
Architecture-Guided Test Resource
Allocation via Logic

Clovis Eberhart1,2(B) , Akihisa Yamada3 , Stefan Klikovits1 ,
Shin-ya Katsumata1 , Tsutomu Kobayashi1,4 , Ichiro Hasuo1 ,

and Fuyuki Ishikawa1

1 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku,
Tokyo 101-8430, Japan

{eberhart,klikovits,s-katsumata,t-kobayashi,hasuo,f-ishikawa}@nii.ac.jp
2 Japanese-French Laboratory for Informatics, Tokyo, Japan

3 National Institute of Advanced Industrial Science and Technology, 2-3-26, Aomi,
Koto-ku, Tokyo 135-0064, Japan
akihisa.yamada@aist.go.jp

4 Japan Science and Technology Agency, 4-1-8, Honcho,
Kawaguchi-shi, Saitama 332-0012, Japan

Abstract. We introduce a new logic named Quantitative Confidence
Logic (QCL) that quantifies the level of confidence one has in the con-
clusion of a proof. By translating a fault tree representing a system’s
architecture to a proof, we show how to use QCL to give a solution to
the test resource allocation problem that takes the given architecture
into account. We implemented a tool called Astrahl and compared our
results to other testing resource allocation strategies.

Keywords: Reliability · Test resources allocation · Logic

1 Introduction

With modern systems growing in size and complexity, asserting their correct-
ness has become a paramount task, and despite advances in the area of formal
verification, testing remains a vital part of the system life cycle due to its ver-
satility, practicality, and low entry barrier. Nevertheless, as test resources are
limited, it is an important task to most effectively allocate them among system
components, a problem commonly known as the test resource allocation problem
(TRAP) (see e. g. [12]). In this paper we formulate the TRAP as follows: given
a system that consists of multiple components and a certain, limited amount of
test resources (e. g. time or money), how much of the budget should we allocate
to each component in order to minimise the chance of system failure, i. e. to
increase its reliability.

The authors are supported by ERATO HASUO Metamathematics for Systems Design
Project (No. JPMJER1603).

c© Springer Nature Switzerland AG 2021
F. Loulergue and F. Wotawa (Eds.): TAP 2021, LNCS 12740, pp. 22–38, 2021.
https://doi.org/10.1007/978-3-030-79379-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79379-1_2&domain=pdf
http://orcid.org/0000-0003-3009-6747
http://orcid.org/0000-0001-8872-2240
http://orcid.org/0000-0003-4212-7029
http://orcid.org/0000-0001-7529-5489
http://orcid.org/0000-0002-8795-3183
http://orcid.org/0000-0002-8300-4650
http://orcid.org/0000-0001-7725-2618
https://doi.org/10.1007/978-3-030-79379-1_2

Architecture-Guided Test Resource Allocation via Logic 23

We propose an approach to the TRAP, based on a novel logic system called
Quantitative Confidence Logic (QCL). QCL differs from classical logic, in that
a proof tree does not conclude truth from assumptions, but rather analyses how
confidence is propagated from assumptions to conclusions. We prove key sound-
ness properties of QCL with respect to a probabilistic interpretation (Sect. 2).

Learning a new logic is a hard task, especially to practitioners. Thus we do
not demand users to learn QCL, but take it as an intermediate language to which
already accepted representations of system architectures are translated. As an
example, we show how to translate the well-known concept of fault trees (FTs)
into QCL proof trees (Sect. 3).

We then formulate the TRAP as an optimisation problem with respect to a
given FT, translated to a QCL proof tree (Sect. 4). Here we allow users to specify
a confidence function for each component, which describes how an amount of
spent test resources relates to an increase in that component’s reliability.

We implement our approach as a tool (Astrahl) that takes as input an
FT, a confidence function for each component, the current confidence in each
component, and the total amount of test resources the user plans to spend. Then
Astrahl outputs a proposed allocation of the test resources over components.
We validate our approach through experiments (Sect. 5).

An advantage of our method is that it is not tied to a fixed confidence func-
tion, and can therefore assign different confidence functions to different com-
ponents. This will be useful in modelling systems with highly heterogeneous
components such as cyber-physical systems (CPSs); for example, hardware com-
ponents would demand more effort to increase confidence than software, and
would depend on the type of components or their vendors.

We expect Astrahl to be used continuously in a system’s development: the
confidence in each component increases as they pass more tests. By rerunning
Astrahl with updated component confidences, we obtain a test resource allo-
cation strategy. We expect our approach to be promising in product line devel-
opment, where a number of system configurations are simultaneously developed
with common components. In such a situation, updating confidence in a compo-
nent for one system positively impacts the test strategies for other systems.

1.1 Related Work

Test Resource Allocation. Most approaches to the TRAP use software relia-
bility growth models (SRGMs) such as models based on Poisson Process (e. g. [7])
to capture the relationship between testing efforts and reliability growth, or
in our words, confidence functions. A typical TRAP approach formulates the
problem using a particular SRGM and provides a solution using exact optimi-
sation [10] or a metaheuristic such as a genetic algorithm [19]. A challenge in
this area is to take the structure (inter-module relations) of the target system
into account; existing studies consider particular structures such as parallel-
series architecture [19] or Markovian architecture [13]. In addition, there is
high demand for dynamic allocation methods (e. g. [3]) because in practice
SRGMs, system structures, and testing processes often become different from

24 C. Eberhart et al.

those planned at first. Our approach has multiple beneficial features over the
existing approaches: (1) it is independent of particular SRGMs and optimisation
strategies, (2) it can take complex structure into account using FTs, and (3) it
can be used for dynamic allocation.

Fuzzy Logics. Fuzzy logics [8] is a branch of logic interested in deductions
where Boolean values are too coarse. In its standard semantics [6], formulas are
given a numeric truth value in the interval [0, 1], where 0 represents falsity and
1 truth. These numerical values can be used to represent the confidence one has
in an assertion: we give high values to propositions we are confident are true,
and low values to those we are confident are false. This is slightly different from
our approach, where 1 corresponds to confidence (either in truth or falsity) and
0 to absence of knowledge.

Dempster-Shafer Theory. Dempster-Shafer theory [4,15] is a mathematical
theory of belief. One of its characteristic features is that if one has a belief b
in an assertion, they can have any belief b′ ≤ 1 − b in its negation, contrary to
traditional Bayesian models, where it is necessarily 1 − b. This feature is crucial
to model uncertainty due to absence of knowledge, and Dempster-Shafer theory
has been used to model reliability in engineering contexts [14]. Our approach
draws inspiration from fuzzy and three-valued logics to model this feature.

Fault Tree Analysis. Fault trees [17] are tree structures that represent how
faults propagate through a system. In qualitative FT analysis, they are used to
determine root causes [5]. In quantitative FT analysis, basic events are assigned
fault probabilities, and the overall system failure probability is given by prop-
agating the fault probabilities through the fault tree. Our approach uses the
same ingredients (assigning numeric values to basic events and propagating them
through the fault tree), but repurposed to solve another problem.

2 Quantitative Confidence Logic

This section introduces QCL, which we use throughout this paper. A QCL for-
mula is a standard propositional formula ϕ equipped with a pair of reals, written
ϕ : (t, f), where t ∈ [0, 1] represents our confidence that ϕ holds and f ∈ [0, 1]
the confidence that ϕ does not hold, so t + f represents how much confidence
one has about ϕ, and 1 − t − f lack of confidence about ϕ. Absolute confidence
is represented by 1 and total absence of knowledge by 0, so that ϕ : (1, 0) means
full trust that ϕ holds, ϕ : (0, 0) means we have no knowledge about ϕ, and
ϕ : (1/2, 1/2) represents the fact that we know with very high confidence that ϕ
holds with 50% chance.

In Sect. 2.1 we define the syntax of QCL and introduce its proof rules. We
also show how to derive standard proof rules from them. In Sect. 2.2 we give a
probabilistic interpretation of QCL formulas and show that QCL proof rules are

Architecture-Guided Test Resource Allocation via Logic 25

sound with respect to it. We also explain how the particular shapes of the rules
serve as the basis of our optimisation algorithm (Sect. 4).

2.1 Syntax and Proof Rules of QCL

This section introduces QCL, starting with formulas with confidences, then
sequents, and finally proof rules.

Definition 1. Given an arbitrary set of atomic propositions Prop, formulas are
defined inductively by the following grammar:

ϕ ::= A | � |⊥ |ϕ ⇒ ϕ,

for A ∈ Prop. We denote by Form the set of all formulas.

As in classical logic, negation, disjunction, and conjunction can be defined
by syntactic sugar ¬ϕ ≡ ϕ ⇒ ⊥, ϕ ∨ ψ ≡ ¬ϕ ⇒ ψ, and ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ).

We now equip such formulas with confidence. We define the space of confi-
dences as C =

{
(t, f) ∈ [0, 1]2 | t + f ≤ 1

}
.

Definition 2. A formula with confidence is a pair (ϕ, c) ∈ Form × C, written
ϕ : c. For ϕ : (t, f), we call t the true confidence in ϕ and f its false confidence.

Intuitively, a formula with confidence ϕ : (t, f) represents the fact that our confi-
dence that ϕ holds is t, and our confidence that ϕ does not hold is f . This should
mean that the chance that ϕ holds is at least t, and the chance that it does not
is at least f . Another way to look at confidences is intervals of probability. Each
confidence (t, f) bijectively determines a sub-interval [t, 1 − f] of [0, 1]. Then a
formula with confidence ϕ : (t, f) represents that the probability of ϕ being true
is within the interval [t, 1−f]. We make this intuition more concrete in Sect. 2.2,
where we give an interpretation of QCL in terms of probabilities.

Equipping formulas with numeric values is reminiscent of fuzzy logics1. To
explain the fundamental difference between our approach and fuzzy logics, let
us consider two orders on C. Let (t, f)
 (t′, f ′) if t ≤ t′ and f ≤ f ′; we call

the confidence order, as c
 c′ holds exactly when c′ represents more confidence
(both true and false) than c. Our approach is centred around
, since we are
interested in “how confident” we are in an assertion. Similarly, let (t, f) ≤ (t′, f ′)
if t ≤ t′ and f ≥ f ′; we call ≤ the truth order, as c ≤ c′ intuitively means that c′ is
“more true” than c. Fuzzy logics is centred around the truth order ≤ (especially
on elements of the form (t, 1 − t)), as it is a logic about how true assertions are.

One way to link our approach to fuzzy logics is via three-valued logics [1].
Fuzzy logics can be seen as equipping formulas with a numeric truth value t ∈
[0, 1] and a falsity value f ∈ [0, 1] such that t + f = 1. This is equivalent to
equipping formulas only with a numeric value t ∈ [0, 1], while f is the implicit
difference to 1. With three-valued logics, formulas have three possible outcomes:
truth �, falsity ⊥, and uncertainty ⊥�, and each is given a value t, f , and u, such
1 Here, we mean fuzzy logics interpreted in [0, 1].

26 C. Eberhart et al.

that t + f + u = 1, which is equivalent to equipping them with (t, f) ∈ [0, 1]2

such that t+f ≤ 1, while u is implicit. Dempster-Shafer theory is similar, with t
representing our belief in ϕ, f our belief in ¬ϕ, and u our degree of uncertainty.

We now introduce the sequents on which QCL operates.

Definition 3. A sequent in QCL, written Γ � ϕ : c, consists of a finite set Γ ⊆
Form × C of formulas with confidences (written as a list), a formula ϕ ∈ Form,
and a confidence c ∈ C.

Such a sequent intuitively means that, if all formulas with corresponding confi-
dences in Γ hold, then ϕ holds with confidence c as well.

Fig. 1. Proof rules of Quantitative Confidence Logic

Definition 4. Proof trees in QCL are built from the QCL proofs rules given in
Fig. 1. There, the notation χ : (t′′, f ′′) in conclusions is a shorthand for

χ : (min(max(t′′, 0), 1),min(max(f ′′, 0), 1)).

Note that (t′′, f ′′) ∈ C because t′′ + f ′′ ≤ 1 in all rules. Note also that rules
(⇒E,l) and (⇒E,r) are conditioned so that confidence values do not contain
indeterminate forms 0/0. These side conditions correspond to the facts that, if
ϕ ⇒ ψ is true, ϕ being false gives no information about ψ, and ψ being true
gives no information about ϕ.

(ax), (�I), and (⊥I) are self-explanatory, while (unk) states that anything
can be proved, but with null confidence. One way to think about (⇒I) is that,
if ϕ and ψ are independent (in a way made precise in Sect. 2.2), ϕ holds with
probability in [t, 1 − f] and ψ with probability in [t′, 1 − f ′], then ϕ ⇒ ψ holds
with probability in [f +t′ −ft′, tf ′]. The elimination rules are designed similarly.

From the rules in Fig. 1 and the encodings of negation, disjunction, and
conjunction, we can derive the introduction rules in Fig. 2 (we can also derive

Architecture-Guided Test Resource Allocation via Logic 27

Fig. 2. Derivable introduction rules

elimination rules, but do not discuss them here). A point worth attention is
that the shape of these rules is quite unorthodox. In particular, one should not
need to have confidence in both disjuncts to have confidence in a disjunction.
However, this unorthodox shape is exactly the reason why our solution to the
TRAP (defined in Sect. 4) works well, as we show in Example 16. Moreover, we
can derive a disjunction from a single disjunct, as:

Γ � ϕ : (t, f)
(unk)

Γ � ψ : (0, 0)
(∨I),

Γ � ϕ ∨ ψ : (t + 0 − t · 0, f · 0) = (t, 0)

which represents (one of) the usual disjunction introduction rules.

Remark 5. QCL rules are different from those of classical logic and do not extend
them. Because the rules’ design is strongly centred around how confidence flows
from hypotheses to conclusions and based on independence of hypotheses, QCL
cannot prove sequents such as ∅ � A ⇒ A : (1, 0). How to allow reasoning about
both confidence and truth in the same logic is left for future work.

Example 6. The correctness of a system with software and hardware components
is based on the correctness of both components. A classical logical proof that
the system is correct assuming both its software and hardware are correct is:

(ax)
Γ � software

(ax)
Γ � hardware (∧I),

Γ � software ∧ hardware

where Γ = {software,hardware}. By adding confidence to the formulas, we
derive confidence in the assertion that the whole system is correct as a QCL
proof:

(ax)
Γ � software : (0.5, 0.2)

(ax)
Γ � hardware : (0.3, 0.01)

(∧I).
Γ � software ∧ hardware : (0.15, 0.208)

If we assume the software system is built from components that are difficult
to prove reliable (e. g. machine learning algorithms), but much testing effort
has been spent on it, then both true and false confidence may be high, as in
the example above. On the contrary, if there are no reasons not to trust the
hardware (e. g. it is made of very simple, reliable components), but less testing

28 C. Eberhart et al.

effort has been spent on it, then both true and false confidence may be lower
than those of the software system.

It may seem unnecessary to keep track of false confidence, since our ultimate
goal is to prove system reliability (and not unreliability). However, there are
several cases in which we may want to use it. For instance, the calculation of
how often a volatile system fails can be translated to a false confidence problem.
Moreover, systems with failsafe mechanisms, e. g. if A works, use module B,
else use module C, need to take the unreliability of A into account. Otherwise,
the whole system’s reliability could not be correctly expressed, as it would only
depend on A and B. Hence, the optimisation would ignore the reliability of C.

Remark 7. In Fig. 2, negation is an involution, and the reader familiar with
fuzzy logics will have noticed the product T-norm and its dual probabilistic
sum T-conorm in the rules (∧I) and (∨I). Negation is an involution of [0, 1] in
fuzzy logics, and T-norms and T-conorms are the standard interpretations of
conjunction and disjunction in fuzzy logics, which hints at a deep connection
between our approach and fuzzy logics. However, implication is not interpreted
as a residual, which again differentiates our approach from fuzzy logics.

2.2 Interpretation as Random Variables

In this section, we justify the QCL proof rules by giving formulas a probabilistic
semantics and showing that these rules are sound.

We start with some measure-theoretic conventions. We write 2 to mean the
discrete measurable space over the two-point set B = {�,⊥}. Boolean algebraic
operations over 2 are denoted by ∧, ⇒, etc. (There should be no possible confu-
sion with formulas.) For a probability space (Ω,F, P) (or Ω for short), Meas(Ω, 2)
denotes the set of 2-valued random variables. A context is a Prop-indexed family
of 2-valued random variables, given as a function ρ : Prop → Meas(Ω, 2).

Definition 8. Given a space (Ω,F, P), we inductively extend a context ρ to a
Form-indexed family of 2-valued random variables ρ̄ : Form → Meas(Ω, 2):

ρ̄(A) = ρ(A), ρ̄(�)(x) = �, ρ̄(⊥)(x) = ⊥, ρ̄(ϕ ⇒ ψ)(x) = ρ̄(ϕ)(x) ⇒ ρ̄(ψ)(x).

The semantics �ϕ�Ω,ρ of a formula ϕ in a space Ω and context ρ is defined to be
the probability P [ρ̄(ϕ) = �] of ϕ being true under ρ. We say that ϕ : (t, f) holds
in Ω and ρ if �ϕ�Ω,ρ ∈ [t, 1− f]. We say that a sequent Γ � ϕ : c holds in Ω and
ρ, if ϕ : c holds in Ω and ρ whenever all ψ : c′ in Γ hold in Ω and ρ.

In other words, the semantics of ϕ is the measure of the space on which ϕ holds,
and ϕ : (t, f) holds if ϕ is true on at least t of the space and false on at least f .

From here on, we only consider independent contexts, i. e. ρ’s such that the
random variables ρ(A) are mutually independent for all atomic propositions A.

The following lemma lifts independence of ρ to ρ̄.

Lemma 9. Let Ω be a space and ρ an independent context. If ϕ and ψ share
no atomic propositions, then for all S, T ⊆ B, the following holds:

P [ρ̄(ϕ) ∈ S ∧ ρ̄(ψ) ∈ T] = P [ρ̄(ϕ) ∈ S]P [ρ̄(ψ) ∈ T].

Architecture-Guided Test Resource Allocation via Logic 29

Proof. By strengthening the proposition to finitely many ϕ’s and ψ’s, then by
induction on: max depth of ϕ’s, number of ϕ’s of max depth, max depth of ψ’s,
and number of ψ’s of max depth (with lexicographic order).

We can finally prove soundness of the rules.

Lemma 10. For all rules in Fig. 1, formulas ϕ and ψ that share no atomic
propositions, spaces Ω, and independent contexts ρ, if the premise sequents hold
in Ω and ρ, then so does the conclusion.

Proof. Simple computations relying on Lemma 9.

Corollary 11. If ϕ is linear (each atomic proposition appears at most once)
and a proof π of Γ � ϕ : c only uses base rules and introduction rules, then
Γ � ϕ : c holds in all spaces Ω and independent contexts ρ.

3 Translating System Architectures to Proofs

In this section, we translate FTs [17] to QCL proof trees. This allows us to use
a system’s architecture—modelled as an FT—in our solution to the TRAP. The
way this translation works is close to quantitative fault tree analysis, where FTs
are equipped with fault probabilities. In our translation, these fault probabilities
are translated to confidences in QCL proofs.

Definition 12. A fault tree is a tree whose leaves are called basic events, and
whose nodes, called gate events, are either AND or OR gates.

Basic events represent independent components of a system, and the tree struc-
ture represents how faults propagate through the system. The system fails if
faults propagate through the root node. The usual definition of fault trees is
more general than the one we give here, but we use this one for simplicity.

A B C D

Γ � A Γ � B
Γ � A ∨ B

Γ � C Γ � D
Γ � C ∨ D

Γ � (A ∨ B) ∧ (C ∨ D)

Fig. 3. A fault tree and its translation as a proof tree

30 C. Eberhart et al.

Example 13. The FT in Fig. 3a represents a system composed of four basic com-
ponents A, B, C, and D. For a fault to propagate through the system and
become a failure, either both A and B have to fail, or both C and D (e. g., A
and B could be redundant components, doubled to increase reliability).

In quantitative fault tree analysis [5], failure probabilities are assigned to basic
events, and they propagate through event gates as if mutually independent. In
other words, if the failure probabilities of an AND gate’s inputs are a and b, then
its output failure probability is ab, and a + b − ab for an OR gate.

We translate fault trees to QCL proof trees as follows: The set Prop of atomic
propositions collects all the names of basic events. Γ consists of A : (tA, fA) for
each A ∈ Prop. AND gates are translated to (∨I) rules, and OR gates to (∧I) rules.

The reason for this dualisation is straightforward: while a fault tree represents
how faults propagate, proof trees represent confidence in a system’s reliability,
i. e., how absence of faults propagates: the true confidence in each atomic propo-
sition in Γ now represents reliability of the component, and the true confidence
in the conclusion represents reliability of the whole system.

Example 14. The translation of the fault tree of Fig. 3a is shown in Fig. 3b (with
confidences left out for readability). Here, Prop = {A,B,C,D} and the true
confidence in the conclusion of the proof is tAtB + tCtD − tAtBtCtD. We can
thus link increases in the reliability of components to increases in reliability of
the whole system.

Note that the translation of a fault tree only uses base rules and introduction
rules (more precisely, only (ax), (∧I), and (∨I)). This is partly because we only
consider AND and OR gates, but more essentially, basic events of fault trees are
considered atomic and thus there is no need to eliminate logical connectives.
Moreover, an assignment of failure probabilities to basic events translates to a
context ρ in QCL terms. Since all basic events are considered independent in an
FT, their translation gives an independent context ρ. Therefore, the translation
of a fault tree always verifies Corollary 11, and our interpretation as a QCL
proof tree is sound for any assignment of failure probabilities to basic events.
This means that, if the confidence in all basic components corresponds to their
reliability, then the confidence of the whole proof cannot overshoot the whole
system’s reliability.

Since we translate fault probabilities to confidences, and fault probabilities
are directly linked to reliability, we may use “reliability” and “confidence” inter-
changeably in the following, e. g. when we feel that reliability conveys a better
intuition than confidence.

4 Solving the Test Resource Allocation Problem

In this section, we show how to optimise confidence in the conclusion of a QCL
proof. This gives a solution to the TRAP through the translation of FTs to QCL
proofs that was described in Sect. 3.

Architecture-Guided Test Resource Allocation via Logic 31

In order for this approach to be usable in practice, the user has to be able to
specify two input parameters: the FT that represents the system’s architecture,
and functions describing how confidence in each component’s reliability grows by
spending resource on it. FTs are commonly used in the industry, so modelling a
system using them should be no problem in practice. We first describe the latter
input parameter in Sect. 4.1 and then give our solution to the TRAP in Sect. 4.2.

4.1 Confidence Functions

Increasing confidence in a proof’s conclusion requires an increase in its premises’
confidences. The cost of increasing confidence may vary among premises; when
thinking in terms of systems (rather than proofs), for instance, increasing trust
in a machine learning algorithm may require more effort than improving hard-
ware reliability. This is a well-known problem, for which many solutions have
been designed, especially SRGMs, which are based on mathematical modelling of
faults [18]. Here, however, we do not choose a particular fault model and instead
introduce the following abstract notion, which makes the approach versatile.

Definition 15. A confidence function is a non-decreasing function f : R+ → C

(equipped with
).

The equality f(r) = c means that after spending r resources on a formula,
one will have confidence c in the formula. The monotonicity condition above
enforces that, by spending more resources, confidence should not decrease.

Note that f(0) can be different from (0, 0), which corresponds to the fact
that engineers usually have some confidence in the components they use. This
feature also makes it easy to use our approach in continuous development, by
using confidence functions fs(r) = f(r + s) where s is the amount of resource
that has been already spent to test a component.

Note also that a confidence function may increase the false confidence, theo-
retically capturing the fact that faults may found by testing. For an application
on the TRAP, however, we assume that faults will be fixed and thus false confi-
dence always stays at 0. In the following, we thus define confidence functions as
increasing functions f : R+ → [0, 1], which represents the true confidence, and
assume the false confidence is always 0.

Designing Confidence Functions. Of course, expert knowledge on a com-
ponent can be used to give a good estimate of confidence functions, but other
techniques, such as defect prediction [11], exist for when knowledge is limited.

When testing is the canonical way to increase confidence, notions of test
coverage serve as a good estimate of confidence. If we have a hardware test suite
of n tests that achieves 100% coverage (but not enough budget to execute them
all), and each test costs r0 resources, then the coverage achieved by spending r
resources in testing can be estimated as the confidence f(r) = min(r/nr0, 1).

If we do not have such a test suite, then a reasonable way to model confidence
is to assume uniform random testing. There we assume that each test covers a
randomly sampled fraction p of the input space, but parts of it might be already

32 C. Eberhart et al.

covered by previous tests. If running a test costs r0 resources, then a good
estimate of confidence function is f(r) = 1 − (1 − p)r/r0 .

If more is known about the component, then it is possible to design confidence
functions that are better suited for this component. In particular, if we have
some a priori knowledge about fault distributions, then it is possible to use
SRGMs [18] as confidence functions.

4.2 The Optimisation Problem

We now formulate the TRAP as an optimisation problem in terms of QCL as
follows: given a QCL proof, a confidence function for each premise, and a resource
budget to spend, how should we spend the budget on the different premises to
maximise confidence in the proof’s conclusion?

We only consider the problem of optimising true confidence because the appli-
cation we are aiming at is about reliability. However, with the same ingredients,
we could define similar optimisation problems. For example, we could try to opti-
mise total confidence t + f under limited resources, or try to minimise resources
spent to reach a given confidence objective (either in true or total confidence).

We begin with a simple observation: if ϕ1 : c1, . . . , ϕn : cn � ϕ : c is provable,
then c is a non-decreasing function of the ci’s (for the confidence order
). Hence,
increases in the ci’s confidence lead to increases in c.

Because, for the translation of an FT, the true confidence of the conclusion
has to be a function f(t1, . . . , tn) of the true confidences of the hypotheses, if the
confidence of each hypothesis is given by applying a confidence function fi to an
amount of resources ri spent on that hypothesis, then the true confidence of the
conclusion is itself a function f(f1(r1), . . . , fn(rn)) of the amount of resources
spent on the hypotheses.

The problem is thus the following: given an initial condition r1, . . . , rn, confi-
dence functions f1, . . . , fn, a proof of {ϕi : (ci, 0) | i ∈ n} � ϕ : (f(c1, . . . , cn),−),
and a budget r, maximise f(f1(r1 + r′

1), . . . , fn(rn + r′
n)) under r′

i ≥ 0 for all
i ∈ n and

∑
i∈n r′

1 ≤ r.
We thus reduce the TRAP to a classic constrained optimisation problem,

which we can solve using well-known algorithms. In our implementation, we
use simulated annealing [16], but any other method (such as CMA-ES [9] or
Lagrange multipliers [2]) would work too.

Example 16. Take the QCL proof from Example 13. Suppose that the confidence
functions of components follow f(r) = 1−1/2r, the amount of resources already
spent on the components are 0 for A, 5 for B and C, and 10 for D, and we have
a test resource budget of 10. Then we want to maximise

(1 − 1/2a)(1 − 1/25+b) + (1 − 1/25+c)(1 − 1/210+d)

− (1 − 1/2a)(1 − 1/25+b)(1 − 1/25+c)(1 − 1/210+d)

under the constraints a, b, c, d ≥ 0, and a + b + c + d ≤ 10. There are two major
points to note here. First, due to the fact that (∨I) requires both disjuncts to

Architecture-Guided Test Resource Allocation via Logic 33

be proved, the optimisation will try to increase confidence of both A and B,
rather than choose one. Second, since we take system structure into accounr,
the algorithm can give B and C different budgets, even though they share the
same initial confidence and confidence function.

Our approach has significant advantages over other TRAP solutions. First, it
makes use of the system’s architecture, which is not the case of most approaches.
Even other approaches that take system architecture into account generally
only consider simple architectures, such as parallel-series architecture [19]. These
architectures can be directly translated to FTs, but the converse is not possible
without duplicating modules, which puts artificial weight to these duplicated
modules. Moreover, we explained how to convert an FT to a QCL proof, but our
algorithm is not limited to FTs and would work on other proofs.

Another advantage of our method is that it is not tied to any specific confi-
dence function. The main advantage of this generality is that it allows the user
to pick different confidence functions for different components. In particular, this
approach should be helpful when allocating test resources for CPSs, where some
components are software, while others are hardware, which most likely require
to be modelled using different confidence functions.

5 Experimental Results

In this section, we describe the results of our experiments, showing that our
tool Astrahl2 can increase system reliability more consistently than others. To
demonstrate the tool’s performance, we designed two experiments. The first one
compares Astrahl’s confidence gain to other test resource allocation (TRA)
strategies. The second, more involved experiment tests whether the increase
in confidence provided by Astrahl is linked to an increase in system reliabil-
ity. Given an FT and confidence functions, we simulate existence of component
faults, before splitting a fixed testing budget according to different TRA strate-
gies (one of which is our approach). We then mimic component testing according
to the allocated budget and fix faults if they are found, thereby increasing sys-
tem reliability. Our evaluation repeats the probabilistic process to test which
method gives the best reliability on average.

We developed Astrahl, which implements the TRA algorithm described in
Sect. 4. It takes as input JSON descriptions of the fault tree and the confidence
functions (as parse trees), an initial condition (a float for each basic event), and
a budget (a float), and returns a splitting of the budget between the different
basic events (a float for each basic event).

This section evaluates our claims and analyses Astrahl’s system confidence
gains to other, more naive approaches. We first ask how much confidence we
can gain by using Astrahl, rather than simpler TRA approaches. Then, we test
whether using Astrahl can increase system reliability in practice. Specifically,
this section will investigate the following two research questions:
2 The code and experimental data are publicly available on https://github.com/

ERATOMMSD/qcl tap 2021.

https://github.com/ERATOMMSD/qcl_tap_2021
https://github.com/ERATOMMSD/qcl_tap_2021

34 C. Eberhart et al.

RQ1 Given a certain TRA budget, how much is the calculated confidence gain
when using Astrahl and how do these figures compare to alternative TRA
methods?

RQ2 Does Astrahl’s gain in confidence translate to a gain in system reliability
in a practical scenario where testing practice is simulated?

Alternative TRA Approaches. There exist numerous solutions to test
resource splitting, however some of the most common ones are the uniform and
proportional resource allocation strategies (see Fig. 4), as they do not require
knowledge of the system structure or fault distribution. Uniform TRA, for
instance, evenly distributes the available resources among the candidate com-
ponents. This technique is completely agnostic of the current system and com-
ponent confidences. Proportional TRA on the other hand aims to take current
component confidence into account and provide proportionally more resources
to components in which we have lower confidence. Although it uses current con-
fidences for resource allocation, the system’s structure is still not considered.

0.0 resources
0

confidence
1.0 c(r) = 1 − 0.99(r+1)

100 200 300 400 500100

0.64

200

0.87

300

0.95

•

•
•

Uniform
Proportional

Fig. 4. Allocation of test budget according to common strategies

5.1 RQ1: Theoretical Evaluation

Naive approaches might coincidentally be equally good as elaborate techniques,
given the right system architecture and initial confidences. We therefore chose
to perform our comparison on a set of randomly generated initial confidences
(later referred to as starting points (SPs)) and fault trees (FTs). It is natural
to expect Astrahl’s insight into system structure and component confidences
to outperform naive strategies as the systems grow in size and complexity3.
Therefore, we only verify Astrahl’s superiority on relatively small systems and
simple confidence functions. We thus fixed an FT size of six devices connected
by five binary AND and OR gates. Furthermore, confidences behave according to

3 Functional optimisation may not be as efficient in larger dimensions, but even a naive
estimate should give a better result than completely ignoring system structure.

Architecture-Guided Test Resource Allocation via Logic 35

the function c(r) = 1 − 0.99(r+1) for all devices, where r represents the invested
resources and c the confidence, as displayed in Fig. 4.

Using these settings, we generated 200 FTs and instantiated each with 100
random SPs in the range of 100 to 300, corresponding to initial confidences
between approximately 0.64 and 0.95. Using this data set we let Astrahl and its
competitors distribute total budgets of size 1, 10, 50, 100, 250, 500, and 1000.

5.2 RQ2: Empirical Evaluation

To address RQ2 it is necessary to create an evaluation setting that allows the
simulated distribution of (hidden) component faults, their (potential) discovery
through testing or experimentation effort and subsequent removal, and finally
a calculation of the system confidence based on the remaining, undiscovered
faults. Our approach is based on the probabilistic creation of fault distributions
(FDs), i. e. assignments of faults to components according to their respective
confidences. These faults will be probabilistically found and removed by allocat-
ing resources to a component, simulating e. g. experimentation or testing. Our
hypothesis is that, given initial component confidences that reflect the compo-
nents’ reliabilities, Astrahl should be able to outperform its competitor algo-
rithms and on average lead to higher overall system confidence.

The evaluation process is split into three phases. First, faults are assigned to
components according to geometric distributions with parameter p = 1−c, where
c is our initial confidence in the component. Therefore, components in which we
have more confidence will on average contain fewer faults. Next, the faults are
removed probabilistically during a “testing phase” as follows. We arbitrarily
assume that each test costs 10 resources4. Each fault has an observability of 0.1,
i. e. each test has a 10% chance to detect this particular fault. When a TRA
strategy assigns r resources to a component with n faults, t = � r

10� full tests are
run on it. Each test has a 10% chance to find and remove each of a component’s
n faults. If r > 10t, i. e. there is remaining budget, a “partial” test is run with
proportionally reduced chance to find faults. After this phase, we end up with
n′ faults in each component. Finally, the system fault probability is calculated.
As above, during operation each fault’s observability is 0.1, so a component’s
failure probability can be calculated as 1 − 0.9n′

if it contains n′ faults. The
entire system’s failure probability can then be calculated using all components’
failure probabilities and the standard propagation of fault probabilities in FTs.

Due to the probabilistic nature of this evaluation we repeated this process
for 50 FTs, 50 SPs (range 10 to 70)5 for each FT and 50 random FDs for each
SP, totalling to 125,000 FDs. We computed test resource allocations using test
budgets of 60, 120, 240, 360, 480 and 600, executed the testing and fault removal
process 100 times for each FD and test budget, and subsequently calculated the
average FT failure probability, for a total of 75,000,000 computations.

4 It would equally be possible to assume a test costs one resource and scale the budget.
5 We used smaller confidence so that components will usually contain faults.

36 C. Eberhart et al.

5.3 Evaluation Results

The experiment results for RQ1 are shown in Fig. 5a and Fig. 5b. Figure 5a shows
the average system reliability according to the total budget and relative differ-
ence to Astrahl’s score (1−r)−(1−r′)

1−r = r′−r
1−r , where r is the reliability computed

by Astrahl, and r′ that computed by its competitor (this measure is closer to
intuition than (r − r′)/r when both confidences are close 1). The error bars in
Fig. 5b represent mean squared error in system reliability. Note that Astrahl
outperforms each of the competitors independent of the budget size. It is also
noteworthy that although with higher budgets the system becomes very reliable
independent of the strategy, the relative performance increase of Astrahl when
compared to its competitors grows significantly. In other words, spending a large
amount of resources increases obviously the system performance, but it is still
better to follow Astrahl’s suggestions.

Fig. 5. Theoretical evaluation: average system reliability and relative difference

Fig. 6. Empirical evaluation: system reliability and relative difference

Figure 6a and Fig. 6b display the results of the empirical evaluation (RQ2).
Here, the error bars correspond to mean squared error of the average over all

Architecture-Guided Test Resource Allocation via Logic 37

FDs (for each SP). As can be seen, also here Astrahl outperforms other TRA
strategies. Interestingly though, Astrahl’s relative advantage is not as high.
An initial investigation suggests the cause for this observation at the discrete
nature of the evaluation setting, where in many cases all faults of a component
are removed, which leads to full confidence in this component.

Summarising our evaluations it can be said that Astrahl is better-suited
for identifying where to place test effort than alternative approaches. The
experiments show significant relative gains in both theoretical and practical
approaches, even for rather small, straightforward systems as in our setting.
For more complex systems, we expect Astrahl’s insight into the system’s struc-
ture and the components’ confidence should make its advantage even clearer,
although this has yet to be validated by experimental results.

6 Conclusion and Future Work

We have defined Quantitative Confidence Logic, which represents confidence in
assertions and have argued that this logic can help us take system architecture
into account when solving the test resource allocation problem (TRAP) and
shown the validity of the approach through experimental results. We have also
argued that this approach is widely applicable, e. g., because it does not rely on
particular assumptions about fault distributions.

The simplicity and versatility of our approach makes it possible to tackle
different problems with the same ingredients. An obvious possible future work
is to study the TRAP in different settings, for example by implementing multi-
objective optimisation, or by studying it in a broader setting, where the con-
fidence gained by running a test depends on the result of the test. We should
also experimentally validate our expectation on the scalability of our approach
in industry-scale case studies. It would also be interesting to see how solving the
TRAP when optimising the total confidence t + f compares to solving it with
the current setting, especially on volatile systems. Another possible direction
is to study how this approach can be used to solve test prioritisation between
different components of a system.

We also want to investigate the logic itself more thouroughly from a purely
logical point of view. For example, by changing the interpretation of connectives
in three-valued logic, or using different T-norms and T-conorms in the definitions
of the rules. Another interesting aspect would be to investigate its links with
fuzzy logics and Dempster-Shafer theory deeper, as there seems to be some deep
connections. In particular, ties to fuzzy logics would give a bridge between a
logic about confidence and a logic about truth, which could help us develop
QCL further.

References

1. Bergmann, M.: An Introduction to Many-Valued and Fuzzy Logic: Semantics, Alge-
bras, and Derivation Systems. Cambridge University Press, Cambridge (2008).
https://doi.org/10.1017/CBO9780511801129

https://doi.org/10.1017/CBO9780511801129

38 C. Eberhart et al.

2. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Aca-
demic Press, Cambridge (2014)

3. Carrozza, G., Pietrantuono, R., Russo, S.: Dynamic test planning: a study in an
industrial context. Int. J. Softw. Tools Technol. Transfer 16(5), 593–607 (2014).
https://doi.org/10.1007/s10009-014-0319-0

4. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping.
Ann. Math. Stat. 36, 325–339 (1967). https://doi.org/10.1007/978-3-540-44792-
4 3

5. Ericson, C.A.: Fault tree analysis. In: System Safety Conference, Orlando, Florida,
vol. 1, pp. 1–9 (1999)

6. Esteva, F., Godo, L.: Monoidal T-norm based logic: towards a logic for left-
continuous T-norms. Fuzzy Sets Syst. 124(3), 271–288 (2001). https://doi.org/
10.1016/S0165-0114(01)00098-7

7. Goel, A.L., Okumoto, K.: Time-dependent error-detection rate model for software
reliability and other performance measures. IEEE Trans. Reliab. 28(3), 206–211
(1979). https://doi.org/10.1109/TR.1979.5220566

8. Hájek, P.: Metamathematics of Fuzzy Logic, vol. 4. Springer Science & Business
Media, Dordrecht (2013). https://doi.org/10.1007/978-94-011-5300-3

9. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evo-
lution strategies. Evol. Comput. 9(2), 159–195 (2001). https://doi.org/10.1162/
106365601750190398

10. Huang, C.Y., Lo, J.H.: Optimal resource allocation for cost and reliability of mod-
ular software systems in the testing phase. J. Syst. Softw. 79(5), 653–664 (2006).
https://doi.org/10.1016/j.jss.2005.06.039

11. Kamei, Y., Shihab, E.: Defect Prediction: Accomplishments and Future Challenges.
In: 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 5, pp. 33–45. IEEE (2016). https://doi.org/10.1109/
SANER.2016.56

12. Pietrantuono, R.: On the testing resource allocation problem: research trends and
perspectives. J. Syst. Softw. 161, 110462 (2020). https://doi.org/10.1016/j.jss.
2019.110462

13. Pietrantuono, R., Russo, S., Trivedi, K.S.: Software reliability and testing time
allocation: an architecture-based approach. IEEE Trans. Softw. Eng. 36(3), 323–
337 (2010). https://doi.org/10.1109/TSE.2010.6

14. Sallak, M., Schön, W., Aguirre, F.: Reliability assessment for multi-state systems
under uncertainties based on the Dempster-Shafer theory. IIE Trans. 45(9), 995–
1007 (2013). https://doi.org/10.1080/0740817X.2012.706378

15. Shafer, G.: A Mathematical Theory of Evidence, vol. 42. Princeton University
Press, Princeton (1976). https://doi.org/10.2307/j.ctv10vm1qb

16. Van Laarhoven, P.J., Aarts, E.H.: Simulated annealing. In: Simulated Annealing:
Theory and Applications. MAIA, vol. 37, pp. 7–15. Springer, Dordrecht (1987).
https://doi.org/10.1007/978-94-015-7744-1 2

17. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree Handbook.
Technical Report, Nuclear Regulatory Commission Washington DC (1981)

18. Yamada, S., Osaki, S.: Software reliability growth modeling: models and applica-
tions. IEEE Trans. Softw. Eng. SE-11(12), 1431–1437 (1985). https://doi.org/10.
1109/TSE.1985.232179

19. Zhang, G., Su, Z., Li, M., Yue, F., Jiang, J., Yao, X.: Constraint handling in NSGA-
II for solving optimal testing resource allocation problems. IEEE Trans. Reliab.
66(4), 1193–1212 (2017). https://doi.org/10.1109/TR.2017.2738660

https://doi.org/10.1007/s10009-014-0319-0
https://doi.org/10.1007/978-3-540-44792-4_3
https://doi.org/10.1007/978-3-540-44792-4_3
https://doi.org/10.1016/S0165-0114(01)00098-7
https://doi.org/10.1016/S0165-0114(01)00098-7
https://doi.org/10.1109/TR.1979.5220566
https://doi.org/10.1007/978-94-011-5300-3
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1016/j.jss.2005.06.039
https://doi.org/10.1109/SANER.2016.56
https://doi.org/10.1109/SANER.2016.56
https://doi.org/10.1016/j.jss.2019.110462
https://doi.org/10.1016/j.jss.2019.110462
https://doi.org/10.1109/TSE.2010.6
https://doi.org/10.1080/0740817X.2012.706378
https://doi.org/10.2307/j.ctv10vm1qb
https://doi.org/10.1007/978-94-015-7744-1_2
https://doi.org/10.1109/TSE.1985.232179
https://doi.org/10.1109/TSE.1985.232179
https://doi.org/10.1109/TR.2017.2738660

	Architecture-Guided Test Resource Allocation via Logic
	1 Introduction
	1.1 Related Work

	2 Quantitative Confidence Logic
	2.1 Syntax and Proof Rules of QCL
	2.2 Interpretation as Random Variables

	3 Translating System Architectures to Proofs
	4 Solving the Test Resource Allocation Problem
	4.1 Confidence Functions
	4.2 The Optimisation Problem

	5 Experimental Results
	5.1 RQ1: Theoretical Evaluation
	5.2 RQ2: Empirical Evaluation
	5.3 Evaluation Results

	6 Conclusion and Future Work
	References

