi+1)

−�ri−1 + λi−1 − κri+1 − 1

τ
ρ′(ϕi)vi+1 · (qi+1 − qi)

−
(

ρ′(ϕi)vi+1 − ρ2 − ρ1

2
m′(ϕi)∇μi+1

)

(Dqi+1)
�vi+2

+2η′(ϕi)ε(vi+1) : Dqi + div(μi+1qi) = ∂J
∂ϕi

(z),

(3.8)

−ri−1 − div(m(ϕi−1)∇pi−1)

− div

(

ρ2 − ρ1

2
m(ϕi−1)(Dqi)

�vi+1

)

− qi−1 · ∇ϕi−1 = ∂J
∂μi

(z),

(3.9)



220 C. Gräßle et al.

−1

τ
ρ(ϕj−1)(qj − qj−1)− ρ(ϕj−1)(Dqj )

�vj+1

−(Dqj−1)

(

ρ(ϕj−2)vj−1 − ρ2 − ρ1

2
m(ϕj−2)∇μj−1

)

− div(2η(ϕj−1)ε(qj−1))+ pj−1∇ϕj−1 = ∂J
∂vj

(z),

(3.10)

∂J
∂uj

(z)− qj−1 = 0 (3.11)

for all i = 0, . . . , K − 1 and j = 1, . . . , K − 1. Here, we use the convention that
pi, ri , qi are equal to 0 for i ≥ K − 1 along with q−1 and ϕi, μi, vi for i ≥ K .

A careful limit analysis with respect to a vanishing penalization parameter yields
the following stationarity system for the optimal control problem (3.4), cf. [39].

Theorem 3.7 (Limiting E-Almost C-Stationarity) Let (ϕ(k), μ(k), v(k), u(k)) be
a minimizer for (P�k

), and let further (p(k), r(k), q(k), λ(k)) be given as in Theo-
rem 3.6.

Then, there exists a weakly convergent subsequence

{

(ϕ(m), μ(m), v(m), u(m), p(m), r(m), q(m), λ(m))
}

m∈N
⊂ H 2

∂n
(�)K ×H 2

∂n
(�)K ×H 1

0,σ (�;Rn)K−1 × L2(�;Rn)K−1

×H 1(�)
K ×H 1(�)

K ×H 1
0,σ (�;Rn)

K−1 ×H 1(�)∗K, (3.12)

and the limit point (ϕ, μ, v, u, p, r, q, λ) satisfies the adjoint system (3.8)–
(3.11), as well as

( ai, ri−1 )L2 = 0, lim inf( λ(m)i , r
(m)
i−1 )L2 ≥ 0. (3.13)

Moreover, for every ε > 0, there exist a measurable subsetMε
i ofMi := {x ∈ � :

ψ1 < ϕi(x) < ψ2} with |Mi \Mε
i | < ε and

〈λi, v〉 = 0 ∀v ∈ H
1
(�), v|�\Mε

i
= 0. (3.14)

The above stationarity conditions correspond to a function space version of C-
stationarity, see, e.g., [40, 60]. The proof of the last condition (3.14) is based on the
application of Egorov’s theorem, cf. [9], which motivated the notion of E-almost
C-stationarity.
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3.4 Strong Stationarity

Starting from the C-stationarity system of the previous section, it is possible to
derive a more restrictive stationarity system for the problem (3.4) employing the
directional differentiability of the control-to-state operator S� . In this subsection,
we consider the control of the semi-discrete CHNS system for a single time step,
i.e., K = 2, and ϕ−1, ϕ0, μ0, v0 are given. This corresponds to an instantaneous
control problem.

First, we verify that the solution operator S� of the semi-discrete CHNS system
is Lipschitz continuous.

Theorem 3.8 (Lipschitz Continuity of S� ) The mapping S� : H−1
0,σ (�) →

H 1(�)×H 1(�)×H 1
0,σ (�;RN) is Lipschitz continuous.

The proof follows a similar line of argumentation as Lemma 3.3. An immediate
consequence of the above theorem is that the solutions to the constraint system are
uniquely determined by the control u.

Although solution operators of variational inequalities are in general not Fréchet
differentiable, we can now compute the directional derivative of S� via the
following theorem.

Theorem 3.9 The directional derivative of S� at û ∈ H−1
0,σ (�) with S�(û) =

(ϕ̂, μ̂, v̂) in direction h ∈ H−1
0,σ (�) is the unique solution (χ,w, ζ ) ∈ H 1(�) ×

H 1(�)×H 1
0,σ (�;RN) of the system

χ ∈ TK(ϕ̂) ∩ a+⊥ ∩ a−⊥,
(3.15a)

〈−�χ − w, v − χ〉 ≥ 0, ∀v ∈ TK(ϕ̂) ∩ a+⊥ ∩ a−⊥,
(3.15b)

〈χ

τ
, φ

〉

+ 〈ζ∇ϕ0, φ〉 + (m(ϕ0)∇w,∇φ) = 0,

(3.15c)
〈

ρ(ϕ0)ζ

τ
, ψ

〉

H−1
0,σ ,H

1
0,σ

− (ζ ⊗ ρ(ϕ−1)v0,∇ψ)

+
(

ζ ⊗ ρ2 − ρ1

2
m(ϕ−1)∇μ0,∇ψ

)

+ (2η(ϕ0)ε(ζ ), ε(ψ))

−〈w∇ϕ0, ψ〉H−1
0,σ ,H

1
0,σ
− 〈h,ψ〉

H−1
0,σ ,H

1
0,σ
= 0.

(3.15d)
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Here, TK(ϕ̂) represents the tangent cone of K at ϕ̂ and a+/−⊥ := {φ ∈ H 1(�) :
〈

φ, a+/−
〉 = 0} is the orthogonal space associated with a+(x) := max{a(x), 0} and

a−(x) := min{a(x), 0}.
Note that a+ and a− can be interpreted as the multipliers to the constraints ϕ ≤ 1

and ϕ ≥ −1, and the convex constraint set TK(ϕ̂) ∩ a+⊥ ∩ a−⊥ associated to the
variational inequality (3.15b)–(3.15c) is also called the critical cone, cf. [53]. The
proof of Theorem 3.9 combines arguments from Jarusek et al. in [47] and PDE
theory.

With the help of the directional derivative of S� , we derive strong stationarity
conditions for (3.4) by evaluating the B-stationarity condition of the reduced
optimization problem

min
u∈L2(�;RN)

J (u) := J (S�(u), u) (3.16)

for suitable test directions.

Theorem 3.10 If û is an optimal control of (3.4), then there exists an adjoint state
(p, r, q) ∈ H 1(�) × H 1(�) × H 1

0,σ (�;RN) and λ ∈ H 1(�)∗ such that for all

φ ∈ H 1(�) and ψ ∈ H 1
0,σ (�;RN) it holds that

〈

DϕJ [z0] + r

τ
, φ

〉

+ (∇p,∇φ)+ 〈λ, φ〉 = 0, (3.17)

(m(ϕ0)∇r,∇φ)− 〈p, φ〉 − 〈q∇ϕ0, φ〉 = 0, (3.18)
〈

ρ(ϕ0)

τ
q, ψ

〉

H−1
0,σ ,H

1
0,σ

− 〈∇qν,ψ〉
H−1

0,σ ,H
1
0,σ

+〈2η(ϕ0)ε(q), ε(ψ)〉H−1
0,σ ,H

1
0,σ
− 〈r∇ϕ0, ψ〉H−1

0,σ ,H
1
0,σ
= 0, (3.19)

〈−q,ψ〉
H−1

0,σ ,H
1
0,σ
+ 〈

DuJ [ẑ], ψ
〉

H−1
0,σ ,H

1
0,σ
= 0, (3.20)

λ ∈
(

TK(ϕ̂) ∩ a+⊥ ∩ a−⊥
)0
, (3.21)

q ∈
([

D

(

(

TK(ϕ̂) ∩ a+⊥ ∩ a−⊥
)0 ×H 1

0,σ (�;RN)

)]

2

)0

, (3.22)

whereD is a specific linear operator and the subscriptK0 represents the polar cone
of the cone K .

This concludes our analytical investigations. We point out that the strong stationarity
conditions represent the most selective stationarity system available for the problem
under consideration up to this point in time.
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3.5 Adaptive Mesh Refinement

In the following subsections, we discuss efficient numerical solution methods
for the problem (3.4), where the objective functional is given by (3.5), based
on our analytical results. The main challenges hereby are imposed by the non-
differentiability of the solution operator due to the Cahn–Hilliard system and the
immense numerical expense caused by repeatedly solving the large-scale Navier–
Stokes-type primal and dual systems.

We deal with the second challenge by developing a goal-oriented error
estimator based on the dual-weighted residual approach, cf., e.g., [13].
This allows us to implement an adaptive mesh refinement strategy, which
acknowledges the error contributions of the primal residuals, the dual residuals,
and the mismatch in the complementarity terms, to reduce the computational
effort.

The central idea of this approach is depicted by the subsequent theorem, which
estimates the difference of the objective values at stationary points of the semi-
discrete and the fully discretized problem with the help of the associated MPCC-
Lagrangian L, cf. [36].

Theorem 3.11 Let (y, u,�, π, λ+, λ−) be a stationary point of the optimal con-
trol problem (3.4) and assume that (yh, uh,�h, πh, λ

+
h , λ

−
h ) ∈ Yh satisfies the

discretized stationarity system. Then it holds that

J (ϕh, μh, vh, uh)− J (ϕ, μ, v, u) = 1

2

(

K−1
∑

i=0

〈

aih, π
i
〉

−
K−1
∑

i=0

〈

ai, πih

〉

)

−1

2

(

K−1
∑

i=0

〈

(λi)+, ϕih − ψ2

〉

−
K−1
∑

i=0

〈

(λih)
+, ϕi − ψ2

〉

)

+1

2

(

K−1
∑

i=0

〈

(λi)−, ϕih − ψ1

〉

−
K−1
∑

i=0

〈

(λih)
−, ϕi − ψ1

〉

)

+1

2
∇xL(yh, uh,�h, πh, λ

+
h , λ

−
h )((yh, uh,�h)− (y, u,�))

+O
(

‖(yh, uh,�h)− (y, u,�)‖3
)

, (3.23)

where O denotes the Landau symbol Big-O.
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This allows us to approximate the discretization error with respect to the objective
function as follows:

J (ϕh, μh, vh, uh)−J (ϕ, μ, v, u)

≈
K−1
∑

i=0

(ηCM1,i + ηCM2,i + ηCM3,i + ηCM4,i + ηCH1,i

+ ηCH2,i + ηNS,i + ηADϕ,i + ηADμ,i + ηADv,i),

(3.24)

where the complementarity error terms ηCM1,i , .., ηCM4,i , and the weighted primal
residuals ηCH1,i , ηCH2,i , ηNS,i and the weighted dual residuals ηADϕ,i , ηADμ,i, ηADv,i
are defined as in [36, Section 4]. These individual error terms can be evaluated
separately on each patch of the current mesh due to their integral structure. In
order to obtain a fully a posteriori error estimator, the continuous quantities are
approximated with the help of a local higher-order approximation based on the
respective discrete variables.

3.6 Penalization Algorithm

A first approach to handle the non-differentiability of S� numerically is motivated
by the penalization method of Sect. 3.3. Namely, we solve a sequence of auxiliary
optimization problems, where we approximate �0 by

�0,α(ϕ) := 1

2α

(

max(0, ϕ − 1)2 +min(ϕ + 1)2
)

, α > 0, α → 0.

The resulting nonlinear programs can be solved by a standard steepest descent
method, and the calculated solution approximates a C-stationary point of (3.4) if
the complementarity conditions of Theorem 3.7 are satisfied sufficiently well, i.e.,
up to a given tolerance tolc. In combination with an outer adaptation loop based on
the error estimator (3.24), this yields Algorithm 1.

Algorithm 1: The overall solution procedure
Data: Initial data: ϕa, va ;

1 repeat
2 repeat
3 solve the regularized problem (P�α ) using a steepest descent method;
4 decrease α;
5 until complementarity conditions are satisfied up to a tolerance εtol ;
6 calculate the error indicators and identify the sets Mr ,Mc of cells to

refine/coarsen;
7 adapt (T i )Ki=1 based on Mr and Mc;

8 until
∑K

i=1 |T i | > Amax;
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Hereby, the outer adaptation loop relies on the Dörfler marking procedure.
Hence, the error indicators from (3.24) are evaluated for all time steps i and for
all cells T ∈ T i of the current triangulation (T i )Ki=1. Then we choose a set Mr of
cells to be refined as the set with the smallest cardinality, which satisfies

∑

T ∈Mr

ηT ≥ θr
K
∑

i=1

∑

T ∈T i

ηT

for a given parameter 0 < θr < 1. Due to the movement of the interface, we also
select cells for coarsening if the calculated error indicator is smaller than a certain
fraction of the mean error, i.e.,

Mc :=
⎧

⎨

⎩

T ∈ (T i )Ki=1 | ηT ≤
θc

A

K
∑

i=1

∑

T ∈T i

ηT

⎫

⎬

⎭

,

where 0 < θc < 1 is fixed and A := ∑K
i=1 |T i |. The mesh refinement process is

terminated if a desired total number of cells Amax is exceeded.
Moreover, the problem is discretized in space using Taylor–Hood finite elements,

i.e., we utilize linear finite elements for ϕ, μ, and p and quadratic finite elements
for v. For more details on the implementation of the algorithm and the numerical
results, we refer to [36].

Let us briefly illustrate the performance of the proposed Algorithm 1 at the hands
of a specific example. Our goal is to control the motion of a circular bubble to
prevent it from rising and split it into two square-shaped bubbles. For this purpose,
2× 4 locally supported ansatz functions of the control are distributed over the two-
dimensional domain as depicted in Fig. 1. The figure further shows the initial state
ϕa , the desired shape ϕd together with the zero level line of the phase field at final
time if no control is applied. The corresponding objective functional is defined as in
(3.5) with ξ = 10−11.

The associated fluid parameters are given by ρ1 = 1000, ρ2 = 100, η1 = 10,
η2 = 1, and σ = 24.5 · 2

π
and are taken from a benchmark problem for rising

bubble dynamics in [46]. Furthermore, we incorporate a gravitational acceleration

Fig. 1 The initial shape ϕ0, the desired shape ϕd , the ansatz for the control u
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Fig. 2 The evolution of the phase field ϕ

g = 0.981 in the vertical direction and set ε = 0.02, m(ϕ) ≡ 4 · 10−5.
The time horizon is set to T = 1.0, and the time step size is τ = 125 ·
10−5.

For the marking procedure, we use the parameters θr = 0.7 and θc =
0.01. Furthermore, the stopping criteria use the tolerance tolc = 10−3 for the
complementarity conditions and the maximum amount of cells Amax = 8 · 106

for the adaptation process, which relates to 104 cells in average per time instance.
The optimal solution on the first level and for the initial value for α is found

after 26 steepest descent iterations, while the complete algorithm terminates after
419 steepest descent steps. Hereby, the algorithm solves the auxiliary optimization
problems 10 times, i.e., line 3 of Algorithm 1 is executed 10 times. After the first
two solves the Moreau–Yosida parameter was decreased, and after the next 8 solves
the algorithm directly proceeded with the outer adaptation loop.

In Fig. 2, we depict the temporal evolution of the phase field ϕ corresponding
to the optimal solution at the times t = 0.00, 0.25, 0.50, 0.75, 1.00. The figure
additionally includes the zero level line of the desired shape ϕd for t = 1.00.

Regarding the mesh adaptation process, we observe that the cells are mainly
refined in the interfacial region and, in particular, at the border of the diffuse
interface. Such a behavior is typical for the numerical simulation of phase-field
models. However, since our error estimator also contains terms from the Navier–
Stokes and the adjoint equation, we further obtain significant mesh adaptations
outside of the interface of the phases, which suggests that these errors should not
be neglected, e.g., by a simple interface refinement technique. In Fig. 3, we depict
the subdomain �u = (0, 1) × (0.5, 1.0) ⊂ � at t = 0.7. On the left, we show |v|
in grayscale together with the isolines ϕ ≡ ±1 in black. On the right, we show the
corresponding mesh. Note that the mesh is symmetric with respect to the central
line.

3.7 Bundle-Free Implicit Programming Approach

Algorithm 1 can be further enhanced by exploiting the specific structure of the
directional derivative of the control-to-state operator. Hereby, we apply the descent
method directly to the problem (3.4) or (3.16) (instead of a regularized version) and
compute a descent direction of J at u∗ with (v∗, ϕ∗, μ∗) = S(u∗) by solving the
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Fig. 3 The magnitude of v in grayscale and the isolines ϕ ≡ ±1 (left), and the associated
triangulation (right)

optimization problem

min
h∈L2(�;RN)K−1

J ′[u∗](h)+ ‖h‖2 = (ϕ∗ − ϕd, q)+ ξ(u∗, h)+ ‖h‖2,

s.t. DS� [u∗](h) = (q,w, ζ ),

(3.25)

where the stabilizing term ‖h‖2
L2 ensures the existence of solutions. If a solution

h of (3.25) equals zero, then u∗ is a B-stationary point; otherwise, it is indeed a
descent direction, since J ′[u∗](h) ≤ −‖h‖2 < 0. In combination with a classical
line search procedure, this leads to the following Algorithm 2.

Algorithm 2: The descent method for (3.4)
Data: Initial data: ϕa, va, u0;

1 repeat
2 Calculate a descent direction hk by solving (3.25);
3 Find a step size τk and a new iterate uk+1 := uk + τkhk by

performing an Armijo line search along hk ;
4 Set k := k + 1.
5 until hk ≤ εtol ;

The convergence of Algorithm 2 is ensured based on the arguments of [38].

Theorem 3.12 The conceptual Algorithm 2 terminates after finitely many steps for
any starting point u0 if either τk ≥ τ > 0 for every k ∈ N, or τk → 0 and

lim sup
k→∞

J (uk + τ khk)− J (uk)− τ kJ
′[uk](hk)

τ k
≤ 0, (3.26)
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where τ k > 0 represents the smallest step size for which the line search still fails at
step k.

Motivated by Theorem 3.12, we include an additional robustification step by
performing one step of the penalization algorithm of Sect. 3.6, if the step size tends
to zero. Thus, the resulting algorithm targets strong stationary points of (3.4) while
guaranteeing at least C-stationarity of the computed solutions.

In order to solve the problem (3.25), we take advantage of the fact that it
corresponds to a quadratic program, if strict complementarity holds, i.e., if the
biactive set associated with the variational inequality (3.1b) is empty. Otherwise,
we employ a regularization of the lower-level problem associated with (3.25).

As in the previous subsection, we utilize Taylor–Hood finite elements for the
spacial discretization and supplement the algorithm with a similar adaptive mesh
refinement strategy. Moreover, we solve the discretized CHNS system via a primal–
dual active set method.

In the following example, we aim to transform a ring-shaped initial region into a
curved tube, see Fig. 4. As seen on the right picture, the control acts via 16 locally
supported ansatz functions.

The parameters for the physical model and the adaptation procedure are adopted
from the previous example. In this example, the algorithm terminates at a C-
stationary point after performing the Armijo line search (in line 3) 276 times. The
maximum number of cells is exceeded after 6 mesh refinement steps.

Figure 5 presents the computed evolution of the phase field ϕ at the optimal
solution along with the associated slack variable a emerging from the primal–dual
active set method at the final time. In addition, we portray the magnitude of the
velocity and the underlying mesh at final time.

Fig. 4 The initial shape ϕ0, the desired shape ϕd , the ansatz for the control u

Fig. 5 The evolution of the phase field ϕ, the slack variable a, and the magnitude of v at the final
time
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4 Model Order Reduction with Proper Orthogonal
Decomposition

From a numerical point of view, the simulation and in particular the optimal
control of the coupled Cahn–Hilliard Navier–Stokes system (2.1) are computation-
ally demanding tasks. Although the use of adaptive finite-element discretization
concepts (see, e.g., [36]) makes numerical implementation feasible (in comparison
to the use of a very fine, uniform discretization), the computational costs can be
very large. For this reason, we apply model order reduction using Proper Orthogonal
Decomposition (POD-MOR) in order to speed up computation times while ensuring
a good approximation quality.

In order to construct a low-dimensional surrogate model, the usual POD
framework first requires a so-called offline phase, in which high-fidelity solutions
(snapshots) of the underlying dynamical system are generated by, e.g., finite-
element simulations. From this snapshot set, the POD method finds a proper
basis representation of the most relevant information encoded in the snapshots
by computing a truncated singular value decomposition or by solving an
associated eigenvalue problem. If the snapshots are discretized adaptively in
space, the challenge arises that the snapshots are vectors of different lengths
due to the different spatial resolutions at each time instance. This does not
fit into the standard POD framework that assumes snapshots of the same
length.

This section is concerned with POD reduced-order modeling using space-
adapted snapshots. Section 4.1 describes the idea to consider the setting from an
infinite-dimensional perspective that allows a broad spectrum of discretizations
for the snapshots. Then, we derive a POD reduced-order model for the Cahn–
Hilliard equations using space-adapted snapshots in Sect. 4.2 and present numerical
results. Moreover, in Sect. 4.4, we consider POD-MOR with space-adapted snap-
shots for incompressible flow governed by the Navier–Stokes equations, where
two strategies are proposed in order to ensure stability of the reduced-order
model.

4.1 POD in Hilbert Spaces with Space-Adapted Snapshots

For a comprehensive study of the infinite-dimensional perspective on POD in a
Hilbert space setting, we refer to [50], for example. Here, we recall main aspects
and provide a practical implementation that is proposed in [28].

Let {y0
h, . . . , y

K−1
h } ⊂ X be a given set of snapshots, where X denotes a real,

separable Hilbert space and yih for i = 0, . . . , K−1 are high-fidelity-adapted finite-
element solutions of the underlying dynamical system at different time instances.
In particular, each of the snapshots belongs to a different discrete Galerkin space
yih ∈ V i

h with V 0
h , . . . , V

K−1
h ⊂ X. Then, a POD basis of rank & is constructed by
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solving the following equality constrained minimization problem:

min
ψ1,...,ψ&∈X

K−1
∑

i=0

αj

∥

∥

∥

∥

∥

∥

yih −
&

∑

j=1

(yih, ψj )Xψj

∥

∥

∥

∥

∥

∥

2

X

s.t. (ψi, ψj )X = δij for 1 ≤ i, j ≤ &,

(4.1)

where αi for j = 0, . . . , K − 1 denote nonnegative weights and δij is the
Kronecker symbol. Since the snapshots are spatially adapted, the number of degrees
of freedom and/or the location of the node points might differ such that it is not
possible to build a corresponding snapshot matrix containing the finite-element
Galerkin coefficients. For this reason, we assemble the snapshot Gramian defined
by

K ∈ R
K×K, Kij := √

αiαj (y
i
h, y

j
h)X

for i, j = 0, . . . , K − 1. In order to set up the matrix K, we only require that the
snapshots belong to the same Hilbert space X in order to evaluate the inner product
(·, ·)X. Solving an eigenvalue problem for K, i.e.,

Kφi = λiφi for i = 1, . . . , &

delivers eigenvalues λ1 ≥ · · · ≥ λ& ≥ 0 and eigenvectors {φ1, . . . ,φ&} ⊂ R
K ,

which suffice to set up the POD reduced-order model, see [28, Section 4] for
more details. The advantage of this perspective is that it allows a broad spectrum
of discretization techniques and includes the case of r-adaptivity, for example.
However, in this case, the evaluation of the inner products (yih, y

j
h)X might get

involved such that the necessity of, e.g., parallelization, becomes evident for
practical implementations. In case of h-adapted snapshots using hierarchical, nested
meshes, it is reasonable to express the snapshots with respect to a common finite-
element space as proposed in [63].

4.2 POD Reduced-Order Modeling for the Cahn–Hilliard
System

Let us consider the weak formulation of the Cahn–Hilliard equations (2.1c)–(2.1d)
with boundary conditions (2.1e) and an initial condition for the phase field (2.1g),
where we assume the velocity v to be given and fixed. The weak form reads as:
Find a phase field ϕ ∈ W(0, T ;H 1(�)) with ϕ|t=0 = ϕa and a chemical potential
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μ ∈ L2(0, T ;H 1(�)) such that for all φ ∈ H 1(�) it holds that

d

dt
(ϕ(t), φ)L2(�) + (v∇ϕ(t), φ)L2(�) +m(∇μ(t),∇φ)L2(�) = 0,

(4.2a)

σε(∇ϕ(t),∇φ)L2(�) +
σ

ε
(� ′

0(ϕ(t))− κϕ(t), φ)L2(�) − (μ(t), φ)L2(�) = 0.

(4.2b)

Note that in (4.2) we assume for simplicity a constant mobility m > 0 and
sufficient regularity for �0. In order to derive an associated POD reduced-order
model, we approximate the phase field ϕ and the chemical potential μ by a POD
Galerkin ansatz given as ϕ(t) ≈ ϕ&(t) = ∑&

j=1 cj (t)ψj and μ(t) ≈ μ&(t) =
∑&

j=1 wj(t)ψj . In [28, 31], we construct separate POD-reduced spaces for the
phase field and the chemical potential, respectively. In contrast, here we compute
the POD modes ψj for j = 1, . . . , & according to (4.1) from space-adapted
finite-element snapshots of the phase field and use the same POD modes in the
Galerkin ansatz for both phase field and chemical potential. Using the POD space
V& = span{ψ1, . . . , ψ&} ⊂ H 1(�) as trial and test space leads to the following POD
reduced-order model for the Cahn–Hilliard equations: Find a phase field ϕ& ∈ V&
with ϕ|t=0 = P&ϕa and a chemical potential μ& ∈ V& such that for all ψ ∈ V& it
holds that

d

dt
(ϕ&(t), ψ)L2(�) + (v∇ϕ&(t), ψ)L2(�) +m(∇μ&(t),∇ψ)L2(�) = 0,

(4.3a)

σε(∇ϕ&(t),∇ψ)L2(�) +
σ

ε
(� ′

0(ϕ&(t))− κϕ&(t), ψ)L2(�) − (μ&(t), ψ)L2(�) = 0.

(4.3b)

By P& : V → V&, we denote the orthogonal projection onto the POD space.
Note that in (4.3), the evaluation of the nonlinear term � ′

0(ϕ&(t)) is dependent
on the full-order dimension. The treatment of nonlinearities is a well-known
challenge within POD-MOR. In order to enable an efficient evaluation of the
nonlinearity that is related to the low-order dimension & of the reduced system, a
linearization can be considered, compare [28] for more details. Alternatively, the
so-called hyper-reduction methods like EIM [16], DEIM [20], or DMD [7] can be
applied.



232 C. Gräßle et al.

4.3 Numerical Example of POD-MOR for the Cahn–Hilliard
System

In this section, we numerically investigate two major issues within POD-MOR for
the Cahn–Hilliard equations:

(i) How does the regularity of the free energy �0 affect the accuracy of the POD
reduced-order model?

(ii) How does the use of spatial adaptivity in the offline phase for snapshot
generation influence the computation times and the accuracy of the POD
reduced-order model?

The first aspect (i) is studied numerically in [4]: there, the initial phase field is
given as a circle in a two-dimensional domain, which is transported in the horizontal
direction over time. In this simulation, a uniform and static discretization in space
is used to generate the snapshots and a POD basis is computed with respect to the
X = L2(�)-inner product. The decay of the normalized eigenvalues is shown in
Fig. 6. It compares the use of a smooth double-well potential �0(ϕ) = 1

4ϕ
4 (pDWE)

to the use of a Moreau–Yosida relaxation of the double-obstacle potential given as
�0(ϕ) = s

r
(|max(0, ϕ − 1)|r + |min(0, ϕ + 1)|r ) for different values of r (DOEr).

We observe that the smoother the considered free energy is, the faster is the decay of
the eigenvalues. This is similar to a well-known behavior in Fourier analysis, where
the decay of the Fourier coefficients depends on the smoothness of the object. For
POD reduced-order modeling, this means that if a potential with lower regularity is
used, then more POD modes are needed for an adequate approximation than using
a smooth potential.

In future research, we plan to apply POD model order reduction for the Cahn–
Hilliard equations using a nonsmooth double-obstacle potential. This involves

Fig. 6 Decay of the
normalized eigenvalues for
the phase field ϕ considering
a Moreau–Yosida relaxation
(DOEr) for different
relaxation parameters r and a
polynomial free energy
(pDWE)
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reduced-order modeling for variational inequalities, see, e.g., [15] for a reduced-
order technique for Black–Scholes and Heston models.

For the second aspect (ii), let us consider the following setting: the spatial domain
is � = (0, 2)× (0, 1) ⊂ R

2, the mobility is m = 1.0, the interface parameter is ε =
0.02, and the potential �0 is the smooth double-well energy. The initial condition
has the shape of an ellipse. We consider a solenoidal velocity field y = (y1, y2)

given by

y1(x) = c sin(πx0) · cos(πx1), y2(x) = −c sin(πx1) · cos(πx0) for x0 ≤ 1

and

y1(x) = −c sin(πx0) · cos(πx1), y2(x) = c sin(πx1) · cos(πx0) for x0 > 1,

where x = (x0, x1). In this example, we choose c = 70, such that the velocity field
leads to a break-up of the ellipse into two separate droplets. This topology change
can be handled naturally due to the consideration of a diffuse interface approach.

For the temporal discretization, we use an unconditional gradient stable scheme
based on a convex–concave splitting of the potential according to [23, 24]. As time
step size, we use τ = 2.5 · 10−5 and perform K = 300 time steps. For the spatial
discretization, we use h-adapted piecewise linear and continuous finite elements.
The solutions to the adaptive finite-element simulation at initial time, half time, and
end time with the associated adapted meshes are shown in Fig. 7. The number of
node points varies between 16,779 and 19,808, and the finite-element simulation
time is 1674 s.

In order to construct a POD reduced-order model, we utilize the adapted finite-
element solutions for the phase field as snapshots in (4.1), where we choose X =
L2(�) for the norm and inner products. The resulting solutions for a POD reduced-
order model of dimension & = 10 and & = 20 are shown in Fig. 8 at the initial,
half, and end times. In the approximations using & = 10 POD modes, we observe
oscillations due to the transport term, which are smoothened out by enlarging the

Fig. 7 Finite-element snapshots of the phase field at t = 0, t = T/2, and t = T (top) with the
associated adapted finite-element meshes (bottom)
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Fig. 8 POD reduced-order approximation of the phase field at t = 0, t = T/2, and t = T using
& = 10 POD modes (top) and & = 20 POD modes (bottom)

reduced dimension. We note that POD model order reduction for systems involving
a dominant transport is challenging, and refer to [19, 56, 59, 64] for different solution
concepts.

The relative L2(0, T ;�)-error between the adaptive finite-element solution and
the POD reduced-order solution using & = 20 POD modes is 2.793 · 10−4. The
solution time for the reduced-order simulation is 88 s, which leads to a speedup
factor of 19 compared to the time needed for the adaptive finite-element simulation.
Note that the reduced-order model still depends on the finite-element dimension,
since an expansion of the reduced solution to the full-order model is needed for
the evaluation of the nonlinearity. In order to enable an efficient evaluation of
the nonlinearity that is related to the reduced-order dimension, the use of hyper-
reduction methods like DEIM is needed. This leads to a further speedup, such that
the solution of the reduced-order system takes only a fraction of seconds (compare,
e.g., [28, Table 5]). However, especially in the case of lower regularity of the
potential, we observe instabilities. In future research, we plan to derive a stable POD
reduced-order model including hyper-reduction for systems with nonlinearities of
low regularity. Moreover, we refer to [62] for an energy stable model order reduction
for the Allen–Cahn equation.

For further details on POD with space-adapted snapshots and additional numeri-
cal test runs, we refer to [28, 31].

The speedup in the computation times when replacing the high-fidelity finite-
element model by the POD reduced-order surrogate especially pays off in multi-
query scenarios like optimal control. In this case, a repeated solution of the
associated state and adjoint equations is necessary in order to find a minimum to
a given cost functional. We refer to [33] for an optimal control of a Cahn–Hilliard
system, where the control enters the equations as velocity in the transport term. A
reduced-order model using space-adapted snapshot data is used. A different optimal
control problem for the Cahn–Hilliard system is considered in [8], where the control
enters as a right-hand side in (4.2a). Within a POD trust-region framework according
to [5], the reduced-order model accuracy is evaluated by the Carter condition. This
guarantees a relative gradient accuracy and indicates whether an enlargement of
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the reduced dimension or a POD basis update with space-adapted snapshots at the
current optimization iterate is necessary.

4.4 Stable POD Reduced-Order Modeling for Navier–Stokes
with Space-Adapted Snapshots

Let us now consider the Navier–Stokes system (2.1a)–(2.1b) for a single-phase
system in strong form, i.e.,

∂tv + (v · ∇)v − 1

Re
�v + ∇p =f in (0, T )×�, (4.4a)

div v = 0 in (0, T )×�, (4.4b)

equipped with homogeneous Dirichlet boundary conditions v = 0 on ∂� and an
initial condition for the velocity (2.1f). In order to derive a fully discrete formulation
of (4.4), we first discretize in time using an implicit Euler scheme, which allows
to use a different (adaptive) finite-element space at each time instance. Let t0 =
0 < t1 < . . . tK−1 = T denote a time grid with constant time step size τ , and let
(V i

h,Q
i
h) for i = 0, . . . , K − 1 denote inf–sup stable Taylor–Hood finite-element

pairs. Then, the fully discrete Navier–Stokes systems reads as: for given v0
h = va ,

find v1
h ∈ V 1

h , . . . , v
K−1
h ∈ VK−1

h and p1
h ∈ Q1

h, . . . , p
K−1
h ∈ QK−1

h such that

(

vih − vi−1
h

τ
,w

)

+ ((vih · ∇)vih, w)+
1

Re
(∇vih,∇w)+ b(w, pih) = 〈f (ti), w〉

∀w ∈ V i
h,

(4.5a)

b(vih, q) = 0

∀q ∈ Qi
h,

(4.5b)

for i = 1, . . . , K − 1, where (·, ·) denotes the L2(�)-inner product and 〈·, ·〉 is
the duality pairing of H 1

0 (�) with H−1(�). Moreover, we introduce b(w, q) :=
−(q,∇·v) such that the strong-divergence-free condition (4.4b) is now postulated in
a weak form in (4.5b). In order to derive the POD reduced-order model, we compute
a POD basis from the space-adapted solutions from (4.5) according to Sect. 4.1. In
particular, we introduce reduced spaces V& and Q& for the velocity and pressure
and search for reduced approximations {v1

& , . . . , v
K−1
& } ∈ V& and {p1

& , . . . , p
K−1
& }
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such that
(

vi& − vi−1
&

�t
,w

)

+ ((vi& · ∇)vi&, w)+
1

Re
(∇vi&,∇w)+ b(w, pi&) = 〈f (ti), w〉

∀w ∈ V&,

(4.6a)

b(vi&, q) = 0

∀q ∈ Q&.

(4.6b)

The difficulty consists in the fact that stability of (4.6) is not ensured for all choices
of (V&,Q&). For this reason, in [32], we provide two solution concepts:

(i) A velocity ROM in the spirit of [58] using an optimal projection onto a weak-
divergence-free space

(ii) A velocity–pressure ROM using a supremizer stabilization technique in the
spirit of [17, 57]

In the first approach (i), we utilize the following optimal projection. For a given
function v ∈ X, find a reference function ṽ in a reference velocity function space Ṽ
such that it fulfills

min
u∈Ṽ

1

2
‖v − u‖2

X s.t. b(u, q) = 0 ∀q ∈ Q̃.

This projection is computed either for each of the space-adapted velocity snapshots
{v1
h, . . . , v

K−1
h } or for each of the velocity POD basis functions {ψv

1 , . . . , ψ
v
& }

computed from velocity snapshots according to (4.1). Then, a common weak-
divergence-free property is inherited in the reduced-order model, which leads to
a cancelation of the pressure term and continuity equation from (4.6), such that
the reduced system is stable by construction. Particular attention must be paid to
the treatment of inhomogeneous boundary conditions, for which we refer to [32,
Section 6] for details.

The second approach (ii) utilizes a supremizer enrichment technique. After
computing separate POD bases {ψv

1 , . . . , ψ
v
& } and {ψp

1 , . . . , ψ
p
& } for the velocity

and pressure, respectively, we enrich the reduced velocity space by stabilization
functions. These are computed as follows: for a given q ∈ L2

0(�) find Tq ∈ Ṽ such
that

(Tq, φ)H 1
0 (�)

= b(φ, q) ∀φ ∈ Ṽ .

Then, as supremizer functions, we choose {Tψp

1 , . . . ,Tψ
p
& }. The inf–sup stability

of the resulting velocity–pressure reduced-order model follows from the inf–sup
stability of the finite-element model, see [32, Section 5.2] for the proof.



Simulation and Control of a Nonsmooth Cahn–Hilliard Navier–Stokes System 237

5 Outlook

In the second phase of the Priority Programme 1962, we consider shape optimiza-
tion with instationary fluid flow in a diffuse interface setting. We will provide a
well-posed formulation for shape optimization in instationary fluids with general
cost functionals, which on the one hand allow for topological changes and impose
no geometric constraints on the optimal shape, and on the other hand overcome
some potential weaknesses of sharp interface models that are related to a loss
of robustness. Moreover, a phase-field approach provides flexibility in data-driven
model order reduction for efficient numerical shape optimization.

To achieve these goals, we combine the porous medium approach of [10] and
a phase-field approach including a regularization by the Ginzburg–Landau energy.
This results in a diffuse interface problem, which approximates a sharp interface
problem for shape optimization in fluids that is penalized by a perimeter term. The
related optimization problem then is a control in the coefficient optimal control
problem where the phase field represents the control. For the fast numerical solution
of those optimal control problems, we use POD-MOR techniques, which are based
upon the findings and methods presented in Sects. 3 and 4.

Acknowledgments Many thanks to Christian Kahle for providing software libraries for the
adaptive simulation and control of the Cahn–Hilliard Navier–Stokes system that we could use
to build on.
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Abstract This chapter presents a state-of-the-art survey for safeguarded augmented
Lagrangian methods for constrained optimization problems in Banach spaces. The
difference between the classical augmented Lagrangian method and its safeguarded
version lies in the update of the multiplier estimates. The safeguarded method has
significantly stronger global convergence properties than the classical algorithm.
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where X and Y are real Banach spaces, f : X → R and G : X → Y are
continuously differentiable functions, and C ⊆ X and K ⊆ Y are nonempty closed
convex sets. The feasible set of (P ) will be denoted by

� := {x ∈ C : G(x) ∈ K}.

To facilitate the application of the augmented Lagrangian technique, we assume that
i : Y ↪→ H densely for some real Hilbert spaceH . This implies that we are working
in the Gel’fand triple framework

Y
i
↪→ H ∼= H ∗ i∗

↪→ Y ∗. (1.2)

Furthermore, we assume that there is a closed convex set K ⊆ H such that i−1(K) =
K . This allows us to interpret the constraint G(x) ∈ K equivalently as G(x) ∈ K.
Note that we will usually suppress the embedding for the sake of brevity.

It should be stressed that the above framework is extremely general, and the
resulting augmented Lagrangian method therefore covers a very broad spectrum
of applications. Moreover, many prominent problem classes can be recovered as
special cases of (P ). Here, we apply the safeguarded augmented Lagrangian method
in order to solve (P ).

Historically, the augmented Lagrangian technique was first developed for nonlin-
ear programs (in finite dimension). Indeed, the algorithm goes back to the seminal
works by Hestenes [33] and Powell [65], and in its early days, it was commonly
referred to as the method of multipliers. The technique was further developed by
many authors in the later parts of the 20th century, including Rockafellar [68–70],
Bertsekas [9], and Conn, Gould, and Toint [21–23], who created the well-known
LANCELOT software package. The algorithm was rediscovered by Andreani,
Birgin, Martínez, and co-authors in [1, 2, 11, 12], a series of publications which
culminated in the book [13] and the corresponding ALGENCAN software package.

In today’s nonlinear programming landscape, algorithms such as interior point
methods [29, 31] or sequential quadratic programming [31, 45] are often preferred to
methods of augmented Lagrangian type, mainly due to their fast local convergence
characteristics. In contrast, the augmented Lagrangian method possesses very strong
global convergence properties, and it has been found to work rather well on degen-
erate problem classes such as problems with complementarity constraints [46]. A
state-of-the-art local convergence analysis of the ALM for nonlinear programming
is given in [27]. More discussion on nonlinear programming in general, and on the
corresponding algorithms, can be found in [9, 10, 24, 62] and in the encyclopedia
[28].

One of the main motivations for the generalization of augmented Lagrangian
methods to the level of generality represented by (P ) is the advent of function
space optimization problems. Some early references in this context include [6, 7, 39–
42, 76] and the book [30]. Most of these publications are restricted to very specific
problem settings such as convex optimization problems or finite-dimensional
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constraints. In [8, 43], an augmented Lagrangian-type penalty scheme was proposed,
in combination with a semismooth Newton method, for the solution of state-
constrained optimal control problems. The resulting method came to be known as
Moreau–Yosida regularization; it was further developed in [34, 35], and it is today
considered a standard approach for state-constrained optimal control [37, 44, 75].
Some other techniques for such problems include Lavrentiev regularization [36, 59],
interior point methods [56, 72], and the so-called virtual control approach [55],
which is related to the augmented Lagrangian technique [54].

The purpose of this chapter is to collect the recent developments and to
summarize the convergence theory of the safeguarded method applied to Banach
space optimization problems in a uniform framework. To this end, we first recall
some background material and state some preliminary results in Sect. 2. We then
provide a self-contained motivation of the augmented Lagrangian method in Sect. 3.
A state-of-the-art summary of the global and local convergence properties of the
augmented ALM is then provided in Sects. 4 and 5, respectively. Numerical results
for a variety of applications are given in Sect. 6. We then close the chapter with some
final remarks in Sect. 7.

2 Background Material

This chapter summarizes several concepts and results from optimization theory,
Banach spaces, and variational analysis which will be used later in our subsequent
convergence theory. Most results are known, so we refer to the existing literature;
occasionally, we provide a proof if either this proof is very short or we were not able
to find an explicit reference.

2.1 Cones

This section is dedicated to the study of some basic objects that are useful when
characterizing the geometric structure of sets in Banach spaces. Many aspects of
the geometry of sets can be characterized through the so-called cones (see below),
and these play a major role in variational analysis, convex analysis, and optimization
theory. The material discussed here incorporates elements from multiple books, e.g.,
[5, 14, 16].

Let S ⊆ X be a nonempty set. We say that S is a cone if αS ⊆ S for all α > 0.
Given an arbitrary set S ⊆ X, we denote by

S◦ := {φ ∈ X∗ : 〈φ, s〉 ≤ 0 for every s ∈ S}

the polar cone of S. Note that S◦ ⊆ X∗. If X is a real Hilbert space, we treat S◦ as
a subset of X.
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Definition 2.1 (Tangent and Normal Cones) Let C ⊆ X be an arbitrary set and
x ∈ C. Then, we define

(a) the tangent cone TC(x) as

TC(x) :=
{

d ∈ X : ∃{xk} ⊆ C, tk ↓ 0 such that xk → x and (xk−x)/tk → d
}

.

(b) the normal cone NC(x) as

NC(x) := {φ ∈ X∗ : 〈φ, y − x〉 ≤ 0 ∀y ∈ C}.

For x �∈ C, both cones are defined as the empty set.

If X is a real Hilbert space, we treat NC(x) as a subset of X instead of X∗. The
normal cone is always a closed set and satisfies the polarity relation

NC(x) = TC(x)◦,

which is sometimes also taken as the definition of the normal cone and makes sense
also for possibly nonconvex sets C. It should be noted, however, that there are a
variety of different normal cones for general sets (see, for instance, [60]). Therefore,
to avoid any ambiguity, we will reserve the symbol NC for the case where C is
convex.

The normal cone can be used to formulate a simple Fermat-type optimality
condition.

Theorem 2.2 (Necessary Optimality Condition, [16]) Let f : X → R be a
continuously differentiable mapping and C ⊆ X a nonempty closed convex set.
If x̄ is a local minimizer of f on C, then 0 ∈ f ′(x̄)+NC(x̄).

The following is a famous decomposition theorem involving a closed convex
cone in a Hilbert space and its polar.

Lemma 2.3 (Moreau Decomposition, [61]) Let H be a real Hilbert space and
K ⊆ H a nonempty closed convex cone. Then, every y ∈ H admits a unique
decomposition y = y1 + y2 with K . y1 ⊥ y2 ∈ K◦. Indeed, y1 = PK(y) and
y2 = PK◦(y).

We now turn to another object that describes some aspects of the geometric
structure of convex sets.

Definition 2.4 (Recession Cone) Let C ⊆ X be a nonempty convex set. Then, the
recession cone of C is the set C∞ := {x ∈ X : x + C ⊆ C}.

The recession cone is always nonempty (since 0 ∈ C∞) and a convex cone.
Moreover, if C is closed, then so is C∞. If the set C is a convex cone, then it is
easy to see that C∞ = C. On the other hand, if C is not a cone, then the recession
cone can often be used as a substitute for C in situations where a conical structure
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is necessary. This is the case, for instance, in the context of (partial) order relations,
which closely correspond to convex cones, see Sect. 2.2.

The following result provides some information on the polar coneC◦∞ := (C∞)◦.

Lemma 2.5 Let H be a real Hilbert space and C ⊆ H a nonempty convex set.
Then, {y ∈ H : supw∈C(w, y) < +∞} ⊆ C◦∞. In particular, NC(y) ⊆ C◦∞ for all
y ∈ C.

Proof Let y ∈ H be a point with (w, y) ≤ c for some c ∈ R and all w ∈ C. Let
x ∈ C∞, and choose an arbitrary x0 ∈ C. Then, x0+ tx ∈ C for all t > 0, and hence
(x0 + tx, y) ≤ c. This cannot hold for all t > 0 if (x, y) > 0. Hence, (x, y) ≤ 0,
and y ∈ C◦∞. ��

The set {y ∈ H : supw∈C(w, y) < +∞} in the statement of Lemma 2.5 is often
called the barrier cone ofC. Note that the inclusion stated in the lemma can be strict.
In particular, there are situations where the barrier cone is not closed, and this makes
it a priori impossible for it to equal C◦∞, which is always a closed cone by virtue of
polarity. An example for this phenomenon can be found in [5, Exercise 6.23].

2.2 Convex Functions and Concave Operators

Convex functions play a central role in optimization theory. Occasionally, we write
∂f (x) for the subdifferential of a convex function f in x, but most of the time the
underlying mapping f will be differentiable. One of the most fundamental examples
of a convex function is the distance function dC : X → R to a convex set C ⊆ X.
Note that the following result holds for an arbitrary Banach space X, not necessarily
a Hilbert space.

Lemma 2.6 (Distance Function, [5, 64]) Let C ⊆ X be a nonempty convex set.
Then, the function dC : X → R, dC(x) := infy∈C ‖x − y‖X, is convex and
nonexpansive.

It is easy to see that the square of a nonnegative convex function is again convex.
Thus, in the setting of Lemma 2.6, the squared distance function d2

C is also a convex
function. If the space X is a real Hilbert space, then the squared distance function
enjoys a much stronger form of regularity.

Lemma 2.7 ([5, Cor. 12.31]) Let X be a real Hilbert space and C ⊆ X a
nonempty closed convex set. Then, the squared distance function d2

C is convex and
continuously differentiable on X with (d2

C)
′(x) = 2(x − PC(x)) for all x ∈ X.

Recall that there exist several different continuity notions in infinite-dimensional
spaces, based on the topology used within these spaces or whether a (weak)
sequential continuity or (weak) lower semicontinuity is considered. The following
well-known result states that several continuity properties coincide within the class
of convex functions.
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Proposition 2.8 ([5, Thm. 9.1]) Let C ⊆ X be a closed convex set and f : C → R

a convex function. Then, the following are equivalent:

(i) f is lower semicontinuous,
(ii) f is weakly lower semicontinuous, and
(iii) f is weakly sequentially lower semicontinuous.

The theory of convex functions is useful for a wide variety of application
problems. There are, however, certain practical scenarios where convexity properties
of nonlinear operatorsG : X→ Y are necessary, with X and Y real Banach spaces.
More specifically, assume that we are dealing with an inclusion of the form

G(x) ∈ K, K ⊆ Y a closed convex set. (2.1)

Ideally, we would like to work with a generalized notion of convexity which takes
into account the mapping G and the geometry of the set K . To this end, assume for
the moment that the set K in (2.1) is a closed convex cone. Then, K induces the
order relation

a ≤K b :⇐⇒ b − a ∈ K, (2.2)

andK itself can be regarded as the nonnegative cone with respect to≤K . Thus, (2.1)
can be rewritten asG(x) ≥K 0, which suggests that the appropriate convexity notion
in this case is a generalized type of concavity with respect to the order relation ≤K .
This property takes on the form

G
(

(1− t)x + ty
) ≥K (1− t)G(x)+ tG(y) for all x, y ∈ X, t ∈ [0, 1].

The above property is usually called K-concavity, and it is in fact a special case of
the general concept which we define below. In the case where K is not a cone, the
recession cone K∞ turns out to be a useful substitute to define the order relation
(2.2).

Definition 2.9 (Concave Operator) Let G : X → Y be an arbitrary mapping and
K ⊆ Y a closed convex set with recession cone K∞. We say that G is K∞-concave
if

G
(

(1− t)x + ty
) ≥K (1− t)G(x)+ tG(y) for all x, y ∈ X, t ∈ [0, 1],

where ≤K is the order relation defined by a ≤K b :⇐⇒ b − a ∈ K∞.

Let us now discuss the analytical consequences of generalized convexity (or
concavity) in the sense of Definition 2.9. The resulting properties can be deduced
by discussing situations in which the K∞-concavity of G yields the (ordinary)
convexity of a suitable composite mapping involving G.

We say that a mapping m : Y → R is K∞-decreasing if it is monotonically
decreasing with respect to the order≤K , i.e., ifm(y1) ≤ m(y2)whenever y1 ≥K y2.
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Theorem 2.10 Let X and Y be real Banach spaces, K ⊆ Y a nonempty closed
convex set, and G : X→ Y a K∞-concave operator. Then,

(a) If m : Y → R is convex and K∞-decreasing, then m ◦G is convex.
(b) The function dK ◦G : X→ R is convex.
(c) If λ ∈ K◦∞, then x �→ 〈λ,G(x)〉 is convex.
(d) The setM := {x ∈ X : G(x) ∈ K} is convex.
Proof The proof can be found in [49, Lemma 2.1]. ��

2.3 Pseudomonotone Operators

We first recall the following notion of pseudomonotonicity in the sense of Brezis
[17].

Definition 2.11 (Pseudomonotonicity) We say that an operator F : X → X∗ is
pseudomonotone if whenever

{xk} ⊆ X, xk ⇀ x, and lim sup
k→∞

〈

F(xk), xk − x
〉 ≤ 0,

then

〈F(x), x − y〉 ≤ lim inf
k→∞

〈

F(xk), xk − y
〉

for all y ∈ X.

Despite its somewhat peculiar appearance, the notion of pseudomonotonicity
will play a fundamental role in the subsequent theory. Some sufficient conditions
for pseudomonotone operators are summarized in the following lemma. This result
illustrates that the class of pseudomonotone operators is quite large.

Lemma 2.12 (Sufficient Conditions for Pseudomonotonicity) Let X be a real
Banach space and T ,U : X→ X∗ given operators. Then,

(a) If T is monotone and continuous, then T is pseudomonotone.
(b) If, for every y ∈ X, the mapping x �→ 〈T (x), x − y〉 is weakly sequentially lsc,

then T is pseudomonotone.
(c) If T is completely continuous, then T is pseudomonotone.
(d) If T is continuous and dim(X) < +∞, then T is pseudomonotone.
(e) If T and U are pseudomonotone, then T + U is pseudomonotone.

Proof (b) is obvious. The remaining assertions can be found in [77, Prop. 27.6]. ��
It follows from the above observations that the concept of pseudomonotone

operators provides a unified approach to different classes of operators, including
monotone and completely continuous ones. Property (b) in the above lemma is
occasionally referred to as Ky–Fan hemicontinuity.
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2.4 KKT-Type Conditions

We define the Lagrange function or Lagrangian of (P ) as the mapping

L : X × Y ∗ → R, L(x, λ) := f (x)+ 〈λ,G(x)〉 (2.3)

and denote by L′ the derivative of the Lagrangian with respect to x alone. Note that
we do not include the abstract constraint C into the Lagrangian. The Lagrangian can
be used to formulate the KKT system of (P ) in the following way.

Definition 2.13 (KKT Point) A point (x̄, λ̄) ∈ X × Y ∗ is a KKT point of (P ) if

−L′(x̄, λ̄) ∈ NC(x̄) and λ̄ ∈ NK(G(x̄)).

We say that x̄ ∈ X is a stationary point of (P ) if (x̄, λ̄) is a KKT point for some
multiplier λ̄ ∈ Y ∗ and denote by �(x̄) the set of such multipliers.

For the KKT conditions to be necessary optimality conditions of (P ), certain
constraint qualifications are required; they ensure that the feasible set is well
behaved and that, roughly speaking, the reconstruction of its geometry from first-
order information is possible. One of the most fundamental constraint qualifications
in infinite dimensions is the following one.

Definition 2.14 (Robinson Constraint Qualification) Let x ∈ X be a feasible
point for (P ). We say that the Robinson constraint qualification (RCQ) holds in x if

0 ∈ int
[

G(x)+G′(x)(C − x)−K
]

.

The above condition was introduced by Robinson in [67] in the context of certain
stability properties of nonlinear inclusions. In the context of finite-dimensional non-
linear programs, RCQ turns out to be equivalent to the well-known Mangasarian–
Fromovitz constraint qualification. Under RCQ, the following first-order optimality
condition holds.

Theorem 2.15 (KKT Conditions Under RCQ, [14, Thm. 3.9]) Let x̄ be a local
minimizer of (P ), and assume that RCQ holds in x̄. Then, the set of Lagrange
multipliers �(x̄) is nonempty, closed, convex, and bounded in Y ∗.

In order to verify feasibility of (weak) limit points in our global convergence
analysis, we will also need the following straightforward generalization of RCQ to
possibly infeasible points. To keep a clear distinction, we call the resulting condition
the extended Robinson constraint qualification, though its definition is essentially
the same as for RCQ itself.

Definition 2.16 (Extended Robinson Constraint Qualification) Let x ∈ X be
an arbitrary, not necessarily feasible point. We say that the extended Robinson
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constraint qualification (extended RCQ, ERCQ) holds in x if

0 ∈ int
[

G(x)+G′(x)(C − x)−K
]

.

An important property of ERCQ is that it guarantees that, whenever x is a
stationary point of a certain measure of infeasibility, then x is actually a feasible
point. We formulate this result in a slightly more general framework. The proof can
be found in [15, Lemma 5.2].

Proposition 2.17 Let i : Y ↪→ H densely for some real Hilbert space H , and let
K ⊆ H be a closed convex set with i−1(K) = K . Let x̄ ∈ X be a stationary point
of the problem minx∈C d2

K(G(x)), and assume that ERCQ holds in x̄ with respect to
the constraint system of (P ). Then, G(x̄) ∈ K .

Assume now that we have a point x̂ which is “almost” a solution of (P ). A
popular definition in this context is that of ε-minimizers: given ε > 0, we say that
x̂ ∈ � is an ε-minimizer of (P ) if f (x̂) ≤ f (x) + ε for all x ∈ �. For such
approximate minimizers, it is indeed possible to obtain an inexact analog of the
KKT conditions. This result is usually called Ekeland’s variational principle.

Proposition 2.18 (Ekeland’s Variational Principle, [14, Thm. 3.23]) Let x̄ ∈ �

be an ε-minimizer of (P ), let δ := ε1/2, and assume that RCQ holds at every x ∈
Bδ(x̄) ∩ �. Then, there exist another ε-minimizer x̂ of (P ) and λ ∈ Y ∗ such that
‖x̂ − x̄‖X ≤ δ,

dist
(− L′(x̂, λ),NC(x̂)

) ≤ δ, and λ ∈ NK(G(x̂)).

Many practical algorithms for constrained optimization iteratively construct
a primal–dual sequence {(xk, λk)}, which satisfies the KKT conditions in an
asymptotic sense. This motivates to analyze such “sequential” analogues of the KKT
conditions in more detail. The subsequent notion is also used by similar approaches
in finite dimensions, see [3, 4, 13].

Definition 2.19 (Asymptotic KKT Sequence) We say that a sequence {(xk, λk)} ⊆
C × Y ∗ is an asymptotic KKT sequence for (P ) if there exist null sequences
{εk} ⊆ X∗ and {rk} ⊆ R such that, for all k,

εk − L′(xk, λk) ∈ NC(x
k) and

〈

λk, y −G(xk)
〉 ≤ rk ∀y ∈ K. (2.4)

Our main aim in this section is to give sufficient conditions which guarantee that,
if {(xk, λk)} is an asymptotic KKT sequence and x̄ is a (possibly weak) limit point
of {xk}, then x̄ is a stationary point of (P ). In this context, it is worth mentioning that
Definition 2.19 imposes no conditions on the attainment of feasibility. This aspect is
left unspecified for the sake of flexibility; indeed, we will mainly be concerned with
scenarios where x̄ is some kind of limit point of {xk}, and we already know from a
preliminary analysis that x̄ is a feasible point.



250 C. Kanzow et al.

Note that, while the conditions posed in Definition 2.19 seem reasonably weak, it
is possible to generalize the asymptotic KKT concept even further. In particular, in
our formulation, the second inequality in (2.4) is assumed to hold uniformly on K .
If K is unbounded, then it may be more natural to require some kind of uniformness
of the inequality on bounded subsets of K . In any case, however, the augmented
Lagrangian method that we will discuss later satisfies the uniform bound from (2.4),
and a more general analysis is therefore not necessary for our purposes.

3 Motivation and Statement of the Algorithm

This section first recalls the original method of multipliers for equality constraints.
It then presents a self-contained and simple approach for its generalization to
abstract inequality constraints (in a Banach space setting). Finally, we give a formal
statement of the overall method for a general problem of the form (P ) and prove
some preliminary properties of this method.

3.1 The Original Method of Multipliers

In its initial form, the method of multipliers is an algorithm for the solution of
equality-constrained minimization problems in finite dimensions. Here, we present
this original method in a slightly more general framework. Consider an equality-
constrained optimization problem of the form

minimize
x∈C f (x) subject to h(x) = 0, (3.1)

where f : X→ R, C ⊆ X is a closed convex set, and h : X→ H . We assume that
X is a real Banach space and that H is a real Hilbert space. In the special case of
the original method of multipliers, we have X := R

n, H := R
m with m, n ∈ N, and

C := X.
The basic idea is to tackle (3.1) by combining elements of Lagrangian theory

with a penalty-type scheme. Recall that the Lagrangian of the problem takes on the
form L(x, λ) = f (x) + (

λ, h(x)
)

. By adding a positive multiple of ‖h(x)‖2
H , we

penalize the violation of the equality constraint, thus ending up with the augmented
Lagrangian

Lρ(x, λ) := f (x)+ (

λ, h(x)
)+ ρ

2
‖h(x)‖2

H . (3.2)

From an algorithmic perspective, we now proceed as follows. Given a penalty
parameter ρk and a current estimate λk of the Lagrange multiplier, we compute
xk+1 as a minimizer (or approximate minimizer) of (3.2) on C so that, ideally,
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xk+1 is close to feasibility (if ρk is large) and close to being a minimizer of the
Lagrangian L(·, λk). Let us assume, for the moment, that the functions f and h are
continuously differentiable and that xk+1 is an exact minimizer of Lρk (·, λk) on C.
Then, the standard first-order optimality conditions yield the inclusion

NC(x
k+1) . −L′ρk (xk+1, λk) = −f ′(xk+1)− h′(xk+1)∗(λk + ρkh(x

k+1)).

This immediately suggests λk+1 := λk + ρkh(x
k+1) as the new estimate of the

Lagrange multiplier, which is often called the Hestenes–Powell multiplier update.
After the above procedure is completed, the penalty parameter is updated based

on a heuristic test. The most common option is to keep ρk if the constraint violation
has decreased sufficiently, and to increase it otherwise. We thus end up with the
following overall algorithm.

Algorithm 3.1 Original method of multipliers

Let (x0, λ0) ∈ X ×H , ρ0 > 0, let γ > 1, τ ∈ (0, 1), and set k := 0.

Step 1. If (xk, λk) satisfies a suitable termination criterion, STOP.
Step 2. Compute an approximate solution xk+1 of the problem

minimize
x∈C Lρk (x, λ

k). (3.3)

Step 3. Update the vector of multipliers to λk+1 := λk + ρkh(x
k+1).

Step 4. If ‖h(xk+1)‖H ≤ τ‖h(xk)‖H holds, set ρk+1 := ρk ; otherwise, set ρk+1 := γρk .
Step 5. Set k ← k + 1, and go to Step 1.

3.2 Inequality Constraints and Slack Variables

Having established the classical multiplier method for equality-constrained prob-
lems, we now outline how the algorithm can be extended to the inequality-
constrained case. To this end, we consider an optimization problem of the form
(P ), that is,

minimize
x∈C f (x) subject to G(x) ∈ K,

where, as before, f : X→ R and G : X→ Y are given mappings, and C ⊆ X and
K ⊆ Y are nonempty closed convex sets. Moreover, H is a real Hilbert space with
i : Y ↪→ H densely, and K ⊆ H is a closed convex set with i−1(K) = K . In this
setting, we can restate (P ) as the problem

(PH ) minimize
x∈C f (x) subject to G(x) ∈ K. (3.4)
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We can transform this problem into an equality-constrained problem by adding an
artificial variable s ∈ K, also called a slack variable. This results in the equality-
constrained problem

minimize
(x,s)∈C×K

f (x) subject to G(x)− s = 0.

In the context of the equality-constrained framework (3.1) from the previous section,
this essentially amounts to defining the mapping h : X × H → H , h(x, s) :=
G(x) − s. The new problem is now an equality-constrained optimization problem
on the space X×H , and its augmented Lagrangian in the sense of (3.2) is given by

Ls
ρ(x, s, λ) = f (x)+ (

λ, h(x, s)
)+ ρ

2
‖h(x, s)‖2

H . (3.5)

In order to transform the augmented Lagrangian into a form where s is eliminated,
observe that we can rewrite Ls

ρ as

Ls
ρ(x, s, λ) = f (x)+ ρ

2

∥

∥

∥

∥

G(x)+ λ

ρ
− s

∥

∥

∥

∥

2

H

− ‖λ‖2
H

2ρ
. (3.6)

Taking into account the constraint s ∈ K, we can now minimize this formula with
respect to s for each fixed x ∈ X. Since s occurs only in the middle term, the result
involves, by definition, the squared distance function d2

K.

Definition 3.2 (Augmented Lagrange Function) For ρ > 0, the augmented
Lagrange function or augmented Lagrangian of (P ) is the function

Lρ : X ×H → R, Lρ(x, λ) := f (x)+ ρ

2
d2
K

(

G(x)+ λ

ρ

)

− ‖λ‖2
H

2ρ
. (3.7)

Before discussing some other observations and consequences of the slack vari-
able approach, we first give some general properties of the augmented Lagrangian.

Proposition 3.3 LetLρ : X×H → R be the augmented Lagrangian (3.7). Then,

(a) Lρ is concave and continuously differentiable with respect to λ.
(b) If f is convex and G is K∞-concave, then Lρ is convex with respect to x.
(c) If f and G are continuously differentiable, then Lρ is so with respect to x.
(d) If x ∈ X is a feasible point, then Lρ(x, λ) ≤ f (x) for all x ∈ X and λ ∈ H .

Proof

(a) The concavity follows from the fact that Lρ(x, ·) is an infimum of affine
functions by (3.5), and the continuous differentiability follows from that of d2

K.
(b) This is a consequence of Theorem 2.10.
(c) This follows again from the continuous differentiability of d2

K.
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(d) If G(x) ∈ K, then dK(G(x)+ λ/ρ) ≤ ‖λ‖H/ρ by the nonexpansiveness of the
distance function. Hence, Lρ(x, λ) ≤ f (x)+ (ρ/2)‖λ‖2

H/ρ
2 − ‖λ‖2

H/(2ρ) =
f (x).

��
Let us close this section by mentioning some byproducts of the slack variable

approach. For fixed λ and ρ, the minimizing value of s in (3.6) is given by s̄(x) :=
PK(G(x)+ λ/ρ). It follows that

h(x, s̄(x)) = G(x)− PK

(

G(x)+ λ

ρ

)

. (3.8)

Recall that, in the original method of multipliers (Algorithm 3.1), the norm of the
equality constraint was used to determine whether the penalty parameter ρk should
be increased after a given iteration. The above calculations suggest that (3.8) should
be used to control ρk in the general case.

Another byproduct of the slack variable technique is a natural candidate for
the Lagrange multiplier update. Assume that λk ∈ H is a given estimate of the
Lagrange multiplier of (PH ), that ρk > 0, and xk+1 is the next primal iterate
(typically, some kind of minimizer of Lρk (·, λk)). Taking into account the update
rule in Algorithm 3.1, the next dual iterate is given by

λk+1 = λk +ρkh(x
k+1, s̄(xk+1)) = ρk

[

G(xk+1)+ λk

ρk
− PK

(

G(xk+1)+ λk

ρk

)]

.

This formula will play a fundamental role in the subsequent algorithms. Note that
the above updating scheme can also be motivated (in the differentiable case) by
looking at the stationarity condition of Lρk (·, λk), evaluated in xk+1.

3.3 The Algorithm

This section presents the main algorithmic framework for the remainder of this
chapter. It is based on the method of multipliers from Sect. 3.1 and the slack variable
transformation from Sect. 3.2, but it differs from the original multiplier method
in one key aspect: the use of a safeguarded multiplier sequence. This will be the
main tool to obtain much sharper (global) convergence assertions than those that are
possible for the traditional algorithm.

Recall that we are dealing with a problem of the form (P ), that we are working in
the Gel’fand triple framework (1.2), and that K ⊆ H is a nonempty closed convex
set with i−1(K) = K . The algorithm now proceeds by augmenting the constraint
G(x) ∈ K in the space H . This means that, in a sense, we are not really attempting
to solve (P ) but the transformed problem (PH ). Nevertheless, we will see that
many convergence properties of the augmented Lagrangian method can be stated



254 C. Kanzow et al.

accurately in terms of (P ) (using, for instance, constraint qualifications for that
problem).

For the precise specification of the method below, we will need a means of
controlling the penalty parameter ρ. Motivated by (3.8), it is natural to use the
function

V (x, λ, ρ) =
∥

∥

∥

∥

G(x)− PK

(

G(x)+ λ

ρ

)∥

∥

∥

∥

H

, (3.9)

which can be seen as a composite measure of feasibility and complementarity at
the current iterates. Using this function, the augmented Lagrangian method can be
given as follows.

Algorithm 3.4 ALM for constrained optimization

Let (x0, λ0) ∈ X ×H , ρ0 > 0, let B ⊆ H be a nonempty bounded set, γ > 1, τ ∈ (0, 1), and set
k := 0.

Step 1. If (xk, λk) satisfies a suitable termination criterion, STOP.
Step 2. Choose wk ∈ B, and compute an approximate solution xk+1 of the problem

minimize
x∈C Lρk (x,w

k). (3.10)

Step 3. Update the vector of multipliers to

λk+1 := ρk

[

G(xk+1)+ wk

ρk
− PK

(

G(xk+1)+ wk

ρk

)]

. (3.11)

Step 4. Let Vk+1 := V (xk+1, wk, ρk), and set

ρk+1 :=
{

ρk, if k = 0 or Vk+1 ≤ τVk,

γρk, otherwise.
(3.12)

Step 5. Set k ← k + 1, and go to Step 1.

Some remarks are in order. First among them is the fact that we have not
specified what constitutes an “approximate solution” in Step 2. There are multiple
options in this regard. For instance, we could require that xk+1 is an (approximate)
global minimizer of Lρk (·, wk). This is probably the simplest assumption from a
theoretical point of view, but it is effectively restricted to problems where some
form of convexity is present. On the other hand, we could also require that xk+1 is
some kind of approximate stationary point of (3.10). This is more realistic in the
nonconvex case, but it is also more intricate to deal with in theoretical terms. We
will analyze both these approaches individually in the subsequent sections.

In practical terms, the augmented subproblems are typically solved by applying
an appropriate generalized Newton method. The necessity for such methods stems
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from the fact that the augmented Lagrangian is once but in general not twice
continuously differentiable with respect to x.

The second remark pertains to the sequence {wk}, which will occasionally be
referred to as the safeguarded (Lagrange) multiplier sequence. The presence of
wk can be seen as the distinctive feature of the algorithm, and it separates the
method from traditional augmented Lagrangian schemes. Indeed, in Algorithm 3.4,
we use wk in certain places where conventional algorithms simply use λk . The main
motivation is that wk is always a bounded sequence (it is specifically required to be
so), and this is the main ingredient to obtain sharper global convergence results. As a
consequence, the above algorithm has strictly stronger convergence properties than
its traditional counterpart. An actual example demonstrating this fact is somewhat
involved and given in [47]; see also the discussion at the end of Sect. 4. Note that,
despite the boundedness of {wk}, the sequence {λk} in Algorithm 3.4 can still be
unbounded. The actual choice of wk allows for a certain degree of freedom. For
instance, we could always choose wk := 0, thus obtaining an algorithm that is
essentially a quadratic penalty method. In practice, it is usually advantageous to
keep wk as close as possible to λk , for instance, by choosing the set B as a simple
but large bounded set, and taking

wk := PB(λ
k)

for all k. This choice has the advantage that, if the sequence {λk} is indeed bounded
and the set B is large enough, then we can expect to have wk = λk for all k. On
the other hand, if {λk} is unbounded, then the safeguarding scheme will prevent wk

from escaping to infinity.
Finally, let us remark that the penalty updating scheme in (3.12) makes a

distinction between the cases k = 0 and k ≥ 1. This is because the value
V0 is formally undefined since we do not have w−1 and ρ−1. In practice, it is
often beneficial to treat this initial step differently, for instance, by simply setting
w−1 := w0, ρ−1 := ρ0 and performing the penalty update in the same way as for
k ≥ 1. In any case, the treatment of this initial step has no impact on the convergence
theory. The nature of the multiplier update allows us to state two assertions that hold
completely independently of xk+1, cf. [50].

Lemma 3.5 We have λk ∈ K◦∞ for all k. Moreover, there is a null sequence {rk} ⊆
R+ such that

(

λk, y −G(xk)
) ≤ rk for all y ∈ K and k ∈ N.

Remark 3.6 (Cone Constraints) If the set K is a closed convex cone, then the
multiplier update (3.11) in Algorithm simplifies to λk+1 = PK◦(wk + ρkG(x

k+1)).
This follows immediately from the Moreau decomposition, cf. Lemma 2.3.

Remark 3.7 (Dual Interpretation) The dual update of the classical augmented
Lagrangian is known to be equivalent to the proximal-point iteration applied to the
dual optimization problem. A similar interpretation is possible for the safeguarded
augmented Lagrangian where the dual update can be seen as a shifted Tikhonov
regularization method; see [48] for more details.
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Remark 3.8 (Nonlinear Programs) Consider the nonlinear program

min f (x) s.t. h(x) = 0, g(x) ≤ 0

with continuously differentiable functions f, gi, hj : Rn → R for all components
i = 1, . . . , m and j = 1, . . . , p. This nonlinear program can be viewed as a special
case of our general framework (P ) by taking, e.g.,

X = R
n, C = R

n,G :=
(

h

g

)

,K := {0}p × (−∞, 0]m.

In this case, writing λ =: (μ, η) for the multipliers of the equality and inequality
constraints, the squared distance function is given by

d2
K

(

G(x)+ η

ρ

)

=
p

∑

j=1

(

hj (x)+ μj

ρ

)2 +
m

∑

i=1

max2
{

0, gi(x)+ ηi

ρ

}

.

Plugging this into the definition of the augmented Lagrangian, an elementary
calculation shows that this function simplifies to

Lρ(x, μ, η) = f (x)+ ρ

2
‖h(x)‖2

2+μT h(x)+
1

2ρ

m
∑

i=1

[

max2{0, ηi+ρgi(x)
}−η2

i

]

,

which is the usual augmented Lagrangian for nonlinear programs with equality and
inequality constraints.

Remark 3.9 (Simplified Augmented Lagrangian) In each iteration, Algorithm 3.4
minimizes the augmented Lagrangian with respect to x, for fixed wk . Since
this minimization procedure does not depend on the last term of our augmented
Lagrangian, we would obtain the same sequence using the simplified Lagrangian

f (x)+ ρ

2
d2
K

(

G(x)+ λ

ρ

)

.

In fact, this is precisely the augmented Lagrangian used in [52]. On the other
hand, this simplification changes the dual point of view completely and also gives
a different function for finite-dimensional nonlinear programs, cf. Remarks 3.7
and 3.8.

Remark 3.10 (Moreau–Yosida Regularization) Algorithm 3.4 allows to take {wk}
as the null sequence. This choice corresponds to the classical quadratic penalty
approach and is better known under the name Moreau–Yosida regularization in
the current context, cf. [34, 35]. The multiplier update in the Moreau–Yosida
regularization usually allows a shift. In any case, the subsequent convergence theory
also covers this (shifted) Moreau–Yosida regularization.
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4 Global Convergence Theory

In this section, we present the global convergence characteristics of Algorithm 3.4.
To this end, we first establish a result regarding the existence of solutions of the
penalized subproblems in Sect. 4.1. The next two sections consider the convergence
to global minimizers and stationary points, respectively, depending on the degree
by which we solve the penalized subproblems. The results are taken from the recent
paper [15] and can be viewed as improvements from those presented in [52], where
suitable feasibility and stationarity results were shown for strong limit points.

4.1 Existence of Penalized Solutions

In most situations, the augmented Lagrangian Lρ(·, w) is bounded from below on
C. This is satisfied, in particular, if f itself is already bounded from below on
C, or if, roughly speaking, the penalty parameter is sufficiently large to make Lρ

coercive on the infeasible set. In any case, if Lρ(·, w) is bounded from below on
C, then the augmented subproblems necessarily admit approximate minimizers. In
the following, x̂ ∈ C is called an ε-minimizer of a function L : X → R on C if
L(x̂) ≤ L(x)+ ε for all x ∈ C.

Proposition 4.1 Let w ∈ H , ρ > 0, and assume that the augmented Lagrangian
Lρ(·, w) is bounded from below on C. Then, the following assertions hold:

(a) For any ε > 0, there is an ε-minimizer xε ∈ C of Lρ(·, w) on C.
(b) If the functions f andG are continuously differentiable, then we can choose xε

so that it additionally satisfies dist(−L′ρ(xε, w),NC(xε)) ≤ ε1/2.

Proof The first assertion follows from the lower boundedness assumption. The
second property is a consequence of Ekeland’s variational principle. ��

We now discuss the existence of exact minimizers. The main proof technique
is the direct method of the calculus of variations. For this, we need an appropriate
kind of lower semicontinuity of the augmented Lagrangian. The following lemma
provides two sufficient conditions for this property.

Lemma 4.2 Assume that f is weakly sequentially lsc and G is either

(i) continuous and K∞-concave or
(ii) weakly sequentially continuous.

Then, for each ρ > 0 and w ∈ H , the augmented Lagrangian Lρ(·, w) is weakly
sequentially lsc on X.

Proof Let w ∈ H and ρ > 0. It suffices to verify the weak sequential lower
semicontinuity of the function h(x) := d2

K(G(x)+w/ρ). Observe that dK is weakly
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sequentially lsc by Proposition 2.8. Hence, under (ii), we immediately obtain the
same for h.

Consider now (i). In that case, the function h is convex (by Theorem 2.10) and
continuous, thus again weakly sequentially lsc by Proposition 2.8. ��

The weak sequential lower semicontinuity of the augmented Lagrangian yields
the existence of penalized solutions if we assume either the weak compactness of
the set C or an appropriate growth condition. We say that a function J : X → R is
coercive if J (xk)→+∞ whenever {xk} ⊆ X and ‖xk‖X →+∞.

Corollary 4.3 Let w ∈ H , ρ > 0, and let one of the conditions in Lemma 4.2 be
satisfied. If either

(i) C is weakly compact or
(ii) X is reflexive and Lρ(·, w) is coercive,
then the problem minx∈C Lρ(x,w) admits a global minimizer.

Clearly, a sufficient condition for the coercivity of the augmented Lagrangian
is that of the objective function f . Even if this property does not hold, then it is
common for Lρ(·, w) to be coercive if, roughly speaking, the objective function is
coercive on the feasible set � and not too badly behaved outside of it. In that case,
the penalty term in (3.7) yields the coercivity of Lρ(·, w) on the complement of �.

4.2 Convergence to Global Minimizers

In this section, we analyze the convergence properties of Algorithm 3.4 under the
assumption that we can solve the subproblems in an (essentially) global sense. This
is of course a rather restrictive requirement and can, in general, only be expected
under certain convexity assumptions. However, the resulting theory is still appealing
due to its simplicity. Indeed, the results below merely require some rather mild form
of continuity (no differentiability) and can easily be extended to the case where the
function f is extended valued, i.e., it is allowed to take on the value +∞.

Assumption 4.4 (Global Minimization) We assume that f and dK ◦ G are weakly
sequentially lsc on C and that xk ∈ C for all k. Moreover, for every x ∈ C, there is
a null sequence {εk} ⊆ R such that Lρk (x

k+1, wk) ≤ Lρk (x,w
k)+ εk+1 for all k.

Recall that, for convex functions, weak sequential lower semicontinuity is
implied by ordinary continuity. Thus, if f is a continuous convex function, then
f is weakly sequentially lsc.

A similar comment applies to the weak sequential lower semicontinuity of the
function dK ◦ G. Indeed, there are two rather general situations in which this
condition is satisfied: if G is weakly sequentially continuous, then dK ◦ G is
weakly sequentially lsc since dK is so by Proposition 2.8. On the other hand, if
G is continuous and K∞-concave in the sense of Definition 2.9, then dK ◦ G is a



Safeguarded Augmented Lagrangian Methods in Banach Spaces 259

continuous convex function (by Theorem 2.10) and thus again weakly sequentially
lsc. Let us also remark that, if G is continuous and affine, then both the above cases
apply.

Finally, another salient feature of Assumption 4.4 is the dependence of the
sequence {εk} on the comparison point x ∈ C. The motivation behind this is that,
if (P ) is a smooth convex problem and the point xk+1 is “nearly stationary” in the
sense that dist(−L′ρk (xk+1, wk),NC(x

k+1)) ≤ δ for some (small) δ > 0, then, by
convexity, we obtain an estimate of the form

Lρk (x,w
k) ≥ Lρk (x

k+1, wk)+ L′ρk (x
k+1, wk)(x − xk+1)

≥ Lρk (x
k+1, wk)− δ‖xk+1 − x‖X.

This suggests that we should allow the sequence {εk} in Assumption 4.4 to depend
on the point x. In any case, the stated assumption is satisfied automatically if xk+1

is a global εk+1-minimizer of Lρk (·, wk) for some null sequence {εk}.
We now turn to the convergence analysis of Algorithm 3.4 under Assumption 4.4.

The theory is divided into separate analyses of feasibility and optimality. Since
the augmented Lagrangian method is, at its heart, a penalty-type algorithm, the
attainment of feasibility is particularly important for the success of the algorithm.
A closer look at the definition of the augmented Lagrangian suggests that, if ρ is
large, then the minimization of Lρ essentially reduces to that of the infeasibility
measure d2

K(G(x)). Hence, we can expect (weak) limit points of the sequence {xk}
to be minimizers of this auxiliary function, which means that, roughly speaking,
these points are “as feasible as possible.” A precise statement of this assertion can
be found in the following lemma.

Lemma 4.5 Let {xk} be generated by Algorithm 3.4, let Assumption 4.4 hold, and
let x̄ be a weak limit point of {xk}. Then, x̄ is a global minimizer of the function
dK ◦G on C. In particular, if the feasible set of (P ) is nonempty, then x̄ is feasible.

Let us now turn to the optimality part.

Theorem 4.6 Let {xk} be generated by Algorithm 3.4, let Assumption 4.4 hold, and
assume that the feasible set of (P ) is nonempty. Then, lim supk→∞ f (xk+1) ≤ f (x)

for every x ∈ �. Moreover, every weak limit point of {xk} is a global solution of
(P ).

If the problem is convex with strongly convex objective, then it is possible to
considerably strengthen the results of the previous theorem. Recall that, in this case,
the weak sequential lower semicontinuity of f from Assumption 4.4 is implied
by (ordinary) continuity. Recall also that a sufficient condition for the convexity
of the feasible set � is the K∞-concavity of G. Moreover, if G is K∞-concave,
then the distance function dK ◦ G is convex, and thus the weak sequential lower
semicontinuity from Assumption 4.4 is implied by (ordinary) continuity of G.
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Corollary 4.7 Let {xk} be generated by Algorithm 3.4, and let Assumption 4.4 hold.
Assume that X is reflexive, f is strongly convex on C, and the feasible set of (P ) is
nonempty and convex. Then, {xk} converges strongly to the unique solution of (P ).

4.3 Stationarity of Limit Points

The theory on global minimization in the preceding section is certainly appealing
from a theoretical point of view. However, the practical relevance of the corre-
sponding results is essentially limited to problems where some form of convexity is
present. It therefore seems natural to conduct a dedicated analysis for the augmented
Lagrangian method, which, instead of global minimization, takes into account
suitable stationary concepts.

The present section is dedicated to precisely the approach described above.
To that end, we assume that the functions defining the optimization problem are
continuously differentiable and that we are able to compute local minimizers or
stationary points of the subproblems (3.10), which occur in the algorithm. Recall
that the first-order optimality conditions of these problems are given by

−L′ρk (x,wk) ∈ NC(x).

Similarly to the previous section, we will allow for certain inexactness terms.
A natural way of doing this is by considering the inexact first-order optimality
condition

εk+1 − L′ρk (x,w
k) ∈ NC(x),

where εk+1 ∈ X∗ is an error term. For k → ∞, the degree of inexactness should
vanish in the sense that εk → 0. Hence, we arrive at the following assumption.

Assumption 4.8 (Convergence to KKT Points) We assume that

(i) f and G are continuously differentiable on X,
(ii) the derivative f ′ is bounded and pseudomonotone,

(iii) G and G′ are completely continuous on C, and
(iv) xk+1 ∈ C and εk+1 − L′ρk (x

k+1, wk) ∈ NC(x
k+1) for all k, where εk → 0.

Recall that Lρk is continuously differentiable by Proposition 3.3. The derivative
L′ρk (with respect to x) is given by

L′ρk (x,w
k) = f ′(x)+ ρkG

′(x)∗
[

G(x)+ wk

ρk
− PK

(

G(x)+ wk

ρk

)]

. (4.1)

In particular, it holds that L′ρk (x
k+1, wk) = L′(xk+1, λk+1).
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As in the previous section, we treat the questions of feasibility and optimality in
a separate manner. For the feasibility part, we relate the augmented Lagrangian to
the infeasibility measure d2

K ◦G.

Lemma 4.9 Let {xk} be generated by Algorithm 3.4 under Assumption 4.8, and
let x̄ be a weak limit point of {xk}. Then, x̄ is a stationary point of the problem
minx∈C d2

K(G(x)).

The above lemma indicates that weak limit points of the sequence {xk} have
a strong tendency to be feasible points. Apart from the heuristic appeal of the
result, there are several nontrivial cases where Lemma 4.9 automatically implies
the feasibility of the limit point x̄. Here, two cases in particular deserve a special
mention: first, let us assume that the mapping G is K∞-concave in the sense of
Definition 2.9 (for instance, G could be affine). In this case, the function d2

K ◦G is
convex by Theorem 2.10, and it follows that x̄ is a global minimizer of this function.
Hence, if the feasible set � is nonempty, then x̄ ∈ �. The second interesting case
arises if the point x̄ satisfies the extended Robinson constraint qualification from
Definition 2.16. In this case, the feasibility of x̄ follows from Proposition 2.17.

We now analyze the optimality properties of limit points. The main result in this
direction is the following.

Theorem 4.10 Let {(xk, λk)} be generated by Algorithm 3.4 under Assumption 4.8,
let xk+1 ⇀I x̄ for some index set I ⊆ N, and let x̄ satisfy ERCQ with respect to
the constraint system of (P ). Then, x̄ is a stationary point of (P ), the sequence
{λk+1}k∈I is bounded in Y ∗, and each of its weak-∗ limit points belongs to �(x̄).

Observe that the sequence {λk} is only bounded in Y ∗ and not necessarily in H .
If the extended RCQ holds with respect to the transformed constraint G(x) ∈ K
(instead of the original condition G(x) ∈ K), then the result remains true with Y ∗
replaced by H . However, this assumption is too restrictive for many applications,
in particular, those where (P ) is regular (in the constraint qualification sense) with
respect to the original space Y , but not with respect to the larger space H .

Remark 4.11 If we know from the specific problem structure or from some other
convergence result (e.g., Corollary 4.7) that the sequence {xk} or one of its subse-
quences is strongly convergent, then we can dispense with the pseudomonotonicity
and complete continuity assumptions. In this case, the assertions of Lemma 4.9 and
Theorem 4.10 remain true under Assumption 4.8 (i) and (iv) only.

We now return to the general case and provide two additional results that can be
useful to obtain convergence in certain special cases. First, let us consider the case of
convex constraints. The resulting theorem requires neither the complete continuity
of G or G′ nor any constraint qualification.

Proposition 4.12 Let {xk} be generated by Algorithm 3.4, let Assumption 4.8
(i), (ii), and (iv) hold, let G be K∞-concave on C, and assume that � is nonempty.
Then, every weak limit point x̄ of {xk} satisfies x̄ ∈ � and f ′(x̄)d ≥ 0 for all
d ∈ T�(x̄).
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Proof Let xk+1 ⇀I x̄ for some subset I ⊆ N. The feasibility of x̄ follows from
Lemma 4.9 and the discussion below. For the optimality, let y ∈ � be any feasible
point. Then, 〈L′ρk (xk+1, wk), y−xk+1〉 ≥ 〈εk+1, y−xk+1〉 by Assumption 4.8 and
using L′ρk (x

k+1, wk+1) = L′(xk+1, λk+1), we obtain

〈

εk+1, y − xk+1〉 ≤ 〈

f ′(xk+1)+G′(xk+1)∗λk+1, y − xk+1〉

= 〈

f ′(xk+1), y − xk+1〉+ (

λk+1,G′(xk+1)(y − xk+1)
)

≤ 〈

f ′(xk+1), y − xk+1〉+ (

λk+1,G(y)−G(xk+1)
)

,

where we used the fact that x �→ (λk+1,G(x)) is convex by Theorem 2.10 and
Lemma 3.5. Using again Lemma 3.5, we now obtain 〈f ′(xk+1), y − xk+1〉 ≥
〈εk+1, y − xk+1〉 + rk+1 with a null sequence {rk} ⊆ R. Since x̄ ∈ �, we obtain
in particular that lim infk→∞〈f ′(xk), x̄ − xk〉 ≥ 0. The pseudomonotonicity of f ′
therefore implies that

〈f ′(x̄), y − x̄〉 ≥ lim sup
k→∞

〈f ′(xk), y − xk〉 ≥ 0 ∀y ∈ �,

and the proof is complete. ��
Another special case arises if C = X and the operator G′(x̄) is surjective, where
x̄ is again a weak limit point of the sequence {xk}. If we already know (e.g., by
Proposition 4.12) that x̄ is a stationary point of (P ), then it is possible to prove the
weak-∗ convergence of a subsequence of {λk} under weaker assumptions than those
in Theorem 4.10. Indeed, it is possible to obtain a convergence result for asymptotic
KKT sequences under only the convergence G′(xk)→ G′(x), with no convergence
of the values G(xk). We will see later that this is crucial for obtaining convergence
for Bratu’s obstacle problem, see Sect. 6.2, where G : H 1

0 (�)→ H 1
0 (�), G(x) :=

x − ψ , with ψ ∈ H 1
0 (�). In particular, G is obviously not completely continuous,

but for xk ⇀ x̄, it holds G′(xk)→ G′(x̄). We need the following auxiliary results.
The first theorem is a slightly more general version of the Banach open mapping
theorem.

Theorem 4.13 (Uniform Open Mapping Theorem) Let X and Y be real Banach
spaces and A ∈ L(X, Y ) a surjective linear operator. Then, there exists r > 0 such
that BY

r ⊆ A(BX
1 ) and, whenever T ∈ L(X, Y ) and δ := ‖T − A‖L(X,Y ) < r , then

BY
r−δ ⊆ T (BX

1 ).

Proof The first assertion is the Banach open mapping theorem. For the proof of the
second assertion, we refer the reader to [25, Thm. 1.2] or [26, Thm. 5D.2]. ��

The second theorem states a convergence result for asymptotic KKT sequences
under only the convergence G′(xk) → G′(x), with no convergence of the values
G(xk). We state this result in a slightly more general framework.
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Proposition 4.14 Let {xk} ⊆ X, {Tk} ⊆ L(X, Y ), and {λk} ⊆ Y ∗ be sequences

such that F(xk)+T ∗k λk
∗
⇀ 0. Assume that xk ⇀ x̄ for some x̄ ∈ X, F(xk)

∗
⇀ F(x̄),

Tk → T for some T ∈ L(X, Y ), and that T is surjective. Then, {λk} converges
weak-∗ in Y ∗ to the unique solution of F(x̄)+ T ∗λ = 0.

Proof We first show that {λk} is weak-∗ convergent. Let ŷ ∈ Y be an arbitrary
point. It suffices to show that 〈λk, ŷ〉 is convergent. Let r > 0 be as in the uniform
version of the Banach open mapping theorem (Theorem 4.13), so thatBY

r ⊆ T (BX
1 ).

Assume, without loss of generality, that ŷ ∈ BY
r , and let ŵ ∈ BX

1 be a point such
that T ŵ = ŷ. Set δk := ‖Tk − T ‖L(X,Y ), and let k be sufficiently large so that
δk < r . Then, ‖ŷ − Tkŵ‖Y ≤ δk , and, by Theorem 4.13, there are points dk ∈ X

such that Tkdk = ŷ − Tkŵ and

‖dk‖X ≤ ‖ŷ − Tkŵ‖Y
r − δk

≤ δk

r − δk
.

Define wk := ŵ + dk . Then, wk → ŵ and Tkwk = ŷ by definition. Hence,

0 ← 〈

F(xk)+ T ∗k λk, wk
〉 = 〈F(x̄), ŵ〉 + o(1)+ 〈

λk, ŷ
〉

.

Thus, we obtain 〈λk, ŷ〉 → −〈F(x̄), ŵ〉. Since ŷ ∈ Y was arbitrary, this implies
that {λk} is weak-∗ convergent in Y ∗.

Let λ̄ denote the weak-∗ limit of {λk}. Using F(xk)+ T ∗k λk
∗
⇀ 0, it follows that

F(x̄)+ T ∗λ̄ = 0, and λ̄ is unique since T ∗ is injective. ��
Proposition 4.15 Let {xk} be generated by Algorithm 3.4, and let xk+1 ⇀I x̄ for
some I ⊆ N and x̄ ∈ X. Assume that x̄ is a stationary point of (P ), that C = X,
f ′ is weak-∗ sequentially continuous, G′ is completely continuous, and that G′(x̄)
is surjective. Then, {λk+1}k∈I converges weak-∗ to the unique element in �(x̄).
Proof Recall that L′ρk (x

k+1, wk) = L′(xk+1, λk+1). Combining Assumption 4.4
and Lemma 3.5, we obtain the asymptotic conditions (for k ≥ 1).

εk − L′(xk, λk) ∈ NC(x
k) and 〈λk, y −G(xk)〉 ≤ rk ∀y ∈ K.

Hence, the result follows from Proposition 4.14. ��
In the context of optimality properties, it is worthwhile to briefly discuss the case of
bounded penalty parameters. This is particularly interesting because any assertion
made under this assumption is a necessary condition for the boundedness of {ρk}.
It turns out that no constraint qualifications are needed in the bounded case, and the
algorithm produces a Lagrange multiplier in H .

Corollary 4.16 Let {(xk, λk)} be generated by Algorithm 3.4, let Assumption 4.8
hold, and let x̄ be a weak limit point of {xk}. If {ρk} remains bounded, then {λk}
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has a bounded subsequence in H , and x̄ satisfies the KKT conditions of (P ) with a
multiplier in H .

The above result implies that {ρk} can only remain bounded if (P ) admits a
multiplier in H .

We close this section by noting that the nice global convergence properties of the
safeguarded augmented Lagrangian method do not hold for the classical augmented
Lagrangian approach, which is the main reason for the modification of the updating
rule of the multipliers. In fact, a counterexample in [47] shows that the classical
method may generate limit points that have no meaning from the point of view
of satisfying a suitable stationarity measure, whereas the safeguarded method has
the desired behavior. The counterexample provided in [47] is one dimensional and
convex in the sense that its objective function is convex (even linear) and the feasible
set is also convex, though represented by a nonconvex function. The authors are not
aware of a “fully” convex counterexample where the objective function and the
inequality constraints are all convex, and the equality constraints are linear. This
leads to the following open problem.

Open Problem 4.17 Are the global convergence properties of the classical aug-
mented Lagrangian method identical (or very similar) to the safeguarded Lagrangian
method for fully convex problems?

5 Local Convergence

Here, we discuss the local convergence properties of Algorithm 3.4. We first
discuss in Sect. 5.1 the existence of local minima and the (strong!) convergence of
such minima. These properties are based on a second-order sufficiency condition,
whereas constraint qualifications are not required. This is interesting since it allows
applications of our results to problems with a complicated structure of the feasible
set. Additional conditions are necessary, however, in order to verify the rate-of-
convergence results, see Sect. 5.2. The results from this section are taken from the
recent papers [15, 49].

5.1 Existence of Local Minima und Strong Convergence

Before we formulate the second-order sufficiency condition, we note that, as with
constraint qualifications and KKT conditions, second-order conditions for (P ) can
be formulated either with respect to Y or with respect to H . In this section, to
avoid unnecessary notational overhead, we will simply formulate the second-order
condition and its consequences with respect to Y . The results below all remain true
when Y is replaced by H (note that the choice Y := H is even admissible in our
framework).
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Let (x̄, λ̄) ∈ X×Y ∗ be a KKT point of (P ). Throughout this section, we assume
that f and G are twice continuously differentiable in a neighborhood of x̄. Then,
consider, for η > 0, the extended critical cone

Cη(x̄) :=
{

d ∈ TC(x̄) : f
′(x̄)d ≤ η‖d‖X,

dist(G′(x̄)d, TK(G(x̄))) ≤ η‖d‖X
}

. (5.1)

Note that Cη depends on x̄ only. The following is the general form of a second-order
sufficient condition, which we will use throughout this section.

Definition 5.1 (Second-Order Sufficient Condition) We say that the second-
order sufficient condition (SOSC) holds in a KKT point (x̄, λ̄) ∈ X × Y ∗ of (P )
if there are η, c > 0 such that

L′′(x̄, λ̄)(d, d) ≥ c‖d‖2
X for all d ∈ Cη(x̄).

As mentioned before, the extended critical cone and SOSC can also be formu-
lated with respect to K and H for KKT pairs (x̄, ȳ) ∈ X ×H .

The above should be considered the “basic” second-order condition, which can
be stated without any assumptions on the specific structure of (P ). For many
problem classes, it is possible to state more refined second-order conditions that
are either equivalent to Definition 5.1 or turn out to have similar implications. Some
information in this direction can be found, for instance, in [14, Section 3.3].

It turns out that SOSC implies the existence of local minimizers of the penalized
subproblems in Algorithm 3.4 as well as strong convergence of the corresponding
iterates. Our approach is motivated by a recent analysis in [27] for finite-dimensional
nonlinear programming. Here, we extend the corresponding results to our general
setting from (P ) and show the existence of minimizers using only the proximity
of xk to x̄, whereas no assumption regarding the proximity of the multipliers λk is
required.

As a first step in the local convergence analysis, we consider a local minimizer
of (P ) and ask whether the augmented Lagrangian admits local minimizers near
this point. As we shall see, the answer to this question is closely linked to the
fulfillment of second-order sufficient conditions (SOSCs) of the form given in
Definition 5.1. When using the second-order condition, special care needs to be
taken because the embedding Y ↪→ H allows us to interpret the constraint in (P )
either in Y or in H . We have already seen that this makes a strong difference for
constraint qualifications, and the situation for SOSC is quite similar. The second-
order condition in H , for instance, requires the existence of Lagrange multipliers in
H , which in itself is already a restriction. Nevertheless, this is in a sense the more
“natural” second-order condition for the augmented Lagrangian method since the
augmentation is performed in H . Thus, for the most part of this section (with the
exception of Proposition 5.4), we will make the following assumption.
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Assumption 5.2 (Local Convergence) There is a KKT point (x̄, λ̄) ∈ X × H of
(P ), which satisfies the SOSC from Definition 5.1 with respect to the space H .

This assumption yields the following local existence and (strong) convergence
result.

Theorem 5.3 Let Assumption 5.2 hold, and let B ⊆ H be a bounded set. Then,
there are ρ̄, ε̄, r > 0 such that, for all w ∈ B, ρ ≥ ρ̄, and ε ∈ (0, ε̄), there is a point
x = xρ,ε(w) ∈ C with ‖x − x̄‖X < r and the following properties:

(i) x is an ε-minimizer of Lρ(·, w) on Br(x̄) ∩ C,
(ii) x satisfies dist

(− L′ρ(x,w),NC(x)
) ≤ ε1/2, and

(iii) x = xρ,ε(w)→ x̄ uniformly on B as ρ →∞ and ε→ 0.

If X is reflexive and the augmented Lagrangian Lρ(·, w) is weakly sequentially
lsc, then the assertions of the above theorem remain valid if we replace the ε-
minimizers by exact minimizers. In this case, we obtain points x = xρ(w), which
satisfy (i) and (ii) with ε := 0 and which converge to x̄ uniformly on B as ρ →∞.
Sufficient conditions for the weak sequential lower semicontinuity of Lρ(·, w) were
given in Lemma 4.2.

If the mapping G is completely continuous, then it is possible to prove a similar
result under the second-order sufficient condition with respect to the space Y . This
result is a generalization of a theorem from [53].

Proposition 5.4 Let (x̄, λ̄) ∈ X× Y ∗ be a KKT point of (P ), which satisfies SOSC
with respect to the space Y , and B ⊆ H a bounded set. Assume that

(i) the space X is reflexive,
(ii) f is weakly sequentially lsc on X, and
(iii) G is completely continuous from X into Y .

Then, there are ρ̄, r > 0 such that, for every w ∈ B and ρ ≥ ρ̄, the problem
minx∈C Lρ(x,w) admits a local minimizer x = xρ(w) in Br(x̄) ∩ C, and xρ → x̄

uniformly on B as ρ →∞.

5.2 Rate of Convergence

We are now in a position to discuss the convergence of Algorithm 3.4 from a
quantitative point of view. Throughout this section, we assume that the space X

is a real Hilbert space, that there is a local minimizer x̄ ∈ X of (P ) with a unique
Lagrange multiplier λ̄ ∈ H , and that the following local error bound condition

c12(x, λ) ≤ ‖x − x̄‖X + ‖λ− λ̄‖H ≤ c22(x, λ) (5.2)
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holds for all (x, λ) ∈ X×H with x near x̄ and 2(x, λ) sufficiently small, where 2
is the residual

2(x, λ) := ‖x − PC(x − L′(x, λ))‖X + ‖G(x)− PK(G(x)+ λ)‖H .

The regularity assumptions mentioned above may seem rather stringent in view of
the Gel’fand triple framework Y ↪→ H ↪→ Y ∗. Indeed, a sufficient condition for the
local error bound is a combination of the second-order sufficient condition and the
strict Robinson condition (SRC), both with respect to the space H . This effectively
rules out certain applications where the embedding Y ↪→ H is too weak, but the
underlying issue is that we simply cannot expect the results in this section to hold if
the constraint system of (P ) is only regular with respect to the space Y . This is also
evidenced by the fact that the rate-of-convergence analysis will enable us to prove
the boundedness of the penalty sequence {ρk}, and this actually implies the existence
of a Lagrange multiplier in H under certain assumptions; see Corollary 4.16 and the
discussion after Corollary 5.8 below.

Despite these restrictions, the theory we develop here is still applicable to a fair
amount of nontrivial problems such as control-constrained optimal control, elliptic
parameter estimation problems, and of course optimization in finite dimensions.

Assumption 5.5 (Rate of Convergence) We assume that

(i) X is a real Hilbert space with f and G continuously differentiable on X,
(ii) (x̄, λ̄) ∈ X ×H is a KKT point of (P ), which satisfies the error bound (5.2),

(iii) the primal–dual sequence {(xk, λk)} converges strongly to (x̄, λ̄) in X ×H ,
(iv) the safeguarded multiplier sequence satisfies wk := λk for k sufficiently large,

and
(v) xk+1 ∈ C and εk+1 − L′ρk (x

k+1, wk) ∈ NC(x
k+1) for all k, where εk → 0.

Two assumptions that may require some elaboration are (iii) and (iv). Note
that we already know, by Theorem 5.3, that the augmented Lagrangian admits
approximate local minimizers and stationary points in a neighborhood of x̄. We shall
now see that, if the algorithm chooses these local minimizers (or any other points
sufficiently close to x̄), then we automatically obtain the convergence (xk, λk) →
(x̄, λ̄) in X × H . In this case, the sequence {λk} is necessarily bounded in H , so
it is reasonable to assume that the safeguarded multipliers are eventually chosen
as wk = λk . The following result can therefore be considered as (retrospective)
justification for Assumption 5.5.

Proposition 5.6 Let Assumption 5.5 (i), (ii), and (v) hold, and let RCQ hold in x̄
with respect to the space H . Then, there exists r > 0 such that, if xk ∈ Br(x̄) for
sufficiently large k, then 2(xk, λk)→ 0 and (xk, λk)→ (x̄, λ̄) strongly in X ×H .

We will now state convergence rates for the primal–dual sequence {(xk, λk)}.
Theorem 5.7 Let Assumption 5.5 hold, and assume that εk+1 = o(θk). Then,
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(a) for every q ∈ (0, 1), there exists ρ̄q > 0 such that, if ρk ≥ ρ̄q for sufficiently
large k, then (xk, λk)→ (x̄, λ̄) Q-linearly in X ×H with rate q;

(b) if ρk →∞, then (xk, λk)→ (x̄, λ̄) Q-superlinearly in X ×H .

The assumption εk+1 = o(θk) in the above theorem says that, roughly speaking,
the degree of inexactness should be small enough to not affect the rate of conver-
gence. Note that we are comparing εk+1 to the optimality measure θk of the previous
iterates (xk, λk). Hence, it is easy to ensure this condition in practice, for instance,
by always computing the next iterate xk+1 with a precision ‖εk+1‖X ≤ zkθk for
some fixed null sequence zk .

Corollary 5.8 Let Assumption 5.5 hold, and assume that the subproblems occur-
ring in Algorithm 3.4 are solved exactly, i.e., that εk = 0 for all k. Then, {ρk}
remains bounded.

The boundedness of {ρk} obviously rules out the Q-superlinear convergence
of Theorem 5.7 (b). However, the former is usually considered more significant
in practice since it prevents the subproblems from becoming excessively ill-
conditioned.

Remark 5.9 If inexact solutions are allowed for the augmented Lagrangian sub-
problems, then the boundedness of {ρk} requires a slightly modified updating rule
for the penalty parameter since the one used in Algorithm 3.4 does not take into
account the current measure of optimality. Indeed, if we replace the function V

from (3.9) by

Ṽ (x, λ, ρ) := V (x, λ, ρ)+ ‖x − PC(x − L′(x, λ))‖X,

then it is possible to show that {ρk} remains bounded under the assumptions of
Theorem 5.7. A proof for the case C = X can be found in [49], and the extension
to the general case is straightforward (see also [11, 13]).

Remark 5.10 In the case of finite-dimensional nonlinear programming, it is possible
to obtain similar rate of convergence results to those above under the second-order
sufficient condition only. In this case, one obtains that (xk, λk)→ (x̄, λ) Q-linearly
for some λ ∈ �(x̄), which is not necessarily equal to λ̄. This result can be found in
[27]. The reason why this is possible is that, for nonlinear programming, the set K
is polyhedral and, therefore, the second-order condition implies a local primal–dual
error bound without any constraint qualification.

Remark 5.11 A specification of the previous results in the Banach space setting
to nonlinear semi-definite programs, second-order cone programs, and related
problems is given in [51]. Though these results were essentially obtained from
the general theory, the resulting convergence conditions may still be viewed as
generalizations of previous results known for semi-definite programs, etc., cf. [73].
Though these problems are finite dimensional, they have a non-polyhedral feasible
set, and hence SOSC-type conditions alone were not enough in order to establish
the rate-of-convergence results.
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6 Numerical Results

Since the safeguarded augmented Lagrangian method discussed in this chapter is
identical to the one from the recent paper [15] and since that paper already presents
numerical results on a variety of different optimization problems, there is, formally,
no need to provide additional material here. For illustrative reasons, however, we
report some numerical results also in this chapter using some other test examples.
The implementation of our numerical examples has been done with FEniCS [57]
using the DOLFIN [58] Python interface.

6.1 State-Constrained Optimal Control Problems

PDE-constrained optimal control problems describe a rather popular class of
optimization problems. For our numerical test, we adapted a linear elliptic example
with known solution from [71] to the semilinear setting, see also [53].

Let � := (−1, 2)2. We aim at minimizing the objective function f : L2(�)→ R

f (u) := 1

2
||Su− yd ||2L2(�)

+ α

2
||u||2

L2(�)
, (6.1)

subject to the pointwise inequality constraints

Su ≤ ψ in �.

Here, α > 0 is a positive parameter, and yd ∈ L2(�) and ψ ∈ C(�) are given
functions. The solution operator S : L2(�)→ H 1

0 (�)∩C(�) maps the control u to
the state y := Su, which is the uniquely determined weak solution of the underlying
semilinear partial differential equation

−�y + y5 = u+ f in �,

y = 0 on ∂�,

where f ∈ L2(�). In this setting, the operator S is completely continuous [19,
Theorem 2.1] and Fréchet differentiable [19, Theorem 2.4]. We set

X := L2(�), C := L2(�), Y := C(�), G(u) := Su− ψ, K := C(�)−

H := L2(�), K := L2(�)−,

where C(�)− denotes the closed convex cone of non-positive continuous functions
and L2(�)− the non-positive functions in L2(�). Applying standard arguments, we
obtain that problem (6.1) admits at least one solution; see, for instance, [38]. Let ū
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denote a local solution, and let us assume that there exists û ∈ L2(�) such that the
linearized Slater condition

G(ū)+G′(ū)(û−u) ∈ int
(

C(�)−
) ⇔ Sū+S′(ū)(û−ū) ≤ ψ−σ in �̄, σ > 0

is satisfied. Since the interior of C(�)− is nonempty, the linearized Slater condition
is, for feasible points, equivalent to the Robinson constraint qualification [14,
Lemma 2.99], and we obtain existence of a multiplier λ ∈ C(�)

◦
−. Hence, λ is

an element of the space of regular Borel measures C(�)
∗ = M(�) [19, Theorem

3.1]. Introducing the state y = Su and the adjoint state p̄ ∈ W
1,s
0 (�), s ∈ (1, 2),

it is well known that the first-order necessary optimality conditions for the original
problem (6.1) are given by

{−�ȳ + ȳ5 = ū+ f in �,

ȳ = 0 on ∂�,

{−�p̄ + 5ȳ4p̄ = ȳ − yd + λ̄ in �,

p̄ = 0 on ∂�,

p̄ + αū = 0, (6.2)

λ̄ ∈ C(�)
◦
−, 〈λ̄, ψ − ȳ〉M(�),C(�) = 0.

The low regularity of λ̄ complicates the direct numerical solution of the optimal
control problem. However, by augmenting the objective function, we eliminate the
state constraints from the set of explicit constraints. Due to our choice of K, we
obtain d2

K(·) = ||(·)+||2L2(�)
, where (·)+ := max(0, ·). Following Algorithm 3.4,

we have to solve a sequence of unconstrained subproblems of the type

min
uk

f (uk)+ ρk

2

∥

∥

∥

∥

(

Suk − ψ + wk

ρk

)

+

∥

∥

∥

∥

2

L2(�)

. (6.3)

Since these problems are control constrained only, it is straightforward to show
existence of solutions and derive the corresponding optimality conditions [74,
Theorem 4.20]. However, due to the nonlinearity of the solution operator S, the
functional f is not convex. Accordingly, we can only expect to compute stationary
points of the augmented subproblems, which are not necessarily local or global
minimizers. In order to apply our convergence results from Sect. 4.3, we need to
verify Assumption 4.8.

• The mappingG′ : X→ L(X, Y ) is completely continuous. In the present setting,
since X = L2(�) is reflexive and G′(u) ∈ L(X, Y ) is completely continuous for
all u, this is equivalent to the following property: whenever uk ⇀ u and hk ⇀ h

in X, then G(uk)hk → G(u)h strongly in Y . A proof of this statement (for the
Neumann case) can be found in [53, Lem. 4.7].
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• The mapping f ′ : X → X∗ is bounded and pseudomonotone. Note that
f ′(u) := S′(u)(S(u) − yd) + αu for all u ∈ X. The operators S and S′ are
completely continuous and hence bounded (since X is reflexive). This implies
the boundedness of f ′. The pseudomonotonicity follows from the fact that the
first term in f ′ is completely continuous and the second term is monotone and
continuous, see Lemma 2.12.

In this scenario, it follows from Theorem 4.10 that every weak limit point
u∗ of the sequence {uk} is a stationary point of the problem. Moreover, the
corresponding subsequence of multipliers {λk} converges weak-* in M(�) to a
Lagrange multiplier in u∗.

For the sake of completeness, let us state the optimality system of (6.3) that has
to be solved in every iteration of Algorithm 3.4. Let ūk denote a local solution of
the subproblem (6.3) and ȳk ∈ H 1

0 (�) ∩ C(�) the corresponding state ȳk := Sūk .
Then, there exists an adjoint state p̄k ∈ H 1

0 (�) such that the following system is
satisfied:
⎧

⎨

⎩

−�ȳk + ȳk
5 = ūk + f in �,

ȳk = 0 on ∂�,

⎧

⎨

⎩

−�p̄k + 5ȳk
4
p̄k = ȳk − yd + λ̄k in �,

p̄k = 0 on ∂�,

p̄k + αūk = 0, (6.4)

λ̄k = (wk + ρk(ȳ
k − ψ))+.

In this system, the approximation of the multiplier λ̄k enjoys a much stronger
regularity. In fact, it is anL2(�)-function, which allows us to apply efficient solution

algorithms. We use the notation r := r(x1, x2) :=
√

x2
1 + x2

2 with x1, x2 ∈ � to set

ȳ(r) := − 1

2πα
χr≤1

(

r2

4
(log r − 2)+ r3

4
+ 1

4

)

, ψ(r) := − 1

2πα

(

1

4
− r

2

)

ū(r) := 1

2πα
χr≤1(log r + r2 − r3), yd(r) := ỹd (r)− 5ȳ4p̄,

p̄(r) := −αū(r), f (r) := f̃ (r)− ȳ5,

λ̄(r) := δ0(r),

where ỹd (r) and f̃ (r) are given auxiliary functions

ỹd (r) := ȳ(r)− 1

2π
χr≤1(4− 9r), f̃ (r) := − 1

8π
χr≤1(4− 9r + 4r2 − 4r3).

Then, it can be shown that (ȳ, ū, p̄, λ̄) is a KKT point of (6.1). We used the
parameters
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α := 1, λ0 := 0, ρ0 := 1, wmax := 105, γ := 10, τ := 0.2

and initialized our starting points equal to zero. To obtain a sequence of safeguarded
multipliers {wk}, we chosewk := min(λk, wmax). We solved the arising subproblem
with a semismooth Newton method up to the precision 10−6. We stop the algorithm
as soon as ||min{λk, ψ − yk}||∞ ≤ 10−6 was satisfied. The computed results can
be seen in Figs. 1 and 2 for 256 grid points per dimension.

The L2(�)-error of the computed solution (yh, uh) to the constructed solution
(ȳ, ū) in dependence of the degrees of freedom is shown on the right-hand side of
Fig. 2. Table 1 shows the iteration numbers of outer and inner iterations as well as
the final value of the penalty parameter ρmax with respect to the number of grid
points per dimension.

Fig. 1 (Example 1) Left: computed discrete optimal state yh (transparent) with state constraint ψ .
Right: Lagrange multiplier μh

101 102 103 104 105 106
10−4

10−3

10−2

10−1

degrees of freedom

er
ro

r

||yh − ȳ||L2(Ω)

||uh − ū||L2(Ω)

Fig. 2 (Example 1) Left: computed control uh. Right: errors ||uh − ū||L2(�) and ||yh − ȳ||L2(�)

vs. DOFs

Table 1 (Example 1)
Iteration numbers

n 16 32 64 128 256

Outer iteration 10 9 10 11 12

Inner iteration 21 23 27 33 38

ρmax 105 105 107 107 108



Safeguarded Augmented Lagrangian Methods in Banach Spaces 273

6.2 Bratu’s Obstacle Problem

Bratu’s obstacle problem is a non-quadratic nonconvex problem, which is an
efficient tool to model nonlinear diffusion phenomena. Let � ⊆ R

2 be a bounded
domain. Bratu’s obstacle problem is given by the minimization problem

min
u∈H 1

0 (�)

J (u) := ||∇u||2
L2(�)

− α

∫

�

exp(−u(x)) dx s.t. u ≥ ψ, (6.5)

where α > 0 is a positive parameter and ψ ∈ H 1
0 (�) denotes the given fixed

obstacle. To satisfy our general framework, we set

X := Y := H 1
0 (�), C := H 1

0 (�), G(u) := u− ψ, K := H 1
0 (�)+,

H := L2(�), K := L2(�)+.

Due to [52, Lemma 7.1], we know that J is well defined, continuously Fréchet
differentiable, and weakly sequentially lower semicontinuous from H 1

0 (�) into R.
Due to the constraint u ≥ ψ , the functional J is coercive on the feasible set.
By standard arguments, we obtain existence of a solution ū ∈ X. Moreover, the
surjectivity of the derivative G′(ū) = IdX from X to Y implies the Robinson
constraint qualification and, hence, the existence of a unique Lagrange multiplier
λ̄ ∈ H 1

0 (�)
∗ = H−1(�). The corresponding KKT system is given by

J ′(ū)+ λ̄ = 0

〈λ̄, ū− ψ〉H−1(�),H 1
0 (�)

= 0, λ̄ ∈
(

H 1
0 (�)+

)◦
.

By definition of the polar cone, we obtain that 〈λ̄, u〉H−1(�),H 1
0 (�)

≤ 0 for all u ∈
H 1

0 (�) with u ≥ 0. Since the objective function J is not convex, one can only
expect to compute stationary points of the augmented subproblems

min
uk

J (uk)+ ρk

2
||
(

uk − ψ + wk

ρk

)

−
||2
L2(�)

,

which are not necessarily local or global solutions.

Lemma 6.1 If � ⊆ R
2, then the derivative J ′ : H 1

0 (�) → H−1(�) is bounded
and pseudomonotone.

Proof We split the objective function J (u) := J1(u)− J2(u), where

J1(u) := ||∇u||2
L2(�)

, J2(u) := α

∫

�

exp(−u(x)) dx.
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The proof of [52, Lemma 7.1] shows that the integral term J2 in the definition of J
is weakly sequentially continuous, uniformly differentiable on bounded subsets of
H 1

0 (�), and J ′2 is bounded on bounded subsets of H 1
0 (�). It follows that J ′ is also

a bounded operator. Since J2 is completely continuous and uniformly differentiable
on bounded subsets of X, it follows that J ′2 is completely continuous [63] and in
particular pseudomonotone. The monotonicity of −� yields that J ′1 is monotone
(and continuous). Thus, J ′ is pseudomonotone (Lemma 2.12). ��

Due to Lemma 6.1, it follows from Proposition 4.12 that every weak limit
point u∗ of the sequence {uk} is a stationary point of the problem. Moreover, the
corresponding subsequence of multipliers λk converges weak-* in H−1(�) to the
unique Lagrange multiplier in u∗ (Proposition 4.15).

In particular, for α := 0, problem (6.5) is reduced to the very well-known
obstacle problem. Opposed to Bratu’s problem, this problem is linear quadratic
with a (strongly) convex objective function. The strong convexity of J not only
implies uniqueness of the solution of the obstacle problem and its corresponding
subproblem, but it also implies that the primal sequence {uk} converges strongly to
ū in X (Corollary 4.7) and the dual sequence {λk} converges weak-* in H−1(�) by
Theorem 4.10 (see Remark 4.11) or Proposition 4.15.

In order to test our example, we chose the domain � := (0, 1)2. We implemented
the Bratu problem for the obstacle

ψ(x1, x2) :=
3

∑

i=1

qi exp
(

−500
(

(x1 − zi)
2 + (x2 − zi)

2
))

− 1,

where q := (60, 80, 60), z := (0.25, 0.5, 0.75). We chose the parameters

α := 2, λ0 := 0, ρ0 := 1, wmin := −105, γ := 10, τ := 0.1

and initialized our starting points equal to zero. We obtain a sequence of safeguarded
multipliers {wk} by choosing wk := max(λk, wmin). We solve the unconstrained
subproblems with a semismooth Newton method with the precision 10−6 and stop
the algorithm as soon as ||max{λk, ψ − uk}||∞ ≤ 10−6 is satisfied. The computed
results can be seen for 128 grid points per dimension in Fig. 3. Furthermore, some
iteration numbers are given in Table 2.

Fig. 3 (Example 2) Left: computed discrete optimal solution uh (transparent) with constraint ψ .
Right: Lagrange multiplier μh
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Table 2 (Example 2)
Iteration numbers

n 16 32 64 128 256

Outer iteration 9 9 12 12 13

Inner iteration 14 17 25 32 34

ρmax 104 105 1010 1010 1010

6.3 C(	)-Minimization

We consider an optimal control problem with an objective functional containing an
C(�) norm term, namely

minimize
y∈H 1(�)∩C(�), u∈L2(�)

1

2
||y − yd ||2C(�) +

α

2
||u||2

L2(�)
, (6.6)

where the state y has to satisfy the semilinear partial differential equation

−�y + exp(y) = u+ f in �

∂y = 0 on ∂�,

where ∂y denotes the normal derivative of y on ∂� and f a function in L2(�).
Functionals including an C(�) norm term are not differentiable and therefore
difficult to handle. We introduce the control-to-state mapping S : L2(�) →
H 1(�) ∩ C(�), which maps the control u on the associated, uniquely determined,
state S : u �→ y [18, Theorem 3.1]. The original problem is now substituted by an
equivalent problem with a differentiable function given by

min
z∈R,u∈L2(�)

f (u, z) := 1

2
z2 + α

2
||u||2

L2(�)
subject to |Su− yd | ≤ z. (6.7)

Clearly, problem (6.7) is related to state-constrained optimal control problems.
However, now z is a free variable. Consequently, we aim at finding the smallest
z ∈ R and u ∈ L2(�) such that the pointwise inequality constraint is satisfied
and the objective function f is minimized. Problems of this type have already been
investigated in [32, 66]. Moreover, in [20], pointwise constraints on the state variable
on a specified subdomain of � under piecewise constant controls were investigated.
To satisfy our general framework, we set x := (u, z) ∈ L2(�)× R, and

X := L2(�)× R, C := L2(�)× R, Y := C(�)× C(�),

K : = C(�)− × C(�)+, H := L2(�)× R, K := L2(�)− × L2(�)+
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as well as

G(x) :=
(

Su− yd − z

Su− yd + z

)

.

This leads us again to a minimization problem of the type minx f (x)

such that G(x) ∈ K. Like in Example 1, the solution operator S [18], and
hence G, is completely continuous and continuously Fréchet differentiable
[74, Theorem 4.17]. Thus, we obtain by standard arguments the existence
of an optimal solution (ȳ, ū) ∈ H 1(�) × L2(�) of (6.6). Hence, defining
z̄ := ||ȳ − yd ||C(�), we can conclude that (ū, z̄) is a solution of (6.7). Let

x̄ := (ū, z̄) ∈ (L2(�) × R) denote a local solution. Then, it is easy to see
that the Robinson constraint qualification is satisfied. Indeed, the first line of the
inclusion

0 ∈ int

[

G(ū, z̄)+G′(ū, z̄)
(

L2(�)− ū

R− z̄

)

− (K− ×K+)
]

can be written as

0 ∈ int

[

(Sū− yd − z̄)+ S′(ū)(L2(�)− ū)− (R− z̄)−K−
]

,

which is fulfilled as R + K− = C(�̄). Then, there exist Lagrange multipliers
λ̄1, λ̄2 ∈ C(�)

∗ = M(�). Moreover, it is easy to see that λ̄1 + λ̄2 ∈
∂
(

1
2 || · ||2C(�)

)

(Sū − yd), where ∂ denotes the convex subdifferential. It remains

to verify Assumption 4.8. Following the same argumentation as in Example 1,
we can deduce that S′(u) ∈ L(L2(�), C(�)) is completely continuous and,
thus, G′ : X → L(X, Y ) is completely continuous. Furthermore, the mapping
f ′ : X → X∗, f ′(x) = (αu, z)T is bounded and by Lemma 2.12 pseudomono-
tone.

According to Algorithm 3.4, we have to solve the following unconstrained
subproblem in every iteration of the algorithm:

minimize
uk,zk

f (uk, zk)+ ρ1
k

2
||
(

Suk − yd − zk + wk
1

ρ1
k

)

+
||2
L2(�)

+ ρ2
k

2
||
(

Suk − yd + zk + wk
2

ρ2
k

)

−
||2
L2(�)

.
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Reintroducing the state y = Su and the adjoint state p ∈ H 1(�), we obtain the
corresponding optimality system by standard arguments

{−�ȳk + exp(ȳk) = ūk + f in �,

∂ȳk = 0 on ∂�,

{−�p̄k + exp(ȳk)p̄k = λk1 + λk2 in �,

∂p̄k = 0 on ∂�,

αūk + p̄k = 0, (6.8)

zk −
∫

�

λk1 +
∫

�

λk2 = 0,

where

λk1 := (w1 + ρ1
k (ȳ

k − yd − zk))+, λk2 := (w2 + ρ2
k (ȳ

k − yd + zk))−.

To test our example, we took � := (0, 1)2, set our starting points equal to zero, and
chose the parameters

α := 10−4, λ0 := 0, wmax := 10−5, γ := 10, τ := 0.1.

Furthermore, we chose yd := 0 and f := 8 sin(πx1) sin(πx2)−4, where (x1, x2) ∈
�. We solved the optimality system (6.8) with a semismooth Newton method with
the precision 10−6 and stop the algorithm as soon as

||min{λk1,−Suk + yd + zk}||∞ + ||max{λk2,−Suk + yd − zk}||∞ ≤ 10−6

is satisfied. Figures 4 and 5 depict the computed results for n = 128 grid points
per dimension. The corresponding optimal value of z has been computed as z̄ =
6.7 · 10−3. Some iteration numbers are shown in Table 3.

Fig. 4 (Example 3) Computed discrete optimal state yh (left) with optimal control uh (right)
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Fig. 5 (Example 3) Computed discrete Lagrange multipliers μh,1 and μh,2

Table 3 (Example 3)
Iteration numbers

n 16 32 64 128

Outer iteration 8 7 8 8

Inner iteration 17 19 26 26

ρmax 104 105 106 106

7 Final Remarks

The previous survey shows that the safeguarded augmented Lagrangian approach
has a very strong global and local convergence theory which allows its application
to a wide variety of different applications. The numerical results in this and
some related papers by the authors indicate that the approach also works quite
successfully from a numerical point of view. Nevertheless, there are plenty of
possible modifications that might be interesting to investigate. For example, in finite
dimensions, the augmented Lagrangian approach converges under much weaker
assumptions than the Robinson CQ, but these weaker assumptions currently do not
exist in Banach spaces simply because there is not counterpart of the corresponding
constraint qualifications in infinite dimensions. Another interesting generalization
might be a relaxation of the second-order sufficiency condition, which is currently
assumed to hold at a KKT point, but the existence of such a KKT point might be
too strong an assumption for some difficult classes of optimization problems like
mathematical programs of with complementarity constraints.

References

1. R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt. On augmented Lagrangian
methods with general lower-level constraints. SIAM J. Optim., 18(4):1286–1309, 2007.

2. R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt. Augmented Lagrangian
methods under the constant positive linear dependence constraint qualification. Math.
Program., 111(1-2, Ser. B):5–32, 2008.

3. R. Andreani, G. Haeser, and J. M. Martínez. On sequential optimality conditions for smooth
constrained optimization. Optimization, 60(5):627–641, 2011.



Safeguarded Augmented Lagrangian Methods in Banach Spaces 279

4. R. Andreani, J. M. Martínez, and B. F. Svaiter. A new sequential optimality condition for
constrained optimization and algorithmic consequences. SIAM J. Optim., 20(6):3533–3554,
2010.

5. H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in
Hilbert Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer,
Cham, second edition, 2017. With a foreword by Hédy Attouch.

6. M. Bergounioux. Augmented Lagrangian method for distributed optimal control problems
with state constraints. J. Optim. Theory Appl., 78(3):493–521, 1993.

7. M. Bergounioux and K. Kunisch. Augmented Lagrangian techniques for elliptic state
constrained optimal control problems. SIAM J. Control Optim., 35(5):1524–1543, 1997.

8. M. Bergounioux and K. Kunisch. Primal-dual strategy for state-constrained optimal control
problems. Comput. Optim. Appl., 22(2):193–224, 2002.

9. D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Academic Press,
Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982.

10. D. P. Bertsekas. Nonlinear Programming. Athena Scientific Optimization and Computation
Series. Athena Scientific, Belmont, MA, third edition, 2016.

11. E. G. Birgin, D. Fernández, and J. M. Martínez. The boundedness of penalty parameters
in an augmented Lagrangian method with constrained subproblems. Optim. Methods Softw.,
27(6):1001–1024, 2012.

12. E. G. Birgin, C. A. Floudas, and J. M. Martínez. Global minimization using an augmented
Lagrangian method with variable lower-level constraints. Math. Program., 125(1, Ser. A):139–
162, 2010.

13. E. G. Birgin and J. M. Martínez. Practical Augmented Lagrangian Methods for Constrained
Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2014.

14. J. F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization Problems. Springer Series
in Operations Research. Springer-Verlag, New York, 2000.

15. E. Börgens, C. Kanzow, and D. Steck. Local and global analysis of multiplier methods for
constrained optimization in Banach spaces. SIAM J. Cont. Optim. 57(6):3694–3722, 2019.

16. J. M. Borwein and Q. J. Zhu. Techniques of Variational Analysis, volume 20 of CMS Books in
Mathematics/Ouvrages de Mathématiques de la SMC. Springer-Verlag, New York, 2005.

17. H. Brezis. Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann.
Inst. Fourier (Grenoble), 18(fasc. 1):115–175, 1968.

18. E. Casas. Boundary control of semilinear elliptic equations with pointwise state constraints.
SIAM J. Control Optim., 31(4):993–1006, 1993.

19. E. Casas, J. C. de los Reyes, and F. Tröltzsch. Sufficient second-order optimality conditions for
semilinear control problems with pointwise state constraints. SIAM J. Optim., 19(2):616–643,
2008.

20. C. Clason, K. Ito, and K. Kunisch. Minimal invasion: an optimal L∞ state constraint problem.
ESAIM Math. Model. Numer. Anal., 45(3):505–522, 2011.

21. A. R. Conn, N. Gould, A. Sartenaer, and P. L. Toint. Convergence properties of an augmented
Lagrangian algorithm for optimization with a combination of general equality and linear
constraints. SIAM J. Optim., 6(3):674–703, 1996.

22. A. R. Conn, N. I. M. Gould, and P. L. Toint. A globally convergent augmented Lagrangian
algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal.,
28(2):545–572, 1991.

23. A. R. Conn, N. I. M. Gould, and P. L. Toint. LANCELOT. A Fortran Package for Large-
Scale Nonlinear Optimization (Release A), volume 17 of Springer Series in Computational
Mathematics. Springer-Verlag, Berlin, 1992.

24. A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods. MPS/SIAM Ser. Optim.
SIAM, Philadelphia, 2000.

25. A. L. Dontchev. The Graves theorem revisited. J. Convex Anal., 3(1):45–53, 1996.



280 C. Kanzow et al.

26. A. L. Dontchev and R. T. Rockafellar. Implicit Functions and Solution Mappings. A View
from Variational Analysis. Springer Series in Operations Research and Financial Engineering.
Springer, New York, second edition, 2014.

27. D. Fernández and M. V. Solodov. Local convergence of exact and inexact augmented
Lagrangian methods under the second-order sufficient optimality condition. SIAM J. Optim.,
22(2):384–407, 2012.

28. C. A. Floudas and P. M. Pardalos, editors. Encyclopedia of Optimization. Springer, New York,
second edition, 2009.

29. A. Forsgren, P. E. Gill, and M. H. Wright. Interior methods for nonlinear optimization. SIAM
Rev., 44(4):525–597 (2003), 2002.

30. M. Fortin and R. Glowinski. Augmented Lagrangian Methods. Applications to the Numerical
Solution of Boundary-Value Problems, volume 15 of Studies in Mathematics and its Applica-
tions. North-Holland Publishing Co., Amsterdam, 1983. Translated from the French by B.
Hunt and D. C. Spicer.

31. N. Gould, D. Orban, and P. Toint. Numerical methods for large-scale nonlinear optimization.
Acta Numer., 14:299–361, 2005.

32. T. Grund and A. Rösch. Optimal control of a linear elliptic equation with a supremum norm
functional. Optim. Methods Softw., 15(3–4):299–329, 2001.

33. M. R. Hestenes. Multiplier and gradient methods. J. Optimization Theory Appl., 4:303–320,
1969.

34. M. Hintermüller and K. Kunisch. Feasible and noninterior path-following in constrained
minimization with low multiplier regularity. SIAM J. Control Optim., 45(4):1198–1221, 2006.

35. M. Hintermüller, A. Schiela, and W. Wollner. The length of the primal-dual path in Moreau-
Yosida-based path-following methods for state constrained optimal control. SIAM J. Optim.,
24(1):108–126, 2014.

36. M. Hinze and C. Meyer. Variational discretization of Lavrentiev-regularized state constrained
elliptic optimal control problems. Comput. Optim. Appl., 46(3):487–510, 2010.

37. M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE Constraints,
volume 23 of Mathematical Modelling: Theory and Applications. Springer, New York, 2009.

38. M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE constraints,
volume 23 of Mathematical Modelling: Theory and Applications. Springer, New York, 2009.

39. K. Ito and K. Kunisch. The augmented Lagrangian method for equality and inequality
constraints in Hilbert spaces. Math. Programming, 46(3, (Ser. A)):341–360, 1990.

40. K. Ito and K. Kunisch. The augmented Lagrangian method for parameter estimation in elliptic
systems. SIAM J. Control Optim., 28(1):113–136, 1990.

41. K. Ito and K. Kunisch. An augmented Lagrangian technique for variational inequalities. Appl.
Math. Optim., 21(3):223–241, 1990.

42. K. Ito and K. Kunisch. Augmented Lagrangian methods for nonsmooth, convex optimization
in Hilbert spaces. Nonlinear Anal., 41(5-6, Ser. A: Theory Methods):591–616, 2000.

43. K. Ito and K. Kunisch. Semi-smooth Newton methods for state-constrained optimal control
problems. Systems Control Lett., 50(3):221–228, 2003.

44. K. Ito and K. Kunisch. Lagrange Multiplier Approach to Variational Problems and Applica-
tions. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008.

45. A. F. Izmailov and M. V. Solodov. Stabilized SQP revisited. Math. Program., 133(1-2, Ser.
A):93–120, 2012.

46. A. F. Izmailov, M. V. Solodov, and E. I. Uskov. Global convergence of augmented Lagrangian
methods applied to optimization problems with degenerate constraints, including problems
with complementarity constraints. SIAM J. Optim., 22(4):1579–1606, 2012.

47. C. Kanzow and D. Steck. An example comparing the standard and safeguarded augmented
Lagrangian methods. Oper. Res. Lett., 45(6):598–603, 2017.

48. C. Kanzow and D. Steck. A generalized proximal-point method for convex optimization
problems in Hilbert spaces. Optimization, 66(10):1667–1676, 2017.

49. C. Kanzow and D. Steck. On error bounds and multiplier methods for variational problems in
Banach spaces. SIAM J. Control Optim., 56(3):1716–1738, 2018.



Safeguarded Augmented Lagrangian Methods in Banach Spaces 281

50. C. Kanzow and D. Steck. Quasi-variational inequalities in Banach spaces: theory and
augmented Lagrangian methods. SIAM J. Control Optim. 29(4):3174–3200, 2019.

51. C. Kanzow and D. Steck. Improved local convergence results for augmented Lagrangian
methods in C2-cone reducible constrained optimization. Math. Program. 177(1–2):425–438,
2019.

52. C. Kanzow, D. Steck, and D. Wachsmuth. An augmented Lagrangian method for optimization
problems in Banach spaces. SIAM J. Control Optim., 56(1):272–291, 2018.

53. V. Karl, I. Neitzel, and D. Wachsmuth. A Lagrange multiplier method for semilinear elliptic
state constrained optimal control problems. Computational Optim. Appl., 77:831–869, 2020.

54. K. Krumbiegel, I. Neitzel, and A. Rösch. Sufficient optimality conditions for the Moreau–
Yosida-type regularization concept applied to semilinear elliptic optimal control problems with
pointwise state constraints. Ann. Acad. Rom. Sci. Ser. Math. Appl., 2(2):222–246, 2010.

55. K. Krumbiegel, I. Neitzel, and A. Rösch. Regularization for semilinear elliptic optimal control
problems with pointwise state and control constraints. Comput. Optim. Appl., 52(1):181–207,
2012.

56. F. Kruse and M. Ulbrich. A self-concordant interior point approach for optimal control with
state constraints. SIAM J. Optim., 25(2):770–806, 2015.

57. A. Logg, K.-A. Mardal, G. N. Wells, et al. Automated Solution of Differential Equations by the
Finite Element Method. Springer, 2012.

58. A. Logg and G. N. Wells. Dolfin: Automated finite element computing. ACM Transactions on
Mathematical Software, 37(2), 2010.

59. C. Meyer, A. Rösch, and F. Tröltzsch. Optimal control of PDEs with regularized pointwise
state constraints. Comput. Optim. Appl., 33(2–3):209–228, 2006.

60. B. S. Mordukhovich. Variational Analysis and Generalized Differentiation. I: Basic Theory,
volume 330 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, 2006.

61. J.-J. Moreau. Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuelle-
ment polaires. C. R. Acad. Sci. Paris, 255:238–240, 1962.

62. J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, second edition,
2006.

63. K. J. Palmer. On the complete continuity of differentiable mappings. J. Austral. Math. Soc.,
9:441–444, 1969.

64. R. R. Phelps. Convex Functions, Monotone Operators and Differentiability, volume 1364 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, second edition, 1993.

65. M. J. D. Powell. A method for nonlinear constraints in minimization problems. In Optimization
(Sympos., Univ. Keele, Keele, 1968), pages 283–298. Academic Press, London, 1969.

66. U. Prüfert and A. Schiela. The minimization of a maximum-norm functional subject to an
elliptic PDE and state constraints. ZAMM Z. Angew. Math. Mech., 89(7):536–551, 2009.

67. S. M. Robinson. Stability theory for systems of inequalities. II. Differentiable nonlinear
systems. SIAM J. Numer. Anal., 13(4):497–513, 1976.

68. R. T. Rockafellar. A dual approach to solving nonlinear programming problems by uncon-
strained optimization. Math. Programming, 5:354–373, 1973.

69. R. T. Rockafellar. Augmented Lagrange multiplier functions and duality in nonconvex
programming. SIAM J. Control, 12:268–285, 1974.

70. R. T. Rockafellar. Augmented Lagrangians and applications of the proximal point algorithm
in convex programming. Math. Oper. Res., 1(2):97–116, 1976.

71. A. Rösch and D. Wachsmuth. A-posteriori error estimates for optimal control problems with
state and control constraints. Numer. Math., 120(4):733–762, 2012.

72. A. Schiela. An interior point method in function space for the efficient solution of state
constrained optimal control problems. Math. Program., 138(1-2, Ser. A):83–114, 2013.

73. D. Sun, J. Sun, and L. Zhang. The rate of convergence of the augmented Lagrangian method
for nonlinear semidefinite programming. Math. Program., 114(2, Ser. A):349–391, 2008.

74. F. Tröltzsch. Optimal Control of Partial Differential Equations. American Mathematical
Society, Providence, RI, 2010.



282 C. Kanzow et al.

75. M. Ulbrich. Semismooth Newton Methods for Variational Inequalities and Constrained
Optimization Problems in Function Spaces, volume 11 of MOS-SIAM Ser. Optim. SIAM,
Philadelphia, 2011.

76. A. P. Wierzbicki and S. Kurcyusz. Projection on a cone, penalty functionals and duality theory
for problems with inequality constraints in Hilbert space. SIAM J. Control Optimization,
15(1):25–56, 1977.

77. E. Zeidler. Nonlinear Functional Analysis and its Applications. II/B: Nonlinear Monotone
Operators. Springer-Verlag, New York, 1990. Translated from the German by the author and
Leo F. Boron.



Decomposition and Approximation for
PDE-Constrained Mixed-Integer
Optimal Control

Mirko Hahn, Christian Kirches, Paul Manns, Sebastian Sager,
and Clemens Zeile

Abstract Using partial outer convexification, we can reformulate MINLPs con-
strained by ODEs or PDEs such that all integer control variables are binaries. We can
obtain the canonical continuous relaxation of such problems by replacing the binary
control variables with [0, 1]-valued ones. The relaxation is generally easier to solve.
The two-step approach of computing a relaxed solution and approximating it using
binary controls afterward is called Combinatorial Integral Approximation (CIA)
decomposition. We survey recent developments concerning this methodology.

There are several well-behaved algorithmic approaches that approximate the
relaxed controls with binary ones. For these algorithms, driving the mesh size of
the rounding mesh to zero induces convergence of the binary control with the
relaxed one in the weak-∗ topology of L∞. Such approximation results for one-
dimensional domains transfer to multidimensional ones under a mild condition on
the rounding mesh refinement. If the solution operator of the state equation exhibits
sufficient regularity, i.e., compactness properties, the state vector corresponding to
the rounded binary control converges in norm to the state vector of the relaxed
problem. Variations of these algorithms allow additional pointwise constraints that
involve the discrete controls without sacrificing these convergence properties.

As a test case, we present a multidimensional model problem that compares
two recently investigated algorithmic approaches, which are transferred to the
multidimensional setting using iterates of the Sierpinski curve.
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1 Introduction

We consider partial outer convexification reformulations, see [21, 22], of optimal
control problems with mixed control inputs, i.e., control problems of the form

min
y,ω

J (y)

s.t. Ay =
M
∑

i=1

ωifi(y),

0 ≤ ωi(s)ci(y(s)) for a.a. s ∈ �T , i ∈ {1, . . . ,M},
ω(s) ∈ {0, 1}M for a.a. s ∈ �T ,

M
∑

i=1

ωi(s) = 1 for a.a. s ∈ �T .

(BC)

Here, the quantity M denotes the number of different control realizations (or right-
hand sides in the differential equation context), y denotes the state variable, and
ω denotes the binary control input of the problem. Ay = ∑M

i=1 ωifi(y) is the
state equation of the optimized process. We assume that it is defined on a bounded
domain or space-time cylinder �T , A is a suitable differential operator, and the fi
are suitable nonlinearities. The functions ci are pointwise a.e. defined constraint
functions. The function ω : �T → {0, 1}M activates the different right-hand sides
f1, . . . , fM of the state equation, i.e., ωi(s) = 1 for exactly one i ∈ {1, . . . ,M} and
ωj (s) = 0 for j �= i a.e. The continuous relaxation of (BC) reads

min
y,α

J (y)

s.t. Ay =
M
∑

i=1

αifi(y),

0 ≤ αi(s)ci(y(s)) for a.a. s ∈ �T , i ∈ {1, . . . ,M},
α(s) ∈ [0, 1]M for a.a. s ∈ �T ,

M
∑

i=1

αi(s) = 1 for a.a. s ∈ �T .

(RC)



Decomposition and Approximation for Mixed-Integer Optimal Control 285

We note that additional continuous control inputs into J , the fi , and ci would be pos-
sible here if we added additional assumptions. However, we omit them to keep the
article concise. We note that the constraint 0 ≤ αici(y) implies that versions of (RC)
with discretized differential equations exhibit the so-called vanishing constraints.
For further information on optimality conditions and algorithmic approaches for the
class of optimization problems exhibiting such constraints, Mathematical Programs
with Vanishing Constraints (MPVCs), we refer to the articles [1, 8–10].

Let Y be a Banach space that serves as the state space for the state equation. We
will make use of the abbreviations

F(BC) :=
{

(y, ω) ∈ Y × L∞(�T ,R
M) : (y, ω) feasible for (BC)

}

,

F(RC) :=
{

(y, α) ∈ Y × L∞(�T ,R
M) : (y, α) feasible for (RC)

}

,

for the feasible sets of (BC) and (RC). The following definition applies the naming
convention of relaxed and binary control to α and ω, see [15].

Definition 1.1 (Binary and Relaxed Control) Let d ∈ N. Let �T ⊂ R
d be

a bounded domain. We call a measurable function ω : �T → {0, 1}M with
∑M

i=1 ωi = 1 a.e. in �T a binary control and a measurable function α : �T →
[0, 1]M with

∑M
i=1 αi = 1 a.e. in �T a relaxed control.

We split the process of solving (BC) into the following two steps:

1. solve the relaxation (RC) to obtain an optimal relaxed control α∗ and
2. derive a binary control ω from α∗ as an approximate solution for (BC).

We call the second step rounding and stress that this is different from point-
wise rounding to the nearest integer. This splitting methodology is described in
detail in [23] and sometimes called Combinatorial Integral Approximation (CIA)
decomposition. Several algorithmic approaches exist to compute the binary control
in the second step. For instance, Sum-Up Rounding (SUR) [20] and Next-Forced
Rounding (NFR) [11] provide guaranteed bounds on the so-called integrality gap,

supt

∥

∥

∥

∫ t

0 α − ω

∥

∥

∥ in the one-dimensional case �T = (0, T ), which behave linearly

with respect to the mesh size of the rounding mesh. Here, the term mesh size refers
to the maximum cell volume of the mesh cells, which is different from its use in
the literature on PDE numerics. As the mesh size may be fixed prior to the solution
process, it is also sometimes suggested to compute the binary control by directly
minimizing the integrality gap for a given rounding mesh, see [23]. We later refer to
the resulting optimization problem as the CIA problem.

As noted in [7, 14], similar convexification and approximation properties have
been studied in the optimal control community in contexts other than mixed-integer
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optimization. We reference the important Filippov–Ważewski theorem, see [6, 24].
This theorem states that the solutions of the differential inclusion

d

dt
y(t) ∈ F(y(t)), t ∈ [0, T ],
y(0) = y0

are dense in the solutions of the differential inclusion

d

dt
y(t) ∈ conv{F(y(t))}, t ∈ [0, T ],
y(0) = y0

for a Lipschitz continuous set-valued function F , which maps into compact subsets
of a Euclidean space and a uniformly bounded solution set of the second differential
inclusion.

Our rounding algorithms can be interpreted as constructive means to compute
the approximation in a mixed-integer optimal control setting. We note that similar
considerations are used for model order reduction using Koopman operators; see the
recent publication [18].

1.1 Outline of the Remaining Sections

Section 2 summarizes sufficient conditions on the rounding meshes and algorithms
as well as the approximation arguments to obtain norm convergence of the state
vector associated with the rounded controls that are obtained in the second step of
the CIA decomposition. Section 3 presents two algorithms that can be used in the
second step of the CIA decomposition, i.e., both satisfy the prerequisites for the
aforementioned convergence argument. The first is very resource efficient but not
optimal with respect to the integrality gap. The second yields an optimal integrality
gap and can be modified to incorporate additional combinatorial constraints on the
control. Section 4 presents an algorithmic framework to perform the rounding step.
Section 5 compares the two basic rounding algorithms computationally in terms of
state vector and objective approximation error for an optimal control problem that
is governed by an elliptic state equation on a two-dimensional domain. Finally, we
summarize our findings in Sect. 6.

1.2 Notation

For an integer k, we use the abbreviating notation [k] := {1, . . . , k}. For a Banach
space X, we denote its topological dual by X∗. As we have done up to this point,



Decomposition and Approximation for Mixed-Integer Optimal Control 287

we use the abbreviated forms “a.e.” and “for a.a.” for “almost everywhere” and “for
almost all,” respectively.

2 Approximation Arguments for the CIA Decomposition

Independent of the actual rounding algorithms, this section summarizes the argu-
ment that a decaying integrality gap implies convergence of the control and state
vectors. This later factors into the optimality and feasibility of the approximations.
We begin by introducing required properties of rounding meshes and the output of
the rounding algorithm. We continue by describing the convergence properties that
result from these properties and show how they factor into optimality and feasibility.
Finally, we point out the differences, i.e., our loss in approximation quality, if mixed
constraints of the form 0 ≤ ωici(y) are present.

2.1 Properties of Rounding Meshes and Algorithms

The rounding algorithms presented later operate on controls discretized on meshes.
We refer to these as rounding meshes.

Definition 2.1 (Rounding Mesh and Mesh Size) Let d ∈ N. Let �T ⊂ R
d be a

bounded domain. A set of mesh cells {T1, . . . , TN } ⊂ B(�T ) is called a rounding
mesh if the cells make up a finite partition of�T . The quantityN denotes the number
of mesh cells, and the quantity h := maxk∈[N ] λ(Tk) denotes the mesh size of the
rounding mesh.

We highlight again that, in contrast to PDE numerics literature, we have defined
mesh size as the maximum cell volume and not as the maximum cell diameter of the
mesh cells. Although these quantities are connected on the considered meshes, they
are of course not equivalent.

The convergence results in this section require the following assumptions on the
binary control vector ω produced during the rounding step. This will be justified for
SUR in Sect. 3.1.

Assumption 2.2 There exists a constant C > 0 such that for all relaxed controls α
and rounding meshes {T1, . . . , TN } with mesh size h, the rounding ω satisfies

max
k∈[N ]

∥

∥

∥

∥

∥

∫

⋃k
&=1 T&

α(s)− ω(s)ds

∥

∥

∥

∥

∥∞
≤ Ch. (2.1)
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2.2 Weak Control Approximation

Assumption 2.2 implies convergence of ω to α in the weak-∗ topology of
L∞(�T ,R

M) by means of a density argument. We refer to [14] for the proof.
In case �T is one dimensional, i.e., �T = (0, T ), this arises straightforwardly if
the mesh cells are intervals.

Theorem 2.3 Let ({T n
1 , . . . , T n

Nn
})n be a sequence of rounding meshes with the

cells T n
k being consecutive (closed, open, and half-closed) intervals for all n ∈ N

and k ∈ [Nn]. Let (hn)n denote the corresponding sequence of mesh sizes and (ωn)n
the corresponding sequence of binary controls by a rounding algorithm satisfying
Assumption 2.2. Then,

sup
t∈[0,T ]

∥

∥

∥

∥

∫ t

0
α(s)− ωn(s)ds

∥

∥

∥

∥∞
≤ Chn.

If hn → 0, we have

ωn ⇀∗ α in L∞((0, T ),RM).

The density argument to prove Theorem 2.3 makes use of the one-dimensional
domain of integration, namely the integration by parts formula before Assump-
tion 2.2, is applied. This procedure does not generalize to the multidimensional
setting as there is no multidimensional analog to the forward progression along the
single coordinate axis in one dimension. To overcome this, we impose a regularity
condition on the refinement strategy of the sequence of rounding meshes to obtain
weak-∗ convergence of the sequence (ωn)n.

Theorem 2.3 demonstrates that refining the meshes uniformly and satisfying a
condition on the progression of the SUR algorithm through cells of consecutive
meshes give the desired convergence. This condition is satisfied by space-filling
curves, e.g., the Hilbert curve. For a short proof, we refer to [16].

Fortunately, it is possible to obtain the weak-∗ approximation property inde-
pendently of chosen progressions through the mesh cells, i.e., independent of the
indexing of the mesh cells in the estimate (2.1). However, we still require a regularity
condition to avoid a degeneration of the eccentricity of the mesh cells during the
successive refinement of the rounding meshes. The regularity condition is given in
Definition 2.4 below and is introduced in [15].

Definition 2.4 Let d ∈ N and �T ⊂ R
d be a bounded domain. Let

({

T n
1 , . . . , T n

Nn

})

n
be a sequence of rounding meshes with corresponding sequence

of mesh sizes (hn)n. Then, we call the sequence
({

T n
1 , . . . , T n

Nn

})

n
an admissible

sequence of refined rounding meshes if

1. hn → 0,
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2. for all n ∈ N and all k ∈ [Nn+1], there exists & ∈ [Nn] such that T n+1
k ⊂ T n

& ,
and

3. the cells T n
k shrink regularly, i.e., there exists C > 0 such that for each T n

k , there
exists a ball Bn

k such that T n
k ⊂ Bn

k and λ(T n
k ) ≥ Cλ(Bn

k ).

As in [15], we note that the last condition, which limits the eccentricity of the
cells along the refinements, is similar to requirements on finite-element triangula-
tions, namely refining with an isotropic strategy on quasi-uniform triangulations,
see [3]. We state the weak-∗ convergence, which is proven in [15].

Theorem 2.5 Let d ∈ N and �T ⊂ R
d be a bounded domain. Let

({

T n
1 , . . . , T n

Nn

})

n
be an admissible sequence of refined rounding meshes and

(ωn)n be the corresponding sequence of binary controls computed by means of a
rounding algorithm satisfying Assumption 2.2. Then,

ωn ⇀∗ α in L∞(�T ,R
M).

2.3 State Vector Approximation

Let y(α) denote the solution of the state equation for the relaxed control α and y(ωn)
the solution of the state equation for the binary control ωn. To obtain y(ωn)→ y(α)

in the state space Y , we need compactness of the solution mapping to transform the
weak-∗ convergence into convergence in norm. We state two results. The first is for
a class of semi-linear evolution equations with Lipschitz continuous nonlinear part
and unbounded linear part, which generates a strongly continuous semigroup. It is
proven in [14] and extends the results in [7].

Theorem 2.6 LetX be a Banach space. Let α : [0, T ] → R
M be a relaxed control.

Let y ∈ Y := C([0, T ], X) solve

∂ty + Ay =
M
∑

i=1

αifi(y), y(0) = y0

with A being the generator of a strongly continuous semigroup on X and fi
being Lipschitz continuous with respect to y for i ∈ [M]. Let (ωn)n be a
sequence of binary controls computed by means of a rounding algorithm satisfying
Assumption 2.2 on a sequence of rounding meshes as demanded in Theorem 2.3
with hn → 0, and let (yn)n ⊂ Y be the sequence of state vectors that solve

∂ty + Ay =
M
∑

i=1

ωni fi(y), y(0) = y0
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for n ∈ N. Then,

yn → y in Y.

The second result is developed in [15] for PDEs governed by elliptic operators
of second order, for which it follows immediately from the Lax–Milgram theorem.

Theorem 2.7 Let X and Y be Banach spaces satisfying the dense and compact
embedding X ↪→c Y . Let α : �T → R

M be a relaxed control. Let y ∈ Y be the
solution of

Ay =
M
∑

i=1

αifi(y)

with the restriction A having a bounded inverse A−1 : X∗ → X. Let (ωn)n be a
sequence of binary controls computed by means of a rounding algorithm satisfying
Assumption 2.2 on an admissible sequence of refined rounding meshes, and let
(yn)n ⊂ X be the sequence of state vectors that solve

Ay =
M
∑

i=1

ωni fi(y)

for n ∈ N. Let ωni fi(y) ⇀ αif (y
n) in Y ∗. Then,

yn → y in X.

One should have the Dirichlet–Laplacian with the Hilbert space setting X =
H 1

0 (�), X
∗ = H−1(�) and Y = Y ∗ = L2(�) in mind for this case. If the fi do

not depend on the state vector, the condition ωni fi(y
n) ⇀ αif (y

n) is trivially true
in this case.

2.4 Optimality and Feasibility in the Absence of Mixed
Constraints

Again, we denote the state space by the symbol Y . Regardless of the presence of
the mixed constraint or not, we can deduce the following from continuity of the
objective J with respect to the state vector.



Decomposition and Approximation for Mixed-Integer Optimal Control 291

Lemma 2.8 Let (y, α) solve (RC), and let (yn, ωn)n ⊂ Y ×L∞(�T ) satisfy yn →
y. Then,

lim J (yn) = min
(y,α)∈F(RC)

J (y).

Now, assume that the mixed constraints ci are not present, i.e., ci ≡ 0 holds for
all i ∈ [M]. Then, we even obtain the following theorem.

Theorem 2.9 Let the prerequisites of Lemma 2.8 hold. Then,

min
(y,α)∈F(RC)

J (y) = inf
(y,ω)∈F(BC)

J (y).

These statements are proven in [15] and guarantee algorithmic well-definedness
and finite termination if we refine the rounding mesh successively in the sense of
Definition 2.4 until an acceptable approximation error between the objective value
of the current iterate and the optimal objective value of (RC) is reached.

2.5 Optimality and Feasibility in the Presence of Mixed
Constraints

As mentioned before, in the presence of mixed constraints, we need to take some
extra care, and unfortunately, the decomposition approach may not be able to
produce a feasible point of (BC), in contrast to Theorem 2.9, but only one exhibiting
an arbitrarily small constraint violation.

Applying a rounding algorithm in the presence of the constraints 0 ≤ αici(y)

without any modifications might lead to arbitrary low values of the term ωici(y).
To see this, let i ∈ [M] be fixed and remember that the functions ci are assumed
to be continuous. The problem arises from the bilinear structure of the constraint
0 ≤ αici(y). If αi = 0 on a set of nonzero measure, the value of ci(y) may be
arbitrarily low for (y, α) ∈ F(RC). If the algorithm does not prevent the rounding
of ωni to 1 on this particular set of nonzero measure, this may lead to an arbitrarily
high violation of the constraint 0 ≤ ωni ci(y

n) on this particular set.
To overcome this problem, the following assumption restricts the indices that are

admissible for rounding in a particular cell T n
k to the ones satisfying

∫

T n
k
αi > 0.

Assumption 2.10 For all relaxed controls α and rounding meshes {T1, . . . , TN },
the rounding ω satisfies

∫

Tk
αi = 0 ⇒

∫

Tk
ωi = 0

for all k ∈ [N ] and all i ∈ [M].
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Now, the continuity of the ci and Assumption 2.10 yield the following result.

Theorem 2.11 Let the prerequisites of Lemma 2.8 hold. Let the binary controls
(ωn)n be computed by means of a rounding algorithm that satisfies Assumption 2.10.
Then,

lim J (yn) = min
(y,α)∈F(RC)

J (y)

as well as

0 ≤ lim infωni ci(y
n) for all i ∈ [M].

Note that this asymptotic feasibility of the constraints in particular holds for the
special case of continuous path constraints. Further classes of constraints on states
and controls are discussed in [21].

3 Approximation Quality of Roundings

The rounding step of the CIA decomposition can be performed using different
algorithmic approaches. Section 3.1 focuses on variants of the SUR algorithm, while
the explicit minimization of the integrality gap using mixed-integer linear programs
(MILPs) is the subject of Sect. 3.2. Note that other approaches like Next-Forced
Rounding, see [11], exist for the second step of the CIA decomposition.

3.1 Sum-up Rounding Algorithms

We introduce two variants of the SUR algorithm, see [13, 20], below and discuss
their basic properties and the difference between them.

Definition 3.1 (SUR Algorithms) Let α be a relaxed control, and let {T1, . . . , TN }
be a rounding mesh. We define the function ω iteratively for k = 1, . . . , N as

ω(s) :=
N
∑

k=1

χTk (s)Wk,

Wk(i) :=
⎧

⎨

⎩

1 if i = arg max
j∈Fk

∫

Tk αj −
∫

⋃k−1
&=1 T&

αj − ωj ,

0 else
for i ∈ [M].
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If a tie arises with respect to the maximizing index k, the smallest of the maximizing
indices is chosen. We define the two variants, which differ in the sets of admissible
indices for rounding in the cells of the rounding mesh:

Fk := {1, . . . ,M} for all k ∈ [N ], (SUR)

Fk :=
{

i ∈ [M] :
∫

Tk
αi > 0

}

for all k ∈ [N ]. (SUR-VC)

The algorithm (SUR) is the original SUR algorithm introduced in [20], and
the algorithm (SUR-VC) is a variant introduced in [13] that works properly in
the presence of mixed constraints. We restate the approximation property that
establishes Assumption 2.2 below. It is proven in [13, 22] for (SUR) and in [13, 17]
for (SUR-VC).

Proposition 3.2 The algorithms (SUR) and (SUR-VC) produce binary controls ω
for all relaxed controls α and rounding meshes. There exists a constant C > 0 such
that for a relaxed control α and ω computed by means of (SUR) or (SUR-VC) on a
rounding mesh with mesh size h, we have the estimate

max
k∈[N ]

∥

∥

∥

∥

∥

∫

⋃k
&=1 T&

α(s)− ω(s)ds

∥

∥

∥

∥

∥∞
≤ Ch.

In particular, Assumption 2.2 holds true.

Due to the integration domain being an increasing union of rounding mesh cells,
this estimate depends on the ordering of the mesh cells. However, if the sequence
of mesh cells is constructed such that Definition 2.4 is satisfied, the reasoning in
Sect. 2.2 guarantees convergence.

Example We illustrate the necessity for making the rounding algorithm aware of
the mixed constraints, see Sect. 2.5, for the algorithm (SUR). Let M = 3 and �T =
(0, 2), and let α be the relaxed control given by

α1 := .5χ[0,2], α2 := .5χ[0,1], α3 := .5χ[1,2].

Assume that, in mesh iteration n, �T is discretized into Nn = 2 · 3n equidistant
intervals, i.e., hn = 3−n. By applying (SUR), we obtain ωn1(s) = 1 on the intervals
with odd indices and ωn2(s) = 1 on the intervals with even indices. This implies

∫ 1
0 α1 − ωn1 =

∫

⋃3n
k=1 T n

k

α1 − ωn1 = −0.5 · 3−n,
∫ 1

0 α2 − ωn2 =
∫

⋃3n
k=1 T n

k

α2 − ωn2 = 0.5 · 3−n,
∫ 1

0 α3 − ωn3 =
∫

⋃3n
k=1 T n

k

α3 − ωn3 = 0.
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Thus, for the 3k + 1-th interval, we have

∫

T n
3n+1

α1 +
∫

⋃3n
k=1 T n

k

α1 − ωn1 = 0.,
∫

T n
3n+1

α2 +
∫

⋃3n
k=1 T n

k

α2 − ωn2 = 0.5 · 3−n
∫

T n
3n+1

α3 +
∫

⋃3n
k=1 T n

k

α3 − ωn3 = 0.5 · 3−n,

and (SUR) gives ωn2 = 1 on the interval [1, 1+ hn]. Thus, ‖ωn2 |[1,2]‖L∞ = 1 for all
n ∈ N. Now, assume c2(y

n)→ c2(y) and c2(y) ≡ −1 on [1, 2]. Then,

ess infωn2c2(y
n)→−1 on [1, 2].

The restriction of the set of admissible indices for rounding, Fk for k ∈ [N ], in
the definition of (SUR-VC) ensures that Assumption 2.10 is satisfied as well, and
the problem illustrated above cannot occur, see [13].

Proposition 3.3 Algorithm (SUR-VC) satisfies Assumption 2.10.

We note that a similar modification is not possible for the algorithm Next-Forced
Rounding (NFR) from [11] mentioned above as this may lead to an empty set of
indices admissible for rounding.

3.2 Combinatorial Integral Approximation Problems

In this subsection, we discuss the minimization problem

min
ω

max
k∈[N ]

∥

∥

∥

∥

∥

∫

⋃k
&=1 T&

α(s)− ω(s)ds

∥

∥

∥

∥

∥∞
,

which defines binary controls ω that minimize the integrality gap. By introducing
an additional variable θ ≥ 0 and adding inequality constraints for all control
realizations and mesh cells, we are able to define an equivalent mixed-integer linear
program (MILP) that aims at solving the above problem. We refer to the latter as
Combinatorial Integral Approximation Problem, see [23], and provide its definition
below.

Definition 3.4 (CIA-MILP) Let the prerequisites of Definition 3.1 hold. Based on
the relaxed controls and the rounding mesh, we introduce the average values

Ak(i) := 1

λ(Tk)

∫

Tk
αi(s)ds, for i ∈ [M], k ∈ [N ].
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We define further the CIA-MILP to be

min
θ,W

θ s.t. (CIA-MILP)

θ ≥ ± ∑

l∈[k]
(Al(i)−Wl(i)) λ(Tl ), for i ∈ [M], k ∈ [N ],

Wk(i) ∈ {0, 1} for i ∈ [M], k ∈ [N ],
1 = ∑

i∈[M]
Wk(i) for k ∈ [N ].

The solution of (CIA-MILP) is used to construct a piecewise constant binary
control function as already sketched in Definition 3.1:

ω(s) :=
N
∑

k=1

χTk (s)Wk, s ∈ �T .

We note that the family of SUR algorithms has linear complexity in the total
number of mesh cells N . In contrast, using an MILP in the rounding step increases
the computational burden exponentially with N but may construct solutions with
smaller integrality gap. In fact, one can interpret SUR as a heuristic way to solve
(CIA-MILP) or at least construct a feasible point. Since (SUR) provides a feasible
point for (CIA-MILP), the following proposition, which asserts Assumption 2.2,
follows directly from Proposition 3.2.

Proposition 3.5 The solution of (CIA-MILP) yields a binary control ω for all
relaxed controls α and rounding meshes. There exists a constant C > 0 such that
for α being a relaxed control and ω being computed by solving (CIA-MILP) on a
mesh with mesh size h, we have the estimate

max
k∈{1,...,N}

∥

∥

∥

∥

∥

∫

⋃k
&=1 T&

α(s)− ω(s)ds

∥

∥

∥

∥

∥∞
≤ Ch.

In particular, Assumption 2.2 holds true.

(CIA-MILP) represents the CIA problem based on the ∞-norm, whereas there
is a whole family of MILPs to carry out the binary approximation problem. A
generalization of CIA problems with respect to different norms, the order of the
accumulated control difference and different scaling of the latter, is proposed in
[25]. For instance, we may scale the approximation inequality for the CIA problem
with the evaluated right-hand side fi after solving (RC).

Another aspect of using an MILP in the rounding step is the opportunity
to include general combinatorial constraints on the binary controls. Real-world
problems on a time domain, i.e., �T ⊂ R, see e.g., [4, 19], often require a limited
number of switches occurring between the system modes or the presence of so-
called minimum dwell time constraints that describe the necessity of activating a
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control ωi for at least a given minimal duration if at all. Similar constraints can
be introduced for deactivation periods. To impose a maximum number of switches
σ ∈ N on the time horizon, we would add

σ ≥ 1

2

∑

i∈[M]

∑

l∈[N−1]
|Wl+1(i)−Wl(i)| (3.1)

to (CIA-MILP). The dwell time constraints for a given dwell time CD ∈ N, an
assumed equidistant mesh, as well as l ∈ [N−2], k = l+1, . . . ,min{l+1+CD,N}
would read

Wk+1(i) ≥ Wl+1(i)−Wl(i), for i ∈ [M],
1−Wk+1(i) ≥ Wl(i)−Wl+1(i), for i ∈ [M],

and can also be addressed by (CIA-MILP). In contrast to the one-dimensional case,
it is not immediately clear how to interpret such constraints on multidimensional
domains. Here, the total max-up constraint is an example of a meaningful combi-
natorial condition, which limits the total number of activations on all mesh cells for
certain controls by a constant CL(i) ∈ N:

CL(i) ≥
∑

l∈[N ]
Wl(i), for i ∈ [M].

Combinatorial conditions have in common that Assumption 2.2 cannot generally
be satisfied in their presence, and hence the convergence argument in Sect. 2.2 may
fail. The following example illustrates this issue.

Example Let us again consider the case �T = [0, 2] with two discrete control
realizations, i.e., M = 2, and with the presence of the constraint (3.1) that limits
the number of switches with the choice σ = 1. We further assume that the relaxed
control is given by

α1 := .5χ[0,2], α2 := .5χ[0,2].

Then, we recognize that the optimal solution of (CIA-MILP) approximates α by
setting the values Wl(1) = 1 on a minimal set covering ∪lTl of [0, 1] and Wl(1) =
0 else. Therefore, (CIA-MILP) exhibits an objective, i.e., an integrality gap, of at
least 1

2 independent of the discretization of �T . In particular, Assumption 2.2 is not
satisfied.

This example can be adapted analogously to cases where σ > 1 is given or
M > 2 holds.
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4 Solving the CIA Problem

The open-source software package pycombina1 contains an implementation for
various rounding algorithms, e.g., for the presented SUR from Sect. 3. Sophisticated
MILP solvers such as Gurobi struggle to solve (CIA-MILP) efficiently, see [11].
This may be due to the fact that its canonical linear programming relaxation, i.e.,
(CIA-MILP) with Wk(i) ∈ [0, 1], yields only trivial lower bounds in case of absent
additional combinatorial constraints. (CIA-MILP) can be solved more efficiently by
means of a tailored Branch and Bound scheme, see [23]; an efficient version is also
implemented in pycombina. Algorithm 1 describes the main steps. The algorithm
exploits that an evaluation of the objective function up to the current mesh cell
yields a valid lower bound due to the maximization operator over all intermediate
steps in the objective function. This lower bound is extremely cheap to compute
and is tighter than canonical relaxations [12]. We select nodes from a queue Q until
it is empty or a termination criterion is reached, such as a maximum number of
iterations or a time limit (line 2). The selected node n is pruned if its lower bound
θ is greater than the global upper bound UB (lines 4–5) or we update the currently
best node n∗ to be n, if its depth equals the number of mesh cells N (lines 6–7).
We branch forward with respect to the mesh index k ∈ [N ], whereby for each child
node creation, all control entries Wk(i) become fixed with exactly one index set
to be active (line 9). Nodes contain information on their depth, which is the mesh
cell index, their so far largest accumulated control deviation θ and the accumulated
deviation for each control realization θi . Depending on the imposed combinatorial
constraints, we save also information about previous Wk(i) values in the nodes and
add their child nodes only if they satisfy these constraints (line 10). For further
details and numerical examples benchmarking Algorithm 1 with MILP solvers, we
refer to [4, 11].

5 Illustration of the Multidimensional Control
Approximation

As noted in Sect. 2.2, weak convergence of the control function can be ensured for
elliptic PDEs with both algorithms, if we use an admissible sequence of refined
rounding meshes. As shown in [16], this can be achieved by iterating over the mesh
cells along approximants of a space-filling curve such as the Hilbert curve. In this
section, we demonstrate the bare SUR algorithm and the MILP approach described
above by applying them to a simple distributed inverse problem for the Poisson
equation. We use a finite-element method with continuous first-order Lagrange

1Available at https://github.com/adbuerger/pycombina.

https://github.com/adbuerger/pycombina
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Algorithm 1: Branch and Bound for solving (CIA-MILP)
Input : Relaxed control values Ak(i), mesh size volumes λ(Tk), k ∈ [N ], termination criterion,

parameters for combinatorial constraints.
Output: (Optimal) solution (θ∗,W ∗) of (CIA-MILP).

1 Initialize node queue Q with empty node and set upper bound UB.
2 whileQ �= ∅ and termination criterion not reached do
3 Choose n ∈ Q according to node selection strategy.
4 if n.θ > UB then
5 Prune node n.
6 else if n.depth = N then
7 Set new best node n∗ ← n and UB = n.θ
8 else
9 Create M child nodes ci with

ci .depth ← d := n.depth+ 1,

Wci ,d (j) ←
{

1 if j = i

0 otherwise
,

ci .θj ← n.θj + (Ad(j)−Wd(j)) · λ(Td )
ci .θ ← max

(

{n.θ} ∪ {|ci .θj |
∣

∣ j ∈ [M]}
)

.

10 Add ci to Q if and only if it satisfies all combinatorial constraints.
11 end
12 end
13 return: (θ∗,W ∗) = (n∗.θ,n∗.W);

elements on a structured triangular mesh which we will iterate over according to
the Sierpinski curve.

5.1 Test Problem

Our test problem is based on the Poisson equation, which is an inhomogeneous,
uniformly elliptic second-order linear PDE system used to find stationary solutions
to diffusion and heating problems. Due to its theoretical simplicity, the Poisson
equation is often used as a test bed for mixed-integer PDE-constrained optimization.
We solve the Poisson equation in two dimensions on the unit square � = [0, 1]2
using Robin boundary conditions, which guarantees the uniqueness and Fréchet
differentiability of the PDE solution with respect to our controls, which select one
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of the five discrete source term values for each point in the domain. Our objective is
an L2 tracking objective. Thus, the problem can be stated as

min
y,ω

‖y − ȳ‖2
L2(�)

s.t. −�y =
5

∑

i=1

viωi a.e. in �,

∂y

∂ν
− y = 0 a.e. in ∂�,

5
∑

i=1

ωi(x) = 1 a.e. in �,

ωi(x) ∈ {0, 1} a.e. in � ∀i ∈ [5],

(P)

where ν : ∂� → R
2 is the outer unit normal of � and ȳ ∈ L2(�) is the unique

weak solution of the boundary value problem for the right-hand side given by

f̄ (x) :=
5

∑

i=1

vi
ᾱi(x)

∑5
j=1 ᾱj (x)

∀x ∈ �

with a set of known control functions

ᾱi (x) := exp
(

−100
(

min
{‖x −m∗,1‖, ‖x −m∗,2‖

}− ri
)2

)

.

The additional parameters are

v :=
(

−2,−1

2
,

1

4
, 1, 2

)T

,

r := (0.25, 0.2, 0.15, 0.1, 0.05)T ,

m :=
(

0.25 0.75
0.25 0.75

)

.

After normalization, the functions ᾱ sum up to one everywhere. Therefore, they are
optimal controls for the relaxed problem with objective function value 0.
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5.2 Mesh Structure and Sierpinski Curve

We use the finite-element package FEniCS [2] to generate meshes and solve the
boundary value problem. Meshes are generated using a RectangleMesh with
cross- ed diagonals, meaning that at refinement level l ∈ N0, the unit square
is subdivided into 4l equally sized squares, each of which is again subdivided into
four congruent triangles along its diagonals. This is equivalent to subdividing each
triangle into four congruent sub-triangles on each refinement level as illustrated in
Fig. 1.

In order to generate an order approximating the Sierpinski curve, we generate the

vertices of a Sierpinski curve at the l-th iteration, starting at the point
(

1
2l+1 ,

√
2−1

2l+1

)

which is located in the leftmost triangle that has an edge contained entirely within

the x1 axis. The first step is made at an angle of π
4 and all steps have length

√
2−1
2l

.
This produces one vertex within each triangle. We then iterate over the triangles in
the mesh according to the order of the vertices.

For a more detailed description of the Sierpinski curve, we refer to [5, Section
2.10.3]. The procedure is illustrated for refinement levels 0, 1, and 2 in Fig. 2.

Fig. 1 Refinement of a single triangle

Fig. 2 First three refinement levels in an admissible sequence of rounding meshes using the
Sierpinski curve
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5.3 Numerical Results Obtained with the CIA Decomposition

For practical problems, we suggest to calculate optimal relaxed and derived binary
controls iteratively on refined meshes. However, both the convergence of the relaxed
solutions and of the rounding strategies have an impact and overlap, complicating
the analysis of the overall convergence behavior. In our setting and due to the
way the test problem is stated, the optimal relaxed control function is known in
advance. This allows us to highlight the convergence of the rounded solutions to the
optimal relaxed solution in function space. We use continuous first-order Lagrange
elements to approximate weak PDE solutions and piecewise constant functions to
approximate control functions. We coarsen the optimal relaxed control for lower
refinement levels by taking a weighted average over each cell of the coarse mesh
and approximate it using both sum-up rounding and pycombina’s specialized
branch-and-bound algorithm. The latter is limited to 108 explored nodes and up
to one CPU hour of computation time. We compare both approximation methods
using the absolute error in the objective function value as well as the objective
they achieve in the CIA problem (CIA-MILP). The latter approaching zero indicates
weak-∗ convergence of the control function.

We note that pycombina terminates early on account of exceeding the explored
node limit for levels 3, 4, 5, and 6. However, it does so in less than 20 CPU minutes
in all cases. By contrast, if we try to solve the CIA problem (CIA-MILP) using
Gurobi, the CPU time limit of one hour is already exceeded at level 3.

Table 1 summarizes the outcome of our experiment. Despite early and possi-
bly suboptimal termination, we see that the branch-and-bound algorithm always
achieves a CIA objective that is at least as good as or better than that achieved by
sum-up rounding, though this does not always translate into a smaller error in the
actual objective function value. For levels 1, 3, and 5, we plot the right-hand side
function and PDE solution for sum-up rounding and branch-and-bound alongside
their relaxed counterparts in Figs. 3 and 4, respectively.

6 Conclusion

In this chapter, we surveyed recent improvements of the CIA decomposition for
solving PDE-constrained mixed-integer optimal control problems. This approach
consists of solving first the problem with relaxed controls before approximating
these values with binary ones as part of a rounding problem. We summarized
our findings with respect to convergence results in the weak-∗ topology of L∞
and discussed two rounding algorithms together with their efficient numerical
implementation. Finally, these two algorithmic approaches were compared on a test
problem based on the Poisson equation, where we used the space-filling Sierpinski
curve to iterate over a structured triangular mesh.
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Fig. 3 Solutions for SUR at levels 1, 3, and 5
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Fig. 4 Solutions for branch-and-bound at levels 1, 3, and 5

Acknowledgments C. Kirches, S. Sager, and P. Manns acknowledge funding by Deutsche
Forschungsgemeinschaft through Priority Programme 1962, grant KI1839/1-1. C. Kirches
acknowledges financial support by the German Federal Ministry of Education and Research,
program “Mathematics for Innovations in Industry and Service,” grants 05M17MBA-MOPhaPro
and 05M18MBA-MOReNet, and program “IKT 2020: Software Engineering,” grant 01/S17089C-
ODINE. S. Sager, M. Hahn, and C. Zeile have received funding from the European Research
Council (ERC), grant agreement no. 647573, from German Research Foundation—314838170,
GRK 2297 MathCoRe and from German Federal Ministry of Education and Research, program
“Mathematics for Innovations,” grant P2Chem.



304 M. Hahn et al.

References

1. W. Achtziger and C. Kanzow. Mathematical programs with vanishing constraints: optimality
conditions and constraint qualifications. Mathematical Programming, 114(1):69–99, 2008.

2. M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring,
M. E. Rognes, and G. N. Wells. The FEniCS Project Version 1.5. Archive of Numerical
Software, 3(100), 2015.

3. T. Apel and G. Lube. Anisotropic mesh refinement in stabilized Galerkin methods. Numerische
Mathematik, 74(3):261–282, 1996.

4. A. Buerger, C. Zeile, A. Altmann-Dieses, S. Sager, and M. Diehl. Design, implementation
and simulation of an MPC algorithm for switched nonlinear systems under combinatorial
constraints. Journal of Process Control, 81:15–30, September 2019.

5. H. Martyn Cundy and A. P. Rollett. Mathematical models / by H. Martyn Cundy and A. P.
Rollett. Clarendon Press Oxford, 2d ed. edition, 1961.

6. A. Filippov. On some problems of optimal control theory. Vestnik Moskowskovo Universiteta,
Math, 2:25–32, 1958. English version: On Certain Questions in the Theory of Optimal Control,
J. SIAM Ser. A Control, Vol. 1 (1962), no. (1).

7. F. M. Hante and S. Sager. Relaxation methods for mixed-integer optimal control of partial
differential equations. Computational Optimization and Applications, 55(1):197–225, 2013.

8. T. Hoheisel and C. Kanzow. First-and second-order optimality conditions for mathematical
programs with vanishing constraints. Applications of Mathematics, 52(6):495–514, 2007.

9. T. Hoheisel and C. Kanzow. On the Abadie and Guignard constraint qualifications for
mathematical programmes with vanishing constraints. Optimization, 58(4):431–448, 2009.

10. A. F. Izmailov and M. V. Solodov. Mathematical programs with vanishing constraints:
optimality conditions, sensitivity, and a relaxation method. Journal of Optimization Theory
and Applications, 142(3):501–532, 2009.

11. M. Jung. Relaxations and approximations for mixed-integer optimal control. PhD thesis,
Heidelberg University, 2013.

12. M. Jung, G. Reinelt, and S. Sager. The Lagrangian Relaxation for the Combinatorial Integral
Approximation Problem. Optimization Methods and Software, 30(1):54–80, 2015.

13. C. Kirches, F. Lenders, and P. Manns. Approximation properties and tight bounds for
constrained mixed-integer optimal control. SIAM Journal on Control and Optimization,
58(3):1371–1402, 2020.

14. P. Manns and C. Kirches. Improved regularity assumptions for partial outer convexification
of mixed-integer PDE-constrained optimization problems. ESAIM: Control, Optimisation and
Calculus of Variations, 26:32, 2020.

15. P. Manns and C. Kirches. Multidimensional sum-up rounding for elliptic control systems. SIAM
Journal on Numerical Analysis, 58(6):3427–3447, 2020.

16. P. Manns, and C. Kirches. Multi-dimensional Sum-Up Rounding using Hilbert curve iterates.
PAMM, 19(1):e201900065, 2019.

17. P. Manns, C. Kirches, and F. Lenders. Approximation properties of sum-up rounding in the
presence of vanishing constraints. Mathematics of Computation, 90(329):1263–1296, 2021.

18. S. Peitz and S. Klus. Koopman operator-based model reduction for switched-system control of
PDEs. Automatica, 106:184–191, 2019.

19. N. Robuschi, C. Zeile, S. Sager, F. Braghin, and F. Cheli. Multiphase mixed-integer nonlinear
optimal control of hybrid electric vehicles. Automatica, 123:109325, 2021.

20. S. Sager. Numerical methods for mixed-integer optimal control problems. Der andere Verlag,
Tönning, Lübeck, Marburg, 2005.

21. S. Sager. Reformulations and Algorithms for the Optimization of Switching Decisions in
Nonlinear Optimal Control. Journal of Process Control, 19(8):1238–1247, 2009.

22. S. Sager, H.G. Bock, and M. Diehl. The Integer Approximation Error in Mixed-Integer Optimal
Control. Mathematical Programming, Series A, 133(1–2):1–23, 2012.



Decomposition and Approximation for Mixed-Integer Optimal Control 305

23. S. Sager, M. Jung, and C. Kirches. Combinatorial Integral Approximation. Mathematical
Methods of Operations Research, 73(3):363–380, 2011.
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Strong Stationarity for Optimal Control
of Variational Inequalities of the Second
Kind

Constantin Christof, Christian Meyer, Ben Schweizer, and Stefan Turek

Abstract This chapter is concerned with necessary optimality conditions for opti-
mal control problems governed by variational inequalities of the second kind. The
so-called strong stationarity conditions are derived in an abstract framework. Strong
stationarity conditions are regarded as the most rigorous ones, since they imply all
other types of stationarity concepts and are equivalent to purely primal optimality
conditions. The abstract framework is afterward applied to four application-driven
examples.
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1 Introduction

This chapter is concerned with optimal control problems governed by variational
inequalities (VIs) of the second kind. Optimal control problems of this type arise in
various applications, for instance, in the optimization of elastoplastic deformation
processes, type-II semiconductors, or rheological fluids, see [7, 13, 29].

Optimal control problems governed by VIs provide the particular challenge
that the control-to-state mapping, i.e., the solution mapping of the VI under
consideration, is frequently not Gâteaux-differentiable. Therefore, the standard
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adjoint approach for the derivation of Karush–Kuhn–Tucker (KKT) conditions that
is widely used in optimal control is not applicable when it comes to optimization
problems constrained by VIs. For this reason, the derivation of qualified optimality
systems involving dual variables is all but elementary in the context of optimal
control of VIs. There are multiple strategies to overcome this issue, among them
are various smoothing and exact penalization techniques. We only refer to [8] and
the various references therein for a broad overview. All these approaches yield
necessary optimality conditions of different strength; see [15] for a survey of the
multiple stationarity concepts. The most rigorous notion of stationarity is called
strong stationarity. The characteristic feature of a system of strong stationarity is
that it implies all the other stationarity conditions and is moreover equivalent to a
purely primal optimality condition, called Bouligand(B)-stationarity.

To the best of our knowledge, there are in principle two ways to establish
strong stationarity conditions for optimal control problems governed by VIs.
Both approaches presume that the control-to-state map is at least directionally
differentiable. The first approach was initiated by Mignot [19] and is to some
extent based on the idea to take the “linearized” states as variations and not
feasible controls as usually done in the derivation of first-order conditions. The
alternative approach for the derivation of strong stationarity conditions originates
from finite dimensional programs with complementarity constraints and works as
follows: first, one “linearizes” the optimal control problem the control-to-state map
by means of the directional derivative of S. Then, one defines auxiliary problems
by fixing variables in the “linearized” problem. The latter are standard optimal
control problems, which, under suitable assumptions, allow the derivation of KKT
conditions. The latter then imply the desired strong stationarity conditions. For
details on this approach, we refer to [14, 26, 27].

Here, we follow the first approach of [19] and generalize it for the optimal control
of VIs of the second kind. Mignot’s approach has mostly been applied to optimal
control of VIs of the first kind, see, e.g., [1, 16, 20]. However, it turns out that
the method of proof is essentially based on a particular structure of the directional
derivative of the control-to-state mapping, which is also frequently observed in case
of VIs of the second kind. Therefore, by slightly generalizing Mignot’s approach, we
construct a general framework for the derivation of strong stationarity conditions.
We then apply this general result to four application-driven problems. First, we
show that the obstacle problem fits into our general framework, which allows us
to deduce the classical results by Mignot. As a second example, we consider the
optimal control of static elastoplasticity in primal formulation, which is a VI of the
second kind. As in case of the obstacle problem, the control-to-state map of the VI
of static elastoplasticity provides a directional derivative with the desired structure
without any further assumptions. This differs from our last two examples, which
cover VIs of the second kind in the Sobolev spaceH 1(�) involvingL1-norms. Here,
we need additional assumptions that ensure the existence of directional derivatives
with certain properties in order to apply our general framework. In case of the so-
called (generalized) lasso problem, these assumptions can be directly verified once
a solution of the VI is given. In contrast to this, in our last example, which stems
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from an application in rheological fluid mechanics, these assumptions are of rather
intrinsic nature and may be hard to verify in practice.

It should be mentioned that this chapter is based on the PhD thesis of Constantin
Christof, which was written within project P16 of the DFG priority program 1962.

Notation
The dual of a linear normed space X is denoted by X∗. If x ∈ X and g ∈ X∗,
we write for the dual pairing g(x) = 〈g, x〉X. In case that the context is clear, we
sometimes neglect the index and simply write 〈·, ·〉 for a dual pairing. If X is a
Hilbert space, we denote the corresponding scalar product by (·, ·)X. The space of
linear and bounded operators fromX to another linear normed space Y is denoted by
L(X, Y ). If X is continuously embedded in Y in the sense of [22, Definition 4.19],
then we write X ↪→ Y . If this embedding is dense, we write X ↪→d Y .

2 Strong Stationarity in an Abstract Framework

Throughout this section, we consider the following abstract optimal control prob-
lem:

min J (y, u)

s.t. (y, u) ∈ Y × U,

y = S(u), u ∈ Uad.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(P)

On the data in (P), we impose the following:

Assumption 2.1 (Standing Assumptions) For the data in (P), we assume the
following:

• U is a Hilbert space,
• Y is a linear normed space,
• the objective J : Y × U → R is Fréchet-differentiable,
• S : U → Y is a continuous mapping, and
• the set of admissible controls Uad ⊂ U is nonempty, closed, and convex.

For the rest of this section, we tacitly assume that the above assumption is
fulfilled without mentioning it every time. Moreover, in all what follows, let (ȳ, ū) ∈
Y × Uad with ȳ = S(ū) be an arbitrary, but fixed local minimizer of (P).

As indicated in the introduction, we are interested in the derivation of necessary
optimality conditions. The particular challenge in case of (P) is that we do not
assume S to be Gâteaux-differentiable. Therefore, standard techniques cannot be
applied to establish an optimality condition involving dual variables. In contrast to
this, purely primal optimality conditions can be derived by classical arguments.
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Proposition 2.2 (Bouligand Stationarity) Suppose that S is directionally differ-
entiable at ū in all directions h ∈ cone(Uad − ū). Then, there holds

〈∂yJ (ȳ, ū), S′(ū;h)〉Y + 〈∂uJ (ȳ, ū), h〉U ≥ 0 ∀h ∈ cone(Uad − ū), (2.1)

where cone(Uad − ū) := {α(u − ū) : u ∈ Uad, α > 0} denotes the conic hull of
Uad − ū.

Proof Since S is directionally differentiable and J is Fréchet-differentiable and
thus Hadamard directionally differentiable, we can apply the chain rule, which
immediately gives the assertion (see [2, Prop. 2.47]). ��

Throughout this chapter, the condition in (2.1) is termed B-stationarity and,
accordingly, a point ū ∈ Uad fulfilling this condition is called B-stationary.

As indicated above, our aim is to deduce an optimality system containing dual
variables from (2.1). Since h �→ S′(ū;h) is in general not linear, the standard adjoint
calculus cannot be applied from the shelf. In order to cope with this challenge,
we need the following additional assumption on the structure of the directional
derivative of S at ū:

Assumption 2.3 (Directional Differentiability of the Control-to-State Map)
The map S is directionally differentiable in ū in every direction h ∈ cone(Uad − ū),
and its directional derivative δ = S′(ū;h) in direction h ∈ cone(Uad − ū) is
characterized as the solution of the following VI of the first kind:

δ ∈ K(ȳ), 〈A(ȳ)δ, v − δ〉Vȳ ≥ (h, v − δ)U ∀ v ∈ K(ȳ), (2.2)

where

• Vȳ is a Hilbert space such that Vȳ ↪→ Y and Vȳ ↪→d U ,
• A(ȳ) ∈ L(Vȳ, V ∗̄

y ) is a strongly monotone operator, and
• K(ȳ) ⊂ Vȳ is a nonempty, closed, and convex cone.

As indicated by the subscript, Vȳ as well as A(ȳ) and K(ȳ) may well depend on
ȳ = S(ū).

In the following, we will identify U with its dual (by the Riesz theorem), which
gives rise to the Gelfand triple:

Vȳ ↪→ U ∼= U∗ ↪→ V ∗̄
y .

In this spirit, we will frequently interpret elements in Vȳ as elements in U without
mentioning the respective embedding operator. Similarly, we neglect the embedding
operator, when U ∼= U∗ is treated as a subset of V ∗̄

y . In addition, an element g of Y ∗
is considered as an element of V ∗̄

y via E∗g, where E ∈ L(Vȳ, Y ) is the embedding
operator from Assumption 2.3. For ease of notation, we will also omit E∗ in the
following.
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Unfortunately, strong stationarity conditions are in general not necessary for
local optimality, as the counterexamples in [18, 25] show. Therefore, additional
conditions are required, and, in our case, we rely on the following:

Assumption 2.4 (Critical Constraint Qualification) The conic hull cone(Uad−ū)
is dense in U , i.e., cone(Uad − ū)

U = U .

Remark 2.5 Assumption 2.4 is rather restrictive. For instance, it does in general
not allow us to consider classical box constraints for the control, unless additional
assumptions are fulfilled, which cannot be checked a priori (as usual for constraint
qualifications), see, e.g., [25]. Note that, in case of box constraints, Assumption 2.4
is fulfilled, if ū does not touch the bounds a.e. in the domain.

Since A(ȳ) is strongly monotone, the VI in (2.2) does possess a solution not
only for every right-hand side in cone(Uad − ū) but also for inhomogeneities in
V ∗̄
y . We denote the associated solution operator by Gȳ : V ∗̄

y → Vȳ so that
Gȳ |cone(Uad−ū)(·) = S′(ū; ·). Due to the strong monotonicity of A(ȳ), this solution
operator is globally Lipschitz continuous, i.e.,

‖Gȳ(g)−Gȳ(h)‖Vȳ ≤ L ‖g − h‖V ∗̄y ∀ g, h ∈ V ∗̄
y (2.3)

with a Lipschitz constant L > 0, whose potential dependency on ȳ is suppressed
for ease of notation.

As indicated above, we cannot define an adjoint state by means of the adjoint
operator associated with the derivative of the control-to-state map, since the latter
is nonlinear w.r.t. the direction. Instead, we introduce an adjoint state by extending
the partial derivative ∂uJ (ȳ, ū) to the dual of Vȳ , which implies that the gradient
equation coupling adjoint state and optimal control is automatically fulfilled.

Lemma 2.6 There exists p ∈ Vȳ such that

(p, h)U + 〈∂uJ (ȳ, ū), h〉U = 0 ∀h ∈ U. (2.4)

Moreover, for all h ∈ V ∗̄
y , it holds

〈∂yJ (ȳ, ū),Gȳ(h)〉Vȳ − 〈h, p〉Vȳ ≥ 0. (2.5)

Proof From (2.1), we know that

〈∂yJ (ȳ, ū),Gȳ(h)〉Vȳ + 〈∂uJ (ȳ, ū), h〉U ≥ 0 ∀h ∈ cone(Uad − ū), (2.6)

and, consequently, the global Lipschitz continuity ofGȳ implies in view ofGȳ(0) =
S′(ū; 0) = 0 that

〈−∂uJ (ȳ, ū), h〉U ≤ 〈∂yJ (ȳ, ū),Gȳ(h)〉Vȳ ≤ c ‖∂yJ (ȳ, ū)‖Y ∗ ‖h‖V ∗̄y
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for all h ∈ cone(Uad − ū). Since this set is V ∗̄
y -dense in U by Assumption 2.4 and

U ↪→ V ∗̄
y , this implies the existence of a constant c > 0 so that

|〈−∂uJ (ȳ, ū), h〉U | ≤ c ‖h‖V ∗̄y ∀h ∈ U.

Hence, by the Hahn–Banach theorem,−∂uJ (ȳ, ū) can be extended to an element of
V ∗∗
ȳ , which we identify with an element p ∈ Vȳ by the reflexivity of Vȳ . Since p is

the extension of −∂uJ (ȳ, ū), we immediately deduce (2.4). Inserting this in (2.6)
and using that cone(Uad − ū) is V ∗̄

y -dense in U and that U is dense in V ∗̄
y by

Lemma A.1 then give the second claim. ��
Based on the previous lemma, we are now in the position to state our main result.

Theorem 2.7 (Strong Stationarity) Let ū ∈ U be locally optimal for (P) with
associated optimal state ȳ = S(ū). Suppose that Assumptions 2.3 and 2.4 are
satisfied at ū. Then, there exist p ∈ Vȳ and μ ∈ V ∗̄

y so that the following optimality
condition is fulfilled:

p + ∂uJ (ȳ, ū) = 0 in U∗ (2.7a)

A(ȳ)∗p + μ = ∂yJ (ȳ, ū) in V ∗̄
y , (2.7b)

p ∈ K(ȳ), 〈μ, v〉Vȳ ≥ 0 ∀ v ∈ K(ȳ). (2.7c)

Proof From Lemma 2.6, we already know that there exists a p ∈ Vȳ such that (2.7a)
holds. Let us now show that p ∈ K(ȳ). For this purpose, define η := Gȳ

(

A(ȳ)p
)

and ζ := Gȳ

(

A(ȳ)(p − η)
)

, i.e., η and ζ solve

η ∈ K(ȳ), 〈A(ȳ)η, v − η〉Vȳ ≥ 〈A(ȳ)p, v − η〉Vȳ ∀ v ∈ K(ȳ), (2.8)

ζ ∈ K(ȳ), 〈A(ȳ)ζ, v − ζ 〉Vȳ ≥ 〈A(ȳ)(p − η), v − ζ 〉Vȳ ∀ v ∈ K(ȳ). (2.9)

Since K(ȳ) is a closed cone by assumption, we can insert 0 ∈ K(ȳ) and 2η ∈ K(ȳ)
as test elements in (2.8), which results in

〈A(ȳ)(p − η), η〉Vȳ = 0 and 〈A(ȳ)(p − η), v〉Vȳ ≤ 0 ∀ v ∈ K(ȳ). (2.10)

The latter inequality implies for (2.9) tested with v = 0 that 〈A(ȳ)ζ, ζ 〉Vȳ ≤ 0,
which, thanks to the strong monotonicity of A(ȳ), in turn gives ζ = 0. Next, we
insert h = A(ȳ)(p−η) ∈ V ∗̄

y as a test elements in (2.5), which, due toGȳ(A(ȳ)(p−
η)) = ζ = 0, results in

〈A(ȳ)(p − η), p〉Vȳ ≤ 0.

Together with the first equation in (2.10), this yields 〈A(ȳ)(p − η), p − η〉Vȳ ≤ 0
so that the strong monotonicity of A(ȳ) gives p = η ∈ K(ȳ) as claimed.
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Next, we simply define μ ∈ V ∗̄
y by setting μ := ∂yJ (ȳ, ū) − A(ȳ)∗p ∈ V ∗̄

y so
that (2.7b) is fulfilled, as well. It remains to verify the last condition in (2.7c). To
this end, let v ∈ K(ȳ) be arbitrary. Then, by construction of Gȳ , the feasibility of v
yields v = Gȳ(A(ȳ)v). Therefore, if we insert h = A(ȳ)v in (2.5), then

〈μ, v〉Vȳ = 〈∂yJ (ȳ, ū), v〉Vȳ − 〈A(ȳ)v, p〉Vȳ ≥ 0

follows. Since v ∈ K(ȳ) was arbitrary, this completes the proof. ��
Proposition 2.8 Let Assumption 2.3 hold at a (not necessarily locally optimal)
point ū ∈ Uad, and assume that p ∈ Vȳ and μ ∈ V ∗̄

y exist such that (2.7) is fulfilled.
Then, ū satisfies the B-stationarity condition in (2.1).

Proof Let h ∈ cone(Uad − ū) be arbitrary, and write again δ = S′(ū;h). Similarly
to the beginning of the proof of Theorem 2.7, we test the VI in (2.2) with v = 0 and
v = 2δ to obtain

〈A(ȳ)δ, v〉Vȳ ≥ (h, v)U ∀ v ∈ K(ȳ).

Due to p ∈ K(ȳ), this inequality also holds for v = p, which, in combination with
the adjoint equation in (2.7b), gives

〈∂yJ (ȳ, ū), S′(ū;h)〉Y = 〈∂yJ (ȳ, ū), δ〉Vȳ
= 〈A(ȳ)∗p + μ, δ〉Vȳ
= 〈A(ȳ)δ, p〉Vȳ + 〈μ, δ〉Vȳ ≥ (h, p)U .

In view of (2.7a), this gives the assertion. ��
Remark 2.9 Theorem 2.7 and Proposition 2.8 (or the proofs of these results,
to be more precise) demonstrate that, under Assumption 2.3 and the constraint
qualification in Assumption 2.4, the optimality system in (2.7) and the B-stationarity
condition in (2.1) are equivalent. We have thus found an optimality system involving
dual variables, which is equivalent to the purely primal optimality condition. This
motivates the notion strong stationarity for the optimality condition in (2.7).

Remark 2.10 The result of Theorem 2.7 can be substantially generalized by
allowing for a more general structure of the directional derivative of S, see [3,
Section 6].
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3 Application to Concrete Settings

3.1 The Obstacle Problem

To keep the discussion concise, we restrict ourselves to the classical obstacle
problem governed by the Laplacian, i.e.,

y ∈ K,

∫

�

∇y · ∇(v − y) dx ≥ 〈u, v − y〉 ∀ v ∈ K. (3.1)

Herein, � ⊂ R
d , d ≥ 1, is a bounded domain and

K := {v ∈ H 1
0 (�) : ψ1 ≤ v ≤ ψ2 a.e. in �},

with two given functions ψ1, ψ2 ∈ H 1(�) such that K �= ∅. Clearly, for every
u ∈ H−1(�), (3.1) admits a unique solution y ∈ H 1

0 (�), and the associated solution
operator S : H−1(�) → H 1

0 (�) is globally Lipschitz continuous. Moreover, there
holds the following:

Proposition 3.1 ([19, Théorème 3.3]) The solution operator S of (3.1) is direc-
tionally differentiable from H−1(�) to H 1

0 (�). Its directional derivative at u ∈
H−1(�) in direction h ∈ H−1(�) is given by the unique solution of the following
VI of the first kind:

δ ∈ K(y),
∫

�

∇δ · ∇(v − δ)dx ≥ 〈h, v − δ〉 ∀ v ∈ K(y), (3.2)

where y = S(u) and K(y) ⊂ H 1
0 (�) is the closed and convex cone defined by

K(y) := {v ∈ H 1
0 (�) : v ≤ 0 q.e., where y = ψ2, v ≥ 0 q.e., where y = ψ1,

〈�y + u, v〉 = 0}.
(3.3)

Note that the pointwise properties in the definition of K(y) are required quasi-
everywhere, i.e., the quasi-continuous representative satisfies the respective property
up to sets of zero H 1(Rd)-capacity. The proof of the above proposition is based on
the polyhedricity of the set K , which means that, for all v ∈ K and all g ∈ H−1(�),
there holds

cone(K − v)
H 1

0 ∩ Ker(g) = cone(K − v) ∩ Ker(g)
H 1

0 ,

see [19, 28] and [3, Section 3.3].
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Our optimal control problem governed by the obstacle problem now reads as
follows:

min J (y, u)

s.t. (y, u) ∈ H 1
0 (�)× L2(�),

(y, u) satisfy (3.1), u ∈ Uad,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(Pobst)

where J : H 1
0 (�) × L2(�) → R is a given Fréchet-differentiable objective and

Uad ⊂ L2(�) is a nonempty, closed, and convex set. Again, we consider a fixed but
arbitrary local minimizer of (Pobst), denoted by (ȳ, ū) ∈ H 1

0 (�)×L2(�). Then, by
setting

U := L2(�), Y = Vȳ := H 1
0 (�), A(ȳ) := −�,

and K(ȳ) as defined in (3.3) (with y = ȳ), problem (Pobst) fits into our general
setting. Hence, the general theory from Sect. 2 can be applied to this example:

Theorem 3.2

1. Suppose that ū ∈ L2(�) is locally optimal for (Pobst) with associated state
ȳ = S(ū). Moreover, let the critical constraint qualification in Assumption 2.4
be fulfilled, i.e.,

cone(Uad − ū)
L2 = L2(�). (3.4)

Then, there exist p ∈ H 1
0 (�) and μ ∈ H−1(�) such that

p + ∂uJ (ȳ, ū) = 0 a.e. in �, (3.5a)

−�p + μ = ∂yJ (ȳ, ū) in H−1(�), (3.5b)

p ∈ K(ȳ), 〈μ, v〉 ≥ 0 ∀ v ∈ K(ȳ). (3.5c)

2. Assume that ū ∈ Uad with associated state ȳ = S(ū) is such that p ∈ H 1
0 (�) and

μ ∈ H−1(�) exist so that the system in (3.5) is fulfilled. Then, ū is B-stationary
for (Pobst).

Remark 3.3 The first assertion of Theorem 3.2 concerning the necessary optimality
condition was already proven in [20]. There, the critical constraint qualification (3.4)
is ensured by simply setting Uad = U = L2(�).

Another rather implicitly given condition is the assumption that Vȳ = H 1
0 (�)

must embed into U = L2(�). The injectivity of the embedding operator thus
prevents the derivation of strong stationarity conditions in case of boundary controls,
whereU = L2(∂�), as the counterexample in [18] demonstrates. Similarly, controls
that only act on parts of the domain � can also not be treated by our analysis. This
shows that the assumptions concerning the set of admissible controls are indeed
rather restrictive.
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3.2 Static Elastoplasticity

Now, we turn to a VI of the second kind and consider an optimal control problem
governed by the system of static elastoplasticity with linear kinematic hardening.
Strictly speaking, the problem of static elastoplasticity is physically not meaningful,
but it may be regarded as the stationary problem that has to be solved in one time
step of an implicit time discretization of the quasi-static elastoplastic evolution. The
model under consideration is the primal formulation of static elastoplasticity with
linear kinematic hardening and the von Mises yield condition and reads as follows:

(u, p) ∈ V×P,
∫

�

(ε(u)− p) : C(

ε(v − u)− (q − p)
)+ p : H(q − p) dx

+ σ0

∫

�

|q|F dx − σ0

∫

�

|p|F dx

≥ 〈&, v − u〉 +
∫

�

L : (q − p) dx ∀ (v, q) ∈ V×P.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(3.6)

Herein, � ⊂ R
d , d = 2, 3, is a given bounded Lipschitz domain, whose boundary is

split into two disjoint parts ∂� = �D∪�N . The part �D is assumed to have positive
measure. Moreover, u : � → R

d denotes the displacement field, while p : � →
R
d×d
dev is the plastic strain tensor. Herein, Rd×d

dev is the space of symmetric matrices
with zero trace, equipped with the Frobenius norm, which is denoted by | · |F . The
associated scalar product is denoted by R

d×d × R
d×d . (a, b) �→ a : b ∈ R. The

spaces in (3.6) are defined as follows:

P := L2(�;Rd×d
dev ), V := {v ∈ W 1,2(�;Rd) : v = 0 a.e. on �D}.

Moreover, C,H ∈ L∞(�;L(Rd×d ,Rd×d)) are two given symmetric and uniformly
coercive mappings (the elasticity and hardening tensor). In addition, ε = 1

2 (∇+∇�)
denotes the linearized strain. Furthermore, σ0 > 0 is the uni-axial yield stress, a
constant material parameter. There are other equivalent formulations of the system
in (3.6), for instance, in terms of a VI of the first kind via convex duality, which
leads to the so-called dual formulation. A more detailed description of the model
can be found in [11].

The variables & ∈ L2(�;Rd) and L ∈P serve as controls in our setting. While
& has a well-defined physical meaning as the loads applied to the body occupying
�, the physical interpretation of L is rather critical. It may be seen as a pre-strain,
but it is mainly motivated by the mathematical analysis, since it allows us to fulfill
Assumption 2.3 in this case, as we will see below.
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The optimal control problem considered in this subsection reads as follows:

min J (u, p, &,L)

s.t. (u, p, &,L) ∈ V×P× L2(�;Rd)×P,

(u, p, &,L) satisfy (3.6)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(Pplast)

with a Fréchet-differentiable objective J : V ×P × L2(�;Rd) ×P → R. We
could also consider additional control constraints (and would then again need an
additional assumption of the form in Assumption 2.4), but, in order to keep the
discussion concise, we restrict to the case without control constraints.

Thanks to Korn’s inequality and the coercivity of C and H, the VI in (3.6) admits
a unique solution in V×P for every right-hand side in V∗ ×P, see, e.g., [11]. The
next result shows that the associated solution mapping is directionally differentiable
and was established in [3, Section 4.3].

Proposition 3.4 ([3, Corollary 4.3.5]) The solution operator of (3.6), denoted by
S : (&,L) �→ (u, p), is directionally differentiable from V∗ × P to V × P. Its
directional derivative at (&,L) ∈ V∗ ×P in direction (h,G) ∈ V∗ ×P is given by
the unique solution (u′, p′) of

(u′, p′) ∈ V×K(u, p),

〈A(p)(u′, p′), (v, q)− (u′, p′)〉

≥ 〈h, v − u′〉 +
∫

�

G : (q − p′) dx ∀ (v, q) ∈ V×K(u, p),

where (u, p) = S(&,L),

Pp :=
{

q ∈P :
∫

{p �=0}
|p|−3

F

(|p|2F |q|2F − (p : q)2)dx <∞
}

,

K(u, p) := {q ∈Pp :
(

L+ Cε(u)
) : q = σ0|q|F a.e., where p = 0},

and

A(p) : V×Pp → V∗ ×P∗
p

〈A(p)(w, r), (v, q)〉 :=
∫

�

(ε(w)− r) : C(

ε(v)− q
)+ r : Hq dx

+ σ0

∫

{p �=0}
|p|−3

F

(|p|2F r : q − (p : r)(p : q))dx.
(3.7)
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The directional differentiability of the solution operator associated with the
(equivalent) dual formulation of (3.6) was investigated in [1, 14]. Via convex duality,
one shows that these results are in accordance with the above proposition.

Let us now again consider a fixed but arbitrary local minimizer of (Pplast), denoted
by (&̄, L̄) ∈ L2(�;Rd) ×P with associated state ȳ := (ū, p̄) = S(&̄, L̄). Then,
with the setting

U = L2(�;Rd)×P, Y = V×P, Vȳ := V×Pp̄,

K(ȳ) := V×K(ū, p̄), A(ȳ) := A(p̄),

the problem of static elastoplasticity fits into our general framework, as we will see
in the following. Equipped with the scalar product

(

(w, r), (v, q)
)

Vȳ
:= (w, v)V + (r, q)P +

∫

{p̄ �=0}
|p̄|−3

F

(|p̄|2F r : q − (p̄ : r)(p̄ : q))dx,

the space Vȳ becomes a Hilbert space as required. Since Pp̄ is a dense subset
of P, Vȳ is dense in U . We point out that the presence of the additional (and
rather artificial) control variable L is crucial for the embedding of Vȳ in U (with
the injective pointwise identity as embedding operator). Furthermore, by using
Korn’s inequality, one shows that A(ȳ) = A(p̄) as defined in (3.7) is strongly
monotone. Therefore, all conditions in Assumption 2.3 are fulfilled. Since, in
addition, Assumption 2.4 is trivially satisfied as Uad = U , one deduces the
following:

Theorem 3.5 ([3, Corollary 6.1.13])

1. Let (&̄, L̄) ∈ L2(�;Rd) ×P with associated state ȳ = (ū, p̄) ∈ V ×P be
locally optimal for (Pplast). Then, there exist an adjoint state (w, r) ∈ V ×Pp̄

and a multiplier μ ∈P such that

w + ∂&J (ū, p̄, &̄, L̄) = 0 a.e. in �, (3.8a)

r + ∂LJ (ū, p̄, &̄, L̄) = 0 a.e. in �, (3.8b)

〈A(p̄)(w, r), (v, q)〉
= 〈∂uJ (ū, p̄, &̄, L̄), v〉V +

∫

�

∂pJ (ū, p̄, &̄, L̄) : q dx

−
∫

�

μ : q dx ∀ (v, q) ∈ V×Pp̄

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(3.8c)
(

L̄+ C(ε(ū)− p̄)−Hp̄
) : r = σ0|r|F a.e., where p̄ = 0, (3.8d)

μ = 0 a.e., where p̄ �= 0, (3.8e)
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μ : q ≥ 0 ∀q ∈ R
d×d
dev with

(

L̄+ C(ε(ū)−p̄)−Hp̄
) : q = σ0|q|F

a.e., where p̄ = 0

}

.

(3.8f)

2. If a couple (&̄, L̄) ∈ L2(�;Rd)×P together with its associated state (ū, p̄) =
S(&̄, L̄), an adjoint state (w, r) ∈ V×Pp̄, and a multiplier μ ∈P satisfies the
system (3.8), then it is B-stationary for (Pplast).

Remark 3.6 It is noteworthy that, in this example in contrast to the previous one in
Sect. 3.1, the space Vȳ and the operator A(ȳ) differ from the original state space Y
and the “smooth part” in the VI in (3.6) associated with the control-to-state map.
This effect will also appear in the two examples in the next sections.

Let us finally remark that a strong stationarity system for optimal control of static
plasticity in dual, i.e., stress-based formulation, is derived in [14] under slightly
more restrictive assumptions.

3.3 The Lasso Problem in Sobolev Spaces

This subsection is devoted to an optimal control problem governed by the following
VI of the second kind:

y ∈ H 1
0 (�),

∫

�

∇y · ∇(v − y)dx + ‖v‖L1(�) − ‖y‖L1(�) ≥ 〈u, v − y〉 ∀ v ∈ H 1
0 (�),

(3.9)

where � ⊂ R
d , d ≥ 2, is a bounded Lipschitz domain in the sense of [10,

Definition 4.4]. In finite dimensions, VIs of this type arise in the context of sparse
linear regression and are occasionally called lasso problem, see, e.g., [24]. By the
direct method of the calculus of variations, one shows that, for every right-hand side
u ∈ H−1(�), there exists a unique solution y ∈ H 1

0 (�) of (3.9), and the associated
solution operator, denoted by S : H−1(�) → H 1

0 (�), is globally Lipschitz. Its
differentiability properties however constitute a delicate issue. Via convex duality,
one can transform the VI in (3.9) into an equivalent obstacle problem in H−1(�).
However, its feasible set given by

� :=
{

λ ∈ H−1(�) : ∃ q ∈ L∞(�) such that |q| ≤ 1 a.e. in �

and 〈λ, v〉 =
∫

�

q v dx
}
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is in general not polyhedric, as the counterexamples in [5, 6, 28] demonstrate. If
one assumes that this set is polyhedric, then the analysis of [12, 19] can be adapted
to prove the directional differentiability of S, see [17, 23]. In [9], comparatively
restrictive conditions are established, which guarantee that this set behaves like a
polyhedric set. Another approach that goes without polyhedricity is pursued in [5]
and yields the following result:

Proposition 3.7 ([5], [3, Theorem 5.2.15]) Let u ∈ H−1(�) be given with
associated state y ∈ H 1

0 (Ω), and suppose that the following assumptions are
fulfilled:

• (Regularity) It holds y ∈ C1(�) ∩H 1
0 (�).

• (Structure of the Active Set) There exists a set C ⊆ ∂{y �= 0} ∪ ∂� such that

1. C is closed and has H 1(Rd)-capacity zero,
2. (∂{y �= 0} ∪ ∂�) \ C is a (strong) (d − 1)-dimensional Lipschitz submanifold

of Rd ,
3. the sets

N+ := {∇y = 0}∩∂{y > 0}\C, N− := {∇y = 0}∩∂{y < 0}\C

are relatively open in (∂{y �= 0} ∪ ∂�) \ C.
Then, S is directionally differentiable at u in every direction h ∈ H−1(�), and the
directional derivative δ = S′(u;h) is given by the unique solution of the following
VI of the first kind:

δ ∈ K(y),
∫

�

∇δ · ∇(v − δ)dx + 2
∫

M

τ(δ) τ (v − δ)

‖∇y‖2
dHd−1 ≥ 〈h, v − δ〉 ∀ v ∈ K(y),

(3.10)

where M := {y = 0} ∩ {∇y �= 0} and τ is the associated trace operator.
Furthermore, the convex cone K(y) is given by

K(y) :=
{

v ∈ H 1
0 (�) : τ(v)− = 0 a.e. on N+, τ (v)+ = 0 a.e. on N−,

|v| = λ v a.e. in {y = 0},
∫

M

τ(v)2

‖∇y‖2
dHd−1 <∞

}

,

(3.11)

where λ ∈ L∞(�) is the unique element of ∂‖ · ‖L1(�)(y) that satisfies λ = u+�y.

Note that the sets C, N±, and M depend on the solution y = S(u), but we
suppress this dependency in order to simplify the notation.
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Remark 3.8 It is to be noted that, in contrast to the previous examples in Sects. 3.1
and 3.2, there is—to the best of our knowledge—no result available in the literature
that guarantees the directional differentiability of the solution operator to (3.9)
without further assumptions. The assumptions in Proposition 3.7 are on the one hand
easily verifiable, once the solution y is known (in contrast to the polyhedricity of �)
and on the other hand substantially less restrictive compared to the assumptions in
[9]. Proposition 3.7 therefore can be seen as the most rigorous differentiability result
for the solution operator of (3.9).

Remark 3.9 The lack of polyhedricity of � is also illustrated by the integral over
the set M in (3.10), which does not appear, if the set � is polyhedric, see [9, 17].
This integral is closely related to the pullback of the second distributional derivative
of the absolute value function, see [3, Section 5.2.2] for details.

Similarly to the previous examples, we consider an optimal control problem of
the form

min J (y, u)

s.t. (y, u) ∈ H 1
0 (�)× L2(�),

(y, u) satisfy (3.9),

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(Plasso)

where J : H 1
0 (�)×L2(�)→ R is a given Fréchet-differentiable objective. To keep

the discussion concise, we again set Uad = L2(�) in order to fulfill the constraint
qualification in Assumption 2.4. As before, we consider a fixed but arbitrary local
minimizer of (Plasso), denoted by (ȳ, ū) ∈ H 1

0 (�)× L2(�). If we set

U := L2(�), Y := H 1
0 (�), Vȳ :=

{

v ∈ H 1
0 (�) :

∫

M

τ(v)2

‖∇ȳ‖2
dHd−1 <∞

}

,

〈A(ȳ)w, v〉 :=
∫

�

∇w · ∇v dx + 2
∫

M

τ(w) τ(v)

‖∇ȳ‖2
dHd−1, v, w ∈ Vȳ,

and K(ȳ) as defined in (3.11) (with y = ȳ), then (Plasso) fits into our general setting.
With the obvious scalar product

(w, v)Vȳ := 〈A(ȳ)w, v〉,

Vȳ becomes a Hilbert space and A(ȳ) is clearly strongly monotone in this space.
Moreover, K(ȳ) is closed in this space. Hence, the general theory from Sect. 2 is
applicable and yields the following:

Theorem 3.10

1. Suppose that ū ∈ L2(�) with associated state ȳ = S(ū) is locally optimal
for (Plasso), and assume moreover that ȳ is such that the assumptions of
Proposition 3.7 on the regularity of ȳ and the structure of its active set are
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fulfilled (with y = ȳ). Then, there exist an adjoint state p ∈ Vȳ and a multiplier
μ ∈ V ∗̄

y such that

p + ∂uJ (ȳ, ū) = 0 a.e. in �, (3.12a)
∫

�

∇p · ∇v dx + 2
∫

M

τ(p) τ(v)

‖∇ȳ‖2
dHd−1

= 〈∂yJ (ȳ, ū), v〉H 1
0 (�)

− 〈μ, v〉Vȳ , ∀ v ∈ Vȳ,

⎫

⎪

⎬

⎪

⎭

(3.12b)

p ∈ K(ȳ), 〈μ, v〉Vȳ ≥ 0 ∀ v ∈ K(ȳ). (3.12c)

2. Let ū ∈ L2(�) be given such that its state ȳ = S(ū) satisfies the assumptions in
Proposition 3.7 (with y = ȳ). If an adjoint state p ∈ Vȳ and a multiplier μ ∈ V ∗̄

y

exist such that (3.12) holds true, then ū is B-stationary for (Plasso).

Again, we observe that the space Vȳ differs from the original state space Y and
that the bilinear form of the adjoint equation differs from the one in the VI defining
the control-to-state map, similarly to the elastoplastic system in the previous section.

3.4 Non-Newtonian Fluids: The Mosolov Problem

Our last example arises in the modeling of non-Newtonian fluids. To be more
precise, we consider the so-called Mosolov problem, which models the steady-state
motion of a viscoplastic fluid in a cylindrical pipe of cross-section � ⊂ R

2 under
no-slip boundary conditions; see [21] for details on the physical background. After
setting all material parameters to one, the model is similar to the lasso problem and
reads

y ∈ H 1
0 (�),

∫

�

∇y · ∇(v − y)dx +
∫

�

|∇v|dx −
∫

�

|∇y|dx ≥ 〈u, v − y〉 ∀ v ∈ H 1
0 (�),

(3.13)

where � ⊂ R
2 is a bounded and simply connected Lipschitz domain and | · | denotes

the Euclidean norm of a vector. The state variable y : �→ R describes the velocity
of the fluid in direction of the pipe (i.e., perpendicular to �) and u : � → R is a
volume force acting in this direction. The restriction to the two-dimensional setting
is on the one hand motivated by the application background and on the other hand
essential for the mathematical analysis presented in the following.
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Again, the existence and uniqueness for (3.13) follow immediately from the
direct method of the calculus of variations. The associated solution map S is globally
Lipschitz from H−1(�) to H 1

0 (�). However, as in case of the lasso problem, the
directional differentiability of S is a challenging issue. As it turns out, we again
need additional assumptions on the respective state to obtain the existence of a
directional derivative. Unfortunately, these assumptions are not as easily checked
as in case of the lasso problem. In order to formulate these assumptions, we need
to define the following sets. Given the solution y ∈ H 1

0 (�) of (3.13) and assuming
that this solution admits a continuously differentiable representative, we introduce
the active, inactive, and biactive sets as follows:

I := {|∇y| > 0}, A := {|∇y| = 0}, A◦ := int(A), B := ∂A ∪ ∂�,

B◦ :=

{

x ∈ ∂A : there exists an open neighborhood D ⊆ � of x such that

D ∩ ∂A is a one-dimensional C1-submanifold of R2

and such that D ∩ ∂A = D ∩ ∂{y = c} for some c ∈ R

}

.

Of course, these sets depend on the respective solution y, but we suppress this
dependency for the ease of notation. Moreover, given a set M ⊂ �̄, we denote
the set of all connected components of M by {Mi}.
Proposition 3.11 ([3, Theorem 5.1.37]) Let u ∈ H−1(�) be given, and suppose
that the associated state y = S(u) satisfies the following hypotheses:

• (Regularity) It holds y ∈ C1,1(�) ∩H 1
0 (�) and �y + u ∈ L∞(�).

• (Structure of the Active and the Inactive Set)

1. the collections {Ii}, {Ai}, {A◦
i }, {Bi} are finite,

2. the components A◦
i and Ii are Lipschitz domains for all i,

3. the components Ai and Bi are Lipschitz connected for all i,
4. the set B◦ \ B◦ is finite and B = B◦ ∪ ∂�.

• (Well-Behavedness of the Normalized Gradient Field) There exist a function ω ∈
C0,1(�), a constant C > 0, and an open set D ⊆ R

2 with A ∪ ∂� ⊆ D and

ω = 0 on A ∪ ∂�, dist(·,A ∪ ∂�) ≤ Cω a.e. in I ∩D,
(∇y⊥
|∇y| ·

∇ω
|∇ω|

)2

≤ C|∇y| a.e. in I ∩D,

where, here and in all what follows, (a, b)⊥ = (b,−a) for a, b ∈ R.

Under these assumptions, the solution operator S of (3.13) is directionally dif-
ferentiable at u in every direction h ∈ H−1(�), and the directional derivative
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δ := S′(u;h) is uniquely characterized by the following VI of the first kind:

δ ∈ K(y),
∫

�

∇δ · ∇(v − δ)dx +
∫

I
(∇y⊥ · ∇δ)(∇y⊥ · ∇(v − δ))

|∇y|3 dx ≥ 〈h, v − δ〉 ∀ v ∈ K(y),

where the convex cone K(y) is given by

K(y) :=
{

v ∈ H 1
0 (�) :

∫

I

(∇y⊥ · ∇v)2
|∇y|3 dx <∞, |∇v| = λ · ∇v a.e. in A

}

,

(3.14)

where λ ∈ L∞(�;R2) is any element of ∂‖.‖L1(�;R2)(∇y) that satisfies div λ =
u+�y in H−1(�).

Remark 3.12 Some words concerning the above proposition are in order. First of
all, the existence of λ simply follows from the reformulation of the VI in (3.13) by
means of the chain rule for convex subdifferentials, and it is easily shown that, for
every such λ, the set K(y) is the same. Moreover, while the regularity assumptions
as well as the structural assumptions on the active and inactive sets can directly
be checked, if a solution y is given, the intrinsic third assumption is hard to verify
in practice, see [3, Section 5.1.5] for details. Finally, for the notion of Lipschitz
connected sets, we refer to [3, Definition 5.1.24].

Similarly to the previous examples, the optimal control problem associated
with (3.13) reads

min J (y, u)

s.t. (y, u) ∈ H 1
0 (�)× L2(�),

(y, u) satisfy (3.13),

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(Pmoso)

where J : H 1
0 (�)× L2(�)→ R is a given Fréchet-differentiable objective. Again,

we set Uad = L2(�) so that the constraint qualification in Assumption 2.4 is
automatically fulfilled. As before, we consider a fixed but arbitrary local minimizer
ū ∈ L2(�) with associated state ȳ ∈ H 1

0 (�). This time we set

U := L2(�), Y := H 1
0 (�), Vȳ :=

{

v ∈ H 1
0 (�) :

∫

I

(∇ȳ⊥ · ∇v)2
|∇ȳ|3 dx <∞

}

,

〈A(ȳ)w, v〉 :=
∫

�

∇w · ∇v dx +
∫

I

(∇ȳ⊥ · ∇w)(∇ȳ⊥ · ∇v)
|∇ȳ|3 dx, v,w ∈ Vȳ,

and K(ȳ) as defined in (3.14) (with y = ȳ and λ associated with ȳ). As in case of
the lasso problem, Vȳ becomes a Hilbert space if endowed with the scalar product
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(v,w)Vȳ := 〈A(ȳ)v,w〉 so that A(ȳ) is automatically strongly monotone and K(ȳ)
is closed in this space. Hence, we can again apply the general theory, which results
in the following:

Theorem 3.13

1. Let ū ∈ L2(�) be locally optimal for (Pmoso), and assume that the associated
state ȳ = S(ū) satisfies the assumptions in Proposition 3.11 (with y = ȳ).
Then, there exist an adjoint state p ∈ Vȳ and a multiplier μ ∈ V ∗̄

y such that
the following optimality conditions are fulfilled:

p + ∂uJ (ȳ, ū) = 0 a.e. in �, (3.15a)
∫

�

∇p · ∇v dx +
∫

I

(∇ȳ⊥ · ∇p)(∇ȳ⊥ · ∇v)
|∇ȳ|3 dx

= 〈∂yJ (ȳ, ū), v〉H 1
0 (�)

− 〈μ, v〉Vȳ , ∀ v ∈ Vȳ,

⎫

⎪

⎬

⎪

⎭

(3.15b)

p ∈ K(ȳ), 〈μ, v〉Vȳ ≥ 0 ∀ v ∈ K(ȳ). (3.15c)

2. If ū ∈ L2(�) is such that ȳ = S(ū) fulfills the assumptions in Proposition 3.11
and there exist p ∈ Vȳ and μ ∈ V ∗̄

y , with (3.15), then ū is B-stationary
for (Pmoso).

4 Conclusion

Within this chapter, we constructed a general framework for the derivation of strong
stationarity conditions for optimal control problems governed by VIs. Moreover,
we demonstrated by means of application-driven examples that our general analysis
also applies in case of VIs of the second kind. However, as our two last examples
show, sometimes additional assumptions, which may even be hard to verify, are
necessary to guarantee that the control-to-state map associated with the VI under
consideration is directionally differentiable and the directional derivatives possess
the desired structure. Under these assumptions, though, our general framework is
applicable and yields stationarity conditions, which are the most rigorous possible
ones.

It is however an open question how to solve these strong stationarity systems
numerically. The reason is that, in neither of our four examples, the adjoint equation
together with the (generalized) sign conditions on the adjoint state and the multiplier
μ forms a VI or a complementarity system, which would be amenable for numerical
computations. Even worse, as the investigations on optimal control of non-smooth
PDEs in [4] show, strong stationarity systems may be potentially overdetermined.
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The construction of algorithms for the reliable numerical computation of strongly
stationary points is therefore a field of future research.
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Appendix A: Auxiliary Results

Lemma A.1 Under Assumption 2.3, U is dense in V ∗̄
y .

Proof Let us assume that U is not a dense subset of V ∗̄
y so that there exists a g ∈

V ∗̄
y \U

V ∗̄y . Then, the strict separation theorem in combination with the reflexivity of
Vȳ implies the existence of a v ∈ Vȳ , v �= 0, such that

(h, v)U = 0 < 〈g, v〉Vȳ ∀h ∈ U.

Since Vȳ ↪→ U and the embedding is injective, this yields v = 0, which is a
contradiction. ��
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1 Introduction

In this survey, we consider the problem investigated in [18, 19], i.e., an optimal con-
trol problem of tracking type for fracture or damage propagation, which is governed
by the Euler–Lagrange equations of a regularized fracture propagation problem
modeled by a phase-field approach, which has first been proposed in [3, 4, 7]. This
approach, which we will explain in more detail in Sect. 2, allows to treat almost
arbitrary fracture paths, as opposed to the first results on the control of fractures
with prescribed path [14] or fixed length [12]. In a first step, to circumvent the
difficulties posed by a pointwise irreversibility condition, this inequality constraint
was regularized by a smooth penalization term. In [18], the existence of global
solutions as well as first-order KKT-like necessary optimality conditions under a
regularity assumption was proven for the regularized problem. Constraint violation
estimates as well as convergence of solutions with respect to taking this penalization
parameter to its limit were then shown in [19] for a problem formulation with
viscous regularization corresponding to a time-step restriction in the spatially
continuous but time-discrete model problem, cf. [13].

In Sect. 2, we will give a precise description of the model problem under
consideration. Then, building on the results from [19], we will prove convergence
of the optimality systems with respect to taking the limit in the penalty parameter
in Sect. 3. To elaborate, let us point out that the (uncontrolled) fracture propagation
problem is itself an energy minimization problem, the so-called lower level problem.
Adding an outer optimal control problem leads to a bi-level optimization problem,
where the lower level problem is usually replaced by its first-order necessary
conditions. In case of the regularized problem, this is a system of Euler–Lagrange
equations, so that the control problem resembles a PDE-constrained optimization
problem without inequality constraints but a quasilinear PDE constraint. We formu-
late the optimality conditions for this problem and then derive a system satisfied by
certain limit points when the penalization parameter tends to infinity. In addition
to the convergence results for the primal variables, i.e., control, displacement,
and phase field toward a solution of the unregularized problem, we now obtain a
limit optimality system, which exhibits the presence of a variational inequality as
constraint of the outer optimal control problem.

In Sect. 4, we formulate the method of sequential quadratic programming (SQP)
for the regularized problem formulation and show that the limit point of convergent
sequences produced by the SQP method actually satisfies the first-order optimality
system for the regularized problem. The results are combined with convergence
results for the finite element discretization of a linearized fracture control problem,
such as the SQP subproblems, from [17]. A key ingredient for obtaining a priori
error estimates is an improved regularity of the solutions giving a gap between
the norm in which the error is calculated and the regularity of the approximated
function. Such estimates have been shown only recently in [10].
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Eventually, in Sect. 5, an SQP method for the unregularized problem is formu-
lated, and convergence of the finite element method for the quadratic subproblems
is derived.

2 Problem Setting

We consider the problem investigated in [18, 19], i.e., an optimal control problem
of tracking type for fracture propagation, which is governed by the Euler–Lagrange
equations of a regularized fracture propagation problem modeled by a phase-field
approach.

Before presenting the precise control problem, let us elaborate on the fracture
propagation problem, which we want to control. The model goes back to Griffith’s
model of brittle fracture [8] or, more precisely, a variational formulation by Franc-
fort and Marigo in [7]. Within this model, fracture propagation occurs when the
elastic energy restitution rate reaches a critical value GC , leading to a minimization
problem where the total energy

E(u, C) = 1

2
(Ce(u), e(u))�\C − (τ, u)∂N� +GCHd−1(C)

is to be minimized. Here, u denotes a vector-valued displacement field, C denotes
the crack, assumed to be compactly contained in the domain � without reaching
the boundary, τ is a force applied to the part ∂N� of the boundary, which will later
be our optimization variable in the optimal control problem, and Hd−1 is the d − 1
dimensional Hausdorff measure, when d ∈ {2, 3} denotes the dimension of �. By
means of C and e(u), a linear elasticity model is described.

This energy functional is to be minimized with respect to all kinematically
admissible displacements u, and any fracture set satisfying a fracture growth
condition, making sure that once a fracture has appeared it does not close again. To
avoid the difficulty introduced by the Hausdorff measure, we use a regularization
proposed by Bourdin et al. [3, 4]. Precisely, we introduce a time-dependent phase-
field variable ϕ, defined on�×(0, T ), where ϕ = 1 describes non-fractured regions,
and ϕ = 0 fractured regions, with a smooth transition. Using such an Ambrosio–
Tortorelli regularization, cf. [1, 2], of the fracture function leads to a regularized
energy functional to be minimized:

Eε(u, ϕ) = 1

2

(

((1− κ)ϕ2 + κ)Ce(u), e(u)
)

− (τ, u)∂N�

+GC

(

1

2ε
‖1− ϕ‖2 + ε

2
‖∇ϕ‖2

)

, (2.1)
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where ε is a positive parameter, which, when sent to zero, leads to the Hausdorff
measure in the sense of a �-limit, and κ = o(ε) is a positive parameter used to
avoid degeneracy of the energy function when ϕ = 0.

The critical issue here is that the energy functional is not convex in both solution
variables simultaneously, but only in each single variable when the other one is
fixed. While the forward model problem is relatively well studied, the control of
fractures remains to pose a lot of challenges. Controlling this energy functional
would lead to a bi-level minimization problem in function spaces, where the lower
level problem is nonconvex and subject to additional inequality constraints

ϕ(t2) ≤ ϕ(t1) ∀ t1 ≤ t2, (2.2)

describing the irreversibility condition. Fixing the spatial dimension d = 2,
we obtain for a control space Q, to be specified later, the following problem
formulation:

min
q,u

J (q,u) := 1

2
‖u− ud‖2

L2(�;R2)
+ α

2
‖q‖2

Q

subject to u solves (2.1) given τ = q

as well as (2.2).

(2.3)

We tackle the difficulties by the following adaptations to the model problem:

• We will consider a time-discrete but spatially continuous problem formulation.
• We regularize the inequality constraints in the lower level problem by a penalty

approach introduced by Meyer, Rademacher, and Wollner, [15], i.e., adding a
term γ

4 ‖max(0, ϕi − ϕi−1)‖4
L4 when ϕi denotes the value of the phase field at

time ti . One of our main goals is then to analyze the problem with respect to
considering the limit γ →∞.

• We will follow standard procedure and replace the lower level problem by its
Euler–Lagrange equations, leading to a PDE-constrained optimization problem
with quasilinear PDE.

• For some of our results, it proved helpful to introduce a further viscous
regularization of the energy functional with a regularization parameter η ≥ 0,
see below.

2.1 Model Problem, Notation, and Assumptions

Following the before-mentioned steps, we arrive at the following short description
of the model problem. Note that while the original problem formulation is spatially
continuous but time discrete, for simplicity of notation we consider only one time-
step of the fracture evolution, giving us the regularized optimization problem for



Optimizing Phase-Field Fracture 333

finding qγ ∈ Q and uγ = (uγ , ϕγ ) ∈ V solving

min
qγ ,uγ

J (qγ ,uγ ) := 1

2
‖uγ − ud‖2

L2(�;R2)
+ α

2
‖qγ ‖2

Q

subject to A(uγ )+ R(γ ;ϕ) = B(qγ ).

(NLPγ )

Here, for spaces to be defined below, A : W 1,p(�;R2) × W 1,p(�) ⊂ V → V ∗
denotes a nonlinear phase-field operator, R : Vϕ → V ∗

ϕ is a regularization operator
penalizing deviation from an irreversibility condition for the fracture growth, and
B : Q→ V ∗ is the control-action operator. They are defined by

〈A(u), v)〉 : =
(

g(ϕ)Ce(u), e(vu)
)

+ ε(∇ϕ,∇vϕ)− 1

ε
(1− ϕ, vϕ)

+ η(ϕ − ϕ−, vϕ)+ (1− κ)(ϕCe(u) : e(u), vϕ),
〈R(γ ;ϕ), vϕ〉 : = γ ([(ϕ − ϕ−)+]3, vϕ),
〈Bq, (vu, vϕ)〉 : = (q, vu)Q

for any v = (vu, vϕ) ∈ V . Here, g is given as

g(x) := (1− κ)x2 + κ,

κ, ε, γ > 0 are given parameters as explained above, and η ≥ 0 is an additional
parameter which can be regarded as a viscous regularization, cf. [13]. Choosing η

sufficiently large serves two purposes: on the one hand, it makes the lower level
energy function strictly convex and hence uniquely solvable. On the other hand, this
helps to include damage problems in addition to pure fracture. It also corresponds to
choosing a sufficiently small time-step in the temporal discretization of the problem.
ϕ− is the given initial phase field, and C is the rank-4 elasticity tensor with the usual
properties. The problem is defined on a polygonal domain � ⊂ R

2 with boundary
∂� = �∪̇�D , such that the union � ∪ � is Gröger regular [9].

Note that the term η(ϕ − ϕ−, vϕ) corresponds to a viscous regularization of the
problem for η > 0 that can also be interpreted as a restriction on the time-step in the
temporal discretization of the problem, cf. [13]. In [18], a setting with η = 0 was
considered, requiring additional assumptions due to a lack of convexity.

We define

Vu = H 1
D(�;R2) := {v ∈ H 1(�;R2) | v = 0 on �D},

Vϕ = H 1(�),

V = Vu × Vϕ,

Q = L2(�)
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and denote the respective dual spaces with a superscript ∗, e.g., V ∗. For spaces such
as Ws,p and Hs = Ws,2, we understand that they are defined on the domain �

unless otherwise stated. We will further use the following notation for the scalar
product/norm: (·, ·) denotes the usual L2 scalar product with corresponding norm
‖ · ‖, and (·, ·)Q corresponds to the scalar product of Q. In addition, 〈·, ·〉 stands for
a duality pairing where the spaces are omitted if obvious from the context. In what
follows, we also define

W = Wu ×Wϕ = W
1,p
D ∩H 1+s ×W 2,q

and the corresponding space for the right-hand side of the equation

W× = W−1,p ∩H−1+s × Lq,

where W−1,p = (W 1,p′)∗ and H−1+s = (H 1−s)∗ are the respective dual spaces.
As common, for any p ∈ [1,∞], we denote the dual exponent by p′, i.e., 1

p
+ 1

p′ =
1. Finally, we will implicitly rely on the following standing assumptions: for the
parameters p, q, and s, we require

p > 2, q = p/2 > 1, and s ∈ (0, 1/2).

Furthermore, we assume that p and s are chosen such that H 1+s ⊂ W 1,p.
With this notation, we point out that taking the limit γ → ∞ in (NLPγ ) yields

the MPCC

min
q,u

J (q,u)

subject to

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

A(u)+ λ = B(q) in V ∗,

λ ≥ 0 in V ∗
ϕ ,

ϕ ≤ ϕ− a.e. in �,

〈λ, ϕ − ϕ−〉 = 0,

(NLPVI)

where λ ∈ V ∗
ϕ , and we implicitly use the natural embedding V ∗

ϕ . λ �→ (0, λ) ∈
V ∗.

We remark that if ϕ− ∈ Wϕ and qγ , q ∈ Q, by [10, Section 7], the solutions uγ
for the equality constraint in (NLPγ ) and u for the constraints in (NLPVI) satisfy
uγ ,u ∈ W for some p > 2.



Optimizing Phase-Field Fracture 335

2.2 The Phase-Field Equation

This section provides a short analysis of the linearized operators A′(u) : V → V ∗
and R′(γ, ϕ) : Vϕ → V ∗

ϕ , which, for u ∈ V ∩W , are defined via

〈A′(u)du, v〉 :=
(

g(ϕ)Ce(du), e(vu)
)

+ 2(1− κ)(ϕCe(u) : e(du), vϕ)

+ ε(∇dϕ,∇vϕ)+ 1

ε
(dϕ, vϕ)+ η(dϕ, vϕ) (2.4)

+ (1− κ)(dϕCe(u) : e(u), vϕ)+ 2(1− κ)(ϕCe(u)dϕ, e(vu)),

〈R′(γ ;ϕ)dϕ, vϕ〉 := 3γ ([(ϕ − ϕ−)+]2dϕ, vϕ),

for any v = (vu, vϕ), introducing the notation du := (du, dϕ).
A quick calculation shows two properties of importance for the following

calculations: firstly, coercivity of A′, i.e., for η ≥ 0 sufficiently large, there exists a
βη > 0 such that

〈(A′(u))v, v〉 ≥βη‖v‖2
V ∀ v ∈ V, (2.5)

and, secondly, the following non-negativity statement for R′ for all vϕ ∈ Vϕ :

〈R′(γ ;ϕ)vϕ, vϕ〉 = 3γ ([(ϕ − ϕ−)+]2vϕ, vϕ) ≥ 0. (2.6)

Following the results of [10], A′(u) : V �→ V ∗ is well defined and an
isomorphism if η ≥ 0 is sufficiently large. In particular, for u ∈ V ∩W , the operator

du �→ A′(u)du + R′(γ, ϕ)dϕ : V → V ∗ (2.7)

is invertible. In a similar way to [18, Lemma 5.2], we can establish the following
improved regularity result for data in W× ↪→ V ∗.

Proposition 2.1 Let u ∈ V ∩W , ϕ− ∈ Wϕ , and b ∈ W× ↪→ V ∗, recalling p > 2.
Then, the solution du = (du, dϕ) ∈ V of

A′(u)du + R′(γ, ϕ)dϕ = b

has improved regularity du ∈ V ∩W .

Furthermore, for regular u ∈ W , we can define the second derivative operators
A′′(u) : V × V → (V ∩W 1,p)∗ and R′′(γ, ϕ) : Vϕ × Vϕ → V ∗

ϕ by
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〈A′′(u)[du1,du2], v〉 = 2(1− κ)(d
ϕ
2 Ce(u)d

ϕ
1 , e(v

u))

+ 2(1− κ)(d
ϕ
2 Ce(d

u
1 )ϕ, e(v

u))

+ 2(1− κ)(d
ϕ
2 Ce(u) : e(du1 ), vϕ)

+ 2(1− κ)(ϕCe(du2 )d
ϕ
1 , e(v

u))

+ 2(1− κ)(d
ϕ
1 Ce(d

u
2 ) : e(u), vϕ)

+ 2(1− κ)(ϕCe(du2 ) : e(du1 ), vϕ),
〈R′′(γ ;ϕ)[dϕ1 , dϕ2 ], vϕ〉 = 6γ ([(ϕ − ϕ−)+]dϕ1 dϕ2 , vϕ).

We note that for regular data u, v, the second derivatives are continuous on V in the
following sense:

Lemma 2.2 Let u, v ∈ V∩W 1,p be given. Then, there exists a constant c depending
on ‖u‖1,p, ‖v‖1,p such that

|〈A′′(u)[du1,du2], v〉| ≤ c‖du1‖V ‖du2‖V .

Analog estimates hold if any two of the four variables, u, v,du1, and du2 are in V ∩
W 1,p.

Following the regularity results of [10], any solution uγ to the equation in (NLPγ )
satisfies the additional regularity uγ ∈ W , and thus A′(u) and A′′(u) are well
defined for all points u of the same regularity. Furthermore, by (2.5), A′(u) is an
isomorphism if η is sufficiently large.

To simplify the following arguments, we make the following assumption:

Assumption 2.3 Let η ≥ 0 be chosen such that A′(u) : V �→ V ∗ is coercive,
i.e., (2.5) holds.

3 The Limiting First-Order Necessary Conditions

We see that for a local minimizer (qγ ,uγ ) of (NLPγ ), there exists zγ ∈ V , λγ , μγ ∈
V ∗
ϕ , θγ ∈ Vϕ such that the following system is satisfied:

A(uγ )+ λγ = Bqγ in V ∗,

λγ = R(γ ;ϕγ ) in V ∗
ϕ ,
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(A′(uγ ))∗zγ = uγ − ud − μγ in V ∗,

B∗zγ + αqγ = 0 in V ∗,

zϕγ − θγ = 0 in Vϕ,

μγ − R′(γ ;ϕγ )θγ = 0 in V ∗
ϕ .

(FONγ )

Clearly, the variables λγ , μγ , and θγ can easily be eliminated, but they are useful
as separate quantities as they have a meaning as multipliers for the limit, cf. [15]
as well as (FONVI). Moreover, improved regularity for uγ ∈ W and λγ ∈ Lq(�)

holds as remarked at the end of Sect. 2.
We will see that certain limits (q̄, ū, λ̄, θ̄ , μ̄) of first order necessary points

of (NLPγ ) satisfy the system (C-stationarity)

A(ū)+ λ̄ = Bq̄ in V ∗,

λ̄ ≥ 0 in V ∗
ϕ ,

ϕ̄ ≤ ϕ− a.e. in �,

〈λ̄, ϕ̄ − ϕ−〉 = 0,

(A′(ū))∗z̄ = ū− ud − μ̄ in V ∗,

B∗z̄+ αq̄ = 0 in V ∗,

z̄ϕ − θ̄ = 0 in Vϕ,

〈θ̄ , λ̄〉 = 0,

〈μ̄, ϕ̄ − ϕ−〉 = 0,

〈θ̄ , μ̄〉 ≥ 0.

(FONVI)

Indeed, the following theorem holds:

Theorem 3.1 Let qγ → q̄ be a convergent sequence of local minimizers of (NLPγ )
for γ →∞. Then, up to selecting a subsequence, the following convergence

uγ → ū in V,

uγ → ū inWu,

ϕγ ⇀ ϕ̄ inWϕ,

λγ → λ̄ in V ∗
ϕ ,

zγ ⇀ z̄ in V,

μγ ⇀ μ̄ in V ∗
ϕ ,

θγ ⇀ θ̄ in Vϕ
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holds. Furthermore, any such limit satisfies (FONVI).

Proof By [19, Corollary 3.10], we obtain the first three convergence claims as
well as the satisfaction of the first four lines of (FONVI). Furthermore, from this
convergence, the convergence of λγ in V ∗

ϕ follows from the first equation.
It remains to show the convergence of the dual variables and the limits in

the adjoint equation, the gradient equation, and the complementary slackness
conditions. We start with the weak convergence of zγ in V . To this end, we replace
μγ and θγ in the equation for zγ = (zuγ , z

ϕ
γ ) in (FONγ ) and obtain

(A′(uγ ))∗zγ + R′(γ, ϕγ )zϕγ = uγ − ud.

Testing with zγ , we arrive at

〈(A′(uγ ))∗zγ , zγ 〉 + 〈R′(γ ;ϕγ )zϕγ , zϕγ 〉 = 〈uγ − ud, z
u
γ 〉, (3.1)

and using (2.5) and (2.6), from (3.1), we receive

‖zγ ‖V ≤ 1

βη
‖uγ − ud‖H−1 . (3.2)

Since uγ is bounded independently of γ in Wu ↪→ Vu ↪→ H−1 as proven in [19,
Lemma 3.1], zγ is bounded in V , and we deduce the existence of a subsequence that
converges weakly to some z̄ in V .

Next, we want to take the limit in the adjoint equation, so we have to establish
weak convergence of (A′(uγ ))∗zγ in V ∗ first. Using the already shown convergence
uγ → ū in Wu and ϕγ ⇀ ϕ̄ in Wϕ , we obtain A′(uγ ) − A′(u) → 0 in L(V, V ∗)
showing

(A′(uγ ))∗zγ ⇀ (A′(ū))∗z̄ in V ∗.

Since uγ converges strongly in Wu ↪→ V ∗
ϕ , the convergence of μγ and the limit in

the adjoint equation (A′(ū))∗z̄ = ū− ud − μ̄ in (FONVI) follow by

μγ = uγ − ud − (A′(uγ ))∗zγ ⇀ ū− ud − (A′(ū))∗z̄ =: μ̄ in V ∗
ϕ .

Since θγ = z
ϕ
γ , the weak convergence of θγ to θ̄ = z̄ϕ is an immediate consequence.

Next, we can pass to the limit in the gradient equation B∗zγ + αqγ = 0
in (FONγ ), to obtain

B∗z̄+ αq̄ = 0.

We have shown the convergence results for all functions as stated in the theorem
and established the limits in the first seven lines of (FONVI). We can now verify
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the complementary slackness conditions given by the last three lines of (FONVI).
By definition of λγ := R(γ, ϕγ ) = γ [(ϕγ − ϕ−)+]3 and introducing the set
A := {x ∈ � |ϕγ > ϕ−}, we find that

|〈λγ , θγ 〉| =
∣

∣

∣

∫

A
γ [(ϕγ − ϕ−)+]3θγ dx

∣

∣

∣ ≤ ‖λγ ‖Lq(A)‖θγ ‖Lq′ (A)
(3.3)

is true. By [19, Lemma 3.8], we know that ‖λγ ‖q ≤ C holds independently of
γ , which implies a uniform bound for ‖λγ ‖Lq(A). For the second term of (3.3),
exploiting (3.2), we receive a uniform bound on the subsequence θγ in H 1 ↪→ Lq

′

noting that q ′ ∈ (1,∞). By the convergence result for the primal variables, it has
already been proven that ϕγ → ϕ̄ in Vϕ as well as ϕ̄ ≤ ϕ−, and hence for γ →∞
it holds |A| → 0 and thus

‖θγ ‖Lq′ (A)
→ 0 for γ → 0.

So overall, from (3.3), we obtain

|〈λγ , θγ 〉| ≤ C‖θγ ‖Lq′ (A)
→ 0 for γ →∞. (3.4)

We already know that λγ converges strongly in V ∗
ϕ . In combination with the weak

convergence of θγ in Vϕ , (3.4) yields

〈λ̄, θ̄〉 = lim
γ→∞〈λγ , θγ 〉 = 0,

which is the third-to-last line of (FONVI).
Next, by definition of μγ := R′(γ ;ϕγ )θγ = 3γ [(ϕγ − ϕ−)+]2θγ , using (3.4), it

holds

〈μγ , ϕγ − ϕ−〉 = 3
∫

�

γ [(ϕγ − ϕ−)+]2θγ (ϕγ − ϕ−) dx

= 3γ
∫

�

[(ϕγ − ϕ−)+]3θγ dx

= 3〈λγ , θγ 〉 → 0.

Since μγ ⇀ μ̄ in V ∗
ϕ and ϕγ → ϕ̄ in Vϕ , this proves 〈μ̄, ϕ̄ − ϕ−〉 = 0.

Finally, it remains to show the last line in (FONVI), 〈θ̄ , μ̄〉 ≥ 0. We test both
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(A′(uγ ))∗zγ +μγ = uγ −ud and (A′(ū))∗z̄+ μ̄ = ū−ud with zγ − z̄ and subtract
the equations to arrive at

〈μγ − μ̄, θγ − θ̄〉 =〈μγ − μ̄, zϕγ − z̄ϕ〉
= 〈uγ − ū, zuγ − z̄u〉 − 〈(A′(uγ ))∗zγ − (A′(ū))∗z̄, zγ − z̄〉
= 〈uγ − ū, zuγ − z̄u〉 − 〈(A′(uγ ))∗(zγ − z̄), zγ − z̄〉
− 〈(A′(uγ )− A′(ū))∗z̄, zγ − z̄〉

≤ 〈uγ − ū, zuγ − z̄u〉 − 〈(A′(uγ )− A′(ū))∗z̄, zγ − z̄〉,
(3.5)

where the last inequality follows from coercivity of A′, i.e., Assumption 2.3. As
before, convergence of uγ provides

〈(A′(uγ )− A′(ū))∗z̄, zγ − z̄〉 → 0 for γ →∞. (3.6)

By definition of μγ , we also find that

〈μγ , θγ 〉 = 3
∫

�

γ [(ϕγ − ϕ−)+]2θ2
γ dx ≥ 0. (3.7)

We thus arrive at

〈μ̄, θ̄〉 = 〈μ̄, θγ 〉 + 〈μγ , θ̄〉 − 〈μγ , θγ 〉 + 〈μγ − μ̄, θγ − θ̄〉
≤ 〈μ̄, θγ 〉 + 〈μγ , θ̄〉 + 〈uγ − ū, zuγ − z̄u〉 − 〈(A′(uγ ))∗z̄− (A′(ū))∗z̄, zγ − z̄〉,

where we used the non-negativity of 〈μγ , θγ 〉 from (3.7) in the second line as well
as (3.5). Because uγ → ū in Vu, θγ ⇀ θ̄ in Vϕ and μγ ⇀ μ̄ in V ∗

ϕ , the first two
terms of the right-hand side converge to 2〈μ̄, θ̄〉 and the third term converges to
zero. By (3.6), also the last term converges to zero, and the desired sign condition
in the last line of (FONVI) follows.

��

4 An SQP Method for (NLPγ)

In this section, we introduce the sequential quadratic programming method for
the regularized problem (NLPγ ). Toward a complete convergence analysis of this
algorithm, we are interested in the following tasks: after introducing the algorithm,
we discuss solvability of the SQP subproblem (QPγ ) in the spaces provided by the
regularity of the prior iterates, relying on a typical coercivity condition on the second
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derivative of the Lagrangian, which is expected to be used when deriving second-
order sufficient optimality conditions. Typically, conditions like that allow to prove
local convergence of the algorithm. For the purpose of this chapter, we assume the
existence of a convergent sequence and show that the limit satisfies (FONγ ), i.e.,
in case of convergence, the limit is in fact a critical point of the problem under
consideration. Last, we are interested in the convergence behavior of finite element
discretizations of the SQP subproblems.

4.1 The SQP Algorithm

Let us start by defining the Lagrangian L corresponding to (NLPγ ) via

L(q,u, z) := J (q,u)− 〈A(u)+ R(γ, ϕ)− B(q), z〉.

Let (qk,uk) = (qk, uk, ϕk) ∈ Q × V ∩W with associated zk ∈ V ∩W denote a
given iterate of the solution algorithm, and define the notation

d := (dq,du) := (dq, du, dϕ) = (q − qk,u− uk) = (q − qk, u− uk, ϕ − ϕk)

for the update directions. We note first that the second derivative of the Lagrangian,
twice with respect to (q, u) for directions [d,d] at the current iterate as linearization
point, is given and denoted by

L′′(q,u),(q,u)(qk,uk, zk)[d,d] = ‖du‖2 + α‖dq‖2
Q − 〈A′′(uk)[du,du], zk〉

− 〈R′′(γ, ϕk)[dϕ, dϕ], zϕ,k〉.

Together with the first-order derivative of the objective function J with respect to
(q, u) at point (qk,uk) in direction d, denoted by

J ′(q,u)(q
k,uk)d,

we formulate for given ϕ− ∈ Wϕ the linear quadratic subproblem (QPγ ) as follows:
Find the solution d = (dq,du) ∈ Q× V ∩W of

min
d

J ′(q,u)(q
k,uk)d+ 1

2
L′′(q,u),(q,u)(qk,uk, zk)[d,d] (QPγ )

s. t. A′(uk)du + R′(γ ;ϕk)dϕ = B(dq)+ B(qk)− A(uk)− R(γ ;ϕk).
(4.1)

The local SQP algorithm for solving (NLPγ ) then reads as follows:
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Algorithm 4.1 Sequential quadratic programming method for (NLPγ ):

0. Choose (q0,u0, z0) ∈ Q × V ∩ W × V ∩ W , sufficiently close to the optimal
triple (q̄, ū, z̄), and set k = 0.

1. STOP, if (qk,uk, zk) is a KKT point of (NLPγ ), i.e., satisfies (FONγ ).
2. Solve (QPγ ) to receive d with associated adjoint z.
3. Set (qk+1,uk+1) := (qk,uk)+ d, zk+1 = z, k := k + 1, and go to Step 1.

Solvability of (QPγ ) will be shown in Proposition 4.3, and the optimality
conditions to be satisfied in the second step of Algorithm 4.1 are stated in (4.3).
To derive these results, we need the solvability of (4.1), which follows from
Proposition 2.1 and the properties of A′(u) in Sect. 2.2.

Corollary 4.2 Assuming (qk,uk, zk) ∈ Q × W × W , the linearized partial
differential equation given in (4.1) has a solution du ∈ V ∩W for data dq ∈ Q.

Proof By the regularity assumptions on (qk,uk) ∈ Q × W , one can see that all
terms of A(uk) − R(γ, ϕk) are at least in W×. Also, by assumption on the data, it
holds dq, qk ∈ Q ↪→ W×. Thus, the right-hand side of (4.1) is an element of W×,
and the desired result follows by Proposition 2.1. ��

Next, we discuss solvability of the quadratic subproblem (QPγ ).

Proposition 4.3 Let (q̄, ū) be a locally optimal solution to (NLPγ ), and let the
linearization triple (qk,uk, zk) ∈ Q × V ∩ W × V ∩ W be given. Assume there
exists an α′′ > 0 such that

L′′(q,u),(q,u)(qk,uk, zk)[(dq,du), (dq,du)] ≥ α′′‖(dq,du)‖2
Q×L2(�;R3)

(4.2)

holds for all (dq,du) ∈ Q× V ∩W that satisfy

A′(uk)du + R′(γ, ϕk)dϕ = B(dq).

Then, there exists a unique global solution (dq,du) ∈ Q× V ∩W to (QPγ ).

Proof For every dq ∈ Q, the linearized partial differential equation (4.1) in (QPγ )
has a unique solution du ∈ V ∩W by Corollary 4.2. Let Mfeas denote the feasible
set, i.e.,

Mfeas := {(dq,du) ∈ Q× V ∩W satisfying (4.1)}.

It is immediate that Mfeas is nonempty, closed, and convex. Due to (4.2), the cost
functional of (QPγ ) is strictly convex and continuous, hence weakly lower semi-
continuous, as well as radially unbounded, so (QPγ ) is uniquely solvable in Q×V .
Due to Corollary 4.2, du is an element of W . ��
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4.2 First-Order Optimality Conditions for (QPγ ) and Its Limit

In order to prove that any limit point of sequences generated by Algorithm 4.1 is in
fact a first-order necessary point for (NLPγ ), let us point out that for (qk,uk, zk) be
given as in Algorithm 4.1, in the (k + 1)st-step, the functions

du = (du, dϕ) = (uk+1 − uk, ϕk+1 − ϕk)

with associated adjoint zk+1 satisfy the first-order optimality conditions of (QPγ ),
which are given by

A′(uk)du + R′(γ ;ϕk)dϕ =B(dq)+ B(qk)− A(uk)− R(γ ;ϕk),
(4.3a)

(A′(uk))∗zk+1 + R′(γ, ϕk)zϕ,k+1 = − A′′(uk)[du, · ]∗zk − R′′(γ, ϕk)[dϕ, · ]zϕ,k

+ du + uk − ud, (4.3b)

B∗zk+1 + α(dq + qk) = 0. (4.3c)

These optimality conditions are necessary and sufficient, since (QPγ ) is a convex
linear quadratic problem due to (4.2). These properties allow to prove our desired
convergence result.

Theorem 4.4 Assume that Algorithm 4.1 generates an infinite sequence
(qk,uk, λk, zk, θk, μk) with a limit point (q̂, û, λ̂, ẑ, θ̂ , μ̂) in the sense that

qk → q̂ inQ, uk → û in V,

uk → û inWu, ϕk ⇀ ϕ̂ inWϕ,

λk → λ̂ in V ∗
ϕ , zk ⇀ ẑ in V,

μk ⇀ μ̂ in V ∗
ϕ , θk ⇀ θ̂ in Vϕ.

Then, the limit satisfies (FONγ ).

Proof We examine the limit for k → ∞ in the Eqs. (4.3a), (4.3b), and (4.3c)
separately, starting with (4.3a).

By definition, we have du = uk+1 − uk = (uk+1 − uk, ϕk+1 − ϕk). Thus, by
the given convergence and regularity assumptions, there exists a limit point d̂u =
(d̂u, d̂ϕ) = 0 in V and d̂q = 0 in Q.

Analogous to the proof of Theorem 3.1, convergence of uk in (4.3a) shows that
this limit solves

0 = A′(û)d̂u + R′(γ ; ϕ̂)d̂ϕ − B(d̂q) = B(q̂)− A(û)− R(γ ; ϕ̂).
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Defining λ̂ = R(γ ; ϕ̂) gives the first two lines of (FONγ ).
Taking the limit in (4.3b), and defining θ̂ = ẑϕ and μ̂ = R′(γ ; ϕ̂)θ̂ , shows the

third, fifth, and sixth lines of (FONγ ).
Finally, convergence in (4.3c) gives the fourth line of (FONγ ). ��

4.3 Approximation of (QPγ ) by Finite Elements

For a practical implementation of Algorithm 4.1, the QP step cannot be performed
exactly. Instead, an approximate solution of (QPγ ) is needed, where the PDE (4.1)
is discretized by finite elements. To this end, let Th be a sequence of shape regular
and quasi-uniform meshes with element diameter hT ≤ h → 0 for all T ∈ Th. We
assume, for simplicity, that the elements T are open triangles, pairwise disjoint, and
provide a decomposition of the domain �, i.e., � = ⋃

T ∈Th T . Furthermore, we
assume that the elements match the splitting of the boundary into � and �D .

Now, we define the finite element space of piecewise linear finite elements

Vh = {v ∈ V | v∣∣
T
∈ P1(T ), ∀T ∈ Th}.

Then, for uk ∈ V ∩ H 1+s and qk ∈ Q, we can define the discretized QP
subproblem

min
d∈Q×Vh

J ′(q,u)(q
k,uk)d+ 1

2
L′′(q,u),(q,u)(qk,uk, zk)[d,d]

s. t. 〈A′(uk)du, vh〉 + 〈R′(γ ;ϕk)dϕ, vϕh 〉
= 〈B(dq)+ B(qk)− A(uk), vh〉
− 〈R(γ ;ϕk), vϕh 〉 ∀vh ∈ Vh.

(QPγh )

Note that, although no discretization is enforced for dq , the optimality conditions
immediately induce a natural discretization, see, e.g., [11].

Under the growth condition (4.2), the analysis of [17, Theorem 3.3, Corol-
lary 3.8] can be transferred to this situation and yields the following:

Proposition 4.5 Given (qk,uk, zk) satisfying (4.2), and let η be such that Assump-
tion 2.3 holds. Then, there exists h0 > 0, depending on ‖qk‖Q, ‖uk‖1+s only, such
that for any h ≤ h0, problem (QPγh ) has a unique solution (dqh ,d

u
h), and for the

solution (dq,du) of (QPγ ), it holds the error estimate

α′′
(

‖dq − d
q
h‖2

Q + ‖du − duh‖2
)

+ ‖du − duh‖2
V + ‖z− zh‖2

V ≤ ch2s .

The constant c depends on ‖uk‖1+s and R′(γ ;ϕk).
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Combining these estimates with the convergence in Theorem 4.4, we see that
convergence can be asserted as long as h → 0 sufficiently fast for k → ∞.
Of course, to assert global convergence of the sequence, suitable globalization
strategies are needed. In these, additional requirements on the accuracy of the
iterates need to be required to reliably evaluate sufficient descent conditions,
cf. [20, 21].

However, our results [19] only show that it is reasonable to assert bounds on
R(γ ;ϕk) but not on R′(γ ;ϕk). Hence, it is not clear whether a uniform bound on
the constant in Proposition 4.5 can be proven throughout a globalized SQP-type
method. Thus, we will also discuss an alternative SQP-like algorithm in which the
regularization is not used when building subproblems. However, a detailed analysis
of this alternative is beyond the scope of this chapter.

5 An SQP Method for (NLPVI)

Along the lines of the last section, we would now like to consider an SQP algorithm
for the problem (NLPVI) and briefly discuss solvability of the SQP subproblems.
Instead of investigating the convergence analysis, we place special emphasis on the
finite element discretization of the quadratic problem governed by complementarity
conditions.

It should be noted that in this setting, the quadratic subproblems contain the
linearized operator, while the feasible set is not linearized, similar to the way
Newton’s method is utilized for generalized equations, e.g., in [6]. This means
that our resulting QP still is an MPEC in function space. However, in contrast to
Proposition 4.5, we will be able to provide uniform discretization error estimates
for the resulting QP problems. Note, again, that in Proposition 4.5, uniform finite
element estimates are only true under the assumption that R′(γ ;ϕk) remains
bounded, a property which up to now is not even proven for the central path where
ϕγ solves (NLPγ ).

5.1 SQP Algorithm for (NLPVI)

Similar as before, we consider the Lagrangian

L(q,u, λ, z) := J (q,u)− 〈A(u)+ λ− B(q), z〉

and point out that we have

L′′(q,u)(q,u)(q,u, λ, z)[d,d] = ‖du‖2 + α‖dq‖2
Q − 〈A′′(u)[du,du]; z〉.
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Based on this, we can define the QP approximation to (NLPVI) in a given point
(qk,uk, λk, zk) for d = (dq,du) ∈ Q× V as

min
d∈Q×V J ′(q,u)(q

k,uk)(dq,du)+ 1

2
L′′(q,u)(q,u)(qk,uk, λk, zk)[d,d]

s. t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A(uk)+ A′(uk)du + λk+1 − B(qk)− B(dq) = 0,

λk+1 ≥ 0,

ϕ− − ϕk − dϕ ≥ 0,

〈λk+1, ϕk − ϕ− + dϕ〉 = 0.

(QPVI)

Indeed, this problem corresponds to the linearization of the PDE operator
in (NLPVI) while keeping the inequality constraint. Thus, the step dϕ needs to be
found in

Kk := {v = (vu, vϕ) ∈ V | vϕ ≤ ϕ− − ϕk a.e. in�}

to assert ϕk+1 = ϕk + dϕ ≤ ϕ−. Thus, the constraint in (QPVI) can equivalently be
written as

〈A(uk)+ A′(uk)du, v− du〉 ≥ 〈B(qk + dq), vu − du〉, ∀v ∈ Kk, (5.1)

and λk+1 is the corresponding Lagrange multiplier.
With this, we obtain the following local SQP-type iteration:

Algorithm 5.1 Sequential quadratic programming method for (NLPVI):

0. Choose (q0,u0, λ0, zk) ∈ Q× V × V ∗
ϕ × V , and set k = 0.

1. If (qk,uk, λk, zk) is a KKT point of (NLPVI), STOP.
2. Derive a KKT point (d, λk+1, zk+1) of the problem (QPVI).
3. Set (qk+1,uk+1) = (qk,uk)+ d, k := k + 1, and go to step 1.

Similar as in the previous section, we need to assume a growth condition to have
well-posedness of the QP subproblem; the analog to (4.2) is now:

Assumption 5.2 Let us assume that for given (qk,uk, λk, zk), there exists α′′ such
that for all d = (dq,du) ∈ Q× V ∩W satisfying (5.1), it holds

L′′(q,u),(q,u)(qk,uk, λk, zk)[d,d] ≥ α′′‖d‖2
Q×L2(�;R3)

.

Once this assumption holds, it follows by standard arguments that (QPVI)
has a global solution, noting that coercivity of A′(u) implies that the variational
inequality (5.1) is the necessary and sufficient optimality condition for a strictly
convex energy minimization.
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5.2 Convergence of FE Approximation to (QPVI)

In fact, the subproblem (QPVI) is a quadratic minimization problem with inequality
constraints. To analyze its approximation by finite elements, we can proceed
similarly as in [16], with the slight complication that the linear second-order
operator in the obstacle problem (5.1) is not H 2-regular.

We abbreviate the objective function of the QP problem by

J k(d) := J ′(q,u)(q
k,uk)(dq,du)+ 1

2
L′′(q,u)(q,u)(qk,uk, λk, zk)[d,d].

By Assumption 5.2, for any dq ∈ Q, there exists a unique solution du ∈ Kk of the
constraint (5.1). Therefore, we can define the solution operator S : Q→ Kk , which
maps dq to du, and thus we can define the reduced objective function

jk : Q→ R

jk(dq) := J k(dq, S(dq))

with which we can equivalently write (QPVI) as

min
dq∈Q j

k(dq). (5.2)

Moreover, if ϕ− ∈ Wϕ and uk ∈ W , then (5.1) implies the additional regularity du =
S(dq) ∈ W , cf., [10, Remark 7]. As a consequence, the corresponding multiplier
λk+1 satisfies λk+1 ∈ H−1+s .

For the discretization, we proceed as in Sect. 4.3; except now solutions need to
be found in the set

Kk
h := {vh ∈ Vh : vϕh ≤ Ih(ϕ

− − ϕk) in�}.

Where Ih : C(�) �→ Vh is the nodal interpolation operator satisfying

‖w − Ihw‖V ≤ CIh
s‖w‖1+s , ‖w − Ihw‖1−s ≤ Ch2s‖w‖1+s , (5.3)

for any w ∈ H 1+s .
From the discrete analog of (5.1), we get the linearized solution operator Sh :

Q→ Kk
h ⊂ Vh, dq �→ duh and the discretized reduced objective

jkh : Q→ R

jkh (d
q) := J k(dq, Sh(d

q))
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and the discretized problem

min
d
q
h∈Q

jkh(d
q
h ). (5.4)

Lemma 5.3 Let Assumption 2.3 be satisfied. Let (qk,uk, λk, zk) ∈ Q×W×V ∗
ϕ×W

and dq ∈ Q be given.
Then, there exists c > 0 such that du = S(dq) and duh = Sh(d

q) satisfy

‖du − duh‖V ≤ chs(‖dq‖Q + 1),

where c = c(‖λk+1‖−1+s) depends on the H−1+s-norm of the multiplier for the
variational inequality (5.1).

Proof We follow [5] and derive the best approximation result

〈A′(uk)(du − duh),d
u − duh〉 ≤ 〈A′(uk)(du − duh),d

u − vh〉
− 〈λk+1, vh − duh〉 ∀vh ∈ Kk

h.
(5.5)

Indeed, the result shows the claim using continuity and coercivity of A′(uk) as well
as the following simple calculation using the complementarity and sign relations
of (QPVI):

−〈λk+1, vh − duh〉 = − 〈λk+1, vh − Ih(ϕ
− − ϕk)− du + ϕ− − ϕ+〉

− 〈λk+1,du − ϕ− + ϕk〉
− 〈λk+1, Ih(ϕ

− − ϕk)− duh〉
≤ − 〈λk+1, Ih(vh − ϕ− + ϕk)− (du − ϕ− + ϕ+)〉
≤ ‖λk+1‖−1+s‖Ih(vh − ϕ− + ϕk)− (du − ϕ− + ϕ+)‖1−s .

Taking vh = Ihdu in (5.5) thus yields

βη‖du − duh‖2
V ≤C‖du − duh‖V ‖du − Ihdu‖V

+ ‖λk+1‖−1+s‖Ih(duh − ϕ− + ϕk)− (du − ϕ− + ϕ+)‖1−s ,

and the interpolation error estimate (5.3) yields the assertion.
To show (5.5), we calculate for arbitrary vh ∈ Kk

h

〈A′(uk)(du − duh),d
u − duh〉 = 〈A′(uk)(du − duh),d

u − vh〉
+ 〈A′(uk)(du − duh), vh − duh〉

= 〈A′(uk)(du − duh),d
u − vh〉
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− 〈λk+1 + A(uk)− B(qk + dq), vh − duh〉
− 〈A′(uk)duh, vh − duh〉

≤ 〈A′(uk)(du − duh),d
u − vh〉 − 〈λk+1, vh − duh〉,

where we utilized the Lagrange multiplier λk+1 for the variational inequality (5.1)
for the second equation and the discretized variational inequality for (5.1) in the last
step, showing (5.5). ��
With this, we obtain a discretization error estimate for the reduced cost functional.

Lemma 5.4 Let (qk,uk, λk, zk) ∈ Q ×W × V ∗
ϕ × V be given. Then, it holds for

any dq ∈ Q

|jk(dq)− jkh (d
q)| ≤ chs‖dq‖Q.

Proof By definition, it holds

jk(dq)− jkh (d
q) = J ′(qk,uk)(0, (S − Sh)d

q)

+ 1

2

(

L′′(q,u),(q,u)(qk,uk, λk, zk)[(dq, Sdq), (dq, Sdq)]

− L′′(q,u),(q,u)(qk,uk, λk, zk)[(dq, Shdq), (dq, Shdq)]
)

= J ′(qk,uk)(0, (S − Sh)d
q)+ 1

2

(

‖Sdq‖2 − ‖Shdq‖2

− 〈A′′(uk)[Sdq, Sdq ], zk〉 + 〈A′′(uk)[Shdq, Shdq ], zk〉
)

= J ′(qk,uk)(0, (S − Sh)d
q)+ 1

2

(

‖Sdq‖2 − ‖Shdq‖2

+ 〈A′′(uk)[(S + Sh)d
q, (S − Sh)d

q ], zk〉
)

.

Using that (S + Sh)d
q ∈ W 1,p, we get from Lemma 2.2

|jk(dq)− jkh (d
q)| ≤ c‖(S − Sh)d

q‖V ,

and Lemma 5.3 shows the assertion. ��
In order to derive error estimates for the optimal arguments, we need to rely on

the following quadratic growth condition. Let d̄q ∈ Q be a local solution to (5.2).
We assume the following:

Assumption 5.5 (Quadratic Growth Condition) There exists δ > 0 such that

jk(d̄q) ≤ jk(dq)− δ‖dq − d̄q‖2
Q, ∀ dq ∈ Q. (5.6)
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In many cases, it can be shown that such a condition is a direct consequence
of Assumption 5.2. Whether this holds in the given situation is currently being
investigated.

From the quadratic growth condition, a standard argument gives the following
convergence estimate:

Theorem 5.6 Let d̄q and d̄
q
h be the optimal solutions to the problems (5.2)

and (5.4), respectively. Then, there exists a constant c > 0, independent of the
mesh size h, such that the following holds:

‖d̄q − d̄
q
h‖2

Q ≤ chs.

Proof From Assumption 5.5, we get, using the optimality of d̄qh ,

δ ‖d̄qh − d̄q‖2
Q ≤ jk(d̄

q
h )− jk(d̄q)

= jk(d̄
q
h )− jkh (d̄

q
h )+ jkh (d̄

q)− jk(d̄q)+ jkh (d̄
q
h )− jkh (d̄

q)

≤ |jk(d̄qh )− jkh (d̄
q
h )| + |jk(d̄q)− jkh (d̄

q)|
≤ chs(‖d̄q‖Q + ‖d̄qh‖Q),

where the last inequality follows from Lemma 5.4. ��
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Algorithms for Optimal Control of
Elastic Contact Problems with Finite
Strain

Anton Schiela and Matthias Stöcklein

Abstract Optimal control of hyperelastic contact problems in the regime of finite
strains combines various severe theoretical and algorithmic difficulties. Apart from
being large scale, the main source of difficulties is the high nonlinearity and non-
convexity of the elastic energy functional, which precludes uniqueness of solutions
and simple local sensitivity results. In addition, the contact conditions add non-
smoothness to the overall problem.

In this chapter, we discuss algorithmic approaches to address these issues. In
particular, the non-smoothness is tackled by a path-following approach, whose
theoretical properties are reviewed. The subproblems are highly nonlinear optimal
control problems, which can be solved by an affine invariant composite step method.
For increased robustness and efficiency, this method has to be adapted to the
particular problem, taking into account its large-scale nature, its function space
structure and its non-convexity.

Keywords Nonlinear elasticity · Optimal control · Contact problem
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1 Introduction

The analysis and simulation of elastic contact problems, in particular for small
deformations, are a classical subject of applied mathematics. Already in their
simplest form, the Signorini problem [6, 15, 28], they are intrinsically non-smooth
and lead to a variational inequality on an appropriate Sobolev space. Nevertheless,
even in this simple convex setting, the simulation of linearly elastic contact may be
challenging [15], depending on the geometric configuration.
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Nonlinearly elastic contact problems combine these difficulties with those
that arise in nonlinear hyperelasticity. Solutions of hyperelastic problems can be
modelled as energy minimizers [5]. Due to non-convexity of the energy, minimizers
do not have to be unique. Also, owing to the high nonlinearity of the problem, local
minimizers do not have to satisfy the weak form of the equilibrium equation in
general.

Here, we consider optimization problems in the context of nonlinear elasticity
and contact. This connects to the works [16, 17], where first steps into the topic were
taken. In particular, the existence of optimal solutions to such kinds of problems was
shown. A composite step method [18] was developed for the numerical solution
of these problems. A similar topic was considered in [11], where optimal control
problems in the context of biological models were investigated and solved by
a quasi-Newton approach. Optimal control of linear contact problems has been
considered in [3, 20, 30].

In the last few years, additional progress has been made for this class of problems,
and the aim of this chapter is to report on this progress, both concerning theoretical
results and algorithmic concepts. We build upon and extend the results from [18, 26,
27], where additional details can be found.

This work consists of two main parts: the first part is a concise recapitulation
of the available theoretical results for optimal control of finite strain contact
problems. It is mainly based on [27] and, after fixing the framework, describes
analytic results on a path-following approach for the solution of these problems. The
second part deals with the algorithmic development, which has taken place recently.
Here, a number of inherent numerical and practical challenges are described, and
algorithmic ways to deal with them are presented. First, elastic problems in three
spatial dimensions yield large-scale systems after discretization. Hence, efficient
iterative solvers for the computation of steps have to be used. To this end, in [26],
an algorithmic framework for inexact step computations was developed, but our
class of problems demands further advance in this direction. Second, an appropriate
choice of functional analytic framework is discussed. It turns out that the choice
of norms has a decisive impact on the performance of the algorithms. Finally, we
consider the treatment of the inherent non-convexity in the problem, both in the
objective and in the energy functionals. Our discussions are illustrated by numerical
examples.

2 Contact Problems in Hyperelasticity

Generally speaking, we study the deformation of a nonlinear elastic body made
of a hyperelastic material. The body is considered to be under stress from an
external boundary force which causes the deformation. Additionally, deformations
are constrained by an obstacle which the body cannot penetrate. In the context
of hyperelasticity, computing such deformations corresponds to solving an energy
minimization problem.
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In this section, we introduce the setting and review the central results for
nonlinear elastic contact problems. In particular, we give an overview of the
existence theory in nonlinear elasticity, and we address a suitable regularization
approach for the contact constraints.

Nonlinear Elasticity In our setting, the nonlinear elastic body is represented by
a domain � ⊂ R

3, which is required to be Lipschitz continuous. In addition, its
boundary is divided into three subsets as follows:

� = �D ∪ �N ∪ �C,

where each subset has non-zero boundary measure. Here, �D and �N denote the
parts where the Dirichlet and Neumann boundary conditions hold, respectively.
Furthermore, �U ⊂ �N and �C denote the parts where the boundary force acts
and where the contact constraints are enforced, respectively.

Next, we denote by

y : �→ R
3 and u : �U → R

3

the deformation of the body and the boundary forces, respectively.
For simplicity, we consider the following contact constraint:

y3 ≥ 0 a.e. on �C.

This describes a setting where the body has to stay above the plane that is spanned
by the first two canonical basis vectors.

As deformation space, we choose the Sobolev space W 1,p(�;R3) with p ≥ 2.
Correspondingly, as space for the boundary force, we choose L2(�U ,R

3). If there
is no risk of ambiguity, we will skip the notation for the image space in all vector-
valued spaces. In the setting of optimal control, deformations will act as the state,
and boundary forces will act as the control. Accordingly, we introduce the notation
Y = W 1,p(�) and U = L2(�U). Furthermore, let id : � → � be the identity
mapping, and let M3+ denote the space of invertible 3 × 3 matrices with positive
determinant. Lastly, if not stated otherwise, we define the matrix norm ‖M‖ :=√

trMTM , and we denote by CofM := det(M)M−T the cofactor matrix for M ∈
M

3+.
For hyperelastic materials, computing the deformation of a body subjected

to an external load is equivalent to finding a respective energy minimizer. The
corresponding total energy functional I : Y × U → R can be defined by

I (y, u) :=
∫

�

Ŵ(ω,∇y(ω)) dω −
∫

�U

yu ds,
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with the common splitting

Istrain(y) =
∫

�

Ŵ(ω,∇y(ω)) dω and Iout(y, u) =
∫

�U

yu ds.

Here, Ŵ : � ×M
3+ → R denotes the stored energy function which depends on

the material. For detailed discussion of the specific choice of Ŵ , we refer to [4].
For the further analysis, we require the following assumptions, which are standard
in hyperelasticity.

Assumption 2.1 Let Ŵ : �×M
3+ → R be the stored energy function. We assume

that the following properties hold:

1. Polyconvexity: For almost all ω ∈ �, there is a convex function W(ω, ·, ·, ·) :
M

3 ×M
3×]0,+∞[→ R such that

Ŵ (ω,M) =W(ω,M,Cof M, detM), for allM ∈M
3+.

The function W(·,M,Cof M, detM) : �→ R is measurable for allM ∈M
3+.

2. For almost all ω ∈ �, the implication detM → 0+ ⇒ Ŵ (ω,M)→∞ holds.
3. The sets of admissible deformations defined by

A := {y ∈ W 1,p(�), Cof ∇y ∈ Ls(�), det∇y ∈ Lr(�),

y = id a.e. on �D, det∇y > 0 a.e. in �},
Ac := {y ∈ A : y3 ≥ 0 a.e. on �c},

for p ≥ 2, s ≥ p
p−1 , r > 1 are non-empty.

4. Coercivity: There exist a ∈ R and b > 0, such that

Ŵ (ω,M) ≥ a + b(‖M‖p + ‖CofM ‖s + | detM|r ).

5. The identity id : �→ � satisfies

id ∈ argmin
v∈Ac

I (v, 0) and id3 ≥ 0 a.e. on �C.

With this at hand, computing the deformation of a body constrained by an
obstacle can be described by the optimization problem

y ∈ argmin
v∈Ac

I (v, u). (1)

The existence of energy minimizers has been established in [5, Theorem 4.2],
extending techniques from [1].
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Regularization of Contact Constraints Contact constraints add non-smoothness
to an already highly nonlinear and non-convex problem. Therefore, we will
introduce a suitable regularization approach.

Here, we apply the normal compliance regularization used in [19, 21]. In this
context, we introduce the penalty functional P : Y → R

+
0 defined by

P(v) := 1

k

∫

�C

[−v3]k+ ds, k ∈ N, k > 1, v ∈ Y,

which measures the violation of the constraints. We add the scaled penalty function
P to the total energy functional I

Iγ (y, u) := I (y, u)+ γP (y) γ > 0.

This approach allows us to drop the contact constraints. As a result, we obtain the
regularized minimization problem:

y ∈ argmin
v∈A

Iγ (v, u). (2)

The well-posedness of the regularized problem (2) and a convergence result that
links (1)–(2) have been proven in [27, Theorem 2.3, Proposition 2.1].

Theorem 2.1 Let γ > 0 be a fixed penalty parameter and u ∈ U be some fixed
boundary force. Then, under Assumption 2.1, the regularized total energy functional
Iγ (·, u) has at least one global minimizer in A.

3 Optimal Control of Nonlinear Elastic Contact Problems

In the optimal control setting, we aim at minimizing an objective functional

J : Y × U → R,

subject to the constraint that an optimal state y∗ is a minimizer of the total energy
functional, i.e.,

y∗ ∈ argmin
v∈Ac

I (v, u∗),

where u∗ is the corresponding optimal control. We restrict ourselves here to a
tracking type functional of the form

J (y, u) := 1

2
‖y − yd‖2

L2(�)
+ α

2
‖u‖2

L2(�U )
,
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for yd ∈ L2(�), α > 0 and U = L2(�U). Accordingly, the optimal control problem
reads as follows:

min
(y,u)∈Y×U J (y, u) s.t. y ∈ argmin

v∈Ac

I (v, u). (3)

Based on the analysis in [17], the following existence result was derived in [27,
Theorem 4.1]:

Theorem 3.1 Problem (3) has at least one optimal solution.

Solving those kinds of optimal control problems numerically is already a challeng-
ing task, even without contact constraints. Therefore, we are going to apply the
previously introduced normal compliance regularization in order to avoid dealing
with the contact constraints numerically. As a result, we obtain the regularized
optimal control problem:

min
(y,u)∈Y×U J (y, u) s.t. y ∈ argmin

v∈A
Iγ (v, u), (4)

for some fixed parameter γ > 0.
Analogously to above, we can show the existence of optimal solutions.

Theorem 3.2 For each γ > 0, problem (4) has at least one optimal solution.

Proof See [27, Proof of Theorem 4.2]. ��
Convergence of Solutions of the Regularized Problem With the regularized
optimal control problem at hand, we now have to verify that solutions of the
regularized problem (4) approach solutions of the original control problem (3).

However, concerning the regularization (4), one corner case precludes the desired
result: it may happen that the energy minimization problems in (3) admit a larger set
of energy minimizers than can be approximated by solutions of (4). So the desired
convergence theory for (4) can only be established under an assumption that rules
this case out, as discussed in [27]. However, a modified regularization can solve this
problem.

We introduce the following alternative regularized problem:

Eγ (y, u) := Iγ (y, u)+ ϕ(γ )
1

2
‖y − yd‖2

L2(�)
, (5)

where ϕ : [0,∞[→]0,∞[ is a positive function in γ , which is monotonically
decreasing, such that

lim
γ→∞ϕ(γ ) = 0.
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Again, the well-posedness and a convergence result for this new regularization were
established in [27].

For the convergence analysis, it has to be ensured that the regularization function
ϕ does not approach zero too quickly. This is necessary to guarantee that the
minimization of a fraction of the objective functional J is sufficiently weighted at
all times. This property is specified in the following assumption.

Assumption 3.1 Let u ∈ U be fixed. Assume that

lim
γ→∞

minv∈Ac
I (v, u)−minv∈A Iγ (v, u)

ϕ(γ )
= 0.

With this in mind, we can show convergence for this approach.

Theorem 3.3 Let γn → ∞ be a positive and monotonically increasing sequence
of penalty parameters. Furthermore, let (y∗, u∗) denote an optimal solution to
problem (3). In addition, let (yn, un) ⊂ A × U be a sequence of optimal solutions
to the corresponding regularized problems, where the regularization function ϕ

satisfies Assumption 3.1 w.r.t. u∗. Then,

lim
n→∞ J (yn, un) = min

S
J.

Furthermore, there exist a subsequence (ynk , unk ) and a pair (y, u) ∈ Ac ×U such
that we obtain the weak convergence ynk ⇀ y in Y and the strong convergence
unk → u in L2(�U). Additionally, (y, u) solves the original problem (3).

Proof See [27, Proof Theorem 5.4]. ��
In [27], additional results are established that allow an a priori choice of ϕ,

depending on the regularity of the geometric configuration.

Formal KKT Conditions We recall that problem (2) admits multiple solution,
which rules out the application of efficient algorithms. Thus, we replace the
minimization problem (2) by its formal first-order optimality condition. We have to
keep in mind that this approach creates a different problem and we have to interpret
results carefully, e.g., optimal solution of this new problem might not satisfy (2) but
may be just stationary points of the energy.

Let us define

cγ (y, u)v = ∂yEγ (y, u)v ∀v ∈ P,

where P is a reflexive space of test functions. This mapping corresponds to
equilibrium conditions of our hyperelastic problem. We thus have a nonlinear
mapping:

cγ : Y × U → P ∗,
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which can be split additively as follows:

cγ (y, u) = Aγ (y)− Bu

into a nonlinear operator Aγ : Y → P ∗ and a linear operator B : U → P ∗. Then,
formally, the KKT conditions at a minimizer x∗ state the existence of an adjoint
state p such that

J ′(y∗, u∗)+ c′γ (y∗, u∗)∗p = 0

cγ (y∗, u∗) = 0.

We stress that a rigorous derivation of these conditions seems to be out of reach at
the moment. The main reason is the lack of local sensitivity results of solutions of
hyperelasticity with respect to perturbations of u.

4 Numerical Optimization Algorithms

In order to algorithmically approach this problem, we formally replace the energy
minimizing constraint by its first-order optimality condition. Then, the reformulated
problem reads as follows:

min
(y,u)∈Y×U J (y, u) s.t. cγ (y, u) = 0. (6)

As a result, we obtain an equality-constrained optimization problem for each
parameter γ > 0. This formulation allows the application of solution algorithms
for equality constraints. Nevertheless, a couple of intrinsic difficulties have to be
considered. To overcome them, measures have to be taken that go beyond standard
equality-constrained optimization:

• The problem is posed in function space, and even after discretization (which is
done here by a displacement formulation), this inherent structure should be taken
into account by the algorithm.

• In three-dimensional elasticity, the use of direct solvers severely limits the
resolution of discretizations. Thus, all arising linear systems have to be solved
by iterative methods, preferably of conjugate gradient type. In this context, the
issue of finding appropriate preconditioners and termination criteria arises.

• Although the elastic energy minimization problem has been replaced by its
equilibrium conditions, the goal remains to compute stable solutions, i.e., energy
minimizers. Hence, our algorithm should have built-in preference towards energy
decreasing search directions. This issue arises due to non-convexity, in particular,
if the problem of linearized elasticity yields a Hessian matrix that is not positive
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definite. This case also precludes the direct application of a conjugate gradient
method.

• The high nonlinearity of the energy functional also includes a singularity near
det∇y = 0, while local self-penetration, i.e., det∇y < 0 is infeasible.

While we concentrated [27] on the construction of a path-following method for
the regularization of the contact constraints, the aim of this section is to propose
algorithmic measures to tackle the above problems, which are sometimes specific to
nonlinear elasticity, and to illustrate their numerical performance.

For the following numerical computations, we always employ the tracking type
functional, described above and a nonlinear material that is used for modelling soft
biological tissue. They differ in terms of geometric configuration and in terms of the
desired deformed state yd .

4.1 An Affine Covariant Composite Step Method

For brevity of notation, we set x := (y, u) and X = Y × U , which yields the
formulation

min
x∈X J (x) s.t. cγ (x) = 0. (7)

The space of iterates is equipped with an appropriately chosen scalar product 〈·, ·〉
that gives rise to a Riesz isomorphism M : X → X∗, i.e., 〈v,w〉 = (Mv)(w).
As usual, we define the Lagrangian function L : X × P → R via L(x, p) :=
J (x)+ pcγ (x) = J (x)+ p ◦ cγ (x).

For the solution of the minimization problem (7), we apply a composite step
algorithm based on the preceding work [18], from which we recapitulate the main
ideas.

The idea of composite step methods is to split the Newton update δx into a normal
step δn and a tangential step δt for a precise treatment of optimality and feasibility. A
normal step δn satisfies δn ∈ ker c′(x)⊥ and aims for feasibility. It can be computed
via the augmented system:

(

M c′γ (x)∗
c′γ (x) 0

)

(

δn

q

)

+
(

0
cγ (x)

)

= 0, (8)

which corresponds to the minimization problem:

min
v

1

2
〈v, v〉M s.t. c′γ (x)v + cγ (x) = 0.
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If necessary, a damping factor ν ∈]0, 1] is applied. The tangential step δt satisfies
δt ∈ ker c′(x) and aims for a decrease of the functional value. It can be computed
by solving the problem:

(

Lxx(x, p) c
′
γ (x)

∗
c′γ (x) 0

)

(

δt

q

)

+
(

Lx(x, p)+ Lxx(x, p)νδn

0

)

= 0. (9)

This problem corresponds to the following minimization problem for δx = νδn+δt
with fixed νδn:

min
δt

f ′(x)δx + 1

2
Lxx(x, p)(δx, δx) s.t. c′(x)δt = 0.

The Lagrange multiplier p, which is needed for this step, is computed before as
follows:

(

M c′(x)∗
c′(x) 0

)(

g

p

)

+
(

f ′(x)
0

)

= 0. (10)

In contrast to (8), the upper left block in (9) need not be positive definite. The best
we can hope for is that Lxx(x, p) is positive definite on kerc′γ (x) if x is close to a
strict minimizer of the problem.

Adding δn and δt directly results in a full Lagrange–Newton step, while damping
can be used to construct a globalization procedure, e.g., or the form:

δx := νδn+ τδt,

where ν ∈]0, 1] and τ > 0 are damping and step size parameters. This class of
methods is popular in equality-constrained optimization and optimal control, and
there are various realizations of this principal idea available [12, 22, 25, 29, 32].

The motivation of the approach in [18] is due to functional analytic consider-
ations. Most methods for equality-constrained optimization use residual norms of
the form ‖cγ (x)‖P ∗ , e.g., within a merit function or a filter. If cγ (x) models a
partial differential equation, appropriate norms are dual norms and thus not easy
to evaluate. The use of a simple norm at this position may degrade the performance
of the globalization procedure considerably.

The concept of affine covariance [8] allows to dispense with the evaluation of
residuum norms. Instead, a simplified Newton step δs is used, which is defined as a
minimum norm solution of a simplified Newton equation:

(

M c′γ (x)∗
c′γ (x) 0

)

(

δs

q

)

+
(

0
cγ (x + δx)− cγ (x)− c′γ (x)δx

)

= 0. (11)
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By computing the ratio 2 := ‖δs‖X/‖δx‖X, it is possible to estimate the Newton
contraction towards the feasible manifold. If 2 2 1, we are in the region of fast
local convergence of Newton’s method for the solution of the underdetermined
problem cγ (x) = 0. This globalization idea is combined with an appropriate
decrease criterion. Details are elaborated in [18]. There it is also shown that δs
helps to overcome the Maratos effect, since J (x + δx + δs) is approximated better
by the quadratic model of the Lagrange–Newton step than J (x + δx) is. Thus, δs
plays the role of a second-order correction and thus is beneficial in two ways.

To enforce the non-self-penetration condition det∇y > 0, additional damping is
applied if the trial iterate violates this condition.

4.2 Computation of Steps by Iterative Solvers

Solving the systems (8)–(11) by direct factorization is only possible for small
problems. Consequently, as the degrees of freedom increase, iterative solvers have
to be deployed. Here, we build upon the analysis and techniques discussed in [16,
Chapter 4] and extend these to a framework where can deal with possible non-
convexities in the constraints. A general overview concerning numerical approaches
for saddle point problems can be found in [2]. For projected conjugate gradient
methods, we refer here to the summaries in [9, 23].

We observe that the systems (8)–(11) all have a common structure, which, after
splitting of X = Y × U , can be written as follows:

(

H C∗
C 0

)(

v

q

)

+
(

c1,2

c3

)

= 0 ⇔
⎛

⎝

Hy 0 A∗
0 Hu −B∗
A −B 0

⎞

⎠

⎛

⎝

vy

vu

q

⎞

⎠+
⎛

⎝

c1

c2

c3

⎞

⎠ = 0. (12)

Here, we used the observation that J (y, u) = J1(y) + J2(u) so that H is block
diagonal and set Cx = Ay − Bu. Since J2(u) = α/2‖u‖2, we know that Hu is
positive definite. However, H may not always be positive definite on kerC in case
of the tangential step (9). This can only be expected close to a minimizer. Moreover,
in our context of hyperelasticity, the block A = A′γ (y) = ∂yyEγ (y, u) is symmetric,
but not always positive definite (and may be singular) due to non-convexity of the
elastic energy. However, as we will discuss below, it is possible to modify A and
H , such that the modified operators are positive definite, so that, in particular, A
is invertible. Finally, we observe that c3 = 0 in (10) and (9), while by solving the
system Avy,0 + c3 = 0, we can reduce (8) and (11) to a problem, where c3 = 0
holds as well.

In this setting, a conjugate gradient method on kerC can be applied to (12).
For its implementation, a constraint preconditioner is needed that guarantees that
iterates remain in kerC, as long as c3 = 0. We obtain a projected conjugate gradient
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method, cf., e.g., [10, 24]. Taking into account the block structure of (12), we use
the following block lower triangular preconditioner P :

P :=
⎛

⎝

0 0 A∗
0 H̃u −B∗
A −B 0

⎞

⎠ ,

dropping Hy and replacing Hu by a preconditioner H̃u, e.g., if Hu is a mass
matrix, its diagonal. This decouples (12) into three equations, which can be solved
sequentially:

A∗q = −c1 → q (13)

H̃uvu = B∗q − c2 → vu (14)

Avy = Bvu → vy. (15)

The main computational effort is spent solving (13) and (15), which are problems
of linearized elasticity in 3D. For coarse discretizations, a sparse direct solver
can be used to factorize A = A∗ and solve (13) and (15). In that case, the
preconditioned cg-method can be applied directly to (12) despite its saddle point
structure. Preconditioners of this form have been considered in [23, Chapter 5].

4.3 Inexact Constraint Preconditioning

For fine discretizations, A cannot be factorized directly, and we have to resort to
preconditioned conjugate gradients. Here, we use a multigrid preconditioner of
BPX-type, equipped with a block Jacobi smoother that uses the diagonal of 3 × 3
blocks of A, respecting the vector-valued nature of the problem.

Some care has to be taken, when this method is implemented. If (13) and (15)
are solved only inexactly, the iterates are not contained in kerC any longer. Instead
of (13) and (15), one actually solves nearby problems

˜A∗q = −c1 (16)

˜Avy = Bvu (17)

with ˜A ≈ ˜A∗ ≈ A = A∗, changing slightly from step to step. If the cg-method
applies the operator in (12) as the forward operator, this may lead to spurious
occurrence of directions of negative curvature, unless the accuracy of solution
of (13) and (15) is very high.

Hence, we have to avoid application of the A and A∗ blocks in (12). This
can be done by a simple auxiliary recursion within the projected cg-method.
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Although it is known that the convergence theory of conjugate gradients requires
that preconditioners are linear mappings that do not change during the iteration, the
cg-method then tolerates small errors in the application of the preconditioners. It
can be observed, however, that loose tolerances in the solution of (16) and (17) are
detrimental for the speed of convergence of the outer cg-iteration.

Remark 4.1 It is desirable to reduce the accuracy requirement for (16) and (17)
even further. Then, a linear iteration scheme, such as a preconditioned Chebyshev
semi-iteration with a fixed number of steps, has to be employed, and we end up with
a solution of the perturbed problem:

⎛

⎝

Hy 0 Ã∗
0 Hu −B∗
Ã −B 0

⎞

⎠

⎛

⎝

ṽy

ṽu

q

⎞

⎠+
⎛

⎝

c1

c2

0

⎞

⎠ = 0, (18)

where in contrast to before, Ã is a linear operator, so that the outer cg-iteration really
solves a well-defined linear problem.

Solving (15) with ṽu on the right-hand side (by conjugate gradients) yields
solutions in kerC again. A linear solver, based on this idea, has been tested with
promising results for optimal control of linear elliptic problems. Application to
optimal control of nonlinear elasticity is under current investigation.

Remark 4.2 Within the approach of Byrd–Omojokun composite step methods,
inexact system solvers were considered in [12, 13, 25]. Here, an alternative route
is taken. A GMRES method is used to solve normal steps inexactly, allowing for
loose tolerances in the evaluation of A and A∗. The solver for this problem also
serves as a preconditioner for the tangential step, for which a projected cg with
re-orthogonalization is used.

4.4 Accuracy Matching

For the efficiency of the overall method, it is important that the steps are computed
neither with too tight tolerances, which renders each step too expensive, nor with too
loose tolerances, which may lead to loss of robustness and increase of the number
of outer iterations. Setting fixed tolerances is usually not the best way to cope with
this problem, since each step of the outer iteration has a different characteristic. For
example, if the tangential step is dominant (which often happens close to the optimal
solution), then normal and simplified normal step can be computed with low relative
accuracy. A strategy for accuracy matching has been proposed and tested in [26],
where in particular the impact of inexact normal and simplified normal steps on the
outer iteration was considered, and adaptive termination criteria were derived.
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4.5 Choice of Functional Analytic Framework

A very important issue for our problem is a good choice of a Hilbert space norm
on X = Y × U that measures the step lengths and also defines what normal
means, when normal steps are computed. Our numerical results show that this has
considerable impact on the performance of our algorithm. Recall that the Riesz
operator M : X → X∗ enters the definition of normal and simplified normal step,
as well as the computation of the Lagrange multiplier in (8), (11), and (10).

For certain classes of optimal control problems with mildly nonlinear PDEs
(e.g., semilinear equations), it is possible to find a Hilbert space norm on X

that allows a rigorous (local) convergence theory in function space, based on
the corresponding functional analytic setting. For an overview of this topic, we
refer to [14, Chapter 1–2]. To obtain analogous results for nonlinear elasticity is
illusory. Even solution algorithms for the forward problem suffer from a two-norm
discrepancy: differentiability of the energy functional cannot be expected in a space
less regular than W 1,∞(�), while the energy space is only W 1,2(�). We thus have
a norm-gap that is hard to bridge.

As a consequence, mesh-dependent behaviour of solvers has to be expected, at
least, if difficult problems with large strains are solved. If the problem is not too
hard, however, additional regularity of the steps can usually be observed, which
alleviates the difficulty in practice. This favourable effect depends on the concrete
configuration and is hard to grasp a priori in a mathematical theory.

Our numerical observations confirm our considerations. In the following, con-
sider two alternative norms:

‖(y, u)‖2
M0

:= 1

2
‖y‖2

L2(�)
+ α

2
‖u‖2

L2(�)
,

‖(y, u)‖2
M1

:= 1

2
‖y‖2

H 1(�)
+ α

2
‖u‖2

L2(�)
.

Clearly, ‖ · ‖M0 is in close correspondence with the objective functional to be
minimized but does not take into account the regularity requirements of the
nonlinearity, at all. In contrast, ‖ · ‖M1 promotes smoother states, so, although
not guaranteeing W 1,∞(�) regularity, is certainly considerably closer to the ideal
situation.

We test these two alternatives at a problem, described in Fig. 1. The results of a
numerical comparison are depicted in Figs. 2 and 3. We observe a marked difference,
although the computed final solutions, as inspection showed, are the same. Equipped
with ‖·‖M0 , our algorithm takes about 200 steps and shows quite irregular behaviour.
If ‖·‖M1 is used, we observe from Fig. 3 that the behaviour of our algorithm is much
faster and also much more regular, concerning choice of damping factors.
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Fig. 1 Problem of pushing down a plate. Left: undeformed domain. Middle: desired deformation.
Right: optimal deformation. Upper horizontal boundary:�U , colour codes intensity of force. Lower
horizontal boundary: �N \ �U . Vertical boundaries: �D
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Fig. 2 Iteration history for problem from Fig. 1, using M0. Top: norms of steps, taken by the
algorithm. Bottom: the total number of outer cg-iterations in each step

4.6 Non-convexity of Objective and Energy

A major difficulty in the considered class of problems is the occurrence of non-
convexity, not only in the objective functional but also in the energy functional. The
difficulties, introduced by non-convexity, are well known: we usually obtain non-
unique local minimizers and additional stationary points. Furthermore, quadratic
models used in SQP methods are not positive definite anymore. As a consequence,
Lagrange–Newton methods, even if equipped with some damping, are usually not
appropriate for finding minimizers of non-convex problems. Various algorithmic
techniques for non-convex optimization have been developed in the last few decades
(cf., e.g., [7]).

Two popular techniques for large-scale problems are truncated conjugate gradi-
ents, where the cg-method is performed, until a direction of negative curvature is
detected and Hessian modification, where a positive definite term is added to the
Hessian, such that the sum is positive definite. In our context, the latter strategy
yields markedly more robust behaviour, if applied appropriately. For this, it is
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Fig. 3 Iteration history for problem from Fig. 1, using M1. Top: norms of steps, taken by the
algorithm. Bottom: the total number of outer cg-iterations in each step

important that the regularization term is chosen adequately, taking into account the
underlying functional analytic structure.

While truncated cg-methods typically yield cheaper steps, the computed search
directions are often very irregular (an effect that is not present in R

n) and thus yield
very small damping parameters and many outer iterations. The reason is that steps
result from an algebraic computation that is just terminated at a point where things
became particularly difficult with often irregular cg-iterates.

On the contrary, an appropriate Hessian modification yields a well-defined
problem in function space. For example, a regularized elastic problem is still an
elastic problem, however, with a different stiffer material. Hence, solutions of
regularized problems typically have better regularity properties than an arbitrary
element of the energy space. This is in agreement with the above observation that
additional regularity of solutions helps to bridge the problem inherent norm-gap.

Non-convexity of the Objective If Lxx(x, p) is not positive definite on ker c′γ (x),
then (9) does not correspond to a quadratic minimization problem, and descent of
tangential steps is not guaranteed, unless appropriate modifications are made. Just
as described above, we use a Hessian modification approach. Instead of solving (9),
we solve the modified problem:

(

Lxx(x, p)+ λM c′γ (x)∗
c′γ (x) 0

)

(

δt

q

)

+
(

Lx(x, p)+ Lxx(x, p)δn

0

)

= 0, (19)

where M is the Riesz isomorphism that is used to define normal steps, and λ ≥ 0
is an algorithmic parameter that is chosen large enough to render Lxx(x, p) + λM

positive definite on ker c′γ (x).



Algorithms for Optimal Control of Finite Strain Contact 369

This system corresponds to the following minimization problem:

min
δt

f ′(x)δx + 1

2
(Lxx(x, p)+ λM̃)(δx, δx) s.t. c′(x)δt = 0,

where M̃ = M on ker c′γ (x), but M̃ = 0 on (ker c′γ (x))⊥. Our quadratic model is
thus mainly modified on ker c′γ (x) but not on its orthogonal complement.

In our current implementation, each step is started with λ = 0. If non-convexity
is encountered, λ > 0 is chosen and a new attempt to compute a step is made.
Subsequently, λ is increased, until directions of negative curvature are no longer
encountered.

4.7 Non-convexity of the Energy

If models for elastic materials are intended to be realistic for large deformations,
they have to be non-convex. A classical and practically relevant example, caused
by non-convexity, is buckling. It can be observed, if compressive forces act on
the opposite ends of a slim body. For small forces, the body is compressed in
the direction of force, but as forces increase, this state becomes unstable and
energy is decreased if the body is bent in some direction. Depending on the
symmetries of the body, the new energy minimizers may be non-unique, and they
may differ dramatically from the previous solution. Seemingly, stable structures
collapse suddenly, if a certain critical force is exceeded (Fig. 5).

If such a behaviour is encountered during the course of solution of an optimal
control problem, which is the case for the problem, described in Fig. 4, a couple
of numerical difficulties arise. First of all, the operator A in (15) is likely to be

Fig. 4 Problem of bending down a horizontal cantilever. Left: undeformed domain. Middle:
desired deformation yd . Right: optimal deformation. Upper/front horizontal boundary: �U , colour
codes intensity of applied forces. Rear vertical boundary: �D . All other boundaries: �N \ �U
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indefinite, so (15) does not correspond to a quadratic energy minimization problem
and also cannot be solved by a cg-method. Furthermore, solutions of the nonlinear
equation cγ (y, u) = 0 cease to be energy minimizers or change rapidly, if u is
perturbed.

In analogy to the regularization of the objective function, we apply a regulariza-
tion term to the energy functional. This has to be done in such a way that δn, δt and
δs can be computed in a consistent way.

Assume that at the iterate (yk, uk), the operator A = A′γ (yk) is not positive
definite. This can be detected during the attempt to solve (13) or (15) by a cg-
method. In that case, we choose a regularization factor λ > 0 and define a
regularized energy functional as follows:

Êγ (y, u) := Eγ (y, u)+ λ

2
q(y − yk),

where q is a quadratic positive definite energy. For our computations, we have
chosen q(v) = 〈∇v,∇v〉L2 . For this modification, we compute

∂y Êγ (y, u) = ∂yEγ (y, u)+ λq ′(y − yk) ⇒ ∂y Êγ (yk, uk) = ∂yEγ (yk, uk),

Â := ∂2
yy Êγ (yk, uk) = ∂2

yyEγ (yk, uk)+ λq ′′(0).

The effect of this regularization is threefold: first of all, if λ is sufficiently large to
render Â is positive definite, then the solution of (13) or (15) with A replaced by Â
is a minimization problem. Thus, conjugate gradients can be applied. Second, due
to ellipticity of Â, normal steps are shifted towards descent for Eγ (y, u) at (yk, uk),
because the linearized constraint imposed on δn reads

Âδny − Bδnu + ∂yEγ (yk, uk) = 0.

Since Eγ (yk, uk) is linear in u, we conclude

∂yEγ (yk, uk + δnu)δny = (∂yEγ (yk, uk)− Bδnu)δny = −(Âδny)δny < 0.

So, δny is a descent direction for the total energy at the point (yk, uk + δnu).
Thus, finding energy minimizers is promoted. Third, long steps are penalized, which
results in a more stable behaviour of the optimization algorithm in the presence of
an instability of the elastic problem.

As a numerical example, we consider the problem, described in Fig. 4. In Fig. 5
and Fig. 6, we see an iteration history and some of the iterates taken by our
optimization algorithm for a problem, where non-convex behaviour of the energy
functional is encountered. In the beginning of the iteration, a buckling type non-
convexity is encountered. We observe that the applied forces in the early phase of
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Fig. 5 Iteration history for problem from Fig. 4. Top: norms of steps, taken by the algorithm.
Green circles: convex energy, red dots: non-convex energy. Bottom: the total number of outer cg-
iterations in each step

Fig. 6 Iterates taken by the composite step method for problem from Fig. 4 without contact. The
colour codes the intensity of the forces. Top row: iterates 1,2,3,4. Bottom row: iterate 7,10,13,16,19

the algorithm are rather intense, since the material resists the applied compressive
forces. Also, the necessary regularization of the energy adds some artificial stiffness
to the material. After some bending has taken place, the algorithm finds the optimal
solution using comparably small forces.
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An interesting effect is the S-shape shown by some intermediate deformations.
This is a consequence of the nonlinearity of the problem, which occurs in particular
for boundary forces. A tangential traction force tries to push the body towards the
desired deformation. Due to the nonlinearity of the problem, however, the body is
bent in upward direction, due to the moment introduced by this force.

Remark 4.3 An alternative to the presented idea was also tested. If non-convexity of
the energy was encountered during the iteration at (yk, uk), the control uk was kept
fixed and an energy minimization algorithm, based on the ideas of [31], was applied
to compute a minimizer of Eγ (·, uk) was computed. So, we temporarily switched to
a black-box method. At least for our test case, the performance of this variant was
not satisfactory. It showed a rather unstable and erratic behaviour. The reason for
this seems to be that buckling can occur during such an algorithm.

4.8 Path Following

With a robust solver for (6) at hand, we can now use a path-following method to
approximate solutions of the original optimal control problem with contact. We use
a simple approach, where after (6) has been solved for some γk , the regularization
parameter is multiplied by some fixed factor s > 1. A choice of s = 10 has proven
quite appropriate.

We added contact constraints to the problem, described in Fig. 4. An illustration
of the path-following procedure is given in Fig. 7. Obviously, the regularization
procedure works as intended. For moderate γ , the contact constraint is clearly
violated, but if γ becomes larger, this violation gradually vanishes. We also observe
that our method is well capable to deal with large deformations and strains.

A detailed discussion of the problem from Fig. 1 with added contact constraints,
including convergence plots, can be found in [27].

Fig. 7 Optimal deformations with penalty parameter γ for problem from Fig. 4 with contact.
Colour codes intensity of the forces. (a) γ = 103. (b) γ = 104. (c) γ = 106
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5 Conclusion and Outlook

We conclude that optimal control problems with finite strain hyperelastic materials
and contact offer a broad range of challenges, concerning both theoretical and
algorithmic aspects.

The main theoretical challenge is that not much analytic structure is available
to build a theory upon. The main result of polyconvexity, a weak lower semi-
continuity property of the energy functional, could be exploited to conclude results
about the path of regularized solutions. However, satisfactory stronger results were
only possible by employing refined techniques. Still there are many questions that
remain open, most importantly a local sensitivity result that could permit a rigorous
derivation of optimality conditions for the optimal control problem.

From a numerical view point, this class of problems combines high nonlin-
earity and non-convexity with large scale. To obtain efficient and robust solution
algorithms, significant advances had to be made, compared to generic optimization
methods. Decisive ingredients are a good choice of functional analytic framework,
a sound concept for inexact computation of steps by iterative solvers, and a proper
treatment of non-convexities, both in the objective and in the energy. In this chapter,
we concentrated on these computation aspects. An observed key ingredient to
efficient algorithmic behaviour is to produce regular steps where possible.

A couple of algorithmic concepts are subject to current work. First, as pointed
out in Remark 4.1, new ideas, concerning the use of iterative solvers for the A-
block in (12) are currently under investigation. Second, the nonlinearity of finite
deformation problems exhibits some very interesting geometrical structure. The
analysis hints on using nonlinear updates, instead of the usual linear ones. Currently,
promising numerical results that go into this direction are available for solving the
energy minimization problem. The application of this concept to optimal control
problems is still subject to current research and is planned to be published in a
forthcoming paper.

As a future perspective, the algorithmic solution of our class of problems has to
be extended to real world applications. A particular example is inverse problems
in the context of biomechanics, where elastic contact problems occur in joints. In
addition to the described difficulties, an envisioned solution algorithm will have to
deal with complicated contact geometries.
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Algorithms Based on Abs-Linearization
for Non-smooth Optimization with PDE
Constraints

Olga Weiß, Andrea Walther, and Stephan Schmidt

Abstract This chapter presents two optimization algorithms to solve non-
smooth optimization problems subject to PDE constraints. Throughout, all
non-differentiabilities are assumed to be caused by the Lipschitz-continuous
operator abs() as well as the related min() and max() operators. The two approaches
are based on a special treatment of the absolute value operator called abs-
linearization. They do not require any regularization for the non-smoothness but
instead allow to explicitly exploit the structure caused by the non-smoothness.

Keywords Non-smooth optimization · Abs-Linearization · SALMIN · SCALi

1 Motivation and Introduction

The design of efficient solution methods for non-smooth, infinite dimensional
optimization problems still forms a challenging task. This is due to the fact that
one is interested in an effective as well as efficient handling of the non-smoothness
in addition to a desirable degree of applicability. Although problems with specific
structures of non-smoothness, in particular those of the popular L1 or total variation
regularization, can be solved via splitting or ADMM-type schemes, [10, 11], almost
all established approaches for general non-smoothness are based on appropriate
regularization techniques to avoid the explicit treatment of the non-smoothness such
that one can apply for example semi-smooth Newton-type methods to solve the
regularized and modified optimization problem, see, e.g. [4].

In contrast to smoothing and regularization approaches, we aim for an explicit
exploitation of the structure caused by the non-smoothness. For this purpose, we
employ a special treatment of the absolute value operator depending on the level
where the non-smoothness occurs. First, one may consider the situation, where the
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PDE constraints are such that still a Fréchet-differentiable control-to-state operator
exists. This is for example the case, when a non-smooth regularization is added to
the target function, but the PDE constraint is smooth as considered for example
in [3, 20]. Then, the so-called abs-linearization as established already in finite
dimensions see, e.g., [9, 12, 13], can be extended to the infinite case as a special
handling of the absolute value operator. Second, the non-smoothness may occur at
the PDE level such that the control-to-state operator is also non-smooth. Then, a
special reformulation of the absolute value evaluation yields a cascade of smooth
optimization problems that can be solved by standard smooth approaches. Doing so
in an appropriate way allows to calculate also a solution of the original optimization
problem with the non-smooth state constraint.

These observations with respect to the character of non-smooth optimization
problems with PDE constraints motivate the following structure of this chapter.
The abs-linearization is introduced in Sect. 2. This includes also an analysis of the
properties of the resulting model. In Sect. 3, we present and discuss the result-
ing SALMIN algorithm for optimization problems with a Fréchet-differentiable
control-to-state operator. For non-smooth PDE constraints, we introduce the SCALi
algorithm in Sect. 4. Furthermore, numerical results illustrate the efficiency of the
presented algorithm. Finally, we draw conclusions and provide an outlook in the
final Sect. 5.

2 The Abs-Linearization

To explicitly exploit the structure caused by the kind of non-smoothness considered
here, we use the abs-linearization as a special handling of the absolute value
operator. The abs-linearization itself was developed in the finite dimensional setting
in [12] and is already well analysed for unconstrained optimization, the solution of
non-smooth equations systems and the integration of dynamical systems with non-
smooth right-hand sides.

To extend this approach to the infinite dimensional setting, we consider through-
out a function space V over a bounded domain � ⊂ R

n that is either an Lp space
with 1 < p < ∞ or a Hilbert space such that the absolute value operator is
Lipschitz-continuous. Note, that due to our choice of p, the considered function
space V is a reflexive Banach space. Furthermore, we assume that the non-
smoothness is only caused by the operator

abs : V → V,

[abs(v)](x) = |v(x)| for every v ∈ V and for almost all x ∈ �
(2.1)

as the Nemytskii or superposition operator induced by the absolute value function.
For more information on superposition operators, we refer the reader to [22]. For
better readability we will sometimes omit the local argument x and thus consider
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Table 1 Structured
Evaluation of ϕ(v) v0 = v

for i = 1, . . . , s do
zi = ψi((vj )j<i)

σi = sign(zi)
vi = σizi = abs(zi)

end for
w = ψs+1(vj )j<s+1 = ϕ(v)

abs(.) directly as an operator on the function space. The abs(.) operator can
enforce sparsity if included appropriately in the target function, see, e.g., [3, 20].
Furthermore, it can be used to describe a class of partial differential equations
involving non-smooth but Lipschitz-continuous and directionally differentiable
nonlinearities such as those appearing in the two-phase Stefan problem [4].

In general Banach spaces, it is not clear whether the absolute value operator is
Lipschitz-continuous, see, e.g., [7]. However in the function spaces considered here,
the absolute value operator abs : V → V, abs(v) := |v|, is Lipschitz continuous
and even nonexpansive [24, Prop. 2.1].

The class of operators considered here is denoted by C1
abs(V ) and defined as

follows.

Definition 2.1 (Operator Class C1
abs(V )) Let V as well as Vi, Ṽi for 1 � i �

s ∈ N be reflexive Banach spaces, which preserve the Lipschitz-continuity of
the Nemitzkii operator induced by the absolute value operator abs as defined in
Eq. (2.1). The class C1

abs(V ) contains all operators ϕ : V → R such that ϕ can
be represented as a composition of Lipschitz-continuously Fréchet-differentiable
operators ψi : Vi → Ṽi and the absolute value operator.

Depending on the specific situation, the Lipschitz-continuously Fréchet differen-
tiable operators ψi are mappings between various Banach spaces, which preserve
the Lipschitz-continuity. However, for our purpose, only the overall mapping from
V to R is important. Using the well-known reformulations

min (v, u) = (v + u− abs(v − u))/2 and
max(v, u) = (v + u+ abs(v − u))/2 ,

(2.2)

a large class of non-smooth operators is contained in C1
abs(V ).

Following the idea in the finite dimensional setting, we assume that the con-
sidered non-smooth function, given here by ϕ ∈ C1

abs , can be described as a
composition of elemental operators that are either Lipschitz-continuously Fréchet
differentiable or the absolute value operator. Subsequently, consecutive continu-
ously Fréchet-differentiable elemental operators can be conceptually combined to
obtain a representation, where all applications of the absolute value operator can be
clearly identified and exploited, see Table 1.
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In the finite dimensional case V = R
n, one has zi ∈ R and therefore σi ∈

{−1, 0, 1}. For the function space scenario considered here, it follows that zi ∈ Vi
and the functions σi are also Nemytskii operators defined by

σi : Vi → Vi, [σi(zi)](x) = sign(zi(x)) · zi(x) for almost all x ∈ �

as a function of zi . This choice ensures that vi = σizi = abs(zi) ∈ Vi holds.
Furthermore, it follows from the representation in Table 1 that ϕ is locally Lipschitz
continuous. Hence, ϕ is also continuous due to the assumed smoothness of ψi , i =
1, . . . , s, [16, Thm. 3.15] and [26, Chap. 1].

The abs-linearization, applied to the class of non-smooth operators considered
here, makes use of the structured evaluation and extends the propagation of
derivative information in a suitable way to cover also the absolute value operator.
For given elements v, u,�v,�u ∈ V and a continuously Fréchet differentiable ψ ,
we may use the linearizations

�w = �v ±�u for w = v ± u , (2.3)

�w = ψ ′(v)(�v) for w = ψ(v) �= abs(v) , (2.4)

where ψ ′(v) denotes the Fréchet derivative of ψ .
For linear operators A, the linearizations are simply given by

�w = A�v for w = Av . (2.5)

Thus we observe the fact that Fréchet differentiation is equivalent to linearizing
all elemental operators. Now the question arises which linearization to choose for
the absolute value operator. Our method of choice is the so-called abs-linearization
given by

�w = abs(v +�v)− w for w = abs(v) . (2.6)

As can be seen, the linearized values �w depend on both the argument v itself
and the direction �v. If required, we will denote this dependency by �w(v;�v).
However, most of the time we will drop these arguments v and �v for notational
simplicity. Similarly, the dependence of the intermediates vi occurring during the
evaluation of ϕ as described in Table 1 on the argument v is denoted by vi(v).

The formal definition of the abs-linearization is therefore given by:

Definition 2.2 (Abs-Linearization) Suppose ϕ : V → R is an element of the
operator class C1

abs(V ) as defined in Definition 2.1. For a fixed argument v ∈ V

and w = ϕ(v) the abs-linearization �w(v; .) : V → R based on the linearizations
Eqs. (2.3)–(2.6) is constructed in the following way:
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v0 = v, �v0 = �v

for i = 1, . . . , s do
zi = ψi((vj )j<i)

�zi = ψ ′
i ((vj )j<i)((�vj )j<i)

σi = sign(zi)
vi = σizi = abs(zi)
�vi = abs(zi +�zi)− abs(zi)

end for
w = ψs+1(vj )j<s+1 = ϕ(v), �w = ψ ′

s+1((vj )j<s+1)((�vj )j<s+1)

This approach was first introduced in [12], where the term abs-linearization
was coined and is still used here in the function space setting. Moreover, the
abs-linearization generates a locally linear model for the class of non-smooth
functions and operators considered here, which justifies the term linearization in
“abs-linearization”.

Considering the overall aim, the minimization of the objective functional ϕ, we
restate first-order necessary conditions as well as introduce Clarke’s concept of
generalized derivatives, see, e.g. [6, Sec 1.2].

Definition 2.3 (Clarke Generalized Gradient) Suppose, ϕ ∈ C1
abs(V ), i.e., ϕ is

also locally Lipschitz-continuous. Let v̄, h ∈ V be given. Then the limit superior

lim sup
v→v̄
λ→0+

1
λ
(ϕ(v + λh)− ϕ(v)) ≡ ϕC(v̄, h)

exists and is called Clarke derivative of ϕ at v̄ in direction h. Since this limit superior
exists for all h ∈ V , the function ϕ is called Clarke differentiable at v̄. The set

∂Cϕ(v̄) ≡ {ξ ∈ V ∗ : ϕC(v̄, h) � ξ(h) ∀h ∈ V } ⊂ V ∗

denotes the Clarke generalized gradient or subdifferential of ϕ at v̄, where V ∗ refers
to the dual space of V .

Since one has for a function ϕ : V → R that is Fréchet differentiable at v̄ the
inclusion ϕC(v̄, .) ∈ ∂Cϕ(v̄) [6, Prop. 2.2.2], the concept of Clarke derivatives fits
well for the non-smooth case analysed in this chapter. As a necessary optimality
condition, one has for ϕ being an element of the considered non-smooth function
class the following result: If v∗ is a minimal point of ϕ then the functional 0V ∗ is an
element of ∂Cϕ(v∗), see e.g. [5, Prop. 6] and [16, Theo. 3.46].

The abs-linearization provides a local model that satisfies the following approxi-
mation properties.

Proposition 2.4 (Approximation Properties) Suppose, ϕ ∈ C1
abs(V ). For all v̄ ∈

W with W ⊂ V a closed convex subset there exists a Lipschitz-continuous local
model ϕloc(v̄; .) : V → R with ϕloc(v̄; .) ∈ C1

abs(V ), given by a finite composition
of linear functions and the absolute value operator. There exists a constant q > 0
such that for all pairs v̄, v ∈ W one has
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ϕ(v̄) = ϕloc(v̄; 0), |ϕ(v)− ϕloc(v̄; v − v̄)| � q‖v − v̄‖2
V . (2.7)

Proof See [24, Prop. 4.3]. ��
The quadratic model corresponding to such a local model is then defined by

ϕQ(v̄; .) ≡ ϕloc(v̄; .)+ q‖.‖2
V (2.8)

Hence, the approach of abs-linearization can be explicitly transferred to the
infinite dimensional setting while preserving the good approximation property of
the generated local model. However, it should be noted that in contrast to the finite
dimensional setting, the local model ϕloc(v̄; .) is no longer piecewise linear as this
concept does not transfer to the infinite dimensional setting.

In the following sections, we will demonstrate how the abs-linearization can be
used in solution algorithms to solve non-smooth optimization problems in reflexive
function spaces by explicitly exploiting the non-smooth structure of the given
problem.

3 The SALMIN Algorithm

In this section we present the algorithm SALMIN (Successive Abs-Linear MINi-
mization) that targets non-smooth optimization problems, where the non-smooth-
ness appears only in the objective functional such that there still exists a Fréchet
differentiable control-to-state operator. Hence, objective functions belonging to the
class ofL1-regularized problems as well as PDE-constrained optimization problems
incorporating the L1-penalty term in the objective functional fit into the considered
class of non-smooth optimization problems.

The SALMIN algorithm for infinite dimensional optimization problems, as
presented in [24], can be interpreted as a quadratic overestimation method due to
the approximation property of the abs-linearization, see Proposition 2.7. Hence,
this approach is similar to proximal-point methods as analysed for the infinite
dimensional setting, for example, in [8, 14, 19]. However, it is not possible to
transfer the available results directly to the situation considered here. This is due
to the fact that, in contrast to the results presented in these publications, SALMIN
uses a local model of the function to be minimized in the current iteration rather
than the original function.

In contrast to many other approaches, we aim at first-order minimality that is
defined as follows.

Definition 3.1 (First-Order Minimality) Suppose, ϕ ∈ C1
abs(V ). The operator ϕ

is called first-order minimal at v∗ ∈ V if one has

0 � ϕ′(v∗, h) for all h ∈ V .

Then, v∗ is called first-order minimal point.
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Algorithm 1 SALMIN
Require: Let v0 ∈ V be such that ϕ(.) is bounded on the bounded level set N0, q0 > 0, τ > 0.

for k = 0, 1, 2, . . . do
Compute

�vk = arg min
�v∈V

ϕloc(vk;�v)+ 1
2 (1+ τ)qk‖�v‖2

V

if �v = 0 then
STOP

end if
if ϕ(vk +�vk) < ϕ(vk) then
vk+1 = vk +�vk
Compute qk+1 = max{qk, q̂(vk,�vk)}

else
Compute qk = max{(1+ τ)qk, q̂(vk,�vk)}

end if
end for

It is important to note that this property is stronger than the frequently used
concept of Clarke stationary. Often, first-order minimality is also called criticality
as defined in [1] and [2], where 0 ∈ R

n must be a Fréchet subgradient.
For the local model given by the abs-linearization, one obtains the following

result:

Lemma 3.2 Suppose for ϕ ∈ C1
abs and v∗ ∈ V that Assumption 2.4 holds for the

local model ϕloc(v∗, .) in a neighbourhood of v∗. Then one has:

1. If the quadratic model ϕQ(v∗; .) is Clarke stationary at �v = 0 for one q � 0,
then ϕ is Clarke stationary at v∗.

2. If ϕ is first-order minimal at v∗, then the quadratic model ϕQ(v∗; .) is first-order
minimal at the argument �v = 0 for all q ∈ R, q � 0.

3. If the quadratic model is first-order minimal at �v = 0 for one q � 0, then ϕ is
first-order minimal at v∗.

Proof [24, Lem. 2.8] ��
Hence, once more it is possible to directly transfer the result for the finite
dimensional case to the infinite dimensional setting. For the solution of a class of
elliptic MPECs, a similar relation of the full model and a different local model with
respect to Clarke stationarity was presented in [15, Cor. 2.2].

Lemma 3.2 motivates the termination criterion given for the SALMIN algorithm
as stated in Algorithm 1 aiming for first-order minimal points.

The convergence theory for this direct transfer of the SALMIN algorithm from
the finite dimensional setting to a function space formulation is rather involved.
Especially, additional assumptions are required to obtain strong convergence for
a subsequence of the generated iterates, see [24] for a first convergence analysis.
Moreover, the handling of more general situations where the control-to-state
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operator is not Fréchet differentiable is so far not covered by the convergence
theory. This motivates the design of a second algorithm that employs the idea
of abs-linearization in a different fashion as described in the next section, such
that a broader class of non-smooth PDE-constrained optimization problems can be
handled.

4 The SCALi Algorithm

In contrast to the class of model problems considered before, we will now focus on
optimization problems constrained by a non-smooth partial differential equation.
To illustrate the approach, we consider the following class of PDE-constrained
optimization problems:

min
(y,u)∈H 1

0 (�)×L2(�)

1

2
‖y − yd‖2

L2 + α

2
‖u‖2

L2

s.t. −�y + &(y)− u = 0 in �

(4.1)

with a convex and twice continuously Fréchet-differentiable objective functional
and a semi-linear elliptic PDE constraint.

The non-smoothness in this model problem is given by the non-smooth operator
& : H 1

0 (�) → L2(�). Throughout this section, we assume that the model problem
(4.1) has the following properties:

Assumption 4.1

(i) The domain � ⊂ R
n, n ∈ N, is a Lipschitz domain.

(ii) The operator & : H 1
0 (�) → L2(�) denotes the Nemytskii operator induced

by an operator, which is bounded and measurable in x ∈ � for every fixed y,
monotone in y for almost every x ∈ � and locally Lipschitz-continuous.

(iii) The operator & can be expressed as composition of the absolute value function
and Fréchet-differentiable operators similar to the structured evaluation as
given in Table 1.

In addition to these assumptions on the non-smooth PDE, it can easily be observed
that the objective functional J : H 1

0 (�)×L2(�)→ R in Eq. (4.1) is weakly lower
semi-continuous and twice continuously Fréchet differentiable.

Applying standard arguments for nonlinear monotone operators [27], it can be
shown that for any given control u ∈ L2(�) the PDE of the optimization problem
(4.1) is well posed and has a unique solution y. Further analysis reveals that
the optimal control problem admits a solution under the given assumptions. Such
non-smooth optimization problems with a PDE as constraint, which involves the
non-differentiable functions abs(.), min(.) and max(.) arise in many applications.
For example, a corresponding semi-linear elliptic partial differential equation
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Table 2 Structured evaluation of &(y)

for i = 1, . . . , s do
zi = ψi(y, (σj zj )j<i)

σi = sign(zi)
&̂(y, σz) = ψs+1(y, (σizi )1�i�s ) with σz = (σ1z1, . . . , σszs)

describes the deflection of a stretched thin membrane partially covered by water,
see [17]. Furthermore, a similar non-smooth partial differential equation arises in
free boundary problems for a confined plasma, see, e.g., [17, 21].

The non-smoothness in the governing PDE constraint causes the control-to-state
operator to be non-smooth as well. Hence the classical chain rule is no longer valid,
which makes it challenging to consider a general reduced unconstrained problem
formulation which is also well defined and unique. This is the reason why standard
optimal control techniques for obtaining first-order optimal points and also the
algorithm SALMIN as proposed in the last section cannot be applied. Therefore,
we employ here a penalty-based approach to treat the PDE constraint explicitly,
where we follow the key idea for the finite dimensional case in that stationary
points are determined by an appropriate decomposition of the original problem into
several smooth so-called branch problems. Each of these smooth branch problems
can be solved by classical methods for smooth PDE-constrained optimization. Then,
the exploitation of standard optimality conditions for the smooth case determines
the next branch problem and ensures the reduction of the target function value. In
deriving necessary optimality conditions, the difficulty lies in the fact that, while the
solution domain of the PDE is compact, the number and location of the solutions
is unknown. For this reason, a direct approach, i.e., first-discretize-then-optimize, is
presented for the numerical solution of the optimization problems.

Similar to the previous two sections, we assume that the non-smooth operator &
can be described as a composition of elemental functions that are either continuously
Fréchet differentiable or the absolute value operator. The structured evaluation
procedure from Table 1 adapted to the operator & is shown in Table 2 and results
in an equivalent reformulation for & denoted by &̂.

It should be noted that (σj zj )j<i indicates that ψi might depend also implicitly
on the previously defined switching functions zj with j < i. Hence, the switching
function z1 is defined as the argument of the first absolute value evaluation, i.e. as
ψ1(y).

We use the notation &̂(y, σz) = &(y) for σz = (σ1z1, . . . , σszs) to refer explicitly
to this particular representation of the non-smooth part &(y) based on the auxiliary
variables zi , the so-called switching functions, and σi , 1 � i � s.

Clearly, the operator &̂(., .) is not smooth in z since σ depends non-Fréchet
differentiably on z. However, it is important to note, that the new function &̂(., .) is
smooth i.e., Fréchet differentiable, in its two arguments y and σz, due to the chosen
formulation. This fact will be exploited later to define the smooth branch problems.
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Table 3 Structured
evaluation for
&(y) = min(y, y|y|)

z1 = ψ1(y) = y

σ1 = sign(z1)

z2 = ψ2(y, σ1z1) = y − yσ1z1
σ2 = sign(z2)

&̂(y, σz) = ψ3(y, σz) = 1
2

(

y + yσ1z1 − σ2z2

)

Example 1 Consider the non-smooth operator &(y) = min(y, y|y|). Exploiting the
identities (2.2), we can reformulate & as a function in terms of the absolute value
operator and smooth elemental functions in the following way:

&(y) = min(y, y|y|) = 1
2

(

y + y|y| − ∣

∣y − y|y|∣∣
)

.

The corresponding structured evaluation is shown in Table 3.

Inserting the formulation &̂(y, σz) with the auxiliary functions σi and zi of & into
the original optimal control problem (4.1), one obtains for the functions (y, z, u) ∈
H 1

0 (�)× [H 1(�)]s × L2(�) a smooth optimization problem with state constraints

min
y,z,u,σ

1
2‖y − yd‖2

L2 + α
2 ‖u‖2

L2

s.t −�y + &̂(y, σz)− u = 0

ψi(y, (σj zj )j<i)− zi = 0

σizi � 0

σi : �→ {−1, 0, 1}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

∀ i = 1, . . . , s .

(4.2)

Here, [H 1(�)]s denotes the product H 1(�) × · · · × H 1(�) of the Hilbert spaces
the switching function z = (z1, . . . , zs) lives on.

Assume that u∗ and the corresponding y∗ := y∗(u∗) are solutions of the original
optimization problem (4.1). Defining the auxiliary functions z∗i and σ ∗i by

z∗i = ψi(y, (σ
∗
j z

∗
j )j<i), σ ∗i = sign(z∗i ) ∀ i = 1, . . . , s ,

it follows that (y∗, z∗, u∗) is a solution of the optimization problem (4.2) if σi = σ ∗i
holds. Here, the additional equality and inequality constraints for the definitions
of the additional functions z∗i and σ ∗i , 1 � i � s, ensure that σ ∗i (z∗i ) = abs(z∗i ) ∈
L2(�) is valid for 1 � i � s. This observation motivates the optimization algorithm
SCALi, i.e., a solution of a sequence of smooth subproblems of the form Eq. (4.2)
to solve the original non-smooth optimization problem (4.1).
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Defining and Solving the Branch Problems
The so-called branch problem corresponding to the problem formulation (4.2) for
fixed functions σ̄i ∈ L2(�), σ̄i : �→ {−1, 1} for 1 � i � s is defined as follows:

min
y,z,u

J (y, u) (4.3)

s.t. −�y + &̂(y, σ̄ z)− u = 0 (4.4)

ψi(y, (σ̄j zj )j<i)− zi = 0 ∀ i = 1, . . . , s (4.5)

σ̄izi � 0 ∀ i = 1, . . . , s . (4.6)

All functions occurring in this branch problem are smooth in the variables y, u
and z because the function &̂(., .) is smooth in its arguments as mentioned before.
Therefore, standard smooth optimization methods can be used to solve the branch
problem (4.3)–(4.6). Here we use a penalty-based approach to solve the optimization
problem (4.3)–(4.6), where the constraints (4.4) and (4.5) are handled explicitly.
From a formal point of view, we treat the inequality constraints (4.6) with a penalty
approach such that the target function (4.3) is modified to

min
y,z,u

J (y, u)+ μ

∫

�

s
∑

i=1

(

max(−σ̄izi , 0)
)4

d� (4.7)

with a penalty factor μ > 0. We chose the exponent 4 to ensure that the target
function is twice continuously differentiable despite the max function that is used
for the formulation of the penalty function. Here, it is important to note that the
penalty approach is used only to handle the inequality constraint (4.6). It is not
introduced to regularize the non-smoothness.

The modified target function (4.7) coupled with the equality constraints by means
of Lagrange multipliers yields the Lagrangian

Lp(y, z, u, λ
PDE

, λ1, . . . , λs) = J (y, u)+ (∇λ
PDE

,∇y)
L2(�)

+(

λ
PDE

, &̂(y, σ̄ z)− u
)

L2(�)

+
s

∑

i=1

(

λi, ψi(y, (σ̄j zj )j<i)− zi
)

L2(�)

+μ
∫

�

s
∑

i=1

(

max(−σ̄izi , 0)
)4

d� .

(4.8)

A similar penalty approach was studied in [23], where the logarithm was used
as barrier function. Here, we use the max function since we have to evaluate the
penalty function also at 0. For a branch problem with fixed functions σ̄i ∈ L2(�),
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σ̄i : �→ {−1, 1} for 1 � i � s, the first-order necessary optimality conditions can
now be derived from the Lagrangian (4.8) using standard KKT theory for smooth
PDE-constrained optimization problems. Furthermore, the optimality conditions
for problem (4.2) coincide with the optimality conditions for problem (4.3)–(4.6),
except for the conditions arising from the derivative with respect to the switching
functions. Hence, if one computes a solution of the slightly modified branch
problem, there is a very strong relation to the original non-smooth problem (4.1).
This is analysed in detail in [25].

Successive Constant Abs-Linearization (SCALi)
In the following, we derive a heuristic for the switching strategy based on a
discretized version of the original non-smooth problem (4.1) and the also discretized
branch problems.

Applying Farkas Lemma for the discretized systems, the corresponding discrete
Lagrange multiplier λk identifies the regions where the sign of σ̄k has to be changed
to obtain a reduction in the function value. For this purpose, the Lagrange multipliers
λi corresponding to the solution of the current discretized branch problem are
projected to the adequate function space and their max-norm is computed in order
to determine the Lagrange multiplier λk with maximum influence. If this maximum
value (almost) vanishes, the stationary point is already reached and the algorithm
stops. Otherwise the sign of the corresponding discretized σ̄k is switched at those
mesh points where |λk| is large and exceeds a certain threshold. If no switching
occurs the algorithm stops. Otherwise the branch problem is updated accordingly
and a new solution is computed by once again solving the nonlinear variational
Lagrange problem by applying Newton’s method.

Since the proposed algorithm is essentially motivated by the special handling
of the absolute value operator, i.e., the abs-linearization, we call the resulting
optimization algorithm presented in Algorithm 2 SCALi for Successive Constant
Abs-Linearization.

Algorithm 2 SCALi
Input: Initial values: σ̄ 0 = (σ̄ 0

1 , . . . , σ̄
0
s ), y

0, z0 = (z0
1, . . . , z

0
s ), u

0

Parameter: α,μ, i = 0
for i = 0, 1, . . . do

Solve branch problem (4.7) with constraints (4.4)–(4.5) to obtain yi , zi , ui , λi
PDE

, λi

Identify index κ and use λκ to either stop or to define σ̄ i+1
κ

Set σ̄ i+1
k = σ̄ ik for k = 1, . . . , s, k �= κ

i+ = i

end for

Despite the fact that the switching from one branch problem to the other is
currently based on a heuristic, we observed a successive reduction in the objective
function value for the numerous examples that we considered indicating that the
proposed strategy works well in practice. To illustrate this fact, the convergence
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Fig. 1 (a) History of the objective function value with respect to the branch problem switches
corresponding to the parameters given in the first row in Table 6. (b) Final iteration step with final
branch problem and resulting solution for y, z1 and z2

history for one specific example is shown in Fig. 1. To some extent the convergence
obtained for the sequel of discretized branch problems by the successive reduction
of the objective value is not that surprising. In the discretized version, the original
problem was decomposed into finitely many discretized branch problems and the
objective function value decreases with each iteration step. Therefore a minimal
solution must be reached after finitely many steps. This observation also leads the
way to a convergence analysis in infinite dimensions by analysing the limit case
when the step size defining the discretization approaches zero.

It should be noted that the algorithm proposed in this section is not limited to
the considered class of semi-linear PDE or this kind of objective functionals. The
arguments can easily be adapted to more general cases with, for example, a general
linear elliptic differential operator of second order instead of the Laplacian operator.

Obviously, other strategies to choose the index k as alternatives to the greedy
approach described here might be applied as well. Despite the fact that our heuristic
for the finite dimensional setting obtained after discretization works well in practice,
we will continue to develop our existing approach further and adapt it for a related
systematic switching strategy of the branch problems. Furthermore, we plan to
investigate the infinite dimensional case.

Numerical Results
For the actual discretizations of the branch problems, we applied a standard finite
element method with piecewise linear and continuous ansatz functions for the
functions y and zi, i = 1, . . . , s, and piecewise constant ansatz functions for the
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control u. The resulting problem is solved by the Galerkin method combined with a
Newton method for the solution of the smooth modified branch problems within the
open source simulation tool FEniCS [18].

The nonlinear variational Lagrange problem is solved by Newton’s method
using the derivatives calculated within FEniCS. The computed solution is examined
according to the switching rule and the branch problem is modified by updating the
corresponding σ̄i using the discrete Lagrange multipliers as indicators which and
where to change the functions σ̄i ∈ L2(�), σ̄i : �→ {−1, 1} for 1 � i � s.

Example 2 For the numerical tests, we considered three different two dimensional
examples:

(a)

min
(y,u)

1

2
‖y − yd‖2

L2 + α

2
‖u‖2

L2

s.t. −�y +max(0, y)− u = f in � = (0, 1)2 ,

with yd(x1, x2) =
{

((x1 − 1
2 )

4 + 1
2 (x1 − 1

2 )
3) sin(πx2), if x � 1

2

0, otherwise .
(4.9)

(b)

min
(y,u)

1

2
‖y − yd‖2

L2 + α

2
‖u‖2

L2

s.t. −�y +min(y, y|y|)− u = 0 in � ,

with yd(x1, x2) =(x1 − 1
2 )

3 cos(πx2) .

(4.10)

(c)

min
(y,u)

1

2
‖y − yd‖2

L2 + α

2
‖u‖2

L2

s.t. −�y +max(5y, y|y|)− u = 0 in � ,

with yd(x1, x2) = sin
(

10π((x1− 1
2 )

2+(x2− 1
2 )

2)
)

√

1
100+(x1− 1

2 )
2+(x2− 1

2 )
2
− 1 .

(4.11)

Analysing these examples, one finds that the desired state is reachable for the
examples (a) and (b), whereas the desired state is not reachable for example (c).
The resulting effects in the convergence behaviour are discussed below.

For all three examples, the domain � was chosen to be the unit square and we
take as an initial guess y ≡ 0, u ≡ 0, z1 ≡ 0, z2 ≡ 0. Furthermore, σ̄1 and σ̄2 are
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Table 4 Numerical results for (4.9) compared with [4]

SCALi [4]

h α μ
‖yd−yh‖L2

‖yd‖L2
# Switches # Newton # Newton

3.009e− 02 1e− 4 50 5.765e− 04 0 1 4

1.537e− 02 1e− 4 50 1.514e− 04 0 1 5

7.728e− 03 1e− 4 50 3.790e− 05 0 1 3

3.885e− 03 1e− 4 50 9.664e− 06 0 1 3

3.009e− 02 1e− 4 100 5.764e− 04 0 1 4

1.537e− 02 1e− 4 100 1.514e− 04 0 1 5

7.728e− 03 1e− 4 100 3.790e− 05 0 1 3

3.885e− 03 1e− 4 100 9.664e− 06 0 1 3

7.728e− 03 1e− 4 500 3.790e− 05 0 1 3

7.728e− 03 1e− 2 100 8.106e− 05 0 1 2

7.728e− 03 1e− 3 100 6.609e− 05 0 1 2

7.728e− 03 1e− 5 100 1.237e− 05 0 1 5

7.728e− 03 1e− 6 100 3.056e− 06 0 1 no conv.

chosen such that they fit the ones defined by the desired state yd . We terminate the
iteration if either the L∞-Norm of the Lagrange multipliers λi becomes less than
10−9 and therefore no further switching between branch problems is done, or if
the difference between the Lagrange function value which includes the bi-quadratic
penalty terms and the original objective functional becomes less than 10−12. The
latter implicitly ensures that the sign condition σ̄izi � 0 is correctly adhered to.

We would like to emphasize that the vanishing Lagrange multiplier λk corre-
sponds to the equality constraint Eq. (4.5) for the definition of the switching function
zk . The termination condition due to this vanishing Lagrange multiplier is based on
the requirement that the associated equality constraint Eq. (4.5) is satisfied naturally
at the solution.

The numerical results, considering different values of the mesh size denoted by
h, the penalty parameter α for the control in the objective functional, and the penalty
parameter μ in the bi-quadratic penalty term, are presented in the tables Tables 4,
5, and 6. These tables show also the quality of the resulting approximation which is
given by the relative error ‖yd − yh‖L2 / ‖yd‖L2 .

Example (a) was taken from [4]. A commonly used method for solving such
non-smooth problems are semi-smooth Newton-like methods. Therefore, we also
provide a comparison with results obtained with a semi-smooth Newton approach
used in [4] to compute a solution of the non-smooth PDE-constrained optimization
problem. It can be observed that in the more involved example, according to [4],
the approach presented here requires only one single Newton step and no switches
between branch problems to compute the optimal solution. Here, the fact that the
desired state is reachable allows one to find a good choice for the initial σi functions.
That is, no switching of the branch problem was required. On the other hand, the
semi-smooth Newton method requires on average three to five steps to obtain the
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Table 5 Numerical results for (4.10)

h α Objective
‖y−yh‖L2

‖y‖
L2

max
i=1,2

{‖σizi−|zi |‖L2} #Switches #Newt.

2.8e− 02 1e− 02 5.572e− 04 9.97e− 01 1.1e− 11 0 2

2.8e− 02 1e− 03 5.434e− 04 9.73e− 01 3.8e− 10 0 2

2.8e− 02 1e− 04 4.750e− 04 8.76e− 01 5.0e− 09 0 2

2.8e− 02 1e− 06 2.183e− 04 5.54e− 01 1.5e− 08 0 2

1.4e− 02 1e− 02 5.565e− 04 9.97e− 01 9.7e− 12 0 2

1.4e− 02 1e− 03 5.426e− 04 9.73e− 01 7.7e− 11 0 2

1.4e− 02 1e− 04 4.737e− 04 8.75e− 01 6.2e− 10 0 2

1.4e− 02 1e− 06 2.143e− 04 5.47e− 01 1.8e− 09 0 2

7.7e− 03 1e− 02 5.564e− 04 9.97e− 01 1.2e− 11 0 2

7.7e− 03 1e− 03 5.425e− 04 9.73e− 01 2.9e− 11 0 2

7.7e− 03 1e− 04 4.735e− 04 8.75e− 01 4.8e− 12 0 2

7.7e− 03 1e− 06 2.133e− 04 5.45e− 01 1.2e− 11 0 2

Table 6 Numerical results for (4.11) with smooth but non-reachable yd

h α μ Objective
‖y−yh‖L2

‖y‖
L2

# Switches # Newton

1.537e− 02 1e− 4 100 1.633 7.996e− 01 10 63

1.159e− 02 1e− 4 100 1.640 8.000e− 01 11 65

7.071e− 03 1e− 4 100 1.645 8.005e− 01 21 72

1.159e− 02 1e− 4 500 1.640 8.002e− 01 15 89

7.071e− 03 1e− 4 500 1.646 8.009e− 01 13 90

1.159e− 02 1e− 6 100 0.361 2.920e− 01 3 23

7.071e− 03 1e− 6 100 0.363 2.925e− 01 4 28

optimal solution for the considered problem. Hence, the SCALi approach reduced
the numerical complexity of the solution process considerably.

We observed the no-switching behaviour for all examples that we considered if
the desired state yd is reachable. Hence, our reformulation of the non-smoothness
offers one approach to solve the non-smooth PDE-constrained optimization problem
with classical means, i.e., smooth optimization algorithms. To illustrate this with
a more complex problem, the absolute value operators are nested in example (b),
where we set μ = 500. In addition to the information given already, Table 5 displays
also the compliance with the absolute value of the product σ̄izi which is given by
max{‖σizi−abs(zi)‖L2}. Hence, the resulting inequalities are fulfilled up to a very
high degree. Furthermore, it can be observed that in almost all cases only a few
Newton iterations are needed to solve the problem and to compute the minimal
solution. The increase in the number of Newton iterations may be caused by the
nested absolute value operators yielding a more complicated optimization problem.

Once more, the fact, that SCALi does not require any switches between branch
problems is mainly due to the fact that the reformulation described in Table 1
allows to exploit as much information as possible given by the optimization
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problem and in particular by the given desired state yd . The initial choice of
the σ̄i motivated by the desired state already provides the perfect guess of the
σi . Since the desired state is reachable by the given state equation, no switches
between branch problems are required and the optimal solution can be computed
by solving the initial branch problem, which is already the final one. As additional
observation, Table 5 suggests a further special property of the SCALi algorithms
namely mesh independence. Regardless of the mesh size, the behaviour for the
relative error ‖yd − y‖L2 / ‖yd‖L2 with respect to different parameters α remains
the same. Moreover, it is clearly evident that in each parameter setting the desired
condition σ̄izi = abs(zi) for i ∈ {1, . . . , s} is met.

Finally, example (c) considers a non-reachable desired state such that switches
from one branch problem to another are required. Consequently, also the number
of Newton steps required to solve each branch problem increases as illustrated in
Table 6. Once more, the results obtained for the different mesh sizes indicate a mesh
independent behaviour.

5 Conclusion and Outlook

We presented two approaches based on the abs-linearization technique for the
solution of non-smooth optimization problems in reflexive Banach spaces. These
methods enable optimization for the considered class of genuinely non-smooth
problems without any substitute assumptions and regularizations for the non-
smoothness.

The first method, SALMIN, represents a quadratic overestimation approach
based on a local model with approximation properties of second order, constructed
with the abs-linearization. It is applicable to non-smooth optimization problems
in function spaces with Fréchet-differentiable control-to-state operator. It can be
shown that this method results in convergence to first-order minimal points and
hence a stronger stationarity concept than Clarke stationarity. The presented theory
can easily be extended to more general reflexive Banach spaces where the absolute
value function is Lipschitz-continuous.

For infinite dimensional optimization problems with non-smooth PDE con-
straints, and hence non-Fréchet-differentiable control-to-state operators the second
method, SCALi, was introduced. The key idea is to appropriately decompose the
non-smooth problem into smooth branch problems, which can be solved by classical
smooth optimization problems. An indicator strategy is used to determine the
sequence of branch problems to be solved. Several non-smooth PDE-constrained
problems that fit into the considered setting were discussed and corresponding
numerical results emphasize the beneficial properties and application range of
the presented algorithm. The convergence in the considered discretized version
is ensured by the already available convergence theory. An extension of this
convergence theory to the infinite setting is subject of ongoing work.
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Shape Optimization for Variational
Inequalities of Obstacle Type:
Regularized and Unregularized
Computational Approaches

Volker H. Schulz and Kathrin Welker

Abstract Two approaches to the solution of variational inequalities of obstacle
type are discussed: quadratic regularization enabling a standard non-linear PDE
constrained versus a novel approach avoiding regularization. The novel approach
avoiding regularization is shown to provide analytic insight as well as superior
numerical techniques.

Keywords Semi-smooth optimization · Variational inequality · Obstacle
problem · Shape optimization · Numerical methods · Adjoint methods
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1 Introduction

Shape optimization is an active field of research. It is of particular importance in
a model based optimization context. For the case of process models in the form of
classical partial differential equations (PDE), many questions are already answered
and a methodological basis for the numerical solution of such shape optimization
problems has been established. Thus, generalizations of shape optimization tech-
niques to other types of model equations are in reach. This research is devoted to
model equations in the form of variational inequalities (VI), which are ubiquitous
in industrial applications. Nevertheless, the literature in this area is very scarce.
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There are only very few approaches in the literature to the problem class of VI
constrained shape optimization problems. Shape optimization of 2D elasto-plastic
bodies is studied in [14] and shape optimization for 2D graph-like domains is
investigated in [21]. In [27, Chap. 4], shape derivatives of elliptic VI problems
are presented in the form of solutions to again VIs. Also [17] presents existence
results for shape optimization problems which can be reformulated as optimal
control problems, whereas [5, 8] show existence of solutions in a more general
set-up. In [21], level-set methods are proposed and applied to graph-like two-
dimensional problems. Moreover, [11] presents a regularization approach to the
computation of shape and topological derivatives in the context of elliptic VIs
and, thus, circumventing the numerical problems in [27, Chap. 4]. However, all
these mentioned problems have in common that one cannot expect for an arbitrary
shape functional depending on solutions to VIs to obtain the shape derivative
as a linear mapping (cf. [27, Example in Chap. 1]). In order to circumvent the
numerical problems related to the non-linearity of the shape derivative (cf., e.g.,
[27, Chap. 4]), [11] presents a regularization approach to the computation of shape
and topological derivatives in the context of elliptic VIs. In one part of this paper, we
also consider a regularization strategy, leading to novel possibilities to numerically
exploit structures. In the other part, we avoid a regularization technique.

This paper is structured as follows. It has two major parts. In Sect. 4, we
essentially circumvent the challenges of variational inequalities by employing a
very smooth regularization technique leading to additional non-linearities, which are
remedied by a linearization technique. Analytical and numerical investigations are
performed and the viability of the approach is stated. In contrast, Sect. 5 discusses
a novel approach, which avoids regularization and is found to possess superior
analytic as well as numerical properties. In particular, the performance of the
unregularized approach does not deteriorate, when the obstacle of a Signorini-type
problem is more and more tight.

2 Model Problem and Its Challenges

Let � ⊂ R
2 be a bounded domain equipped with a sufficiently smooth boundary

∂�. This domain is assumed to be partitioned in a subdomain �out ⊂ � and
an interior domain �int ⊂ � with boundary �int := ∂�int such that �out �
�int � �int = �, where � denotes the disjoint union. We consider � depending
on �int, i.e., � = �(�int). In the following, we write only � instead of �(�int)
for readability. Figure 1 illustrates this situation. In the following, the boundary
�int of the interior domain is called the interface and an element of an appropriate
shape space X . In contrast to the outer boundary ∂�, which is assumed to be
fixed, the inner boundary �int is variable. If �int changes, then the subdomains
�int,�out ⊂ � change in a natural manner.
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Fig. 1 Example of a domain
� = �out � �int ��int.

Ωint

Ωout

Γint

Let ν > 0 be an arbitrary constant. For the objective function

J (y, �int) := j (y, �int)+ j reg(�int) :=
1

2

∫

�

|y − ȳ|2 dx + ν

∫

�int
1 ds

(2.1)

we consider the following shape optimization problem:

min
�int∈X

J (y, �int) (2.2)

constrained by the following obstacle type variational inequality:

a(y, v − y) ≥ 〈f, v − y〉 ∀v ∈ K := {θ ∈ H 1
0 (�) : θ(x) ≤ ψ(x) in �},

(2.3)

where f ∈ L2(�) is explicitly dependent on the shape, and 〈·, ·〉 denotes the duality
pairing. Please note that the solution of (2.3) depends on the shape �int. Of course,
the formulation (2.3) is to be understood only formally because of the dependence
of f from the shape. In the most general case considered in [18], a(·, ·) is a general
elliptic bilinear form

a : H 1
0 (�)×H 1

0 (�)→ R

(y, v) �→
∑

i,j

ai,j ∂iy∂j v +
∑

i

di(∂iyv + y∂iv)+ byv
(2.4)

defined by coefficient functions ai,j ∈ C1(�̄), dj , b ∈ L∞(�). However, for ease
of presentation, we assume here that ai,j = δi,j (Kronecker delta), di = 0, and
b = 0.
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With the tracking-type objective j the model is fitted to data measurements
ȳ ∈ L2(�). The second term j reg in the objective function J is a perimeter
regularization, which is frequently used to overcome ill-posedness of shape opti-
mization problems. In (2.3), ψ denotes an obstacle which needs to be an element
of L1

loc(�) such that the set of admissible functions K is non-empty (cf. [27]). If

additionally ∂� is C1,1 or a polyhedron and ψ ∈ H 2(�), then the solution to (2.3)
satisfies y ∈ H 1

0 (�), given that the assumptions from above hold (cf. [4, 12, 28]).
Further, (2.3) can be equivalently expressed as

a(y, v)+ (λ, v)L2(�) = (f, v)L2(�) ∀v ∈ H 1
0 (�) (2.5)

λ ≥ 0 in �

y ≤ ψ in �

λ(y − ψ) = 0 in �

(2.6)

with (·, ·)L2(�) denoting the L2-scalar product and λ ∈ L2(�).
It is well-known, e.g., from [4], that under these assumptions there exists a

unique solution y to the obstacle type variational inequality (2.3) and an associated
Lagrange multiplier λ.

The direct handling of obstacle type variational inequalities formulated as
in (2.5)–(2.6) poses several problems. One problem is that in general the multiplier
λ is only an element of H−1(�), leading to severe numerical challenges. Under the
assumptions above, which are also found in [13], we have λ ∈ L2(�), meaning that
we have a representation of the distribution as a L2-function. It can be easily verified
that this in turn gives the possibility to summarize the conditions (2.6) equivalently
into a single condition of the form

λ = max
(

0, λ+ c(y − ψ)
)

for any c > 0. (2.7)

This formulation still leaves us with the difficulty of finding such a multiplier. For
this reason, a regularization is often employed by substitution of λ ∈ L2(�) by an
independent λ̄ ∈ L2(�). This results in the equation

a(yc, v)+ (max
(

0, λ̄+ c(yc − ψ)
)

, v)L2(�) = (f, v)L2(�) ∀v ∈ H 1
0 (�).

(2.8)

Explicit dependence on λ is avoided, making the resulting semi-linear elliptic
equation tractable, for example by semi-smooth Newton methods, see, e.g., [13].
Moreover, the authors of [13] prove L2-convergence of the regularized multiplier
max

(

0, λ̄+ c · (yc − ψ)
)

to the original λ for their method.
However, with problem (2.8) we are still left to solve a non-linear, semi-smooth

problem, giving rise to problems concerning existence of adjoints. Hence, standard
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smoothing strategies can be applied to render this problem smooth enough to show
existence of adjoints. In general, it is not guaranteed that an adjoint state can
be introduced (cf. [27, example in chap. 1, chap. 4]). Moreover, note that shape
optimization problems constrained by VIs are especially challenging because, in
general, the shape derivative of VI constrained shape optimization problems is not
linear (cf. [11, 27]). This potential non-linearity of the shape derivative complicates
its use in algorithms.

Before we address the question how to solve a regularized version of (2.2)
constrained by (2.5)–(2.6) and the original problem (2.2) constrained by (2.5)–(2.6),
i.e., the unregularized version, we give a brief overview of optimization approaches
based on the Steklov–Poincaré metric in the next section, which is needed to solve
the regularized and unregularized problem.

3 Optimization Based on the Steklov–Poincaré Metric

The solution techniques for the unregularized and regularized problem base on
an optimization algorithm arising from the Steklov–Poincaré metric. Thus, this
section focuses on this techniques and presents a way to solve the VI constrained
minimization problem computationally in a suitable shape space X . Please note
that there exists no common shape space suitable for all applications. The modeling
of a shape space is a challenging task and different approaches lead to diverse
models. There is a multitude of shape spaces in the literature like landmark vectors,
plane curves, surfaces, multiphase objects, characteristic functions of measurable
sets, morphologies of images, etc. In this paper, we concentrate on the well-
investigated manifold of smooth shapes in R

2. In [20], the set of all one-dimensional
smooth shapes is characterized by Be = Be(S

1,R2) := Emb(S1,R2)/Diff(S1),

where Emb(S1,R2) denotes the set of all embeddings from the unit circle S1

into R
2, which contains all simple closed smooth curves in R

2, and Diff(S1) is
the set of all diffeomorphisms from S1 into itself, which characterize all smooth
reparametrizations. In the following, we choose X = Be.

Remark 3.1 From a computational point of view, one has to deal with polygonal
shape representations arising in the setting of constrained shape optimization. This
is owed to the fact that finite element methods usually discretize the models. Of
course, one can ask how to relax the C∞-assumptions of shapes. Recently, the space
of H 1/2-shapes, denoted by H1/2, is introduced and investigated in [30]. In [26], it
is outlined that the combination of this shape space with the so-called Steklov–
Poincaré metric (defined below) is an essential step toward applying efficient FE
solvers. Of course, it is possible to choose this or other shape space models than
Be. However, in order to work with these weaker shape spaces, new optimization
approaches need to be investigated which is beyond the scope of this paper.

If we want to optimize on a Riemannian shape manifold, we have to find a
representation of the shape derivative with respect to the Riemannian metric under
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consideration, called the Riemannian shape gradient. In [24], the authors present a
metric based on the Steklov–Poincaré operator, which allows for the computation
of the Riemannian shape gradient as a representative of the shape derivative in
volume form. Besides saving analytical effort during the calculation process of
the shape derivative, this technique is computationally more efficient than using an
approach which needs the surface shape derivative form. For example, the volume
form allows us to optimize directly over the hold-all domain � containing one or
more elements �int ∈ Be, whereas the surface formulation would give us descent
directions (in normal directions) for the boundary �int only, which would not help
us to move mesh elements around the shape. Additionally, when we are working
with a surface shape derivative, we need to solve another PDE in order to get a
mesh deformation in the hold-all domain � as outlined for example in [29]. The
volumetric formulation of the shape derivative has also been used in a number of
other publications [9, 15, 16].

Remark 3.2 In this paper, the shape derivative of a volume shape functional j at
� in direction of a sufficiently smooth vector field V is denoted by Dj(�int)[V ].
Shape derivatives can always be expressed as boundary integrals due to the
Hadamard structure theorem [27, Theorem 2.27]. Note that the shape derivative
arises in two equivalent notational forms:

Dj(�int)[V ] :=
∫

�

R(x)V (x) dx (volume/weak formulation)

Dj(�int)[V ] :=
∫

�int
r(s) 〈V (s), n(s)〉 ds (surface/strong formulation)

Here, R is a differential operator acting linearly on the vector field V and r ∈
L1(�int).

Following the ideas presented in [24], we choose the Steklov–Poincaré metric
defined by

GS : H 1/2(�int)×H 1/2(�int)→ R, (v, u) �→
∫

�int
v(s)[(Spr)−1u](s) ds,

where Spr : H−1/2(�int) → H 1/2(�int), v �→ tr(U)T n denotes the projected
Poincaré-Steklov operator with tr : H 1

0 (�,R
2) → H 1/2(�int,R

2) denoting the
trace operator on Sobolev spaces for vector-valued functions and U ∈ H 1

0 (�,R
2)

solving the Neumann problem

adeform(V ,U) =
∫

�int
v(tr(V ))T n ds ∀V ∈ H 1

0 (�,R
2), (3.1)
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where adeform : H 1
0 (�,R

2) × H 1
0 (�,R

2) → R is a symmetric and coercive
bilinear form. In the setting of the shape space Be, the mesh deformation vector
U ∈ H 1

0 (�,R
2) can be viewed as an extension of a Riemannian shape gradient to

the hold-all domain � because of the identities

GS(v, u) = DJ(y, �int)[V ] = adeform(V ,U) ∀V ∈ H 1
0 (�,R

2), (3.2)

where v = (tr(V ))T n, u = (tr(U))T n ∈ T�intBe with T�intBe
∼= {δn : δ ∈

C∞(S1)}and DJ(y, �int)[V ] denotes the shape derivative of J at � in direction U
with y denoting the solution of the regularized or unregularized state equation. One
option for the operator adeform(·, ·) is chosen to be the bilinear form associated
with the linear elasticity problem. To summarize, we need to solve the following
so-called deformation equation: find U ∈ H 1

0 (�,R
2) s.t.

aelas(V ,U) = DJ(y, �int)[V ] ∀V ∈ H 1
0 (�,R

2). (3.3)

In this equation, we need the solution y of the regularized or unregularized state
equation. Section 4 considers the regularized case, in which a linearized adapted
primal-dual active set (laPDAS) algorithm can be applied to solve the regularized
state equation. In contrast, a solution technique for the unregularized minimization
problem is given in Sect. 5. The main advantage of the Steklov–Poincaré metric
approach is that the identity (3.2) holds, meaning that the Riemannian metric
GS(·, ·), which is naturally defined over the interfaces, can be equivalently refor-
mulated in terms of the bilinear form a(·, ·) over the whole domain. This last
observation is the main approach we will use in the numerical solution of our model
problem.

Remark 3.3 In general, u = (tr(U))T n is not necessarily an element of T�intBe
because it is not ensured that U ∈ H 1

0 (�,R
2) is C∞. Under special assumptions

depending on the coefficients of a second-order partial differential operator and the
right-hand side of a PDE, a weak solution U which is at least H 1

0 -regular is C∞ by
the regularity theorem of infinite differentiability (cf. [6]).

The right-hand side of the deformation equation is given by the shape derivative
which can be of mixed expressions, i.e.,

DJ(y, �int)[V ] := DJvol(�int)[V ] +DJsurf(�int)[V ].

Here Jsurf(�int) denotes parts of the objective function leading to surface shape
derivative expressions—in our setting above, the perimeter regularization j reg.
The shape derivative DJsurf(�int)[V ] of these terms are incorporated as Neumann
boundary conditions. Parts of the objective function leading to volume shape deriva-
tive expressions are denoted by Jvol(�int)—in our setting above, the objective
function j . However, note that from a theoretical point of view the volume and
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surface shape derivative formulations have to be equal to each other for all test
functions. Thus, DJvol[V ] is assembled only for test functions V whose support
includes �int, i.e.,

DJvol(�int)[V ] = 0 ∀V with supp(V ) ∩ �int = ∅.

The entire optimization algorithm is given in Fig. 1 and explained in detail in the
next sections for the regularized and unregularized case.

Algorithm 1 Optimization algorithm based on the Steklov–Poincaré metric
(1) Evaluate objective

(2) Solve the state and adjoint equation

(3) Assemble the right hand-side of the deformation equation:

(i) Assemble DJvol(�int)[V ] for V with �int ∩ supp(V ) �= ∅ as source term
(ii) Assemble DJsurf(�int)[V ] in form of Neumann boundary conditions

(5) Solve the deformation equation 3.3

(6) Apply the resulting deformation U ∈ H 1
0 (�,R

2) to the finite element mesh

(7) Stop or go to (1)

Remark 3.4 An unmodified right hand-side of the deformation equation (3.3) leads
to wrong meshes due to discretization errors. This is outlined and illustrated in [24].

Remark 3.5 In general, we need the concept of the exponential map and vector
transports in order to formulate optimization methods on a shape manifold. The cal-
culations of optimization methods have to be performed in tangent spaces because
manifolds are not necessarily linear spaces. This means points from a tangent space
have to be mapped to the manifold in order to get a new shape-iterate, which can
be realized with the help of the exponential map. However, the computation of
the exponential map is prohibitively expensive in the most applications because a
calculus of variations problem must be solved or the Christoffel symbols need to be
known. It is much easier and much faster to use a first-order approximation of the
exponential map. In [1], it is shown that a so-called retraction is such a first-order
approximation and sufficient in most applications. We refer to [25], where a suitable
retraction on Be is given.

4 Solution Techniques Based on the Regularized Problem

In this section, we consider the optimization Algorithm 1 in detail for the regularized
model problem of (2.2) constrained by (2.5)–(2.6). In particular, we explain how
the regularized state equation can be solved (Sect. 4.1) and how the deformation
equation (3.3) looks like (Sect. 4.2).
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As already mentioned, it is not guaranteed that the shape derivative of VI
constrained shape optimization problems is linear or exists. In order to circumvent
the problems of non-linearity, in [11], a regularized version of (2.2) constrained
by (2.5)–(2.6) is considered, on which we focus in this section. Moreover, for
convenience, we focus on a special bilinear form: We assume the bilinear form
a(·, ·) of the state equation to correspond to the Laplacian −�. In this setting, a
regularized version of (2.2) constrained by (2.5)–(2.6) is given by Hintermüller and
Laurain (cf. [11]):

min
�int∈X

J (yc,�) (4.1)

subject to

−-yc + λc = f in � (4.2)

yc = 0 on ∂� (4.3)

with λc = max(0, λ + c(yc − ψ))2, where c > 0 and 0 ≤ λ ∈ L4(�) fixed. In
the following, we call (4.1)–(4.3) regularized state equation or regularized obstacle
problem. In [11], it is mentioned that for a large parameter c the associated solution
of the regularized state Eqs. (4.2)–(4.3) is an excellent approximation of the solution
to the unregularized VI. Moreover, it is shown in [11] that the shape derivative for
the regularized problem converges to the solution of a linear problem which depends
linearly on a perturbation vector field. Numerical tests in [11] show the efficiency
of the approach to introduce a regularization of the VI, which allows to apply the
usual theory for obtaining shape derivatives.

4.1 Linearized Adapted Primal-dual Active Set Algorithm

In the optimization algorithm based on the Steklov–Poincaré metric (cf. Algo-
rithm 1), we have to solve the state equation—i.e., in the setting of the regularized
problem, the regularized state Eqs. (4.2)–(4.3). To solve this problem, we adapt the
primal-dual active set (PDAS) algorithm given in [13], where a similar regularized
problem is solved. The solution of the problem described in [13] and the solution of
our model problem converge to the same result (cf. [11]). In Algorithm 2, the PDAS
algorithm of [13] is adapted to our problem.

Note that Algorithm 2 involves a non-linear equation (c.f. (4.4) is not linear in
yk+1). In order to avoid solving a non-linear equation, we compute the increment
�y := yk+1 − yk instead of yk+1, i.e., the new iterate is given by yk+1 = yk +�y.

Computing �y instead of yk+1 leads to the following equation:

a(yk +�y, v)+
(

[λk + c(yk +�y − ψ)]2 , χAk+1v
)

= (f, v) ∀v ∈ H 1
0 (�).

(4.5)
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Algorithm 2 Adapted PDAS (mPDAS) algorithm
(1) Choose y0, k = 0 and λ0 = 0

(2) Ak+1 := {x : [λk + c(y − ψ)] (x) > 0} and Ik+1 := �\Ak+1

(3) Compute yk+1 ∈ H 1
0 (�) as solution of

a(yk+1, v)+
(

[λk + c(yk+1 − ψ)]2 , χAk+1v
)

= (f, v) ∀v ∈ H 1
0 (�) (4.4)

(4) λk+1 :=
{

0 if x ∈ Ik+1

λk + c(yk+1 − ψ) if x ∈ Ak+1

(5) Stop or k := k + 1 and go to (2)

The second term in (4.5) is still non-linear due to the square, but it is possible to
linearize this equation. By putting the linearization

(λk + c(yk +�y − ψ))2
.= (λk + c(yk − ψ))2 + 2c�y(λk + c(yk − ψ))

in (4.5), we get

a(�y, v)+ (2c�y [λk + c(yk − ψ)] , χAk+1v)

= (f, v)− a(yk, v)−
(

[λk + c(yk − ψ)]2, χAk+1v
)

∀v ∈ H 1
0 (�),

(4.6)

which is linear in �y. The idea of this linearization is inspired by the concept of
internal numerical differentiation, which is due to Hans Georg Bock [2] and his
legacy. Due to linearized version (4.6) of (4.4), we can formulate the linearized
mPDAS algorithm (cf. Algorithm 3). Here the third step can be iterated several
times. This should be done as soon as yk+1 changes significantly.

Algorithm 3 Linearized aPDAS (laPDAS) algorithm
(1) Choose y0, k = 0 and λ0 = 0

(2) Ak+1 := {x : [λk + c(y − ψ)] (x) > 0} and Ik+1 := �\Ak+1

(3) (i) Compute �y as solution of

a(�y, v)+ (

2c�y [λk + c(yk − ψ)] , χAk+1v
)

= (f, v)− a(yk, v)−
(

[λk + c(yk − ψ)]2 , χAk+1v
)

∀v ∈ H 1
0 (�)

(ii) yk+1 := yk +�y

(4) λk+1 :=
{

0 if x ∈ Ik+1

λk + c(yk+1 − ψ) if x ∈ Ak+1

(5) Stop or k := k + 1 and go to (2)
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4.2 Deformation Equation

An essential part of the shape optimization techniques outlined in Algorithm 1 is
to update the finite element mesh after each iteration. For this purpose, we use a
solution of the deformation Eq. (3.3). The right hand-side of this equation is given
by the shape derivative and the left hand-side can be chosen for example to be the
bilinear form associated with the linear elasticity problem. In the setting of linear
elasticity, the deformation equation—for the model problem above—is given by

∫

�

σ(U) : ε(V ) dx = Dj(yc,�)[V ] +Dj reg(�)[V ] ∀V ∈ H 1
0 (�,R

2),

(4.7)

where σ(U) := λelastr(ε(U))I + 2μelasε(U) and ε(U) := 1
2 (∇U + ∇UT ) are

the strain and stress tensor, respectively. Here λelas and μelas denote the Lamé
parameters, which can be expressed in terms of Young’s modulus E and Poisson’s
ratio νelas as

λelas = νelasE

(1+ νelas)(1− 2νelas)
, μelasu = E

2(1+ νelas)
. (4.8)

The right hand-side of (4.7) is given by the shape derivative. The shape derivative
of j in direction V is given by

Dj(yc,�)[V ] =
∫

�

− ∇yTc
(

∇V + ∇V T
)

∇pc − V T∇fpc − (yc − ȳ)V T∇ȳ

+ div(V )

(

1

2
(yc − ȳ)2 + ∇yTc ∇pc + λcpc − fpc

)

dx,

(4.9)

where λc = max(0, λ+ c(yc −ψ))2 with c > 0, 0 ≤ λ ∈ L4(�), ψ ∈ H 4(�) with
0 < ψ ≤ M for some M > 0, and pc ∈ H 1

0 (�) is the weak solution of the adjoint
problem to (4.1) constrained by (4.2)–(4.3) given in strong form by the following
equation (cf. [7]):

−-pc + 2c
√

λc p = −(yc − ȳ) in � (4.10)

pc = 0 on ∂�. (4.11)

The shape derivative of the perimeter regularization is given by

Dj reg(�int)[V ] = ν

∫

�int
div(V )− 〈V, n〉 n ds. (4.12)
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Remark 4.1 In the literature, for the shape derivative of a perimeter regularization,
the formulation

Dj reg(�int)[V ] = ν

∫

�int
κ 〈V, n〉 ds (κ := div�int(n) mean curvature of �int)

is much more known instead of (4.12). However, as outlined in [26], formula-
tion (4.12) is attractive from a computational point of view, since the evaluation
of κ in each iteration is a surface-only operation.

The solution U : � → R
2 of (4.7) is added to the coordinates of the finite

element nodes. The Lamé parameters do not need to have a physical meaning
here. It is rather essential to understand their effect on the mesh deformation. Here
E states the stiffness of the material, which enables to control the step size for
the shape update, and λelas gives the ratio how much the mesh expands in the
remaining coordinate directions when compressed in one particular direction. The
Lamé parameters should not be chosen constant. In [23], it is observed that locally
varying Lamé parameters have a good influence on the mesh. For example, a good
strategy is to choose λelas = 0 and μelas as the solution of the following Laplace
equation:

−�μelas = 0 in �

μelas = μelas
max on �int (4.13)

μelas = μelas
min on ∂�.

Here μelas
min, μ

elas
max ∈ R influence the step size of the optimization algorithm. A

small step is achieved by the choice of a large μelas
max.

4.3 Summary

In consideration of Algorithm 3 and the discussion about the deformation equation,
we can formulate a technique to solve our model problem. Such a technique
is outlined in Algorithm 4. In Sect. 6, we apply this technique and give the
corresponding numerical results.

5 Toward the Unregularized Problem

We consider the optimization Algorithm 1 in detail for the original model prob-
lem (2.2) constrained by (2.5)–(2.6).
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Algorithm 4 Optimization algorithm to solve the regularized model problem
(1) Evaluate objective

(2) Solve the regularized equation (4.2)–(4.3) with the laPDAS Algorithm 3

(3) Solve the adjoint equation (4.10)–(4.11)

(4) Assemble the linear elasticity equation (4.7):

(i) Compute μelas by solving (4.13)
(ii) Assemble the right hand-side (cf. step (3) in Algorithm 1)

(5) Solve the linear elasticity equation

(6) Apply the resulting deformation U ∈ H 1
0 (�,R

2) to the finite element mesh

(7) Stop or go to (1)

Besides the problem of non-linearity of the shape derivatives, we also have
the problem that there is no guarantee that an adjoint to VI constrained shape
optimization problem exists. As already mentioned above, standard smoothing
strategies can be applied to render this problem smooth enough to show existence
of adjoints. In [18], analytical investigations are done to formulate an efficient
optimization algorithm for the unregularized problem. To be more precise, existence
of adjoints for smoothed problems and convergence to adjoints of the unregularized
problem are proved. Moreover, shape derivatives for the smoothed problem are
derived and convergence to a limit object is proved.

In this section, we summarize the main analytical results (without proofs) of this
work. Based on this results, we formulate an efficient optimization algorithm for the
unregularized problem (5.10).

5.1 Analytical Investigations: Existence of Adjoints and Shape
Derivatives

In light of [3, 22], we pose the following assumptions on the smoothed max-
function, which from now on is called maxγ : R → [0,∞), with γ > 0 being
the smoothing parameter:

(A1) maxγ ∈ C1(�) for all γ > 0;
(A2) there exists a function g : (0,∞) → [0,∞) with g(γ ) → 0 as γ → ∞, s.t.

|maxγ (x)−max(0, x)| ≤ g(γ ) for all x ∈ R and for all γ > 0;
(A3) max′γ (x) ∈ [0, 1] for all x ∈ R and all γ > 0;
(A4) max′γ converges uniformly to 0 on (−∞,−δ) and 1 on (δ,∞) for all δ > 0

for γ →∞.
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Applying maxγ instead of max in (2.8) gives the following equation, which we
call smooth or fully regularized state equation:

a(yγ,c, v)+
(

maxγ
(

λ̄+ c(yγ,c − ψ)
)

, v
)

L2(�)
= (f, v)L2(�) ∀v ∈ H 1

0 (�).

(5.1)

So linearizing the corresponding Lagrangian with respect to yγ,c results in the
typical adjoint equation

a(pγ,c, v)+ c · (signγ (λ̄+ c(yγ,c − ψ)) · pγ,c, v
)

L2(�)

= −(yγ,c − ȳ, v)L2(�) ∀v ∈ H 1
0 (�)

(5.2)

with signγ being the derivative of maxγ (see, e.g., [22] or [10] in the context of
optimal control). As in [22], smoothness of the state Eq. (5.1) in yγ,c guarantees
existence of solutions to the linearized equation (5.2) for a given L2(�) right-hand
side and, thus, existence of adjoints in the case of the considered tracking-type
objective functional (2.1).

In [18], it is shown that solutions of (5.1) converge strongly in H 1 to solutions
of (2.5)–(2.6) for γ, c→∞ if a(·, ·) is chosen by an elliptic bilinear form as in (2.4)
on a compact domain � with polyhedric or C1,1–boundary, f ∈ L2(�), γ, c > 0,
ψ ∈ H 2(�), λ̄ ∈ L2(�), and maxγ : R→ R satisfy the assumptions (A1)–(A4).

The following definition is needed to state the convergence of adjoints.

Definition 5.1 Let � ⊂ R
n be a bounded, open domain with Lipschitz boundary.

A set A ⊆ � is called regularly decomposable, if there exists an N ∈ N and
disjoint, path-connected, and closed Ai ⊂ � with non-empty interior and Lipschitz

boundaries ∂Ai such that A = N�
i=1

Ai .

With this definition, it is possible to state the convergence of adjoints correspond-
ing to the fully regularized problems and to characterize the limit object.

Theorem 5.2 (Convergence of the Adjoints) Let � ⊂ R
2 be a bounded, open

domain with C2-boundary. Moreover, let the following assumptions be satisfied:

(i) ψ ∈ H 2(�), f ∈ L2(�), and coefficient functions ai,j , dj , b ∈ L∞(�)
in (2.5)–(2.6);

(ii) The active set A = {x ∈ � | y − ψ ≥ 0} corresponding to (2.5)–(2.6) is
regularly decomposable;

(iii) Ac := {x ∈ � | λ̄+ c · (yc − ψ) ≥ 0} is regularly decomposable and

Ac ⊆ A ∀c > 0, (5.3)

where yc solves the regularized state equation (2.8);
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(iv) The following convergence holds:

‖signγ (λ̄+ c · (yγ,c −ψ))− sign(λ̄+ c · (yc −ψ))‖L1(�) → 0 for γ →∞.

(5.4)

Then the adjoints pγ,c → pc in H 1
0 (�) for γ → ∞ for all c > 0, where pc is

the solution to

a(pc, v)+ c ·
∫

�

1Ac · pc · v dx = −
∫

�

(yc − ȳ) · v dx ∀v ∈ H 1
0 (�). (5.5)

Moreover, there exists p ∈ H−1(�) to(2.5)–(2.6) and p is representable as an H 1
0 -

function given by the extension of p̃ ∈ H 1
0 (� \ A) to �̄, i.e.,

p =
{

p̃ in � \ A
0 in A

, (5.6)

where p̃ ∈ H 1
0 (� \ A) is the solution of the elliptic problem

a�\A(p̃, v) = −
∫

�\A
(y − ȳ)v dx ∀v ∈ H 1

0 (� \ A) (5.7)

with a�\A being the restriction of the bilinear form a(·, ·) to � \ A. Further, the
solutions pc of (5.5) converge strongly in H 1

0 (�) to the H
1
0 -representation of p.

Proof See [18]. ��
There are a few non-trivial assumptions in Theorem 5.2: assumption (iv) and

(v). To the first one: It is possible to fulfill Assumption (5.3) on inclusion of the
active sets Ac ⊂ A by choosing a sufficient λ̄ ∈ L2(�). To be more precise,
since we assume ψ ∈ H 2(�), we can choose λ̄ := max{0, f − Sψ} with S being
the differential operator corresponding to the elliptic bilinear form a(·, ·) in (2.5),
guaranteeing feasibility yc1 ≤ yc2 ≤ y ≤ ψ for all 0 < c1 ≤ c2. For the proof of
this, we refer to [13, Section 3.2]. To the second one: Assumption (5.4) ensures that
convergence of signγ is compatible with convergence of yγ,c for γ →∞. We refer
to [18] for a working example.

Remark 5.3 The limit object p ∈ H 1
0 (�) of the adjoints pγ,c as defined in (5.6)

is the solution of an elliptic problem (5.7) on a domain � \ A with topological
dimension greater than 0. This can be exploited in numerical computations, for
instance by a fat boundary method for finite elements on domains with holes as
proposed by the authors of [19].

Next, we formulate similar convergence results for the shape derivatives of the
shape optimization problem constrained by the fully regularized state equation (5.1).
Please remember, shape derivatives of the unregularized VI constrained shape opti-
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mization problems do not exist. Nevertheless, it is possible—with the convergence
results above—to show existence of an object behaving as a shape derivative as
well as convergence of the shape derivatives of the fully regularized problem to the
latter. We split the main results into two theorems, the first one being the shape
derivative for the fully regularized equation, the second one being convergence of
the former for γ, c → ∞. For convenience, we only consider the shape functional
J defined in (2.1) without regularization term j reg, i.e., we focus only on j . The
shape derivative of J is given by the sum of the shape derivative of j and j reg,
where Dj reg(�int)[V ] is given in (4.12). Please note that the objective functional
and the shape derivative in correlation with the regularized VI (5.1) depends on the
parameters γ and c. In order to denote this dependency, we use the notation jγ,c and
Djγ,c(�int)[V ] for the objective functional and its shape derivative, respectively.

Theorem 5.4 Assume the setting of the shape optimization problem above. Let the
assumptions of Theorem 5.2 hold. Moreover, let M := (ai,j )i,j=1,2 be the matrix
of coefficient functions to the leading order terms in (2.4). Furthermore, assume
Dm(yγ,c),Dm(pγ,c) ∈ H 1

0 (�) for all γ, c > 0, where Dm(·) denotes the material
derivative. Then the shape derivatives of j , as defined in (2.1), constrained by a fully
regularized VI (5.1) in direction of a vector field V ∈ H 1

0 (�) is given by

Djγ,c(�int)[V ]

=
∫

�

−(yγ,c − ȳ)∇ȳT V − ∇yTγ,c(∇V TM − ∇M · V +MT∇V )∇pγ,c

+ (∇bT V )yγ,cpγ,c + yγ,c · ((∇dT V )T∇pγ,c − dT (∇V∇pγ,c))
+ pγ,c · ((∇dT V )T∇yγ,c − dT (∇V∇yγ,c))
+ signγ (λ̄+ c · (yγ,c − ψ)) · (∇λ̄− c · ∇ψ)T V · pγ,c −∇f T Vpγ,c

+ div(V )
(1

2
(yγ,c − ȳ)2 + byγ,cpγ,c +

∑

i,j

ai,j ∂iyγ,c∂jpγ,c

+
∑

i

di(∂iyγ,cpγ,c + yγ,c∂ipγ,c)

+maxγ
(

λ̄+ c · (yγ,c − ψ)
)

pγ,c − fpγ,c

)

dx .

(5.8)

Proof See [18]. ��
Theorem 5.5 Assume the setting of the shape optimization problem above and let
the assumptions of Theorem 5.2 hold. Moreover, letM := (ai,j )i,j=1,2 be the matrix
of coefficient functions to the leading order terms in (2.4). Then, for all V ∈ H 1

0 (�),
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the shape derivatives Djγ,c(�int)[V ] in (5.8) converge to Dj(�int)[V ] for γ, c →∞, where

Dj(�int)[V ]

:=
∫

�

− (y − ȳ)∇ȳT V − ∇yT (∇V TM −∇M · V +MT∇V )∇p

+ y · ((∇dT V )T∇p − dT (∇V∇p))+ p · ((∇dT V )T∇y − dT (∇V∇y))
+ (∇bT V )yp − ∇f T Vp

+ div(V )
(1

2
(yγ,c − ȳ)2 +

∑

i,j

ai,j ∂iy∂jp

+
∑

i

di(∂iyp + y∂ip)+ byp − fp
)

dx

+
∫

A

(ψ − ȳ)∇ψT V dx.

(5.9)

Proof See [18]. ��
Remark 5.6 If f ∈ L2(�) or ψ ∈ H 2(�) depend explicitly on the shape � with
shape derivatives f ′, ψ ′ ∈ H 1

0 (�), then the shape derivatives need to be modified
accordingly by replacing terms including ∇f T V and ∇ψT V by ∇f T V + f ′ and
∇ψT V + ψ ′.

5.2 Optimization Algorithm

Based on the results in the previous subsection, we can formulate an optimization
algorithm to solve the unregularized problem. For convenience—as in (4)—we
focus on the special bilinear form a(·, ·) corresponding to the Laplacian −-. In
this setting, (2.5)–(2.6) are given by the following VI:

∫

�

∇yT∇v dx + 〈λ, v〉 =
∫

�

f v dx ∀v ∈ H 1
0 (�)

λ ≥ 0 in �

y ≤ ψ in �

λ(y − ψ) = 0 in �.

(5.10)

This VI can be solved, e.g., by the semi-smooth Newton method proposed in [13].
Calculating the limit p of the adjoints pγ,c as in (5.6) and (5.7) is performed in
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several steps. First, a linear system corresponding to

−�p =− (y − ȳ) in �

p = 0 on ∂�
(5.11)

is assembled without incorporation of information from the active setA. Afterwards,
the vertex indices corresponding to the points in the active setA = {x ∈ � | y−ψ ≥
0} are collected by checking the condition

y(x)− ψ(x) ≥ −εadj (5.12)

for some error bound εadj > 0. The error bound εadj is incorporated since y is
feasibly approximated by yi with the semi-smooth Newton method from [13], i.e.,
yi ≤ ψ for all i ∈ N. After this, the collected vertex indices are used to incorporate
the Dirichlet boundary conditions p = 0 in A into the linear system corresponding
to (5.11). The resulting systems can be solved with a conjugate gradient solver.

As in Sect. 4, to calculate gradients U ∈ H 1
0 (�,R

2), we choose the linear
elasticity equation as left hand-side of the deformation equation and assemble the
shape derivative DJ(�int)[V ] = Dj(�int)[V ] + Dj reg(�int)[V ] given in (4.12)
and (5.9) as the right-hand side, which ends up in the deformation equation:

∫

�

σ(U) : ε(V ) dx = DJ(�int)[V ] ∀V ∈ H 1
0 (�,R

2)

σ (U) : = λelastr(U)I + 2μelasε(U)

ε(U) : = 1

2
(∇UT +∇U), ε(V ) := 1

2
(∇V T + ∇V )

(5.13)

with the Lamé parameters λelas and μelas. Here, we choose λelas = 0 and μelas

as the solution of the Poisson problem (4.13). All this ends up in Algorithm 5.

Remark 5.7 In order to improve the convergence, a linesearch technique can be
employed. For example, one can use Armijo linesearch techniques. However, one
can also use a simple backtracking linesearch with sufficient descent criterion,
where Uk denotes the shape derivative calculated at the corresponding interface in
�k in step number k, T

Ũ
(�k) := {y ∈ R

2 : y = x + Ũ (x) for some x ∈ �k} the
linearized vector transport by Ũ and y

Ũ
, the state solution in T

Ũ
(�k).

6 Numerical Results

In this section, we implement Algorithms 4 and 5 and analyze the results of these
methods for a numerical experiment, the deformation of a circle into a broken donut
like shape (cf. shape with dotted lines in Fig. 2).
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Algorithm 5 Optimization algorithm to solve the unregularized model problem
(1) Evaluate objective

(2) Solve the unregularized state equation (5.11)

(3) Solve the adjoint equation (5.6)–(5.7):

(i) Assemble adjoint system (5.11) neglecting active set
(ii) Collect vertex indices of active set by (5.12)
(ii) Implement Dirichlet conditions of active set
(iv) Solve modified adjoint linear system

(4) Assemble the linear elasticity Eq. (5.13):

(i) Compute μelas by solving (4.13)
(ii) Assemble the right hand-side (cf. step (3) in Algorithm 1)

(5) Solve the linear elasticity equation

(6) Apply the resulting deformation U ∈ H 1
0 (�,R

2) to the finite element mesh

(7) Stop or go to (1)

Fig. 2 Shape iterates, where
the target shape is represented
with dotted lines; initial shape
is the circle

As already considered in the previous sections, we specialize the more general
constraint (2.5)–(2.6) to a Laplacian version (cf. (5.10)). In this setting, the shape
derivative 5.9 for the unregularized approach simplifies to

Dj(�int)[V ]

=
∫

�

− (y − ȳ)∇ȳT V −∇yT (∇V T +∇V )∇p

+ div(V )
(1

2
(y − ȳ)2 + ∇yT∇p − fp

)

dx +
∫

A

(ψ − ȳ)∇ψT V dx.

(6.1)
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We use test cases within the domain � = (0, 1)2, which contains a compact and
closed subset �int with variable boundary �int (cf. Fig. 1). The parameter fint is
valid in the interior �int and chosen as fint = 100, and the parameter fext is valid
in the exterior �ext = �\�int and chosen as fext = −10. Further, the perimeter
regularization in Eq. (2.1) is weighted by ν = 10−5. Moreover, the obstacle is
chosen to be the following parabola:

ψ : �→ R, (x, y) �→ 80

(

(

x − 1

2

)2

+
(

y − 1

2

)2
)

. (6.2)

The calculations are performed with Python using the finite element package
FEniCS. As initial shape we choose a circle with radius 0.15, illustrated in Fig. 2.
The computational grid of the initial shape, which is embedded in the hold-all-
domain (0, 1)2 ⊂ R

2, consists of 2184 vertices with 4206 cells, having a maximum
cell diameter of 0.0359 and a minimum cell diameter of 0.018.

The target data ȳ ∈ L2(�) is computed by using the mesh of the target
interface to calculate a corresponding state solution of (5.10) by the semi-smooth
Newton method proposed in [13]. Then, we add noise to the measurements ȳ,
which is distributed according to N (0.0, 0.5). The state solution for the target
shape is visualized in Fig. 3b for the obstacle (parabola defined in Eq. (6.2)).
In contrast, Fig. 3a shows the state solution without obstacle. One can observe
that the parabola bores a hole into the solution such that we lost any shape
information there. We apply the same method for calculating state variables y in
the unregularized optimization approach. In contrast, the regularized state equation
is solved with laPDAS Algorithm 3. The adjoint pc to the regularized equation
is calculated by solving Eq. (5.5) with first-order elements by using the FEniCS
standard linear algebra back end solver PETSc. In contrast, the adjoint p of the
unregularized equation is calculated in several steps as outlined in Sect. 5 (cf. step
(3) in Algorithm 5). To solve the resulting system, we use the standard PETSc back
end conjugate gradient solver.

In order to update the finite element mesh after each iteration, we use the solution
of the deformation equation, which is chosen in our experiments by (4.7) and (5.13)
in the regularized and unregularized case, respectively. The solution U : � → R

2

is then added to the coordinates of the finite element nodes. We choose the Lamé
parameters in the linear elasticity equation as described above, i.e., λelas = 0 and
μelas as solution of the Poisson equation (4.13), where we set μelas

min = 1 and

μelas
max = 20, in both approaches.

The initial and final shape geometry together with the shape iterates are plotted in
Fig. 2 for the unregularized approach using εadj = 10−9. We plotted only this case
because we could observe that there is a vanishing difference between approaches
using regularized calculation with high c and the unregularized one. One can see
that the expected shape (dashed shape) cannot be achieved. This is due to some
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Fig. 3 Solutions of the regularized and unregularized state equation. (a) State solution without
obstacle for target shape. (b) State solution with obstacle for target shape. (c) Unregularized state
solution with obstacle for optimal shape. (d) Regularized state with obstacle for optimal shape

loss of shape information in active regions of the variational inequality. If we look
on the state solutions for the achieved optimal shape (Fig. 3c, d), we see that these
are very close to the state solution for the target shape (Fig. 3b). However, it is
worth to mention that for small regularization parameters c, the solved state and
adjoint equations begin to differ from the original problem and, thus, slowing down
convergence, and for very low c no convergence at all.

We conclude this section with some convergence observations. The values of
the objective function and the mesh distance in each iteration are given in a plot
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Fig. 4 Convergence rates:
Mesh distances and objective
values

in Fig. 4. In both approaches, the shape distance between two shapes �1
int, �

2
int is

approximated by the integral

∫

x∈�1
int

max
y∈�2

int

‖x − y‖2 dx,

where ‖ · ‖2 denotes the Euclidean norm. One can observe that we get equal
convergence rates for the regularized and unregularized approach. However, it
is worth to mention that the convergence behavior of the unregularized method
strongly depends on the selection of the active set. When the state solution y is not
calculated with sufficient precision, the numerical errors lead to misclassification
of vertex indices. Hence wrong Dirichlet conditions are incorporated in the adjoint
system, creating errors in the adjoint. This makes the gradient sensitive to error
for smaller εadj. In order to compensate this, the condition for checking active
set indices (5.12) can be relaxed by increasing εadj. This increases likelihood of
correctly classifying the true active indices, while also increasing likelihood of
misclassification of inactive indices. Such a relaxation can lead to errors in the
adjoint increasing with εadj and, thus, trading convergence speed for robustness.
Moreover, it is worth to mention that implementing the unregularized state and
adjoint becomes especially numerically exploitable with higher resolution meshes
and more strongly binding obstacles ψ , i.e., larger active sets A. This is possible
by sparse solvers due to the incorporation of Dirichlet conditions on the active set,
as we have proposed, or by a fat boundary method as in [19]. So in contrast to the
regularized method, where performance slows down for more active obstacle ψ , we
do not notice unusual slowdown in performance with the unregularized method, and
even offer possibility to actually benefit numerically from more binding obstacle ψ .
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Extensions of Nash Games in Finite and
Infinite Dimensions with Applications

Jan Becker, Alexandra Schwartz, Sonja Steffensen, and Anna Thünen

Abstract Over the past several years, many applications have emerged, in which
several agents can be accurately modeled as multi-leader-multi-follower game,
where the agents are influencing each other as well as possibly some state coupled to
their decisions via a differential equation. When all players decide simultaneously,
much is known about the resulting finite dimensional, often convex games and there
are also some analogous results for the infinite dimensional case. However, only
very little is available for multi-level games in infinite or even in finite dimensions.
Thus, our goal within this article is to extend the existing knowledge to be able to
tackle the more general class of multi-level games. To this end, we formalize the
multi-level games needed to model applications, describe which classes of games
can already be solved, and provide first results to close the gap between the two. We
close the article by providing some insight into possible next steps on the way to
general multi-level games in function space.
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1 Introduction and State-of-the-Art

Models that mathematically describe and simulate the behavior of several agents,
whose decisions influence each other, appear in many applications from economics,
operations research, computer science, and robotics, see e.g. [1, 17, 20, 30, 32].
Often, some of the players have a temporal advantage over their rivals, i.e. there
are several stages, on which decisions are made. One possibility to model such
situations is a multi-leader–follower game (MLFG). Here, we divide the agents into
leaders and followers. The leaders ν choose their strategies uν first, not knowing
which strategies vi the followers i will choose later. Thus, the leaders ν = 1, . . . , N
have to solve the following kind of problem:

min
uν

Fν(uν, u−ν, v) s.t. uν ∈ Uν(u−ν), v ∈ S(u)

where we use u−ν as a shorthand for the strategies of all other leaders η �= ν,
and S(u) denotes the solution set of the followers’ problems. The followers i =
1, . . . ,M , already knowing the leaders’ strategies uν , then solve the problem

min
vi

fi(vi, v−i , u) s.t. vi ∈ Vi(v−i , u),

where v−i is a shorthand for the other followers’ strategies vj with j �= i. Here,
the individual agents’ problems are allowed to be coupled both via the objective
functions and the feasible sets. (Note, that if S(u) is not single-valued for all u,
we use an optimistic formulation for the leaders’ bilevel optimization problem.)
Furthermore, in the case of dynamic (i.e. time-dependent) games, the agents control
a joint or individual state, such that the strategies are control functions. This leads to
infinite dimensional problems. Two important special situations are the case without
followers, which is called a generalized Nash equilibrium problem (GNEP) and the
case with only a single leader, which is called a Stackelberg game, see Fig. 1. The
most common solution concept for this kind of problem is the Nash equilibrium,
which is a combination of feasible strategies (u∗, v∗) = (u∗1, . . . , u∗N, v∗1 , . . . , v∗M)
such that v∗i solves

min
vi

fi(vi, v
∗−i , u∗) s.t. vi ∈ Vi(v

∗−i , u∗),

for all followers i = 1, . . . ,M and u∗ν solves

min
uν

Fν(uν, u
∗−ν, v) s.t. uν ∈ Uν(u

∗−ν), v ∈ S(uν, u
∗−ν)

for all leaders ν = 1, . . . , N .
For convex finite dimensional GNEPs, many results on the existence of Nash

equilibria and solution algorithms are known, see e.g. [11, 14] and the references
therein. However, less is available for nonconvex, nondifferentiable, or infinite
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· · ·

· · ·

· · · · · ·

Fig. 1 A multi-leader–follower game (top), a generalized Nash equilibrium problem (left) and a
Stackelberg game (right), where one box signifies the problem of one player

dimensional problems, see [3, 10, 13, 27, 42] for some exceptions. When a
Stackelberg game is considered, especially in its reformulation as a mathematical
program with complementarity constraints (MPCC), due to the arising nonconvexity
the focus so far has mostly been on various kinds of stationarity and algorithms to
compute stationary points, see [8, 16, 53]. Some generalizations of these ideas to
infinite dimensional problems can be found in [25, 26, 52].

The generalization from a GNEP or a Stackelberg game to a MLFG generates
several complications: The first difficulty appears when the followers’ reaction to
the leaders’ strategies is not unique, because then the leaders can have different
expectations of the followers’ behavior. Even if the followers’ response is unique
and one can thus reformulate the MLFG into a single-level game, the resulting
GNEP is usually nonsmooth and nonconvex. This is not surprising, since computing
a Nash equilibrium of the MLFG requires a global solution of each leader’s
Stackelberg problem, which is usually a nonconvex problem, if one replaces the
followers’ optimization problems by the corresponding KKT conditions. Some
results on stationarity conditions and special MLFGs can be found e.g. in [2, 28,
29, 33, 36, 42, 45, 49].

Within this paper, we provide some new steps toward MLFGs in finite and
infinite dimensions. In Sect. 2, we consider finite dimensional problems, starting
with a nonconvex GNEP motivated by computation offloading for mobile devices
in Sect. 2.1, in which the players problems are coupled by vanishing constraints,
and provide an explicit formula for the unique Nash equilibrium. Then we analyze a
special class of quadratic MLFGs in Sect. 2.2, for which we can show existence and
uniqueness of Nash equilibria and provide a smoothing-based solution algorithm.
Afterwards, we move on to infinite dimensional games in Sect. 3 and develop some
stationarity conditions for MLFGs in Banach spaces in Sect. 3.1, which are then
applied to some classes of MLFGs with a single quadratic lower level problem
in Sect. 3.2. A Stackelberg game with an infinite number of followers solving an
optimal control problem is the topic of Sect. 3.3. Finally, we show existence and
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uniqueness for a GNEP motivated by gas pipelines, where each player solves an
optimal control problem with a partial differential equation in Sect. 3.4. We close the
paper by pointing out some future research topics needed on the way from convex
Nash games to MLFGs.

2 Games in Finite Dimensions

2.1 A GNEP with Vanishing Constraints for Computation
Offloading

Many people nowadays use smartphones and other mobile devices for a multitude
of tasks. However, even though the computational capability of these devices is
steadily increasing, their limited battery capacity makes executing computationally
expensive tasks such as augmented reality or video processing on a mobile device
a challenge. For this reason, computation offloading, which allows mobile users to
offload expensive tasks at least partially to a remote location, e.g. a cloudlet service,
has become an active field of research, see for example [5, 35, 39]. We introduce a
generalized Nash game to model the interaction between mobile users sharing the
same cloudlet service, where the computation tasks are splittable, i.e. they can also
be partially offloaded. The results presented below are an excerpt from [44], which
also includes all proofs.

We consider the following model: Every user ν = 1, . . . , N wants to complete a
computational task of a certain size as fast as possible. To this end, the user offloads
a percentage uν ∈ [0, 1] of this task and completes the remaining 1− uν locally on
the mobile device. The time needed to complete the local part of the computations
is given by

T local
ν = αν(1− uν),

where the constant αν > 0 depends on the size of the task and the local computation
power. The time needed for all offloaded computations to be finished on the cloudlet
is given by

T offload =
N
∑

η=1

βηuη + C,

where βη > 0 depends on the computational power of the cloudlet, the size of the
offloaded tasks, and possibly also the transmission rates. After all computations on
the cloudlet are finished, the results are transmitted back to the users. The constant
C > 0 allows to model situations, where some tasks are already running on the
cloudlet.
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All mobile users want to minimize their total completion time, i.e.

Fν(uν, u−ν) =
{

T local
ν if uν = 0,

max{T local
ν , T offload} if uν > 0.

In order to eliminate the distinction of cases in the objective function, we introduce
an additional variable τν for the total completion time of each user ν. Then we can
rewrite the optimization problem of user ν as

min
uν,τν

τν s.t. αν(1− uν) ≤ τν,
(

∑N
η=1 βηuη + C

)

uν ≤ τνuν,

uν ∈ [0, 1].
(2.1)

This is a GNEP, where the individual problems are coupled via vanishing con-
straints. Those vanishing constraints are coupled but not shared by all players. Since
this constraint is nonconvex, most standard theory using fixed point theorems or
potential game reformulations for generalized Nash games cannot be applied.

Nevertheless, a direct analysis of the game allowed us to obtain the following
result including an explicit formula for the Nash equilibrium:

Theorem 2.1 The game (2.1) has exactly one Nash equilibrium (u∗, τ ∗). In this
Nash equilibrium, the set of all users offloading a part of their computation to the
cloudlet is given by

O := {ν ∈ {1, . . . , N} | u∗ν > 0} =
⎧

⎨

⎩

ν ∈ {1, . . . , N} | αν >
C +∑

η∈O βη

1+∑

η∈O
βη
αη

⎫

⎬

⎭

,

the equilibrium strategies for users ν ∈ O are given by

u∗ν = 1− 1

αν

C +∑

η∈O βη

1+∑

η∈O
βη
αη

and u∗ν = 0 for ν /∈ O. In both cases, the equilibrium completion time is given by

τ ∗ν = αν(1− u∗ν).

In this result, the set of offloading users is given implicitly. If the users are ordered
such that α1 ≥ . . . ≥ αN , then the set can also be explicitly described by

O =
⎧

⎨

⎩

ν ∈ {1, . . . , N} | αν >
C +∑ν

η=1 βη

1+∑ν
η=1

βη
αη

⎫

⎬

⎭

.
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This game has the interesting property that the Nash equilibrium can also be
computed as the unique solution of the following centralized optimization problem:

min
u1,...,un,τ

τ s.t. αν(1− uν) ≤ τ, uν ∈ [0, 1] ∀ν = 1, . . . , N,

N
∑

ν=1

βνuν + C ≤ τ,

although it is not a potential game in the usual sense, see e.g. [13, 33, 41].
Finally, we can also extend the game to a hierarchical setting, where “premium”

users can decide first how much they want to offload. Afterwards, the “regular” users
decide on their offloading strategy. The resulting game then has the following form
for the premium users/leaders:

min
uν,τν

τν s.t. αν(1− uν) ≤ τν,
(

N
∑

η=1

βηuη +
M
∑

i=1

biv
∗
i

)

uν ≤ τνuν, uν ∈ [0, 1],

where (v∗, t∗) is the unique Nash equilibrium of the regular users/followers game

min
vi ,ti

ti s.t. ai(1− vi) ≤ ti ,
(

M
∑

j=1

bjvj +
N
∑

ν=1

βνuν

)

vi ≤ tivi , vi ∈ [0, 1].

The constant C now has the value C(u) = ∑N
ν=1 βνuν . As it turns out, this MLFG

has a unique Nash equilibrium, which coincides with the unique Nash equilibrium
of the one-level game, where all users decide on their strategy simultaneously.

So besides having found the solution of a nonconvex GNEP with vanishing
constraints, the analysis of this game raises some interesting questions: The structure
of the Nash equilibria derived here is very similar to the Nash equilibria of Cournot
games and all-pay auctions, which appear as lower level in MLFGs describing
strategic booking and nomination decisions of gas suppliers and in Stackelberg
games describing contest design problems respectively, see e.g. [15, 17]. Thus, it
would be interesting to derive a closed form solution for a more general class of such
GNEPs, which can then be used to eliminate the lower level from corresponding
MLFGs. To obtain a description of these Nash equilibria, it could be useful to
generalize the notion of potential games, looking for games which can be replaced
by a joint optimization problem. Finally, we have seen that in the MLFG version,
we can ignore the hierarchy and instead solve the corresponding GNEP, which is of
course much easier. An interesting direction of future research would be to identify
conditions under which this is possible for general MLFGs, see e.g. [34] for some
results on linking bilevel problems to NEPs.
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2.2 Quadratic Multi-Leader–Follower Game

The following quadratic MLFG is related to competitive interactions which appear
in e.g. tolling [20, 32] and energy markets [1, 21, 22, 30].

We consider a single follower problem given by the convex optimization problem

min
v∈Rm

f (v, u) = 1

2
v�Qvv − b(u)�v s.t. v ≥ l(u), (2.2)

where v denotes the follower’s strategy and u = (u1, . . . , uN) the leaders’
strategies. Here, we assume that Qv ∈ R

m×m is a positive definite diagonal matrix
and bi, li : R

n → R for i = 1, . . . ,M are convex and smooth functions describing
the coupling of the player variables.

The single follower can be also interpreted as multiple followers playing a
potential game; for details on potential games, the reader is referred to [41]. Due to
the structure of potential games, we can assume that the number of follower players
equals the total number of follower variables M = m, and discuss a single follower
without loss of generality.

Since problem (2.2) has a strictly convex objective f (v, u) and a convex strategy
set, the follower admits a unique optimal solution,

v∗(u) = max
{

Q−1
v b(u), l(u)

}

, (2.3)

also called best response, which may be derived by the KKT conditions to (2.2).
For ν = 1, . . . , N , the leader problems are given by

min
uν∈Rnν

Fν(uν, u−ν) = 1

2
u�ν Qνuν + c�ν uν + a�v s.t. uν ∈ Uν, (2.4)

with nonempty, closed, and convex strategy sets Uν . The quadratic objective Fν
is assumed to be strictly convex with Qν ∈ R

nν×nν symmetric positive definite,
cν ∈ R

nν , and a ∈ R
m+.

The MLFG (2.2) and (2.4) is reformulated by plugging the best response (2.3) in
the leader game, yielding the nonsmooth Nash game for ν = 1, . . . , N

min
uν∈Rnν

1

2
u�ν Qνuν + c�ν uν +

M
∑

i=1

ai max
{(

Q−1
v b(u)

)

i
, li (u)

}

s.t. uν ∈ Uν.

(2.5)
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Each optimization problem has a nonsmooth but convex objective and a convex
strategy set. For compact strategy sets, we can prove the existence of Nash equilibria
in the following theorem:

Theorem 2.2 (Existence of Nash Equilibria for Compact Strategy Sets) Assume
that the nonsmooth Nash equilibrium problem in (2.5) has a convex and compact
joint strategy set U = U1 × · · · × UN , where all Uν are nonempty.

Then there exists at least one Nash equilibrium. Therefore, also the quadratic
MLFG given by (2.2) and (2.4) has at least one Nash equilibrium.

Proof The objectives in (2.5) are continuous in (uν, u−ν) and convex in uν as a
sum of a strictly convex quadratic term and the maximum of two convex functions.
Furthermore, the admissible strategy sets Uν are nonempty, convex, and compact.
Thus, the conditions of [43, Theorem 3.1] are fulfilled, which guarantees the
existence of at least one Nash equilibrium. ��

For further studies, the data is assumed to be linear:

b(u) = B�u and l(u) = L�u,

where B,L ∈ R
n×m and n = n1 + . . . + nN . In the following, we analyze an

approximate problem to (2.5), which is derived by smoothing the best response
function (2.3). Let the smoothed best response of the follower be of the structure

vε(u) = 1

2

[(

L� +Q−1
v B�

)

u+ φ̃ε

((

L� −Q−1
v B�

)

u
)]

,

where φ̃ε coincides with the absolute value function if the smoothing parameter ε
vanishes, i.e. ε = 0. An example for a smooth and convex function φ̃ε is φ̃MIN

ε (z) =√
z2 + 4ε2, which corresponds to the smooth minimum function. The smoothed

best response function vε plugged into the leader’s objectives yields a smooth Nash
equilibrium problem, where for ν = 1, . . . , N we have

min
uν∈Rnν

F ε
ν (uν, u−ν) =

1

2
u�ν Qνuν + c�ν uν

+ 1

2

M
∑

i=1

ai

[(

L� +Q−1
v B�

)

u+ φ̃ε

((

L� −Q−1
v B�

)

u
)]

i

s.t. uν ∈ Uν.

(2.6)

For this game, we state an existence and uniqueness theorem.

Theorem 2.3 (Existence and Uniqueness) Assume that the Nash equilibrium
problem (2.6) has a convex and closed strategy set U = U1 × · · · × UN , where
all Uν are nonempty, and φ̃ε is convex. Then the Nash equilibrium problem has a
unique equilibrium for every smoothing parameter ε > 0.
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Proof (Sketch) Formulate (2.6) as variational inequality (VI) and show that the
concatenated gradients of the strictly convex objective are uniformly monotone.
Then, the VI has a unique solution by Facchinei and Pang [12, Theorem 2.3.3],
which in turn is the unique Nash equilibrium using [12, Proposition 1.4.2]. ��

This guarantees a unique Nash equilibrium of the approximate problem for
every smoothing parameter ε > 0. It can be proven that a sequence of smoothing
parameters εk → 0 yields a sequence of Nash equilibria u∗(εk), which has at least
one accumulation point for compact U . We call that accumulation point a limiting
Nash equilibrium and denote it by u∗(0).

In order to analyze the relation of the limiting Nash equilibrium to the original
MLFG, we remark that each leader’s problem can be formulated as an MPCC, which
together provide a GNEP formulation of the MLFG. In the following theorem, it
is verified that the limiting Nash strategy u∗ν(0) is an S-stationary point for every
leader.

Theorem 2.4 For all ν = 1, . . . , N , the limiting Nash strategy u∗ν(0) is an S-
stationary point of the leader’s MPCC.

Proof (Sketch) The limiting Nash strategy u∗ν(0) satisfies the Fritz-John conditions
of Clarke for every leader ν = 1, . . . , N . Under Slater’s condition, the multipliers of
MPCC strong stationarity can be constructed using the Fritz-John multipliers. ��

Besides nice analytical properties, the approximating problems are also advanta-
geous for computations since classical derivatives of the objectives are available. To
compute the limiting Nash equilibrium, the smooth Nash equilibrium problem (2.6)
is solved for a sequence of decreasing smoothing parameters εk by a globalized
semismooth Newton method on the joint optimality system. In Fig. 2(left), the
convergence behavior of the Nash equilibria of the approximating problems and
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on the first entry of u, in blue the Nash equilibria for decreasing ε, in black the update (right)
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associated multipliers λ(εk) is illustrated. Usually, the Nash equilibrium to the
precedent (larger) smoothing parameter initializes the current iteration, i.e. u0(εk) =
u∗(εk−1). More efficiently, the previous Nash equilibrium may be updated by

u0(εk) = u∗(εk−1)− (εk − εk+1)d
k with dk = ∂u∗

∂ε
(εk)

which is based on a formal Taylor expansion of the map ε �→ u∗(ε), c.f.
Fig. 2(right). The reader is referred to [23] for more details on theory and com-
putations for the MLFG (2.2) and (2.4).

3 Games in Infinite Dimensions

3.1 Stationarity Concepts for MLFGs in Banach Spaces

This section serves as an introduction to several stationarity concepts motivated by
the work of Mehlitz and Wachsmuth (see [40, 52]) on MPCCs in Banach spaces.

We consider the following class of MLFGs: For all ν = 1, . . . , N , leader ν solves
the parametric bilevel optimization problem

min
uν,v

Fν(uν, u−ν, v) s.t. uν ∈ Uν
ad, v ∈ S(uν, u−ν), (3.1)

where S(u) is the solution set mapping of the single follower’s problem

min
v

f (v, u) s.t. v ∈ Vad, g(v, u) ∈ K. (3.2)

We assume that f : U×V → R and g : U×V → Z are twice continuously Fréchet
differentiable mappings where U = U1 × · · · × UN is an arbitrary Banach space
and V and Z are reflexive Banach spaces. The feasible sets Vad ⊆ V and K ⊂ Z

are nonempty, closed, and convex cones. Additionally, we assume that f is strictly
convex in v, g is −K-convex in v, and for all (u, v) ∈ Uad × V with g(u, v) ∈ K

the constraint qualification (CQ)

∇vg(v, u)
[

RVad(v)
] = Z (3.3)

holds, where RVad(v) denotes the radial cone of Vad with respect to v.
Then, v̄ ∈ S(u) is equivalent to the following necessary and sufficient first-order

optimality condition:

∇vf (v̄, u)+ ∇vg(v̄, u)∗λ+ μ = 0, (μ, λ) ∈ NVad (v̄)×NK

(

g(v̄, u)
)
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where NC(x) defines the classical convex normal cone of a convex set C and A∗ is
the adjoint of some operator A.

So instead of analyzing the MLFG directly, we study the following equilibrium
problem with complementarity constraints (EPCC): For all ν = 1, . . . , N , leader ν
solves the parametric MPCC

min Fν(uν, u−ν, v) over(uν, v, λ, μ) ∈ Uν × V × Z∗ × V ∗

s.t. uν ∈ Uν
ad,

∇vf (uν, u−ν, v)+∇vg(uν, u−ν, v)∗λ+ μ = 0,

v ∈ Vad, μ ∈ V ◦
ad, 〈μ, v〉V = 0,

g(uν, u−ν, v) ∈ K, λ ∈ K◦, 〈λ, g(uν, u−ν, v)〉Z = 0.

(3.4)

Here, we have applied the identity NX(x) = X◦ ∩ {x}⊥ for conic sets X with polar
cone X◦ and annihilator {x}⊥.

Remark 3.1 The lower level CQ (3.3) ensures that the corresponding set of
Lagrange multipliers

�(u, v̄) := {

(μ, λ) ∈ NVad (v̄)×NK

(

g(v̄, u)
) ∣

∣ ∇vf (v̄, u)+∇vg(v̄, u)∗λ+μ = 0
}

is at most single-valued for feasible (u, v). Now, let ν ∈ {1, . . . , N} be fixed. Then
it can be shown that for any u−ν ∈ U−ν

ad , (u∗ν, v∗) is a solution of (3.1) if and only if
there exist multipliers (μ, λ) ∈ �(u∗ν, u−ν, v∗) such that (u∗ν, v∗, μ, λ) is a solution
of (3.4).

This motivates the following result.

Lemma 3.2 A point (u∗, v∗) is a leader–follower equilibrium of the MLFG if and
only if there exists multipliers (μ∗, λ∗) ∈ �(u∗, v∗) such that (u∗ν, v∗, μ∗, λ∗) is a
solution of (3.4) with respect to the optimal opponent strategy vector u∗−ν for all
ν = 1, . . . , N .

Proof (Sketch) The lemma can easily be verified by using the definition of a leader–
follower equilibrium and the observation made in Remark 3.1. ��

Besides the question whether a leader–follower equilibrium does exist, we
cannot expect that KKT-type conditions are satisfied at solutions of MPCCs, since
CQs of suitable strength for nonlinear programming as Kurcyusz–Robinson–Zowe-
Constraint Qualification fail to hold. As a consequence, we have to deal with weaker
stationarity conditions. Similar to EPCCs in finite dimensions (see [49, Definition
3.1]), we thus define stationarity concepts in Banach spaces.

Definition 3.3 A point (u∗, v∗) is an S-stationary (C-stationary, M-stationary, W-
stationary) equilibrium of the MLFG, if there exists (μ∗, λ∗) ∈ �(u∗, v∗) such that
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(u∗ν, v∗, μ∗, λ∗) is an S-stationary (C-stationary, M-stationary, W-stationary) point
of (3.4) w.r.t. u∗−ν for all ν = 1, . . . , N .

We assume that the mapping Fν : U × V → R is continuously Fréchet
differentiable and Uν

ad ⊆ Uν is a nonempty, closed, and convex set for all ν =
1, . . . , N . Moreover, we only consider the case Vad = V . Then we can adopt [40,
Definition 3.3] and obtain an extended definition of W- and S-stationarity.

Definition 3.4 Let (u∗, v∗) ∈ U × V be a feasible point of the MLFG and assume
there exist multipliers λ ∈ Z∗ and κν =

(

κuν , κ
F
ν , κ

g
ν

) ∈ (Uν)∗ × V × Z∗ (ν =
1, . . . , N ). Then, (u∗, v∗) is called a

(a) W-stationary equilibrium, if

0 = ∇uνFν(u∗, v∗)+∇uν g(u∗, v∗)∗[κgν ] + κuν

+
(

∇2
vuν

f (u∗, v∗)∗ + 〈λ,∇2
vuν

g(u∗, v∗)〉∗Z
)

[κFν ],
(3.5)

0 = ∇vFν(u∗, v∗)+ ∇vg(u∗, v∗)∗[κgν ]
+

(

∇2
vvf (u

∗, v∗)∗ + 〈λ,∇2
vvg(u

∗, v∗)〉∗Z
)

[κFν ],
(3.6)

λ ∈ �(u∗, v∗), κuν ∈ NUν
ad
(u∗ν), (3.7)

κgν ∈ cl
(

K◦ −K◦ ∩ {g(u∗, v∗)}⊥
)

∩ {g(u∗, v∗)}⊥,

−∇vg(u∗, v∗)[κFν ] ∈ cl
(

K −K ∩ {λ}⊥
)

∩ {λ}⊥

(b) S-stationary equilibrium, if (3.5)–(3.7) and

κgν ∈ KK◦
(

λ, g(u∗, v∗)
)

, −∇vg(u∗, v∗)[κFν ] ∈ KK

(

g(u∗, v∗), λ
)

are satisfied for ν = 1, . . . , N , where KK(z, z
∗) = NK(z)

◦ ∩ {z∗}⊥ is the critical
cone of K w.r.t. (z, z∗).

After introducing stationarity concepts in a quite general setting of MLFGs, the
ongoing focus is on exploiting more concrete structures, i.e. polyhedric cones, in
this abstract framework, in order to derive necessary conditions for leader–follower
(stationary) equilibria.

3.2 An MLFG with Quadratic Lower Level Problem

Modeling physical or economical phenomena e.g. elasticity, elastoplasticity, and
mathematical finances (see e.g. [24, 50]) using (convex) optimization problems
with bound constraints naturally leads to variational inequalities (VI). Therefore,
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many efforts have been made to analyze the corresponding MPEC/MPCC (see
e.g. [25, 26]). Moreover, many real-world problems consist of several decision
makers which compete in a non-cooperative manner, e.g. autonomous driving,
predator–prey games, and economic markets [10, 27]. In our context, we consider a
hierarchical extension of an equilibrium problem, where the follower’s best response
can be described by a VI.

Throughout this section, we consider a special class of MLFG, introduced in
Sect. 3.1, in which the νth leader considers the following problem:

min
uν,v

Fν(uν, v) := F 1
ν (v)+ F 2

ν (uν) s.t. uν ∈ Uν
ad, v ∈ S(uν, u−ν), (3.8)

where

S(u) = arg min
v

{

1

2
〈Av, v〉V ∗,V − 〈Bu, v〉V ∗,V

∣

∣ v ≥ 0

}

. (3.9)

We assume that V and Uν are Hilbert spaces such that V ↪→ Uν ↪→ V ∗ for all
ν = 1, . . . , N , where the embedding Uν ↪→ V ∗ is compact. The operators A :
V → V ∗ and B : U → V ∗ with Bu := ∑

Bνuν are bounded and linear where A
is additionally self-adjoint and coercive. Then the lower level problem (3.9) admits
a unique solution v for all u ∈ U . Hence, S(u) is single-valued and we obtain an
EPEC, where leader ν considers

min
uν,v

F 1
ν (v)+ F 2

ν (uν)

s.t. uν ∈ Uν
ad,

v ≥ 0, 〈Av − Bu,w − v〉V ∗,V ≥ 0 ∀w ≥ 0.

(3.10)

Introducing a slack variable ξ ∈ V ∗, the VI can equivalently be written as the linear
complementarity constraints

Av − ξ − Bu = 0,

ξ ≥ 0inV ∗, v ≥ 0inV, 〈ξ, v〉V ∗,V = 0

and we obtain the EPCC representation of (3.10) with an additional variable
ξ . Subsequently, we discuss two special cases of EPCCs, which have favorable
properties, and then return to the general case.

First let us assume that the lower level problem (3.9) is unconstrained. Then
the optimal solution is given by v = A−1Bu, and the EPCC is equivalent to the
following NEP: For all ν = 1, . . . , N

min
uν

F 1
ν (A

−1Bu)+ F 2
ν (uν) s.t. uν ∈ Uν

ad.
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Assuming that the objective function Fν : Uν × V → R is continuously Fréchet
differentiable with F 1

ν : V → R convex and F 2
ν : Uν → R strictly convex

for all ν = 1, . . . , N , the existence of a unique Nash equilibrium is guaranteed
by the unique solvability (see [31]) of the resulting strongly monotone variational
inequality

Findu∗νs.t.
(

B∗νA−1∇uνF 1
ν (A

−1Bu∗)+∇uνF 2
ν (u

∗
ν), uν − u∗ν

)

≥ 0 ∀uν ∈ Uν
ad

for all ν = 1, . . . , N . Consequently, the MLFG admits a unique leader–follower
equilibrium (u∗, A−1Bu∗) ∈ U × V .

In the second setting, we assume that V = H 1
0 (�), U

ν = L2(�) and A = c · ι
with positive scalar c > 0 and embedding operator ι ∈ L(V , L2(�)). Moreover,
we require that B ∈ B(U,L2(�)) and leader ν’s objective is linear with respect
to the follower’s strategy, i.e. F 1

ν (v) = 〈γν, v〉V ∗,V where γν ∈ V + is an element
of the dual cone of V . This case can be seen as an infinite dimensional analogon
of the model considered in Sect. 2.2. Due to the special structure, it is known that
ξ ∈ L2(�) and we can write the complementarity constraints equivalently as

v − 1

c
Bu ≥ 0inL2(�), v ≥ 0inL2(�),

(

v − 1

c
Bu, v

)

L2
= 0. (3.11)

Then, it has been shown for instance in [51] that the complementarity system (3.11)
is equivalent to

v = max
{

c−1Bu, 0
}

inL2(�).

Hence, the leader ν’s parametric MPCC (3.8) can be written as

min
uν

〈

γν,max
{

c−1Bu, 0
}〉

H−1,H 1
0

+ F 2
ν (uν) s.t. uν ∈ Uν

ad.

If F 2
ν (uν) is convex and continuous for all ν = 1, . . . , N , the aforementioned

equilibrium problem admits a Nash equilibrium u∗ by the fixed point theorem of
Kakutani. Hence, (u∗, v∗) = (u∗,max{c−1Bu∗, 0}) is a leader–follower equilib-
rium of the MLFG.

In contrast to the aforementioned two special cases, we cannot expect to obtain
existence of equilibria in the general framework of (3.10). Motivated by the
contributions on MPECs/MPCCs referenced in the beginning of this section, we
therefore focus on several types of stationarity conditions. Based on the work
of EPCCs in finite dimensions [28], our present focus is on the analysis of the
nonsmooth and nonconvex NEP

min
uν

F 1
ν (v(uν, u−ν))+ F 2

ν (uν) s.t. uν ∈ Uν
ad (∀ν = 1, . . . , N),
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which we obtain by plugging in the solution v(u) ∈ S(u) = {v(u)} of the lower
level problem into the upper level (3.8). In the context of equilibrium problems,
C-stationarity seems to be an appropriate concept, since stronger concepts such as
S-stationarity require additional assumptions as the absence of control constraints,
i.e. Uν

ad = Uν (see [25]). On the other hand, the well-known Lipschitz continuity
of the solution operator v(·) motivates an approach based on Clarke’s nonsmooth
analysis.

3.3 Stackelberg Game with Infinitely Many Followers

We consider a Stackelberg game with infinitely many followers, whose optimality
conditions are reformulated as a PDE of a distribution of followers. The followers’
optimal control problems are given for i = 1, . . . ,M by

min
xi ,vi

fi(xi, vi , u) =
T

∫

0

[

φ(xi(t), u(t))+ α

2
v2
i (t)

]

dt s.t. ẋi (t) = vi(t), xi(0) = x0,i ,

i.e. every follower controls its state xi ∈ X = C1([0, T ],R) by its control vi ∈ V =
C0([0, T ],R). The smooth functional φ : X × U → R models the influence of the
leader, whose control is denoted by u ∈ U = C0([0, T ],R). Similar to the game
presented in Sect. 2.2, the followers are playing a potential game. Therefore, they
can be gathered into a single optimization problem yielding a Stackelberg game of
the following structure:

min
u

F (u, v, x) =
T

∫

0

J (u(t), p(x)) dt

s.t. min
x,v

f (x, v, u) = 1

M

M
∑

i=1

T
∫

0

[

φ(xi(t), u(t))+ α

2
v2
i (t)

]

dt

s.t.ẋi (t) = vi(t), xi(0) = x0,i , for i = 1, . . . ,M,

(3.12)

where x = (x1, . . . , xM) and v = (v1, . . . , vM). The functional J : U × R
m → R

describes the coupling between the leader control and the moment of the follower
states, which is assumed to have the structure p(x) = 1

M

∑M
i=1 p̃(xi(t)), where

p̃ : X→ X. This assumption guarantees symmetry of the cost functional which, in
addition to modest assumptions on continuity and boundedness on φ, allows us to
compute the mean field limit characterizing the asymptotic behavior as the number
of players grow N → ∞, c.f. [6, Ch.1]. In order to keep notation simple, time
dependence of variables is no longer explicitly indicated from now on.



436 J. Becker et al.

The Pontryagin Maximum Principle [46, Ch.1] is necessary and sufficient for
suitable φ. Therefore, the follower problem in (3.12) can be replaced by its
optimality conditions and we have the optimal control problem

min
u,x,�

F(u, v, x) =
T

∫

0

J (u, p(x)) dt

s.t. for i = 1, . . . ,M
{

ẋi = − 1
α
λi, xi(0) = xi,0

λ̇i = −∂xi φ(xi, u), λi(T ) = 0,

where λ ∈ X∗ is the costate and � = (λ1, . . . , λM). The formal application of the
Lagrange multiplier theorem, e.g. [38, Ch.9], yields for i = 1, . . . ,M:

∂uJ (u, p(x))+ 1

M

M
∑

i=1

ξ
(2)
i ∂u∂xi φ(xi, u) =0,

∂pJ (u, p(x)) ∂xi p̃(xi)+ ∂2
xi
φ(xi, u)ξ

(2)
i − ξ̇

(1)
i =0,

1

α
ξ
(1)
i − ξ̇

(2)
i =0,

ẋi + 1

α
λi =0,

λ̇i + ∂xi φ(xi, u) =0,

ξ
(1)
i (T ) = 0, ξ

(2)
i (0) = 0, xi(0) = xi,0, λi(T ) =0,

(3.13)

where ξ (1)i ∈ X∗ is the costate to the dynamic of xi and ξ (2)i ∈ X to λi , respectively.
Since we are interested in the limit problem for infinitely many followers, we

introduce the empirical measure:

μM
(

t, x, λ, ξ (1), ξ (2)
)

= 1

M

M
∑

i=1

δ(x − xi)δ(λ− λi)δ(ξ
(1) − ξ

(1)
i )δ(ξ (2) − ξ

(2)
i ).

The empirical measure μM(t, ·) ∈ P(R4) is a Borel probability measure, which
describes the probability to find a particle in a certain position (x, λ, ξ (1), ξ (2)) at
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time t ∈ [0, T ]. Formal reformulations of (3.13) yield the macroscopic optimality
conditions

0 =∂tμ− 1

α
λ · ∂xμ− ∂xφ(x, u) · ∂λμ

+
[

∂pJμ
(

u, pμ(t)
) · ∂xp̃(x)+ ∂2

xφ(x, u) · ξ (2)
]

· ∂ξ(1)μ+
1

α
ξ(1) · ∂ξ(2)μ,

0 =∂uJμ
(

u, pμ(t)
)+

∫

R

∫

R

∫

R

∫

R

ξ (2)∂y∂xφ(x, u)μ d ξ (2) dξ (1) dλ dx,

(3.14)

where the moment is

pμ(t) = 1

M

M
∑

i=1

p̃(xi) =
∫

R

∫

R

∫

R

∫

R

p̃(x)μ
(

t, x, λ, ξ (1), ξ (2)
)

dξ (2) dξ (1) dλ dx,

and the integrand of the leader’s objective is J (u, p(x)) = Jμ(u, pμ(t)). The
initial/terminal conditions in (3.13) are assumed to be satisfied by the empirical
measure μM , but are omitted here.

In contrast to (3.13), the PDE in (3.14) describes the optimal control and state
trajectories for a density of players. It resembles the limit for infinitely many players.
Rigorous limits are known for linear problems, e.g. [9]. So far, it is unknown if the
mean field limit Eq. (3.14) poses a unique solution. Provided there exists a weak
solution to the mean field equation, the empirical measure fulfills conditions (3.13).

This alternative formulation has advantages if a large number of similar players
are studied. However, it is arbitrary to derive the mean field of the full optimality
conditions (3.13). Present focus of research is the investigation of the relationship
between the conditions in (3.14) and the optimality conditions if the mean field limit
is e.g. already derived in (3.12).

3.4 Dynamic Boundary Control Games with Networks of
Strings

In contrast to NEPs governed by ordinary differential equations, NEPs governed
by partial differential equations got an increasing interest among researchers more
recently. In [4], the existence of Nash equilibria for networked hyperbolic systems
of partial differential equations (scalar conservation laws) for traffic flow models on
networks have been studied.

Here, we discuss a game for a star-shaped network of strings with N rays and
N players, where each player influences the system state in the network through
a Dirichlet boundary control at one end of the rays and the objective functionals
are given by sums of squared L2-norms with one term for the control cost and



438 J. Becker et al.

two tracking-type terms. The motivating application we have in mind here is a
gas pipeline network, where the players represent the gas market participants, i.e.
producers or consumers. A simple linear model for one pipe (ν ∈ {1, . . . , N}) for
the dynamics in a network of N horizontal pipelines (without friction) is given by

{

ρ
(ν)
t + q

(ν)
x = 0,

q
(ν)
t + a2 ρ

(ν)
x = 0,

(3.15)

where ρ(ν) denotes the gas density, q(ν) the flow rate of the gas, and a > 0
corresponds to the sound speed. This system implies that ρ(ν) satisfies the wave
equation

ρ
(ν)
tt = a2 ρ(ν)xx

along pipe ν. Moreover, we assume the following coupling conditions to model the
flow through a junction of N pipes, where for all adjacent pipes x = 0 denotes the
end of the junction, respectively (cf. [47]): the continuity of the density, i.e.

ρ(ν)(t, 0) = ρ(j)(t, 0)

for all ν, j = 1, . . . , N and the conservation of mass, which leads similar to
Kirchhoff’s law to the equation

∑N
k=1 q

(k)(t, 0) = 0. In terms of the densities
ρ(ν)(t, x), these assumptions yield the following node conditions:

ρ(ν)(t, 0) = ρ(j)(t, 0), for ν, j = 1, . . . , N and
N
∑

k=1

ρ(k)x (t, 0) = 0.

Similarly to the objective functional used in [37] for an optimal Dirichlet boundary
control problem (for a single player), let the objective functional here be given by

Jν(u) = γν

2

∫ T

0
uν(τ )

2 dτ + +1

2

N
∑

j=1

[ ∫ 1

0

(

ρ(j)(T , x)− ρ
(j)
D,ν(x)

)2

+
(

q(j)(T , x)− q
(j)
D,ν(x)

)2
dx

]

,

where the lengths of the pipelines are assumed to be normalized to one and ρ(j)D, ν(x)

denotes the density profile that is desired by player ν in pipe j at terminal time T .
Moreover, q(j)D,ν(x) here denotes the profile of the flow rate in pipe j that is desired
by player ν at terminal time T . The term q(T , ·) is determined by (3.15) and in such
a way that Jν(u) is minimized. In this model ρ(j)D, ν(x) and q

(j)
D, ν(x) might also be

the desired initial states for the next time period to consider.
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In the following, we consider a particular setting: Let a terminal time T ≥ 4
be given and assume we have a finite number N ≥ 3 of strings of length 1 and
� = (0, T )× (0, 1). Then for the initial states

(

y
(ν)
0 , y

(ν)
1

)N

ν=1
∈

{

(y
(ν)
0 , y

(ν)
1 )Nν=1

∣

∣

∣ y
(ν)
0 ∈ L2(0, 1), y(ν)1 ∈ H−1(0, 1), ν = 1, . . . , N

}

,

where H−1(0, 1) = {Y ∈ D′((0, 1)) | there is f ∈ L2(0, 1) such that f ′ = Y } and
D′((0, 1)) denotes the set of distributions on the interval (0, 1) , and uν ∈ L2(0, T )
for ν = 1, . . . , N , we consider the following system (S) that is defined by

w(ν)(0, x) = y
(ν)
0 (x), x ∈ (0, 1), ν = 1, . . . , N, (3.16a)

w
(ν)
t (0, x) = y

(ν)
1 (x), x ∈ (0, 1), ν = 1, . . . , N, (3.16b)

w
(ν)
tt (t, x) = w(ν)

xx (t, x), (t, x) ∈ �, ν = 1, . . . , N, (3.16c)

w(ν)(t, 0) = w(j)(t, 0), t ∈ (0, T ), ν, j = 1, . . . , N, (3.16d)

0 =
N
∑

ν=1

w(ν)
x (t, 0), t ∈ (0, T ), (3.16e)

w(ν)(t, 1) = uν(t), t ∈ (0, T ), ν = 1, . . . , N. (3.16f)

The system (S) is a star-shaped network of vibrating strings with Dirichlet boundary
control action at the boundary nodes. An overview on the control of networks of
vibrating strings can be found in [7] and the exact controllability of networks of
vibrating strings is studied in [48].

We consider a dynamic Nash game with N players, who control the system (S)
by their strategies i.e. control functions uν ∈ L2(0, T ) (ν = 1, . . . , N), where each
player’s goal it is to minimize his/her own cost functional Jν given by

Jν(w, u) = γν

2

∫ T

0
uν(τ )

2 dτ + 1

2

N
∑

j=1

[ ∫ 1

0

(

w(j)(T , x)− g
(j)
D,ν(x)

)2

+
(

V (j)
ν (x)− h

(j)
D,ν(x)

)2
dx

]

,

where the constants γν > 0 are given weighting factors of the control costs in
Jν , g(j)D,ν(·) ∈ L2(0, 1) denotes the position of the j -th string at the terminal time

T desired by player ν, and h
(j)
D,ν(·) ∈ L2(0, 1) denotes the antiderivatives of the
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desired velocity, where for ν = 1, . . . , N the V (j)
ν (x) ∈ L2(0, 1) are antiderivatives

of w(j)
t (T , x) (see [18]). Hence, the associated Nash game is given by

min
uν

Jν(w, uν, u−ν)

s.t. (w, u) solve (S)
ν = 1, . . . , N. (3.17)

In [19] it has been shown, that this boundary control game with the wave equation,
i.e. (3.16a)–(3.16f), admits a unique Nash equilibrium, where the associated optimal
strategies uν are 4-periodic and can explicitly be determined in terms of the given
data.

Theorem 3.5 Assume that γν = γj for all ν, j = 1, . . . , N . Then there exists a
unique Nash equilibrium for 3.17. Moreover, the optimal strategies are 4-periodic.

The explicit representation of the linear operator, which maps the initial state and
the desired states to the corresponding Nash equilibrium, given in [19] implies the
boundedness of the operator as a map from the corresponding function spaces to the
control space (L2(0, T ))N and thus the stability of the Nash equilibria with respect
to perturbations of the initial and the desired states.

4 Outlook

The previously discussed results represent some examples of the latest achievements
in understanding extensions of standard Nash games in view of our intention to
analyze and solve multi-leader–follower games in function space. This research will
be continued in the future by considering further extensions inspired by applications
and also by combinations of the types of games, that we discussed here. Another
future task concerns the improvement of the current numerical algorithms in that
field. The presented algorithm for finite dimensional MLFGs has to be developed
further and combined with suitable numerical methods for differential equations in
order to solve the dynamic counterparts of MLFG.
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Abstract The stress-based formulation of elastic contact with Coulomb friction in
the form of a quasi-variational inequality is investigated. Weakly symmetric stress
approximations are constructed using a finite element combination on the basis
of Raviart–Thomas spaces of next-to-lowest order. An error estimator is derived
based on a displacement reconstruction and proved to be reliable under certain
assumptions on the solution formulated in terms of a norm equivalence in the
trace space H 1/2(�). Numerical results illustrate the effectiveness of the adaptive
refinement strategy for a Hertzian frictional contact problem in the compressible as
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1 Introduction

The mathematical modeling of elastic contact problems with a Coulomb friction
law gives rise to a quasi-variational inequality. Formulated in terms of stresses, its
difficulty lies in the fact that the admissible space depends on the solution itself,
see e.g. [9, Sect. 8.5] for the details of the derivation. Our main motivation for
studying the stress-based formulation is that the numerical treatment simplifies
considerably due to the less involved nature of the constraints. We use a weakly
symmetric approximation of the stresses using the finite element triple (for stress,
displacement, and rotation) proposed in [4]. Using a displacement reconstruction
approach, we derive an upper bound of the stress approximation error for sufficiently
small friction parameter. This is based on the estimation of the duality gap for
variational inequalities going back to [13] (cf. also [14]).

The error estimator resulting from the displacement reconstruction is used for
adaptive refinement resulting in a high resolution of the stress and displacement
components in the contact zone. Other adaptive approaches for frictional contact
are usually based on residual error estimation, see [5, 6] for Tresca friction and [11]
for Coulomb friction.

The next section introduces the stress-based formulation for the elastic contact
problem with Coulomb friction. The a posteriori error estimator based on displace-
ment reconstruction is derived in Sect. 3. The reliability estimate for sufficiently
small friction relies on a norm equivalence in the trace space H 1/2(�) which is the
content of Sect. 4. Section 5 presents the numerical results for a Hertzian frictional
contact problem in the compressible and incompressible case.

2 The Dual Stress-Based Formulation of Contact with
Coulomb Friction

Throughout this paper, ( · , · ) stands for the inner product in L2(�), L2(�)d , or
L2(�)d×d , respectively, and 〈 · , · 〉� stands for the duality pairing of H 1/2(�) and
H−1/2(�) for � ⊆ ∂�. The underlying material model will be linearly elastic such
that the strain tensor ε : � → Rd×d depends on the stress σ : � → Rd×d by
means of

ε = Aσ := 1

2μ

(

σ − λ

dλ+ 2μ
(tr σ )I

)

, (2.1)

where μ and λ denote the usual Lamé parameters. For λ < ∞, i.e., away from the
incompressible limit, this relation is invertible and leads to the familiar stress–strain
relation σ = 2με + λ(trε)I. Throughout this paper, μ is assumed to be on the
order of one while λ may be arbitrarily big. The boundary of our domain � ⊂ Rd is
assumed to consist of disjoint segments �D , �N , and �C , all of them nonempty, such
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that �N separates �C from �D . As a suitable space for the stress σ , we introduce

H�N (div,�) = {τ ∈ L2(�)d×d : div τ ∈ L2(�)d , τ · n = 0 on �N }. (2.2)

The symmetry of the stress tensor will be enforced by the constraint as σ = 0,
where as denotes the skew-symmetric part. Following [9, Sect. 8.5], the stress-based
formulation of frictional contact then consists in finding σ ∈ H�N (div,�)d such
that it solves, among all τ ∈ H�N (div,�)d , the constrained minimization problem

J (τ ) := 1

2
(Aτ , τ )− 〈uD, τ · n〉�D − 〈g,n · (τ · n)〉�C → min!

subject to div τ + f = 0 , as τ = 0 in � ,

and n · (τ · n) ≤ 0 , |n× (τ · n)| ≤ −νF (n · (σ · n)) on �C .

(2.3)

The given functions uD ∈ H 1/2(�D)
d and g ∈ H 1/2(�C) represent the prescribed

boundary displacements and the gap function, respectively. For simplicity, the
volume force f is assumed to be piecewise affine and νF ≥ 0 stands for the friction
parameter. It is important to note that the last constraint in (2.3) depends on the
solution itself. This is the nature of the quasi-variational inequality in the dual
formulation. With the definition of the admissible set

(σ ) = {τ ∈ H�N (div,�)d : div τ + f = 0 , as τ = 0 in � ,

n · (τ · n) ≤ 0 , |n× (τ · n)| ≤ −νF (n · (σ · n)) on �C}
(2.4)

the problem consists in finding σ ∈ (σ ) such that

(Aσ , τ − σ )− 〈uD, (τ − σ ) · n〉�D − 〈g,n · ((τ − σ ) · n)〉�C ≥ 0 (2.5)

holds for all τ ∈ (σ ). The constraints on �C require a careful interpretation and
cannot be regarded pointwise due to the non-local nature of the space H−1/2(∂�),
where these traces live. The correct interpretation and mathematically precise
formulation of these constraints can be found in [9, Sect. 8.5].

If we restrict ourselves to a finite element space h ⊂ H�N (div,�)d based on a
shape-regular family of triangulations Th, then the formulation of the constraints on
�C in (2.6) may be taken literally. The corresponding discrete admissible set is thus
given by

h(σ h) = {τh ∈ h : (div τh + f, zh) = 0 for all zh ∈ Zh ,

(as τh, γ h) = 0 for all γ h ∈ Xh ,

n · (τh · n) ≤ 0 , |n× (τh · n)| ≤ −νF (n · (σ h · n)) on �C}
(2.6)
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and the discrete problem consists in finding σ h ∈ h(σ h) such that

(Aσ h, τh− σ h)−〈uD, (τh− σ h) · n〉�D −〈g,n · ((τh− σ h) · n)〉�C ≥ 0 (2.7)

holds for all τh ∈ h(σ h). As discrete spaces, Raviart–Thomas elements of degree
1 are combined with piecewise affine (possibly discontinuous) functions for Zh
and piecewise affine continuous functions for Xh. With this choice of Zh, the first
constraint in the definition of h(σ h) in (2.6) is equivalent to div τh + f = 0 due
to our assumption of f being piecewise affine if the triangulation Th is assumed
to resolve the discontinuities. For boundary value problems associated with linear
elasticity, these finite element spaces constitute an inf-sup stable combination (cf.
[4]). The quasi-variational structure caused by the last constraint does, however, lead
to situations where the uniqueness of the solution is not guaranteed, in general. It is
known that uniqueness does not hold for sufficiently large νF by the counterexample
given in [10]. In [16], uniqueness of the solutions of the quasi-variational inequality
associated with Coulomb friction is shown under additional assumptions which are
physically reasonable. We will come back to this issue in Sect. 3 in the context of
error estimation and present a special situation in two dimensions where it is known
that there exists a unique solution.

3 A Posteriori Error Estimation by Displacement
Reconstruction

The method of Lagrange multipliers applied to (2.5) leads to the equation

(Aσ , τ )− 〈uD, τ · n〉�D − 〈g,n · (τ · n)〉�C
+ (u, div τ )+ (θ, as τ )+ 〈ρ,n · (τ · n)〉�C + 〈η,n× (τ · n)〉�C = 0

(3.1)

for all τ ∈ H�N (div,�)d , where u, θ , ρ, and η constitute multipliers corresponding
to the constraints in (2.6). Inserting appropriate test functions which vanish on �C
and integrating by parts lead to Aσ = ε(u) which implies that u ∈ H 1(�)d does
indeed coincide with the displacement field and satisfies u = uD on �D . Similarly,
θ = as ∇u stands for the rotations. With this, we obtain

−〈g,n ·(τ ·n)〉�C+〈u, τ ·n〉�C+〈ρ,n ·(τ ·n)〉�C+〈η,n×(τ ·n)〉�C = 0 (3.2)

which may be split into its normal and its tangential components. The remaining
Lagrange multipliers are identified as

ρ = g − n · u , η = −u× n , (3.3)
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and we end up with the complementarity conditions

〈g − n · u,n · (σ · n)〉�C = 0

−〈n× u,n× (σ · n)〉�C + νF 〈|n× u|,n · (σ · n)〉�C = 0 .
(3.4)

This motivates the derivation of an a posteriori error estimator using the terms

‖Aσ h − ε(uRh )‖2 , 〈n · uRh − g,n · (σ h · n)〉�C and

〈n× uRh ,n× (σ h · n)〉�C − νF 〈|n× uRh |,n · (σ h · n)〉�C
(3.5)

as building blocks. The reconstruction of uRh ∈ uD +H 1
�D
(�)d with n · uRh − g ≤ 0

on �C from the solution of (2.7) will be explained further below.
Starting from the first term in (3.5) and inserting Aσ = ε(u) lead to

‖Aσ h− ε(uRh )‖2 = ‖A(σ − σ h)− ε(u− uRh )‖2

= ‖A(σ − σ h)‖2 + ‖ε(u− uRh )‖2 − 2(A(σ − σ h), ε(u− uRh ))

= ‖A(σ − σ h)‖2 + ‖ε(u− uRh )‖2 − 1

μ
(σ − σ h, ε(u− uRh ))

+ λ

μ(dλ+ 2μ)
(tr(σ − σ h), div(u− uRh )) ,

(3.6)

where we have used the specific form of A from (2.1). For the first mixed term
in (3.6), integration by parts leads to

(σ − σ h, ε(u− uRh )) = (σ − σ h,∇(u− uRh ))− (σ − σ h, as ∇(u− uRh ))

=〈(σ − σ h) · n,u− uRh 〉�C + (as σ h,∇(u− uRh )) .
(3.7)

We split the boundary term in (3.7) further into its normal and tangential parts,
respectively, and obtain

〈(σ − σ h) · n,u− uRh 〉�C = 〈n · ((σ − σ h) · n),n · (u− uRh )〉�C
+ 〈n× ((σ − σ h) · n),n× (u− uRh )〉�C .

(3.8)

The first term on the right-hand side in (3.8) can be bounded as

〈n · ((σ− σ h) · n),n · (u− uRh )〉�C
= 〈n · (σ · n),n · u− g〉�C − 〈n · (σ · n),n · uRh − g〉�C
− 〈n · (σ h · n),n · u− g〉�C + 〈n · (σ h · n),n · uRh − g〉�C

≤ 〈n · (σ h · n),n · uRh − g〉�C

(3.9)
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due to the first equation in (3.4) and the negative signs of n · (σ · n), n · (σ h · n),
n · u − g, and n · uRh − g, respectively. For the second term on the right-hand side
in (3.8), we obtain

〈n× ((σ − σ h) · n),n× (u− uRh )〉�C
= 〈n× (σ · n),n× u〉�C − 〈n× (σ · n),n× uRh 〉�C
− 〈n× (σ h · n),n× u〉�C + 〈n× (σ h · n),n× uRh 〉�C

≤ νF 〈n · (σ · n), |n× u|〉�C − νF 〈n · (σ · n), |n× uRh |〉�C
− νF 〈n · (σ h · n), |n× u|〉�C + 〈n× (σ h · n),n× uRh 〉�C ,

(3.10)

where the second equation in (3.4) and the inequality constraint in the definition of
(σ ) and h(σ h) were used. This implies

〈n× ((σ − σ h) · n),n× (u− uRh )〉�C
≤ νF 〈n · ((σ − σ h) · n), |n× u| − |n× uRh |〉�C
+ 〈n× (σ h · n),n× uRh 〉�C − νF 〈n · (σ h · n), |n× uRh |〉�C .

(3.11)

Finally, the second mixed term in (3.6) may be treated as

(tr(σ − σ h), div(u− uRh )) = (tr(σ − σ h),
1

dλ+ 2μ
tr σ − div uRh ))

= 1

dλ+ 2μ
‖tr(σ − σ h)‖2 + (tr(σ − σ h),

1

dλ+ 2μ
tr σ h − div uRh )

≥ (tr(σ − σ h),
1

dλ+ 2μ
tr σ h − div uRh ) .

(3.12)

Combining (3.7), (3.8), (3.9), and (3.11) and inserting this together with (3.12)
into (3.6) gives

μ‖Aσ h− ε(uRh )‖2 + 〈n · uRh − g,n · (σ h · n)〉�C
+ 〈n× uRh ,n× (σ h · n)〉�C − νF 〈|n× uRh |,n · (σ h · n)〉�C

≥μ‖A(σ − σ h)‖2 + μ‖ε(u− uRh )‖2 − (as σ h,∇(u− uRh ))

− νF 〈n · ((σ − σ h) · n), |n× u| − |n× uRh |〉�C
− λ

dλ+ 2μ
(tr(σ − σ h), div uRh −

1

dλ+ 2μ
tr σ h) .

(3.13)
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Our goal is to derive a computable a posteriori error estimator for ‖σ − σ h‖
from (3.13) for sufficiently small friction parameter νF . This generalizes corre-
sponding results for the first-order system least squares functional in the linear
elasticity case in [8] and the Signorini problem without friction in [2, 15]. To this
end, an “inverse triangle-type inequality”

νF ‖|n× u| − |n× uRh |‖1/2,�C ≤ γI (νF )‖n× u− n× uRh ‖1/2,�C (3.14)

is required to hold with γI being a continuous function which is independent of
h and satisfies γI (0) = 0. Such an inequality trivially holds with γI (νF ) = νF
if H 1/2(�C) is replaced by L2(�C) which occurs in the context of the regularized
friction law in [9, Chap. 8]. It can, however, not be expected to hold in H 1/2(�C)

without making additional assumptions (as will become clear from the example in
Sect. 4). In fact, in the unregularized treatment of Coulomb friction, the validity
of (3.14) would imply uniqueness of the solution of (2.3) for sufficiently small νF
which is not known, in general. In Sect. 4, we will show that (3.14) does in fact hold
under additional assumptions which are reasonable for situations like those treated
in our test cases in Sect. 5. Our assumptions on the tangential displacement trace on
�C are similar to those in the study of uniqueness in [16].

Theorem 3.1 Assume that (3.14) is satisfied. Then, for sufficiently small friction
parameter νF ,

‖σ− σ h‖ ≤ C

(

‖Aσ h − ε(uRh )‖2 + ‖ 1

dλ+ 2μ
tr σ h − div uRh ‖2

+ 〈n · uRh − g,n · (σ h · n)〉�C

+ 〈n× uRh ,n× (σ h · n)〉�C − νF 〈|n× uRh |,n · (σ h · n)〉�C
)1/2

(3.15)
holds with a constant C which is independent of λ and h.

Proof In order to derive (3.15) from (3.13), we need to use some additional
estimates. Firstly,

‖tr(σ − σ h)‖2 ≤ CD‖A(σ − σ h)‖2 (3.16)

holds with a constant CD since (σ − σ h) · n = 0 on the boundary segment �N (cf.
[7, Sect. 5]). Moreover, a Korn inequality of the type

‖∇(u− uRh )‖2 ≤ CK‖ε(u− uRh )‖2 (3.17)

holds with a constant CK due to the fact that u − uRh vanishes on the boundary
segment �D . And, finally, we can bound the antisymmetric stress in the form

‖asσ h‖ = 2μ‖asAσ h‖ = 2μ‖as(Aσ h−ε(uRh ))‖ ≤ 2μ‖Aσ h−ε(uRh )‖. (3.18)
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Using these inequalities in combination with (3.14), (3.13) leads to

μ‖A(σ − σ h)‖2 + μ‖ε(u− uRh )‖2

≤ μ‖Aσ h − ε(uRh )‖2 + 〈n · uRh − g,n · (σ h · n)〉�C
+ 〈n× uRh ,n× (σ h · n)〉�C − νF 〈|n× uRh |,n · (σ h · n)〉�C

+ 2μ2

δ1
‖Aσ h − ε(uRh )‖2 + δ1

2
CK‖ε(u− uRh )‖2

+ δ2

2
‖n · (σ − σ h) · n‖2−1/2,�C +

γI (νF )
2

2δ2
‖n× (u− uRh )‖2

1/2,�C

+ δ3

2

(

λ

dλ+ 2μ

)2

‖tr(σ − σ h)‖2 + 1

2δ3
‖div uRh −

1

dλ+ 2μ
tr σ h‖2

(3.19)

with positive numbers δ1, δ2, and δ3 to be chosen appropriately. With the trace
inequalities

‖n · ((σ − σ h) · n)‖2−1/2,�C ≤ ‖(σ − σ h) · n‖2−1/2,�C ≤ CT ‖σ − σ h‖2

‖n× (u− uRh )‖1/2,�C ≤ ‖u− uRh ‖1/2,�C ≤ CU‖ε(u− uRh )‖2

and the observation that

‖σ − σ h‖2 = ‖2μA(σ − σ h)+ λ

dλ+ 2μ
tr(σ − σ h)I‖2

≤ 8μ2‖A(σ − σ h)‖2 + 2d

(

λ

dλ+ 2μ

)2

‖tr(σ − σ h)‖2

≤
(

8μ2 + 2d

(

λ

dλ+ 2μ

)2

CD

)

‖A(σ − σ h)‖2

holds, choosing δ1, δ2, and δ3 sufficiently small finishes the proof. ��
For the displacement reconstruction, we basically adopt the approach in [18]

which itself relies on the procedure proposed in [17] as follows. From (3.1) we
obtain ∇u = Aσ + θ which means that zh = Aσ h + θh (piecewise polynomial) is
an approximate gradient and may be used as a starting point for the construction of
uRh . The displacement reconstruction is done in the following steps:

(i) For each T ∈ Th, determine u◦h
∣

∣

T
∈ Pk(T )

d , polynomial of degree k, such that

(∇u◦h,∇vh)0,T = (zh,∇vh)0,T for all vh ∈ Pk(T )
d ,

(u◦h, e)0,T = (uh, e)L2(T ) for all e ∈ P0(T )
d .

(3.20)
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(ii) A conforming reconstruction uRh is constructed by averaging,

uRh (x) =
1

#{T : x ∈ T }
∑

T :x∈T
u◦h

∣

∣

T
(x) , (3.21)

and enforcing the boundary conditions on uRh = uD on �D . If we also enforce
the complementarity conditions strongly by setting

n · uRh − g = 0 on all edges E ⊂ �C with n · (σ h · n) �= 0 ,

n× uRh = 0 on all edges E ⊂ �C with |n× (σ h · n)| �= −νFn · (σ h · n) ,
(3.22)

then the only remaining terms on the right-hand side in (3.15) are

‖Aσ h − ε(uRh )‖2 + ‖ 1

dλ+ 2μ
tr σ h − div uRh ‖2

=
∑

T ∈Th
(‖Aσ h − ε(uRh )‖2

0,T + ‖ 1

dλ+ 2μ
tr σ h − div uRh ‖2

0,T ) =:
∑

T ∈Th
η2
T ,

(3.23)

which we will use as error estimator.

4 A Norm Equivalence in H 1/2(�)

Our purpose in this section is to show that (3.14) is indeed fulfilled under certain
conditions on n × uRh which can be verified from our numerical experiments and
under certain assumptions on n × u for the exact solution. We restrict ourselves
to the two-dimensional case and assume that �C constitutes a smooth boundary
segment.

Theorem 4.1 Assume that �C contains a segment �◦C where n × uRh ≡ 0 and that
the tangential derivative satisfies

m ≤ ∂t(n× uRh ) ≤ M (or m ≤ −∂t(n× uRh ) ≤ M) uniformly on �C\�◦C , (4.1)

with positive constants m andM and |�C\�◦C | ≥ γ > 0 uniformly in h. Moreover,
assume that n× u ∈ H 1(�C) holds and that the subsets

�+C = {x ∈ �C : n× u > 0} , �−C = {x ∈ �C : n× u < 0} (4.2)
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are separated by a segment of length at least &, where n× u ≡ 0 holds. Then,

‖|n× u| − |n× uRh |‖1/2,�C ≤
CI

&1/2
‖n× u− n× uRh ‖1/2,�C (4.3)

holds with a constant CI that depends only on the ratioM/m.

Note that the assumption on n×uRh is apparently fulfilled in our numerical results
presented in Sect. 5. The proof will be based on real interpolation between L2(�C)

and H 1(�C) and the crucial part consists in showing the analogous estimate to (4.3)
in H 1(�C) which is the content of the following lemma.

Lemma 4.2 Let n×uRh satisfy the assumptions from Theorem 4.1. Then, there exists
a constant CI ≥ 0, depending only on the ratioM/m in (4.1), such that

‖|ψ | − |n× uRh |‖1,�C ≤
CI

&
‖ψ − n× uRh ‖1,�C (4.4)

holds for all ψ ∈ H 1(�C) with the property that the subsets

�+C = {x ∈ �C : ψ > 0} , �−C = {x ∈ �C : ψ < 0}

are separated by a segment of length at least &, where ψ ≡ 0 holds.

Proof Without loss of generality, we may restrict ourselves to a subset of �C ,
parametrized by x(s), s ∈ I = [0, 1] such that the function φ = (n × uRh ) ◦ x ∈
H 1(I ) vanishes on [0, ξ ]with 0 ≤ ξ ≤ 1 andm ≤ φ′(s) ≤ M for ξ < s < 1. Define
I− = {s ∈ I : ψ(s) ≤ 0} and note that for all s ∈ I\I− we have |ψ | − |φ| = ψ − φ

and therefore

‖|ψ | − |φ|‖1,I\I− = ‖ψ − φ‖1,I\I− . (4.5)

I− is the (finite) union of subintervals I (i)− = [ξ (i)− , ξ
(i)
+ ], i = 1, 2, 3, . . ., where

ψ ≤ 0 holds. We are left with showing

‖|ψ | − |φ|‖
1,I (i)−

≤ CI‖ψ − φ‖
1,I (i)−

for i = 1, 2, 3, . . . . (4.6)

For each i, we have I (i)− = I
(i)
l ∪ I (i)r such that the following holds:

φ ≡ 0 on I (i)l , m ≤ φ′ ≤ M on I (i)r and ψ ≤ 0 on I (i)− . (4.7)

The left part I (i)l of the interval may be empty. The length of the right part I (i)r ,
however, can be chosen to be either zero or at least & by our assumption on ψ and φ
if we select ξ (i)+ appropriately. This implies that



Stress-Based Methods for Variational Inequalities 455

‖|ψ | − |φ|‖2
1,I (i)−

‖ψ − φ‖2
1,I (i)−

=
‖ψ + φ‖2

1,I (i)−
‖ψ − φ‖2

1,I (i)−

=
‖ψ + φ‖2

0,I (i)−
+ ‖ψ ′ + φ′‖2

0,I (i)−
‖ψ − φ‖2

0,I (i)−
+ ‖ψ ′ − φ′‖2

0,I (i)−

, (4.8)

which we need to bound from above by a constant. The first terms in the numerator
and the denominator of (4.8) are related by

‖ψ + φ‖2
0,I (i)−

≤ ‖ψ − φ‖2
0,I (i)−

, since |ψ + φ| ≤ |ψ | + |φ| = −ψ + φ = |ψ − φ|

holds pointwise on I (i)− . The second term in the numerator may be bounded as

‖ψ ′ + φ′‖2
0,I (i)−

= ‖ψ ′ − φ′ + 2φ′‖2
0,I (i)−

≤ 2‖ψ ′ − φ′‖2
0,I (i)−

+ 8‖φ′‖2
0,I (i)−

≤ 2‖ψ ′ − φ′‖2
0,I (i)−

+8M2‖1‖2
0,I (i)r

≤ 2‖ψ ′ − φ′‖2
0,I (i)−

+ 24
M2

m2&2
‖φ‖2

0,I (i)r

≤ 2‖ψ ′ − φ′‖2
0,I (i)−

+ 24
M2

m2&2 ‖ψ − φ‖2
0,I (i)−

,

where we used the fact that φ lies above the linearly increasing function with slope
m on I (i)r . Inserting the last two estimates into (4.8) leads to

‖|ψ | − |φ|‖2
1,I (i)−

‖ψ − φ‖2
1,I (i)−

≤ max

{

1+ 24
M2

m2&2
, 2

}

= 1+ 24
M2

m2&2
, (4.9)

which completes the proof. ��
Before turning to the Proof of Theorem 4.1, let us look at an example that (4.4)

does not hold without the additional assumption on n× u.

Example Let �C be the interval [0, 1] and consider n×uRh to be the piecewise linear
function which vanishes on [0, 1/2] and is monotonically increasing from 0 to 1/2
on [1/2, 1]. With ψ being the function defined by

ψ(s) =
{−2δs , s ∈ [0, 1/2] ,
s − 1/2− δ , s ∈ [1/2, 1]

we get

‖ψ ′ − (n× uRh )
′‖2

0,�C = 2δ2 , ‖ψ − (n× uRh )‖2
0,�C =

2

3
δ2 ,

‖|ψ |′ − |n× uRh |′‖2
0,�C = 2δ2 + 4δ , ‖|ψ | − |n× uRh |‖2

0,�C =
2

3
δ2 − 2

3
δ3 .
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Therefore, the ratio

‖|ψ | − |n× uRh |‖2
1,�C

‖ψ − n× uRh ‖2
1,�C

= 3

2δ
+ 1− δ

4

becomes arbitrarily large as δ → 0.

Proof of Theorem 4.1

(i) As already indicated, the proof uses the interpretation of H 1/2(�C) as inter-
polation space [L2(�C),H

1(�C)]1/2,2 (cf. [1, Theorem 7.23]). The norm in
H 1/2(�C) is therefore given by

‖χ‖1/2,�C =
(∫ ∞

0
t−2K(t, χ)2 dt

)1/2

(4.10)

with

K(t, χ) = inf
ϑ∈H 1(�C)

(‖χ − ϑ‖0,�C + t‖ϑ‖1,�C

)

. (4.11)

We can therefore prove (4.3) by showing that

K(t, |n× u| − |n× uRh |) ≤ CI K(t,n× u− n× uRh )

holds for all t ∈ [0,∞). Equivalently, we will use

K̂(t, χ) = inf
ϑ∈H 1(�C)

(

‖χ − ϑ‖2
0,�C + t2‖ϑ‖2

1,�C

)1/2
(4.12)

and show that

K̂(t, |n× u| − |n× uRh |) ≤ CI K̂(t,n× u− n× uRh ) (4.13)

is satisfied for all t ∈ [0,∞).
(ii) For χ ∈ H 1(�C), the infimum in (4.12) is attained, for t > 0, by the solution

θχ (t) ∈ H 1(�C) of

〈θχ (t), ρ〉0,�C + t2〈θχ (t), ρ〉1,�C = 〈χ, ρ〉0,�C for all ρ ∈ H 1(�C) (4.14)

which leads to

K̂(t, χ)2 = ‖χ − θχ (t)‖2
0,�C + t2‖θχ (t)‖2

1,�C =: Qχ(t) . (4.15)
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We have θχ (0) = χ and θχ → 0 for t → ∞ which leads to Qχ(0) = 0 and
Qχ(t) → ‖χ‖2

0,�C
for t → ∞. Moreover, from (4.12) and (4.15), we deduce

that Qχ(t) is monotonically increasing in [0,∞). Differentiating (4.14) with
respect to t gives

〈θ ′χ (t), ρ〉0,�C + 2t〈θχ (t), ρ〉1,�C + t2〈θ ′χ (t), ρ〉1,�C = 0 for all ρ ∈ H 1(�C)

(4.16)

and, in particular, θ ′χ (0) = 0. Differentiating (4.15) with respect to t implies

Q′
χ (t) = 2〈χ − θχ (t), θ

′
χ (t)〉0,�C + 2t‖θχ (t)‖2

1,�C + 2t2〈θχ (t), θ ′χ (t)〉1,�C
(4.17)

leading to

Q′
χ (0) = 2〈χ − θχ (0), θ

′
χ (0)〉0,�C = 0 . (4.18)

In order to access the behavior of Qχ(t) near 0, the second derivative Q′′
χ (0) is

therefore needed. Differentiating (4.17) once more, we obtain

Q′′
χ (t) = 2〈χ − θχ (t), θ

′′
χ (t)〉0,�C − 2‖θ ′χ (t)‖2

0,�C + 2‖θχ (t)‖2
1,�C

+ 8t〈θχ (t), θ ′χ (t)〉1,�C + 2t2‖θ ′χ (t)‖2
1,�C + 2t2〈θχ (t), θ ′′χ (t)〉1,�C

(4.19)

and, in particular,

Q′′
χ (0) = 2〈χ − θχ (0), θ

′′
χ (0)〉0,�C − 2‖θ ′χ (0)‖2

0,�C + 2‖θχ (0)‖2
1,�C = 2‖χ‖2

1,�C .

(4.20)

The pointwise inverse triangle inequality gives us

lim
t→∞Q|n×u|−|n×uRh |(t) = ‖|n× u| − |n× uRh |‖2

0,�C

≤ ‖n× u− n× uRh ‖2
0,�C = lim

t→∞Qn×u−n×uRh (t)
(4.21)

and from Lemma 4.2, we deduce

Q′′
|n×u|−|n×uRh |

(0) = 2‖|n× u| − |n× uRh |‖2
1,�C

≤ 2
C2
I

&2 ‖n× u− n× uRh ‖2
1,�C =

C2
I

&2 Q
′′
n×u−n×uRh

(0) .

(4.22)
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If we define Q̃χ (s) = Qχ(s(&/CI )), then Q̃′′
χ (0) = (&/CI )

2Q′′
χ (0) and

therefore

Q̃′′
|n×u|−|n×uRh |

(0) ≤ Q′′
n×u−n×uRh

(0) ,

lim
s→∞ Q̃|n×u|−|n×uRh |(s) ≤ lim

t→∞Qn×u−n×uRh (t) .
(4.23)

This implies the existence of a constant C (independent of &) such that

Q̃|n×u|−|n×uRh |(t) ≤ CQn×u−n×uRh (t) for all t ∈ [0,∞) (4.24)

holds leading to

‖|n× u| − |n× uRh |‖2
1/2,�C =

∫ ∞

0
t−2Q|n×u|−|n×uRh |(t) dt

=
∫ ∞

0

(

&

CI
s

)−2

Q|n×u|−|n×uRh |(
&

CI
s)

&

CI
ds

= CI

&

∫ ∞

0
s−2Q̃|n×u|−|n×uRh |(s) ds

≤ CIC

&

∫ ∞

0
s−2Qn×u−n×uRh (s) ds =

CIC

&
‖n× u− n× uRh ‖2

1/2,�C

(4.25)

which completes the proof. ��
The assumptions on n × uRh can be checked numerically, and they do indeed

hold in our numerical examples in Sect. 5. The restriction to situations for which the
solution satisfies n × u ∈ H 1(�C) is certainly an unpleasant limitation. However,
this is justified, at least for the test examples in Sect. 5, by the behavior of n × uRh
in our numerical experiments. The assumption on n × u vanishing on a segment
of length & between sign changes is physically reasonable and corresponds to the
sign change of the tangential traction force due to friction. Such an assumption also
occurs in the uniqueness study for contact with Coulomb friction in [16] and is used
for finite element error analysis in [12]. In order to deduce the assumption γI (0) = 0
from the simple upper bound

γI (νF ) ≤ CI
νF

&1/2 (4.26)

obtained from (3.14) and Theorem 4.1, we would need to have & ≈ ν2−ε
F as νF → 0

with ε > 0. The actual dependence of & on νF is expected to depend on the geometry
of the domain and of the obstacle considered. From the numerical evidence, it seems
that this dependence is not quite reached in our test example. We may, however, still
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achieve (3.14) with γI (0) by the introduction of an approximation ũ ∈ H 1/2(�C)

such that n × ũ does indeed vanish on an interval of length & ≈ ν2−ε
F and ‖n ×

ũ − n × u‖1/2,�C ≤ CνF ‖n × u‖1/2,�C holds. From the symmetry in this special
situation, we may actually deduce that (3.14) is fulfilled with γI (νF ) = νF if the
sticky zone around the lowest part of the half-disk is adequately resolved. We will
perform adaptive finite element computations with the error estimator from Sect. 3
and obtain good results even for rather large friction coefficients νF as we shall see
in the next section.

We also want to remark that the three-dimensional situation with �C being a
surface area appears to be considerably more complicated. The derivation of a three-
dimensional analogue to Theorem 4.1 is the object of our current investigation.

5 Numerical Experiments

In this section, we present some results achieved by the numerical implementation
of the discussed finite element method combined with the reconstruction based error
estimator and the following adaptive mesh refinement strategy. A Dörfler marking
strategy is applied, which consists of finding the smallest set of triangles T̃h ⊂ Th
such that

∑

T ∈T̃h
η2
T ≥ θ2

∑

T ∈Th
η2
T (5.1)

holds for a chosen parameter θ . All triangles in this set are then refined as well as
those adjacent triangles necessary to avoid hanging nodes.

Example 1 (Hertzian Contact - Half-Disk on Line) In this first example, we
consider the domain � of the lower half-disk with center at the origin and radius
R = 0.5. The shear modulus μ is scaled to 1 and the coefficient of friction
νF equals 0.4. Both the compressible case with Lamé parameter λ ≈ 1.27 and
the incompressible case (λ = ∞) will be treated. The body is constrained by a
rigid foundation represented by the horizontal line at y = −0.5, and the potential

contact boundary is �C :=
{

R(cos(ϕ), sin(ϕ)) : ϕ ∈ ( 4
3π,

5
3π)

}

. Displacement on

�D := (−R,R)× {0} is prescribed by uD = (0,−0.01) while the volume forces f
on � are set to zero.

Table 1 shows the results of the compressible case on a sequence of adaptively
refined triangulations obtained with Dörfler parameter θ = 0.8. Table 2 represents
the incompressible case. The number of active constraints for the conditions on the
normal and tangential boundary stress are denoted by An and At , respectively. The
number for the tangential constraint increases faster in the compressible case due to
the smaller sticky zone. Since the displacement was reconstructed in a way such that
the boundary terms of the error estimator vanished, we did not list them in the table.
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Table 1 Results for Example 1 (compressible case)

l dimh dimZh dimXh ‖Aσ h − ε(uRh )‖2 An At

0 3624 2166 205 7.499e− 07 16 18

1 3748 2238 212 3.080e− 07 16 20

2 4248 2532 239 1.217e− 07 22 30

3 5016 2982 281 4.873e− 08 30 46

4 7052 4194 390 1.259e− 08 38 60

5 11, 440 6804 619 4.688e− 09 50 86

6 20, 576 12, 252 1092 1.518e− 09 80 136

7 37, 256 22, 206 1960 5.641e− 10 104 203

8 65, 064 38, 814 3389 2.082e− 10 136 318

9 112, 692 67, 230 5851 8.306e− 11 172 527

10 185, 508 110, 628 9615 3.426e− 11 216 905

Table 2 Results for Example 1 (incompressible case)

dim h dimZh dimXh ‖Aσ h−ε(uRh )‖2 ‖div uRh ‖2 An At

3624 2166 205 1.248e− 06 5.817e− 07 16 16

3932 2346 222 3.325e− 07 1.799e− 07 20 22

4632 2760 263 1.057e− 07 5.936e− 08 24 24

6540 3894 364 4.216e− 08 2.398e− 08 32 34

8912 5298 491 2.058e− 08 1.274e− 08 38 40

13, 972 8304 756 9.898e− 09 5.913e− 09 52 56

22, 644 13, 452 1218 4.676e− 09 2.888e− 09 62 70

37, 444 22, 248 1997 2.108e− 09 1.356e− 09 82 98

61, 156 36, 324 3250 9.428e− 10 5.825e− 10 102 132

98, 640 58, 530 5237 4.322e− 10 2.563e− 10 116 162

162, 852 96, 534 8656 2.063e− 10 1.265e− 10 160 233

If one chooses not to impose boundary conditions on n× uRh , the frictional terms in
the error estimator will not vanish but the resulting refinement and convergence are
comparable.

Figure 1 depicts the initial and deformed configurations of the compressible case
after 5 steps of adaptive refinement. The deformed configuration is obtained using
the reconstructed displacement uRh . Besides the contact zone refinement concen-
trates at the corner singularities. In the contact zone, the refinement concentrates at
the transition points from stick to slip and from contact to separation as can be seen
in Fig. 2.

The surface forces in the highly resolved contact zone (10 adaptive refinements)
as well as the corresponding reconstructed displacements are shown in Fig. 3. In the
incompressible case, the interval where contact occurs is only slightly larger than in
the compressible case while the sticky zone is much larger. Also the magnitude of
the contact pressure is increased by approximately 45%. Another interesting feature
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Fig. 1 Example 1: Reference and deformed configuration (compressible case)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
-1

-0.5

0

0.5

1
no contact
slip
stick

Fig. 2 Example 1: Right half of contact zone after 10 refinement steps (compressible case)

which can be observed in the incompressible case is that the shear stress changes its
sign twice in the sticky part. We suspect this to be due to the material’s resistance to
volume change, causing it to want to move away from the central point of contact
at (0, −0.5) but being constrained by friction. Further away from the central point
of contact, the body tends to slide inward and the sign of the constraining frictional
shear stress changes. It then increases until sliding occurs. This behavior can best be
captured with an adequately high resolution in the contact zone which is provided
by the adaptive refinement strategy.

A comparison of the reduction of η for uniform and adaptive refinement is given
in Fig. 4. Even though the convergence behavior for adaptive refinement is clearly
better than for uniform refinement, the optimal convergence behavior achievable
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Fig. 3 Example 1: Stress and displacement in contact zone (dashed lines for incompressible case)
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Fig. 4 Example 1: Adaptive vs. uniform refinement
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Fig. 5 Example 2: Reference and deformed configurations (incompressible case)

η ∼ N−1
h (for Nh being the number of degrees of freedom) is almost, but not

quite, reached. As the second example illustrates this is probably due to the curved
boundary being resolved only by a piecewise linear curve. For optimal convergence
rates, it would be necessary to use a piecewise quadratic approximation of the
boundary and parametric Raviart–Thomas elements for the stress approximation
(cf. [3]).

Example 2 (Hertzian Contact - Rectangle on Semicircle) Our next example is
basically the situation from the first one flipped upside down. The body of interest
is now a rectangle with length 2R and width R while the rigid foundation takes
the shape of a semicircle with radius R. Material, friction, and Dörfler parameters
as well as Dirichlet data are the same as in Example 1. Initial and deformed
configurations of the incompressible case after 5 refinement steps are depicted in
Fig. 5. Looking at the stresses and displacements in the contact zone we observe
that, while the behavior in the compressible case is comparable to the results in
Example 1, the incompressible case provides a notable qualitative difference: The
sign of the shear stress changes only once but is completely reversed compared to
the compressible case as can be seen in Fig. 6. Figure 7 presents again a comparison
of the reduction of η for uniform and adaptive refinement, where now the optimal
rate η ∼ N−1

h is achieved, illustrating the efficiency of our error estimator. The
detailed numerical results are summarized in Tables 3 and 4.
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Fig. 6 Example 2: Stress and displacement in contact zone (dashed lines for incompressible case)
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Table 3 Results for Example 2 (compressible case)

l dimh dimZh dimXh ‖Aσ h − ε(uRh )‖2 An At

0 4552 2712 253 7.939e− 07 30 32

1 4716 2808 262 2.500e− 07 32 36

2 5376 3198 297 6.619e− 08 38 44

3 7040 4182 387 2.090e− 08 48 64

4 10, 388 6180 560 6.300e− 09 56 76

5 19, 124 11, 382 1012 2.096e− 09 96 126

6 34, 964 20, 862 1830 6.715e− 10 118 158

7 62, 760 37, 488 3245 2.261e− 10 179 246

8 116, 832 69, 876 5996 7.291e− 11 232 316

9 202, 036 120, 942 10, 302 2.517e− 11 292 408

Table 4 Results for Example 2 (incompressible case)

dimh dimZh dimXh ‖Aσ h − ε(uRh )‖2 ‖div uRh ‖2 An At

4552 2712 253 1.317e− 06 5.700e− 07 30 30

4788 2850 266 4.766e− 07 2.256e− 07 32 32

5644 3354 313 1.688e− 07 1.088e− 07 38 42

7132 4236 393 5.969e− 08 4.310e− 08 46 50

9752 5796 531 2.538e− 08 1.905e− 08 54 64

15, 700 9336 842 1.103e− 08 8.442e− 09 86 97

26, 228 15, 642 1389 4.556e− 09 3.569e− 09 98 112

42, 464 25, 350 2220 1.896e− 09 1.461e− 09 130 152

66, 088 39, 492 3425 8.340e− 10 6.464e− 10 162 190

102, 312 61, 200 5270 3.647e− 10 2.847e− 10 188 220

158, 872 95, 082 8133 1.578e− 10 1.221e− 10 248 294

Acknowledgments We thank the anonymous reviewer for helpful suggestions. In particular, we
are grateful for pointing out a gap in an earlier version of the Proof of Theorem 4.1.
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as well as by stochastic versions of (VI), see (VIs) below. Here, � ⊆ R
d is a

bounded open domain and Kψ denotes the closed convex set Kψ := {z ∈ H 1
0 (�) :

z ≥ ψ q.e. on �}, where ψ is a given quasi upper-semicontinuous obstacle such
that Kψ �= ∅. Additional regularity assumptions on ψ are stated if necessary.
The abbreviation “q.e.” stands for “quasi-everywhere” and will be used frequently
in this paper. It describes that the respective property holds everywhere except
on a subset of � which has capacity zero. For the notion of capacity and the
corresponding definitions, we refer the reader to, e.g., [1, 2, 8, 21]. Furthermore,L ∈
L(H 1

0 (�),H
−1(�)) is a coercive and T-monotone operator. The operator F : U →

H−1(�) is assumed to be Lipschitz continuous on bounded sets, continuously
differentiable, and monotone, defined on a partially ordered Banach space U .
The precise assumptions on the space U are given in Sect. 5, prototypes include
U = L2(�), U = H−1(�), or U = R

n. Due to the operator F and the assumptions
on U , the variational inequality (VI) represents a general class of obstacle problems.
It is well known that for each u ∈ U the variational inequality (VI) has a unique
solution. We denote the solution operator by SF : U → H 1

0 (�). If F is the identity
map on H−1(�), we omit the subscript and write S : H−1(�)→ H 1

0 (�).
We consider the following optimal control problem governed by (VI):

min
u∈Uad

J (Sι(u))+ α
2 ‖u‖2

U , (P)

where Uad ⊂ U is a closed convex subset of the Hilbert space U , J : H 1
0 (�)→ R is

the objective function, and ι ∈ L(U,H−1(�)) is a compact and injective operator.
Here, Sι denotes the solution operator of (VI) when choosing F = ι.

The nonconvexity and nondifferentiability of the solution operator Sι require the
application of nonsmooth optimization methods. An alternative is to view the VI as
a constraint, which results in a mathematical program with equilibrium constraints
(MPEC). Most methods for MPECs use regularization or smoothing; we refer to
[39] for a survey of numerical methods for the optimal control of elliptic variational
inequalities.

Here, we propose to use a variant of the bundle method developed in [22] which
is tailored for this use. This method is posed in an appropriate function space setting
and can handle inexact function values, inexact subgradients, and inexact solutions
of the bundle subproblem. We extend the method of [22], allowing for quite general
sets of approximate subgradients. Furthermore, we provide a global convergence
result for general locally Lipschitz functions, provided there exists a subsequence
of iterations in which the new model is sufficiently much improved over the old
model (cf. Theorem 2.6). To ensure this, one usually requires approximate convexity
[22, 31] or semismoothness [28]. Our generalization is motivated by the fact that,
in general, there can exist points where these properties do not hold. Already in
finite dimensions, there is not much literature on bundle methods for nonconvex
optimization with inexact function values and subgradients [19, 27, 31]. Our work
in this paper and in [22] is inspired by Noll [31] and seems to be the only inexact
bundle method for infinite dimensional nonconvex problems.
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The bundle method requires an approximate subgradient of the reduced objective
function in each iteration. Therefore, we derive a formula for an element of a
generalized differential for the solution operator of the obstacle problem in each
point in U , from which a Clarke subgradient for the reduced objective function can
be extracted. The generalized derivative that we construct for the solution operator
SF of (VI) in an arbitrary u ∈ U is the operator �F (u; ·) ∈ L(U,H 1

0 (�)), where
�F (u;h) = η solves

Find η ∈ H 1
0 (I (u)), 〈Lη − F ′(u;h), z〉H−1(�),H 1

0 (�)
= 0 for all z ∈ H 1

0 (I (u)).

(1.1)

Here, I (u) := {ω ∈ � : SF (u)(ω) > ψ(ω)} is the inactive set, which is a quasi-
open subset of � and H 1

0 (I (u)) = {v ∈ H 1
0 (�) : v = 0 q.e. outside I (u)} is a

closed subspace of H 1
0 (�). The variational equation (1.1) is also a characterization

of the directional derivative in points where SF is Gâteaux differentiable. In such
points, (1.1) is obtained from the variational inequality for the directional derivative
of SF established by Mignot [29]. Since the generalized differentials we consider for
SF contain limits of Gâteaux derivatives w.r.t. certain topologies in points (un)n∈N
converging to u, we derive the generalized derivative by pursuing a convergence
analysis for such problems considering appropriate sequences (un)n∈N. We are not
aware of any work that establishes generalized derivatives for the solution operator
of (VI) in infinite dimensions apart from our presentation in this paper and in [35].
For the case that F is the identity mapping on H−1(�), a characterization of the
entire generalized differential is possible. We review the results of [36] for this
problem.

We also are interested in the optimal control of the stochastic obstacle problem.
Let (3,A, P ) be a probability space and denote by Y := L2(3,H 1

0 (�)) the
Bochner space of square integrable functions with values in H 1

0 (�) (cf. [24, Def.
1.2.15]). The stochastic obstacle problem (VIs) is given by the variational inequality

Find y ∈ Kψ , 〈Ly− b, z− y〉Y∗,Y ≥ 0 for all z ∈ Kψ , (VIs)

where L ∈ L(Y,Y∗), b ∈ Y∗, ψ ∈ Ȳ := L2(3,H 1(�)) and

Kψ := {y ∈ Y : y(ξ) ∈ Kψξ for P -almost all (P -a.a.) ξ ∈ 3}. (1.2)

For the rest of this paper, bold notation refers to the variables in the stochastic
setting, whereas non-bold variables refer to the deterministic setting. Under suitable
assumptions on the data, cf. Sect. 7, the Lions–Stampacchia theorem [26, Thm.
2.1] implies that the stochastic obstacle problem admits a unique solution and the
solution operator S : Y∗ → Y is Lipschitz continuous (cf. Theorem 7.3). For
P -a.e. ξ ∈ 3, this defines the operators Sξ : Z = H−1(�) → H 1

0 (�) via
Sξ (z) := S(ι̂z)(ξ), where (ι̂z)(ξ) := z, z ∈ H−1(�). We study the following class
of optimal control problems for the stochastic obstacle problem:
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min
u∈Uad

E
[

Jξ (Sξ (ιu))
]+ α

2 ‖u‖2
U , (Ps)

where Jξ : H 1
0 (�) → R is the parametric objective function such that ξ �→

Jξ (Sξ (z)) is integrable for all z ∈ H−1(�), E
[

Jξ (Sξ (·))
]

is locally Lipschitz and
E denotes the expectation with respect to ξ . The goal is to find a Clarke-stationary
point, i.e. a point ū ∈ U which satisfies

0 ∈ ∂C(E
[

Jξ (Sξ (ι(·)))
]

)(ū)+ αū+NUad(ū), (1.3)

where ∂C denotes Clarke’s subdifferential. The chain rule [11, Thm. 2.3.10] implies
that

∂C(E
[

Jξ (Sξ (ι(·)))
]

)(u) ⊂ ι∗∂C(E
[

Jξ (Sξ (·))
]

)(ιu) for P -a.e. ξ ∈ 3 and all u ∈ U.

If Jξ ◦Sξ or−Jξ ◦Sξ is regular at ιu in the sense of Clarke (cf. [11, Def. 2.3.4]), then
equality holds at this point. Under suitable assumptions, [11, Thm. 2.7.2] implies

∂C(E
[

Jξ (Sξ (·))
]

)(z) ⊂ E
[

∂C(Jξ (Sξ (·)))(z)
]

for all z ∈ Z

with equality if Jξ ◦ Sξ or −Jξ ◦ Sξ is regular at z for each ξ ∈ 3. Here, the set
E

[

∂C(Jξ (Sξ (·)))(z)
] ⊂ Z∗ is defined as

{E [g(ξ)] : g ∈ L1(3,Z∗) is a measurable selection of ∂C(Jξ (Sξ (·)))(z)}.
(1.4)

This formula allows to reuse the subgradients (1.1) of the deterministic problem.
However, the reduced objective function might not be regular at all admissible
points. In this case, the available calculus rules for the Clarke subdifferential, which
often take the form of inclusions, make it difficult to calculate the subdifferential
∂C(E

[

Jξ (Sξ (ι(·)))
]

)(ū). Thus, we search for weak stationary points (cf. [43]), i.e.
points ū ∈ U which fulfill

0 ∈ ι∗E
[

∂C(Jξ (Sξ (·)))(ιū)
]+ αū+NUad(ū). (1.5)

However, under additional assumptions on the regularity of the data, in Sect. 7.4,
we give a formula for exact subgradients g ∈ ∂C(E

[

Jξ (Sξ (ι(·)))
]

)(ū).
The rest of the paper is organized as follows: In Sect. 2 we present a variant of the

bundle method of [22] to solve both problems (P) and (Ps). In Sect. 3, we introduce
sets of generalized derivatives that will be used in this article for operators between
infinite dimensional spaces. Section 4 deals with the obstacle problem (VI) and its
properties, in particular, properties concerning monotonicity and differentiability.
We derive a formula for a generalized derivative for the solution operator of the
obstacle problem in Sect. 5. In Sect. 6, characterizations of the entire generalized
differentials are established for an easier instance of the obstacle problem. In Sect. 7
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we discuss the stochastic obstacle problem and derive both formulas for exact
subgradients g ∈ ∂C(E

[

Jξ (Sξ (ι(·)))
]

)(ū) as well as conditions under which the
weak subgradients g ∈ ι∗E

[

∂C(Jξ (Sξ (·)))(ιū)
]

can be used in the bundle method.

2 Inexact Bundle Method

Since the optimal control problems (P) and (Ps) for the deterministic and stochastic
obstacle problem are nonsmooth, nonconvex optimization problems in Hilbert
spaces, we employ a tailored bundle method to solve them. We adopt the approach
of [22], which itself draws from ideas in [31], to the given setting. In particular,
we allow for more general choices of approximate subgradients, and we outline a
convergence theory for functions which are not approximately convex. Our problem
setting is as follows:

min
u∈U f (u)+ w(u) s.t. u ∈ F ,

where f (u) corresponds to the cost term involving the state and w(u) to the
regularization term. The feasible set F ⊂ U is nonempty, closed, convex, and U

is a Hilbert space. The function f : FU → R, FU ⊃ F convex and open in U , has
the form f = p ◦ ι. Here ι ∈ L(U,Z) is a compact and injective operator into the
Hilbert space Z and p : FZ → R is Lipschitz on bounded sets with FZ ⊂ Z convex
and open, ι(FU) ⊂ FZ . Further, let w : FU → R be continuously differentiable,
Lipschitz on bounded sets, and μ-strongly convex, μ > 0, i.e., for all u ∈ U with
w(u) <∞ there holds

w(u+ s)− w(u) ≥ 〈w′(u), s〉U∗, U + μ
2 ‖s‖2

U for all s ∈ U.

Note that this implies that w is also weakly sequentially lower semicontinuous.
This setting is applicable to a quite comprehensive class of optimal control

problems, in particular, it includes both optimal control problems (P) and (Ps) by
setting w := α

2 ‖ · ‖U , F := Uad, Z := H−1(�), p := J (S(·)), f := J (Sι(·)), or
for the stochastic problem p := E

[

Jξ (Sξ (·))
]

, f := E
[

Jξ (Sξ (ι(·)))
]

.
To find stationary points, bundle methods use subgradient information to build

a local model of the nonsmooth part p around the current iterate ιu. Usually, a
subgradient g at a point ιu ∈ Z is an element of a subdifferential G(ιu) ⊂ Z∗
such as Clarke’s subdifferential G(ιu) = ∂Cp(ιu) or the convex subdifferential
G(ιu) = ∂p(ιu) if p is convex. However, in certain situations it might not be
possible to calculate such an element. Therefore, we pose minimal requirements
that a multifunction G : Z ⇒ Z∗ has to fulfill for being a suitable approximate
subdifferential (cf. Assumption 2.1). The multifunction G then also appears in the
stationarity condition of our convergence result.
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Bundle methods often require a certain regularity of the objective function f

beyond Lipschitz continuity. For example, in [28] the objective function is assumed
to be semismooth while in [22, 31] approximate convexity [13] is required (being
related to the lower C1 property). These assumptions are needed to ensure that all
possible subgradients in a neighborhood of the serious iterate improve the quality
of the local model. However, for convergence of the algorithm, it is sufficient that
the computed subgradients improve the local model. We thus introduce a measure
for the quality of the local model, cf. (2.13). Depending on this measure, we prove
convergence to approximate stationary points in Theorem 2.6. This concept also
justifies why the bundle method often returns good results, even when applied to
problems which do not satisfy regularity beyond Lipschitz continuity. To increase
the flexibility of the algorithm, we also allow for subgradients to be drawn at
arbitrary points in a neighborhood of the trial iterate. This implies that there always
exists a model with sufficiently high quality to guarantee convergence to stationary
points (cf. Remark 2.7).

The general procedure of the bundle method is as follows: In outer iteration j and
inner iteration k, a finite set Mj,k of affine linear functions, called cutting planes, is
selected. The convex function φj,k := max{m(·) : m ∈Mj,k} is chosen as the local
model of f at the serious iterate uj . The bundle method subproblem is given by

min
y∈F

φj,k(y)+ w(y)+ 1
2 〈(Qj + τj,kE)ι(y − uj ), ι(y − uj )〉Z∗, Z.

Here, τj,k > 0 is the proximity parameter, Qj ∈ L(Z,Z∗) may represent curvature
information of p at uj , and E ∈ L(Z,Z∗) denotes the Riesz map. τj,k and Qj

are chosen such that the third term in the cost function of the bundle subproblem is
strictly convex w.r.t. y, cf. Sect. 2.3. The unique minimizer of the subproblem yj,k is
called inner iterate. Often it is difficult or impossible to calculate an exact solution
of the bundle method subproblem. Therefore, we introduce the trial iterate ỹj,k as
an approximation of yj,k . If this trial iterate ỹj,k fulfills a certain decrease condition,
it is accepted as the new serious iterate uj+1 and the inner loop is terminated.
Otherwise, a new cutting plane is selected which enriches the old model. If the new
model is not sufficiently improved, the proximity parameter is increased to gather
more cutting plane information close to the serious iterate uj . Then the next inner
iteration is started.

When the j index is clear from the context, we often drop this index and refer to
the quantities introduced above by u, φk , Mk , Q, τk , yk , and ỹk , respectively.

2.1 Trial Iterates, Function Values, and Subgradients

Typically, bundle methods use function values and subgradients (or approximations
thereof) to build a model of the objective function. In this paper, we work with a
general concept of approximate function values and subgradients. Given a point
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yk ∈ F , we need to find a point ỹk , called trial iterate, in a neighborhood of
yk at which we can compute a function value approximation and an approximate
subgradient. The trial iterate ỹk has to satisfy

ỹk ∈ B̄U (yk, R) ∩ F and ‖ι(ỹk − yk)‖Z ≤ min{M‖ι(yk − u)‖Z, ak}, (2.1)

where R,M ≥ 0 are fixed constants and (ak)k∈N ⊂ R is a forcing sequence such
that ak → 0 as k → ∞. Furthermore, ỹk needs to achieve at least a fraction 0 <

θ < 1 of the model reduction provided by yk:

�k(u)−�k(ỹk) ≥ θ (�k(u)−�k(yk)) . (2.2)

A function value approximation fỹk ∈ R of f (ỹk) is assumed to fulfill

|fỹk − f (ỹk)| ≤ �, where � > 0 is a constant. (2.3)

Similar to the trial iterate we introduce the point vk ∈ B̄U (yk, R̂) ∩ F , R̂ ≥ 0,
called subgradient base point, at which approximate subgradients are drawn. The
enlargement of the set of points at which subgradients can be obtained might be
helpful to find new subgradients which improve the local model. However, although
it is possible to draw subgradients at points vk , which can be far away from the
trial iterate ỹk , these subgradients might not be useful. See also Remark 2.7 for a
discussion on this topic. Denote by V ⊂ U the set of all subgradient base points. We
define an approximate subgradient of the function p at the point v ∈ V̂ := cl ι(V)
as an element g̃ ∈ G(v), where G fulfills:

Assumption 2.1 The multifunction G : V̂ ⇒ Z∗ has the following properties:

1. For all v ∈ V̂ , the image G(v) is nonempty and convex.
2. For all bounded sets B ⊂ Z, the set G(B ∩ V̂) := ∪

v∈B∩V̂G(v) is bounded in
Z∗.

3. G has a weakly closed graph, i.e., for all sequences (vn)n∈N ⊂ V̂ and (gn)n∈N ⊂
Z∗ such that vn → v̄ in Z, gn ⇀ g in Z∗ and gn ∈ G(vn) ∀n ∈ N, it holds
g ∈ G(v̄).

These are exactly the requirements on the subgradients needed to prove con-
vergence of the bundle algorithm. In Sect. 7.2, we show that (1.4) fulfills this
assumption.

Remark 2.2 For a function p : Z → R that is Lipschitz on bounded sets, Clarke’s
differential ∂Cp : Z ⇒ Z∗ satisfies Assumption 2.1. This follows from [11, Prop.
2.1.2 and Prop. 2.1.5]. In [22], G = ∂Cp + C is used, where C ⊂ Z∗ is a closed
convex set with 0 ∈ C.
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2.2 The Cutting Plane Model

For u, ỹ, v ∈ U and g̃ ∈ Z∗ define the downshift sỹ,v,g̃,u ∈ R, the tangent tỹ,g̃,u :
U → R, and the downshifted tangent mỹ,v,g̃ (·, u) : U → R by

sỹ,v,g̃,u := [fỹ + 〈g̃, ι(u− ỹ)〉Z∗, Z − fu]+ + c‖ι(v − u)‖2
Z,

tỹ,g̃,u(·) := fỹ + 〈g̃, ι(· − ỹ)〉Z∗, Z, mỹ,v,g̃ (·, u) := tỹ,g̃,u(·)− sỹ,v,g̃,u.
(2.4)

Here, the downshift parameter c > 0 is fixed. At the serious iterate u we compute
the exactness subgradient g̃0 ∈ G(ι(u)) and define the exactness plane m0(·, u) :
U → R by

m0(·, u) := mu,u,g̃0(·, u) = fu + 〈g̃0, ι(· − u)〉Z∗, Z.

Let Bk denote the set of all bundle information of previous iterations (including all
information in previous outer iterations), i.e. all triples of the form (ỹk, vk, g̃k)where
ỹk , vk , and g̃k are the trial iterate, the base point, and the subgradient of iteration k.
Let Dk denote the set of previous downshifted tangents:

Dk := {mỹ,v,g̃ (·, u) : (ỹ, v, g̃) ∈ Bk}. (2.5)

We choose a finite subset Mk of co Dk (co = convex hull) to build the cutting
plane model φk : U → R by

φk(y) := max{m(y) : m ∈Mk}.

Choosing Mk+1 = {mν(·, u), ν = 0, . . . , k} yields the full model

φfull
k+1 := max{mν(·, u), ν = 0, . . . , k}.

However, large k might lead to an expensive cutting plane model. Therefore, we
allow Mk ⊂ co Dk to be chosen according to Assumption 2.3 below.

2.3 Proximity Control

If there is curvature information of p : Z → R around ι(u) available, we want
to incorporate this into the model. Fix the constants 0 < q

¯
< q̄ and denote by

E ∈ L(Z,Z∗), Ev = (v, ·)Z , the Riesz map. We assume that Q ∈ L(Z,Z∗) and
q ∈ (q

¯
, q̄) are chosen such that
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〈(Q + qE)v, v〉Z∗, Z ≥ q
¯
‖v‖2

Z for all v ∈ Z and ‖Q‖L(Z,Z∗) ≤ q̄,

(2.6)

and that Q is symmetric, i.e., 〈Qx, y〉Z∗, Z = 〈Qy, x〉Z∗, Z for all x, y ∈ Z. For any
proximity parameter τ ≥ q, the positive definite symmetric bilinear form 〈(Q +
τE) ·, ·〉Z∗, Z defines a norm on Z via ‖ · ‖2

Q+τE := 〈(Q + τE) ·, ·〉Z∗, Z.

2.4 The Subproblem of the Bundle Method

The subproblem of the bundle method is given by

min
y∈F

�k(y) := φk(y)+ w(y)+ 1
2‖ι(y − u)‖2

Q+τkE. (2.7)

Since �k is strongly convex on F , this problem has a unique minimum yk ∈ F
which is called inner iterate. Denote the indicator function of F by δF : U →
R ∪ {∞}. We define the local model �k : U → R ∪ {∞} via �k := φk + w + δF .
The sum rule of convex analysis [5, Cor. 16.50] can be applied and yields ∂�k =
∂φk+w′+NF , where NF = ∂δF is the normal cone of F and ∂ denotes the convex
subdifferential. The fact that yk minimizes the subproblem of the bundle method can
equivalently be expressed as

0 ∈ ∂(�k + 1
2‖ι(· − u)‖2

Q+τkE)(yk)

= ∂φk(yk)+ w′(yk)+NF (yk)+ ι∗(Q + τkE)ι(yk − u).

Therefore there exist elements g∗k ∈ ∂φk(yk) and nk ∈ NF (yk) such that

ek := ι∗(Q + τkE)ι(u− yk) = g∗k + w′(yk)+ nk ∈ ∂�k(yk). (2.8)

For m ∈ Mk denote by gm := m′(0) ∈ U∗ the derivative of the affine linear
function m : U → R. As the set Mk is finite, by Clarke [11, Prop. 2.3.12] it holds
for all y ∈ U that

∂φk(y) = co {gm : m ∈Mk, m(y) = φk(y)}. (2.9)

Since g∗k ∈ ∂φk(yk), there exist numbers λm ≥ 0 with
∑

m∈Mk
λm = 1 and g∗k =

∑

m∈Mk
λmgm. We define the aggregate cutting plane m∗k ∈ co Dk by

m∗k(·, u) :=
∑

m∈Mk

λmm(·). (2.10)

For the convergence analysis we only require the following properties of the models
φk:
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Assumption 2.3 For each k ≥ 0 the set Mk+1 ⊂ co Dk+1 is chosen such that

a) m0(·, u) ≤ φk+1(·), b) m∗k(·, u) ≤ φk+1(·), (2.11)

where we set m∗0(·, u) := m0(·, u).
In Algorithm 1, the inexact bundle method is presented.

Algorithm 1: Inexact bundle method
Parameters : 0 < γ < γ̃ < 1, 0 < θ < 1, � > 0, R > 0, M > 0, 0 < q

¯
< q̄ ≤ T . Forcing

sequence (ak)k∈N, gradient approximation multifunction G : F ⇒ Z∗ fulfilling
Assumption 2.1.

Initialization: Choose an initial iterate u1 ∈ F and function value approximation fuj ∈
B̄(f (uj ),�).

1 for j = 1, . . . do
2 Compute g̃0 ∈ G(ι(uj )) and set Juj = fuj + w(uj ). Choose a symmetric operator Qj ∈

L(Z,Z∗) and qj ∈ (q
¯
, q̄) satisfying (2.6). Choose τ1 ∈ [qj , T ]. Set m0(·, uj ) = fuj +〈g̃j,0, ι(· − uj )〉Z∗, Z and �1 = m0(·, uj )+ w.

3 for k = 1, . . . do
4 Trial iterate generation. Define the inner iterate yk by

yk := arg min
y∈F φk(y)+ w(y)+ 1

2‖ι(y − uj )‖2
Qj+τkE.

5 Find a trial iterate ỹk ∈ B̄U (yk, R) ∩ F which fulfills (2.1) and (2.2). Compute fỹk ∈
B̄(f (ỹk),�) and set Jỹk = fỹk + w(ỹk).

6 Stop if ỹk = uj .
7 Acceptance test. Set

ρk =
Juj − Jỹk

Juj −�k(ỹk)
.

8 if ρk ≥ γ then
9 Set uj+1 = ỹk , fuj+1 = fỹk and quit the inner loop.

10 end
11 Update local model. Enrich the set of bundle information Bk+1 by computing a function

value approximation fỹk at the trial iterate and a subgradient g̃k ∈ G(vk) at the base
point vk . Possibly add more bundle information to Bk+1. Possibly delete or aggregate
old cutting planes such that the new cutting planes Mk+1 fulfill (2.11). Set �k+1 =
max{m : m ∈Mk+1} + w.

12 Update proximity parameter. Set ρ̃k = Juj −�k+1(ỹk )

Juj −�k(ỹk)
and update

τk+1 =
{

2τk if ρ̃k ≥ γ̃

τk if ρ̃k < γ̃
.

13 end
14 end
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2.5 Global Convergence Result

Definition 2.4 A point ū ∈ U is called ε-stationary, ε ≥ 0, if 0 ∈ w′(ū)+NF (ū)+
ι∗(G(ι(ū))+ B̄Z∗(0, ε)). A point which is 0-stationary is called stationary.

Remark 2.5 If G = ∂Cp is the Clarke subdifferential and p or −p is regular at ιū,
the chain rule [11, Thm. 2.3.10] implies that ∂Cf (ū) = ι∗∂Cp(ιū) and stationarity
is equivalent to 0 ∈ ∂Cf (ū)+ w′(ū)+NF (ū).

For each “bad” iteration (j, k), i.e. (we return to double indexing)

ρj,k < γ and ρ̃j,k ≥ γ̃ , (2.12)

define the accuracy measure

εj,k :=
Jỹj,k −�j,k+1(ỹj,k)

‖ι(ỹj,k − uj )‖Z . (2.13)

Theorem 2.6 (Convergence of the Bundle Method) Let the initial point u1 ∈ F
be such that F1 := {x ∈ F : J (x) ≤ J (u1)+ 2�} is bounded in U and define εj,k
as in (2.13).

1. If Algorithm 1 produces only finitely many serious iterates and the sequence
of proximity parameters (τk)k is bounded, then the last serious iterate u is
stationary.

2. If Algorithm 1 produces only finitely many serious iterates and (τk)k is
unbounded, then there exists a subsequence of iterations ((j, ki))i∈N of the
type (2.12) such that τj,ki → ∞, ỹj,ki ⇀ u and u is ε-stationary with
ε = (M + 1)/(θ(γ̃ − γ )) lim infi εj,ki .

3. If Algorithm 1 generates infinitely many serious iterates, (uji )i∈N is a subse-
quence converging weakly to ū, and lim infi ‖eji ,k(i)‖U∗ = 0, cf. (2.8), where
k(i) is the last inner iteration in outer iteration ji (i.e., uji+1 = ỹji ,k(i)), then ū
is stationary.

4. If Algorithm 1 generates infinitely many serious iterates, (uji )i∈N is a subse-
quence converging weakly to ū, and lim infi ‖eji ,k(i)‖U∗ > 0 with k(i) as in part
3, then for all i sufficiently large there exists a largest ki such that (ji, ki) is of
type (2.12) and ū is ε-stationary, where ε = (M + 1)/(θ(γ̃ − γ )) lim infi εji ,ki .

Proof Due to space limitations, it is not possible to give a proof here. The result can
be shown by adapting and extending our convergence theory in [22]. ��
Remark 2.7

1. As in [22, Rem. 5.7], Theorem 2.6 still holds true if the function w is set to zero
(w ≡ 0) and the feasible set F is bounded in U .

2. In the setting of [22], which is a special case of the situation considered here, we
recover the statement of [22, Thm. 5.6]. There, for parts 2 and 4, ε-stationarity
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with ε ≤ (M + 1)/(θ(γ̃ − γ ))(ε1 + ε2) is obtained under the following
assumptions: The function value approximation condition

fỹk − f (ỹk) ≤ fu − f (u)+ ε1‖ι(ỹk − u)‖Z +3‖ι(ỹk − u)‖2
Z

holds for ε1 ≥ 0, 3 ≥ 0 with ε1 + 3 > 0; p : Z → R is approximately convex
[13, 22] at ι(u) (part 2) or ι(ū) (part 4); G = ∂Cp + B̄Z∗(0, ε2), where ε2 ≥ 0;
‖ι(vk − u)‖Z ≤ M̂‖ι(yk − u)‖Z with M̂ ≥ 0; and �k(·) ≥ mk(·, u).

3. Theorem 2.6 gives an indicator on how to refine the model. If in line 11 of
Algorithm 1 the term εj,k is not sufficiently small, refine the function value
approximation and the approximate subgradients or calculate more cutting planes
to enrich the new model.

4. If exact function values (i.e. fu = f (u) ∀u ∈ F) and exact subgradients (i.e.
G(u) = ∂Cp(u) ∀u ∈ ι(F)) are used, there always exists a new model �ki+1
such that the limit point û in Theorem 2.6 (i.e. û = u or û = ū) is stationary.
In fact, at iteration (ji, ki) there then exists vji ,ki ∈ [uji , ỹji ,ki ] and g̃ji ,ki ∈
G(ι(vji ,ki )) with p(ι(ỹji ,ki ))−p(ι(uj )) ≤ 〈g̃ji ,ki , ι(ỹji ,ki −uji )〉Z∗, Z (Lebourg’s
mean value theorem [11, Thm. 2.3.7] shows that even “=” can be achieved).
Assume we can find vji ,ki and g̃ji ,ki with this property and that the cutting plane
mi := mỹji ,ki ,vji ,ki ,g̃ji ,ki

(·, uji ) is included in the new model, i.e., �ji,ki+1 ≥ mi ,
then we find

Jỹji ,ki
−�ji,ki+1(ỹji ,ki ) ≤ fỹji ,ki

−mi(ỹji ,ki )

= [f (ỹji ,ki )+ 〈g̃ji ,ki , ι(uji − ỹji ,ki )〉Z∗, Z − f (uji )]+ + c‖ι(vji ,ki − uji )‖2
Z

≤ c‖ι(ỹji ,ki − uji )‖2
Z.

In the case that ỹji ,ki ⇀ û, this shows that lim inf εji ,ki ≤ lim inf c‖ι(ỹji ,ki −
uji )‖Z = 0. According to Theorem 2.6, this means that 0 ∈ ι∗∂Cp(ιû)+w′(û)+
NF (û).

3 Generalized Derivatives

In this section, we will define the sets of generalized derivatives that we will consider
for the solution operator of the obstacle problem which is defined between infinite
dimensional spaces. A generalization of the so-called subdifferentials for functions
mapping to R is necessary. Due to the choice of weak and strong topologies in
infinite dimensional spaces, we obtain four different generalized differentials as
generalizations of the Bouligand subdifferential consisting of different combina-
tions of topologies on the involved spaces and there is no unique generalization of
the concepts in finite dimension, see also [10, 36]. For the finite dimensional case,
see, e.g., [32, Def. 2.12], [14, Def. 4.6.2].
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Definition 3.1 Let the operator T : X → Y be a locally Lipschitz continuous
operator between a separable Banach space X and a Hilbert space Y . Denote
the subset of X on which T is Gâteaux differentiable by DT and let T ′ be
the respective Gâteaux derivative. We define the following sets of (Bouligand)
generalized derivatives of T in u

∂
ij
B T (u) :={� ∈ L(X, Y ) : T ′(un)→ � in the sense of OT(i)

for some (un)n∈N ⊂ DT with un → u in the sense of T(j)}.

Here, i, j ∈ {s, w} and T (s), T (w) means convergence in the strong, respective
weak, sense in X, while OT (s) means convergence in the strong operator topology
and OT (w) convergence in the weak operator topology and, in addition, T (un) ⇀
T (u) in Y .

Recall that convergence of operators (Tn)n∈N ⊆ L(X, Y ) in the strong operator
topology means pointwise convergence of (Tn)n∈N to T in Y , convergence in the
weak operator topology means pointwise weak convergence of (Tn)n∈N to T in Y .

Remark 3.2

1. Assume that T fulfills the assumptions of Definition 3.1 and let, in addition, Y
be separable. Then the following relations between the differentials hold for all
u ∈ X, see also [36, Prop. 2.11],

∂ssB T (u) ⊆ ∂swB T (u) ⊆ ∂wwB T (u) and ∂ssB T (u) ⊆ ∂wsB T (u) ⊆ ∂wwB T (u).

2. The set ∂swB T (u), and thus also ∂wwB T (u), is nonempty. See also [35, Rem. 1.1].
3. Let S : X → Y be a solution operator of a partial differential equation or of a

variational inequality, which is Lipschitz continuous on bounded sets. Let J : Y×
X→ R be a continuously differentiable objective function and denote by Ĵ (u) =
J (S(u), u) the corresponding reduced objective function. Then

{

�∗Jy (S(u), u)+ Ju (S(u), u) : � ∈ ∂swB S(u)
} ⊂ ∂swB Ĵ (u) ⊂ ∂CĴ (u).

4. It directly follows that if T is Gâteaux differentiable in u with Gâteaux
derivative T ′(u), then T ′(u) belongs to all generalized differentials defined in
Definition 3.1.

4 Properties of the Obstacle Problem

In this section, we deal with the variational inequality

Find y ∈ Kψ, 〈Ly − F(u), z− y〉H−1(�),H 1
0 (�)

≥ 0 for all z ∈ Kψ. (VI)
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The variational inequality (VI) is a basic but, due to the operator F , quite general
form of an obstacle problem. We assume that � ⊆ R

d is an open and bounded
domain and that L ∈ L(H 1

0 (�),H
−1(�)) is a coercive and T-monotone operator,

i.e., the inequality 〈Ly, y〉H−1(�),H 1
0 (�)

≥ CL‖y‖2
H 1

0 (�)
holds for some positive

constant CL > 0, as well as 〈L(y − z), (y − z)+〉H−1(�),H 1
0 (�)

> 0 for all

y, z ∈ H 1
0 (�) with (y − z)+ �= 0, see [37].

Furthermore, F : U → H−1(�) is a continuously differentiable and monotone
operator on a separable partially ordered Banach space U which is Lipschitz
continuous on bounded subsets of U . We will specify the precise assumptions on
U in Assumption 5.5, but let us note that the class of Banach spaces U we consider
includes the important examples H−1(�), L2(�), or Rn. The closed convex set Kψ

is of the form Kψ := {

z ∈ H 1
0 (�) : z ≥ ψ

}

and the quasi upper-semicontinuous
obstacle ψ is chosen such that Kψ is nonempty. The inequality “z ≥ ψ” is to be
understood pointwise quasi-everywhere (q.e.) in � (see e.g. [1, 2, 8, 21]).

It is well known that under these assumptions the obstacle problem (VI) has a
unique solution and that the solution operator SF : U → H 1

0 (�) that assigns the
solution of the variational inequality to a given u ∈ U is Lipschitz continuous on
bounded sets, see, e.g., [4, 15, 26]. If F is the identity mapping on H−1(�), we
just write S : H−1(�)→ H 1

0 (�) for the corresponding solution operator. Note that
SF = S ◦ F .

The following lemma establishes monotonicity properties of the solution opera-
tor SF . This result can be found in [15, Prob. 3, p. 30] and [37, Thm. 5.1].

Lemma 4.1 The solution operator SF : U → H 1
0 (�) of the obstacle problem (VI)

is increasing: If u1, u2 are elements of U such that u1 ≥ u2, then the inequality
SF (u1) ≥ SF (u2) holds a.e. and q.e. in �.

In the following sections, we often write 〈·, ·〉 for the dual pairing betweenH 1
0 (�)

and H−1(�), omitting the subscript specifying the spaces.

4.1 Differentiability of the Solution Operator

A classical result by Mignot [29] states that the solution operator S : H−1(�) →
H 1

0 (�) is directionally differentiable, and the directional derivative is given by a
variational inequality. Based on the directional differentiability of S in the sense
of Hadamard, see, e.g., [38] for this notion of directional differentiability and its
relation to other notions, we can apply a chain rule and obtain the directional
derivative S′F (u;h) in u ∈ U and in direction h ∈ U for the composite mapping
SF = S ◦ F

Find η ∈ KKψ (F (u)), 〈Lη − F ′ (u;h) , z− η〉 ≥ 0 for all z ∈ KKψ (F (u)).

(4.1)
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Here, KKψ (F (u)) := TKψ (SF (u)) ∩ μ⊥ is called the critical cone and TKψ (SF (u))

denotes the tangent cone of Kψ at SF (u) ∈ Kψ , the set μ⊥ = {z ∈ H 1
0 (�) :〈μ, z〉 = 0} is the annihilator with respect to the functional μ = LSF (u) −

F(u) ∈ H−1(�). With the help of capacity theory, one can find the following
characterization of the critical cone:

KKψ (F (u)) =
{

z ∈ H 1
0 (�) : z ≥ 0 q.e. on A(u), 〈μ, z〉 = 0

}

=
{

z ∈ H 1
0 (�) : z ≥ 0 q.e. on A(u), z = 0 q.e. on As(u)

}

.

(4.2)

Here, A(u) := {ω ∈ � : SF (u)(ω) = ψ(ω)} denotes the active set, the set where
SF (u) touches the obstacle ψ , and As(u) denotes the strictly active set. The second
characterization in (4.2) gives an implicit representation of the strictly active set,
while it can also be defined explicitly as the fine support of the regular Borel measure
associated with μ = LSF (u) − F(u) ∈ H−1(�)+. For details we refer to [29], [8,
Sect. 6.4], [42, App. A]. Both sets, the active set as well as the strictly active set, are
quasi-closed subsets of � that are defined up to a set of zero capacity.

We now specify the behavior of S′F in points where SF is Gâteaux differentiable.
Therefore, we cite the following lemma from [35, Lem. 3.3].

Lemma 4.2 Suppose that SF is Gâteaux differentiable in u ∈ U and let h ∈ U be
arbitrary. Then the directional derivative S′F (u;h) is determined by the solution to
the problem

Find η ∈ H 1
0 (D(u)), 〈Lη − F ′(u;h), z〉 = 0 for all z ∈ H 1

0 (D(u)). (4.3)

Here, any quasi-open setD(u) satisfying� \A(u) ⊆ D(u) ⊆ � \As(u) up to a set
of zero capacity is admissible in (4.3) and provides the same solution η.

Remark 4.3

1. The sets H 1
0 (D(u)) are Sobolev spaces on quasi-open domains. For a thorough

introduction to such spaces, we refer to [25]. The space H 1
0 (O) for a quasi-open

set O ⊂ � can be defined as H 1
0 (O) := {z ∈ H 1

0 (�) : z = 0 q.e. outside O}.
2. H 1

0 (� \A(u)) is the largest linear subset and H 1
0 (� \As(u)) is the linear hull of

the critical cone KKψ (F (u)). This describes the relation between (4.3) and (4.1).
3. Observe that whenever A(u) = As(u) holds up to a set of zero capacity,

i.e., when the strict complementarity condition is fulfilled in u, then up to
disagreement on a set of capacity zero, there is only one set D(u) = � \A(u) =
� \ As(u) admissible in Lemma 4.2. Nevertheless, due to the generality of the
operator F in the variational inequality (VI), there might be points where SF is
Gâteaux differentiable and where the strict complementarity condition does not
hold. This cannot happen for S.

The analysis we will carry out relies on the characterization of the Gâteaux
derivative of SF given as the solution of (4.3) with the choice D(u) = � \ A(u).
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In the following, we will write I (u) := � \ A(u) for the inactive set. We will
find a similar description as in (4.3) also for a generalized derivative of SF in
points where SF is not Gâteaux differentiable. In such points, different choices of
D(u) in (4.3) generally yield different solutions and solution operators. Therefore,
we have to distinguish sequences (un)n∈N ⊆ U with different properties and
carefully analyze the resulting behavior and the stability of the sets H 1

0 (D(u)) and
the corresponding solution operators of (4.3). The dependency of the solutions of
variational inequalities, such as (4.3), on the set of test functions, such asH 1

0 (D(u)),
will be clarified in the first part of the next section.

5 An Element of the Bouligand Generalized Differential

In this section, we will construct an element of ∂ssB SF (u). In Lemma 4.2, we have
seen that the Gâteaux derivatives of the solution operator SF in differentiability
points evaluated in a direction h solve a variational equation. Since the generalized
differentials from Definition 3.1 contain limits of Gâteaux derivatives, we need to
study the convergence of solutions (4.3). The tool will be the following definition,
see [30, 37].

Definition 5.1 (Mosco Convergence) Let X be a Banach space and denote by
(Cn)n∈N a sequence of nonempty, closed, convex subsets of X. We say that (Cn)n∈N
converges to a closed convex set C in the sense of Mosco if and only if the following
conditions hold:

1. For all c ∈ C there is (cn)n∈N with cn ∈ Cn for all n ∈ N as well as cn → c in
X.

2. For any sequence (cnk )k∈N satisfying cnk ∈ Cnk for a subsequence (nk)k∈N of
(n)n∈N as well as cnk ⇀ c in X, it follows c ∈ C.

Based on Definition 5.1, the following result can be obtained, see [37, Thm. 4.1].

Proposition 5.2 Let L ∈ L
(

H 1
0 (�),H

−1(�)
)

be coercive and let (Cn)n∈N , C be
closed convex subsets of H 1

0 (�). Assume that Cn → C in the sense of Mosco and
hn → h in H−1(�), then the unique solutions of

Find ηn ∈ Cn, 〈Lηn − hn, z− ηn〉 ≥ 0 for all z ∈ Cn

converge to the solution η of the limit problem with Cn, hn replaced by C, h,
respectively.
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5.1 The Set-valued Map u �→ H 1
0 (I (u))

In this subsection, we analyze the set-valued map u �→ H 1
0 (I (u)) and establish a

Mosco convergence result for the spaces H 1
0 (I (un)). We show the convergence of

(

S′F (un;h)
)

n∈N ⊂ H 1
0 (�) for Gâteaux differentiability points un of SF converging

from below toward u and identify the limit. This will give us an element of
the Bouligand generalized differential ∂ssB SF (u). At this point, let us recall the
variational equation

Find η ∈ H 1
0 (I (u)), 〈Lη − F ′(u;h), z〉 = 0 for all z ∈ H 1

0 (I (u)). (5.1)

for the Gâteaux derivatives that we have developed in Lemma 4.2.
The crucial point to be considered when examining the convergence of solution

operators of (5.1), which is by Proposition 5.2 linked to the Mosco convergence of
the sets H 1

0 (I (un)), is to avoid sudden jumps in the inactive sets. As Fig. 1 shows,
these jumps can occur suddenly in the limit active set I (u) and Mosco convergence
of H 1

0 (I (un)) to H 1
0 (I (u)) cannot be expected. Figure 1 also shows the influence

of monotonicity of the sequence (un)n∈N on the active and strictly active sets. More
precisely, different solutions of the obstacle problem are depicted in Fig. 1. The
associated values of ui are chosen constant and equal to zero, respectively >0 and
<0. We can also see the corresponding active sets A(ui) and the strictly active
sets As(ui) underneath. In u = 0 with the respective solution in red, since the
isolated point in A(0) belongs to the set A(0), but is not contained in As(0), the
strict complementarity condition does not hold, i.e., A(0) �= As(0). Note that a
single point has capacity strictly positive in the one-dimensional case. Therefore,

Fig. 1 Top: An instance of
the obstacle problem for a
piecewise quadratic obstacle
ψ . The solution S(0) is
plotted in red, while solutions
for S(u) with different
parameters for u ≤ 0 are
plotted in green and for u ≥ 0
in blue. Middle: The
corresponding active sets
A(u) for the different values
of u. Bottom: The
corresponding strictly active
sets As(u) for the different
values of u

Ωψ



484 L. Hertlein et al.

u = 0 is a point where the respective solution operator is potentially non-Gâteaux
differentiable.

Example Let us consider the sets (H 1
0 (I (un)))n∈N. We argue that the Mosco limit

will, in general, not be H 1
0 (I (u)) for a decreasing sequence (un)n∈N with un → u.

In the situation of Fig. 1, choose an element v ∈ H 1(Rd) with {v > 0} = � \As(0)
up to a set of zero capacity, see [41, Prop. 2.3.14] or [18, Lem. 3.6], and define
vn := v for all n ∈ N. Then, it holds vn ∈ H 1

0 (I (un)) for all n ∈ N as well as
vn → v. Nevertheless, v is not an element of H 1

0 (I (0)). Therefore, the Mosco limit
of the sequence (H 1

0 (I (un)))n∈N is not H 1
0 (I (0)) (but rather H 1

0 (� \ As(0))).

This idea to consider increasing sequences (un)n∈N converging to u in order to
obtain Mosco convergence of the sets H 1

0 (I (un)) to H 1
0 (I (u)) is formalized in the

following theorem, which is taken from [35, Thm. 5.2].

Theorem 5.3 Let (un)n∈N ⊂ U be an increasing sequence such that un ↑ u. Then,
the sequence (H 1

0 (I (un)))n∈N converges to H 1
0 (I (u)) in the sense of Mosco. If,

furthermore, SF is Gâteaux differentiable in un for all n ∈ N, then
(

S′F (un; ·)
)

n∈N
converges in the strong operator topology to �F (u; ·), where, for a given h ∈ U ,
the element �F (u;h) is given by the unique solution of (5.1).

5.2 Existence of Points of Gâteaux Differentiability
in the Positive Cone

Next, we argue that an increasing sequence (un)n∈N converging to an arbitrary u ∈
U in which SF is Gâteaux differentiable always exists. With this result, we can
infer that �F (u; ·) ∈ L

(

U,H 1
0 (�)

)

is in ∂ssB SF (u). The argument is based on the
following theorem.

Theorem 5.4 Every map from a separable Banach space to a Hilbert space which
is Lipschitz continuous on bounded sets is Gâteaux differentiable on a dense subset
of its domain.

A proof can be found in, e.g., [6, Thm. 6.42]. We also refer the reader to [29,
Thm. 1.2], where the same result is shown for the case that only Hilbert spaces
appear.

In order to ensure that Theorem 5.3 yields an element of ∂ssB SF (u), we make the
following assumptions on the size of the positive cone in U .

Assumption 5.5 We assume that V is a partially ordered space such that the positive
cone P := {v ∈ V : v ≥ 0} has nonempty interior. Let V be embedded into
the space U . The embedding ι : V → U is assumed to be continuous, dense, and
compatible with the order structures of V and U , i.e., if v1, v2 ∈ V with v1 ≤ v2
then ι(v1) ≤ ι(v2) in U .
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Note that Assumption 5.5 is satisfied for, e.g., U = L2(�), U = H−1(�) and
U = R

n. Now, we can show the following proposition, which is taken from [35,
Prop. 5.5]:

Proposition 5.6 Let u be an arbitrary element of U and assume that Assump-
tion 5.5 is satisfied for U . Then there exists a sequence (un)n∈N such that the
solution operator SF is Gâteaux differentiable in each un and un ↑ u.

5.3 Characterization of a Generalized Derivative

The preceding results imply the following characterization of a generalized deriva-
tive in ∂ssB SF (u) ⊆ ∂swB SF (u) for arbitrary elements u ∈ U , see [35, Thm. 5.6].

Theorem 5.7 Let Assumption 5.5 be fulfilled for U and let u ∈ U be arbitrary.
Then the operator�F (u; ·) ∈ L(U,H 1

0 (�)), where�F (u;h) is given by the unique
solution to the variational equation (5.1), is in the Bouligand generalized differential
∂ssB SF (u) of SF in u.

Let us now consider an optimal control problem where the obstacle problem
describes the constraint set, such as minu Ĵ (u) = J (SF (u), u). Here, J : H 1

0 (�) ×
U → R is a continuously differentiable objective function. An element of Clarke’s
generalized gradient ∂CĴ (u) at the point u ∈ U can be obtained in the following
way, see [35, Thm.5.7].

Theorem 5.8 Let q be the unique solution of the variational equation

Find q ∈ H 1
0 (I (u)),

〈

L∗q, v
〉 = 〈

Jy (SF (u), u) , v
〉

for all v ∈ H 1
0 (I (u)).

(5.2)

Then, F ′(u)∗q + Ju (SF (u), u) is in ∂CĴ (u). Here, Jy and Ju denote the con-
tinuous Fréchet derivatives of J with respect to y and u, respectively, F ′(u)∗ ∈
L

(

H 1
0 (�),U

∗) is the (Banachian) adjoint operator of F ′(u) ∈ L
(

U,H−1(�)
)

,
and L∗ ∈ L

(

H 1
0 (�),H

−1(�)
)

is the (Banachian) adjoint operator of L ∈
L

(

H 1
0 (�),H

−1(�)
)

.

6 Characterization of the Entire Generalized Differentials

Now, we reduce the generality of (VI) and consider the obstacle problem

Find y ∈ Kψ, 〈Ly − u, z− y〉 ≥ 0 for all z ∈ Kψ (VIid)
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and the corresponding solution operator S : H−1(�) → H 1
0 (�). Here, L = −�,

i.e., 〈Ly, v〉 = ∫

�
∇y · ∇v dx. The operator F from (VI) is realized by the identity

on H−1(�).
The generalized derivative formula obtained in Theorem 5.7 applies in this

special case and we have already computed an element of ∂ssB S(u) for this setting.
Nevertheless, we can make use of the simplified structure of (VIid) and obtain, by
abstract arguments, more than just one generalized derivative. Indeed, it is possible
to characterize ∂ssB S(u), ∂

sw
B S(u), and ∂wsB S(u). This section is based on [36].

The preimage space of S is the whole space H−1(�), while the operator F
entering the more general variational inequality (VI) often realizes only a smaller
subset of H−1(�), since the range of F is, in general, smaller than H−1(�). For
arbitrary u ∈ H−1(�), given a quasi-open setD(u)with I (u) ⊆ D(u) ⊆ �\As(u),
the availability of all elements in H−1(�) allows to construct a sequence un → u

in H−1(�) such that S′(un) is the solution operator to

Find η ∈ H 1
0 (D(u)), 〈Lη − h, z〉 = 0 for all z ∈ H 1

0 (D(u)),

i.e., the sequence (S′(un))n∈N is constant and converges. This is a strategy entering
the proof of Theorem 6.1 in [36]. It indicates why we are able to characterize
generalized differentials for solution operators of (VIid), while the situation is
much more complicated for the general variational inequality (VI). Already in
finite dimensions, the authors of [20] impose a local surjectivity assumption on the
analog of the operator F in finite dimension, in order to characterize a generalized
differential. We obtain the following characterization of ∂ssB S(u) and ∂wsB S(u). For
the proofs, see [36].

Theorem 6.1 Let u ∈ H−1(�) be arbitrary. The Bouligand generalized differen-
tials ∂ssB S(u) and ∂

ws
B S(u) contain all solution operators of (4.3) for any quasi-open

set D(u) with I (u) ⊆ D(u) ⊆ � \ As(u) and any element of ∂ssB S(u) and ∂
ws
B S(u)

is of this form.

Remark 6.2

1. The characterization of Theorem 6.1 applies independent from differentiability.
If and only if there is no gap between A(u) and As(u) in the sense of capacity,
the operator S is Gâteaux differentiable in u, and the differentials ∂ssB S(u) and
∂wsB S(u) contain only the Gâteaux derivative.

2. The result in Theorem 6.1 supports the conjecture that by focusing on the sets
� \ As(un) instead of I (un), carrying out the appropriate analysis and using the
approach from Sect. 5, one would indeed obtain a further generalized derivative,
also for the variational inequality (VI) invoking the monotone operator F .
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6.1 Capacitary Measures and the Differentials Involving
the Weak Operator Topologies

As already mentioned in Remark 3.2, the generalized differentials using the weak
operator topology are supersets of the differentials characterized in Theorem 6.1. In
this subsection, we will see that they are in fact larger and get to know the objects
they contain in addition.

Definition 6.3 We denote by M0(�) the set of all regular Borel measures μ on �
with the property that μ(B) = 0 holds for every Borel set B ⊆ � with cap(B) = 0.
Here, regularity of μ means that μ(B) = inf{μ(O) : O quasi-open, B ⊆ O} holds
for every Borel set B ⊆ �. The set M0(�) is called the set of capacitary measures
on �.

The convergence of solution operators of

Find η ∈ H 1
0 (O), 〈Lη − h, z〉 = 0 for all z ∈ H 1

0 (O) (6.1)

for quasi-open sets O ⊆ � in the weak operator topology is metrizable, see [12,
Prop. 4.9], but the resulting metric space is not a complete space. Recall that the
Gâteaux derivative operators of S in points of differentiability are exactly of this
form with I (u) ⊆ O ⊆ � \ As(u), see Lemma 4.2. For μ ∈ M0(�), denote
by Xμ(�) the space H 1

0 (�) ∩ L2
μ(�), where L2

μ(�) is the Lebesgue space of
square integrable functions on � w.r.t. the measure μ. As shown in, e.g., [12], the
completion contains exactly the solution operators of

Find η ∈ Xμ(�),

∫

�

∇η · ∇z dx +
∫

�

η z dμ = 〈h, z〉 for all z ∈ Xμ(�)

(6.2)

for all capacitary measures μ on �. Thus, it is not surprising that a subset of these
solution operators of (6.2) enter the set ∂swB S(u). For the details, see [36].

Theorem 6.4 Under some regularity assumptions on the obstacle and on S(u),
the Bouligand differential ∂swB S(u) in u ∈ H−1(�) contains exactly all solution
operators of (6.2) for any capacitary measure μ fulfilling μ(I (u)) = 0 and
μ = +∞ on As(u). Here, μ = +∞ on As(u) means that v = 0 q.e. on As(u)

holds for all v ∈ H 1
0 (�) ∩ L2

μ(�).

Remark 6.5

1. For a quasi-open set O ⊂ �, we can define for each Borel set B ⊂ �

∞�\O(B) :=
{

0, if cap(B \O) = 0,

+∞, otherwise.
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With this definition, ∞�\O is a capacitary measure and LO is the solution
operator of (6.1) if and only if LO is the solution operator of (6.2) with μ =
∞�\O . The condition I (u) ⊆ O ⊆ As(u) can be expressed as∞�\O(I (u)) = 0
and ∞�\O = +∞ on As(u). In this sense, ∂ssB S(u) = ∂wsB S(u) ⊆ ∂swB S(u).

2. The notion of convergence for the solution operators of (6.2) based on the weak
operator topology is also called γ -convergence of the respective measures. The
study of this convergence and the so-called relaxed Dirichlet problems, such
as (6.2), is interesting also in shape optimization, see [9] or [2].

3. Mosco convergence of sets H 1
0 (On) to H 1

0 (O) for quasi-open sets On,O ⊆ �

is equivalent to the γ -convergence of the measures ∞�\On to ∞�\O . This gives
the link to the approach in Sect. 5.

In [36], an example is given which illustrates that the generalized differential
∂wwB S(u) is very large, even when S is Gâteaux differentiable in u and A(u) =
As(u).

Based on the characterization of the generalized differentials for S, necessary
optimality conditions for the optimal control of the obstacle problem with control
constraints can be obtained, see [36].

7 The Stochastic Obstacle Problem

The subject of this section is the optimal control problem (Ps) governed by the
stochastic obstacle problem (VIs). We want to find stationary points of the reduced
objective function by applying the bundle method, developed in Sect. 2. To do so, we
need to calculate a subgradient of the reduced objective function or an approximate
subgradient in the sense of Assumption 2.1.

7.1 Problem Setting

Let (3,A, P ) be a measure space and set Y := H 1
0 (�). For ξ ∈ 3, we consider a

variational inequality of type (VI). In particular, let Lξ ∈ L(Y, Y ∗) be an operator,
ψξ ∈ H 1(�) an obstacle, b ∈ Y ∗, define the set Kψξ := {y ∈ H 1

0 (�) : y ≥ ψξ }
and the parametric obstacle problem

Find y ∈ Kψξ , 〈Lξy − b, z− y〉Y ∗, Y ≥ 0 for all z ∈ Kψξ . (VIξ )

We want to relate the solutions to (VIξ ) and (VIs), see [16, 17] for related results.
Using standard techniques, one can show that the projection onto the set Kψ , defined
in (1.2), agrees pointwise P -a.e. with the projection onto Kψξ :
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Lemma 7.1 If ψ ∈ Ȳ such thatKψξ �= ∅ for P-a.a. ξ ∈ 3 thenKψ is a nonempty
closed convex subset of Y and PKψ

(y)(ξ) = PKψξ
(y(ξ)) for P-a.a. ξ ∈ 3 and for

all y ∈ Ȳ.

Using this result, we can show that the solution operator of (VIs) agrees point-
wise P -a.e. with the solution operator of (VIξ ). We need the following definition:

Definition 7.2 A family of operators (Lξ )ξ∈3 ⊂ L(Y, Y ∗) is called uniformly
coercive, if there exists a parameter CL > 0 such that 〈Lξx, x〉Y ∗, Y ≥ CL‖x‖2

Y for
P-a.a. ξ ∈ 3.

Theorem 7.3 Assume that ξ �→ Lξy is measurable for every y ∈ Y , ξ �→
‖Lξ‖L(Y,Y ∗) is in L∞(3), and ψ : ξ �→ ψξ is in Ȳ. Then, for every y ∈ Y,
the map Ly : ξ �→ Lξ (y(ξ)) is in Y∗ and L : y �→ Ly is in L(Y,Y∗).
Moreover, suppose that (Lξ )ξ∈3 is uniformly coercive and that Kψξ �= ∅ for
P-a.a. ξ ∈ 3. Then, for P-a.a. ξ ∈ 3 and all b ∈ Y ∗, (VIξ ) has a unique
solution yξ,b and the solution operator Sξ : Y ∗ → Y , Sξ (b) := yξ,b, is Lipschitz
with modulus 1/CL. Furthermore, for all b ∈ Y∗, (VIs) has a unique solution yb,
the solution operator S : Y∗ → Y, S(b) := yb is Lipschitz with modulus 1/CL, and
(S(b))(ξ) = Sξ (b(ξ)) for P-a.a. ξ ∈ 3.

Proof Under the given integrability assumptions, one can show that L ∈ L(Y,Y∗)
is well defined and coercive with constant CL. The Lions–Stampacchia theorem,
cf. [26, Thm. 2.1] implies that both problems are uniquely solvable. Since y ∈ Y,
defined by y(ξ) := Sξ (b(ξ)) ∈ Kψξ , fulfills (VIs) and the solution of (VIs) is
unique, we deduce y = S(b). ��

7.2 Approximate Subgradients of the Stochastic Reduced
Objective Function

In this section we show that the weak subgradients (1.4) can be used in the bundle
method since they fulfill Assumption 2.1. We work in the following setting:

Assumption 7.4 Let FZ be an open subset of a separable reflexive Banach space
Z. Suppose that for all ξ ∈ 3 the functions pξ : FZ → R satisfy the following
conditions:

1. For all z ∈ FZ , the map ξ �→ pξ (z) is measurable.
2. There exists a z ∈ FZ such that

∫

3
|pξ (z)| dP (ξ) <∞.

3. For all bounded sets B ⊂ Z there exists a function LB ∈ L1(3) such that

|pξ (z1)− pξ (z2)| ≤ LB(ξ)‖z1 − z2‖Z for all z1, z2 ∈ B ∩FZ and for P -a.a. ξ ∈ 3.
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Let F̄ be a closed subset of FZ and consider the map G : F̄ ⇒ Z∗ defined by

G(z) :=
{∫

3

g(ξ) dP (ξ) : g ∈ L1(3,Z∗), g(ξ) ∈ ∂Cpξ (z) P -a.e.

}

. (7.1)

Theorem 7.5 Under Assumption 7.4, the multifunction G : F̄ ⇒ Z∗, defined
in (7.1), fulfills Assumption 2.1 and it holds ∂Cp(z) ⊂ G(z) for all z ∈ F̄ , where
p : F̄ → R is defined by p(z) := ∫

3
pξ (z) dP (ξ).

Proof ∂Cp(z) ⊂ G(z). Let z ∈ F̄ be arbitrary. By Clarke [11, Thm. 2.7.2], p is
well defined, locally Lipschitz and for every g ∈ ∂Cp(z) there is a corresponding
mapping ξ �→ gξ from 3 to Z∗ with gξ ∈ ∂Cpξ (z) P-a.e. and such that for every
v ∈ Z, the function ξ �→ 〈gξ , v〉Z∗, Z belongs to L1(3) and one has 〈g, v〉Z∗, Z =
∫

3
〈gξ , v〉Z∗, Z dP (ξ). Consequently, by Hytönen et al. [24, Cor. 1.1.2], the map

ξ �→ gξ is measurable. Denote by LB ∈ L1(3) the function according to
property 3 of Assumption 7.4 for B := B̄X(z, 1). From

∫

3
‖gξ‖X∗ dP (ξ) ≤

∫

3
LB(ξ) dP (ξ) < ∞ we deduce that ξ �→ gξ is in L1(3,Z∗) which shows

∂Cp(z) ⊂ G(z).

1. For arbitrary z ∈ F̄ it holds ∅ �= ∂Cp(z) ⊂ G(z). Therefore G(z) is nonempty.
Since ∂Cpξ (z) is convex P -a.e. , the set G(z) is convex.

2. Let B ⊂ Z be a bounded set and denote

Ĝ := {ĝ ∈ L1(3,Z∗) : z ∈ B ∩ F̄ , ĝ(ξ) ∈ ∂Cpξ (z) P -a.e. }. (7.2)

Choose a neighborhood B̂ ⊂ Z of B∩F̄ and denote by L
B̂
∈ L1(3) the function

which fulfills property 3 of Assumption 7.4. By Clarke [11, Prop. 2.1.2], there
holds ∂Cpξ (z) ⊂ B̄Z∗(0, LB̂(ξ)) for all z ∈ B ∩ F̄ . Consequently, Ĝ is bounded
in L1(3,Z∗) by the constant

∫

3
L
B̂
(ξ) dP (ξ) < ∞ and we find for arbitrary

g ∈ G(B ∩ F̄) that there exists a ĝ ∈ Ĝ such that g = ∫

3
ĝ(ξ) dP (ξ) and it

holds

‖g‖Z∗ = ‖
∫

3

ĝ(ξ) dP (ξ)‖Z∗ ≤
∫

3

‖ĝ(ξ)‖Z∗ dP (ξ) ≤
∫

3

L
B̂
(ξ) dP (ξ).

3. We verify the assumptions of [34, Thm. 4.2]. Since F̄ is a closed subset of a
complete metric space, (F̄ , ‖ · ‖Z) is a complete metric space. By Clarke [11,
Prop. 2.1.2] the map (ξ, z) �→ ∂Cpξ (z) is nonempty, closed, and convex valued.
Using [11, Lem. 2.7.2], [3, Thm. 8.2.11 and Thm. 8.2.9] one sees that the
multifunction ξ �→ ∂Cpξ (z) is measurable for all z ∈ FZ , i.e. for every open
set O the inverse image {ξ ∈ 3 : ∂Cpξ (z) ∩ O �= ∅} is measurable. By Clarke
[11, Prop. 2.1.5], for all ξ ∈ 3, ∂Cpξ has a weakly closed graph. Now let B ⊂ Z

be a compact set and denote by L
B̂
∈ L1(3) a function which fulfills property

3 of Assumption 7.4 for a neighborhood B̂ of B. Define GB : 3 ⇒ Z∗ to be
the multifunction GB(ξ) := w-cl co ∪z∈B ∂Cpξ (z). First note that, since B is
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bounded, [11, Prop. 2.1.2] implies that ∪z∈B∂Cpξ (z) is bounded by L
B̂
(ξ) P-

almost everywhere, i.e. GB is integrably bounded. Also, for fixed ξ ∈ 3, the
set GB(ξ) is bounded. Consequently, by Alaoglu’s theorem, GB(ξ) is weakly
compact, and obviously nonempty and convex. As ∂Cpξ (z) ⊂ GB(ξ) P-a.e.
and for all z ∈ B, [34, Thm. 4.2] yields that z �→ G̃(z) is weakly upper
semicontinuous, i.e. for every weakly closed set C ⊂ Y the set G−(C) :=
{x ∈ F : G(x) ∩ C �= ∅} is closed in F . By Papageorgiou [33, Cor. 3.1],
the multifunction G̃ is weakly closed valued. Therefore, [23, Thm. 2.5] implies
that G : F̄ ⇒ Z∗ has a weakly closed graph. ��

Example For all ξ ∈ 3, let Jξ : Y → R be given via Jξ (·) := 1
2‖Oξ(·) − ydξ ‖2

H ,

where Oξ ∈ L(Y,H) is the stochastic observation operator and ydξ ∈ H is the
stochastic desired state. Under the assumptions of Theorem 7.3 and if additionally
(3,A, P ) is a probability space, ξ �→ Oξy is measurable for all y ∈ Y , ξ �→
‖Oξ‖L(Y,H) is in L∞(3) and ξ �→ ydξ is in L2(3,H), then the functions pξ :=
Jξ (Sξ (·)) satisfy Assumption 7.4. Consequently, G(z) := E[∂C(Jξ (Sξ (·)))(z)]
fulfills Assumption 2.1 and can be used as a subdifferential for the bundle method.

7.3 Computation of Exact Subgradients

Although the approach in the previous section is very versatile, it uses an approxi-
mate subdifferential G that is possibly larger than the Clarke differential of the cost
function. The resulting (ε-)stationarity, cf. Theorem 2.6, then corresponds to weak
(ε-)stationarity (cf. (1.5) for weak stationarity). If possible, it would be favorable
to search for Clarke-stationary points (1.3). To do so, the bundle method requires
elements of the Clarke subdifferential ∂C(E

[

Jξ (Sξ (ι(·)))
]

)(u) (or approximations
thereof). In this section we derive a formula to compute such subgradients under
additional assumptions on the regularity of the problem data. We do not make use
of chain rules for Clarke’s subdifferential since they require a certain regularity, see
[11].

Assume that 3 is a separable Banach space, and let (3,A, P ) be a finite
measure space. We assume that there is a nondegenerate Gaussian measure P on
3, such that P is absolutely continuous w.r.t. P. For the notion of nondegenerate
Gaussian measures we refer to [6] and Definition 7.7. For ξ ∈ 3, let Lξ ∈
L(H 1

0 (�),H
−1(�)) be a T-monotone operator. We assume that the family of

operators (Lξ )ξ∈3 is uniformly coercive in the sense of Definition 7.2. Furthermore,
let 3 . ξ �→ Lξ ∈ L(H 1

0 (�),H
−1(�)) be Lipschitz continuous on bounded sets.

Then the maps 3 . ξ �→ Lξy ∈ H−1(�) are measurable for all y ∈ H 1
0 (�). We

also assume that ξ �→ ‖Lξ‖L(H 1
0 (�),H

−1(�)) is inL∞(3). Let F : 3×U → H−1(�)

be an operator that is Lipschitz continuous on bounded sets and satisfies F(·, u) ∈
L2(3,H−1(�)) for all u ∈ U . As before, assume that F(ξ, ·) is monotone and
continuously differentiable for almost all ξ ∈ 3. We keep the assumptions on U
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previously considered in Sect. 5, see Assumption 5.5. We consider the following
subclass of parametric obstacle problems (VIξ )

Find y ∈ Kψ, 〈Lξy − F(ξ, u), z− y〉 ≥ 0 for all z ∈ Kψ. (VIξ ′)

Here, the obstacle ψ ∈ H 1(�) is chosen such that Kψ �= ∅. In contrast to (VIξ ), the
obstacle does not depend on the parameter ξ . We denote the solution operator of the
family in (VIξ ′) by SF,ξ : U → H 1

0 (�). Note that SF,ξ is defined only for almost
all ξ ∈ 3 and that Theorem 7.3 implies that ξ �→ SF,ξ (u) is in L2(3,H 1

0 (�))

for all u ∈ U . Let (Jξ : H 1
0 (�) × U → R)ξ∈3 be a family of parametrized

objective functions, such that almost all Jξ are continuously differentiable and
such that (Jξ )ξ∈3 is uniformly Lipschitz continuous on bounded sets for almost
all ξ ∈ 3. Furthermore, let ξ �→ Jξ (SF,ξ (u), u) be integrable for all u ∈ U .
For example, consider the parameter dependent objective functions Jξ (y, u) =
1
2‖y − ydξ ‖2

L2(�)
+ α

2 ‖u‖2
U , for a family (ydξ )ξ∈3 ⊆ H 1

0 (�) such that ξ �→ ydξ is

in L2(3,H 1
0 (�)). Now, we are interested in the optimal control of the stochastic

obstacle problem of the form

min
u∈Uad

Ĵ (u) =
∫

3

Jξ (SF,ξ (u), u) dP (ξ). (P′)

The set Uad ⊂ U is a closed convex subset of U .
We verify the following Lipschitz continuity of SF,ξ .

Lemma 7.6 Under the above assumptions, the mapping T : 3 × U . (ξ, u) �→
SF,ξ (u) ∈ H 1

0 (�) is Lipschitz continuous on bounded subsets of 3× U .

Proof Let B3 × BU be a bounded subset. By assumption ξ �→ Lξ is Lipschitz
continuous on B3 and F is Lipschitz continuous on B3 × BU with Lipschitz
constants c1 and c2, respectively. Moreover, Lξ is coercive with a common
coercivity constant CL for almost all ξ and by continuity for all ξ .

For i = 1, 2, let (ξi, ui) ∈ B3 × BU and denote Fi := F(ξi, ui), Li := Lξi and
yi := SF,ξi (ui). Now, we estimate

CL‖y1 − y2‖2
H 1

0 (�)
≤ 〈L1y1 − L2y2 + (L2 − L1)y2, y1 − y2〉

≤ 〈F1 − F2, y1 − y2〉 + 〈(L2 − L1)y2, y1 − y2〉
≤ (‖F1 − F2‖H−1(�) + ‖(L2 − L1)y2‖H−1(�))‖y1 − y2‖H 1

0 (�)

≤
(

c1‖u1 − u2‖U + (c1 + c2‖y2‖H 1
0 (�)

)‖ξ1 − ξ2‖3
)

‖y1 − y2‖H 1
0 (�)

.
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We obtain

‖y1 − y2‖H 1
0 (�)

≤ 1

CL

(

c1‖u1 − u2‖U + (c1 + c2‖y2‖H 1
0 (�)

)‖ξ1 − ξ2‖3
)

.

(7.3)

Since this inequality holds for fixed y2 = SF,ξ2(u2) and arbitrary y1 = SF,ξ1(u1)

with (ξ1, u1) ∈ B3×Bu, this shows that ‖y‖ ≤ c holds for some constant c > 0 and
for all y ∈ SF,B3(BU). Inequality (7.3) also shows the desired Lipschitz continuity
on B3 × BU . ��

7.4 Construction of a Subgradient for Ĵ

Similar to the argument in Sect. 5.2, using the Lipschitz continuity of T established
in Lemma 7.6, we can argue that T is Gâteaux differentiable on a large set. For our
analysis, we need the notion of Gaussian measures on separable Banach spaces, see
also [6, 7].

Definition 7.7

1. Let X be a separable Banach space. A Borel probability measure P on X is called
a Gaussian measure if for every x∗ ∈ X∗ the pushforward measure Px∗ of P with
respect to x∗, i.e., Px∗(A) = P((x∗)−1(A)) for any measurable set A ⊂ R, has a
Gaussian distribution.

2. The Gaussian measure P is called nondegenerate, if Px∗ is nondegenerate for
every X∗ . x∗ �= 0, i.e., if it is not a Dirac measure.

Lemma 7.8 Let U fulfill the conditions of Assumption 5.5 and letV be an arbitrary
nondegenerate Gaussian measure on V . As in Lemma 7.6, consider the operator T
with T (ξ, u) = SF,ξ (u). For an arbitrary u ∈ U let T̄ : 3×V → H 1

0 (�) be defined
by T̄ (ξ, v) = T (ξ, v+ u). Then T̄ is Gâteaux differentiable except on a P ⊗V-null
set in 3× V .

Proof By the properties of V , the operator T̄ is Lipschitz continuous on bounded
subsets of 3 × V . Benyamini and Lindenstrauss [6, Theorem 6.42] and the
equivalence of notions of negligible sets developed in [6, Chap. 6.3] imply that
T̄ is Gâteaux differentiable on all points of its domain 3×V except on a Gauss null
set, i.e., all nondegenerate Gaussian measures on 3×V vanish on this set. Note that
the results from [6] easily carry over to operators which are Lipschitz continuous
only on bounded subsets of their domain.

Since P,V are nondegenerate Gaussian measures on 3, respectively V , the
measure P ⊗ V is a Gaussian measure on 3 × V , see [7, Cor. 2.2.6]. It is also
nondegenerate. To see this, let (ξ∗, v∗) ∈ (3 × V )∗ be an arbitrary element of the
dual space. Denote the density of Pξ∗ , respectively Vv∗ , w.r.t. the Lebesgue measure
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by ρξ∗ , respectively ρv∗ . Then, for all measurable sets A it holds

(P⊗ V)(ξ∗,v∗)(A) =
∫

3

V({v ∈ V : v∗(v) ∈ (A− ξ∗(ξ))}) dP(ξ)

=
∫

3

Vv∗(A− 〈ξ∗, ξ 〉) dP(ξ) =
∫

R

Vv∗(A− t) dPξ∗(t)

=
∫

R

∫

R

χA−t (s) ρv∗(s) ds ρξ∗(t) dt =
∫

R

∫

R

χA(r)ρv∗(r − t) dr ρξ∗(t) dt

=
∫

R

χA(r)

∫

R

ρv∗(r − t)ρξ∗(t) dt dr =
∫

R

χA(r)(ρv∗ ∗ ρξ∗)(r) dr.

Since the convolution of two normal distributions is again a normal distribution, the
conclusion follows. Thus, the set of points where T̄ is not Gâteaux differentiable is
a P⊗V-null set. Since P is absolutely continuous w.r.t. P, the lemma is proved. ��
Remark 7.9 By Benyamini and Lindenstrauss [6, Prop. 6.18, 6.20] there is a
nondegenerate Gaussian measure on V .

Lemma 7.10 Let U fulfill the conditions of Assumption 5.5 and let u ∈ U be
arbitrary. Then there is an increasing sequence (un)n∈N ⊆ U converging to u where
T (ξ, ·) = SF,ξ is differentiable for P -almost all ξ ∈ 3.

Proof Let V be an arbitrary nondegenerate Gaussian measure on V and let N be
the set of points in 3× V where T̄ , defined as in Lemma 7.8, is not differentiable.
Then, Lemma 7.8 implies

0 = (P ⊗ V)(N).

We want to proceed as in the proof of Proposition 5.6, see also [35, Prop. 5.1] for
the proof, and construct a sequence (un)n∈N ⊆ V , such that each un is taken from a
specified set with interior points, to ensure the monotonicity of the sequence. Thus,
we have to ensure that sets with interior points contain common points of Gâteaux
differentiability of the family (T̄ (ξ, ·))ξ∈3 for P -almost all ξ ∈ 3.

Therefore, let n ∈ N and let On be a set in V with interior points. In [40], the
support of Gaussian measures is discussed. Nondegenerate Gaussian measures on
separable spaces have full support, i.e., any nondegenerate Gaussian measure has a
positive measure on any measurable set with interior points. This implies V(On) >

0. For each v ∈ V define Nv := {ξ ∈ 3 : (ξ, v) ∈ N} and consider V0 := {v ∈ V :
P(Nv) = 0}. Then, we have

0 = (P ⊗ V)(N) =
∫

V

P (Nv) dV(v),

i.e., V(V \ V0) = 0. Let us now consider the set Õn := On ∩ V0 = {v ∈ On :
P(Nv) = 0}. Then, it holds V(On) = V(Õn) > 0. Choose an arbitrary vn ∈
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Õn. By definition, T̄ is Gâteaux differentiable in (ξ, vn) for P -almost all ξ ∈ 3.
In particular, T̄ (ξ, ·) is Gâteaux differentiable in vn for P -almost all ξ ∈ 3. We
can thus find a sequence (vn)n∈N ⊆ V , where T̄ (ξ, ·) is Gâteaux differentiable for
almost all ξ ∈ 3.

We can again argue as in the proof of Proposition 5.6 to conclude that also
T (ξ, ·) = SF,ξ defined on the whole space U is Gâteaux differentiable in vn+ u for
P -almost all ξ ∈ 3.

��
Theorem 7.11 Let U fulfill the conditions of Assumption 5.5 and let u ∈ U

be arbitrary. Then, under the assumptions on the data specified in Sect. 7.3, a
subgradient for Ĵ as defined in (P′) is given by

∫

3
�ξ (u) dP (ξ), where �ξ(u)

is the subgradient of the parameter dependent reduced objective function Ĵξ in u
constructed in Theorem 5.8.

Proof We consider the reduced objective function

Ĵ (u) =
∫

3

Ĵξ (u) dP (ξ) =
∫

3

Jξ (SF,ξ (u), u) dP (ξ) =
∫

3

Jξ (T (ξ, u), u) dP (ξ).

Since Ĵξ is Lipschitz continuous on bounded sets with a common Lipschitz constant
for almost all ξ ∈ 3, we can exchange integration and differentiation and obtain the
differentiability of Ĵ in each un and it holds Ĵu(un) =

∫

3
(Ĵξ )u(un) dP (ξ). Since

(Ĵξ )u(un) is bounded by the common Lipschitz constant of Ĵξ on a bounded set
containing (un)n∈N, we can again exchange limits and obtain

lim
n→∞ Ĵu(un) =

∫

3

lim
n→∞(Ĵξ )u(un) dP (ξ) =

∫

3

�ξ (u) dP (ξ),

where for each ξ ∈ 3, the integrand �ξ(u) is the subgradient of Ĵξ given in
Theorem 5.8. ��
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Maxwell Variational Inequalities
in Type-II Superconductivity

Malte Winckler and Irwin Yousept

Abstract This report is concerned with the mathematical and numerical analysis
of Bean’s critical state model for type-II superconductivity in combination with
the Maxwell equations. We review three different approaches to prove the well-
posedness of the resulting nonsmooth problem. At first, we discuss a direct proof
and an equivalent representation by means of hyperbolic variational inequalities.
Thereafter, we present a well-posedness result for a general class of hyperbolic
Maxwell variational inequalities and show the well-posedness of the Bean-Maxwell
system the other way around. Although this result allows a flexible choice of the
nonlinearity, it is not suitable for the case where the nonlinearity depends explicitly
on the time-variable. Therefore, we conclude the analysis by discussing a fully
discrete approximation of the underlying variational inequality with temperature
effects. Moreover, this method is the foundation for the numerical algorithm since
it includes a strong convergence result and a priori error estimates. We close this
report by presenting 3D numerical experiments for type-II superconductors.
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1 Introduction

The analysis of variational inequalities has a long history. With first mathematical
contributions going back to the 1960s, VIs have found a wide range of applications
in the modeling of mechanics, electromagnetics, and fluid-dynamics. They are
characterized by a nonsmooth nonlinearity that usually comes in form of a convex
and lower semicontinuous (l.s.c.) function. Therefore, the analysis is notoriously
difficult and often demands the use of regularization techniques in both analysis
and numerics. In this review, we concentrate on hyperbolic Maxwell variational
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inequalities of the second kind and its application to the physical phenomenon of
type-II (HTS) superconductivity. In general, superconductors exhibit two underlying
effects when they are cooled down below a certain critical temperature:

1. The electrical resistance of the material drops to zero, i.e., an electrical current
travels through the material without energy dissipation

2. The material does not allow any penetration by weak magnetic fields, i.e., they
are completely expelled from the superconductor.

The latter is widely known as the Meissner–Ochsenfeld effect. Superconductors are
classified into two different types. A characteristic property of type-I superconduc-
tors is the sharp transition between the normal and the superconducting state. As
soon as the critical temperature or a critical magnetic field strength is exceeded, the
Meissner–Ochsenfeld effect is no longer observable and the superconducting state
breaks down. In contrast, type-II superconductors possess a mixed state. That is,
above a first magnetic field strength Hc1, the field lines start penetrating the material
partially. The superconducting state is only destroyed if the field strength exceeds a
second critical valueHc2. Usually, the critical field strength in type-II is significantly
higher than in type-I. Moreover, in the mixed state, a superconductor has almost zero
electrical resistance. For these reasons, type-II superconductors are vital for many
modern technological applications such as magnetic resonance imaging (MRI),
magnetic confinement fusion technologies, magnetic levitation trains (MAGLEV),
and many more.

In the 1960s, Bean [4, 5] developed a critical state model that postulates a
nonsmooth constitutive relation between the electric field E and the current density
J as follows:

(A1) The current density strength |J | cannot exceed some critical value jc ∈ R
+;

(A2) the electric field E vanishes if the current density strength |J | is strictly less
than jc;

(A3) the electric field E is parallel to the current density J .

Under the assumption that the temperature of the superconductor is constantly
below the critical one, the Maxwell equations in combination with Bean’s model
describe the evolution of the electromagnetic waves in the medium �:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ε∂tE − curlH + J = f in �× (0, T ),

μ∂tH + curlE = 0 in �× (0, T ),

E × n = 0 on ∂�× (0, T ),

(E,H )(·, t) = (E0,H 0) in �.

(1.1a)
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along with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

J (x, t) ·E(x, t) = jc|E(x, t)| a.e. in �sc × (0, T ),

|J (x, t)| ≤ jc a.e. in �sc × (0, T ),

J (x, t) = 0 a.e. in �\�sc × (0, T ).

(1.1b)

In our context, � ⊂ R
3 is an open set, jc ∈ R

+ denotes the critical current density,
and �sc ⊂ � stands for the domain of the superconductor (cf. (A1)).

For a comprehensive review on Bean’s critical state law along with other math-
ematical models, we refer the reader to [6]. The first to analyze the system (1.1a)–
(1.1b) was Prigozhin [22] under the so-called eddy current approximation. If the
displacement current ε∂tE is significantly smaller than − curlH + J , then (1.1a)
can be approximated by neglecting ε∂tE. This results in a parabolic variational
inequality of the first kind for the magnetic field. For other contributions concerned
with the analysis and numerics for the eddy current approximation, we refer the
reader to [2, 8, 9].

In this report we will review the existing literature concerned with the analysis
and the numerics of (1.1a)–(1.1b) (including the displacement current) and the
progress that was made during our project within the DFG priority program 1962.
After introducing the notation and the necessary function spaces in Sect. 2, we will
analyze three different approaches to prove the well-posedness of (1.1a)–(1.1b).
The first one relies on the semigroup theory for Maxwell’s equations and proves
the existence of a unique solution to (1.1a)–(1.1b). Thereafter, we will discuss an
extension of this result for general hyperbolic mixed variational inequalities of the
second kind. Last but not least, an approach for a nonlinearity that depends explicitly
on the time is presented. As this method uses a fully discrete approximation of
the underlying variational inequality, it is also the foundation for the numerical
algorithm. We conclude by presenting 3D numerical experiments.

2 Preliminaries

For a given Hilbert space V , we denote a standard norm by ‖ · ‖V and a standard
scalar product by (·, ·)V . A bold typeface is used to indicate a three-dimensional
vector function or a Hilbert space of three-dimensional vector functions. We
introduce

H (curl) := {

q ∈ L2(�)
∣

∣ curl q ∈ L2(�)
}

,

where the operator curl is understood in the sense of distributions. As usual, C∞0 (�)

stands for the space of all infinitely differentiable three-dimensional vector functions
with compact support contained in �. We denote the closure of C∞0 (�) with respect
to the H (curl)-topology by H 0(curl). It is well-known that the Hilbert space
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H 0(curl) admits the following characterization (see e.g. [28, Appendix A]):

H 0(curl) =
{

q ∈ H (curl) | (q, curl v)L2(�)

= (curl q, v)L2(�) ∀v ∈ H (curl)
}

. (2.1)

The material parameters ε and μ stand for the electric permittivity and the magnetic
permeability, respectively. They are assumed to be of class L∞(�)3×3, symmetric
and uniformly positive-definite in the sense that there exist constants ε, μ > 0 such
that

ξT ε(x)ξ ≥ ε|ξ |2 and ξT μ(x)ξ ≥ μ|ξ |2 for a.e. x ∈ � and all ξ ∈ R
3.

(2.2)

We note that, physically speaking, (A1)–(A3) is not suitable for matrix-valued
material parameters. Due to (A3) and Ohm’s law

E = ρJ ,

the resistivity ρ has to be scalar-valued. This cannot be guaranteed if we consider
the case where ε and μ are matrix-valued. However, the mathematical analysis is
not affected by this issue. Therefore, we retain the more general assumption.

Given a symmetric and uniformly positive-definite matrix-valued function
α ∈ L∞(�)3×3, let L2

α(�) denote the weighted L2(�)-space endowed with
the weighted scalar product (α·, ·)L2(�). Based on this notation, let us introduce the
pivot Hilbert space used in our analysis:

X := L2
ε(�)× L2

μ(�),

equipped with the scalar product

((e,h), (v,w))X = (εe, v)L2(�) + (μh,w)L2(�) ∀(e,h), (v,w) ∈ X. (2.3)

We close this section by introducing the (unbounded) Maxwell operator

A : D(A) ⊂ X→ X, A := −
(

ε 0
0 μ

)−1 (

0 − curl
curl 0

)

, (2.4)

with

D(A) := H 0(curl)×H (curl).

The choice of the domain D(A) is motivated by the perfectly conducting electric
boundary condition, which specifies that the tangential component of the electric
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field vanishes on the boundary. Obviously, A : D(A) ⊂ X→ X is a densely defined
and closed operator. More importantly, it is skew-adjoint, i.e., D(A) = D(A∗) and
A = −A∗. Therefore, thanks to Stone’s theorem [21, Theorem 10.8], A generates
a strongly continuous group {Tt }t≥0 of unitary operators in X.

3 Analysis

In this section, we will review different approaches to prove the well-posedness
of (1.1a)–(1.1b). In the following, let � ⊂ R

3 be an open set and T ∈ R
+.

3.1 Direct Approach

The first study of the well-posedness of (1.1a)–(1.1b) goes back to Jochmann [16,
17]. His proof mainly relies on the maximal monotone structure related to (1.1b).
We summarize his results in the following theorem (see [16, Theorem 1] and [17,
Lemma 4.3]).

Theorem 3.1 Let f ∈ W 1,∞((0, T ),L2(�)) and (E0,H 0) ∈ D(A). Then, there
exists a unique (E,H ) ∈ L∞((0, T ),D(A)) ∩W 1,∞((0, T ),X) and a unique J ∈
L∞((0, T ),L∞(�)) that solve (1.1a)–(1.1b).

He also generalized his result [17] to the case of jc = jc
(

x,H (x, t)
)

by a
regularization technique and local compactness results for the magnetic field. These
results were taken up by Yousept [26] who proved equivalence of (1.1a)–(1.1b) and
a mixed hyperbolic variational inequality of the second kind of the form:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∫

�

ε
d

dt
E(t) · (v −E(t))+ μ

d

dt
H (t) · (w −H (t)) dx

+
∫

�

curlE(t) · w −H (t) · curl v dx + j (v)− j (E(t))

≥
∫

�

f (t) · (v −E(t)) dx,

for a.e. t ∈ (0, T ) and all (v,w) ∈ H 0(curl)× L2(�),

(E,H )(0) = (E0,H 0)

(VIB)

where j : L2
ε(�)→ R is defined by

j (v) :=
∫

�sc

jc|v| dx. (3.1)
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Therefore, the existence of a solution to (VIB) follows immediately from the well-
posedness of (1.1a)–(1.1b). The proof is given in [26, Theorem 3.1]. In the case
of jc = jc(x,H (x, t)) this results in a quasi-variational inequality. Moreover, the
optimal control of (1.1a)–(1.1b) was the subject of [25] (cf. also [24]).

3.2 General Hyperbolic Maxwell VIs of the Second Kind

In the previous section, the nonlinearity was explicitly given by (3.1) or charac-
terized by (1.1b). Now, we present a global well-posedness result for hyperbolic
Maxwell variational inequalities of the second kind with a proper, convex, and lower
semicontinuous (l.s.c.) function

ϕ : X→ R := R ∪ {+∞}. (3.2)

Therefore, the variational inequality under consideration reads as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∫

�

ε
d

dt
E(t) · (v −E(t))+ μ

d

dt
H (t) · (w −H (t)) dx

+
∫

�

curlE(t) · w − curlH (t) · v dx + ϕ(v,w)− ϕ((E,H )(t))

≥
∫

�

f (t) · (v −E(t))+ g(t) · (w −H (t)) dx,

for a.e. t ∈ (0, T ) and all (v,w) ∈ X,

(E,H )(0) = (E0,H 0)

(VI)

where (f ,g) is given data and (E0,H 0) the initial value. Their necessary assump-
tions for the well-posedness of (VI) will be specified in Theorem 3.3.

Before we discuss the well-posedness of (VI), we also note that (VI) can be
concisely reformulated by means of the Maxwell operator A and the subdifferential
∂ϕ : X→ 2X of ϕ which is given by

∂ϕ(v,w) := {(y, z) ∈ X | ((y, z), (p, q)− (v,w)
)

X

≤ ϕ(p, q)− ϕ(v,w) ∀(p, q) ∈ X}. (3.3)

Let (E,H ) ∈ L∞((0, T ),D(A)) ∩ W 1,∞((0, T ),X) be a solution to (VI). Since
(E,H )(t) ∈ D(A) = H 0(curl) ×H (curl) holds for a.e. t ∈ (0, T ), (2.1) implies
for a.e. t ∈ (0, T ) that

∫

�

curlE(t) ·H (t) dx =
∫

�

E(t) · curlH (t) dx (3.4)
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which in turn implies for every (v,w) ∈ X that

∫

�

curlE(t) · w − curlH (t) · v dx

=
∫

�

curlE(t) · (w −H (t))− curlH (t) · (v −E(t)) dx.

=− (

A(E,H )(t), (v,w)− (E,H )(t)
)

X. (3.5)

Therefore, we may insert (3.5) into (VI) and obtain

((

d

dt
−A

)

(E,H )(t), (v,w)− (E,H )(t)

)

X
+ ϕ(v,w)− ϕ((E,H )(t))

≥
∫

�

f (t) · (v −E(t))+ g(t) · (w −H (t)) dx.

Now, (2.2)–(2.3) and simple algebraic rearrangements yield

(

−
(

d

dt
−A

)

(E,H )(t)+ (ε−1f , μ−1g)(t), (v,w)− (E,H )(t)

)

X

≤ ϕ(v,w)− ϕ((E,H )(t)). (3.6)

Finally, by the definition of the subdifferential (3.3), we conclude that (VI) is
nothing but

⎧

⎪

⎨

⎪

⎩

−
(

d

dt
−A

)

(E,H )(t)+ (ε−1f , μ−1g)(t) ∈ ∂ϕ((E,H )(t)) a.e. in (0, T ),

(E,H )(0) = (E0,H 0).

(3.7)

Next, we discuss the global well-posedness result for (VI) and its assumptions.

Assumption 3.2 For everyM > 0, there exists a constant C(M) > 0 such that

‖(y, z)‖X ≤ C(M) ∀(y, z) ∈ ∂ϕ(v,w), (3.8)

for all (v,w) ∈ X satisfying ‖(v,w)‖X ≤ M .

A key tool in the existence analysis for (3.7) is the Yosida approximation of the
subdifferential. For λ > 0, as our pivot space X is a Hilbert space, we introduce the
resolvent J λ : X→ X and the Yosida approximation �λ : X→ X by

J λ := (I + λ∂ϕ)−1 and �λ := 1

λ
(I − J λ), (3.9)
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where I : X → X stands for the identity operator. Thanks to the maximal
monotonicity of ∂ϕ, J λ is well-defined as a non-expansive mapping. Moreover, �λ

is maximal monotone and Lipschitz-continuous with the Lipschitz-constant λ−1.
Based on the use of the operator �λ, [28] considers the following integral

equation: For every n ∈ N, find (En,H n) ∈ C([0, T ],X) such that

(En,H n)(t) = Tt (E0,H 0)+
∫ t

0
Tt−s

(

(ε−1f , μ−1g)(s)−�λn((En,H n)(s))
)

ds

for all t ∈ [0, T ] where {λn}∞n=1 is a sequence of positive real numbers converging
to zero and {Tt }t≥0 is the strongly continuous group generated by the Maxwell oper-
ator A. Its well-posedness follows from the classical contraction principle. There-
after, the uniform boundedness of the sequences {(En,H n)}∞n=1,{J λn(En,H n)}∞n=1
and {�λn(En,H n)}∞n=1 is obtained by the virtue of the energy balance equality
result (see [28, Lemma 2.1]) and Assumption 3.2. Thus, we may extract weakly-
∗ converging subsequences whose limits turn out to solve the original variational
inequality. Uniqueness follows by energy estimates. The detailed proof can be found
in [28, Lemma 3.2 and Theorem 3.3].

Theorem 3.3 Let ϕ : X → R be a convex, l.s.c. function that fulfills ∂ϕ(0, 0) �=
∅ as well as Assumption 3.2. Furthermore, let (f ,g) ∈ W 1,∞((0, T ),X) and
(E0,H 0) ∈ D(A). Then, there exists a unique

(E,H ) ∈ L∞((0, T ),D(A)) ∩W 1,∞((0, T ),X)

that solves (VI).

As we will see, Assumption 3.2 is satisfied for (VIB) and hence, Theorem 3.3
can be applied to (VIB). Unfortunately, Assumption 3.2 has some limitation. For
instance, if we choose ϕ as the indicator function of a nonempty, closed and convex
set K ⊂ X, i.e.,

ϕ(v,w) = IK(v,w) :=
{

0 if (v,w) ∈ K,

+∞ if (v,w) /∈ K,
(3.10)

then ϕ is proper, l.s.c., and convex. However, its subdifferential is given by

∂IK(v,w) := {(y, z) ∈ X | ((y, z), (p, q)− (v,w))X ≤ 0 ∀(p, q) ∈ K},
(3.11)

which does not necessarily satisfy Assumption 3.2. Therefore, we cannot apply
Theorem 3.3 to (3.10). However, it is possible to drop the local boundedness
assumption of ∂ϕ in Theorem 3.3 resulting in a more general existence result. This
can be proven by taking the minimal section operator associated with the Nemytskii
operator of ∂ϕ acting in the Bochner space L2((0, T ),X) into account. Here, the
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initial electromagnetic field has to fulfill the additional assumption (E0,H 0) ∈
D(A)∩D(∂ϕ). In addition, the test-functions are chosen to be more regular, leading
to a weaker existence result without uniqueness. For a detailed proof we refer the
reader to [28, Theorem 3.11]. Moreover, we want to emphasize that, in contrast to
the previous approach, ϕ may also depend on the magnetic field H and not solely
on the electric field E.

In the remainder of this section, we come back to the variational inequality (VIB)
and the Maxwell-Bean system (1.1a)–(1.1b). Thus, we define ϕ : X → R by
ϕ(v,w) := j (v) for (v,w) ∈ X. Clearly, ϕ is proper, convex, and lower
semicontinuous. It remains to verify that ϕ fulfills Assumption 3.2. By definition,
for every (v,w) ∈ X, it holds that

∂ϕ(v,w) = {

(y, z) ∈ X | (y,p − v)L2
ε (�)

+ (z, q − w)L2
μ(�)

+ j (v)

≤ j (p) ∀(p, q) ∈ X
}

.

As ϕ does not depend on the second variable w ∈ L2
μ(�), it holds that (y, z) ∈

∂ϕ(v,w) if and only if z = 0 and y ∈ ∂j (v). Hence

∂ϕ(v,w) = ∂j (v)× {0} ∀(v,w) ∈ X. (3.12)

In order to verify Assumption 3.2, let v ∈ L2
ε(�) and y ∈ ∂j (v). By definition, y

satisfies

(y,p − v)L2
ε (�)

≤ j (p)− j (v) ∀p ∈ L2
ε(�).

If we insert p = y + v, then this yields

‖y‖2
L2
ε (�)

≤
∫

�sc

jc(|y + v| − |v|) dx ≤
∫

�sc

jc|y| dx ≤ jc|�sc| 1
2 ‖y‖L2(�).

In conclusion, Assumption 3.2 holds true. Furthermore, it is easy to see that (0, 0) ∈
∂ϕ(0, 0). Finally, we take g ≡ 0, f ∈ W 1,∞((0, T ),L2

ε(�)) as well as (E0,H 0) ∈
H 0(curl)×H (curl). Hence, Theorem 3.3 implies the existence of a unique

(E,H ) ∈ L∞
(

(0, T ),H 0(curl)×H (curl)
) ∩W 1,∞(

(0, T ),L2
ε(�)× L2

μ(�)
)
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that fulfills the variational inequality

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∫

�

ε
d

dt
E(t) · (v −E(t))+ μ

d

dt
H (t) · (w −H (t)) dx

+
∫

�

curlE(t) · w − curlH (t) · v dx + j (v)− j (E(t))

≥
∫

�

f (t) · (v −E(t)) dx,

for a.e. t ∈ (0, T ) and all (v,w) ∈ L2
ε(�)× L2

μ(�),

(E,H )(0) = (E0,H 0).

(3.13)

Thanks to (2.1), (3.13) is equivalent to (VIB). Hence, (E,H ) is the unique solution
of (VIB). Moreover, the representation (3.13) allows us to recover Faraday’s law

μ∂tH + curlE = 0. (3.14)

In fact, by simply testing (3.13) with v = E(t), we obtain

∫

�

(

μ
d

dt
H (t)+ curlE(t)

)

· (w −H (t)) dx ≥ 0 ∀w ∈ L2
μ(�).

Thus, (3.14) follows. On the other hand, we may insert (3.14) back into (3.13) and
we obtain the following variational inequality with Faraday’s law:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∫

�

ε
d

dt
E(t) · (v −E(t))− curlH (t) · (v −E(t)) dx + j (v)− j (E(t))

≥
∫

�

f (t) · (v −E(t)) dx for a.e. t ∈ (0, T ) and all v ∈ L2
ε(�),

μ
d

dt
H (t)+ curlE(t) = 0 for a.e. t ∈ (0, T ),

(E,H )(0) = (E0,H 0)

(VIF)

Our final step is to construct a solution to the nonsmooth Maxwell system (1.1a)–
(1.1b) from the solution of (VIB). From (3.7) and (3.12), we know that (3.13) can
be equivalently reformulated by

⎧

⎪

⎨

⎪

⎩

−
(

d

dt
−A

)

(E,H )(t)+ (ε−1f (t), 0) ∈ ∂j (E(t))× {0} a.e. in (0, T ),

(E,H )(0) = (E0,H 0).

(3.15)
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Note that in this case (3.15) is also an immediate consequence of (VIF). We define

(J , J̃ ) := −
(

ε 0
0 μ

)((

d

dt
−A

)

(E,H )− (ε−1f , 0)

)

∈ L∞((0, T ),X).

(3.16)

Since (E,H ) solves (3.15) for a.e. t ∈ (0, T ), it follows that

(ε−1J , μ−1J̃ )(t) = −
(

d

dt
−A

)

(E,H )+ (ε−1f , 0) ∈ ∂j (E(t))× {0}.
(3.17)

Hence, (3.17) yields that J̃ (t) = 0 and ε−1J (t) ∈ ∂j (E(t)) for almost every t ∈
(0, T ). Moreover, by (3.16) and the definition of A, we obtain that (E,H ,J ) fulfills

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ε
d

dt
E − curlH + J = f in �× [0, T ],

μ
d

dt
H + curlE = 0 in �× [0, T ].

Together with the boundary condition for E, this corresponds to (1.1a). Ultimately,
it remains to verify that J satisfies (1.1b). As ε−1J (t) ∈ ∂j (E(t)) for almost every
t ∈ (0, T ), it holds by definition that

(J (t), v −E(t))L2(�) ≤ j (v)− j (E(t)) ∀v ∈ L2
ε(�). (3.18)

We may test (3.18) with v = 0 and v = 2E(t), respectively, to obtain

(J (t),E(t))L2(�) = j (E(t)). (3.19)

On the other hand, by adding (3.18) and (3.19) it follows that

(J (t), v)L2(�) ≤ j (v) =
∫

�sc

jc|v| dx ∀v ∈ L2
ε(�). (3.20)

We see that (3.20) implies immediately that J (t) = 0 a.e. in � \�sc. Furthermore,
if we assume that there exists ω ⊂ �sc with |ω| �= 0 such that |J (x, t)| > jc holds
for almost every x ∈ ω, then we may insert v := χω

J (t)
|J (t)| ∈ L2

ε(�) in (3.20) and
obtain a contradiction right away. This implies

|J (x, t)| ≤ jc for a.e. (x, t) ∈ �sc × (0, T ). (3.21)
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By means of this, we obtain from (3.19) that

0 =
∫

�sc

jc|E(t)| − J (t) ·E(t) dx
(3.21)
︷︸︸︷⇒ J (t) ·E(t) = jc|E(t)| a.e. in �sc.

Thus, (E,H ,J ) solves (1.1a)–(1.1b) in the sense of Theorem 3.1.

4 Numerical Analysis

In this section, we consider the case where the nonlinearity ϕ is also explicitly
depending on the time-variable t . This is the subject of [23]. Although Theorem 3.3
already allows a wide class of nonlinearities ϕ : X → R, it is not applicable
for this case. According to [23], the time-dependence is given as follows. Let
θ : � × [0, T ] → R be the operating temperature in the medium �. The funda-
mental properties of superconductivity demand that an accurate model includes a
temperature-dependence in the critical current density jc. Therefore, [23] specifies
the nonlinearity j : [0, T ] × L1(�)→ R by

j (t, v) :=
∫

�

jc
(

x, θ(x, t)
)|v(x)| dx, (4.1)

with jc : � × R → R. The mathematical assumptions for jc which are given in
Theorem 4.1 (cf. [23, Assumption 2.1]) are also justified by physical measurements
[1, 7]. With (4.1) in (VIB), the variational inequality is given by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∫

�

ε
d

dt
E(t) · (v −E(t))+ μ−1 d

dt
B(t) · (w − B(t)) dx

+
∫

�

μ−1 curlE(t) · w − μ−1B(t) · curl v dx

+ j (t, v)− j (t,E(t)) ≥
∫

�

f (t) · (v −E(t)) dx

for a.e. t ∈ (0, T ) and every (v,w) ∈ H 0(curl)× L2(�),

(E(0),B(0)) = (E0,B0).

(VIT)

Note that we use the equivalent E-B-formulation for Maxwell’s equations here.
In (VIT) the variables are the electric field strength E and the magnetic induction B

which is given by the constitutive relation

B = μH . (4.3)
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This formulation is more convenient for the spatial discretization if μ is not a
piecewise constant function (cf. [19]) and equivalent to (VIB) with (4.1).

In this section, we will describe the approach and sketch the main results of
[23]. Their method relies on a fully discrete approximation of (VIT) and, unlike the
previous approaches, it is not based on the semigroup theory.

4.1 Fully Discrete Scheme

Let � ⊂ R
3 be a polyhedral Lipschitz domain with a connected boundary ∂�. We

consider a family of quasi-uniform triangulations {Th}h>0, i.e.,

� =
⋃

T ∈Th
T ∀h > 0.

The index h > 0 denotes the maximal diameter of the tetrahedra in Th. We choose
V h to be the first family of Nédélec’s curl-conforming edge elements defined by

V h := {vh ∈ H 0(curl) : vh|T = aT + bT × x with aT ,bT ∈ R
3 ∀T ∈ Th}

and Wh as the finite element space of piecewise constant functions which is denoted
by

Wh := {wh ∈ L2(�) : wh|T = aT with aT ∈ R
3 ∀T ∈ Th}.

Furthermore, the family of triangulations {T }h>0 is chosen such that there exists
h̄ > 0 with

V
h̃
⊂ V h and W

h̃
⊂ Wh ∀ 0 < h ≤ h̃ ≤ h̄.

For instance, this can be practically achieved by repeating bisection of the tetra-
hedra. For the time-discretization of (VIT) we focus on the implicit Euler scheme.
To this aim, let us fix N ∈ N and define an equidistant partition of [0, T ] in the
following way:

τ := T

N
, 0 = t0 < t1 < · · · < tN = T with tn := nτ

for all n ∈ {0, . . . , N}. Furthermore, we define

f n := f (tn) ∈ L2(�), jn(v) :=
∫

�

jc(x, θ(x, tn))|v(x)| dx ∀n ∈ {0, . . . , N}.
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The combination of the implicit Euler in time with the mixed finite element
method in space leads to the following fully discrete scheme for (VIT): Find
{(En

h,B
n
h)}Nn=1 ⊂ V h ×Wh such that

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∫

�

εδEn
h · (vh −En

h)+ μ−1δBn
h · (wh − Bn

h) dx

+
∫

�

μ−1 curlEn
h · wh − μ−1Bn

h · curl vh dx

+ jn(vh)− jn(En
h) ≥

∫

�

f n · (vh −En
h) dx

for every (vh,wh) ∈ V h ×Wh and n ∈ {1, . . . , N}
(E0

h,H
0
h) = (E0h,H 0h),

(VIN,h)

where

δEn
h := En

h −En−1
h

τ
and δBn

h := Bn
h − Bn−1

h

τ
∀n ∈ {1, . . . , N}.

Moreover, (E0h,B0h) ∈ V h ×Wh denotes the finite element approximation of the
initial data (E0,B0) and has to satisfy a compatibility system (see [23]) to guarantee
convergence. In order to recover the time-dependence in (VIN,h), we introduce the
quantities

{

EN,h(0) := E0h

EN,h(t) := En−1
h + (t − tn−1)δE

n
h

and

{

EN,h(0) := E0h

EN,h(t) := En
h

(4.3)

for t ∈ (tn−1, tn] and n ∈ {1, . . . , N}. In the same way, we define BN,h and BN,h.
The main results of [23] are summarized in the following Theorem.

Theorem 4.1 Let f ∈ C0,1([0, T ],L2(�)) and the temperature distribution θ ∈
C0,1([0, T ], L2(�)) ∩ C([0, T ], L∞(�)). Moreover, jc : � × R → R is assumed
to be Lebesgue-measurable and nonnegative in the first variable as well as locally
bounded and locally Lipschitz-continuous in the second variable [23, Assumption
2.1]. Then, there exists

(E,B) ∈ W 1,∞(

(0, T ),L2
ε(�)×H 0(div = 0)

) ∩ L∞(

(0, T ),H 0(curl)×H 0(div = 0)
)

such that

lim
h→0

‖EN,h −E‖C([0,T ],L2
ε (�)

= lim
h→0

‖BN,h − B‖C([0,T ],L2(�)) = 0,

lim
h→0

‖EN,h −E‖L∞((0,T ),L2
ε (�))

= lim
h→0

‖BN,h − B‖L∞((0,T ),L2(�)) = 0

and (E,B) is the unique solution of (VIT).
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The basic idea for this proof makes use of a decoupling ansatz as follows: At first,
we insert vh := En

h into (VIN,h) and obtain a discrete version of Faraday’s law
(cf. (3.14))

μ−1δBn
h = −μ−1 curlEn

h ⇒ Bn
h = Bn−1

h − τ curlEn
h. (4.4)

Thus, we have an explicit formula for Bn
h provided that En

h is already computed.
Next, setting wh = Bn

h in (VIN,h) and employing (4.4) yield the variational
inequality

∫

�

εδEn
h · (vh −En

h) dx +
∫

�

τμ−1 curlEn
h · curl(vh −En

h) dx + jn(vh)

− jn(En
h) ≥

∫

�

f n · (vh −En
h)+ μ−1Bn−1

h · curl(vh −En
h) dx ∀vh ∈ V h

(4.5)

which is equivalent to an elliptic curl–curl variational inequality of the form

a(En
h, vh −En

h)+ jn(vh)− jn(En
h) ≥ 〈f̃ n

, vh −En
h〉 ∀vh ∈ V h (4.6)

with the continuous and coercive bilinear form a : H 0(curl) × H 0(curl) → R

defined by

a(u, v) :=
∫

�

τ−1εu · v dx +
∫

�

τμ−1 curlu · curl v dx ∀u, v ∈ H 0(curl)

and the right-hand side f̃
n ∈ H 0(curl)∗ by

〈f̃ n
, v〉 :=

∫

�

(f n + τ−1εEn−1
h ) · v dx +

∫

�

μ−1Bn−1
h · curl v dx ∀v ∈ H 0(curl).

The well-posedness of (4.6) is covered by a classical result in [18, Theorem 2.2] and
therefore, the existence of a unique solution {(En

h,B
n
h)}Nn=1 ⊂ V h×Wh of (VIN,h)

follows by inductive reasoning. By means of zero- and first-order stability estimates,
a weak-∗ limit (E,B) is generated that in fact solves (VIB).

Thereafter, in order to prove the strong convergence, the solution operator
�h : H 0(curl) → V h of the following mixed variational problem is introduced:
For every y ∈ H 0(curl) find yh ∈ V h

⎧

⎨

⎩

(μ−1 curl yh, curl vh)L2(�) = (μ−1 curl y, curl vh)L2(�) ∀vh ∈ V h,

(yh,∇ψh)L2(�) = (y,∇ψh)L2(�) ∀ψh ∈ 2h

(4.7)
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where 2h denotes the space of continuous piecewise linear elements with vanishing
traces

2h := {φh ∈ H 1
0 (�) : φh|T = aT · x + bT with aT ∈ R

3, bT ∈ R ∀T ∈ Th}.

The theory of mixed problems (cf. [20, Theorem 2.45]) in combination with the
discrete Poincaré–Friedrichs-type inequality [14, Theorem 4.7] and the discrete
LBB condition (cf. [27, pp. 2802–2803]) implies that for every h > 0 and y ∈
H 0(curl), (4.7) admits a unique solution yh = �hy ∈ V h satisfying

‖�hy − y‖H (curl) ≤ C

(

inf
χh∈V h

‖y − χh‖H (curl)

)

∀y ∈ H 0(curl).

with a constant C > 0, independent of h and y. By the virtue of the best-
approximation property of �h and the density of the families V h ⊂ H 0(curl) as
well as Wh ⊂ L2(�), energy estimates yield the desired strong convergence of the
discrete solutions toward the solution (E,B) of (VIT).

Finally, they prove a priori error estimates that basically rely on the mentioned
energy estimates and an error estimate with low field regularity for �h that
originally comes from [10, 11].

5 Computations

This method does not only yield the well-posedness for (VIT) but it is also the basis
for the numerical implementation. Thanks to the formulas (4.4) and (4.6), we have
to solve an elliptic curl–curl variational inequality of the second kind in each time-
step. For the sake of simplicity, we will only describe how we solve the system
for a fixed time-step n0 ∈ {1, . . . , N}. Therefore, we assume that (En0−1

h ,B
n0−1
h )

are already computed. Now, set f̃ = f̃
n0 , jc(x) = jc(x, θ(x, tn0)) and let Eh :=

E
n0
h ∈ V h be the unique solution of (4.6) for n = n0. Furthermore, Bh = B

n0
h ∈

H 0(div = 0) is given by (4.4).
A classical result from the theory of VIs yields the existence of a Lagrange-

multiplier for (4.6) (cf. [12]). Thus, there exists a θh ∈ L∞(�) such that

⎧

⎪

⎨

⎪

⎩

a(Eh, vh)+
∫

�

θh · vh dx = 〈f̃ , vh〉 ∀vh ∈ V h

|θh(x)| ≤ jc(x), θh(x) ·Eh(x) = jc(x)|Eh(x)| for a.e. x ∈ �.

(5.1)

Due to the non-differentiability and the VI structure, we have to employ an
additional regularization technique to j . Therefore, we introduce the Moreau–
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Yosida regularization ηλ : R3 → R of | · | by

ηλ(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|x| − λ

2
, if |x| ≥ λ

1

2λ
|x|2 , else

(5.2)

which is continuously differentiable for every λ > 0. For an arbitrary Hilbert space
{H, (·, ·)H }, the Moreau–Yosida regularization ϕλ : H → R for a convex and l.s.c.
function ϕ : H → R is given by

ϕλ(x) := min
v∈H

‖v − x‖2
H

2λ
+ ϕ(v). (5.3)

Following Fermat’s principle, the unique minimizer xλ of (5.3) for x ∈ H satisfies

0 ∈ 1

λ
(xλ − x)+ ∂ϕ(xλ) ⇒ xλ = (I+λ∂ϕ)−1(x).

Therefore, x �→ xλ corresponds to the resolvent J λ defined in (3.9) for H =
X. This shows that the Moreau–Yosida regularization is related to the Yosida
approximation (3.9) used in the existence analysis (Sect. 3). In fact, it is well-known
[3, Proposition 12.30] that the Yosida approximation for the subdifferential of every
proper, convex, and l.s.c. function ϕ is the Gâteaux-derivative of the Moreau–Yosida
regularization ϕλ.

Let us now briefly discuss the equivalence of ϕλ and ηλ for our case, i.e., with
H = R

3 and ϕ = | · |. Thus, fix x �= 0. We may split the minimization problem
in (5.3) as follows:

ϕλ(x) =
︸︷︷︸

(5.3)

min
v∈R3

1

2λ
|v|2 − 1

λ
v · x + 1

2λ
|x|2 + |v|

= min
r≥0

min
v∈R3,|v|=r

1

2λ
r2 − 1

λ
v · x + 1

2λ
|x|2 + r. (5.4)

For every fixed r ≥ 0 the Cauchy–Schwarz inequality yields that the inner
minimization problem in (5.4) obtains the minimizer

vmin(r) = r
x

|x| .

Hence,

ϕλ(x) = min
r≥0

1

2λ
(r − |x|)2 + r. (5.5)
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Now, by standard calculus arguments, we may compute the minimizer of (5.5). It is
given by

rmin = max(0, |x| − λ). (5.6)

Finally, inserting rmin into (5.5) implies that ϕλ(x) = ηλ(x) for every x �= 0. The
case x = 0 is trivial.

For λ > 0 let us now define jλ : L2
ε(�)→ R by

jλ(v) :=
∫

�

jc(x)ηλ(v(x)) dx

and consider the regularized problem of finding Eλ
h ∈ V h such that

a(Eλ
h, vh −Eλ

h)+ jλ(vh)− jλ(E
λ
h) ≥ 〈f̃ , vh −Eλ

h〉 ∀vh ∈ V h. (5.7)

Thanks to the Gâteaux-differentiability of jλ : L2
ε(�) → R, the unique solution

Eλ
h ∈ V h to (5.7) is uniquely characterized by

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a(Eλ
h, vh)+

∫

�

θλh · vh dx = 〈f̃ , vh〉 ∀vh ∈ V h

θλh(x) = jc(x)
γEλ

h(x)

max{1, γ |Eλ
h(x)|}

for a.e. x ∈ �.

(5.8)

Of course, by employing a regularization technique, we generate an additional error.
For our specific approach, this error is straightforwardly computed. In fact, if we
subtract (5.8) from (5.1), we obtain for vh = Eh −Eλ

h

a(Eh −Eλ
h,Eh −Eλ

h) =
∫

�

(

θh − θλh
) · (Eλ

h −Eh

)

dx. (5.9)

Thus, with the properties of θh, θ
λ
h we may estimate the right-hand side in (5.9) to

obtain

‖Eh −Eλ
h‖H 0(curl) ≤

C√
λ

∀λ > 0

with a constant C > 0, independent of h and λ.
Now, the numerical approach is to fix λ5 0 and solve the nonlinear system (5.8)

in each time-step. An efficient way to compute the solution to (5.8) is to use the
semismooth Newton method (see [15]). It is well-known that the max-function from
R
n to R

n satisfies the necessary regularity (see [13]) such that we may apply the
SSN-method for (5.8) and obtain local superlinear convergence.
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6 Numerical Experiments

We finish this report by presenting the accuracy of our algorithm with a physical
example from type-II superconductivity. We drop the time-dependence of jc and
consider a constant critical current density jc ∈ R

+. We specify the numerical setup
as follows: The hold-all domain is the cube � = (−1, 1)3 and T = 10. We take a
wire given by

�p := {

(x, y, z) ∈ � :
√

x2 + z2 ≤ 0.1
}

carrying a current. It can be described by the function f : �× [0, T ] → R
3 with

f (x, y, z, t) :=
{

1/R (0, (t + 0.1), 0) for (x, y, z) ∈ �p,

0 for (x, y, z) /∈ �p.

The constant R > 0 denotes the electrical resistance of the pipe (R = 10).
Moreover, for the sake of simplicity, the material parameters are chosen ε =
μ = 1. If we do not include a superconductor in this setup, then the wire induces
magnetic field which comes in the shape of co-centric circles around the wire (see
Fig. 1b). The implementation is done with the finite element framework FENICS
and PARAVIEW is our visualization tool.

Let us now place a type-II superconducting box with side length 0.1 next to the
wire (see Fig. 1a). For the time-discretization, we choose τ = 1/20. The uniform
triangulation with h = 1/20 gets refined around the wire and the superconductor
such that we obtain roughly 200,000 cells. The corresponding finite element spaces
V h and Wh have roughly 230,000 and 580,000 degrees of freedom (DoFs),
respectively. In Fig. 2 we present 2d slices of the original 3d plots where the
superconductor is left of the wire. The time-step is denoted by n ∈ {0, . . . , N − 1}
with N = 1/τ = 20.

As we start with a rather weak current strength |f | = 0.01, we can observe the
full Meissner–Ochsenfeld effect in the first time-step (see Fig. 2a). In Fig. 2b the
magnetic field begins penetrating into the material. That is, the superconductor is in
its mixed state. With an increasing current strength, the magnetic field strength rises

Fig. 1 Left: Wire and superconductor. Right: Magnetic field lines (glyphs) without superconduc-
tor
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Fig. 2 2d-slices of the magnetic field with a superconductor below its critical temperature. (a)
n = 0. (b) n = 1. (c) n = 2. (d) n = 3. (e) n = 4. (f) n = 5. (g) n = 9. (h) n = 19

and the superconductor expels less and less field lines (see Fig. 2c–f). For n = 9
(Fig. 2g) the superconducting state is almost completely broken down. Finally, in
the last iteration (see Fig. 2h) the Meissner–Ochsenfeld-effect is completely broken
down. We also note that the superconductor is in its mixed state during most of the
time-steps. In fact, the magnetic field strength has to be more than 10 times higher
than the initial one in order to destroy the superconducting state.
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