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Abstract. Business process modeling is a crucial, yet time-consuming
and knowledge-intensive task. This is particularly the case when mod-
eling a domain-specific process, which often requires the use of highly
specialized terminology in a consistent manner. To alleviate these issues,
the process modeling task can be supported by techniques that suggest
how a model under development can be expanded. In this work, we pro-
vide such suggestions through a rule-based activity recommendation app-
roach, which suggests suitable activities to be included at a user-defined
position in a process model. A benefit of our rule-based work over other
approaches is that it accompanies recommendations with explanations,
providing additional transparency and trustworthiness to users. Further-
more, through comprehensive evaluation experiments on a large set of
real-world process models, we show that our rule-based approach out-
performs other methods, including an embedding-based one.

Keywords: Process modeling · Activity recommendation · Rule
learning

1 Introduction

Business processes structure the operations of organizations. They consist of sets
of activities which jointly lead to an outcome that is valuable to an organization
or its clients. Process models have become the de facto standard to capture
information on such processes and are, therefore, present in virtually all facets of
the business process management lifecycle. For this reason, documenting business
operations using process models has become a quintessential activity for many
organizations [9].

Although they are clearly important instruments for the execution, analysis,
and improvement of business processes, actually creating process models is a
time-consuming task that requires substantial expertise [11,12]. This task is
even more challenging when modeling a domain-specific process, which often
requires the use of specialized and technical vocabulary in a consistent manner.
To mitigate these issues, modeling can be supported through the provision of
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recommendations that suggest modelers on how they may expand a process
model that they are working on [10]. One clear manner in which such support
can be provided is through activity recommendation.

Given a business process model under development, activity recommendation
sets out to suggest suitable activities to extend the model at a user-defined posi-
tion. A repository of available business process models can serve as a basis for
this task. Here, it is crucial that recommendations are provided in a context-
aware manner, i.e., they should take the current content and state of a process
model into account. To illustrate this, consider Fig. 1, which shows a process
model under development where a user has just inserted an unlabeled activity
on the model’s right-hand side. The activity recommendation task is then to
determine a suitable activity for this position, i.e., to find an appropriate label
for it. Since the process that has been modeled so far contains activities that
are commonly associated with order-to-cash processes, a context-aware recom-
mender system will provide recommendations that correspond to activities that
occur at a comparable position in similar processes found in a model repository,
such as ‘Submit purchase order’, ‘Analyze quotation’, and ‘Purchase order sent’.

Fig. 1. A business process model under development

In this paper, we propose to tackle the activity recommendation task using a
rule-based recommendation approach. Such approaches have their origin in the
field of inductive logic programming [4] and have been shown to be competitive
for use cases such as knowledge graph completion [17]. An additional benefit
is that rule-based approaches offer an explanation for given recommendations,
which helps to improve the transparency, trustworthiness, and satisfaction of
recommendation systems [23]. Our proposed rule-based approach learns logical
rules that describe how activities are used in a given repository of available
process models, which we subsequently use to recommend appropriate activities
at a given position. Our rule learner is based on the top-down search implemented
in association rule mining systems [5,13], which we adapted to support a specific,
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process-oriented language designed for activity recommendation. An extensive
experimental evaluation demonstrates that our rule-based approach outperforms
both standard machine learning [14,15] and embedding-based [22] techniques.

In the remainder, we first discuss various other works related to process model
recommendation in Sect. 2, before formally defining the activity-recommendation
problem in Sect. 3. We present our approach for rule-based activity recommen-
dation in Sect. 4 and discuss our extensive evaluation experiments in Sect. 5.
Finally, we conclude the work in Sect. 6.

2 Related Work

There are several activity recommendation approaches that abstract busi-
ness process models to directed graphs and use graph mining techniques to
extract structural patterns from a process repository. The similarity between
the extracted patterns and a process model under development can be calcu-
lated using different strategies, including common subgraph distance [3] and edit
distance [3,6,16]. However, as stated by Wang et al. [22], graph mining meth-
ods reach their limits when applied to large complex datasets with thousands of
processes. To overcome this, they present an embedding-based activity recom-
mendation method, RLRecommender, which is able to handle large datasets and
outperforms the graph-mining-based algorithms in the conducted experiments.
Therefore, we include this method in our experimental studies.

Jannach et al. [14,15] propose different recommendation techniques to pro-
vide modeling support for users in the specific area of data analysis workflows.
The user support consists of recommending additional operations to insert into
the machine learning workflow under development and is hence similar to activ-
ity recommendation. In this paper, we show that the recommendation strategies
from Jannach et al. can also be used to recommend activities for more general
process models than data analysis workflows, i.e., business process models, and
evaluate them in our experiments.

Since activity recommendation is inherently based on the identification of
patterns in a given process repository, the application of association rule mining
techniques [1] also suggests itself for this purpose. Such techniques consider asso-
ciations in terms of activity co-occurrence, but ignore the sequence of activities
that can best be described with a multi-relational model. Contrary to association
rule mining, relational rule mining can distinguish between different relations.
One of the early systems is WARMR [5]. More recently, systems as AMIE [13]
and AnyBURL [17] have been proposed to learn rules that describe the regular-
ities in a given knowledge base. Before we started to develop our own method,
we tried to apply these systems to the given problem. While WARMR can (in
principle) learn the types of rules that we are interested in, it does not scale to
the large process repositories that we are working with. AMIE and AnyBURL,
on the other hand, have a restricted language bias which does not learn the types
of rules that are important for recommendations in a process context.

Rule learning is also tightly linked to the field of Inductive Logic Program-
ming (ILP). Prominent ILP approaches are, for example, FOIL [19] and Tilde [2].
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While WARMR can also be regarded as an ILP approach, ILP techniques are
usually based on a covering approach instead of mining all possibly relevant
rules. However, in a prediction scenario we might often encounter situations
where the prediction must be based on a rather weak rule that covers only few
examples and would be redundant in the set of all rules. Another difference is
the need for explicitly given negative examples, which are not available in the
scenario we address. For these reasons we abstained from using ILP systems for
the activity-recommendation problem.

Finally, our work itself represents a considerable extension and operational-
ization of ideas originally proposed in a doctoral consortium [21]. There, we
conducted initial experiments using one simple rule type and only targeted a
simple, context-agnostic recommendation setting.

3 Problem Definition

In this section, we discuss the transformation of business process models into
business process graphs and formalize the activity-recommendation problem.

Business Process Graphs. Various modeling notations, such as Petri nets
and BPMN, are available to capture business processes. Since we do not want
to limit our approach to any specific notation, we extend the abstract view
from Dijkman et al. [7], in which a process model is represented as a directed
attributed graph:

Definition 1 (Business process graph). Let L be a set of labels and R a
set of behavioral relation types. Let P(R) denote the power set of R. A business
process graph is a tuple (N,E, λ, τ), where N is a set of nodes, E ⊆ N × N is a
set of directed edges, λ : N → L is a function that maps a node to a label, and
τ : E → P(R) is a function that maps an edge to a set of relation types.

In order to treat a business process model as a business process graph, we map
the model’s contents to the graph representation using an abstraction procedure.
This procedure has several degrees of freedom: We might, for example, drop (or
keep) certain types of nodes and have to select the types of behavioral relations
that we use and assign to edges (e.g., directly follows). In the following, we focus
on the abstraction of Petri nets. For other modeling notations it is possible to
develop similar abstraction procedures. For instance, BPMN models can first be
translated into Petri nets [8] before applying the abstraction approach.

From Petri Net to Business Process Graph. Given a Petri net, we consider
transitions, which correspond to activities, as nodes in a business process graph,
while omitting its places. Then, for any pair of nodes m and n, we have to decide
if we create a directed edge e = (m,n) ∈ E and which relation types from a set
R to assign to this directed edge. For this procedure, we follow Wang et al. [22],
who propose three abstraction strategies, based on different sets of behavioral
relations. We refer to [22] for details and here stick to an intuitive explanation.
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Fig. 2. A business process graph corresponding to the process model in Fig. 1 using
the relation types Rcausal+concurrent

– Directly-follows abstraction: This abstraction strategy only considers
which activities may follow each other during process execution, captured
in the followedBy relation. Formally, if a node m can be directly followed by
a node n, we add an edge e = (m,n) with τ(e) = {followedBy}. Naturally,
this strategy loses part of the semantics expressed in the original Petri net.
For instance, it does not distinguish between transitions that exclude each
other (XOR split) and those that can be executed concurrently (AND split).

– Causal abstraction: The second strategy reduces the abstraction loss by
distinguishing between alwaysCausal and sometimesCausal relations, and
their inverse counterparts. A pair of activities (m,n) is in the alwaysCausal
relation if any occurrence of m is always followed by an occurrence of n,
whereas the sometimesCausal relation applies if this is sometimes the case
(due to an XOR-split in the process). Conversely, m and n are in the
inverseAlwaysCausal relation if any occurrence of n is always preceded by
an occurence of m, while the inverseSometimesCausal relation holds if this
is sometimes the case (due to an XOR-join in the process). Since this dis-
tinction is asymetric, e.g., an alwaysCausal relation does not guarantee an
inverseAlwaysCausal relation between two activities, we assign the forward
and the inverse relation between m and n to the edge e = (m,n), e.g.,
τ(e) = {alwaysCausal,inverseSometimesCausal}.

– Causal and concurrent abstraction: Finally, the third strategy intro-
duces additional relations that can be used to describe types of concur-
rency between activities, on top of the aforementioned causal ones. These
relations are called alwaysConcurrent, sometimesConcurrent, and neverCon-
current, reflecting whether two activities can, must, or must not occur
concurrently.

In the remainder, we use RX to denote a set of relation types that has been used
in an abstraction strategy X. For instance, Fig. 2 shows the business process
graph obtained for the running example of Fig. 1, based on Rcausal+concurrent.
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Although the graph abstracts from some details, the overall structure and
sequence of activities is preserved. Note that a Rcausal-graph can be obtained by
omitting all dashed lines, while a RfollowedBy-graph corresponds to the Rcausal-
graph in which all relation types are replaced by followedBy.

The Activity-Recommendation Problem. With the concept of the abstrac-
tion of a business process model to a business process graph at hand, we
can now proceed to the definition of the activity-recommendation problem.
Given the current status of the process model under development, the activity-
recommendation problem is concerned with recommending suitable activities to
extend the model at a user-defined position. Since the position of the activity
that has to be recommended is given by the user (as the activity being added to a
model), the activity-recommendation problem breaks down to finding a suitable
label for the so far unlabeled activity node n̂.

Definition 2 (Activity-recommendation problem). Let B be a set of busi-
ness process graphs and LB the set of activity labels that are used in B. Let
B = (N,E, λ, τ) be a given business process graph under development, where each
node n ∈ N except one node n̂ is labeled, i.e., λ(n) is given for all n ∈ N \ {n̂}.
The activity-recommendation problem is to find a suitable label λ(n̂) ∈ LB for n̂.

In the next section, we propose our rule-based recommendation approach to
address the activity-recommendation problem.

4 A Rule-Based Approach

Our rule-based recommendation approach consists of two main phases. First,
rule learning derives rules that capture activity inter-relations from the process
graphs in a repository. Second, rule application employs the learned rules to
recommend the most suitable label for a target node in a process model under
development, i.e., the recommended activity.

4.1 Rule Learning

Given a repository of business process graphs B, we want to learn rules which
capture regularities that appear in the use of labels within B. For that purpose,
we first need to determine the constants and predicates to be used to describe B
in terms of logical formulas. We translate each B = (N,E, λ, τ) ∈ B as follows.

1. For each edge e = (m,n) ∈ E and each relation type r ∈ τ(e) we add a
formula r(m,n) that captures the type of relation between m and n, e.g.,
followedBy(m,n) or alwaysCausal(m,n).

2. For each node n ∈ N we use a predicate λn that corresponds to the label
λ(n) of n and add a formula λn(n), e.g., quotationReceived(n).

3. For each pair of nodes m �= n ∈ N we add the formulas inSameProcess(m,n)
and inSameProcess(n,m) to express that m and n appear in the same graph.
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Given a set of RX, this means that we use |RX| + 1 binary predicates (+1
for inSameProcess) and |LB| unary predicates to describe the structure of the
process graphs in the repository B. Since a label can occur in multiple models,
certain unary predicates will be used to describe the labels of nodes that appear
in different process models, while the underlying nodes themselves always belong
to exactly one model. Given these predicates, we next define rule templates and
use them to capture activity regularities.

Rule Templates. In the following we use h, j, k and l to refer to placeholders
for unary predicates that correspond to the label of an activity, e.g., l = submit-
PurchaseOrder. In this work we are interested in a special form of horn rules.
Particularly, we are interested in rules that have the form l(Z) ← . . ., which are
rules that capture the regularities of activity Z being labeled with l.

To find such rules, our approach employs a set of rule patterns, i.e., templates,
for which we generate all possible instantiations that hold in the repository B.
In particular, we define the following rule templates for a setting using directly-
follows abstraction, i.e., with followedBy as the only relation type in RfollowedBy:

l(Z) ← inSameProcess(Y, Z), k(Y ) (1)
l(Z) ← followedBy(Y, Z), k(Y ) (2)
l(Z) ← inSameProcess(X,Y ), inSameProcess(Y, Z), j(X), k(Y ) (3)
l(Z) ← inSameProcess(X,Y ), followedBy(Y, Z), j(X), k(Y ) (4)
l(Z) ← followedBy(X,Y ), followedBy(Y, Z), j(X), k(Y ) (5)
l(Z) ← followedBy(W,X), followedBy(X,Y ), followedBy(Y, Z), h(W ), j(X), k(Y ) (6)

To operationalize the templates for the Rcausal setting, we replace each occur-
rence of followedBy in templates (2), (4), (5) and (6) by each of the four types of
causal relations in Rcausal. This results in various combinations, due to repeated
occurrences of followedBy in certain templates. Specifically, we require 90 tem-
plates for the Rcausal setting, primarily due to 4 × 4 = 16 different versions
of (5) and 4 × 4 × 4 = 64 of template (6). For brevity, we shall refer to the
versions derived from one of the templates (1)–(6) as a template group in the
remainder. To additionally incorporate the 3 types of concurrent relations in
the Rcausal+concurrentsetting, we introduce a further template group (7), which
contains three templates that are similar to template (2), but in which the fol-
lowedBy relation in (2) is replaced by one of the 3 concurrent relations.

Note that our approach is extendable, since the rule templates can be mod-
ified or complemented with additional ones. However, in light of the aforemen-
tioned combinatorial increase, it should be taken into account that longer rule
templates and a higher number of templates greatly expand the search space,
which may limit the applicability of the approach on large datasets.

When instantiating the rule templates, we replace h, j, k, and l by all possible
label predicates created from LB. This means that we, for example, have |LB| ∗
(|LB| − 1) ≈ |LB|2 different instantiations of templates (1) and (2).

Rule Interpretation. Each of the defined templates captures a certain type
of probabilistic regularity about activity inter-relations in process models. The
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probability of a rule that instantiates template (1) expresses how likely it is that,
if an activity (label) k is used in a process, activity l appears in that process
as well, whereas the probability of a (2)-rule tells us how probable it is that an
activity k is directly followed by an activity l.

Here, it is important to consider that certain rules inherently relate to each
other. For instance, any instantiation of a (2)-rule, always results in a corre-
sponding (1)-rule as well. This is the case, because inSameProcess(X,Y ) ←
followedBy(X,Y ) is always true, i.e., if X can be followed by Y , then X and Y
are naturally also part of the same process model. Since the inverse is not true,
i.e., followedBy(X,Y ) ← inSameProcess(X,Y ) does not have to hold, we say
that a (2)-rule is more special than a (1)-rule. Similar inter-relations also exist
for the other rule templates. Whenever a rule r is more special than a rule r′,
rule r tends to make fewer and more specific predictions compared to rule r′,
which will be reflected in the ablation study in Sect. 5.

Rule Confidence. For each concrete rule, i.e., an instantiation of one of the
rule templates, we compute its confidence as a measure of its quality. For this,
we follow the definition given in [13]. According to this definition, the support of
a horn rule head ← body shall be computed by counting all groundings for which
both the head and body of the rule are true. Then, to compute a rule’s confidence,
we divide its support by the number of those groundings that make the body
true. Thus, the confidence of the rule can be understood as the probability that
the rule makes a correct prediction within the given repository of business process
graphs B. For instance, our employed dataset leads to two rules with the same
body related to activities that succeed a ‘Quotation received’ activity:

r1 = submitPurchaseOrder(Z) ← inverseAlwaysCausal(Y,Z), quotationReceived(Y)
r2 = analyzeQuotation(Z) ← inverseAlwaysCausal(Y,Z), quotationReceived(Y)

The body of both rules is the same and it holds 15 times over B. This means
that the pattern described by the body appears in 15 process models from
B. Considering that the head is additionally true, these numbers go down
to 10 and 5, respectively. Thus, we have support(r1) = 10, support(r2) = 5,
confidence(r1) = 10/15 = 0.667, and confidence(r2) = 5/15 = 0.333.

4.2 Rule Application

Given an unfinished business process graph B with its unlabeled node n̂, we use
the rules learned from B and apply them on n̂, while taking the current state of
the process graph B into account. To do this, we set Z = n̂ for all rules that we
have learned and check if the resulting body is true. An example for a specific
rule that instantiates template (4) in the Rcausal setting is given by (∗). It is
also a rule that leads to the top-ranked recommendation of the running example
shown in Fig. 1, where n̂ is the rightmost node.

submitPurchaseOrder(n̂) ←inSameProcess(X,Y ), inverseAlwaysCausal(Y, n̂), (∗)

createAndSubmitTheQuotation(X), quotationReceived(Y )
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If we compare the rule to Fig. 1, we can see that the body of this partially
instantiated rule is indeed true, as we can map X and Y to nodes that have
the respective labels. Thus, the rule recommends submitPurchaseOrder as label
for n̂. This recommendation is weighted via the confidence of the rule, which is
9/9 = 1 with respect to the dataset used in our experiments. We do the same
with all rules and collect the recommendations of the rules where the body was
true with respect to the given unfinished model B.

Confidence Aggregation. If several rules lead to the same recommendation,
i.e., predict the same label, we aggregate their confidence scores, such that we
can assign the recommendation a single score and rank it accordingly. For this,
we consider two aggregation methods, which we will compare in our experiments.
With the max -aggregation method, we assign the maximum confidence of the
applicable rules to the recommendation, while the noisy-or method multiplies
the complement to 1 of all confidence scores and assigns the complement to 1 of
this product to the recommendation. This method is based on the noisy-or dis-
tribution, which represents a simplification of dependency relations in Bayesian
networks [20]. After applying an aggregation method, we obtain a set of recom-
mendations, each with a confidence score.

Then, we remove all recommendations from the set that refer to a label that
is already used in B, since it is generally undesirable to have multiple activities
with the same label in a single model. Since at most one of the recommendations
in the set of recommended activities will be chosen, we normalize the confidence
scores of the recommendations such that their sum equals 1. This changes the
score for the label submitPurchaseOrder from 1 to 0.59.

Result Explanation. One of the advantages of our approach is that the rules
that serve as a basis for recommendations can also be used to explain provided
recommendations. With respect to the given top recommendation, such an expla-
nation can be phrased like: Since the previous activity is ‘Quotation received’ and
the process also includes a ‘Create and submit the quotation’ activity, there is
a rather strong indication (normalized score of 0.59) that the activity should be
labeled ‘Submit purchase order’. Such an explanation might raise the confidence
of the user in the given recommendation and might make it easier for her to
make a choice between the presented alternatives. In addition, the recommender
system could also provide links to the business process models in the repository
that supported this recommendation. Hence, the user can have a look at similar
processes, which might further help her with the current modeling task.

5 Experimental Evaluation

In this section we report about our experimental studies1 in which we assess
the quality of the recommendations provided by our rule-based approach and

1 For proprietary reasons, requests for the source code of the employed implementation
should be submitted to diana.sola@sap.com.
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compare our work against learning-based approaches [14,15] and the embedding-
based RLRecommender technique [22]. Additionally, we present an ablation
study that provides insights into the types of rules that are most important
for our recommendation approach.

5.1 Dataset

To conduct the experiments, we employ the model collection of the Business
Process Management Academic Initiative [18], which has also been used in the
evaluation of RLRecommender [22]. The collection contains almost 30, 000 pro-
cess models in different process modeling languages. The models of the collection
are available in different revisions, which is useful for our purposes, since we con-
sider each revision as a separate process model and thus ensure that most of the
activities appear repeatedly across different processes in the repository.2

For our evaluation, we used all BPMN 2.0 models of the collection with 3 to
50 activities described by English labels. The resulting dataset comprises 15, 365
process models and 27, 235 unique activity labels. Note that these process models
result from 3, 688 processes and their revisions. On average, the process models
involve 15.7 activities while half of the processes comprise 14 activities or less
(median). The standard deviation is 9.2.

5.2 Evaluation Setup

We conducted our evaluation using 10-fold cross validation, i.e., training an
approach on 90% of the dataset and evaluating it on the remainder. We report
the mean results obtained over 10 runs (i.e., repetitions) of this cross validation.

Evaluation Scenarios. We create one recommendation task for every business
process graph in the evaluation set by following different strategies, which vary
in terms of the amount of information that is available for the recommendation
method, i.e., different ways to simulate the current status of a business process
model under development. The basic idea is to remove some of the nodes and
all edges connected to these nodes from a given process model. The remaining
graph is treated as the intermediate result of a construction process. We choose
a node from this graph as the one that has to be predicted and hide its label.

– given-k . In the given-k scenario, we pick a path of length k + 1 which is a
longest path from a source node (node with no incoming edges) to the activity
at position k + 1 and aim to predict the label of this activity. Especially for
low values of k, the given-k evaluation method allows us to compare different
methods in the ‘cold-start’ setting, in which only little information is given.
Important here is that this setting only provides a single sequence of activities
as information to a recommendation approach.

2 Note that with the decision to keep these different revisions, we follow the setup
used to evaluate RLRecommender.
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– hide-last-two. The opposite to this is the ‘hide-last-two’ evaluation method,
which maintains a near complete process model. Particularly, one sink node
ns (node with no outgoing edges) is randomly chosen and hidden. Then, we
randomly select a node that precedes ns as the node for which a label shall
be predicted, while taking all other (non-hidden) activities into account.

– breadth-first search (BFS). Finally we have implemented a BFS-based
evaluation method, where one activity, which is neither a source nor sink
node, is randomly chosen as the one to be predicted. Then, using s to denote
the shortest path from a source node to the selected activity, activities that
are on a path of length s, starting from a source node are used as a context
for the prediction, while all other activities are hidden.

Evaluation Metrics. We quantify the relevance of provided recommendations
using two metrics. First, we report on the hit rate H@10, which captures the
fraction of hits in the top 10 recommendations, i.e., the fraction of cases where
the activity that was actually used in a process model is among the 10 recom-
mendations with the highest confidence score. Second, we report on the Mean
Reciprocal Rank (MRR), which also takes the position of a hit in the recommen-
dation list into account. For a given recommendation, the MRR has the value 0 if
the actually chosen activity is not in the list and 1/p otherwise, where p denotes
the position of the hit in the list. More precisely, we also consider a recommen-
dation list of length 10 to compute MRR, which is a close approximation of the
MRR that is based on the full ranking. However, this is more realistic, as the list
of recommendations shown to the user has to be limited as well. In the ablation
study we additionally report the average number of generated recommendations
(i.e., the length of the recommendation list) per recommendation task as ∅|Rec|.
Approach Configurations. We evaluate different configurations of our rule-
based recommendation approach by varying two aspects. First, we vary the
behavioral relations taken into accounts, i.e., we consider configurations that use
the followedBy, causal, and causal plus concurrent relations. Second, we vary the
aggregation method over the max and noisy-or methods described in Sect. 4.2.
Combining these two aspects results in six different configurations, which we
denote, for example, as Rules followedBymax.

Baselines and Other Approaches. We compare the performance of our rule-
based approach against different baseline techniques and alternative approaches,
derived from various existing works:

– CoOccur [14]: This technique is based on the conditional probabilities of the
simultaneous occurrence of two activities in a process. Hence, this strategy
recommends activities that co-occurred most often with the so far inserted
activities of the unfinished process.

– kNN [14]: kNN is a weighted k-nearest-neighbors-based technique. It repre-
sents each process model as a vector, capturing whether or not an activity is
present in a model. Then, kNN recommends activities that have not yet been
included in a model, but appear in similar models in the repository.
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– Link-Ctx [15]: Unlike the prior techniques, the link-based Link-Ctx tech-
nique takes the order of activities in process models into account. Specially,
it considers which activities frequently occur directly after each other.

– Chain-Ctx [15]: The chain-based Chain-Ctx method generalizes Link-Ctx
by considering longer chains of activities, i.e., it also considers recurring pat-
terns consisting of three or more activities in order to provide recommenda-
tions that take a larger amount of contextual information into account.

– Hybrid-Ctx [15]: The Hybrid-Ctx technique combines a contextualized
kNN strategy, kNN-Ctx, with Link-Ctx. Compared to kNN, kNN-Ctx
increases the weight of the neighbour processes that contain activities, which
are also included in the context of the process under development. Hybrid-
Ctx is a weighting strategy which gives more weight to the kNN-Ctx tech-
nique for larger processes under development, while Link-Ctx receives a
higher weight for smaller ones.

– RLRec [22]: The RLRecommender approach embeds activities and behav-
ioral relations into a continuous low-dimensional space. The embedded vectors
and their distances are then used to provide activity recommendations.

The first two methods CoOccur and kNN can be understood as simple base-
lines. The other methods are more sophisticated techniques that have especially
been designed to perform well in the given (or a highly similar) activity recom-
mendation scenario. Similar to the configurations of our approach, we assess the
performance of RLRec for configurations that consider different behavioral rela-
tions, i.e., RLRec followedBy, RLRec causal, and RLRec causal+conc. The
other approaches cannot distinguish between different relations, which means
that we apply them in the RfollowedBy setting only.

Note that, since the given-k evaluation scenario always captures the current
status of the process under development as a sequence of successive activities, it
is pointless to consider different causal or concurrent relations for this setting.
Therefore, we only consider the RfollowedBy setting for the given-k scenario.

5.3 Evaluation Results

The results of our experiments are shown in Table 1. With exception of the
specific ‘cold-start’ evaluation scenario given-1 our rule-based activity recom-
mendation approach outperforms all other methods.

The CoOccur baseline performs comparably poor, while recommendation
strategies such as Link-Ctx, which also take structural process patterns into
account, achieve better results. This is because they avoid recommending activ-
ities that have high co-occurrence statistics, but are not relevant at the cur-
rent model position. The simple kNN technique performs surprisingly well in
cases where more information is given. RLRec causal and RLRec causal+conc
achieve equal results because RLRecommender bases its recommendations on
one edge (m, n̂) between the activity n̂ that has to be labeled and another activ-
ity m in the given unfinished process only. In other words, the method does not
collect and aggregate the predictions from all edges that are connected with n̂.
This also leads to the comparably low H@10 and MRR numbers.
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Table 1. Experimental results of the methods in different evaluation scenarios

Method Given-1 Given-3 Given-5 BFS Hide-last-two

H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR

CoOccur 0.290 0.099 0.333 0.105 0.302 0.081 0.215 0.058 0.207 0.049

kNN 0.296 0.121 0.721 0.321 0.749 0.313 0.804 0.434 0.914 0.658

Link-Ctx 0.495 0.389 0.864 0.672 0.875 0.671 0.777 0.577 0.812 0.615

Chain-Ctx 0.495 0.389 0.928 0.781 0.929 0.765 0.816 0.644 0.855 0.697

Hybrid-Ctx 0.495 0.389 0.889 0.721 0.909 0.728 0.857 0.731 0.732 0.646

RLRec followedBy 0.470 0.344 0.830 0.590 0.838 0.602 0.738 0.504 0.776 0.524

RLRec causal 0.742 0.528 0.786 0.561

RLRec causal+conc 0.742 0.528 0.786 0.561

Rules followedBymax 0.482 0.380 0.930 0.793 0.941 0.797 0.886 0.833 0.929 0.878

Rules followedBynoisy-or 0.483 0.377 0.930 0.792 0.935 0.791 0.883 0.832 0.928 0.873

Rules causalmax 0.890 0.837 0.929 0.886

Rules causalnoisy-or 0.890 0.841 0.930 0.880

Rules causal+conc.max 0.891 0.840 0.931 0.888

Rules causal+conc.noisy-or 0.892 0.845 0.931 0.882

Our rule-based approach can best exploit its potential when more details
are given for the recommendation, i.e., if the given process under development
already contains several activities and when applying the more precise relation
extraction strategies Rcausal and Rcausal+concurrent. The use of the max aggre-
gation in general leads to better overall results, only in the BFS scenario is the
noisy-or aggregation the better choice. Nevertheless, the differences between our
configurations are relatively small in comparison with the differences between our
approach and the other methods. This is in particular true when considering the
BFS and the hide-last-two evaluation scenarios. In the latter scenario, for exam-
ple, our method is almost 20% better in terms of MRR. This illustrates that our
method is much more capable of leveraging contextual information, while the
other methods only benefit from the additional information to a limited degree.

The average time required to provide a recommendation is generally below
0.65 s when running on an Intel R© Xeon R© E5-2623 v3@16 × 3.00 GHz CPU com-
puter with 256 GB RAM. The LOO scenario using max-aggregation is an excep-
tion to this, which may require 1.1 s on average to provide recommendations.

5.4 Ablation Study

We investigate the importance of the individual rule templates (and groups)
through an ablation study.3 In particular, we evaluate the performance of our
method when only learning and applying rules from one template group, e.g., a
configuration R-(1) only considers rules related to the inSameProcess predicate
used in template (1). Note that we apply the RfollowedBy setting for the given-5
evaluation scenario while we adopt the Rcausal+concurrent setting for the BFS and
hide-last-two scenarios. Further, we employ the max aggregation for all settings.

3 For brevity, we use template and template group interchangeably in this section.
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Table 2. Results of the ablation study

Rule templates Given-5 BFS Hide-last-two

H@10 MRR ∅|Rec| H@10 MRR ∅|Rec| H@10 MRR ∅|Rec|
R-(1) 0.739 0.298 7280.5 0.773 0.428 10455.1 0.877 0.609 10888.6

R-(2) 0.865 0.676 40.0 0.784 0.673 227.5 0.828 0.723 140.1

R-(3) 0.761 0.310 428.6 0.764 0.432 2616.4 0.881 0.627 2849.4

R-(4) 0.928 0.791 24.2 0.843 0.802 28.6 0.909 0.874 58.7

R-(5) 0.901 0.759 5.5 0.687 0.643 3.6 0.776 0.736 4.3

R-(6) 0.898 0.767 2.1 0.508 0.487 1.2 0.654 0.632 1.3

R-(7) 0.399 0.355 20.1 0.394 0.349 13.6

Rules 0.941 0.797 7280.5 0.891 0.840 10455.1 0.931 0.888 10888.6

The results in Table 2 reveal that the templates that include at least one
followedBy relation, i.e., R-(2), R-(4), R-(5) and R-(6), achieve good results in
the given-5 case, in which the least information is given for the recommendation.
The more information is given, the better the performance of rule templates R-
(1) and R-(3), which consider co-occurrence (inSameProcess relations). When
using rule template R-(4) exclusively, we achieve the best results, which reflects
the importance of rule templates that consider structural and co-occurrence
patterns simultaneously. It is not surprising that considering concurrent relations
in isolation, as done in R-(7), does not work well.

The results also reflect that certain rule templates are more specific than
others. For example, template (2) is more specific than (1), thus, it leads to
fewer, but more targeted predictions with a higher confidence, which yield a
higher recommendation accuracy. However, templates (5) and (6) are so specific
that exclusive use of them cannot fill a recommendation list of length 10, result-
ing in comparably lower performance. Given this trend, considering longer rule
templates, e.g., that depend on longer activity sequences, is likely unfruitful.

Finally, it is interesting to recognize that the combined configuration, Rules,
achieves better results than R-(1) to R-(7) in every scenario. Furthermore, we
also conducted inverted experiments, where we used all but one rule template.
While some combinations yielded slightly better results than achieved by com-
bining all rules, this improvement was never consistent across all evaluation
scenarios. This shows that all rule templates make valuable contributions in cer-
tain situations, which is why the full approach yields a recommendation quality
that is overall higher than the quality achieved by partial configurations.

6 Conclusion

In this paper, we presented a rule-based approach for activity recommendation
in process models. We demonstrated different configurations of our approach,
highlighting its extendable nature. Our extensive experiments showed that it
outperforms a variety of other approaches [14,15] including an embedding-based
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method [22]. In contrast to these approaches, our rule-based method is, further-
more, able to provide explanations alongside the given recommendations.

In future work, we aim to refine our rule-based method such that it is able to
learn and apply rules to variations of previously seen labels or even to completely
unseen labels. This requires other types of rule templates and the use of matching
techniques that allow us to compare unseen labels with ones in the repository.

Acknowledgement. We would like to thank Dietmar Jannach and Michael Jugovac
for providing their code and kind help.
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