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Abstract. Process mining focuses on the analysis of recorded event
data in order to gain insights about the true execution of business pro-
cesses. While foundational process mining techniques treat such data as
sequences of abstract events, more advanced techniques depend on the
availability of specific kinds of information, such as resources in organiza-
tional mining and business objects in artifact-centric analysis. However,
this information is generally not readily available, but rather associated
with events in an ad hoc manner, often even as part of unstructured
textual attributes. Given the size and complexity of event logs, this calls
for automated support to extract such process information and, thereby,
enable advanced process mining techniques. In this paper, we present an
approach that achieves this through so-called semantic role labeling of
event data. We combine the analysis of textual attribute values, based
on a state-of-the-art language model, with a novel attribute classifica-
tion technique. In this manner, our approach extracts information about
up to eight semantic roles per event. We demonstrate the approach’s
efficacy through a quantitative evaluation using a broad range of event
logs and demonstrate the usefulness of the extracted information in a
case study.

Keywords: Process mining · Natural language processing · Semantic
labeling

1 Introduction

Process mining [1] enables the analysis of business processes based on event logs
that are recorded by information systems in order to gain insights into how pro-
cesses are truly executed. Process mining techniques obtain these insights by
analyzing sequences of recorded events, also referred to as traces, that jointly
comprise an event log. Most foundational process mining techniques treat traces
as sequences of abstract symbols, e.g., 〈a, b, c, d〉. However, more advanced tech-
niques, such as social network analysis [3] and object-centric process discovery [2]
go beyond this abstract view and consider specific kinds of information contained
in the events’ labels or attributes, such as actors, business objects, and actions.

A key inhibitor of such advanced process mining techniques is that the
required pieces of information, which we shall refer to as semantic components,
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are not readily available in most event logs. A prime cause for this is the lack of
standardization of attributes in event logs. While the XES standard [4] defines
certain standard extensions for attributes (e.g., org:resource), the use of these
conventions is not enforced and, thus, not necessarily followed by real-life logs
(cf., [9]). Furthermore, the standard only covers a limited set of attributes, which
means that information on components such as actions and business objects, are
not covered by the standard at all and, therefore, often not explicitly represented
in event logs.

Rather, relevant information is often captured as part of unstructured, tex-
tual data attributes associated with events, most commonly in the form of an
event’s label. For example, the “Declaration submitted by supervisor ” label from
the most recent BPI Challenge [10] captures information on the business object
(declaration), the action (submitted), and the actor (supervisor). Since these
components are all encompassed within a single, unstructured text, the informa-
tion from the label cannot be exploited by process mining techniques. Enabling
this use, thus, requires the processing of each individual attribute value in
order to extract the included semantic information. Clearly, this is an extremely
tedious and time-consuming task when considered in light of the complexity of
real-life logs, with hundreds of event classes, dozens of attributes, and thousands
of instances. Therefore, this calls for automated support to extract semantic
components from event data and make them available to process mining tech-
niques.

To achieve this, we propose an approach that automatically extracts semantic
information from events while imposing no assumptions on a log’s attributes.
In particular, it aims to extract information on eight semantic roles, covering
various kinds of information related to business objects, actions, actors, and
other resources. The choice for these specific roles is based on their relevance to
existing process mining techniques and presence in available real-life event logs.
To achieve its goal, our approach combines state-of-the-art natural language
processing (NLP) techniques, tailored to the task of semantic role labeling, with
a novel technique for semantic attribute classification.

Following an illustration of the addressed problem (Sect. 2) and presentation
of our approach itself (Sect. 3), the quantitative evaluation presented in Sect. 4
demonstrates that our approach achieves accurate results on real-life event logs,
spanning various domains and varying considerably in terms of their informa-
tional structure. Afterwards, Sect. 5 highlights the usefulness of our approach by
using it to analyze an event log from the 2020 BPI Challenge (BPI20). Finally,
Sect. 6 discusses streams of related work, before concluding in Sect. 7.

2 Motivation

This section motivates the goal of semantic role labeling of event data (Sect. 2.1)
and discusses the primary challenges associated with this task (Sect. 2.2).
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2.1 Semantic Roles in Event Data

Given an event log, our work sets out to label pieces of information associated
with events that correspond to particular semantic roles. In this work, we focus
on various roles that support a detailed analysis of business process execution
from a behavioral perspective, i.e., we target semantic roles that are commonly
observed in event logs and that are relevant for an order-based analysis of event
data. Therefore, we consider information related to four main categories: business
objects, actions, as well as active and passive resources involved in a process’
execution. For each category, we define multiple semantic roles, which we jointly
capture in a set R:

Business Objects. In line with convention [19], we use the term business object
to broadly refer to the main object(s) relevant to an event. Particularly, we define
(1) obj as the type of business object to which an event relates, e.g., a purchase
order, an applicant, or a request and (2) objstatus as an object’s status, e.g., open
or completed.

Actions. We define two roles to capture information on the actions that are
applied to business objects : (1) action, as the kind of action, e.g., create,
analyze, or send, and (2) actionstatus, as further information on its status, e.g.,
started or paused.

Actors. Information regarding the active resource in the event is captured in the
following two roles: (1) actor as the type of active resource in the event, e.g., a
“supervisor ” or a “system”, and (2) actorinstance for information indicating the
specific actor instance, e.g., an employee identifier.

Passive Resources. Aside from the actor, events may also store information
on passive resources involved in an event, primarily in the form of recipients.
For this, we again define two roles: (1) passive as the type of passive resource
related to the event, e.g., the role of an employee receiving a document or a sys-
tem on which a file is stored or transferred through, and (2) passiveinstance for
information indicating the specific resource, e.g., an employee or system identi-
fier.

The considered semantic roles enable a broad range of fine-granular insights
into the execution of a process. For example, the business object and action
categories allow one to obtain detailed insights into the business objects moving
through a process, their inter-relations, and their life-cycles. Furthermore, by also
considering the resource-related roles, one can, for instance, gain detailed insights
into the resource behavior associated with a particular business object, e.g., how
resources jointly collaborate on the processing of a specific document. While
the covered roles, thus, support a wide range of analyses and are purposefully
selected based on their relevance in real-life event logs, our approach is by no
means limited to these specific roles. Given that we employ state-of-the-art NLP
technology that generalizes well, the availability of appropriate event data allows
our approach to be easily extended to cover additional semantic roles, both
within and outside the informational categories considered here.
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2.2 The Semantic Role Labeling Task

To ensure that all relevant information is extracted from an event log, our work
considers two aspects of the semantic role labeling task, concerned with two
kinds of event attributes: attribute-level classification for attributes dedicated to
a single semantic role and instance-level labeling for textual attributes covering
various roles:

Attribute-Level Classification. Attribute-level classification sets out to
determine the role of attributes that correspond to the same, dedicated seman-
tic role throughout an event log, e.g., a doctype attribute indicating a busi-
ness object. Although the XES standard [4] specifies several standard event
attributes, such as org:resource and org:role, these only cover a subset of
the semantic roles we aim to identify. They omit roles related to business objects,
actions, and passive resources. These other semantic roles may, thus, be captured
in attributes with diverse names, e.g., the objstatus role corresponds to event
attributes such as isClosed or isCancelled in the Hospital log1. Furthermore,
even for roles covered by standard attributes, there is no guarantee that event
logs adhere to the conventions, e.g., rather than using org:group, the BPI14 log
captures information on actors in an Assignment_Group attribute.

Instance-Level Labeling. Instance-level labeling, instead, sets out to derive
semantic information from attributes with unstructured, textual values that
encompass various semantic roles, differing per event instance. This task is most
relevant for so-called event labels, often stored in a concept:name attribute.
These labels contain highly valuable semantic information, yet also present con-
siderable challenges to their proper handling, as illustrated through the real-life
event labels in Table 1. The examples highlight the diversity of textual labels,
in terms of their structure and the semantic roles that they cover. It is worth
mentioning that such differences may even exist for labels within the same event
log, e.g., labels l5 and l6 differ considerably in their textual structure and the
information they cover, yet they both stem from the BPI19 log. Another char-
acteristic to point out is the possibility of recurring roles within a label, such
as seen for label l1, which contains two action components: draft and send.
Hence, an approach for instance-level labeling needs to be able to deal with tex-
tual attribute values that are highly variable in terms of the information they
convey, as well as their structure.

1 We kindly refer to Sect. 4.1 for further information on the event logs referenced here.
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Table 1. Exemplary event labels from real-life event logs.

Log ID Event label Contained semantic roles

WABO l1 Draft and send request for advice action (×2), obj

BPI15 l2 Send design decision to stakeholders action, obj, passive

BPI15 l3 Send letter in progress action, obj, actionstatus

RTFM l4 Insert date appeal to prefecture action, obj, passive

BPI19 l5 Vendor creates invoice actor, action, obj

BPI19 l6 SRM: In Transfer to Execution Syst. action, passive

BPI20 l7 Declaration final_approved by supervisor obj, actionstatus, action, actor

3 Semantic Event Log Parsing

This section presents our approach for the semantic labeling of event data. Its
input and main steps are as follows:

Approach Input. Our approach takes as input an event log L that consists of
events recorded by an information system. We denote the universe of all events
as E , where each event e ∈ E carries information in its payload. This payload
is defined by a set of (data) attributes D = {D1, . . . , Dp} with dom(Di) as the
domain of attribute Di, 1 ≤ i ≤ p and name(Di), its name. We write e.D for
the value of D for an event e.

Note that we do not impose any assumptions on the attributes contained
in an event log L, meaning that we do not assume that attributes such as
concept:name and org:role are included in D.

Event log L
1. Data type 

categorization
2. Instance-level 

labeling
3. Attribute-level Augmented 

event log 

labeled textual values

attribute 
classes

Fig. 1. Overview of the approach.

Approach Steps. The goal of our approach is to label the values of event
attributes with their semantic roles. To achieve this, our approach consists of
three main steps, as visualized in Fig. 1. Given a log L and its set of event
attributes D, Step 1 first identifies sets of textual attributes DT ⊆ D and of mis-
cellaneous attributes DM ⊆ D. Afterwards, Step 2 labels the values of textual
attributes in DT to extract the parts that correspond to semantic roles, e.g.,
recognizing that a “document received ” event label contains the business object
“document” and the action “received ”. Step 3 focuses on the attribute-level clas-
sification of miscellaneous attributes in DM , as well as some textual attributes
DT

n ⊆ DT that were deemed unsuitable for instance-level labeling during the
previous step. This classification step aims to determine the semantic role that
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corresponds to all values of a certain attribute in DM ∪ DT
n , e.g., recognizing

that all values of a doctype attribute correspond to the obj role.
In the remainder, Sects. 3.1 through 3.3 describe the steps of our approach

in detail, whereas Sect. 3.4 discusses how their outcomes are combined in order
to obtain an event log L′ augmented with the extracted semantic information.

3.1 Step 1: Data Type Categorization

In this step, our approach sets out to identify the sets of textual attributes
DT and miscellaneous attributes DM . As a preprocessing step, we first iden-
tify string, timestamp, and numeric attributes using standard libraries, e.g.,
Pandas in Python2.

Identifying Textual Attributes. To identify the set of textual attributes
DT , we need to differentiate between string attributes with true natural lan-
guage values, e.g., “document received ” or “Create_PurchaseOrder ”, and other
kinds of alphanumeric attributes, with values such as “A”, “USER_123 ”, and
“R_45_2A”. Only the former kind of attributes will be assigned to DT and,
thus, analyzed on an instance-level in the remainder of the approach. We iden-
tify such true textual attributes as follows:

1. Given a string attribute, we first apply a tokenization function tok, which
splits an attribute value into lowercase tokens (based on whitespace, camel-
case, underscores, etc.) and omits any numeric ones. E.g., given s1 = “Cre-
ate_PurchaseOrder ”, s2 = “USER_123 ”, and s3 = “08_AWB45_005 ”, we
obtain: tok(s1) = [create, purchase, order ], tok(s2) = [user ] and tok(s3) =
[awb].

2. We apply a part-of-speech tagger, provided by standard NLP tools (e.g.,
Spacy [14]), to assign a token from the Universal Part of Speech tag set3 to
each token. In this manner, we obtain [(create,VERB ) (purchase, NOUN ),
(order, NOUN )] for s1, [(user, NOUN )] for s2, and [(awb, PROPN )] for s3.

3. Finally, we exclude any attribute from DT that only has values with the
same token in tok(s) or do not contain any NOUN, VERB, ADV, or ADJ tokens.
In this way, we omit attributes with values such as s2 = “USER_123 ”
and s3 = “08_AWB45_005 ”, which are identifiers, rather than textual
attributes. The other attributes, which have diverse, textual values, e.g.,
s1 = “Create_PurchaseOrder”, are assigned to DT .

Selecting Miscellaneous Attributes. We also identify a set of non-textual
attributes that are candidates for semantic labeling, referred to as the set of
miscellaneous attributes, DM ⊆ D \ DT . This set contains attributes that are
not included in DT , yet have a data type that may still correspond to a semantic
role in R.

2 https://pandas.pydata.org.
3 https://universaldependencies.org/docs/u/pos/.

https://pandas.pydata.org
https://universaldependencies.org/docs/u/pos/
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To achieve this, we discard those attributes in D\DT categorized as
timestamp attributes, as well as numeric attributes that include real or neg-
ative values. We exclude these because they are not used to capture semantic
information. By contrast, the remaining attributes have data types that may
correspond to roles in R, such as boolean attributes that can be used to indi-
cate specific states, e.g., isClosed, whereas non-negative integers are commonly
used as identifiers. Together with the string attributes not selected for DT , the
retained attributes are assigned to DM .

3.2 Step 2: Instance-Level Labeling of Textual Attributes

In this step, our approach sets out to label the values of textual attributes
in order to extract the parts that correspond to certain semantic roles, e.g.,
recognizing that a “create purchase order ” event label contains “purchase order ”
as the obj and “create” as the action. As discussed in Sect. 2.2, this comes with
considerable challenges, given the high diversity of textual attribute values in
terms of their linguistic structure and informational content. To be able to deal
with these challenges, we therefore build on state-of-the-art developments in the
area of natural language processing.

Tagging Task. We approach the labeling of textual attribute values with
semantic roles as a text tagging task. Therefore, we instantiate a function that
assigns a semantic role to chunks (i.e., groups) of consecutive tokens from a tok-
enized textual attribute value. Formally, given the tokenization of an attribute
value, tok(e.D) = 〈t1, . . . , tn〉, for an attribute D ∈ DT , we define a function
tag(〈t1, . . . , tn〉) → 〈c1\r1, . . . , cm\rm〉, where ci for 1 ≤ i ≤ m is a chunk con-
sisting of one or more consecutive tokens from 〈t1, . . . , tn〉, with ri ∈ R∪{other}
its associated semantic role. For instance, tag(〈create, purchase, order〉) yields:
〈create\action, purchase order\obj〉.
BERT. To instantiate the tag function, we employ BERT [8], a language model
that is capable of dealing with highly diverse textual input and achieves state-
of-the-art results on a wide range of NLP tasks. BERT has been pre-trained on
huge text corpora in order to develop a general understanding of a language. This
model can then be fine-tuned by training it on an additional, smaller training
data collection to target a particular task. In this manner, the trained model
combines its general language understanding with aspects that are specific to
the task at hand. In our case, we thus fine-tune BERT in order to tag chunks of
textual attribute values that correspond to semantic roles.

Fine-Tuning. For the fine-tuning procedure, we manually labeled a collection
of 13,231 unique textual values stemming from existing collections of process
models [15], textual process descriptions [16], and event logs (see Sect. 4.1). As
expected, the collected samples do not capture information on resource instances,
and rather contain information on the type level (i.e., actor and passive). For
those semantic roles that are included in the samples, we observe a considerable
imbalance in their commonality, as depicted in Table 2. In particular, while roles
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such as obj (14,629 times), action (12,573), and even passive (1,191) are rel-
atively common, we only found few occurrences of actor (135), objstatus (92),
and actionstatus (30) roles.

Table 2. Training data used to fine-tune the language model, with s = status

Source Count obj objs action actions actor passive other

Process models 11,658 13,543 50 11,445 3 58 1,058 4,966
Textual desc. 498 503 11 498 0 8 114 206
Event logs 625 583 31 630 27 69 19 291
Augmentation 450 350 100 350 150 200 0 150
Total 13,231 14,979 192 12,923 180 335 1,191 5,613

To counter this imbalance, we created additional training samples with
objstatus, actionstatus, and actor roles through established data augmenta-
tion strategies. In particular, we created samples by complementing randomly
selected textual values with (1) known actor descriptions, e.g., “purchase order
created ” is extended to “purchase order created by supervisor ”, and (2) common
life-cycle transitions from [1, p.131] to create samples containing objstatus and
actionstatus roles, e.g., “check invoice” is extended to “check invoice completed ”.
However, as shown in Table 2, we limited the number of extra samples to avoid
overemphasizing the importance of these roles.

Given this training data, we operationalize the tag function using the BERT
base uncased pre-trained language model4 with 12 transformer layers, a hidden
state size of 768 and 12 self-attention heads. As suggested by its developers [8],
we trained 2 epochs using a batch size of 16 and a learning rate of 5e − 5.

Reassigning Noun-Only Attributes. After applying the tag function to the
values of an attribute D ∈ DT , we check whether the tagging is likely to have
been successful. In particular, we recognize that it is hard for an automated
technique to distinguish among the obj, actor, and passive roles, when there
is no contextual information, since their values all correspond to nouns. For
instance, a “user ” may be tagged as obj rather than actor, given that business
objects are much more common in the training data and there is no context that
indicates the correct role. Therefore, we establish a set DT

n ⊆ DT that contains
all such noun-only attributes, i.e. attributes of which all values correspond solely
to the obj role. This set is then forwarded to Step 3, whereas the tagged values
of the other attributes directly become part of our approach’s output.

3.3 Step 3: Attribute-Level Classification

In this step, the approach determines the semantic role of miscellaneous
attributes, DM identified in Step 1, and the noun-only textual attributes, DT

n ,
4 https://github.com/google-research/bert.

https://github.com/google-research/bert
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identified in Step 2. We target this at the attribute level, i.e., we determine a
single semantic role for each D ∈ DM ∪ DT

n and assign that role to each occur-
rence of D in the event log. For attributes in DM , the approach determines the
appropriate role (if any) based on an attribute’s name, whereas for attributes
in DT

n , it considers the name as well as its values. Note that we initially assign
each attribute a role r ∈ R′, where R′ excludes the instance resource roles, i.e.
actorinstance and passiveinstance, and later distinguish between type-level and
instance-level based on the attribute’s domain.

Classifying Miscellaneous Attributes. To determine the role of miscella-
neous attributes, we recognize that their values, typically alphanumeric identi-
fiers, integers or Booleans, are mostly uninformative. Therefore, we determine
the role of an attribute D ∈ DM based on its name. In particular, we build a
classifier that compares a name(D) to a set of manually labeled attributes DL,
derived from real-life event logs L (with L /∈ L).

Using DL, we built a multi-class text classifier function classify(D) that,
given an attribute D, returns rD ∈ R′ ∪ {other} as the semantic role closest
to name(D), with conf(rD) ∈ [0, 1] as the confidence. To this end, we encode
the names from DL using the GloVe [20] vector representation for words. Subse-
quently, we train a logistic regression classifier on the obtained vectors, which can
then be used to classify unseen attribute names. Since GloVe provides a state-of-
the-art representation to detect semantic similarity between words, the classifier
can recognize that, e.g., an item attribute is more similar to obj attributes like
product than to actor attributes in DL.

Classifying Noun-Only Attributes. Given an attribute in D ∈ DT
n , we first

apply the same classifier as used for miscellaneous attributes. If classify(D) pro-
vides a classification with a high confidence value, i.e., conf(rD) ≥ τ for a
threshold τ , our approach uses rD as the role for D. In this way, we directly
recognize cases where name(D) is equal or highly similar to some of the known
attributes in DL. However, if the classifier does not yield a confident result, we
instead analyze the textual values in dom(D).

Since noun-only attributes were previously re-assigned due to their lack of
context, we here analyze them by artificially placing each attribute value into
contexts that correspond to different semantic roles. In particular, as shown in
Fig. 2, we insert a candidate value (e.g., “vendor ”) into different positions of a set
T of highly expressive textual attribute values (i.e., ones with at least 3 semantic
roles). The resulting texts are then fed into the language model employed in
Step 2, allowing our approach to recognize which context and, therefore, which
semantic role, best suits the candidate value (i.e., passive in Fig. 2). Finally,
we assign rD ∈ R′ ∪ {other} as the role that received the most votes across the
different texts in T and values in dom(D).

Recognizing Instance-Level Attributes. Since we only focused on the type-
level roles R′ in the above, we lastly check for every resource-related attribute
D ∈ DM , with rD ∈ {actor, passive}, if it actually corresponds to an instance-
level role instead. Particularly, we change rD to the corresponding instance-level
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Fig. 2. Exemplary insertion of a value from an attribute in DT
n into an existing context.

role if dom(D) has values that contain a numeric part or only consist of named-
entities (e.g., “Pete”). For instance, an attribute D1 with values like user_019
and batch_06, contains numeric parts and is, thus reassigned to actorinstance,
while an attribute D2 with dom(D2)= {staff member, system} will retain its
actor role.

3.4 Output

Given an event e, our approach returns a collection of tuples (r, v) with r ∈ R
a semantic role and v a value, where v either corresponds to an entire attribute
value e.D (for attribute-level classification applied to attributes in DM ∪DT

n ) or
to a part thereof (stemming from the instance-level labeling applied to DT \DT

n ).
To enable the subsequent application of process mining techniques, the app-

roach returns an XES event log L′ that contains these labels as additional event
attributes, i.e., it does not override the names or values of existing ones. Note
that we support different ways to handle cases where an event has multiple
tuples with the same semantic role, e.g., the “draft” and “send ” actions stem-
ming from a “draft and send request” label: the values are either collected into
one attribute, i.e., action = [draft, send ], or into multiple, uniquely-labeled
attributes, i.e., action:0 = draft, action:1 = send. Furthermore, if multiple
objstatus (or actionstatus) attributes exist that each have Boolean values, e.g.,
isCancelled and isClosed for the Hospital log, these are consolidated into a
single attribute, for which events are assigned a value based on their original
Boolean attributes, e.g., {⊥, isCancelled, isClosed}.

4 Evaluation

We implemented our approach as a Python prototype5, using the PM4Py
library [5] for event log handling. Based on this prototype, we evaluated the
accuracy of our approach and individual steps on a collection of 14 real-life
event logs.

5 https://gitlab.uni-mannheim.de/processanalytics/extracting-semantic-process-
information.

https://gitlab.uni-mannheim.de/processanalytics/extracting-semantic-process-information
https://gitlab.uni-mannheim.de/processanalytics/extracting-semantic-process-information
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4.1 Evaluation Data

To conduct our evaluation, we selected all real-life event logs publicly available
in the common 4TU repository6, except from those capturing data on software
interactions or sensor readings, given their lack of natural language content. For
collections that included multiple event logs with highly similar attributes, i.e.,
BPI13, BPI14, BPI15 and BPI20, we only selected one log per collection, to
maintain objectivity of the obtained results. Table 3 depicts the details on the
resulting collection of 14 event logs. They cover processes of different domains,
for instance financial services, public administration and healthcare. Moreover,
they vary significantly in their number of event classes, textual attributes, and
miscellaneous attributes.

Table 3. Characteristics of the considered event logs, with C as the set of event classes

ID Log name |C| |D| |DT| ID Log name |C| |D| |DT|
L1 BPI12 24 4 2 L8 BPI20 51 5 4
L2 BPI13 4 11 4 L9 CCC19 29 11 4
L3 BPI14 39 5 2 L10 Credit Req. 8 4 3
L4 BPI15 289 13 3 L11 Hospital 18 22 2
L5 BPI17 26 13 4 L12 RTFM 11 15 2
L6 BPI18 41 13 5 L13 Sepsis 16 31 1
L7 BPI19 42 4 2 L14 WABO 27 6 2

4.2 Setup

As a basis for our evaluation, we jointly established a gold standard in which we
manually annotated all unique textual values (for instance-level labeling) and
attributes (for attribute-level classification) with their proper semantic roles7.
Since our approach requires training for the language model used in the instance-
level labeling (Sect. 3.2) and for the attribute-name classifier (Sect. 3.3), we per-
form our evaluation experiments using leave-one-out cross-validation, in which
we repeatedly train our approach on 13 event logs and evaluate it on the 14th.
This procedure is repeated such that each log in the collection is considered as
the test log once.

To assess the performance of our approach, we compare the annotations
obtained using our approach against the manually created ones from the gold
standard. Specifically, we report on the standard precision, recall, and the F 1-
score. Note that for instance-level labeling, we evaluate correctness per chunk,
e.g., if a chunk (purchase order, obj) is included in the gold standard, both
“purchase” and “order ” need to be associated with the obj role in the result,
otherwise, neither is considered correct.
6 https://data.4tu.nl/search?q=:keyword:%20%22real%20life%20event%20logs%22.
7 For reproducibility, the gold standard is published alongside the implementation.

https://data.4tu.nl/search?q=:keyword:%20%22real%20life%20event%20logs%22
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4.3 Results

Table 4 provides an overview of the main results of our evaluation experiments.
In the following, we first consider the performance of the instance-level labeling
and attribute-level classification steps separately, before discussing the overall
performance.

Table 4. Results of the evaluation experiments

Instance-level Attribute-level Overall
Semantic role Count Prec. Rec. F1 Count Prec. Rec. F1 Count Prec. Rec. F1

obj 583 0.89 0.88 0.88 2 0.50 0.50 0.50 585 0.89 0.88 0.88

objstatus 31 0.85 0.77 0.78 6 0.50 0.33 0.40 37 0.79 0.70 0.72

action 630 0.94 0.95 0.94 0 - - - 630 0.94 0.95 0.94

actionstatus 27 0.85 0.81 0.82 6 1.00 1.00 1.00 33 0.88 0.84 0.85

actor 69 0.93 0.84 0.88 0 - - - 69 0.93 0.84 0.88

actorinstance 0 - - - 16 1.00 0.94 0.97 16 1.00 0.94 0.97

passive 19 0.84 1.00 0.91 0 - - - 19 0.84 1.00 0.91

Overall 1,359 0.91 0.91 0.91 30 0.87 0.79 0.83 1,389 0.91 0.90 0.90

Instance-Level Labeling Results. The table reveals that our instance-level
labeling approach is able to detect semantic roles in textual attributes with high
accuracy, achieving an overall F1-score of 0.91. The comparable precision and
recall scores, e.g. 0.94 and 0.95 for action or 0.89 and 0.88 for obj, each suggest
that the approach can accurately label roles while avoiding false positives. This
is particularly relevant, given that nearly half of the textual attribute values also
contain information beyond the scope of the semantic roles considered here (see
also Table 2). An in-depth look reveals that the approach even performs well on
complex values, such as “t13 adjust document x request unlicensed”. It correctly
recognized the business objects (document and request), the action (adjust) and
status (unlicensed), omitting the superfluous content (t13 and x ).

Challenges. We observe that the primary challenge for our approach relates to
the differentiation between relatively similar semantic roles, namely between the
two kinds of statuses, objstatus and actionstatus, as well as the two kinds of
resources, actor and passive. Making this distinction is particularly difficult in
cases that lack sufficient contextual information or proper grammar. For exam-
ple, an attribute value like “denied ” can refer to either type of status, whereas it
is even hard for a human to determine whether the “create suspension competent
authority” label describes competent authority as a primary actor or a passive
resource.

Baseline Comparison. To put the performance of our approach into context, we
also compared its instance-level labeling step to a baseline: a state-of-the-art
technique for the parsing of process model activity labels by Leopold et al. [15].
For a fair comparison, we retrained our approach on the same training data as
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used to train the baseline (corresponding to the collection of process models
in Table 2) and only assess the performance with respect to the recognition
of business objects and actions, since the baseline only targets these. Table 5
presents the results obtained in this manner for the event labels from all 14
considered event logs.

The table shows that our approach greatly outperforms the baseline, achiev-
ing an overall F1-score of 0.75 versus the baseline’s 0.47. Post-hoc analysis reveals
that this improved performance primarily stems from event labels that are more
complex (e.g., multiple actions, various semantic roles or compound nouns span-
ning multiple words) or lack a proper grammatical structure. This is in line with
expectations, given that the baseline approach has been developed to recognize
several established labeling styles, whereas we observe that event data often does
not follow such expectations. Finally, it is worth observing that the performance
of our approach in this scenario is considerably lower than when trained on
the full data collection (e.g., an F1 of 0.66 versus 0.88 for the obj role), which
highlights the benefits of our data augmentation strategies.

Table 5. Comparison of our instance-level labeling approach against a state-of-the-
art label parser; both trained on process model activity labels and evaluated on event
labels.

Our approach Baseline [15]
Semantic role Count Prec. Rec. F1 Prec. Rec. F1

obj 562 0.65 0.68 0.66 0.40 0.40 0.40
action 618 0.86 0.81 0.83 0.59 0.48 0.53
Overall 1,180 0.76 0.75 0.75 0.50 0.44 0.47

Attribute-Level Classification Results. As shown in Table 4, our also app-
roach achieves good results on the attribute-level classification of attributes, with
an overall precision of 0.87, recall of 0.79, and an F1 of 0.83. We remark that the
outstanding performance of our approach with respect to the actionstatus and
actorinstance roles is partially due to the usage of standardized XES names for
some of these attributes, enabling easy recognition. Yet this is not always the
case. For instance, 7 out of 16 actorinstance attributes handled by this step use
alternatives to the XES standard, such as User or Assingment_Group. Our app-
roach maintains a high accuracy for these cases, correctly recognizing 6 out of
7 of such attributes. Notably, the overall precision of our attribute-classification
technique reveals that it is able to avoid false positives well, even though a
substantial amount of event attributes are beyond the scope of our semantic
roles, such as monetary amounts or timestamps. This achievement can largely
be attributed to the domain analysis employed in our approach’s first step.



70 A. Rebmann and H. van der Aa

Nevertheless, it is important to consider that these results were obtained for
a relatively small set of 30 non-textual attributes. Therefore, the lower results for
certain uncommon semantic roles (e.g., obj), as well as the overall high accuracy
for this step should be considered with care. This caveat also highlights the need
additional training data, in order to expand the generalization of this part of
our approach.

Overall Results. The overall performance of the approach can be considered as
the average over the instance-level and attribute-level results, weighted against
the number of entities that were annotated (cf., count in Table 4), i.e., a unique
textual attribute value (instance-level) or an entire attribute (attribute-level).

We observe that the approach achieves highly accurate overall results, with
a micro-average precision of 0.91, and a recall and F1-score of 0.90. Still, when
considering the results per semantic role, we observe that there exist considerable
differences. These differences are largely due to the lower scores obtained for the
underrepresented roles in the data set, since it is clear that our approach is highly
accurate on more common roles, such as the F1 score of 0.94 for the recognition
of actions.

5 Case Study

This section demonstrates some of the benefits to be obtained by using the
semantic information extracted by our proposed approach. To this end, we
applied our approach to the Permit Log published as part of the BPI20 col-
lection [10], which contains 7,065 cases and 86,581 events, divided over 51 event
classes (according to the event label, i.e., the concept:name attribute). By apply-
ing our approach on the log, we identify information on five semantic roles. Most
prominently, our approach is able to extract information about the action,
actionstatus, obj, and actor roles from the log’s unstructured, textual event
labels. The availability of these semantic roles as attributes in the augmented
event log, created by our approach, enables novel analyses, such as:

Event Class Refinement. The event log contains event labels that are pol-
luted with superfluous information, e.g., by including resource information such
as ‘by budget owner ’, resulting in a total of 51 event classes. Any process model
derived on the basis of these classes, therefore, automatically exceeds the rec-
ommended maximum of 50 nodes in a process model [18], which impedes its
understandability. To alleviate this, we can use the output of our approach to
refine the event classes by grouping together events that involve the same action
and obj. For instance, we group events with labels like “declaration approved by
budget owner ” and “declaration approved by administration”, while deferring the
actor information to a dedicated actor attribute. In this manner, we reduce
the number of event classes from 51 to 21, which yields smaller and hence more
understandable process models through process discovery techniques.
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Object-Centric Analysis. The extracted semantic information also enables
us to investigate the behavior associated with specific business objects. Through
the analysis of event labels, our approach recognizes that the log contains six of
these: permit, trip, request for payment, payment, reminder, and declaration. In
Fig. 3 we show the directly-follows graph computed for the latter, obtained by
selecting all events with e.obj = ‘declaration′, and using the identified actions
to establish the event class. The figure clearly reveals how declarations are han-
dled the process. Mostly, declarations are submitted, approved, and then final
approved. Interestingly, though, we also see 112 cases in which a declaration was
definitely approved, yet rejected afterwards.

submitted
7,574

approved
7,281

saved
65

rejected
3,495

5,858

5,408

5,169

21

4
11

2

1,560

52

5,516

166

1,657

1,851

5,556

140

Fig. 3. Example for object-centric analysis. The directly-follows graph shows the
actions applied to the object declaration in the log (includes 100% activities, 50%
paths).

It is important to stress that both the event class refinement and object-
centric analysis are based on information extracted from the unstructured, tex-
tual labels of the concept:name attribute in the original log. Therefore, the
presented insights cannot be obtained by manually categorizing the attributes
of the event log, but rather require the thorough, instance-level event analysis
provided by our approach.

6 Related Work

Our work primarily relates to streams of research focused on the analysis of
event and process model activity labels, as well as to the semantic role labeling
task in NLP.

Various approaches strive to either disambiguate or consolidate labels in event
logs. Lu et al. [17] propose an approach to detect duplicate event labels, i.e.,
labels that are associated with events that occur in different contexts. By refining
such duplicates, the quality of subsequently applied process discovery algorithms
can be improved. Work by Sadeghianasl et al. [22] aim to detect the opposite case,
i.e., situations in which different labels are used to refer to behaviorally equivalent
events. Other approaches strive for the semantic analysis of labels, such as work
by Deokar and Tao [7], which group together event classes with semantically
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similar labels, as well as the label parsing approach by Leopold et al. [15] against
which we compared our work in the evaluation. Finally, complementary to our
approach, work by Tsoury et al. [23] strives to augment logs with additional
information derived from database records and transaction logs.

Beyond the scope of process mining, our work also relates to semantic annota-
tion applied in various other contexts. Most prominently, semantic role labeling
is a widely recognized task in NLP [6,12], which labels spans of words in sen-
tences that correspond to semantic roles. The tasks’ goal is to answer questions
like Who is doing what, where and to whom? While early work in this area
mostly applied feature engineering methods [21], recently deep learning-based
techniques have been successfully applied, e.g., [13,24]. In the context of web
mining, semantic annotation focuses on assigning semantic concepts to columns
of web tables [25], while in the medical domain it is e.g. used to extract the
symptoms and their status from clinical conversations [11].

7 Conclusion

In this paper, we proposed an approach to extract semantic information from
events recorded in event logs. Namely, it extracts up to eight semantic roles per
event, covering business objects, actions, actors, and other resources, without
imposing any assumptions on the structure of an event log’s attributes. We
demonstrated our approach’s efficacy through evaluation experiments using a
wide range of real-life event logs. The results show that our approach accurately
extracts the targeted semantic roles from textual attributes, while considerably
outperforming a state-of-the-art activity label parser in terms of both scope and
accuracy, whereas our attribute classification techniques were also shown to yield
satisfactory results when dealing with the information contained in non-textual
attributes. Finally, we highlighted the potential of our work by illustrating some
of its benefits in an application scenario based on real-life data. Particularly, we
showed how our approach can be used to refine and consolidate event classes in
the presence of polluted labels, as well as to obtain object-centric insights about
a process.

In the future, we aim to expand our work in various directions. To improve
its accuracy, we aim to include data from external resources such as common
sense knowledge graphs or dictionaries of domain-specific vocabulary into the
approach. Furthermore, we intend to broaden its scope by introducing additional
kinds of semantic roles, such as roles that disambiguate between human actors
and systems. However, most importantly, through its identification of semantic
information, our work provides a foundation for the development of wholly novel,
semantics-aware process mining techniques.
Reproducibility: The implementation, dataset, and gold standard employed in our
work are all available through the repository linked in Sect. 4.
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