
Challenges and Perils of Testing Database
Manipulation Code

Maxime Gobert1(B), Csaba Nagy2, Henrique Rocha3, Serge Demeyer3,4,
and Anthony Cleve1

1 Namur Digital Institute, University of Namur, Namur, Belgium
maxime.gobert@unamur.be

2 Software Institute, Università della Svizzera Italiana, Lugano, Switzerland
3 Department Computer Science, University of Antwerp, Antwerp, Belgium

4 Flanders Make vzw, Lommel, Belgium

Abstract. Software testing enable development teams to maintain the
quality of a software system while it evolves. The database manipu-
lation code requires special attention in this context. However, it is
often neglected and suffers from software maintenance problems. In this
paper, we investigate the current state-of-the-practice in testing database
manipulation code. We first analyse the code of 72 projects mined from
Libraries.io to get an impression of the test coverage for database code.
We confirm that the database is poorly tested: 46% of the projects did
not cover with tests half of their database access methods, and 33%
of the projects did not cover the database code at all. To understand
the difficulties in testing database code, we analysed 532 questions on
StackExchange sites and deduced a taxonomy. We found that developers
mostly look for insights on general best practices to test database access
code. They also have more technical questions related to DB handling,
mocking, parallelisation or framework/tool usage. This investigation lays
the basis for future research on improving database code testing.

Keywords: Testing · Database manipulation code · Empirical study

1 Introduction

Database manipulation code is usually seen as an outsider in the codebase of
an information system. It lies between the programs and the database, so it
belongs partially to both, but not entirely to one. It can also involve multiple
development teams. For example, in larger systems, a complex database requires
a department of database administrators (DBAs) separated from the group of
software engineers who maintain the application code. Both groups are in charge
of maintaining their own side, but they need to share responsibilities as far as
program-database communication is concerned.

However, shared responsibilities come at a price, and the dual role of database
manipulation code leads to software maintenance problems. Stonebraker et al.
c© Springer Nature Switzerland AG 2021
M. La Rosa et al. (Eds.): CAiSE 2021, LNCS 12751, pp. 229–245, 2021.
https://doi.org/10.1007/978-3-030-79382-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79382-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-79382-1_14

230 M. Gobert et al.

argue that it is the most significant factor of database or application decay [26].
As they say, evolving requirements result in changes in the schema, which in
turn require adjustments in the database manipulation code. Developers tend
to minimise their effort to implement modifications, and the application or the
database quality suffers the consequences.

Several researchers have proposed approaches addressing the evolution of
database-centric systems [7–9,17,18,21,31]. Other authors developed methods
specifically designed for testing database applications, with a focus on test case
generation [6], test data generation [5], test case prioritisation [11], and regression
testing [24]. Despite the undeniable benefits of these methods, no research work
has investigated how developers test database access code in practice – which
could direct researchers where automated assistance is needed the most.

To provide such guidance, we investigated the current state-of-the-practice
in testing database manipulation code addressing our research question: What
are the main challenges/problems when testing database manipulation code?

As a motivational study, we analysed a set of open-source systems that rely
on database access technologies and implement automated tests. We mined 6,626
projects from Libraries.io and found automated tests along with database manip-
ulation code in only 332. Out of these, we examined 72 projects, for which we
could collect coverage reports of test executions. We observed how tests cover
the database access code in these projects. We found that overall the database
manipulation code is poorly tested. 46% of the projects did not test half of their
DB methods, and 33% of the projects did not even test DB communication.

To understand the reasons for such poor coverage, we qualitatively analysed
532 questions from popular StackExchanges websites and identified the problems
that hamper developers when writing tests. We distilled the results in a compre-
hensive taxonomy of 83 issues grouped into 7 main categories. For each category,
we discuss critical issues and solutions proposed by StackExchange users. Besides
our contributions of (i) exploratory evidence of poorly tested database manip-
ulation code and (ii) an extensive taxonomy of database testing problems, (iii)
we infer actionable directions both for researchers and practitioners. Our study
– being the first of its kind in this field – lays the foundation for future research
on improving the maintenance of database code through automated testing.

2 Motivational Study

We first explore how developers test their database manipulation code in prac-
tice. Figure 1 depicts an overview of the three main steps we followed during this
exploration: (1) we selected a set of open-source projects using databases, (2)
we identified which part of their source code was involved in database commu-
nication and (3) we analysed how automated tests covered it.

Challenges and Perils of Testing Database Manipulation Code 231

During step 1© Project Selection, we mined open-source systems from
Libraries.io,1 which we chose because (i) it monitors a broad set of projects (not
just libraries), and (ii) it has a large database of dependencies among projects.2

Extract Test Framework
Dependent Projects

Libraries.io API

Clone Repositories

Data & Test Projects
Source Code

List of Test Framework
Dependent Projects

Project Selection

SQLInspect

Database Access Locations

Test Coverage Reports

Processed
Result Dataset

Database Access Code Analysis

Test Coverage Analysis

Fig. 1. Overview of the main steps for test coverage analysis of database access code

We specifically looked for applications using databases and automated test-
ing technologies. Libraries.io provides us with the possibility of searching for
such projects through their dependencies. Selected projects had to satisfy four
inclusion criteria: (i) be written in Java, since we rely on tools that support only
Java (i.e., to identify database code and measure test coverage); (ii) use JUnit3
or TestNG,4 i.e., the top Java testing frameworks according to the usage statis-
tics of Maven central;5 (iii) use database access technologies, e.g., java.sql or
javax.persistence; (iv) have executable test suites, as required by JaCoCo,6
the test coverage tool we rely on.

We relied on version 1.4.0 of Libraries.io dataset published in December 2018,
as it was the most recent at the time of conducting the survey. We cloned 6,626
systems satisfying a search query for Java projects with testing framework depen-
dencies. Then we filtered them looking for imports of database communication
libraries. The list of imports can be found in our replication package [1]. At this
stage, we identified 905 projects.

In step 2© Database Access Code Analysis, we identified the part of the source
code involved in database communication. We used SQLInspect7 for this purpose
– a static code analyser for Java applications using JDBC, Hibernate, or JPA.
This tool looks for locations in the source code where queries are sent to a
database, extracts these queries, and analyses them for further inspection (e.g.,
smell detection). In the remaining of the paper, we call database access methods
all methods that construct or execute a DB query. We selected SQLInspect
1 https://libraries.io/data.
2 At the time of writing, it has 2.7M unique packages, 33M repositories, and 235M

interdependencies between them.
3 https://junit.org/.
4 https://testng.org/.
5 https://mvnrepository.com/open-source/testingframeworks.
6 https://www.jacoco.org.
7 https://bitbucket.org/csnagy/sqlinspect.

https://libraries.io/data
https://junit.org/
https://testng.org/
https://mvnrepository.com/open-source/testing-frameworks
https://www.jacoco.org
https://bitbucket.org/csnagy/sqlinspect

232 M. Gobert et al.

because (i) it supports popular database access technologies, (ii) it returns all
the database access methods of the project under analysis, and (iii) it relies on
a technique reaching a precision of 88% and a recall of 71.5% [18].

From the 905 projects selected at the first stage, SQLInspect identified data-
base access methods in 332 of them. In the other projects, it did not detect
database accesses. The reason for this is that SQLInspect looks for SQL, Hiber-
nate, or JPA queries in the source code. An import does not necessarily imply
query executions, and other DB communication means can be used (e.g., an
object-relational mapping; ORM) too, or the packages may not be used at all.

In step 3© Test Coverage Analysis, we looked at the way the DB access
methods are covered by tests. We used the JaCoCo Maven plugin that can be
integrated with a project’s tests to collect coverage data at different granularity
levels (e.g., method or line). We implemented a script modifying the pom files
of the 332 projects to execute tests with JaCoCo. Maven compilation or test
execution failures prevented the generation of a test report file for 178 projects.
Many projects (82) did not have a pom file or tests at all, despite having a
dependency on a test framework. In the end, we collected test coverage data for
72 systems. Then we processed the reports along with the results of step 2©.

Table 1. Overview of the projects

Metric Min Q1 Med Q3 Max

Java LOC (effective) 225 1,476 3,198 12,929 133,331
GitHub stars 0 0 2 10 9,152
Methods 11 110 278 1,057 15,188
DB access methods (in prod. code) 1 2 4 7 80

Table 1 summarises the main characteristics (with minimum, quartiles,
median, and maximum values) of the analysed projects. The projects are of
various sizes ranging from 225 LOC up to 133 kLOC. The biggest project is

R = 0.47 , p = 6.1e−08

0

25

50

75

100

0 25 50 75 100
DB access methods test coverage rate

N
on

 D
B

m
et

ho
ds

 te
st

 c
ov

er
ag

e
ra

te

Fig. 2. Non-DB access methods vs DB access methods test coverage rate

Challenges and Perils of Testing Database Manipulation Code 233

Speedment,8 a Java Stream ORM. The most popular project is MyBatis9 with
9,152 stars. Regarding database access code, we only considered methods in
production code (i.e., test classes excluded). We intentionally did not set a min-
imum threshold for the projects’ size or database methods. Our goal was to see
whether they test database access code or not in real-life projects. If the project
had only one method communicating with the DB, we wanted to see the tests
for it.

Figure 2 shows a scatter plot of all projects and their respective test coverage
rates. In total, 24 projects do not test database access communication at all.
Also, a significant number of projects with the highest coverage rate have, in
fact, full coverage. We found a mean value of 2.8 database methods for projects
with full coverage. There are slightly fewer projects (48.6%) in the figure with
lower coverage for database methods. However, considering only the projects
above the median (i.e., with at least five database methods), there is a bigger
difference: 59% of them have a smaller coverage for database methods than for
regular methods. Similarly, while 46% of the projects cover less than half of
their database methods, this number increases to 53% for projects above the
median. Moreover, 33% of the projects do not test the database code at all, and
it increases again to 35% for projects with at least five database methods.

We assessed the relationship between the test coverage rates of DB access
methods vs regular methods using the Kendall correlation, as the Shapiro-Wilk
normality test showed a significant deviation from the normal distribution. The
result was a moderate positive correlation with a high statistical significance
(τ = 0.47, p < 0.0001).

In summary, we found a statistically significant correlation between the test
coverage of regular and database access methods, but it is a weak-moderate
correlation, and there can be important differences between the two. As our
closer look at the sample set showed, the coverage of database code is poor in
general together with regular methods. But when it comes to more complex
database access code, it is even more neglected.

3 Challenges and Problems When Testing DB Access
Code

The goal of our main research question is to understand the reasons holding back
the developers to consider database access code in their test cases. We decided
to study their most common problems on popular question-and-answer (Q&A)
websites of the StackExchange network. The outcome of this qualitative study
is a hierarchical taxonomy of common issues faced by developers.

3.1 Context and Data Collection

8 https://github.com/speedment/speedment.
9 https://github.com/mybatis/ mybatis-3.

https://github.com/speedment/speedment
https://github.com/mybatis/mybatis-3

234 M. Gobert et al.

Identification and Extraction of Questions. We targeted popular web
sites of the StackExchange network for data collection: StackOverflow,10 Softwa-
reEngineering11 and CodeReview.12 StackOverflow is the largest Q&A website
in software engineering, making it a popular target of mining studies. At the time
of our analysis, it included over 20M questions and 29M answers for software
developers. Questions can be asked about specific programming problems, algo-
rithms, tools used by programmers, and practical problems related to software
development. Testing the database access code also falls into these categories.
However, the guidelines of StackOverflow say that the best “questions have a
bit of source code in them.” So more generic questions, not closely related to
source code, are often discouraged as out-of-scope or opinion-based. General dis-
cussions are preferred on the SoftwareEngineering site of StackExchange. We
included this site as we were interested in higher, conceptual-level problems as
well; not only those related to the source code. Another valuable source for dis-
cussions in the StackExchange network is CodeReview. There, developers can
ask for suggestions on a given piece of code. As they often include test code, we
considered questions from CodeReview as well.

From these three Q&A websites, we selected our candidate questions accord-
ing to the following criteria:

(a) Scope. We decided to select questions if (i) they explicitly mention test-
ing in their title, and (ii) they use database access terms in their descrip-
tion (e.g., DAO, SQL). For this filtering, we loaded the dumps of Stack-
Exchange sites into a database. We created full-text indices on both the
titles and question bodies. Then we queried them, so the description had to
match (database | (data & access) | sql | dao | pdo) & test and
the title had to match test. The full-text search handled normalised text
so stemmed words were also considered (e.g., test-ing, database-s). Notice
that StackOverflow has a tagging system for classification. However, the use
of these tags is up to the user, who can easily omit them. Besides, the tag-
ging system is different for the three sites considered, which led us to our
alternative approach.

(b) Impact and quality. Due to the potentially large number of questions and our
limited resources, we targeted posts with higher impact and better quality.
For this reason, we relied on the scoring system of StackExchange. No up-
votes or a negative score indicates problems, e.g., an unclear, or out-of-scope
question. Therefore we excluded posts with zero or negative ratings.

We used the StackOverflow dump published by StackExchange in Decem-
ber 2019, and the dumps of SoftwareEngineering and CodeReview published
in March 2020. A total number of 1,837 questions matched the criteria: 41
on CodeReview, 174 on SoftwareEngineering and 1,622 on StackOverflow (see
Table 2). We did a first manual screening of questions on the different sites. We

10 http://stackoverflow.com.
11 http://softwareengineering.stackexchange.com.
12 http://codereview.stackexchange.com.

http://stackoverflow.com
http://softwareengineering.stackexchange.com
http://codereview.stackexchange.com

Challenges and Perils of Testing Database Manipulation Code 235

observed that questions on CodeReview and SofwareEngineering were closer to
our scope. Therefore, we decided to select more questions from these sites and
to aim at a higher quality. To reach a 99% confidence level with a 5% margin
of error, we set a threshold for a minimum score of 1 for CodeReview, 3 for
SoftwareEngineering, and 13 for StackOverflow.

Table 2. Overview of the questions selected from StackExchange sites

Source Candidate questions Selected questions False positives

CodeReview 41 41 3
SoftwareEngineering 174 140 25
StackOverflow 1,622 351 86
Total 1,837 532 114

Manual Classification of Database Testing Issues. After collecting the
532 questions, we manually inspected them. We followed an open coding process
often applied to construct taxonomies or systematic mapping studies [20,29].
In this approach, participants apply labels to concepts found in the text of
artefacts. Then the tags are organised into an overall structure. During the
process, labels and categories might be merged and renamed [20]. We performed
the classification process in three main rounds. First, we did a trial round with
a random set of 100 questions, wherein two of the authors assigned labels to
the artefacts. The goal was to see whether we need to apply changes to our
selection criteria and to test the classification platform that we implemented for
this purpose. After the first round, we implemented a few adjustments to our
platform. For the second round, we labeled the remaining questions with the
help of two more authors. In the last round, we resolved conflicts where needed.

Each artefact was labeled by two of the four participants, randomly assigned
to them. The platform showed the question and its relevant metadata (score,
timestamp, tags) along with a link to the original discussion thread for further
inspection. We followed a multi-label approach. Each participant could assign
multiple labels to the artefact from the list of existing labels in the database. If
needed, they could create new tags too. In principle, existing labels should not
be shown to participants. But as we expected a high number of tags, showing
the existing ones could help us using consistent naming without introducing
substantial bias. Indeed, the participants were not aware of the assignments.

After the second round, all 532 questions were labeled by two participants.
At this point, one author reviewed all the tags and proposed the merging of those
with identical meaning. This merging was discussed among authors and applied
to the database. We finally agreed and used identical tags for 147 questions;
partially agreed for 77 posts (only a subset of identical labels), and used entirely
different tags for 308 questions. The high number of unique tags explains this

236 M. Gobert et al.

relatively high number of conflicts (72.37%). Indeed, at this point, the database
had 290 different labels. Thus, participants took advantage of the multi-label
classification and captured various aspects of questions.

To resolve conflicts, a third tagger was assigned to review each conflicting
artefact. This third person was a randomly selected author who took part in the
classification but did not label the same question beforehand. The system showed
the labels of the previous taggers, and the reviewer could accept or discard them.
Minor modifications were also allowed, if necessary.

At the end of this process, one author carefully reviewed all the tags and
organised them into categories. This categorisation was then discussed among
the authors in multiple rounds. As an outcome, a taxonomy was constructed
with 83 database testing issues in 7 main categories. In the rest of this section,
we present this taxonomy together with qualitative examples.

3.2 Taxonomy of Database Testing Issues

Usman et al. reviewed taxonomies in software engineering and found the hier-
archical form the most frequently used classification structure [29]. We adopted
this representation as an efficient approach to organise our findings. In this form,
there is a parent-child (is-a) relationship between categories, and one category
has additional subcategories. Categories correspond to issues or problems raised
in the question, and subcategories represent subtypes of a problem. Consider,
e.g., Mocking Persistence Layer as a specialised type of Mocking-related issues.

Figure 3 shows the final structure of the taxonomy. There are a total number
of 83 leaf issues organised in 7 main (root) categories. For each root category, we
show the total number of questions labelled with such problems. The distribution
of the corresponding questions over the three sites is also provided. For example,
the Mocking category had 54 questions including 8 from CodeReview, 17 from
StackExchange, and 29 from StackOverflow. Recall that we had a multi-label
approach, so one question could represent mixed problems. Thus, a question can
belong to more categories in the hierarchical taxonomy.

We observe intriguing technical and conceptual difficulties, and we differen-
tiate between them in Fig. 3. We mark the technical problems with � and the
conceptual ones with �. It is interesting to observe the origin of questions for
those abstraction levels. Higher-level, conceptual problems mainly originate from
SoftwareEngineering, especially for Maintainability/Testability or Method. Tech-
nical problems are closer to the source code and mostly originate from Stack-
Overflow, especially for the Framework/Tool Usage category. Questions from
CodeReview cover both abstraction levels, but most of them relate to the gen-
eral Best Practices category. None of them deals with Framework/Tool Usage.
Below, we describe and illustrate each main problem category. We cite posts on
StackExchange sites with SE notation. Due to space limitation, these references
can be found in our replication package [1].

� DB Handling. The most prevalent technical issues are related to the man-
agement of the database: we found 145 questions in this category. Indeed, many

Challenges and Perils of Testing Database Manipulation Code 237

Mocking (54)
Mock DB Calls
Mock Persistence layer

Monitor Status of Mocked DB

Test DB Exceptions with Mocked DB

Parallelization (12)
Asynchronous Test Execution with a Single DB
Avoid DB Population Executed in Parallel

Parallelize Tests Accessing a Single DB

Parallelize Tests with Several In-memory DB
Test Asynchronous DB Tasks

DB Connection (39)
Close DB Connection When Test Fails

Connect to Multiple Databases

Handle Connection String

Manage Shared Connection Among Tests

Read-Only Connection For Tests

Use Dependency Injection

DB Population (67)
Clear DB Before Tests

Exclude Outdated Data

Generate Random Data

Populate from Dump File

Populate from Fixtures/CSV

Populate from Production DB

Use Development Data

Wait Until the DB is Populated Before Tests

DB Depopulation (37)
Cleanup Production DB

Cleanup Test DB

Introduce Special API for Cleanup

Rollback Changes

DB Handling (145)
Deployment

Isolate Test DB from Production DB

Setup Test DB Before Tests

Start DB Before Tests

Stop DB After Tests

Synchronize Test DB

 Framework/Tool Usage (75)

Di
Keep Test Data After Tests
Sequential Instead of Parallel Execution
Run Single Tests on a Separate DB
Sequential Instead of Parallel Execution
Transactional Tests

Find Examples/Tutorials
Handle Error/Warning Message

Maintainability/Testability (27)
Adapt Tests to Schema Changes
Improve Testability of DB Access Code
Manage Schemas
Manage Test Data
Test Isolation
Test Code Organization
Test Reusability

Best Practices (216)

Handle Exceptions
Naming Convention

Performance Improvement

Test Automation

Test Coverage

Testing for Security

Test/Validate (125)
Method (44)

Cleanup Before/After Tests
Rely on Tests Without Data
Test Data Access

Test With Deterministic vs Non-Det. Data
Use VM for Testing
Use In-Memory DB vs Local Test DB
Use In-Memory DB vs Mocking
Use Mocking vs Test DB

DB Access Performance

DB Connection

DB Constraints

DB Creation

Migrations

Models

Persistence/DAO Layer

Services and DB

Stored Procedures

Queries

Test Data

Transactions

Test Implementation vs Behaviour

Unit Testing vs Integration Testing

CR CodeReview SE SoftwareEngineering SO

SE

SO

CR 0%

25%

75%

(0)

(3)

(9)

SE

SO

CR 10%

3%

87%

(4)

(1)

(34)

SE

SO

CR 15%

31%

54%

(8)

(17)

(29)

SE

SO

CR 10%

16%

74%

(7)

(11)

(49)

SE

SO

CR 0%

19%

81%

(0)

(7)

(30)

SE

SO

CR 0%

3%

97%

(0)

(2)

(73)

SE

SO

CR 0%

2%

98%

(0)

(1)

(57)

SE

SO

CR 15%

63%

22%

(4)

(17)

(6)

SE

SO

CR 13%

32%

55%

(28)

(69)

(119)

SE

SO

CR 15%

32%

53%

(19)

(40)

(66) SE

SO

CR 7%

59%

34%

(3)

(26)

(15)

Conceptual IssuesTechnical Issues

SE

SO

CR 8%

14%

78%

(11)

(21)

(113)

Fig. 3. Taxonomy of issues faced by developers when testing database access code

have problems initialising the database before executing the tests. This includes
starting the database, configuring it, and populating it with test data. The test
database population was often mentioned as a root cause of performance issues.
These initialisation steps are critical as they have to be performed before test
executions. As a developer complained: “This whole thing takes quite some time
(...). Having this run as part of our CI (...) is not a problem, but running locally
takes a long time and really prohibits running them before committing code” SE1.
Solutions often include performance tweaks, e.g., having an in-memory DB for
local tests or ensuring that time-critical parts of the initialisation are executed
only when needed. Instead of re-initialising the database before running the tests,
an alternative is to clean it up after running the tests. This ensures that a failing
test does not leave the environment in an inconsistent state SE2. Many recom-
mend transactional tests (i.e., wrap tests in transactions) for this purpose, so
that a rollback can recover the initial state of the database. An advantage is that

238 M. Gobert et al.

it can be significantly cheaper than recreating it. This, however, is not possible
for testing DB access that already relies on transactions. As a desired feature,
this is also supported by many testing frameworks. Some questions came from
situations when the design does not support data deletion SE3. Others faced
issues keeping a test DB in synch with a production or development DB SE4;
while many had problems handling the connection to a test DB SE5, SE6, SE7.

� Framework/Tool Usage. A large number of problems (75) concern the use
of a concrete tool or framework. Most of them relate to configuring a framework
for a dedicated database in a test/development or production environment SE8,
SE9. These questions have high scores suggesting that many developers suffer
from such issues. For example, a question to configure Django SE9 was voted
up 59 times and stared by 16 users. Similarly, developers ask help for different
DB initialisation (e.g., running scripts, using dumps or fixtures), or cleanup
configurations SE10. Interestingly, in some cases, they want to keep the test
database after running their tests for debugging purposes SE11. Many also ask
for guidance to solve a particular error message in the testing framework, e.g.,
misusing transactional tests SE12, or to configure in-memory databases SE13.

� Mocking. Mocks can help by isolating the tests (i.e., cutting off dependen-
cies), and by avoiding the performance drawbacks of databases (e.g., avoiding
IO). Many questions indicate that developers need help in mocking the persis-
tence layer. As a first step, an important design decision they have to make is
the level at which they implement the mocks. For example, a developer reasoned
in a question as follows: “I could either mock this object at a high level (...),
so that there are no calls to the SQL at all (...) Or I could do it at a very low
level, by creating a MockSQLQueryFactory that instead of actually querying the
database just provides mock data back ” SE14. Recommendations depend on the
objectives, as an answer says: “Higher level approaches are more appropriate for
unit testing. Lower-level approaches are more appropriate for integration test-
ing.” Broader questions were also asked about the benefits of mocking SE15, or
guidelines to mock the data access layer SE16, SE17. Technical questions tackled,
for example, emulating exceptions in a mocked database SE18. When mocking
is unfeasible, it can indicate poor software design SE19. Stored procedures SE20
and views SE21 also made mocking impossible in other systems.

� Parallelization. We observed some (12) technical problems related to parallel
test executions. These were closely related, so we grouped them in this category.
One of the highest-rated questions was about turning off the parallel execution
of tests in sbt (a build tool for Scala and Java) SE22. The developer complained
that a project “mutates state in a test database concurrently, leading to the test
to fail.” Likewise, asynchronous or lazy calculations led to challenging bug hunts
SE23 They also asked for advice to make test execution parallel, e.g., to handle
a dedicated in-memory database per thread SE24.

� Best Practices. The most frequently used labels were about testing best
practices for DB applications. Developers either look for general advice or explic-
itly want to know about best practices. The highest-rated question has 331 up-

Challenges and Perils of Testing Database Manipulation Code 239

votes entitled “What’s the best strategy for unit-testing database-driven applica-
tions? ” SE25. It generates discussion on mocking vs testing against an actual
database. In the answers, mocking is mostly recommended for unit testing, while
a copy of the database is favoured for more complex databases. In other cases, a
combined approach might be needed: “Ideally I want to test the data access layer
using mocking without the need to connect to a database and then unit test the
store procedure in a separate set of tests” SE16. Best practices are also sought
for performance improvements SE26, SE1, SE27. In particular, where mocking
is not an option, solutions mostly advise the use of in-memory databases to
reduce IO operations. Other topics include testing for security vulnerabilities,
e.g., looking for static analysers to spot SQL injection attacks SE28. Likewise,
some questions look for tools to measure test coverage. They want to know,
for example, the coverage of executed queries in test cases SE29. A majority of
these questions were grouped under Test/Validate. These are looking for advice
on testing or validating a specific code or DB entity. For example, SQL queries
embedded in code SE30, database migration SE31 or transactions SE32.

� Maintainability/Testability. Several questions tried to address maintain-
ability problems or the testability of the database access code. In a question,
a developer struggled with a system that validated RESTful APIs with SQL
queries in its integration tests SE33. As he summed up his root problem: “a
small change in the DB structure often results in several man days wasted on
updating the SQL and the SQL building logic in the integration tests.” The devel-
oper wanted to wipe out the SQL code from the tests entirely. In the answer, they
discouraged him from doing so. They acknowledged that relying on the queries
can be a good practice to verify the database state. Instead, it was recommended
to improve the maintainability of the tests: (i) by reducing the coupling inside
the codebase (one table per module), and (ii) by splitting the tests into smaller
pieces. In another question, a developer wanted to reduce the maintenance effort
by omitting the tests of the ORM layer. He was, however, afraid of giving up on
aiming for a 100% coverage. As he wrote it, “Our test databases are a bit messy
and are never reseted, hence it’s impossible to validate any data (and that is out
of my control).” In the answers, they supported him that it is important to bal-
ance coverage and prioritise efforts then suggested generating the tests for the
ORM layer. Others pointed out that preparing the environment of testing the
database access code is also troublesome. For example, a developer complained:
“The problem I ran into was that I spent a lot of time maintaining the code to
set up the test environment more than the tests” SE34. Many questions were
also related to the management of changing schema or test data. As a general
guideline, a recommendation said: “I would apply a single rule: keep your test
data close to your test. Test is all about maintenance: they should be designed
with maintenance in mind, hence, keep it simple” SE35.

� Method. Many developers were concerned about the problems of their test-
ing method. The most frequent arguments were whether DB-dependent code
should be tested via unit or integration tests SE36,SE37,SE38,SE39,SE25. A
regular claim was that “unit tests should not deal with the database, integra-

240 M. Gobert et al.

tion tests deal with the database” SE37. Recommendations target to maximise
the isolation of unit tests and decouple the database, e.g., through mocking.
In contrast, integration tests aim to test more complex structures by relying on
the database. Interesting questions related to populating a database before tests,
e.g., whether data should be dynamically generated or pre-populated beforehand
SE40. A re-occurring discussion was on the use of an in-memory database versus
a mocking strategy SE41. When performance or decoupling the tests from the
database was more critical, the choice was to mock. Otherwise, we could see cases
where mocking was not possible (e.g., because of stored procedures or views).
The in-memory database was then considered as a good compromise to test the
database access. It indeed solves the portability issues of testing against an actual
DB and improves the performance. Compared to mocking, the testing can be
more extensive, e.g., it enables the tests to validate embedded SQL queries. In
some cases, however, the in-memory database differs significantly from the pro-
duction database. This can be a problem as some DB-specific features cannot
be tested, e.g., a special SQL syntax SE42.

3.3 Discussion and Implications

Below, we discuss the main observations we made in our investigation, together
with actionable directions for researchers and practitioners.

Maintainability of DB Tests. A frequent issue was to keep tests in sync with
database schema changes, as developers hardly get any support for this task.
Many also struggled with isolating tests. Our study is exploratory by nature, and
more studies are needed to understand the factors affecting the maintainability
of database-related test code. Understanding more from the practices of the
developers, and good, maintainable database test code [2,23] is a promising
direction. Alternatively, automated approaches could help in regular tasks of
developers. Some approaches aim to identify the system fragments impacted by
schema changes [16,17]. Such methods could be extended to the testing context,
e.g., to maintain a mapping between schema elements and mocks.

In-Memory DB vs Actual DB vs Mocking. We have seen many points in
favour and against whether tests should rely on mocking, in-memory databases,
or the actual database. In the systems analyzed in our motivational study, we
found that 19 out of the 72 projects (26%) used mocks: 17 had Mockito,13 and
2 had EasyMock tests.14 This low number surprised us, as mocking was the rec-
ommended approach for unit tests to decouple them from the DB. This is in
line with the findings of Trautsch and Grabowski [27] who observed only a small
amount of unit tests in open source Python projects, especially with mocks. A
potential explanation is that it is easier to set up an in-memory database and
rely on integration tests; instead of bothering with the implementation of mocks,
despite its advantages. In any respect, developers need help in the implementa-
tion of database-related tests. They would benefit from automated support in
13 https://site.mockito.org/.
14 https://easymock.org/.

https://site.mockito.org/
https://easymock.org/

Challenges and Perils of Testing Database Manipulation Code 241

this context. Some authors already explored the generation of tests with mocks
[3,19]. The emergence and initial success of such tools (e.g., EasyMock,14 Mock-
Neat15) is encouraging to develop similar approaches.

DB Support in Testing Frameworks. In our motivational study, we excluded
projects with failing tests. Many failures were due to misconfigured testing envi-
ronments. The systems either (i) relied on an external database for their tests, or
(ii) used in-memory databases, but did not set them up correctly. We observed
related problems in our qualitative study: many developers struggle to config-
ure frameworks with multiple database connections. Testing frameworks could
better support developers in this task with DB-dedicated features, especially if
these are configurable from the build systems. Some frameworks already provide
similar functionalities. For example, Spring Test has JdbcTestUtils,16 a collection
of JDBC-related functions. It also provides support for test fixtures and transac-
tional tests. Another framework, Rails, offers similar features. We observed that
the most desired features are related to the initial configuration of databases,
and the efficient recovery of the database state between successive tests. Devel-
opers’ needs remain unexplored in this field, and further research is necessary to
improve testing practices as far as DB access is concerned.

4 Threats to Validity

Construct Validity. In our motivational study, we rely on SQLInspect to iden-
tify the database access methods of projects, i.e., methods involved in querying
the database. As a static tool, it may miss some DB methods, particularly in
case of highly dynamic query construction. For test coverage, we rely on JaCoCo,
a state-of-the-art tool used in industry and academia [14]. It might miss execu-
tion paths, and its configuration can influence the coverage results (e.g., due to
missing classes from the classpath). To avoid this, we executed tests according
to Maven standards and excluded projects with failing tests.

Internal Validity. In our qualitative analysis, the manual classification of
StackExchange questions is exposed to subjectiveness. To mitigate this risk, two
authors examined each post independently, and a third author resolved conflicts.

External Validity. Our motivational study is exploratory by nature. It consid-
ers various types of projects in terms of application domain, size, and intensity
of DB interactions. They are, however, all from Libraris.io and limited to the
Java programming language. Projects not considered in our study might lead
to other results. In our qualitative study, we extracted questions from three dif-
ferent StackExchange sites, intending to reach a higher level of diversity. We
selected higher-ranked questions which are likely to influence more developers.
This might introduce a bias towards the posts we selected. In reality, developers
might face even more diverse challenges when (not) testing database code.
15 https://github.com/nomemory/mockneat.
16 https://docs.spring.io/spring/ docs/current/spring-frameworkreference/testing.

html.

https://github.com/nomemory/mockneat
https://docs.spring.io/spring/docs/current/spring-framework-reference/testing.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/testing.html

242 M. Gobert et al.

5 Related Work

Our research work got motivated and inspired by more general studies analysing
testing practices and related maintainability issues. Beller et al. [4] conducted
a large-scale field study on testing practices, monitoring 5months of activities
from 416 software engineers. They observed, among others, that (i) developers
rarely run tests in the IDE; (ii) Test-Driven Development is not widely spread
among the participants; and (iii) developers usually spend 25% of their time on
testing. Gonzalez et al. [12] analysed over 80K open-source projects and found
that (i) only 17% of those projects included test cases, and (ii) 76% of them did
not implement testing patterns that would ease maintainability.

Several researchers have proposed approaches for testing database applica-
tions. Deng et al. [10] propose a white-box testing approach for web applica-
tions. They extract URLs from the application source code to create a path
graph, from which they then generate test cases. Ran et al. [22] propose a sim-
ilar framework, but for black-box testing web applications. They use a directed
graph of the webpage transitions and database interactions as input for generat-
ing test sequences, and for capturing how the database updates along with the
test cases. Kapfhammer and Soffa [15] present a test coverage technique that
monitors database interactions. They employ instrumentation of the application
and test cases to capture when SQL is used. Tuya et al. [28] define a criterion to
measure SQL query coverage. They argue that SQL queries embedded in code
are not taken into account for test design.

In this paper, we collect and classify questions in StackExchange sites,
through a multi-tagging approach, itself inspired by previous work in our field.
Gonzalez et al. [13] propose a 5-way classifier approach that assigns multiple
tags to StackOverflow questions. They use a dataset composed of a training set
of over 3 million questions and a test set of 20 thousand questions. Vasilescu
et al. [30] investigate the relationships on StackOverflow questions/answers and
GitHub commits. They find a positive correlation indicating that the activity of
developers on StackOverflow affects their commit activity on GitHub.

Our qualitative analysis revealed that many StackExchange questions were
related to Mocking, a testing technique to simulate dependencies, often used to
isolate the component under test. Spadini et al. [25] empirically analyse the usage
of mocking dependencies on testing. They analyse 4 projects with a total of 2,178
test dependencies and they survey 105 developers on their findings. The results
indicate that mocking is often used on dependencies that would have made test-
ing difficult to depend on external resources. Other popular topics we found
in StackExchange questions were related to best practices of testing database
code, specially understandability. Alsharif et al. [2] study the understandability
of auto-generated database tests. They argue that studies focusing on creating
database tests do not take into account the human cost to understand such tests.

In summary, the analysis of related research shows that DB access code is
sufficiently different from normal code to warrant specialised approaches. Several
proposals were made to support database access code testing. Nevertheless, no

Challenges and Perils of Testing Database Manipulation Code 243

research work has investigated how developers test DB access code in practice,
nor the main issues they face in this context.

6 Conclusion

We present a study of the challenges faced by developers when testing database
access code in practice. As a motivational study, we first studied the extent
to which database code is covered by tests by analysing 72 open-source Java
projects. We found that 46% of those projects did not test half of their database
methods and 33% of them did not test the database communication at all.

We then conducted a qualitative study to understand the poor test coverage
of database access code. We analysed 532 StackExchange questions related to
database code testing and identified a total of 83 issues, classified in a taxonomy
of 7 main categories. We found that developers mostly look for insights on general
best practices to test DB access code. Concerning technical issues, they ask
mostly about DB handling, mocking, parallelisation, or framework/tool usage.

We address an unexplored field of understanding testing practices of database
communication and to identify the main difficulties that hamper developers.
Our findings can serve as a starting point to direct researchers where practi-
tioners need assistance. They open the door to complementary studies focused
on particular categories of issues as well as their link with actual bugs. Further
investigation is needed, however, such as the validation of the taxonomy with
testing practitioners, or the analysis of the answers given to forum questions
about database code testing. Immediate feedback of practitioners and answers
may contain solutions to the issues we identified in this paper, that could guide
researchers towards dedicated techniques and tools to assist developers when
testing DB access code.

� Replication Package. We made all data, scripts, and detailed results of our
study publicly available in a replication package [1].

Acknowledgements. This work is supported by (a) the F.R.S.-FNRS and FWO-
Vlaanderen via the EOS project 30446992 SECO-ASSIST and (b) Flanders Make vzw.

References

1. Repl. pkg. https://github.com/csnagy/caise2021-db-manipulation-testing
2. Alsharif, A., et al.: What factors make SQL test cases understandable for testers?

a human study of automated test data generation techniques. In: ICSME (2019)
3. Arcuri, A., Fraser, G., Just, R.: Private API access and functional mocking in

automated unit test generation. In: Proceedings of ICST (2017)
4. Beller, M., Gousios, G., Panichella, A., Zaidman, A.: When, how, and why devel-

opers (do not) test in their ides. In: Proc. ESEC/FSE (2015)
5. Castelein, J., Aniche, M., Soltani, M., Panichella, A., van Deursen, A.: Search-

based test data generation for SQL queries. In: Proceedings of ICSE (2018)
6. Chays, D., Dan, S., Frankl, P.G., Vokolos, F.I., Weber, E.J.: A framework for

testing database applications. In: Proceedings of ISSTA (2000)

https://github.com/csnagy/caise2021-db-manipulation-testing

244 M. Gobert et al.

7. Chen, T.H., Shang, W., Hassan, A.E., Nasser, M., Flora, P.: Detecting problems
in the database access code of large scale systems. In: Proceedings of ICSE (2016)

8. Cleve, A., Brogneaux, A., Hainaut, J.: A conceptual approach to database appli-
cations evolution. In: Proceedings of ER (2010)

9. Delplanque, J., Etien, A., Anquetil, N., Ducasse, S.: Recommendations for evolving
relational databases. In: Proceedings of CAiSE (2020)

10. Deng, Y., Frankl, P., Wang, J.: Testing web database applications. SIGSOFT
Softw. Eng. Notes 29(5), 1–10 (2004)

11. Garg, D., Datta, A.: Test case prioritization due to database changes in web appli-
cations. In: Proceedings of ICST (2012)

12. Gonzalez, D., Santos, J.C.S., Popovich, A., Mirakhorli, M., Nagappan, M.: A large-
scale study on the usage of testing patterns that address maintainability attributes:
patterns for ease of modification, diagnoses, and comprehension. In: MSR (2017)

13. González, J.R.C., Romero, J.J.F., Guerrero, M.G., Calderón, F.: Multi-class multi-
tag classifier system for stackoverflow questions. In: Proceedings of ROPEC (2015)

14. Ivanković, M., Petrović, G., Just, R., Fraser, G.: Code coverage at Google. In:
Proceedings of ESEC/FSE (2019)

15. Kapfhammer, G.M., Soffa, M.L.: Database-aware test coverage monitoring. In:
Proceedings of the 1st India Software Engineering Conference (2008)

16. Maule, A., Emmerich, W., Rosenblum, D.: Impact analysis of database schema
changes. In: Proceedings of ICSE 2008 (2008)

17. Meurice, L., Nagy, C., Cleve, A.: Detecting and preventing program inconsistencies
under database schema evolution. In: Proceedings of QRS (2016)

18. Meurice, L., Nagy, C., Cleve, A.: Static analysis of dynamic database usage in java
systems. In: Proceedings of CAiSE (2016)

19. Pasternak, B., Tyszberowicz, S., Yehudai, A.: Genutest: a unit test and mock aspect
generation tool. In: Hardware and Software: Verification and Testing (2008)

20. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic
mapping studies in software engineering: an update. IST 64, 1–18 (2015)

21. Qiu, D., Li, B., Su, Z.: An empirical analysis of the co-evolution of schema and
code in database applications. In: Proceedings of ESEC/FSE (2013)

22. Ran, L., et al.: Building test cases and oracles to automate the testing of web
database applications. Inf. Softw. Technol. 51(2), 460–477 (2009)

23. Riaz, M., Mendes, E., Tempero, E.: Towards maintainability prediction for rela-
tional database-driven software applications: evidence from software practitioners.
In: Proceedings of Advances in Software Engineering (2010)

24. Rosero, R.H., Gómez, O.S., Rafael, G.D.R.: Regression testing of database appli-
cations under an incremental software development setting. IEEE Access 5, 18419–
18428 (2017)

25. Spadini, D., Aniche, M., Bruntink, M., Bacchelli, A.: Mock objects for testing java
systems. Empirical Softw. Eng. 24(3), 1461–1498 (2018). https://doi.org/10.1007/
s10664-018-9663-0

26. Stonebraker, M., Deng, D., Brodie, M.L.: Application-database co-evolution: a new
design and development paradigm. In: New England Database Day (2017)

27. Trautsch, F., Grabowski, J.: Are there any unit tests? an empirical study on unit
testing in open source python projects. In: Proceedings of ICST (2017)

28. Tuya, J., Suárez-Cabal, M.J., de la Riva, C.: Full predicate coverage for testing
SQL database queries. Softw. Testing, Verification Reliab. 20, 237–288 (2010)

29. Usman, M., Britto, R., Börstler, J., Mendes, E.: Taxonomies in software engineer-
ing: a systematic mapping study and a revised taxonomy development method.
Inf. Softw. Technol. 85, 43–59 (2017)

https://doi.org/10.1007/s10664-018-9663-0
https://doi.org/10.1007/s10664-018-9663-0

Challenges and Perils of Testing Database Manipulation Code 245

30. Vasilescu, B., Filkov, V., Serebrenik, A.: Stackoverflow and github: Associations
between software development and crowdsourced knowledge. In: Proceedings of
ICSC (2013)

31. Vassiliadis, P., Zarras, A.V.: Survival in schema evolution: Putting the lives of
survivor and dead tables in counterpoint. In: Proceedings of CAiSE (2017)

	Challenges and Perils of Testing Database Manipulation Code
	1 Introduction
	2 Motivational Study
	3 Challenges and Problems When Testing DB Access Code
	3.1 Context and Data Collection
	3.2 Taxonomy of Database Testing Issues
	3.3 Discussion and Implications

	4 Threats to Validity
	5 Related Work
	6 Conclusion
	References

