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Abstract. As a methodology for system design and testing, use cases
are well-known and widely used. While current active machine learning
(ML) algorithms can effectively automate unit testing, they do not scale
up to use case testing of complex systems in an efficient way.

We present a new parallel distributed processing (PDP) architecture
for a constrained active machine learning (CAML) approach to use case
testing. To exploit CAML we introduce a use case modeling language
with: (i) compile-time constraints on query generation, and (ii) run-time
constraints using dynamic constraint checking. We evaluate this app-
roach by applying a prototype implementation of CAML to use case
testing of simulated multi-vehicle autonomous driving scenarios.

Keywords: Autonomous driving · Constraint solving · Learning-based
testing · Machine learning · Model checking · Requirements testing ·
Use case testing

1 Introduction

For the design and testing of complex software systems, the use case approach
has a long history emerging from [20] with many proposed variations and refine-
ments. A use case can be viewed as a recurring short story in the daily life of a
system. The essence of use case driven software engineering (SE) is to focus on a
limited number of commonly occurring scenarios whose correct design and reli-
able implementation can generate significant end user benefit. For example, for
cyber-physical systems, a focus on recurrent high-risk use cases can benefit end
user safety.

By modeling system interactions with external actors, use cases open the
way to evaluating a system in different environments and scenarios. In general,
there can be a vast number of potential contexts so parameter modeling can be
crucial. An environment is discretised into agents known as actors, which can
be humans or other software systems. Through modeling short dialogs between
system and environment within constrained scenarios, use cases capture impor-
tant context sensitive behavioural information that can be used to test system
implementations.
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The development of UML languages, such as sequence diagrams, has made
it possible to bridge the gap between informal natural language models of use
cases and precise machine readable formats suitable for automated test case
generation (TCG). Consequently, there is a significant literature on TCG for
use cases from UML models surveyed in [32].

However, for automated TCG, machine learning (ML) based approaches such
as black-box checking [30] and learning-based testing [26] are also worthy of con-
sideration. For unit testing, such methods have been shown to be both effective
[10,18,22,23] and efficient [35] for finding errors in real-world systems. For use
case testing, active ML offers the possibility to systematically and efficiently
explore the variability inherent in different use case parameters as well as the
time dimension. Furthermore, by reverse engineering a model of the system under
test (SUT), ML can be easily combined with static analysis techniques such as
model checking and constraint solving. Unfortunately, current active ML algo-
rithms in the literature provide no support for use case constraints and therefore
scale rather poorly to use case testing.

In this paper, we propose a new and more scalable ML-based testing app-
roach suitable for use case testing. This approach is termed constrained active
machine learning (CAML). It generalises the ML techniques for dynamic soft-
ware analysis surveyed in [3] by inferring chains of intersecting automaton mod-
els. Our proposal combines three new techniques that improve scalability: (i)
a parallel distributed processing (PDP) architecture that supports concurrent
test execution, (ii) use case modeling constructs that sequence and constrain
ML parameters at compile time, and (iii) use case modeling constructs that con-
strain and dynamically bound ML parameters at runtime (the training phase).
While these new techniques can undoubtedly be extended and optimised for
even better scalability, we will show that they suffice to tackle non-trivial test-
ing problems such as advanced driver assistance systems (ADAS) in multi-vehicle
use case scenarios.

The structure of the paper is as follows. In Sect. 2, we discuss the background,
including scalability problems for current active ML algorithms. In Sect. 3, we
describe the architecture of a constrained active ML approach to testing. In
Sect. 4, we present a use case modeling language that makes available the capa-
bilities of the CAML architecture. In Sect. 5, we present a systematic evaluation
and benchmarking of a prototype implementation of CAML. We have integrated
a CAML prototype with the commercial vehicle simulation tool ASM produced
by dSPACE GmbH1. The resulting toolchain allows us to model and test four
industry-standard use cases for an adaptive cruise controller (ACC) in multi-
vehicle scenarios ranging from 2 to 4 vehicles. In Sect. 6, we discuss the results
of this evaluation. In Sect. 7, we survey related approaches. Finally, in Sect. 8,
we discuss conclusions and possible future extensions of our approach.

1 See www.dspace.com.

www.dspace.com
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2 Background and Problem Statement

2.1 Use Case Modeling

A use case describes a system in terms of its interaction with the world. In the
popular account [13], a use case consists of a main success scenario which is a
numbered list of steps, and optionally one or more extension scenarios which
are also numbered lists. A step is an event or action of the system itself or
of an interacting agent known as an actor. Structurally, main and extension
scenarios are the same, i.e. an enumeration of actions describing an interaction
between the system and external actors. The difference is simply interpretation:
extensions are “a condition that results in different interactions from ... the
main success scenario” [13]. The template approach to use cases of [8] is more
expressive. It includes both preconditions and success guarantees. We model
these two concepts as constraints in our approach, as they are relevant for both
efficient TCG and test verdict construction. The sequence diagram language of
UML [9] generalises these linear sequences of actions to allow branches, loops and
concurrency. The live sequence chart (LSC) language of [16] goes even further
than UML by integrating temporal logic concepts and modalities (so called hot
and cold conditions). Our approach could be extended to cover these advanced
features, but they are not the subject of this initial research. Nevertheless, we
will borrow simple temporal logic constructs to constrain TCG using ML.

2.2 Active Automaton Learning

By active automaton learning (see e.g. [17,21]) we mean the use of heuristic
algorithms to dynamically generate new queries and acquire training data online
during the training phase2. This contrasts with passive learning, where an a pri-
ori fixed training set is used. Since pioneering results of [1,14], it has been known
that active ML has the capability to speed up the training process compared with
passive ML. Recently, active automaton learning algorithms such as Angluin’s
L* [1] have experienced renewed interest from the software engineering commu-
nity. Active automaton learning can be applied to learn behavioural models of
black-box software systems. Such models can be used for SE needs such as code
analysis, testing and documentation. A recent survey of active ML for SE is [2].

In automaton learning, the task is to infer the behavior of an unknown black-
box system, aka. the system under learning (SUL), as an automaton model, e.g.
a finite state Moore machine3 A = (Σ,Ω, S, s0, δ : Σ × S → S, λ : S → Ω).
This model is constructed from a finite set of observations of the input/output

2 Since the new training data is generated by heuristic algorithms alone, active ML is
not the same as interactive ML which requires human intervention.

3 Here Σ is a finite input alphabet, Ω is a finite or infinite output alphabet, S is a
finite state set, s0 ∈ S is the initial state, δ is the state transition function and λ
is the output function. δ is extended to a transition function on input sequences
δ∗ : Σ∗ × S → S by iteration.
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behaviour of the SUL. During the training phase, a single step consists of heuris-
tically generating a finite input sequence i = (i1, ..., in) ∈ Σ∗ as a query about
the SUL. This query i must be answered by the SUL online with a response
o = (o1, ..., on) ∈ Ω∗. By iterating this single step, the learning algorithm com-
piles a growing list of queries i1, ..., ik and their responses, o1, ..., ok for increas-
ing k = 1, 2, .... This is the training data for A. As the training data grows,
increasingly accurate models4 Ai : i = 0, 1, ... of the SUL can be constructed5.
Different active learning algorithms generate different query sets. For example,
the L* algorithm [1] maintains an expanding 2-dimensional table of queries and
responses, where new gaps in the table represent new active queries.

Note that each new hypothesis model Ai must be checked for behavioral
equivalence with the SUL to terminate learning. Equivalence checking is a second
source of active queries and there are well known algorithms for this e.g. [34].
Probabilistic equivalence checking, by random sampling, is a common black-
box method and the basis for probably approximately correct (PAC) automaton
learning [21].

Equivalence checking avoids the problem of premature termination of the
training phase with an incomplete model. Thus, many active learning algo-
rithms such as L* can be proved convergent and terminating in polynomial
time under general conditions. This means that under reasonable assumptions
about queries and the structure of the SUL, eventually some hypothesis Ai will
be behaviourally equivalent to the SUL.

2.3 Problem Statement: Scalable ML

Active machine learning can be used to automate the software testing process,
a technique known as black-box checking (BBC) [30] or more generally learning-
based testing (LBT) [26]. These approaches leverage active query generation
as a source of test cases, and the SUL role is played by the software system
under test (SUT). They are very effective for unit testing (see e.g. [10,18,22,23])
where the set of possible SUT inputs, and their temporal order, are very loosely
constrained, if at all. They can achieve high test coverage and outperform other
techniques such as randomised testing [35]. The BBC/LBT approaches both
arise as a special case of our more general use case approach (c.f. Sect. 3.2),
namely as a single step use case with the constant gate predicate false.

In contrast to unit testing, use case testing evaluates focused, temporally
ordered and goal directed dialogues between the system and its environment (see
e.g. [12]). Here, a test fail implies some non-conformity between the SUT and an
intended use case model. Active machine learning can potentially automate use
case testing, with the obvious advantages of test automation (speed, reliability,
high coverage).

4 The Ai grow in size during active learning. The relationship between k and i varies
between learning algorithms.

5 A unified algebraic view of different automaton construction methods is the quotient
automaton construction. Further details can be found in [3].
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However, in the context of use case testing, two assumptions used in current
active automata learning algorithms (such as L*) fail. Assumption 1: every input
value i ∈ Σ is possible for every use case step. Problem 1: This assumption leads
to a large number of irrelevant test cases since test values are applied out of con-
text (i.e. relevant use case step). Assumption 2: Every sequential combination of
input values (i1, ..., in) ∈ Σ∗ is a valid use case test. Problem 2: This assumption
also leads to a large number of irrelevant test cases since most sequential com-
binations of test values will not fulfill the final or even the intermediate goals of
the use case.

The combination of test redundancy arising from Problems 1 and 2 leads
to an exponentially growing test suite (in the length of the use case) with very
many irrelevant and/or redundant test cases.

Problem Statement: The key problem to be solved for applying active ML
to use case testing is to constrain the training phase, so that a scalable set of
scenario-relevant test cases is generated.

We decompose our solution to this problem by solving Problem 1 using static
(compile-time) constraints, and solving Problem 2 using dynamic (run-time or
training) constraints. Our approach is an instance of applying ML for its genera-
tive aspect [11], i.e. the capability to generate and explore solutions to constraints
by machine learning.

3 Constrained Active Machine Learning (CAML)

In this section, we introduce a generic architecture for use case testing by CAML.
This architecture aims to overcome the scalability problems of active ML iden-
tified in Sect. 2.3.

3.1 Use Case Testing: An Example

We can motivate our CAML architecture from the modeling needs of a well-
known embedded software application from the automotive sector.

An adaptive cruise controller (ACC) is an example of a modern ADAS appli-
cation used as a component for semi- and fully autonomous driving. An ACC is
a control algorithm designed to regulate the longitudinal distance between two
vehicles. The context for use is that a host vehicle H (that deploys the ACC) is
following behind a leader vehicle L. When the ACC is engaged, it automatically
maintains a chosen safety gap (measured in time or distance) between H and L.
Typically, a radar on H senses the distance to L, and the ACC monitors and
maintains the inter-vehicle gap smoothly by gas and brake actions on H. An
important use case for testing ACC implementations6 is known as cut-in-and-
brake (C&B). The C&B use case consists of four steps.

6 Many ACC algorithms exist in the literature, see e.g. [37].
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Step 1: Initially H is following L (actor 1) along one lane of a road. Along an
adjacent lane, an overtaking vehicle O (actor 2) approaches H from behind
and overtakes.
Step 2: After O achieves some longitudinal distance d ahead of H, O changes
lanes to enter the gap between H and L.
Step 3: When O has finished changing lane, it brakes for some short time.
Step 4: O releases its brake and resumes travel.

The C&B use case is clearly hazardous for both H and O, with highest
collision risk during Steps 2 and 3. Safety critical parameters such as d above
may be explicit or implicit in a use case description, and their boundary values
are often unknown. These may need to be identified by testing [4]. Active ML is
a powerful technology for such parameter exploration.

Extensive testing of use cases such as C&B is routinely carried out in the
automotive industry. A test case for C&B consists of a time series of parameter
values for vehicle actuators such as gas, brake and steering, to control the trajec-
tories of H, O and L. The lengths of each individual Step 1–4 are not explicitly
stated by the use case definition above. These constitute additional test parame-
ters. Chosen parameter values must satisfy the constraints of Steps 1–4 to make
a valid C&B scenario. Notice that H is longitudinally autonomous as long as the
ACC is engaged, and can be fully autonomous on straight road sections. So only
the trajectory parameters of L and O can be directly controlled in this case.
Clearly random testing, i.e. randomised choice of test parameter values, is not
useful here. Most random trajectories for L and O do not satisfy the criteria for
C&B, and would represent extremely haphazard driving, uncharacteristic of real
life. For a given use case U, valid test cases are constrained time series, and we
must address efficient constraint satisfaction in any practical ML solution.

3.2 A Parallel Distributed CAML Architecture

Following the connectionist or parallel distributed processing (PDP) paradigm,
we introduce a pipeline architecture for CAML in Fig. 1. This architecture con-
sists of a linear pipeline of alternate active automaton learning modules Li and
model checking modules MCi. Each learner Li conducts online active ML on a
cloned copy SUTi of the SUT.

For use case testing, the basic idea is to dedicate each learning algorithm Li

to the task of learning Step i, for all the i = 1, ..., n steps of an n-step use case
U . We will show later, in Sect. 4, how the use case U is modeled by constraints.
Here we focus on explaining and motivating the PDP architecture of Fig. 1.

Each learner Li has the task to infer an automaton model Ai of Step i in U by
actively generating queries7 inα = inα,1, ..., inα,l(α) ∈ Σ∗

i and executing them on
SUTi. We may refer to Ai as the state space model for Step i. Constraining the
input for SUTi to the input alphabet Σi in Step i at compile time significantly
reduces the search space for finding valid use case tests for U as whole. This

7 The queries have variable length l(α).
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Fig. 1. A constrained active ML architecture

addresses Problem 1 of Sect. 2.3. Each query inα is executed locally on SUTi.
The observed output behaviour outα = outα,1, ..., outα,l(α) ∈ Ω∗

i of SUTi is
integrated by Li into the current version Ai,j of Ai to incrementally generate
a sequence of approximations Ai,1, Ai,2, ... that converge to Ai, as described in
Sect. 2.2.

We can observe in the use case C&B that the end of each Step i is charac-
terised by a Boolean condition Gi that must become true to enter the next Step
i + 1 or else to finish the use case. For example: we leave Step 1 of C&B and start
Step 2, once the gap between O and H exceeds d and not before. To constrain
and connect each adjacent pair of state space models Ai and Ai+1, constructed
independently by Li and Li+1, we model Gi as a Boolean constraint Gi ⊆ Ωi

which is a predicate on state values λ(s) ∈ Ωi. We term Gi the gate condition
for Step i. The gate condition Gi can be seen as both the success guarantee for
leaving Step i and the precondition for entering Step i + 1 (c.f. Sect. 2.1). In
particular, Gn is a success guarantee for finishing the entire use case U .

Figure 1 shows a second Boolean constraint or predicate Vi ⊆ Ωi called the
verdict condition. This will be discussed later in Sect. 4.3.

The gate condition Gi is evaluated on each approximation Ai,j of Ai, for
j = 1, 2, ... by the model checker MCi (c.f. Fig. 1). Model checking [7] is a
general constraint solving technique for Boolean and temporal logic formulas on
automaton models. The model checker MCi incrementally analyses each Ai,j

to identify a new state si,j ∈ Si,j for Ai,j (not previously seen in Ai,j−1) that
satisfies the gate Gi, i.e. Gi is true as a predicate on λ(si,j). The state si,j

will become an initial state of Ai+1. In this way, adjacent models Ai and Ai+1

intersect, and A1, ..., An collectively build a complete and connected chain of
automaton models of U .

Now, a guaranteed condition of automaton learning algorithms such as L*
is that every learned state s ∈ Si,j is reachable in Ai,j by at least one access
sequence a = a1, ..., am ∈ Σ∗

i , i.e. δ∗
i (a, s0) = s. The model checker MCi

can return such an access sequence ai,j for state si,j satisfying gate Gi. This
access sequence ai,j is a valid test case solution for Step i of U and hence a
partial solution to a complete and valid test case for U . Dynamic constraint
solving using MCi at runtime further constrains the size of the state space to
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be searched in building valid test cases for U . This approach addresses Problem
2 of Sect. 2.3.

The active learners L1, ..., Ln and model checkers MC1, ...,MCn collaborate
to construct valid test cases for the whole n-step use case U as follows.

For each j = 1, 2, ... and for each 1 ≤ k < n, all k access sequences (par-
tial solutions) a1,j , ..., ak,j coming from MC1, ...,MCk (which satisfy the gates
G1, ..., Gk respectively) are passed to learner Lk+1 where they are concatenated
into a setup sequence8 (a1,j , . . . , ak,j). This setup sequence is used as a prefix,
and appended in front of every active query inα ∈ Σ∗

k+1 generated by Lk+1. A
complete active query for SUTk+1 therefore has the form:

(a1,j , . . . , ak,j , inα).

From the corresponding output sequence outα ∈ Ω∗
k+1 returned by SUTk+1

only the final suffix of length |inα| is retained by Lk+1 to construct Ak+1. This
suppresses all SUT output due to the setup sequence a1,j . . . . .ak,j . So the state
space model Ak+1 only contains information about Step k+1 of U , and we avoid
duplication of effort between the parallel learners.

Finally the n access sequences (partial solutions), which emerge periodically
from MC1, ...,MCn, are concatenated to form

aj = (a1,j , . . . , an,j).

Thus aj represents the j-th complete test case for U , as a concatenation of the
j-th partial solutions. The test case aj satisfies all of the guards G1, ..., Gn, in
particular the final goal Gn of U . Moreover, in each of the steps ai,j all actions
are constrained to Σ∗

i . So aj is a valid test case for U .

4 A Use Case Modeling Language for CAML

We can now introduce a constraint-based modeling language for use cases that
exploits the CAML architecture of Sect. 3.2. A constraint model U will capture
an informal use case description in terms of parameters and constraints suitable
for using in the CAML architecture. These include: Σi, Gi and Vi for each step
i = 1, ..., n.

4.1 Input/Output Declaration

Recall the running example of the C&B use case from Sect. 3.1. The actors are
the three vehicles H (with its ACC), L and O. The first modeling step is to
decide what actor parameters we need to control and observe. Much automotive
application testing is performed within the safety of a virtual environment such
as a multi-vehicle simulator. Whatever the context, we can assume the existence

8 This terminology comes from testing theory and is used to denote an initialisation
sequence bringing SUTk+1 into a state where inα can be applied.
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of a test harness or wrapper around the SUT which exposes the SUT API in a
standardised and symbolic way, as a set of variable names and their types: float,
integer, enumeration, Boolean, etc.

This modeling activity for C&B identifies the following minimum sets9 of
relevant input and output parameters and their types:

input variables = [SpeedL:enum, SpeedO:enum, SteerO:enum];

This statement declares three test input variables (from the SUT API) of
enumeration type enum that will control the leader vehicle speed, the overtaker
speed and the overtaker steering10. So a test input vector to the SUT is an
ordered triple of enum values (x1, x2, x3). A complete use case test input is a
finite sequence of test input vectors (c.f. Fig. 2(a)) ( (x1

1, x
1
2, x

1
3), ..., (xn

1 , xn
2 , xn

3 ) ).
For the output variables, the model declaration is:

output variables = [Crash:boolean, O2HDist:float, TimeDev:float];

This statement declares three test output variables (from the SUT API)
for crash detection, O-to-H longitudinal distance and time gap deviation (as
a percentage error) between the intended ACC time gap11 (H-to-L) and the
observed time gap (H-to-L). A test output vector from the SUT is an ordered
triple of values (y1, y2, y3), where y1 ranges over Boolean and y2 and y3 over
float values. A use case test output is a finite sequence of test output vectors
(c.f. Fig. 2(b)) ( (y1

1 , y
1
2 , y

1
3), ..., (yn

1 , yn
2 , yn

3 ) ).

4.2 Sequencing, Static and Dynamic Constraints

Next we declare the four steps of the C&B use case in terms of: (i) compile time
constraints on the input alphabets Σi and (ii) runtime constraints on the gate
predicates Gi.

input values[1] = { 50,55:SpeedL, 55,60,65:SpeedO, 0:SteerO };
gate[1] = when( O2HDist >= 5.0 & O2HDist <= 40.0 );
input values[2] = { 50:SpeedL, right 100 4:SteerO, 50:SpeedO };
gate[2] = when( time >= 4.0 );
input values[3] = { 60:SpeedL, 25,30,35:SpeedO, 0:SteerO };
gate[3] = when( TimeDev <= 5.0 );
input values[4] = { 50:SpeedL, 60:SpeedO, 0:SteerO };
gate[4] = when( time >= 5.0 );

Each declaration input values[i] symbolically declares Σi, the input values
for Step i in the notation of Sect. 3.2. In general, values for Σi are sampled within

9 Our example is pedagogic only. A more realistic model for C&B has more parameters
and values.

10 Recall that H is autonomous, hence only L and O are controllable in this scenario.
11 The intended time gap is here assumed to be a fixed nominal value for every test

case, typically around 1.5–2.5 s. It is often assignable by the driver of H.
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the typical range of values (e.g. vehicle speeds) characteristic for each step of
the use case (e.g. an acceleration, steady or deceleration step). For example, in
Step 1 above, variable SpeedL has possible values 50,55, SpeedO has possible
values 55,60,65 but SteerO takes only the value 0. The steering value 0 is a
neutral command (i.e. straight ahead) in Steps 1, 3 and 4. However in Step 2
(the lane change step for overtaker O), the steering value right 100 4 generates
a sigmoidal right curve for O across 100% of the lane width in 4 time steps12.
Notice that the declared speed of O drops from 50 in Step 2 to 25, 30 or 35 in
Step 3. This implements the braking action of O in Step 3 (which need not even
be a constant deceleration).

The informal meaning of gate[i] = when( state predicate ); is that
once SUT execution has entered Step i, it stays in this step until a state
is encountered that satisfies state predicate. At this point SUT execu-
tion may pass to the next Step i + 1. Thus gate[1] = when( O2HDist >=
5.0 & O2HDist <= 40.0 ); captures the transition from overtaking in Step
1 to lane change in Step 2 by setting specific minimum and maximum bound-
ary values for d of 5.0 and 40.0 metres (c.f. the C&B description of Sect. 3.1).
A gate condition can also take account of time, for example gate[2] = when(
time >= 4.0 ); ensures that we maintain the steering command of Step 2 for
4 time steps, relative to the start of Step 2. This ensures the steering action is
completed.

The formalised C&B model above illustrates some of the variety of CAML
capabilities for modeling a single step of a use case. These capabilities range
from a single action that must be performed exactly once (Step 2 above) to a set
of possible actions that can be executed in non-deterministic order over a time
interval that is either: (i) unspecified, (ii) constant, (iii) finite and bounded or
(iv) unbounded. Steps 1, 3 and 4 above illustrate some of these options. Each
single step activity is defined by a judicious combination of input alphabets,
gate constraints and step ordering. We have not attempted to be exhaustive in
modeling all possible single step capabilities, and further extensions are possible
(see Sect. 8).

4.3 Automated Test Verdict Construction

Recalling the discussion of Sect. 3.1, we can say informally that a (4 step) use
case test input aj = a1,j . . . . .a4,j for C&B has a pass verdict if none of the
vehicles O, L or H collide. Otherwise aj has a fail verdict. The model checkers
MCi automate test verdict construction for each use case test input aj as follows.

A use case test input aj = (a1,j . . . . .an,j) for an n-step use case U has
the verdict pass if, and only if vi,j = pass for each i = 1, ..., n, where vi,j ∈
{pass, fail} is the local verdict for the test case step ai,j (which is an access
sequence). Each model checker MCi is used to evaluate its local verdict vi,j on
ai,j in a distributed manner. In general, vi,j is based on a specific local criterion
Vi ⊆ Ωi for Step i as a predicate or constraint on state values λ(s) for s ∈ Si a

12 The time step length is also a fixed nominal value for all test cases.
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state in the automaton model Ai. Figure 1 shows how the verdict predicates Vi

are integrated into the CAML architecture. For C&B we are mainly interested
in vehicle crashes in Steps 2 and 3 as the most hazardous steps. We can therefore
extend the use case model of Sect. 4.2 with local verdict constraints for Steps 2
and 3 as follows:

verdict[2] = always( !crash );
verdict[3] = always( !crash & TimeDev <= 50.0);

The informal meaning of verdict[i] = always( state predicate ); is
that state predicate should remain true throughout Step i and if it becomes
false at any point during Step i then both Step i, and the whole test case fail.
For example, in verdict[3] for Step 3 above, when O is braking, we add to the
no-crash requirement the additional verdict requirement that the observed time
gap deviation TimeDev does not exceed 50%. This increases the safety margin of
the ACC.

For the i-th access sequence ai,j = ai,j,1, ..., ai,j,m ∈ Σ∗
i of aj , the model

checker MCi evaluates the verdict predicate Vi on λ(si,j,k) for each of the cor-
responding states si,j,1, ..., si,j,m ∈ Si,j traversed by ai,j in Ai,j . Here si,j,1 is
the initial state of Ai,j and si,j,m is the final state that satisfies the gate condi-
tion Gi. If λ(si,j,k) satisfies Vi for each k = 1, ...,m then vi,j = pass otherwise
vi,j = fail.

5 Evaluation and Benchmarking

To evaluate our CAML architecture for machine learning and its associated use
case modeling language, we implemented these in a prototype TCG tool. This
prototype was then integrated with the commercial vehicle software simulator
ASM to provide a complete toolchain for testing driving scenarios in a virtualised
road environment.

We conducted an evaluation of the complete toolchain to benchmark the
speed and effectiveness of the CAML approach. For evaluation purposes, we
chose use cases for an ACC-equipped semi-autonomous vehicle driven in multi-
vehicle scenarios.

5.1 ROBOTest: A CAML Implementation

We implemented a prototype of the CAML architecture of Sect. 3, termed
ROBOTest, on top of the ML-based testing tool LBTest [27]. LBTest has previ-
ously been successfully used in unit testing of automotive ECU software [22,23],
as well as other domains including web and finance [36]. LBTest supports impor-
tant features necessary for realistic testing case studies, such as infinite and
continuous test parameter types (including integers, strings, floating point num-
bers), multi-threaded learning for high data throughput, and configuration files
for job specification and test session management. In particular, a ROBOTest
use case model of the type presented in Sect. 4 is simply added to an LBTest
configuration file. During a testing session, multiple instances of LBTest Learner
and ModelChecker classes implement the PDP architecture of Sect. 3.2.
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Table 1. ML-based testing results for four ADAS use cases

No. Use case Use Use Ego Executed Total Errors Learned

case case vehicle test execution found model

steps vehicles autonomy cases time size

1 Following lead 2 2 Full 227 1 h 0min 10 s No 140 states

2 Cut-in 4 3 Full 761 20min 29 s Yes 177 states

3 Cut-out 4 3 Full 36 2min 50 s No 122 states

4 Overtake 5 4 Semi 1654 5 h 21min 15 s Yes 1022 states

5.2 Integration of ROBOTest and ASM

The ASM vehicle simulator from dSPACE GmbH provides the capability to per-
form software in the loop (SiL) testing of automotive applications. It can be used
to produce realistic simulations of automotive applications in multi-vehicle sce-
narios. The ego vehicle parameters, road and environment parameters and the
numbers and types of traffic objects are all configured before a simulation starts.
The basic approach to ROBOTest and ASM tool integration was to expose key
attributes of a parameterised ASM traffic model through a lightweight wrapper.
By communicating indirectly with ASM through the wrapper, ego vehicle and
traffic object commands could be accessed from the ROBOTest use case model
contained in a configuration file. Such commands include parameterized com-
mands to the ego vehicle and traffic objects for steering, gas, brake etc. Several
command examples can be seen in the C&B use case of Sect. 4.

The wrapper was delegated the responsibility to translate ML generated
use case tests into timed sequences of vehicle commands, and dispatch these
sequences to the simulator. Key simulator variables were then logged by ASM
and recovered by the wrapper. The resulting observation sequences were returned
to ROBOTest for learning.

As the target language for test case translation, we used the ASM scenario
language to specify the detailed actions of the ego vehicle and traffic objects. This
was done in the scenario editor of the ASM ModelDesk application. ModelDesk
also takes care of the road environment definitions and downloading configura-
tion parameters into the ASM VEOS platform.

5.3 ACC Use Case Descriptions

To evaluate the toolchain resulting from integrating the two tools ROBOTest
and ASM, we chose a set of use cases for an ACC application bundled with the
ASM license. The choice was guided by the need for different use case lengths,
complexity and number of actors. The following four use cases for an ACC-
equipped ego vehicle in a multi-vehicle traffic environment were chosen.

1. Following Lead. The ego-vehicle follows a lead vehicle in the same lane, i.e.
it is tracking the lead as its target. The lead vehicle accelerates and decelerates
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within given speed bounds. The ego vehicle should adapt its speed and maintain
its predefined time-gap.
2. Cut-in (c.f. Sect. 4). The ego-vehicle follows a lead vehicle (aka. leader1) in
the same lane that has a constant speed. A cut-in vehicle (aka. leader2) drives
behind the ego vehicle in an adjacent lane. The cut-in vehicle overtakes the ego
vehicle and then performs a cut-in maneuver with constant speed, while leader1
maintains its constant speed. The cut-in vehicle should be selected as target
when it has crossed the lane marking. The ego vehicle ACC should re-establish
the intended time gap with cut-in as the new lead vehicle (leader2).
3. Cut-out. The ego-vehicle follows a cut-out vehicle in the same lane with
constant speed. The cut-out vehicle (aka. leader1) follows another vehicle leader2
in the same lane. The cut-out vehicle speed is not faster than leader2. The cut-
out vehicle changes to an adjacent lane and speeds up to overtake leader2. The
ego vehicle ACC should re-establish the time gap to leader2 as the new target
vehicle to be followed.
4. Overtake. The ego-vehicle follows a lead vehicle leader1 in the same lane.
The ego vehicle performs a manual lane change to the adjacent lane, and then
speeds up to overtake leader1. Another vehicle leader2 is already driving ahead
in the adjacent lane and lies front of the ego vehicle after its lane change. The
ego vehicle ACC should re-establish the time-gap with leader2. After the ego
vehicle passes leader1, and if there is sufficient gap between leader1 and leader3
(which lies ahead of leader1 in the same lane), the ego vehicle switches back to
its original lane. The ego vehicle ACC should then re-establish its time-gap with
leader3.

5.4 ACC Test Objectives

The objective of testing all four uses cases, was to look for violations of two
global safety requirements. The first was a basic no crash/collision requirement
which is considered safety critical. The second safety requirement is that the
observed time gap deviation should never vary by more than 20% of the selected
time gap. We modeled these safety requirements in ROBOTest as follows:

verdict[i] = always(collision = false &
timeGap <= 2.2 & timeGap >= 1.8)

6 Results

Each of the four use cases presented in Sect. 5.3 was formally modeled as an
n-step sequence of input and gate constraints (for appropriate n) using the mod-
eling language presented in Sect. 4. Each constraint model was then embedded
into its own ROBOTest configuration file, and the safety requirements of Sect. 5.4
were added as verdict constraints. The configuration file was then run in a test
session on the integrated ASM-ROBOTest toolchain. Table 1 shows the results
of the four test sessions.
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Fig. 2. A failed test case for the Overtaking Scenario 5.3: (a) test inputs from
ROBOTest, (b) test outputs from ASM

Table 1 shows that errors were found in two of the four use cases. It was
easy to visually inspect the failed test cases reported by ROBOTest and confirm
that the safety requirements were indeed violated (c.f. Fig. 2(b)). Furthermore,
failed test cases could be played back through the ASM simulator in real time
to visualise the full details. Figure 2 shows a complete failed test case for over-
taking, consisting of 17 test vectors for the 4 input parameters that drive a 17 s
simulation. Still images from replaying this test case in ASM can be seen in
Fig. 3, where the ego (i.e. ACC host) vehicle is dark blue. Figure 3(e) shows the
collision in Step 5. Such visualisations can yield further explanatory insight into
why a test failure occurs. In this case, the test failures were mainly collision
errors when a sudden speed change occurred.

Although use case errors were found in the SUT, the models in Table 1 were
not fully converged (i.e. learning was incomplete) This was due to the relatively
low data throughput of a single simulator license. Further research is needed to
evaluate whether multi-threaded machine learning, using more than one simula-
tor, can achieve full convergence (i.e. a completely learned model) in a reasonable
time.
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5

Fig. 3. (a),...,(e): ASM simulator images for all 5 use case steps in the failed overtaking
use case test of Fig. 2 (Color figure online)



18 K. Meinke and H. Khosrowjerdi

7 Related Work

Active automaton learning for testing is surveyed in [3], where the applications
are mainly unit and integration testing. Our work represents the first attempt
to apply ML to use case testing. The commonest models for automaton learning
are deterministic automata [18,19,27,31,35], non-deterministic finite automata
[5], and extended finite state machines [6]. Our work seems to represent the first
attempt to use chains of intersecting finite automata.

There is a significant literature on TCG for use cases from UML models sur-
veyed in [32]. UML sequence diagrams are sometimes seen as the canonical use
case modeling language, and are prominent in the UML literature on TCG, e.g.
[29]. The linear step ordering (see Sect. 2.1) common to both UML sequence dia-
grams [29] and informal models [8] is faithfully reflected in our CAML approach.
UML state machine models are used in [33] for use case testing. By contrast,
the CAML approach reverse engineers state machine models using ML, and thus
avoids the effort of manual model construction and maintenance. Several authors
have understood the need for constraints to automate use case testing e.g. [29],
[24]. The UML object constraint language (OCL) has typically been used for
this. By contrast, our constraints are based on linear temporal logic (LTL) and
are conceptually closer to the live sequence charts of [16].

Testing semi- and fully autonomous vehicle software is a technically challeng-
ing emerging field where use case modeling languages such as OpenScenario [28]
are currently under development. The case studies presented here extend previ-
ous research into automotive use case testing such as [4,25]. CAML addresses
similar problems to the fuzz testing approach of [15]. However, our constraint-
based approach to modeling and verdicts has wider scope and is more precise
than the randomised approach of [15].

8 Conclusions and Future Work

We have introduced a constrained active machine learning (CAML) architecture
that fully automates use case testing. This architecture can overcome the scal-
ability problems associated with current active automaton learning algorithms
such as L* when applied to highly constrained situations such as use case testing.
We have benchmarked the CAML approach on typical use cases for an embedded
automotive ADAS application, and demonstrated its efficiency and effectiveness.
For this we implemented a prototype of CAML which was integrated with the
industrial vehicle simulator ASM.

There is considerable scope for extension and improvement of our approach.
Future research topics include: (i) additional constraints on use case models
for greater ML efficiency and reduced automaton sizes, (ii) extensions of the
constraint language for wider scope of use case and verdict modeling, and (iii)
interfacing our constraint modeling language to open standards such as UML,
LSC and OpenScenario.
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