
FuSeBMC : An Energy-Efficient Test
Generator for Finding Security
Vulnerabilities in C Programs

Kaled M. Alshmrany1,2(B) , Mohannad Aldughaim1 ,
Ahmed Bhayat1 , and Lucas C. Cordeiro1

1 University of Manchester, Manchester, UK
kaled.alshmrany@postgrad.manchester.ac.uk

2 Institute of Public Administration, Jeddah, Saudi Arabia

Abstract. We describe and evaluate a novel approach to automated test
generation that exploits fuzzing and Bounded Model Checking (BMC)
engines to detect security vulnerabilities in C programs. We implement
this approach in a new tool FuSeBMC that explores and analyzes the
target C program by injecting labels that guide the engines to produce
test cases. FuSeBMC also exploits a selective fuzzer to produce test cases
for the labels that fuzzing and BMC engines could not produce test cases.
Lastly, we manage each engine’s execution time to improve FuSeBMC ’s
energy consumption. We evaluate FuSeBMC by analysing the results of
its participation in Test-Comp 2021 whose two main categories evaluate a
tool’s ability to provide code coverage and bug detection. The competition
results show that FuSeBMC performs well compared to the state-of-the-
art software testing tools. FuSeBMC achieved 3 awards in the Test-Comp
2021: first place in the Cover-Error category, second place in the Overall
category, and third place in the Low Energy Consumption category.

Keywords: Automated test generation · Bounded model checking ·
Fuzzing · Security

1 Introduction

Developing software that is secure and bug-free is an extraordinarily challenging
task. Due to the devastating effects vulnerabilities may have, financially or on
an individual’s well-being, software verification is a necessity [1]. For example,
Airbus found a software vulnerability in the A400M aircraft that caused a crash
in 2015. This vulnerability created a fault in the control units for the engines,
which caused them to power off shortly after taking-off [2]. A software vulner-
ability is best described as a defect or weakness in software design [3]. That
design can be verified by Model Checking [4] or Fuzzing [5]. Model-checking
and fuzzing are two techniques that are well suited to find bugs. In particular,

c© Springer Nature Switzerland AG 2021
F. Loulergue and F. Wotawa (Eds.): TAP 2021, LNCS 12740, pp. 85–105, 2021.
https://doi.org/10.1007/978-3-030-79379-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79379-1_6&domain=pdf
http://orcid.org/0000-0002-5822-5435
http://orcid.org/0000-0003-1708-1399
http://orcid.org/0000-0002-1343-5084
http://orcid.org/0000-0002-6235-4272
https://doi.org/10.1007/978-3-030-79379-1_6

86 K. M. Alshmrany et al.

model-checking has proven to be one of the most successful techniques based
on its use in research and industry [6]. This paper will focus on fuzzing and
bounded model checking (BMC) techniques for code coverage and vulnerability
detection. Code coverage has proven to be a challenge due to the state space
problem, where the search space to be explored becomes extremely large [6].
For example, vulnerabilities are hard to detect in network protocols because the
state-space of sophisticated protocol software is too large to be explored [7]. Vul-
nerability detection is another challenge that we have to take besides the code
coverage. Some vulnerabilities cannot be detected without going deep into the
software implementation. Many reasons motivate us to verify software for cov-
erage and to detect security vulnerabilities formally. Therefore, these problems
have attracted many researchers’ attention to developing automated tools.

Researchers have been advancing the state-of-the-art to detect software vul-
nerabilities, as observed in the recent edition of the International Competition
on Software Testing (Test-Comp 2021) [8]. Test-Comp is a competition that aims
to reflect the state-of-the-art in software testing to the community and establish
a set of benchmarks for software testing. Test-Comp 2021 [8], had two categories
Error Coverage (or Cover-Error) and Branch Coverage (or Cover-Branches).
The Error Coverage category tests the tool’s ability to discover bugs where
every C program in the benchmarks contains a bug. The aim of the Branch Cov-
erage category is to cover as many program branches as possible. Test-Comp
2021 works as follows: each tool task is a pair of an input program (a program
under test) and a test specification. The tool then should generate a test suite
according to the test specification. A test suite is a sequence of test cases, given
as a directory of files according to the format for exchangeable test-suites1. The
specification for testing a program is given to the test generator as an input file
(either coverage-error-call.prp or coverage branches.prp for Test-Comp 2021) [8].

Techniques such as fuzzing [9], symbolic execution [10], static code analy-
sis [11], and taint tracking [12] are the most common techniques, which were
employed in Test-Comp 2021 to cover branches and detect security vulnera-
bilities [8]. Fuzzing is generally unable to create various inputs that exercise
all paths in the software execution. Symbolic execution might also not achieve
high path coverage because of the dependence on Satisfiability Modulo Theo-
ries (SMT) solvers and the path-explosion problem. Consequently, fuzzing and
symbolic execution by themselves often cannot reach deep software states. In
particular, the deep states’ vulnerabilities cannot be identified and detected by
these techniques in isolation [13]. Therefore, a hybrid technique involving fuzzing
and symbolic execution might achieve better code coverage than fuzzing or sym-
bolic execution alone. VeriFuzz [14] and LibKluzzer [15] are the most prominent
tools that combine these techniques. VeriFuzz combines the power of feedback-
driven evolutionary fuzz testing with static analysis, where LibKluzzer combines
the strengths of coverage-guided fuzzing and dynamic symbolic execution.

This paper proposes a novel method for detecting security vulnerabilities in
C programs that combines fuzzing with symbolic execution via bounded model

1 https://gitlab.com/sosy-lab/software/test-format/.

https://github.com/sosy-lab/sv-benchmarks/blob/testcomp21/c/properties/coverage-error-call.prp
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp21/c/properties/coverage-branches.prp
https://gitlab.com/sosy-lab/software/test-format/

FuSeBMC : An Energy-Efficient Test Generator 87

checking. We make use of coverage-guided fuzzing to produce random inputs
to locate security vulnerabilities in C programs. Separately, we make use of
BMC techniques [16,17]. BMC unfolds a program up to depth k by evaluating
(conditional) branch sides and merging states after that branch. It builds one
logical formula expressed in a fragment of first-order theories and checks the
satisfiability of the resulting formula using SMT solvers. These two methods are
combined in our tool FuSeBMC which can consequently handle the two main
features in software testing: bug detection and code coverage, as defined by Beyer
et al. [18]. We also manage each engine’s execution time to improve FuSeBMC ’s
efficiency in terms of verification time. Therefore, we raise the chance of bug
detection due to its ability to cover different blocks of the C program, which
other tools could not reach, e.g., KLEE [19], CPAchecker [20], VeriFuzz [14],
and LibKluzzer [15].

Contributions. This paper extends our prior work [21] by making the following
original contributions.

– We detail how FuSeBMC guides fuzzing and BMC engines to produce test
cases that can detect security vulnerabilities and achieve high code coverage
while massively reducing the consumption of both CPU and memory. Fur-
thermore, we discuss using a custom fuzzer we refer to as a selective fuzzer
as a third engine that learns from the test cases produced by fuzzing/BMC
to produce new test cases for the uncovered goals.

– We provide a detailed analysis of the results from FuSeBMC ’s successful
participation in Test-Comp 2021. FuSeBMC achieved first place in Cover-
Error category and second place in Overall category. FuSeBMC achieved
first place in the subcategories ReachSafety-BitVectors, ReachSafety-Floats,
ReachSafety-Recursive, ReachSafety-Sequentialized and ReachSafety-XCSP.
We analyse the results in depth and explain how our research has enabled
FuSeBMC ’s success across these categories as well its low energy consump-
tion.

2 Preliminaries

2.1 Fuzzing

Fuzzing is a cost-effective software testing technique to exploit vulnerabilities in
software systems [22]. The basic idea is to generate random inputs and check
whether an application crashes; it is not testing functional correctness (compli-
ance). Critical security flaws most often occur because program inputs are not
adequately checked [23]. Therefore, fuzzing prepares random or semi-random
inputs, which might consider, e.g., (1) very long or completely blank strings; (2)
min/max values of integers, or only zero and negative values; and (3) include
unique values or characters likely to trigger bugs. Software systems that cannot
endure fuzzing could potentially lead to security holes. For example, a bug was
found in Apple wireless driver by utilizing file system fuzzing. The driver could
not handle some beacon frames, which led to out-of-bounds memory access.

88 K. M. Alshmrany et al.

2.2 Symbolic Execution

Introduced in the 1970s, symbolic execution [24] is a software analysis technique
that allowed developers to test specific properties in their software. The main
idea is to execute a program symbolically using a symbolic execution engine that
keeps track of every path the program may take for every input [24]. Moreover,
each input represents symbolic input values instead of concrete input values.
This method treats the paths as symbolic constraints and solves the constraints
to output a concrete input as a test case. Symbolic execution is widely used to
find security vulnerabilities by analyzing program behavior and generating test
cases [25]. BMC is an instance of symbolic execution, where it merges all execu-
tion paths into one single logical formula instead of exploring them individually.

2.3 Types of Vulnerabilities

Software, in general, is prone to vulnerabilities caused by developer errors, which
include: buffer overflow, where a running program attempts to write data outside
the memory buffer, which is intended to store this data [26]; memory leak, which
occurs when programmers create a memory in a heap and forget to delete it [27];
integer overflows, when the value of an integer is greater than the integer’s
maximum size in memory or less than the minimum value of an integer. It
usually occurs when converting a signed integer to an unsigned integer and vice-
versa [28]. Another example is string manipulation, where the string may contain
malicious code and is accepted as an input; this is reasonably common in the
C programming language [29]. Denial-of-service attack (DoS) is a security event
that occurs when an attacker prevents legitimate users from accessing specific
computer systems, devices, services, or other IT resources [30]. For example,
a vulnerability in the Cisco Discovery Protocol (CDP) module of Cisco IOS
XE Software Releases 16.6.1 and 16.6.2 could have allowed an unauthenticated,
adjacent attacker to cause a memory leak, which could have lead to a DoS
condition [31]. Part of our motivation is to mitigate the harm done by these
vulnerabilities by the proposed method FuSeBMC.

3 FuSeBMC : An Energy-Efficient Test Generator for
Finding Security Vulnerabilities in C Programs

We propose a novel verification method named FuSeBMC (cf. Fig. 1) for detect-
ing security vulnerabilities in C programs using fuzzing and BMC techniques.
FuSeBMC builds on top of the Clang compiler [32] to instrument the C program,
uses Map2check [33,34] as a fuzzing engine, and ESBMC (Efficient SMT-based
Bounded Model Checker) [35,36] as BMC and symbolic execution engines, thus
combining dynamic and static verification techniques.

The method proceeds as follows. First, FuSeBMC takes a C program and
a test specification as input. Then, FuSeBMC invokes the fuzzing and BMC
engines sequentially to find an execution path that violates a given property.

FuSeBMC : An Energy-Efficient Test Generator 89

Fig. 1. FuSeBMC : an energy-efficient test generator framework.

It uses an iterative BMC approach that incrementally unwinds the program
until it finds a property violation or exhausts time or memory limits. In code
coverage mode, FuSeBMC explores and analyzes the target C program using the
clang compiler to inject labels incrementally. FuSeBMC traverses every branch
of the Clang AST and injects a label in each of the form GOALi for i ∈ N. Then,
both engines will check whether these injected labels are reachable to produce
test cases for branch coverage. After that, FuSeBMC analyzes the counterex-
amples and saves them as a graphml file. It checks whether the fuzzing and
BMC engines could produce counterexamples for both categories Cover-Error
and Cover-Branches. If that is not the case, FuSeBMC employs a second fuzzing
engine, the so-called selective fuzzer (cf. Sect. 3.6), which attempts to produce
test cases for the rest of the labels. The selective fuzzer produces test cases by
learning from the two previous engines’ output.

FuSeBMC introduces a novel algorithm for managing the time allocated to
its component engines. In particular, FuSeBMC manages the time allocated to
each engine to avoid wasting time for a specific engine to find test cases for
challenging goals. For example, let us assume we have 100 goals injected by
FuSeBMC and1000 s to produce test cases. In this case, FuSeBMC distributes
the time per engine per goal so that each goal will have 10s and recalculate the
time for the goals remaining after each goal passed. If an engine succeeds on a
particular goal within the time limit, the extra time is redistributed to the other
goals; otherwise, FuSeBMC kills the process that passes the time set for it.

Furthermore, FuSeBMC has a minimum time, which a goal must be allo-
cated. If there are too many goals for all to receive this minimum time, FuSeBMC
will select a subset to attempt using a quasi-random strategy (e.g., all even-
numbered goals). FuSeBMC also manages the global time of the fuzzing, BMC,
and selective fuzzing engines. It gives 13% of the time for fuzzing, 77% for BMC,
and 10% for selective fuzzing. FuSeBMC further carries out time management
at this global level to maximize engine usage. If, for example, the fuzzing engine
is finished before the time allocated to it, its remaining time will be carried

90 K. M. Alshmrany et al.

over and added to the allocated time of the BMC engine. Similarly, we add the
remaining time from the BMC engine to the selective fuzzer allocated time.

FuSeBMC prepares valid test cases with metadata to test a target C pro-
gram using TestCov [37] as a test validator. The metadata file is an XML file that
describes the test suite and is consistently named metadata.xml. Figure 2 illus-
trates an example metadata file with all available fields [37]. Some essential fields
include the program function that is tested by the test suite 〈entryfunction〉,
the coverage criterion for the test suite 〈specification〉, the programming lan-
guage of the program under test 〈sourcecodelang〉, the system architecture the
program tests were created for 〈architecture〉, the creation time 〈creationtime〉,
the SHA-256 hash of the program under test 〈programhash〉, the producer of
counterexample 〈producer〉 and the name of the target program 〈programfile〉.
A test case file contains a sequence of tags 〈input〉 that describes the input values
sequence. Figure 3 illustrates an example of the test case file.

Algorithm 1 describes the main steps we implemented in FuSeBMC. It con-
sists of extracting all goals of a C program (line 1). For each goal, the instru-
mented C program, containing the goals (line 2), is executed on our verifica-
tion engines (fuzzing and BMC) to check the reachability property produced by
REACH(G) for that goal (lines 8 & 20). REACH is a function; it takes a goal
(G) as input and produces a corresponding property for fuzzing/BMC (line 7
& 19). If our engines find that the property is violated, meaning that there is a
valid execution path that reaches the goal (counterexample), then the goals are
marked as covered, and the test case is saved for later (lines 9–11). Then, we
continue if we still have time allotted for each engine. Otherwise, if our verifi-
cation engines could not reach some goals, then we employ the selective fuzzer
in attempt to reach these as yet uncovered goals. In the end, we return all test
cases for all the goals we have found in the specified XML format (line 41).

Fig. 2. An example of a metadata.

3.1 Analyze C Code

FuSeBMC explores and analyzes the target C programs as the first step using
Clang [38]. In this phase, FuSeBMC analyzes every single line in the C code
and considers the conditional statements such as the if -conditions, for, while,

FuSeBMC : An Energy-Efficient Test Generator 91

Algorithm 1. Proposed FuSeBMC algorithm.
Require: program P
1: goals ← clang extract goals(P)
2: instrumentedP ← clang instrument goals(P, goals)
3: reached goals ← ∅
4: tests ← ∅
5: FuzzingT ime = 150
6: for all G ∈ goals do
7: φ ← REACH(G)
8: result, test case ← Fuzzing(instrumentedP, φ, FuzzingT ime)
9: if result = false then

10: reached goals ← reached goals ∪ G
11: tests ← tests ∪ test case
12: end if
13: if FuzzingT ime = 0 then
14: break
15: end if
16: end for
17: BMCTime = FuzzingT ime + 700
18: for all G ∈ (goals − reached goals) do
19: φ ← REACH(G)
20: result, test case ← BMC(instrumentedP, φ, BMCTime)
21: if result = false then
22: reached goals ← reached goals ∪ G
23: tests ← tests ∪ test case
24: end if
25: if BMCTime = 0 then
26: break
27: end if
28: end for
29: SelectiveFuzzerT ime = BMCTime + 50
30: for all G ∈ (goals − reached goals) do
31: φ ← REACH(G)
32: result ← selectivefuzzer(instrumentedP, φ, SelectiveFuzzerT ime)
33: if result = false then
34: reached goals ← reached goals ∪ G
35: tests ← tests ∪ test case
36: end if
37: if SelectiveFuzzerT ime = 0 then
38: break
39: end if
40: end for
41: return tests

and do while loops in the code. FuSeBMC takes all these branches as path
conditions, containing different values due to the conditions set used to produce
the counterexamples, thus helping increase the code coverage. It supports blocks,
branches, and conditions. All the values of the variables within each path are

92 K. M. Alshmrany et al.

Fig. 3. An example of test case file.

taken into account. Parentheses and the else-branch are added to compile the
target code without errors.

3.2 Inject Labels

FuSeBMC injects labels of the form GOALi in every branch in the C code as
the second step. In particular, FuSeBMC adds else to the C code that has an
if -condition with no else at the end of the condition. Additionally, FuSeBMC
will consider this as another branch that should produce a counterexample for
it to increase the chance of detecting bugs and covering more statements in
the program. For example, the code in Fig. 4 consists of two branches: the if -
branch is entered if condition x < 0 holds; otherwise, the else-branch is entered
implicitly, which can exercise the remaining execution paths. Also, Fig. 4 shows
how FuSeBMC injects the labels and considers it as a new branch.

Fig. 4. Original C code vs code instrumented.

3.3 Produce Counterexamples

FuSeBMC uses its verification engines to generate test cases that can reach
goals amongst GOAL1, GOAL2, ..., GOALn inserted in the previous phase.

FuSeBMC : An Energy-Efficient Test Generator 93

FuSeBMC then checks whether all goals within the C program are covered.
If so, FuSeBMC continues to the next phase; otherwise, FuSeBMC passes the
goals that are not covered to the selective fuzzer to produce test cases for it
using randomly generated inputs learned from the test cases produced from
both engines. Figure 5 illustrates how the method works.

Fig. 5. Produce counterexamples.

3.4 Create Graphml

FuSeBMC will generate a graphml for each goal injected and then name it. The
name of the graphml takes the number of the goal extended by the graphml
extension, e.g., (GOAL1.graphml). The graphml file contains data about the
counterexample, such as data types, values, and line numbers for the variables,
which will be used to obtain the values of the target variable.

3.5 Produce Test Cases

In this phase, FuSeBMC will analyze all the graphml files produced in the pre-
vious phase. Practically, FuSeBMC will focus on the <edge> tags in the graphml
that refer to the variable with a type non-deterministic. These variables will
store their value in a file called, for example, (testcase1.xml). Figure 6 illustrates
the edges and values used to create the test cases.

3.6 Selective Fuzzer

In this phase, we apply the selective fuzzer to learn from the test cases produced
by either fuzzing or BMC engines to produce test cases for the goals that have

94 K. M. Alshmrany et al.

Fig. 6. An example of target edges

not been covered by the two. The selective fuzzer uses the previously produced
test cases by extracting from each the number of assignments required to reach
an error. For example, in Fig. 7, we assumed that the fuzzing/BMC produced
a test case that contains values 18 (1000 times) generated from a random seed.
The selective fuzzer will produce random numbers (1000 times) based on the
test case produced by the fuzzer. In several cases, the BMC engine can exhaust
the time limit before providing the information needed by the selective fuzzer,
such as the number of inputs, when large arrays need to be initialized at the
beginning of the program.

Fig. 7. The selective fuzzer

3.7 Test Validator

The test validator takes as input the test cases produced by FuSeBMC and
then validates these test cases by executing the program on all test cases. The
test validator checks whether the bug is exposed if the test was bug-detection,
and it reports the code coverage if the test was a measure of the coverage. In
our experiments, we use the tool TESTCOV [37] as a test validator. The tool
provides coverage statistics per test. It supports block, branch, and condition
coverage and covering calls to an error function. TESTCOV uses the XML-
based exchange format for test cases specifications defined by Test-Comp [16].

FuSeBMC : An Energy-Efficient Test Generator 95

TESTCOV was successfully used in recent editions of Test-Comp 2019, 2020,
and 2021 to execute almost 9 million tests on 1720 different programs [37].

4 Evaluation

4.1 Description of Benchmarks and Setup

We conducted experiments with FuSeBMC on the benchmarks of Test-Comp
2021 [39] to check the tool’s ability in the previously mentioned criteria. Our
evaluation benchmarks are taken from the largest and most diverse open-source
repository of software verification tasks. The same benchmark collection is used
by SV-COMP [40]. These benchmarks yield 3173 test tasks, namely 607 test
tasks for the category Error Coverage and 2566 test tasks for the category Code
Coverage. Both categories contain C programs with loops, arrays, bit-vectors,
floating-point numbers, dynamic memory allocation, and recursive functions.

The experiments were conducted on the server of Test-Comp 2021 [39]. Each
run was limited to 8 processing units, 15 GB of memory, and 15 min of CPU
time. The test suite validation was limited to 2 processing units, 7 GB of memory,
and 5 min of CPU time. Also, the machine had the following specification of the
test node was: one Intel Xeon E3-1230 v5 CPU, with 8 processing units each,
a frequency of 3.4 GHz, 33 GB of RAM, and a GNU/Linux operating system
(x86-64-Linux, Ubuntu 20.04 with Linux kernel 5.4).

FuSeBMC source code is written in C++; it is available for downloading
at GitHub,2 which includes the latest release of FuSeBMC v3.6.6. FuSeBMC is
publicly available under the terms of the MIT license. Instructions for building
FuSeBMC from the source code are given in the file README.md.

4.2 Objectives

This evaluation’s main goal is to check the performance of FuSeBMC and the
system’s suitability for detecting security vulnerabilities in open-source C pro-
grams. Our experimental evaluation aims to answer three experimental goals:

EG1 (Security Vulnerability Detection) Can FuSeBMC generate
test cases that lead to more security vulnerabilities than state-of-
the-art software testing tools?

EG2 (Coverage Capacity) Can FuSeBMC achieve a higher coverage
when compared with other state-of-the-art software testing tools?

EG3 (Low Energy Consumption) Can FuSeBMC reduce the con-
sumption of CPU and memory compared with the state-of-the-art
tools?

2 https://github.com/kaled-alshmrany/FuSeBMC.

https://github.com/kaled-alshmrany/FuSeBMC

96 K. M. Alshmrany et al.

4.3 Results

First, we evaluated FuSeBMC on the Error Coverage category. Table 1 shows
the experimental results compared with other tools in Test-Comp 2021 [39],
where FuSeBMC achieved the 1st place in this category by solving 500 out of
607 tasks, an 82% success rate.

In detail, FuSeBMC achieved 1st place in the subcategories ReachSafety-
BitVectors, ReachSafety-Floats, ReachSafety-Recursive, ReachSafety-XCSP and
ReachSafety-Sequentialized. FuSeBMC solved 10 out of 10 tasks in ReachSafety-
BitVectors, 32 out of 33 tasks in ReachSafety-Floats, 19 out of 20 tasks in
ReachSafety-Recursive, 53 out of 59 tasks in ReachSafety-XCSP and 101 out
of 107 tasks in ReachSafety-Sequentialized.

FuSeBMC outperformed the top tools in Test-Comp 2021, such as KLEE [19],
CPAchecker [20], Symbiotic [41], LibKluzzer [15], and VeriFuzz [14] in these
subcategories. However, FuSeBMC did not perform as well in the ReachSafety-
ECA subcategory if compared with leading tools in the competition. We suspect
that this is due to the prevalence of nested branches in these benchmarks. The
FuSeBMC ’s verification engines and the selective fuzzer could not produce test
cases to reach the error due to the existence of too many path conditions, making
the logical formula hard to solve and making it difficult to create random inputs
to reach the error.

Overall, the results show that FuSeBMC produces test cases that detect
more security vulnerabilities in C programs than state-of-the-art tools,
which successfully answers EG1.

FuSeBMC also participated in the Branch Coverage category at Test-Comp
2021. Table 2 shows the experimental results from this category. FuSeBMC
achieved 4th place in the category by successfully achieving a score of 1161
out of 2566, behind the 3rd place system by 8 scores only. In the subcategory
ReachSafety-Floats, FuSeBMC obtained the first place by achieving 103 out of
226 scores. Thus, FuSeBMC outperformed the top tools in Test-Comp 2021. Fur-
ther, FuSeBMC obtained the first place in the subcategory ReachSafety-XCSP
by achieving 97 out of 119 scores. However, FuSeBMC did not perform well in
the subcategory ReachSafety-ECA compared with the leading tools in the Test-
Comp 2021. Again we suspect the cause to be the prevalence of nested branches
in these benchmarks.

These results validate EG2. FuSeBMC proved its capability in Branch
Coverage category, especially in the subcategories ReachSafety-Floats and
ReachSafety-XCSP, where it ranked first.

FuSeBMC achieved 2nd place overall at Test-Comp 2021, with a score of
1776 out of 3173. Table 4 and Fig. 8 shows the overall results compared with
other tools in the competition. Overall, FuSeBMC performed well compared

FuSeBMC : An Energy-Efficient Test Generator 97

Table 1. Cover-Error resultsa. We identify the best for each tool in bold.

Cover-Error

T
a
sk

-N
u
m

F
u
S
e
B
M

C

C
M

A
-E

S
F
u
z
z

C
o
V
e
ri
T
e
st

H
y
b
ri
d
T
ig
e
r

K
L
E
E

L
e
g
io
n

L
ib

K
lu

z
z
e
r

P
R
T
e
st

S
y
m
b
io
ti
c

T
ra

c
e
r-
X

V
e
ri
F
u
z
z

ReachSafety-Arrays 100 93 0 59 69 88 67 96 11 73 75 95

ReachSafety-BitVectors 10 10 0 8 6 9 0 9 5 8 7 9

ReachSafety-ControlFlow 32 8 0 8 8 10 0 11 0 7 9 9

ReachSafety-ECA 18 8 0 2 1 14 0 11 0 15 2 16

ReachSafety-Floats 33 32 0 16 22 6 0 30 3 0 0 30

ReachSafety-Heap 57 45 0 37 38 46 0 47 9 47 44 47

ReachSafety-Loops 158 131 0 35 53 96 4 138 102 82 78 136

ReachSafety-Recursive 20 19 0 0 5 16 0 17 1 17 14 13

ReachSafety-Sequentialized 107 101 0 61 93 86 0 83 0 79 57 99

ReachSafety-XCSP 59 53 0 46 52 37 0 3 0 41 31 25

SoftwareSystems-BusyBox-MemSafety 11 0 0 0 0 0 0 0 0 0 0 0

DeviceDriversLinux64-ReachSafety 2 0 0 0 0 0 0 0 0 0 0 0

Overall 607 405 0 225 266 339 35 359 79 314 246 385
ahttps://test-comp.sosy-lab.org/2021/results/results-verified/.

Table 2. Cover-Branches resultsa. We identify the best for each tool in bold.

Cover-Branches

T
a
sk

-N
u
m

F
u
S
e
B
M

C

C
M

A
-E

S
F
u
z
z

C
o
V
e
ri
T
e
st

H
y
b
ri
d
T
ig
e
r

K
L
E
E

L
e
g
io
n

L
ib

K
lu

z
z
e
r

P
R
T
e
st

S
y
m
b
io
ti
c

T
ra

c
e
r-
X

V
e
ri
F
u
z
z

ReachSafety-Arrays 400 284 139 229 225 96 195 296 119 226 223 295

ReachSafety-BitVectors 62 37 23 39 13 28 29 40 27 37 37 38

ReachSafety-ControlFlow 67 15 4 16 3 8 8 16 5 18 15 18

ReachSafety-ECA 29 5 0 6 2 7 3 10 2 10 7 12

ReachSafety-Floats 226 103 51 98 84 16 64 90 41 50 48 99

ReachSafety-Heap 143 88 19 79 74 81 69 90 40 84 86 86

ReachSafety-Loops 581 412 152 402 338 274 271 419 252 383 385 424

ReachSafety-Recursive 53 36 19 31 31 18 20 36 9 38 34 35

ReachSafety-Sequentialized 82 62 0 61 39 26 1 55 8 36 41 71

ReachSafety-XCSP 119 97 0 80 80 81 2 80 79 93 69 88

ReachSafety-Combinations 210 15 0 31 8 82 18 139 2 135 99 180

SoftwareSystems-BusyBox-MemSafety 72 1 0 5 4 6 0 6 4 7 4 8

DeviceDriversLinux64-ReachSafety 290 35 13 60 6 25 56 58 16 44 56 57

SoftwareSystemsSQLite-MemSafety 1 0 0 0 0 0 0 0 0 0 0 0

Termination-MainHeap 231 202 138 193 189 119 166 199 51 178 185 204

Overall 2566 1161 411 1128 860 784 651 1292 519 1169 1087 1389
ahttps://test-comp.sosy-lab.org/2021/results/results-verified/.

https://test-comp.sosy-lab.org/2021/results/results-verified/
https://test-comp.sosy-lab.org/2021/results/results-verified/

98 K. M. Alshmrany et al.

Fig. 8. Quantile functions for category Overall. [8]

Table 3. The consumption of CPU and memory [8].

Rank Test
generator

Quality
(sp)

CPU time
(h)

CPU Energy
(kWh)

Rank
measure

Green testing (kj/sp)

1 TRACERX 1315 210 2.5 6.8

2 KLEE 1370 210 2.6 6.8

3 FuSeBMC 1776 410 4.8 9.7

Worst 51

with top tools in the subcategories ReachSafety-BitVectors, ReachSafety-Floats,
ReachSafety-Recursive, ReachSafety-Sequentialized and ReachSafety-XCSP.

Test-Comp 2021 also considers energy efficiency in rankings since a large
part of the cost of test generation is caused by energy consumption. FuSeBMC
is classified as a Green-testing tool - Low Energy Consumption tool (see Table 3).
FuSeBMC consumed less energy than many other tools in the competition. This
ranking category uses the energy consumption per score point as a rank measure:
CPU Energy Quality, with the unit kilo-joule per score point (kJ/sp). It uses
CPU Energy Meter [42] for measuring the energy.

These experimental results showed that FuSeBMC could reduce the con-
sumption of CPU and memory efficiently and effectively in C programs,
which answers EG3.

FuSeBMC : An Energy-Efficient Test Generator 99

Table 4. Test-Comp 2021 Overall resultsa.

Cover-Error

and

Branches T
a
sk

-N
u
m

F
u
S
e
B
M

C

C
M

A
-E

S
F
u
z
z

C
o
V
e
ri
T
e
st

H
y
b
ri
d
T
ig
e
r

K
L
E
E

L
e
g
io
n

L
ib
K
lu
z
z
e
r

P
R
T
e
st

S
y
m
b
io
ti
c

T
ra

c
e
r-
X

V
e
ri
F
u
z
z

OVERALL 3173 1776 254 1286 1228 1370 495 1738 526 1543 1315 1865
ahttps://test-comp.sosy-lab.org/2021/results/results-verified/.

5 Related Work

For more than 20 years, software vulnerabilities have been mainly identified by
fuzzing [43]. American fuzzy lop (AFL) [44,45] is a tool that aims to find soft-
ware vulnerabilities. AFL increases the coverage of test cases by utilizing genetic
algorithms (GA) with guided fuzzing. Another fuzzing tool is LibFuzzer [46].
LibFuzzer generates test cases by using code coverage information provided by
LLVM’s Sanitizer Coverage instrumentation. It is best used for programs with
small inputs that have a run-time of less than a fraction of a second for each
input as it is guaranteed not to crash on invalid inputs. AutoFuzz [47] is a tool
that verifies network protocols using fuzzing. First, it determines the specifica-
tion for the protocol, then utilizes fuzzing to find vulnerabilities. Additionally,
Peach [48] is an advanced and robust fuzzing framework that provides an XML
file to create a data model and state model definition.

Symbolic execution has also been used to identify security vulnerabilities.
One of the most popular symbolic execution engines is KLEE [19]. It is built on
top of the LLVM compiler infrastructure and employs dynamic symbolic execu-
tion to explore the search space path-by-path. KLEE has proven to be a reliable
symbolic execution engine for its utilization in many specialized tools such as
TracerX [49] and Map2Check [33] for software verification, also SymbexNet [50]
and SymNet [51] for verification of network protocols implementation.

The combination of symbolic execution and fuzzing has been proposed before.
It started with the tool that earned first place in Test-Comp 2020 [18], Veri-
Fuzz [14]. VeriFuzz is a state-of-the-art tool we have compared to FuSeBMC. It
is a program-aware fuzz tester that combines the power of feedback-driven evolu-
tionary fuzz testing with static analysis. It is built based on grey-box fuzzing to
exploit lightweight instrumentation for observing the behaviors that occur during
test runs. There is also LibKluzzer [15], which is a novel implementation that com-
bines the strengths of coverage-guided fuzzing and white-box fuzzing. LibKluzzer
is a combination of LibFuzzer and an extension of KLEE called KLUZZER [52].
Driller [53] is a hybrid vulnerability excavation tool, which leverages fuzzing and
selective concolic execution in a complementary manner to find deeply embedded
bugs. The authors avoid the path explosion inherent in concolic analysis and the
incompleteness of fuzzing by combining the two techniques’ strengths and miti-
gating the weaknesses. Driller splits the application into compartments based on
checks of particular values of a specific input. The proficiency of fuzzing allows it

https://test-comp.sosy-lab.org/2021/results/results-verified/

100 K. M. Alshmrany et al.

to explore possible values of general input in a compartment. However, when it
comes to values that satisfy checks on an input that guides the execution between
compartments, fuzzing struggles to identify such values. In contrast, selective con-
colic execution excels at identifying such values required by checks and drive the
execution between compartments.

Another example is hybrid fuzzer [54], which provides an efficient way to gen-
erate provably random test cases that guarantee the execution of unique paths.
It uses symbolic execution to determine frontier nodes that lead to a unique exe-
cution path. Given some resource constraints, the tool collects as many frontier
nodes as possible. With these nodes, fuzzing is employed with provably random
input, preconditioned to lead to each frontier node. Badger [55] is a hybrid testing
approach for complexity analysis. It uses Symbolic PathFinder [56] to generate
new inputs and provides the Kelinci fuzzer with worst-case analysis. Munch [57]
is a hybrid tool introduced to increase function coverage. It employs fuzzing
with seed inputs generated by symbolic execution and targets symbolic execu-
tion when fuzzing saturates. SAGE (Scalable Automated Guided Execution) [58]
is a hybrid fuzzer developed at Microsoft Research. It extends dynamic symbolic
execution with a generational search; it negates and solves the path predicates to
increase the code coverage. SAGE is used extensively at Microsoft, where it has
been successful at finding many security-related bugs. SAFL [59] is an efficient
fuzzer for C/C++ programs. It generates initial seeds that can get an appropri-
ate fuzzing direction by employing symbolic execution in a lightweight approach.
He et al. [60] describe a new approach for learning a fuzzer from symbolic exe-
cution; they instantiated it to the domain of smart contracts. First, it learns a
fuzzing policy using neural networks. Then it generates inputs for fuzzing unseen
smart contracts by this learning fuzzing policy. In summary, many tools have
combined fuzzers with BMC and symbolic execution to perform software veri-
fication. However, our approach’s novelty lies with the addition of the selective
fuzzer and time management algorithm between engines and goals. These fea-
tures were what distinguished FuSeBMC from other tools at Test-Comp 2021.

6 Conclusions and Future Work

We proposed a novel test case generation approach that combined Fuzzing and
BMC and implemented it in the FuSeBMC tool. FuSeBMC explores and ana-
lyzes the target C programs by incrementally injecting labels to guide the fuzzing
and BMC engines to produce test cases. We inject labels in every program branch
to check for their reachability, producing test cases if these labels are reachable.
We also exploit the selective fuzzer to produce test cases for the labels that
fuzzing and BMC could not produce test cases. FuSeBMC achieved two sig-
nificant awards from Test-Comp 2021. First place in the Cover-Error category
and second place in the Overall category. FuSeBMC outperformed the leading
state-of-the-art tools because of two main factors. Firstly, the usage of the selec-
tive fuzzer as a third engine that learns from the test cases of fuzzing/BMC to
produce new test cases for the as-yet uncovered goals. Overall, it substantially

FuSeBMC : An Energy-Efficient Test Generator 101

increased the percentage of successful tasks. Secondly, we apply a novel algorithm
of managing the time allocated for each engine and goal. This algorithm prevents
FuSeBMC from wasting time finding test cases for difficult goals so that if the
fuzzing engine is finished before the time allocated to it, the remaining time will
be carried over and added to the allocated time of the BMC engine. Similarly, we
add the remaining time from the BMC engine to the selective fuzzer allocated
time. As a result, FuSeBMC raised the bar for the competition, thus advancing
state-of-the-art software testing. Future work will investigate the extension of
FuSeBMC to test multi-threaded programs [61,62] and reinforcement learning
techniques to guide our selective fuzzer to find test cases that path-based fuzzing
and BMC could not find.

A Appendix

A.1 Artifact

We have set up a zenodo entry that contains the necessary materials to reproduce
the results given in this paper: https://doi.org/10.5281/zenodo.4710599. Also,
it contains instructions to run the tool.

A.2 Tool Availability

FuSeBMC contents are publicly available in our repository in GitHub under the
terms of the MIT License. FuSeBMC provides, besides other files, a script called
fusebmc.py. In order to run our fusebmc.py script, one must set the architecture
(i.e., 32 or 64-bit), the competition strategy (i.e., k-induction, falsification, or
incremental BMC), the property file path, and the benchmark path. FuSeBMC
participated in the 3rd international competition, Test-Comp 21, and met all the
requirements each tool needs to meet to qualify and participate. The results in
our paper are also available on the Test-Comp 21 website. Finally, instructions
for building FuSeBMC from the source code are given in the file README.md
in our GitHub repository, including the description of all dependencies.

A.3 Tool Setup

FuSeBMC is available to download from the link.3 To generate test cases for a
C program a command of the following form is run:

fusebmc.py [-a {32, 64}] [-p PROPERTY_FILE]

[-s {kinduction,falsi,incr,fixed}] [<file>.c]

where -a sets the architecture (either 32- or 64-bit), -p sets the property file
path, -s sets the strategy (one of kinduction, falsi, incr, or fixed) and
<file>.c is the C program to be checked. FuSeBMC produces the test cases in
the XML format.
3 https://doi.org/10.5281/zenodo.4710599.

https://doi.org/10.5281/zenodo.4710599
https://doi.org/10.5281/zenodo.4710599

102 K. M. Alshmrany et al.

References

1. Rodriguez, M., Piattini, M., Ebert, C.: Software verification and validation tech-
nologies and tools. IEEE Softw. 36(2), 13–24 (2019)

2. Airbus issues software bug alert after fatal plane crash. The Guardian, May 2015.
https://tinyurl.com/xw67wtd9. Accessed Mar 2021

3. Liu, B., Shi, L., Cai, Z., Li, M.: Software vulnerability discovery techniques: a
survey. In: 2012 Fourth International Conference on Multimedia Information Net-
working and Security, pp. 152–156. IEEE (2012)

4. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Grumberg, O., Veith, H. (eds.) 25 Years
of Model Checking, pp. 196–215 (2008)

5. Godefroid, P.: Fuzzing: hack, art, and science. Commun. ACM 63(2), 70–76 (2020)
6. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state

explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682,
pp. 1–30. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35746-
6 1

7. Shameng, W., Feng Chao, E.A.: Testing network protocol binary software with
selective symbolic execution. In: CIS, pp. 318–322. IEEE (2016)

8. Beyer, D.: 3rd competition on software testing (test-comp 2021) (2021)
9. Miller, B.P., et al.: Fuzz revisited: a re-examination of the reliability of UNIX

utilities and services. Technical report, UW-Madison (1995)
10. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–

394 (1976)
11. Faria, J.: Inspections, revisions and other techniques of software static analysis.

Software Testing and Quality, Lecture, vol. 9 (2008)
12. Qin, S., Kim, H.S.: LIFT: a low-overhead practical information flow tracking sys-

tem for detecting security attacks. In: MICRO 2006, pp. 135–148. IEEE (2006)
13. Ognawala, S., Kilger, F., Pretschner, A.: Compositional fuzzing aided by targeted

symbolic execution. arXiv preprint arXiv:1903.02981 (2019)
14. Basak Chowdhury, A., Medicherla, R.K., Venkatesh, R.: VeriFuzz: program aware

fuzzing. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019.
LNCS, vol. 11429, pp. 244–249. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17502-3 22

15. Le, H.M.: LLVM-based hybrid fuzzing with LibKluzzer (competition contribution).
In: FASE, pp. 535–539 (2020)

16. Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and
Applications, vol. 185, pp. 457–481. IOS Press (2009)

17. Cordeiro, L.C., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded ANSI-C software. IEEE Trans. Software Eng. 38(4), 957–974 (2012)

18. Beyer, D.: Second competition on software testing: Test-Comp 2020. In: Wehrheim,
H., Cabot, J. (eds.) Fundamental Approaches to Software Engineering. FASE 2020.
LNCS, vol. 12076, pp. 505–519. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45234-6 25

19. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: OSDI, vol. 8, pp. 209–224
(2008)

https://tinyurl.com/xw67wtd9
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
http://arxiv.org/abs/1903.02981
https://doi.org/10.1007/978-3-030-17502-3_22
https://doi.org/10.1007/978-3-030-17502-3_22
https://doi.org/10.1007/978-3-030-45234-6_25
https://doi.org/10.1007/978-3-030-45234-6_25

FuSeBMC : An Energy-Efficient Test Generator 103

20. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

21. Alshmrany, K.M., Menezes, R.S., Gadelha, M.R., Cordeiro, L.C.: FuSeBMC: a
white-box fuzzer for finding security vulnerabilities in c programs. In: 24th Inter-
national Conference on Fundamental Approaches to Software Engineering (FASE),
vol. 12649, pp. 363–367 (2020)

22. Munea, T.L., Lim, H., Shon, T.: Network protocol fuzz testing for information
systems and applications: a survey and taxonomy. Multimedia Tools Appl. 75(22),
14745–14757 (2016)

23. Wang, J., Guo, T., Zhang, P., Xiao, Q.: A model-based behavioral fuzzing approach
for network service. In: 2013 Third International Conference on IMCCC, pp. 1129–
1134. IEEE (2013)

24. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. 51, 1–39 (2018)

25. Chipounov, V., Georgescu, V., Zamfir, C., Candea, G.: Selective symbolic execu-
tion. In: Proceedings of the 5th Workshop on HotDep (2009)

26. Black, P.E., Bojanova, I.: Defeating buffer overflow: a trivial but dangerous bug.
IT Prof. 18(6), 58–61 (2016)

27. Zhang, S., Zhu, J., Liu, A., Wang, W., Guo, C., Xu, J.: A novel memory leak
classification for evaluating the applicability of static analysis tools. In: 2018 IEEE
International Conference on Progress in Informatics and Computing (PIC), pp.
351–356. IEEE (2018)

28. Jimenez, W., Mammar, A., Cavalli, A.: Software vulnerabilities, prevention
and detection methods: a review. In: Security in Model-Driven Architecture,
vol. 215995, p. 215995 (2009)

29. Boudjema, E.H., Faure, C., Sassolas, M., Mokdad, L.: Detection of security vul-
nerabilities in C language applications. Secur. Priv. 1(1), e8 (2018)

30. US-CERT: Understanding denial-of-service attacks | CISA (2009)
31. Cisco: Cisco IOS XE software cisco discovery protocol memory leak vulnerability

(2018)
32. Clang documentation (2015). http://clang.llvm.org/docs/index.html. Accessed

Aug 2019
33. Rocha, H.O., Barreto, R.S., Cordeiro, L.C.: Hunting memory bugs in C programs

with Map2Check. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 934–937. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49674-9 64

34. Rocha, H., Menezes, R., Cordeiro, L.C., Barreto, R.: Map2Check: using symbolic
execution and fuzzing. In: Biere, A., Parker, D. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems. TACAS 2020. LNCS, vol. 12079, pp.
403–407. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45237-7 29

35. Gadelha, M.R., Monteiro, F., Cordeiro, L., Nicole, D.: ESBMC v6.0: verifying
C programs using k -induction and invariant inference. In: Beyer, D., Huisman,
M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol. 11429, pp. 209–213.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17502-3 15

36. Gadelha, M.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole, D.A.:
ESBMC 5.0: an industrial-strength C model checker. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, pp.
888–891 (2018)

https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
http://clang.llvm.org/docs/index.html
https://doi.org/10.1007/978-3-662-49674-9_64
https://doi.org/10.1007/978-3-662-49674-9_64
https://doi.org/10.1007/978-3-030-45237-7_29
https://doi.org/10.1007/978-3-030-17502-3_15

104 K. M. Alshmrany et al.

37. Beyer, D., Lemberger, T.: TestCov: robust test-suite execution and coverage mea-
surement. In: 2019 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pp. 1074–1077. IEEE (2019)

38. Lopes, B.C., Auler, R.: Getting started with LLVM core libraries. Packt Publishing
Ltd. (2014)

39. Beyer, D.: Status report on software testing: Test-Comp 2021. In: Guerra, E.,
Stoelinga, M. (eds.) Fundamental Approaches to Software Engineering FASE 2021.
LNCS, vol. 12649, pp. 341–357. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-71500-7 17

40. Beyer, D.: Software verification: 10th comparative evaluation (SV-COMP 2021).
In: Groote, J.F., Larsen, K.G. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems. TACAS 2021. LNCS, vol. 12652, pp. 401–422. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-72013-1 24

41. Chalupa, M., Novák, J., Strejček, J.: Symbiotic 8: parallel and targeted test
generation. FASE 2021. LNCS, vol. 12649, pp. 368–372. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-71500-7 20

42. Beyer, D., Wendler, P.: CPU energy meter: a tool for energy-aware algorithms
engineering. TACAS 2020. LNCS, vol. 12079, pp. 126–133. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45237-7 8

43. Barton, J.H., Czeck, E.W., Segall, Z.Z., Siewiorek, D.P.: Fault injection experi-
ments using fiat. IEEE Trans. Comput. 39(4), 575–582 (1990)

44. Böhme, M., Pham, V.-T., Nguyen, M.-D., Roychoudhury, A.: Directed greybox
fuzzing. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2329–2344 (2017)

45. American fuzzy lop (2021). https://lcamtuf.coredump.cx/afl/
46. Serebryany, K.: libFuzzer-a library for coverage-guided fuzz testing. LLVM project

(2015)
47. Gorbunov, S., Rosenbloom, A.: AutoFuzz: automated network protocol fuzzing

framework. IJCSNS 10(8), 239 (2010)
48. Eddington, M.: Peach fuzzing platform. Peach Fuzzer, vol. 34 (2011)
49. Jaffar, J., Maghareh, R., Godboley, S., Ha, X.-L.: TracerX: dynamic symbolic exe-

cution with interpolation (competition contribution). In: FASE, pp. 530–534 (2020)
50. Song, J., Cadar, C., Pietzuch, P.: SymbexNet: testing network protocol implemen-

tations with symbolic execution and rule-based specifications. In: IEEE TSE, vol.
40, no. 7, pp. 695–709 (2014)

51. Sasnauskas, R., Kaiser, P., Jukić, R.L., Wehrle, K.: Integration testing of protocol
implementations using symbolic distributed execution. In: ICNP, pp. 1–6. IEEE
(2012)

52. Le, H.M.: LLVM-based hybrid fuzzing with LibKluzzer (competition contribution).
In: Wehrheim, H., Cabot, J. (eds.) Fundamental Approaches to Software Engineer-
ing. FASE 2020. LNCS, vol. 12076, pp. 535–539. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45234-6 29

53. Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic execu-
tion. In: NDSS, pp. 1–16 (2016)

54. Pak, B.S.: Hybrid fuzz testing: discovering software bugs via fuzzing and symbolic
execution. School of Computer Science Carnegie Mellon University (2012)

55. Noller, Y., Kersten, R., Păsăreanu, C.S.: Badger: complexity analysis with fuzzing
and symbolic execution. In: Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 322–332 (2018)

https://doi.org/10.1007/978-3-030-71500-7_17
https://doi.org/10.1007/978-3-030-71500-7_17
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-71500-7_20
https://doi.org/10.1007/978-3-030-45237-7_8
https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1007/978-3-030-45234-6_29
https://doi.org/10.1007/978-3-030-45234-6_29

FuSeBMC : An Energy-Efficient Test Generator 105

56. Păsăreanu, C.S., Rungta, N.: Symbolic pathfinder: symbolic execution of Java byte-
code. In: Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering, pp. 179–180 (2010)

57. Ognawala, S., Hutzelmann, T., Psallida, E., Pretschner, A.: Improving function
coverage with munch: a hybrid fuzzing and directed symbolic execution approach.
In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, pp.
1475–1482 (2018)

58. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-
ing. Queue 10(1), 20–27 (2012)

59. Wang, M., et al.: SAFL: increasing and accelerating testing coverage with symbolic
execution and guided fuzzing. In: Proceedings of the 40th International Conference
on Software Engineering: Companion Proceedings, pp. 61–64 (2018)

60. He, J., Balunović, M., Ambroladze, N., Tsankov, P., Vechev, M.: Learning to fuzz
from symbolic execution with application to smart contracts. In: Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pp. 531–548 (2019)

61. Cordeiro, L.C.: SMT-based bounded model checking for multi-threaded software
in embedded systems. In: International Conference on Software Engineering, pp.
373–376. ACM (2010)

62. Pereira, P.A., et al.: Verifying CUDA programs using SMT-based context-bounded
model checking. In: Ossowski, S. (ed.) Annual ACM Symposium on Applied Com-
puting, pp. 1648–1653. ACM (2016)

	FuSeBMC: An Energy-Efficient Test Generator for Finding Security Vulnerabilities in C Programs
	1 Introduction
	2 Preliminaries
	2.1 Fuzzing
	2.2 Symbolic Execution
	2.3 Types of Vulnerabilities

	3 FuSeBMC: An Energy-Efficient Test Generator for Finding Security Vulnerabilities in C Programs
	3.1 Analyze C Code
	3.2 Inject Labels
	3.3 Produce Counterexamples
	3.4 Create Graphml
	3.5 Produce Test Cases
	3.6 Selective Fuzzer
	3.7 Test Validator

	4 Evaluation
	4.1 Description of Benchmarks and Setup
	4.2 Objectives
	4.3 Results

	5 Related Work
	6 Conclusions and Future Work
	A Appendix
	A.1 Artifact
	A.2 Tool Availability
	A.3 Tool Setup

	References

