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Preface

This volume contains the papers accepted for the 15th International Conference on
Tests and Proofs (TAP 2021), originally planned to be held during June 21–22, 2021,
in Bergen, Norway, as part of Software Technologies: Applications and Foundations
(STAF), a federation of some of Europe’s leading conferences on software technolo-
gies. Due to the COVID-19 pandemic, STAF and TAP were held online, and the TAP
2021 conference featured presentations of papers accepted at TAP 2020 and published
in LNCS volume 12165, as well as the presentations of the papers published in this
volume.

The TAP conference promotes research in verification and formal methods that
targets the interplay of proofs and testing: the advancement of techniques of each kind
and their combination, with the ultimate goal of improving software and system
dependability.

Research in verification has seen a steady convergence of heterogeneous techniques
and a synergy between the traditionally distinct areas of testing (and dynamic analysis)
and of proving (and static analysis). Formal techniques for counter-example generation
based on, for example, symbolic execution, SAT/SMT-solving or model checking,
furnish evidence for the potential of a combination of test and proof. The combination
of predicate abstraction with testing-like techniques based on exhaustive enumeration
opens the perspective for novel techniques of proving correctness. On the practical
side, testing offers cost-effective debugging techniques of specifications or crucial parts
of program proofs (such as invariants). Last but not least, testing is indispensable when
it comes to the validation of the underlying assumptions of complex system models
involving hardware or system environments. Over the years, there is growing accep-
tance in research communities that testing and proving are complementary rather than
mutually exclusive techniques.

TAP 2021 received 13 abstracts that led to 10 submissions out of which we accepted
6 papers after review and discussion with the Program Committee (PC) members. The
submissions came from authors in the following countries (in alphabetical order):
France, Germany, India, Japan, New Zealand, Russia, Singapore, Sweden, the UK, and
the USA. We thank the PC members and reviewers for doing an excellent job!

For the third time, TAP featured an artifact evaluation (AE) and three papers were
awarded with AE badges. We thank the AE chairs, Daniel Dietsch (University of
Freiburg, Germany) and Marie-Christine Jakobs (TU Darmstadt, Germany), for orga-
nizing artifact submission and evaluation, and the AE Committee members for thor-
oughly evaluating all artifacts.

This volume also contains two short abstracts: an abstract of the talk given by our
invited speaker, Mohammad Mousavi (University of Leicester, UK), on “Learning
About the Change: An Adaptive Approach to Automata Learning”, and an abstract of
our invited tutorial on Runtime Verification led by Martin Leucker (University of
Lübeck, Germany).



We thank the organizing team of STAF in Bergen, in particular Adrian Rutle who
had to deal with a very difficult situation. We also thank the publication team at
Springer for their support. We hope that you will enjoy reading the volume.

May 2021 Frédéric Loulergue
Franz Wotawa
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Learning About the Change: An Adaptive
Approach to Automata Learning

Mohammad Reza Mousavi

University of Leicester, UK

Automata learning is a technique to learn behavioural models from black-box systems.
Variability and evolution are inherent to much of the modern autonomous systems and
hence, new sorts of automata learning techniques are needed to learn about
variability-intensive and evolving systems. In this talk, we first present the basic
principles of automata learning and then report on two novel techniques for learning
variability-annotated models as well as efficient learning for evolving systems by
identifying the commonalities and differences in the learning process.

This talk is based on joint work with several people, and in particular, with Diego
Damasceno and Adenilso Simao.



Testing, Runtime Verification and Automata
Learning

Martin Leucker

University of Lübeck, Germany

Testing and runtime verification are both verification techniques for checking whether a
system is correct. The essential artefacts for checking whether the system is correct are
actual executions of the system, formally words. Such a set of words should be rep-
resentative for the systems behavior.

In the field of automata learning (or grammatical inference) a formal model of a
system is derived based on exemplifying behavior. In other words, the question is
addressed what model fits to a given set of words.

In testing, typically, the system under test is examined on a finite set of test cases,
formally words, which may be derived manually or automatically. Oracle-based testing
is a form of testing in which an oracle, typically a manually developed piece of code, is
attached to the system under test and employed for checking whether a given set of test
cases passes or fails.

In runtime verification, typically, a formal specification of the correct behavior is
given from which a so-called monitor is synthesised and used for examining whether
the behavior of the system under test, or generally the system to monitor, adheres to
such a specification. In a sense, the monitor acts as a test oracle, when employed in
testing.

From the discussion above we see that testing, runtime verification, and learning
automata share similarities but also differences. The main artefacts used for the different
methods are formal specifications, models like automata, but especially sets of words,
on which the different system descriptions are compared, to eventually obtain a verdict
whether the system under test is correct or not.

In this tutorial we recall the basic ideas of testing, oracle-based testing, model-based
testing, conformance testing, automata learning and runtime verification and elaborate
on a coherent picture with the above mentioned artefacts as ingredients. We mostly
refrain from technical details but concentrate on the big picture of those verification
techniques.
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Use Case Testing: A Constrained Active
Machine Learning Approach

Karl Meinke(B) and Hojat Khosrowjerdi

School of Electrical Engineering and Computer Science,
KTH Royal Institute of Technology, 100 44 Stockholm, Sweden

karlm@kth.se

Abstract. As a methodology for system design and testing, use cases
are well-known and widely used. While current active machine learning
(ML) algorithms can effectively automate unit testing, they do not scale
up to use case testing of complex systems in an efficient way.

We present a new parallel distributed processing (PDP) architecture
for a constrained active machine learning (CAML) approach to use case
testing. To exploit CAML we introduce a use case modeling language
with: (i) compile-time constraints on query generation, and (ii) run-time
constraints using dynamic constraint checking. We evaluate this app-
roach by applying a prototype implementation of CAML to use case
testing of simulated multi-vehicle autonomous driving scenarios.

Keywords: Autonomous driving · Constraint solving · Learning-based
testing · Machine learning · Model checking · Requirements testing ·
Use case testing

1 Introduction

For the design and testing of complex software systems, the use case approach
has a long history emerging from [20] with many proposed variations and refine-
ments. A use case can be viewed as a recurring short story in the daily life of a
system. The essence of use case driven software engineering (SE) is to focus on a
limited number of commonly occurring scenarios whose correct design and reli-
able implementation can generate significant end user benefit. For example, for
cyber-physical systems, a focus on recurrent high-risk use cases can benefit end
user safety.

By modeling system interactions with external actors, use cases open the
way to evaluating a system in different environments and scenarios. In general,
there can be a vast number of potential contexts so parameter modeling can be
crucial. An environment is discretised into agents known as actors, which can
be humans or other software systems. Through modeling short dialogs between
system and environment within constrained scenarios, use cases capture impor-
tant context sensitive behavioural information that can be used to test system
implementations.
c© Springer Nature Switzerland AG 2021
F. Loulergue and F. Wotawa (Eds.): TAP 2021, LNCS 12740, pp. 3–21, 2021.
https://doi.org/10.1007/978-3-030-79379-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79379-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-79379-1_1


4 K. Meinke and H. Khosrowjerdi

The development of UML languages, such as sequence diagrams, has made
it possible to bridge the gap between informal natural language models of use
cases and precise machine readable formats suitable for automated test case
generation (TCG). Consequently, there is a significant literature on TCG for
use cases from UML models surveyed in [32].

However, for automated TCG, machine learning (ML) based approaches such
as black-box checking [30] and learning-based testing [26] are also worthy of con-
sideration. For unit testing, such methods have been shown to be both effective
[10,18,22,23] and efficient [35] for finding errors in real-world systems. For use
case testing, active ML offers the possibility to systematically and efficiently
explore the variability inherent in different use case parameters as well as the
time dimension. Furthermore, by reverse engineering a model of the system under
test (SUT), ML can be easily combined with static analysis techniques such as
model checking and constraint solving. Unfortunately, current active ML algo-
rithms in the literature provide no support for use case constraints and therefore
scale rather poorly to use case testing.

In this paper, we propose a new and more scalable ML-based testing app-
roach suitable for use case testing. This approach is termed constrained active
machine learning (CAML). It generalises the ML techniques for dynamic soft-
ware analysis surveyed in [3] by inferring chains of intersecting automaton mod-
els. Our proposal combines three new techniques that improve scalability: (i)
a parallel distributed processing (PDP) architecture that supports concurrent
test execution, (ii) use case modeling constructs that sequence and constrain
ML parameters at compile time, and (iii) use case modeling constructs that con-
strain and dynamically bound ML parameters at runtime (the training phase).
While these new techniques can undoubtedly be extended and optimised for
even better scalability, we will show that they suffice to tackle non-trivial test-
ing problems such as advanced driver assistance systems (ADAS) in multi-vehicle
use case scenarios.

The structure of the paper is as follows. In Sect. 2, we discuss the background,
including scalability problems for current active ML algorithms. In Sect. 3, we
describe the architecture of a constrained active ML approach to testing. In
Sect. 4, we present a use case modeling language that makes available the capa-
bilities of the CAML architecture. In Sect. 5, we present a systematic evaluation
and benchmarking of a prototype implementation of CAML. We have integrated
a CAML prototype with the commercial vehicle simulation tool ASM produced
by dSPACE GmbH1. The resulting toolchain allows us to model and test four
industry-standard use cases for an adaptive cruise controller (ACC) in multi-
vehicle scenarios ranging from 2 to 4 vehicles. In Sect. 6, we discuss the results
of this evaluation. In Sect. 7, we survey related approaches. Finally, in Sect. 8,
we discuss conclusions and possible future extensions of our approach.

1 See www.dspace.com.

www.dspace.com
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2 Background and Problem Statement

2.1 Use Case Modeling

A use case describes a system in terms of its interaction with the world. In the
popular account [13], a use case consists of a main success scenario which is a
numbered list of steps, and optionally one or more extension scenarios which
are also numbered lists. A step is an event or action of the system itself or
of an interacting agent known as an actor. Structurally, main and extension
scenarios are the same, i.e. an enumeration of actions describing an interaction
between the system and external actors. The difference is simply interpretation:
extensions are “a condition that results in different interactions from ... the
main success scenario” [13]. The template approach to use cases of [8] is more
expressive. It includes both preconditions and success guarantees. We model
these two concepts as constraints in our approach, as they are relevant for both
efficient TCG and test verdict construction. The sequence diagram language of
UML [9] generalises these linear sequences of actions to allow branches, loops and
concurrency. The live sequence chart (LSC) language of [16] goes even further
than UML by integrating temporal logic concepts and modalities (so called hot
and cold conditions). Our approach could be extended to cover these advanced
features, but they are not the subject of this initial research. Nevertheless, we
will borrow simple temporal logic constructs to constrain TCG using ML.

2.2 Active Automaton Learning

By active automaton learning (see e.g. [17,21]) we mean the use of heuristic
algorithms to dynamically generate new queries and acquire training data online
during the training phase2. This contrasts with passive learning, where an a pri-
ori fixed training set is used. Since pioneering results of [1,14], it has been known
that active ML has the capability to speed up the training process compared with
passive ML. Recently, active automaton learning algorithms such as Angluin’s
L* [1] have experienced renewed interest from the software engineering commu-
nity. Active automaton learning can be applied to learn behavioural models of
black-box software systems. Such models can be used for SE needs such as code
analysis, testing and documentation. A recent survey of active ML for SE is [2].

In automaton learning, the task is to infer the behavior of an unknown black-
box system, aka. the system under learning (SUL), as an automaton model, e.g.
a finite state Moore machine3 A = (Σ,Ω, S, s0, δ : Σ × S → S, λ : S → Ω).
This model is constructed from a finite set of observations of the input/output

2 Since the new training data is generated by heuristic algorithms alone, active ML is
not the same as interactive ML which requires human intervention.

3 Here Σ is a finite input alphabet, Ω is a finite or infinite output alphabet, S is a
finite state set, s0 ∈ S is the initial state, δ is the state transition function and λ
is the output function. δ is extended to a transition function on input sequences
δ∗ : Σ∗ × S → S by iteration.
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behaviour of the SUL. During the training phase, a single step consists of heuris-
tically generating a finite input sequence i = (i1, ..., in) ∈ Σ∗ as a query about
the SUL. This query i must be answered by the SUL online with a response
o = (o1, ..., on) ∈ Ω∗. By iterating this single step, the learning algorithm com-
piles a growing list of queries i1, ..., ik and their responses, o1, ..., ok for increas-
ing k = 1, 2, .... This is the training data for A. As the training data grows,
increasingly accurate models4 Ai : i = 0, 1, ... of the SUL can be constructed5.
Different active learning algorithms generate different query sets. For example,
the L* algorithm [1] maintains an expanding 2-dimensional table of queries and
responses, where new gaps in the table represent new active queries.

Note that each new hypothesis model Ai must be checked for behavioral
equivalence with the SUL to terminate learning. Equivalence checking is a second
source of active queries and there are well known algorithms for this e.g. [34].
Probabilistic equivalence checking, by random sampling, is a common black-
box method and the basis for probably approximately correct (PAC) automaton
learning [21].

Equivalence checking avoids the problem of premature termination of the
training phase with an incomplete model. Thus, many active learning algo-
rithms such as L* can be proved convergent and terminating in polynomial
time under general conditions. This means that under reasonable assumptions
about queries and the structure of the SUL, eventually some hypothesis Ai will
be behaviourally equivalent to the SUL.

2.3 Problem Statement: Scalable ML

Active machine learning can be used to automate the software testing process,
a technique known as black-box checking (BBC) [30] or more generally learning-
based testing (LBT) [26]. These approaches leverage active query generation
as a source of test cases, and the SUL role is played by the software system
under test (SUT). They are very effective for unit testing (see e.g. [10,18,22,23])
where the set of possible SUT inputs, and their temporal order, are very loosely
constrained, if at all. They can achieve high test coverage and outperform other
techniques such as randomised testing [35]. The BBC/LBT approaches both
arise as a special case of our more general use case approach (c.f. Sect. 3.2),
namely as a single step use case with the constant gate predicate false.

In contrast to unit testing, use case testing evaluates focused, temporally
ordered and goal directed dialogues between the system and its environment (see
e.g. [12]). Here, a test fail implies some non-conformity between the SUT and an
intended use case model. Active machine learning can potentially automate use
case testing, with the obvious advantages of test automation (speed, reliability,
high coverage).

4 The Ai grow in size during active learning. The relationship between k and i varies
between learning algorithms.

5 A unified algebraic view of different automaton construction methods is the quotient
automaton construction. Further details can be found in [3].
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However, in the context of use case testing, two assumptions used in current
active automata learning algorithms (such as L*) fail. Assumption 1: every input
value i ∈ Σ is possible for every use case step. Problem 1: This assumption leads
to a large number of irrelevant test cases since test values are applied out of con-
text (i.e. relevant use case step). Assumption 2: Every sequential combination of
input values (i1, ..., in) ∈ Σ∗ is a valid use case test. Problem 2: This assumption
also leads to a large number of irrelevant test cases since most sequential com-
binations of test values will not fulfill the final or even the intermediate goals of
the use case.

The combination of test redundancy arising from Problems 1 and 2 leads
to an exponentially growing test suite (in the length of the use case) with very
many irrelevant and/or redundant test cases.

Problem Statement: The key problem to be solved for applying active ML
to use case testing is to constrain the training phase, so that a scalable set of
scenario-relevant test cases is generated.

We decompose our solution to this problem by solving Problem 1 using static
(compile-time) constraints, and solving Problem 2 using dynamic (run-time or
training) constraints. Our approach is an instance of applying ML for its genera-
tive aspect [11], i.e. the capability to generate and explore solutions to constraints
by machine learning.

3 Constrained Active Machine Learning (CAML)

In this section, we introduce a generic architecture for use case testing by CAML.
This architecture aims to overcome the scalability problems of active ML iden-
tified in Sect. 2.3.

3.1 Use Case Testing: An Example

We can motivate our CAML architecture from the modeling needs of a well-
known embedded software application from the automotive sector.

An adaptive cruise controller (ACC) is an example of a modern ADAS appli-
cation used as a component for semi- and fully autonomous driving. An ACC is
a control algorithm designed to regulate the longitudinal distance between two
vehicles. The context for use is that a host vehicle H (that deploys the ACC) is
following behind a leader vehicle L. When the ACC is engaged, it automatically
maintains a chosen safety gap (measured in time or distance) between H and L.
Typically, a radar on H senses the distance to L, and the ACC monitors and
maintains the inter-vehicle gap smoothly by gas and brake actions on H. An
important use case for testing ACC implementations6 is known as cut-in-and-
brake (C&B). The C&B use case consists of four steps.

6 Many ACC algorithms exist in the literature, see e.g. [37].
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Step 1: Initially H is following L (actor 1) along one lane of a road. Along an
adjacent lane, an overtaking vehicle O (actor 2) approaches H from behind
and overtakes.
Step 2: After O achieves some longitudinal distance d ahead of H, O changes
lanes to enter the gap between H and L.
Step 3: When O has finished changing lane, it brakes for some short time.
Step 4: O releases its brake and resumes travel.

The C&B use case is clearly hazardous for both H and O, with highest
collision risk during Steps 2 and 3. Safety critical parameters such as d above
may be explicit or implicit in a use case description, and their boundary values
are often unknown. These may need to be identified by testing [4]. Active ML is
a powerful technology for such parameter exploration.

Extensive testing of use cases such as C&B is routinely carried out in the
automotive industry. A test case for C&B consists of a time series of parameter
values for vehicle actuators such as gas, brake and steering, to control the trajec-
tories of H, O and L. The lengths of each individual Step 1–4 are not explicitly
stated by the use case definition above. These constitute additional test parame-
ters. Chosen parameter values must satisfy the constraints of Steps 1–4 to make
a valid C&B scenario. Notice that H is longitudinally autonomous as long as the
ACC is engaged, and can be fully autonomous on straight road sections. So only
the trajectory parameters of L and O can be directly controlled in this case.
Clearly random testing, i.e. randomised choice of test parameter values, is not
useful here. Most random trajectories for L and O do not satisfy the criteria for
C&B, and would represent extremely haphazard driving, uncharacteristic of real
life. For a given use case U, valid test cases are constrained time series, and we
must address efficient constraint satisfaction in any practical ML solution.

3.2 A Parallel Distributed CAML Architecture

Following the connectionist or parallel distributed processing (PDP) paradigm,
we introduce a pipeline architecture for CAML in Fig. 1. This architecture con-
sists of a linear pipeline of alternate active automaton learning modules Li and
model checking modules MCi. Each learner Li conducts online active ML on a
cloned copy SUTi of the SUT.

For use case testing, the basic idea is to dedicate each learning algorithm Li

to the task of learning Step i, for all the i = 1, ..., n steps of an n-step use case
U . We will show later, in Sect. 4, how the use case U is modeled by constraints.
Here we focus on explaining and motivating the PDP architecture of Fig. 1.

Each learner Li has the task to infer an automaton model Ai of Step i in U by
actively generating queries7 inα = inα,1, ..., inα,l(α) ∈ Σ∗

i and executing them on
SUTi. We may refer to Ai as the state space model for Step i. Constraining the
input for SUTi to the input alphabet Σi in Step i at compile time significantly
reduces the search space for finding valid use case tests for U as whole. This

7 The queries have variable length l(α).
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Fig. 1. A constrained active ML architecture

addresses Problem 1 of Sect. 2.3. Each query inα is executed locally on SUTi.
The observed output behaviour outα = outα,1, ..., outα,l(α) ∈ Ω∗

i of SUTi is
integrated by Li into the current version Ai,j of Ai to incrementally generate
a sequence of approximations Ai,1, Ai,2, ... that converge to Ai, as described in
Sect. 2.2.

We can observe in the use case C&B that the end of each Step i is charac-
terised by a Boolean condition Gi that must become true to enter the next Step
i + 1 or else to finish the use case. For example: we leave Step 1 of C&B and start
Step 2, once the gap between O and H exceeds d and not before. To constrain
and connect each adjacent pair of state space models Ai and Ai+1, constructed
independently by Li and Li+1, we model Gi as a Boolean constraint Gi ⊆ Ωi

which is a predicate on state values λ(s) ∈ Ωi. We term Gi the gate condition
for Step i. The gate condition Gi can be seen as both the success guarantee for
leaving Step i and the precondition for entering Step i + 1 (c.f. Sect. 2.1). In
particular, Gn is a success guarantee for finishing the entire use case U .

Figure 1 shows a second Boolean constraint or predicate Vi ⊆ Ωi called the
verdict condition. This will be discussed later in Sect. 4.3.

The gate condition Gi is evaluated on each approximation Ai,j of Ai, for
j = 1, 2, ... by the model checker MCi (c.f. Fig. 1). Model checking [7] is a
general constraint solving technique for Boolean and temporal logic formulas on
automaton models. The model checker MCi incrementally analyses each Ai,j

to identify a new state si,j ∈ Si,j for Ai,j (not previously seen in Ai,j−1) that
satisfies the gate Gi, i.e. Gi is true as a predicate on λ(si,j). The state si,j

will become an initial state of Ai+1. In this way, adjacent models Ai and Ai+1

intersect, and A1, ..., An collectively build a complete and connected chain of
automaton models of U .

Now, a guaranteed condition of automaton learning algorithms such as L*
is that every learned state s ∈ Si,j is reachable in Ai,j by at least one access
sequence a = a1, ..., am ∈ Σ∗

i , i.e. δ∗
i (a, s0) = s. The model checker MCi

can return such an access sequence ai,j for state si,j satisfying gate Gi. This
access sequence ai,j is a valid test case solution for Step i of U and hence a
partial solution to a complete and valid test case for U . Dynamic constraint
solving using MCi at runtime further constrains the size of the state space to
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be searched in building valid test cases for U . This approach addresses Problem
2 of Sect. 2.3.

The active learners L1, ..., Ln and model checkers MC1, ...,MCn collaborate
to construct valid test cases for the whole n-step use case U as follows.

For each j = 1, 2, ... and for each 1 ≤ k < n, all k access sequences (par-
tial solutions) a1,j , ..., ak,j coming from MC1, ...,MCk (which satisfy the gates
G1, ..., Gk respectively) are passed to learner Lk+1 where they are concatenated
into a setup sequence8 (a1,j , . . . , ak,j). This setup sequence is used as a prefix,
and appended in front of every active query inα ∈ Σ∗

k+1 generated by Lk+1. A
complete active query for SUTk+1 therefore has the form:

(a1,j , . . . , ak,j , inα).

From the corresponding output sequence outα ∈ Ω∗
k+1 returned by SUTk+1

only the final suffix of length |inα| is retained by Lk+1 to construct Ak+1. This
suppresses all SUT output due to the setup sequence a1,j . . . . .ak,j . So the state
space model Ak+1 only contains information about Step k+1 of U , and we avoid
duplication of effort between the parallel learners.

Finally the n access sequences (partial solutions), which emerge periodically
from MC1, ...,MCn, are concatenated to form

aj = (a1,j , . . . , an,j).

Thus aj represents the j-th complete test case for U , as a concatenation of the
j-th partial solutions. The test case aj satisfies all of the guards G1, ..., Gn, in
particular the final goal Gn of U . Moreover, in each of the steps ai,j all actions
are constrained to Σ∗

i . So aj is a valid test case for U .

4 A Use Case Modeling Language for CAML

We can now introduce a constraint-based modeling language for use cases that
exploits the CAML architecture of Sect. 3.2. A constraint model U will capture
an informal use case description in terms of parameters and constraints suitable
for using in the CAML architecture. These include: Σi, Gi and Vi for each step
i = 1, ..., n.

4.1 Input/Output Declaration

Recall the running example of the C&B use case from Sect. 3.1. The actors are
the three vehicles H (with its ACC), L and O. The first modeling step is to
decide what actor parameters we need to control and observe. Much automotive
application testing is performed within the safety of a virtual environment such
as a multi-vehicle simulator. Whatever the context, we can assume the existence

8 This terminology comes from testing theory and is used to denote an initialisation
sequence bringing SUTk+1 into a state where inα can be applied.
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of a test harness or wrapper around the SUT which exposes the SUT API in a
standardised and symbolic way, as a set of variable names and their types: float,
integer, enumeration, Boolean, etc.

This modeling activity for C&B identifies the following minimum sets9 of
relevant input and output parameters and their types:

input variables = [SpeedL:enum, SpeedO:enum, SteerO:enum];

This statement declares three test input variables (from the SUT API) of
enumeration type enum that will control the leader vehicle speed, the overtaker
speed and the overtaker steering10. So a test input vector to the SUT is an
ordered triple of enum values (x1, x2, x3). A complete use case test input is a
finite sequence of test input vectors (c.f. Fig. 2(a)) ( (x1

1, x
1
2, x

1
3), ..., (xn

1 , xn
2 , xn

3 ) ).
For the output variables, the model declaration is:

output variables = [Crash:boolean, O2HDist:float, TimeDev:float];

This statement declares three test output variables (from the SUT API)
for crash detection, O-to-H longitudinal distance and time gap deviation (as
a percentage error) between the intended ACC time gap11 (H-to-L) and the
observed time gap (H-to-L). A test output vector from the SUT is an ordered
triple of values (y1, y2, y3), where y1 ranges over Boolean and y2 and y3 over
float values. A use case test output is a finite sequence of test output vectors
(c.f. Fig. 2(b)) ( (y1

1 , y
1
2 , y

1
3), ..., (yn

1 , yn
2 , yn

3 ) ).

4.2 Sequencing, Static and Dynamic Constraints

Next we declare the four steps of the C&B use case in terms of: (i) compile time
constraints on the input alphabets Σi and (ii) runtime constraints on the gate
predicates Gi.

input values[1] = { 50,55:SpeedL, 55,60,65:SpeedO, 0:SteerO };
gate[1] = when( O2HDist >= 5.0 & O2HDist <= 40.0 );
input values[2] = { 50:SpeedL, right 100 4:SteerO, 50:SpeedO };
gate[2] = when( time >= 4.0 );
input values[3] = { 60:SpeedL, 25,30,35:SpeedO, 0:SteerO };
gate[3] = when( TimeDev <= 5.0 );
input values[4] = { 50:SpeedL, 60:SpeedO, 0:SteerO };
gate[4] = when( time >= 5.0 );

Each declaration input values[i] symbolically declares Σi, the input values
for Step i in the notation of Sect. 3.2. In general, values for Σi are sampled within

9 Our example is pedagogic only. A more realistic model for C&B has more parameters
and values.

10 Recall that H is autonomous, hence only L and O are controllable in this scenario.
11 The intended time gap is here assumed to be a fixed nominal value for every test

case, typically around 1.5–2.5 s. It is often assignable by the driver of H.
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the typical range of values (e.g. vehicle speeds) characteristic for each step of
the use case (e.g. an acceleration, steady or deceleration step). For example, in
Step 1 above, variable SpeedL has possible values 50,55, SpeedO has possible
values 55,60,65 but SteerO takes only the value 0. The steering value 0 is a
neutral command (i.e. straight ahead) in Steps 1, 3 and 4. However in Step 2
(the lane change step for overtaker O), the steering value right 100 4 generates
a sigmoidal right curve for O across 100% of the lane width in 4 time steps12.
Notice that the declared speed of O drops from 50 in Step 2 to 25, 30 or 35 in
Step 3. This implements the braking action of O in Step 3 (which need not even
be a constant deceleration).

The informal meaning of gate[i] = when( state predicate ); is that
once SUT execution has entered Step i, it stays in this step until a state
is encountered that satisfies state predicate. At this point SUT execu-
tion may pass to the next Step i + 1. Thus gate[1] = when( O2HDist >=
5.0 & O2HDist <= 40.0 ); captures the transition from overtaking in Step
1 to lane change in Step 2 by setting specific minimum and maximum bound-
ary values for d of 5.0 and 40.0 metres (c.f. the C&B description of Sect. 3.1).
A gate condition can also take account of time, for example gate[2] = when(
time >= 4.0 ); ensures that we maintain the steering command of Step 2 for
4 time steps, relative to the start of Step 2. This ensures the steering action is
completed.

The formalised C&B model above illustrates some of the variety of CAML
capabilities for modeling a single step of a use case. These capabilities range
from a single action that must be performed exactly once (Step 2 above) to a set
of possible actions that can be executed in non-deterministic order over a time
interval that is either: (i) unspecified, (ii) constant, (iii) finite and bounded or
(iv) unbounded. Steps 1, 3 and 4 above illustrate some of these options. Each
single step activity is defined by a judicious combination of input alphabets,
gate constraints and step ordering. We have not attempted to be exhaustive in
modeling all possible single step capabilities, and further extensions are possible
(see Sect. 8).

4.3 Automated Test Verdict Construction

Recalling the discussion of Sect. 3.1, we can say informally that a (4 step) use
case test input aj = a1,j . . . . .a4,j for C&B has a pass verdict if none of the
vehicles O, L or H collide. Otherwise aj has a fail verdict. The model checkers
MCi automate test verdict construction for each use case test input aj as follows.

A use case test input aj = (a1,j . . . . .an,j) for an n-step use case U has
the verdict pass if, and only if vi,j = pass for each i = 1, ..., n, where vi,j ∈
{pass, fail} is the local verdict for the test case step ai,j (which is an access
sequence). Each model checker MCi is used to evaluate its local verdict vi,j on
ai,j in a distributed manner. In general, vi,j is based on a specific local criterion
Vi ⊆ Ωi for Step i as a predicate or constraint on state values λ(s) for s ∈ Si a

12 The time step length is also a fixed nominal value for all test cases.
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state in the automaton model Ai. Figure 1 shows how the verdict predicates Vi

are integrated into the CAML architecture. For C&B we are mainly interested
in vehicle crashes in Steps 2 and 3 as the most hazardous steps. We can therefore
extend the use case model of Sect. 4.2 with local verdict constraints for Steps 2
and 3 as follows:

verdict[2] = always( !crash );
verdict[3] = always( !crash & TimeDev <= 50.0);

The informal meaning of verdict[i] = always( state predicate ); is
that state predicate should remain true throughout Step i and if it becomes
false at any point during Step i then both Step i, and the whole test case fail.
For example, in verdict[3] for Step 3 above, when O is braking, we add to the
no-crash requirement the additional verdict requirement that the observed time
gap deviation TimeDev does not exceed 50%. This increases the safety margin of
the ACC.

For the i-th access sequence ai,j = ai,j,1, ..., ai,j,m ∈ Σ∗
i of aj , the model

checker MCi evaluates the verdict predicate Vi on λ(si,j,k) for each of the cor-
responding states si,j,1, ..., si,j,m ∈ Si,j traversed by ai,j in Ai,j . Here si,j,1 is
the initial state of Ai,j and si,j,m is the final state that satisfies the gate condi-
tion Gi. If λ(si,j,k) satisfies Vi for each k = 1, ...,m then vi,j = pass otherwise
vi,j = fail.

5 Evaluation and Benchmarking

To evaluate our CAML architecture for machine learning and its associated use
case modeling language, we implemented these in a prototype TCG tool. This
prototype was then integrated with the commercial vehicle software simulator
ASM to provide a complete toolchain for testing driving scenarios in a virtualised
road environment.

We conducted an evaluation of the complete toolchain to benchmark the
speed and effectiveness of the CAML approach. For evaluation purposes, we
chose use cases for an ACC-equipped semi-autonomous vehicle driven in multi-
vehicle scenarios.

5.1 ROBOTest: A CAML Implementation

We implemented a prototype of the CAML architecture of Sect. 3, termed
ROBOTest, on top of the ML-based testing tool LBTest [27]. LBTest has previ-
ously been successfully used in unit testing of automotive ECU software [22,23],
as well as other domains including web and finance [36]. LBTest supports impor-
tant features necessary for realistic testing case studies, such as infinite and
continuous test parameter types (including integers, strings, floating point num-
bers), multi-threaded learning for high data throughput, and configuration files
for job specification and test session management. In particular, a ROBOTest
use case model of the type presented in Sect. 4 is simply added to an LBTest
configuration file. During a testing session, multiple instances of LBTest Learner
and ModelChecker classes implement the PDP architecture of Sect. 3.2.
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Table 1. ML-based testing results for four ADAS use cases

No. Use case Use Use Ego Executed Total Errors Learned

case case vehicle test execution found model

steps vehicles autonomy cases time size

1 Following lead 2 2 Full 227 1 h 0min 10 s No 140 states

2 Cut-in 4 3 Full 761 20min 29 s Yes 177 states

3 Cut-out 4 3 Full 36 2min 50 s No 122 states

4 Overtake 5 4 Semi 1654 5 h 21min 15 s Yes 1022 states

5.2 Integration of ROBOTest and ASM

The ASM vehicle simulator from dSPACE GmbH provides the capability to per-
form software in the loop (SiL) testing of automotive applications. It can be used
to produce realistic simulations of automotive applications in multi-vehicle sce-
narios. The ego vehicle parameters, road and environment parameters and the
numbers and types of traffic objects are all configured before a simulation starts.
The basic approach to ROBOTest and ASM tool integration was to expose key
attributes of a parameterised ASM traffic model through a lightweight wrapper.
By communicating indirectly with ASM through the wrapper, ego vehicle and
traffic object commands could be accessed from the ROBOTest use case model
contained in a configuration file. Such commands include parameterized com-
mands to the ego vehicle and traffic objects for steering, gas, brake etc. Several
command examples can be seen in the C&B use case of Sect. 4.

The wrapper was delegated the responsibility to translate ML generated
use case tests into timed sequences of vehicle commands, and dispatch these
sequences to the simulator. Key simulator variables were then logged by ASM
and recovered by the wrapper. The resulting observation sequences were returned
to ROBOTest for learning.

As the target language for test case translation, we used the ASM scenario
language to specify the detailed actions of the ego vehicle and traffic objects. This
was done in the scenario editor of the ASM ModelDesk application. ModelDesk
also takes care of the road environment definitions and downloading configura-
tion parameters into the ASM VEOS platform.

5.3 ACC Use Case Descriptions

To evaluate the toolchain resulting from integrating the two tools ROBOTest
and ASM, we chose a set of use cases for an ACC application bundled with the
ASM license. The choice was guided by the need for different use case lengths,
complexity and number of actors. The following four use cases for an ACC-
equipped ego vehicle in a multi-vehicle traffic environment were chosen.

1. Following Lead. The ego-vehicle follows a lead vehicle in the same lane, i.e.
it is tracking the lead as its target. The lead vehicle accelerates and decelerates
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within given speed bounds. The ego vehicle should adapt its speed and maintain
its predefined time-gap.
2. Cut-in (c.f. Sect. 4). The ego-vehicle follows a lead vehicle (aka. leader1) in
the same lane that has a constant speed. A cut-in vehicle (aka. leader2) drives
behind the ego vehicle in an adjacent lane. The cut-in vehicle overtakes the ego
vehicle and then performs a cut-in maneuver with constant speed, while leader1
maintains its constant speed. The cut-in vehicle should be selected as target
when it has crossed the lane marking. The ego vehicle ACC should re-establish
the intended time gap with cut-in as the new lead vehicle (leader2).
3. Cut-out. The ego-vehicle follows a cut-out vehicle in the same lane with
constant speed. The cut-out vehicle (aka. leader1) follows another vehicle leader2
in the same lane. The cut-out vehicle speed is not faster than leader2. The cut-
out vehicle changes to an adjacent lane and speeds up to overtake leader2. The
ego vehicle ACC should re-establish the time gap to leader2 as the new target
vehicle to be followed.
4. Overtake. The ego-vehicle follows a lead vehicle leader1 in the same lane.
The ego vehicle performs a manual lane change to the adjacent lane, and then
speeds up to overtake leader1. Another vehicle leader2 is already driving ahead
in the adjacent lane and lies front of the ego vehicle after its lane change. The
ego vehicle ACC should re-establish the time-gap with leader2. After the ego
vehicle passes leader1, and if there is sufficient gap between leader1 and leader3
(which lies ahead of leader1 in the same lane), the ego vehicle switches back to
its original lane. The ego vehicle ACC should then re-establish its time-gap with
leader3.

5.4 ACC Test Objectives

The objective of testing all four uses cases, was to look for violations of two
global safety requirements. The first was a basic no crash/collision requirement
which is considered safety critical. The second safety requirement is that the
observed time gap deviation should never vary by more than 20% of the selected
time gap. We modeled these safety requirements in ROBOTest as follows:

verdict[i] = always(collision = false &
timeGap <= 2.2 & timeGap >= 1.8)

6 Results

Each of the four use cases presented in Sect. 5.3 was formally modeled as an
n-step sequence of input and gate constraints (for appropriate n) using the mod-
eling language presented in Sect. 4. Each constraint model was then embedded
into its own ROBOTest configuration file, and the safety requirements of Sect. 5.4
were added as verdict constraints. The configuration file was then run in a test
session on the integrated ASM-ROBOTest toolchain. Table 1 shows the results
of the four test sessions.
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Fig. 2. A failed test case for the Overtaking Scenario 5.3: (a) test inputs from
ROBOTest, (b) test outputs from ASM

Table 1 shows that errors were found in two of the four use cases. It was
easy to visually inspect the failed test cases reported by ROBOTest and confirm
that the safety requirements were indeed violated (c.f. Fig. 2(b)). Furthermore,
failed test cases could be played back through the ASM simulator in real time
to visualise the full details. Figure 2 shows a complete failed test case for over-
taking, consisting of 17 test vectors for the 4 input parameters that drive a 17 s
simulation. Still images from replaying this test case in ASM can be seen in
Fig. 3, where the ego (i.e. ACC host) vehicle is dark blue. Figure 3(e) shows the
collision in Step 5. Such visualisations can yield further explanatory insight into
why a test failure occurs. In this case, the test failures were mainly collision
errors when a sudden speed change occurred.

Although use case errors were found in the SUT, the models in Table 1 were
not fully converged (i.e. learning was incomplete) This was due to the relatively
low data throughput of a single simulator license. Further research is needed to
evaluate whether multi-threaded machine learning, using more than one simula-
tor, can achieve full convergence (i.e. a completely learned model) in a reasonable
time.
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5

Fig. 3. (a),...,(e): ASM simulator images for all 5 use case steps in the failed overtaking
use case test of Fig. 2 (Color figure online)
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7 Related Work

Active automaton learning for testing is surveyed in [3], where the applications
are mainly unit and integration testing. Our work represents the first attempt
to apply ML to use case testing. The commonest models for automaton learning
are deterministic automata [18,19,27,31,35], non-deterministic finite automata
[5], and extended finite state machines [6]. Our work seems to represent the first
attempt to use chains of intersecting finite automata.

There is a significant literature on TCG for use cases from UML models sur-
veyed in [32]. UML sequence diagrams are sometimes seen as the canonical use
case modeling language, and are prominent in the UML literature on TCG, e.g.
[29]. The linear step ordering (see Sect. 2.1) common to both UML sequence dia-
grams [29] and informal models [8] is faithfully reflected in our CAML approach.
UML state machine models are used in [33] for use case testing. By contrast,
the CAML approach reverse engineers state machine models using ML, and thus
avoids the effort of manual model construction and maintenance. Several authors
have understood the need for constraints to automate use case testing e.g. [29],
[24]. The UML object constraint language (OCL) has typically been used for
this. By contrast, our constraints are based on linear temporal logic (LTL) and
are conceptually closer to the live sequence charts of [16].

Testing semi- and fully autonomous vehicle software is a technically challeng-
ing emerging field where use case modeling languages such as OpenScenario [28]
are currently under development. The case studies presented here extend previ-
ous research into automotive use case testing such as [4,25]. CAML addresses
similar problems to the fuzz testing approach of [15]. However, our constraint-
based approach to modeling and verdicts has wider scope and is more precise
than the randomised approach of [15].

8 Conclusions and Future Work

We have introduced a constrained active machine learning (CAML) architecture
that fully automates use case testing. This architecture can overcome the scal-
ability problems associated with current active automaton learning algorithms
such as L* when applied to highly constrained situations such as use case testing.
We have benchmarked the CAML approach on typical use cases for an embedded
automotive ADAS application, and demonstrated its efficiency and effectiveness.
For this we implemented a prototype of CAML which was integrated with the
industrial vehicle simulator ASM.

There is considerable scope for extension and improvement of our approach.
Future research topics include: (i) additional constraints on use case models
for greater ML efficiency and reduced automaton sizes, (ii) extensions of the
constraint language for wider scope of use case and verdict modeling, and (iii)
interfacing our constraint modeling language to open standards such as UML,
LSC and OpenScenario.
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Abstract. We introduce a new logic named Quantitative Confidence
Logic (QCL) that quantifies the level of confidence one has in the con-
clusion of a proof. By translating a fault tree representing a system’s
architecture to a proof, we show how to use QCL to give a solution to
the test resource allocation problem that takes the given architecture
into account. We implemented a tool called Astrahl and compared our
results to other testing resource allocation strategies.

Keywords: Reliability · Test resources allocation · Logic

1 Introduction

With modern systems growing in size and complexity, asserting their correct-
ness has become a paramount task, and despite advances in the area of formal
verification, testing remains a vital part of the system life cycle due to its ver-
satility, practicality, and low entry barrier. Nevertheless, as test resources are
limited, it is an important task to most effectively allocate them among system
components, a problem commonly known as the test resource allocation problem
(TRAP) (see e. g. [12]). In this paper we formulate the TRAP as follows: given
a system that consists of multiple components and a certain, limited amount of
test resources (e. g. time or money), how much of the budget should we allocate
to each component in order to minimise the chance of system failure, i. e. to
increase its reliability.
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We propose an approach to the TRAP, based on a novel logic system called
Quantitative Confidence Logic (QCL). QCL differs from classical logic, in that
a proof tree does not conclude truth from assumptions, but rather analyses how
confidence is propagated from assumptions to conclusions. We prove key sound-
ness properties of QCL with respect to a probabilistic interpretation (Sect. 2).

Learning a new logic is a hard task, especially to practitioners. Thus we do
not demand users to learn QCL, but take it as an intermediate language to which
already accepted representations of system architectures are translated. As an
example, we show how to translate the well-known concept of fault trees (FTs)
into QCL proof trees (Sect. 3).

We then formulate the TRAP as an optimisation problem with respect to a
given FT, translated to a QCL proof tree (Sect. 4). Here we allow users to specify
a confidence function for each component, which describes how an amount of
spent test resources relates to an increase in that component’s reliability.

We implement our approach as a tool (Astrahl) that takes as input an
FT, a confidence function for each component, the current confidence in each
component, and the total amount of test resources the user plans to spend. Then
Astrahl outputs a proposed allocation of the test resources over components.
We validate our approach through experiments (Sect. 5).

An advantage of our method is that it is not tied to a fixed confidence func-
tion, and can therefore assign different confidence functions to different com-
ponents. This will be useful in modelling systems with highly heterogeneous
components such as cyber-physical systems (CPSs); for example, hardware com-
ponents would demand more effort to increase confidence than software, and
would depend on the type of components or their vendors.

We expect Astrahl to be used continuously in a system’s development: the
confidence in each component increases as they pass more tests. By rerunning
Astrahl with updated component confidences, we obtain a test resource allo-
cation strategy. We expect our approach to be promising in product line devel-
opment, where a number of system configurations are simultaneously developed
with common components. In such a situation, updating confidence in a compo-
nent for one system positively impacts the test strategies for other systems.

1.1 Related Work

Test Resource Allocation. Most approaches to the TRAP use software relia-
bility growth models (SRGMs) such as models based on Poisson Process (e. g. [7])
to capture the relationship between testing efforts and reliability growth, or
in our words, confidence functions. A typical TRAP approach formulates the
problem using a particular SRGM and provides a solution using exact optimi-
sation [10] or a metaheuristic such as a genetic algorithm [19]. A challenge in
this area is to take the structure (inter-module relations) of the target system
into account; existing studies consider particular structures such as parallel-
series architecture [19] or Markovian architecture [13]. In addition, there is
high demand for dynamic allocation methods (e. g. [3]) because in practice
SRGMs, system structures, and testing processes often become different from
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those planned at first. Our approach has multiple beneficial features over the
existing approaches: (1) it is independent of particular SRGMs and optimisation
strategies, (2) it can take complex structure into account using FTs, and (3) it
can be used for dynamic allocation.

Fuzzy Logics. Fuzzy logics [8] is a branch of logic interested in deductions
where Boolean values are too coarse. In its standard semantics [6], formulas are
given a numeric truth value in the interval [0, 1], where 0 represents falsity and
1 truth. These numerical values can be used to represent the confidence one has
in an assertion: we give high values to propositions we are confident are true,
and low values to those we are confident are false. This is slightly different from
our approach, where 1 corresponds to confidence (either in truth or falsity) and
0 to absence of knowledge.

Dempster-Shafer Theory. Dempster-Shafer theory [4,15] is a mathematical
theory of belief. One of its characteristic features is that if one has a belief b
in an assertion, they can have any belief b′ ≤ 1 − b in its negation, contrary to
traditional Bayesian models, where it is necessarily 1 − b. This feature is crucial
to model uncertainty due to absence of knowledge, and Dempster-Shafer theory
has been used to model reliability in engineering contexts [14]. Our approach
draws inspiration from fuzzy and three-valued logics to model this feature.

Fault Tree Analysis. Fault trees [17] are tree structures that represent how
faults propagate through a system. In qualitative FT analysis, they are used to
determine root causes [5]. In quantitative FT analysis, basic events are assigned
fault probabilities, and the overall system failure probability is given by prop-
agating the fault probabilities through the fault tree. Our approach uses the
same ingredients (assigning numeric values to basic events and propagating them
through the fault tree), but repurposed to solve another problem.

2 Quantitative Confidence Logic

This section introduces QCL, which we use throughout this paper. A QCL for-
mula is a standard propositional formula ϕ equipped with a pair of reals, written
ϕ : (t, f), where t ∈ [0, 1] represents our confidence that ϕ holds and f ∈ [0, 1]
the confidence that ϕ does not hold, so t + f represents how much confidence
one has about ϕ, and 1 − t − f lack of confidence about ϕ. Absolute confidence
is represented by 1 and total absence of knowledge by 0, so that ϕ : (1, 0) means
full trust that ϕ holds, ϕ : (0, 0) means we have no knowledge about ϕ, and
ϕ : (1/2, 1/2) represents the fact that we know with very high confidence that ϕ
holds with 50% chance.

In Sect. 2.1 we define the syntax of QCL and introduce its proof rules. We
also show how to derive standard proof rules from them. In Sect. 2.2 we give a
probabilistic interpretation of QCL formulas and show that QCL proof rules are
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sound with respect to it. We also explain how the particular shapes of the rules
serve as the basis of our optimisation algorithm (Sect. 4).

2.1 Syntax and Proof Rules of QCL

This section introduces QCL, starting with formulas with confidences, then
sequents, and finally proof rules.

Definition 1. Given an arbitrary set of atomic propositions Prop, formulas are
defined inductively by the following grammar:

ϕ ::= A | � |⊥ |ϕ ⇒ ϕ,

for A ∈ Prop. We denote by Form the set of all formulas.

As in classical logic, negation, disjunction, and conjunction can be defined
by syntactic sugar ¬ϕ ≡ ϕ ⇒ ⊥, ϕ ∨ ψ ≡ ¬ϕ ⇒ ψ, and ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ).

We now equip such formulas with confidence. We define the space of confi-
dences as C =

{
(t, f) ∈ [0, 1]2 | t + f ≤ 1

}
.

Definition 2. A formula with confidence is a pair (ϕ, c) ∈ Form × C, written
ϕ : c. For ϕ : (t, f), we call t the true confidence in ϕ and f its false confidence.

Intuitively, a formula with confidence ϕ : (t, f) represents the fact that our confi-
dence that ϕ holds is t, and our confidence that ϕ does not hold is f . This should
mean that the chance that ϕ holds is at least t, and the chance that it does not
is at least f . Another way to look at confidences is intervals of probability. Each
confidence (t, f) bijectively determines a sub-interval [t, 1 − f ] of [0, 1]. Then a
formula with confidence ϕ : (t, f) represents that the probability of ϕ being true
is within the interval [t, 1−f ]. We make this intuition more concrete in Sect. 2.2,
where we give an interpretation of QCL in terms of probabilities.

Equipping formulas with numeric values is reminiscent of fuzzy logics1. To
explain the fundamental difference between our approach and fuzzy logics, let
us consider two orders on C. Let (t, f) 
 (t′, f ′) if t ≤ t′ and f ≤ f ′; we call 

the confidence order, as c 
 c′ holds exactly when c′ represents more confidence
(both true and false) than c. Our approach is centred around 
, since we are
interested in “how confident” we are in an assertion. Similarly, let (t, f) ≤ (t′, f ′)
if t ≤ t′ and f ≥ f ′; we call ≤ the truth order, as c ≤ c′ intuitively means that c′ is
“more true” than c. Fuzzy logics is centred around the truth order ≤ (especially
on elements of the form (t, 1 − t)), as it is a logic about how true assertions are.

One way to link our approach to fuzzy logics is via three-valued logics [1].
Fuzzy logics can be seen as equipping formulas with a numeric truth value t ∈
[0, 1] and a falsity value f ∈ [0, 1] such that t + f = 1. This is equivalent to
equipping formulas only with a numeric value t ∈ [0, 1], while f is the implicit
difference to 1. With three-valued logics, formulas have three possible outcomes:
truth �, falsity ⊥, and uncertainty ⊥�, and each is given a value t, f , and u, such
1 Here, we mean fuzzy logics interpreted in [0, 1].
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that t + f + u = 1, which is equivalent to equipping them with (t, f) ∈ [0, 1]2

such that t+f ≤ 1, while u is implicit. Dempster-Shafer theory is similar, with t
representing our belief in ϕ, f our belief in ¬ϕ, and u our degree of uncertainty.

We now introduce the sequents on which QCL operates.

Definition 3. A sequent in QCL, written Γ � ϕ : c, consists of a finite set Γ ⊆
Form × C of formulas with confidences (written as a list), a formula ϕ ∈ Form,
and a confidence c ∈ C.

Such a sequent intuitively means that, if all formulas with corresponding confi-
dences in Γ hold, then ϕ holds with confidence c as well.

Fig. 1. Proof rules of Quantitative Confidence Logic

Definition 4. Proof trees in QCL are built from the QCL proofs rules given in
Fig. 1. There, the notation χ : (t′′, f ′′) in conclusions is a shorthand for

χ : (min(max(t′′, 0), 1),min(max(f ′′, 0), 1)).

Note that (t′′, f ′′) ∈ C because t′′ + f ′′ ≤ 1 in all rules. Note also that rules
(⇒E,l) and (⇒E,r) are conditioned so that confidence values do not contain
indeterminate forms 0/0. These side conditions correspond to the facts that, if
ϕ ⇒ ψ is true, ϕ being false gives no information about ψ, and ψ being true
gives no information about ϕ.

(ax), (�I), and (⊥I) are self-explanatory, while (unk) states that anything
can be proved, but with null confidence. One way to think about (⇒I) is that,
if ϕ and ψ are independent (in a way made precise in Sect. 2.2), ϕ holds with
probability in [t, 1 − f ] and ψ with probability in [t′, 1 − f ′], then ϕ ⇒ ψ holds
with probability in [f +t′ −ft′, tf ′]. The elimination rules are designed similarly.

From the rules in Fig. 1 and the encodings of negation, disjunction, and
conjunction, we can derive the introduction rules in Fig. 2 (we can also derive
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Fig. 2. Derivable introduction rules

elimination rules, but do not discuss them here). A point worth attention is
that the shape of these rules is quite unorthodox. In particular, one should not
need to have confidence in both disjuncts to have confidence in a disjunction.
However, this unorthodox shape is exactly the reason why our solution to the
TRAP (defined in Sect. 4) works well, as we show in Example 16. Moreover, we
can derive a disjunction from a single disjunct, as:

Γ � ϕ : (t, f)
(unk)

Γ � ψ : (0, 0)
(∨I),

Γ � ϕ ∨ ψ : (t + 0 − t · 0, f · 0) = (t, 0)

which represents (one of) the usual disjunction introduction rules.

Remark 5. QCL rules are different from those of classical logic and do not extend
them. Because the rules’ design is strongly centred around how confidence flows
from hypotheses to conclusions and based on independence of hypotheses, QCL
cannot prove sequents such as ∅ � A ⇒ A : (1, 0). How to allow reasoning about
both confidence and truth in the same logic is left for future work.

Example 6. The correctness of a system with software and hardware components
is based on the correctness of both components. A classical logical proof that
the system is correct assuming both its software and hardware are correct is:

(ax )
Γ � software

(ax )
Γ � hardware (∧I),

Γ � software ∧ hardware

where Γ = {software,hardware}. By adding confidence to the formulas, we
derive confidence in the assertion that the whole system is correct as a QCL
proof:

(ax )
Γ � software : (0.5, 0.2)

(ax )
Γ � hardware : (0.3, 0.01)

(∧I).
Γ � software ∧ hardware : (0.15, 0.208)

If we assume the software system is built from components that are difficult
to prove reliable (e. g. machine learning algorithms), but much testing effort
has been spent on it, then both true and false confidence may be high, as in
the example above. On the contrary, if there are no reasons not to trust the
hardware (e. g. it is made of very simple, reliable components), but less testing
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effort has been spent on it, then both true and false confidence may be lower
than those of the software system.

It may seem unnecessary to keep track of false confidence, since our ultimate
goal is to prove system reliability (and not unreliability). However, there are
several cases in which we may want to use it. For instance, the calculation of
how often a volatile system fails can be translated to a false confidence problem.
Moreover, systems with failsafe mechanisms, e. g. if A works, use module B,
else use module C, need to take the unreliability of A into account. Otherwise,
the whole system’s reliability could not be correctly expressed, as it would only
depend on A and B. Hence, the optimisation would ignore the reliability of C.

Remark 7. In Fig. 2, negation is an involution, and the reader familiar with
fuzzy logics will have noticed the product T-norm and its dual probabilistic
sum T-conorm in the rules (∧I) and (∨I). Negation is an involution of [0, 1] in
fuzzy logics, and T-norms and T-conorms are the standard interpretations of
conjunction and disjunction in fuzzy logics, which hints at a deep connection
between our approach and fuzzy logics. However, implication is not interpreted
as a residual, which again differentiates our approach from fuzzy logics.

2.2 Interpretation as Random Variables

In this section, we justify the QCL proof rules by giving formulas a probabilistic
semantics and showing that these rules are sound.

We start with some measure-theoretic conventions. We write 2 to mean the
discrete measurable space over the two-point set B = {�,⊥}. Boolean algebraic
operations over 2 are denoted by ∧, ⇒, etc. (There should be no possible confu-
sion with formulas.) For a probability space (Ω,F, P ) (or Ω for short), Meas(Ω, 2)
denotes the set of 2-valued random variables. A context is a Prop-indexed family
of 2-valued random variables, given as a function ρ : Prop → Meas(Ω, 2).

Definition 8. Given a space (Ω,F, P ), we inductively extend a context ρ to a
Form-indexed family of 2-valued random variables ρ̄ : Form → Meas(Ω, 2):

ρ̄(A) = ρ(A), ρ̄(�)(x) = �, ρ̄(⊥)(x) = ⊥, ρ̄(ϕ ⇒ ψ)(x) = ρ̄(ϕ)(x) ⇒ ρ̄(ψ)(x).

The semantics �ϕ�Ω,ρ of a formula ϕ in a space Ω and context ρ is defined to be
the probability P [ρ̄(ϕ) = �] of ϕ being true under ρ. We say that ϕ : (t, f) holds
in Ω and ρ if �ϕ�Ω,ρ ∈ [t, 1− f ]. We say that a sequent Γ � ϕ : c holds in Ω and
ρ, if ϕ : c holds in Ω and ρ whenever all ψ : c′ in Γ hold in Ω and ρ.

In other words, the semantics of ϕ is the measure of the space on which ϕ holds,
and ϕ : (t, f) holds if ϕ is true on at least t of the space and false on at least f .

From here on, we only consider independent contexts, i. e. ρ’s such that the
random variables ρ(A) are mutually independent for all atomic propositions A.

The following lemma lifts independence of ρ to ρ̄.

Lemma 9. Let Ω be a space and ρ an independent context. If ϕ and ψ share
no atomic propositions, then for all S, T ⊆ B, the following holds:

P [ρ̄(ϕ) ∈ S ∧ ρ̄(ψ) ∈ T ] = P [ρ̄(ϕ) ∈ S]P [ρ̄(ψ) ∈ T ].
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Proof. By strengthening the proposition to finitely many ϕ’s and ψ’s, then by
induction on: max depth of ϕ’s, number of ϕ’s of max depth, max depth of ψ’s,
and number of ψ’s of max depth (with lexicographic order).

We can finally prove soundness of the rules.

Lemma 10. For all rules in Fig. 1, formulas ϕ and ψ that share no atomic
propositions, spaces Ω, and independent contexts ρ, if the premise sequents hold
in Ω and ρ, then so does the conclusion.

Proof. Simple computations relying on Lemma 9.

Corollary 11. If ϕ is linear (each atomic proposition appears at most once)
and a proof π of Γ � ϕ : c only uses base rules and introduction rules, then
Γ � ϕ : c holds in all spaces Ω and independent contexts ρ.

3 Translating System Architectures to Proofs

In this section, we translate FTs [17] to QCL proof trees. This allows us to use
a system’s architecture—modelled as an FT—in our solution to the TRAP. The
way this translation works is close to quantitative fault tree analysis, where FTs
are equipped with fault probabilities. In our translation, these fault probabilities
are translated to confidences in QCL proofs.

Definition 12. A fault tree is a tree whose leaves are called basic events, and
whose nodes, called gate events, are either AND or OR gates.

Basic events represent independent components of a system, and the tree struc-
ture represents how faults propagate through the system. The system fails if
faults propagate through the root node. The usual definition of fault trees is
more general than the one we give here, but we use this one for simplicity.

A B C D

Γ � A Γ � B
Γ � A ∨ B

Γ � C Γ � D
Γ � C ∨ D

Γ � (A ∨ B) ∧ (C ∨ D)

Fig. 3. A fault tree and its translation as a proof tree
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Example 13. The FT in Fig. 3a represents a system composed of four basic com-
ponents A, B, C, and D. For a fault to propagate through the system and
become a failure, either both A and B have to fail, or both C and D (e. g., A
and B could be redundant components, doubled to increase reliability).

In quantitative fault tree analysis [5], failure probabilities are assigned to basic
events, and they propagate through event gates as if mutually independent. In
other words, if the failure probabilities of an AND gate’s inputs are a and b, then
its output failure probability is ab, and a + b − ab for an OR gate.

We translate fault trees to QCL proof trees as follows: The set Prop of atomic
propositions collects all the names of basic events. Γ consists of A : (tA, fA) for
each A ∈ Prop. AND gates are translated to (∨I) rules, and OR gates to (∧I) rules.

The reason for this dualisation is straightforward: while a fault tree represents
how faults propagate, proof trees represent confidence in a system’s reliability,
i. e., how absence of faults propagates: the true confidence in each atomic propo-
sition in Γ now represents reliability of the component, and the true confidence
in the conclusion represents reliability of the whole system.

Example 14. The translation of the fault tree of Fig. 3a is shown in Fig. 3b (with
confidences left out for readability). Here, Prop = {A,B,C,D} and the true
confidence in the conclusion of the proof is tAtB + tCtD − tAtBtCtD. We can
thus link increases in the reliability of components to increases in reliability of
the whole system.

Note that the translation of a fault tree only uses base rules and introduction
rules (more precisely, only (ax), (∧I), and (∨I)). This is partly because we only
consider AND and OR gates, but more essentially, basic events of fault trees are
considered atomic and thus there is no need to eliminate logical connectives.
Moreover, an assignment of failure probabilities to basic events translates to a
context ρ in QCL terms. Since all basic events are considered independent in an
FT, their translation gives an independent context ρ. Therefore, the translation
of a fault tree always verifies Corollary 11, and our interpretation as a QCL
proof tree is sound for any assignment of failure probabilities to basic events.
This means that, if the confidence in all basic components corresponds to their
reliability, then the confidence of the whole proof cannot overshoot the whole
system’s reliability.

Since we translate fault probabilities to confidences, and fault probabilities
are directly linked to reliability, we may use “reliability” and “confidence” inter-
changeably in the following, e. g. when we feel that reliability conveys a better
intuition than confidence.

4 Solving the Test Resource Allocation Problem

In this section, we show how to optimise confidence in the conclusion of a QCL
proof. This gives a solution to the TRAP through the translation of FTs to QCL
proofs that was described in Sect. 3.
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In order for this approach to be usable in practice, the user has to be able to
specify two input parameters: the FT that represents the system’s architecture,
and functions describing how confidence in each component’s reliability grows by
spending resource on it. FTs are commonly used in the industry, so modelling a
system using them should be no problem in practice. We first describe the latter
input parameter in Sect. 4.1 and then give our solution to the TRAP in Sect. 4.2.

4.1 Confidence Functions

Increasing confidence in a proof’s conclusion requires an increase in its premises’
confidences. The cost of increasing confidence may vary among premises; when
thinking in terms of systems (rather than proofs), for instance, increasing trust
in a machine learning algorithm may require more effort than improving hard-
ware reliability. This is a well-known problem, for which many solutions have
been designed, especially SRGMs, which are based on mathematical modelling of
faults [18]. Here, however, we do not choose a particular fault model and instead
introduce the following abstract notion, which makes the approach versatile.

Definition 15. A confidence function is a non-decreasing function f : R+ → C

(equipped with 
).

The equality f(r) = c means that after spending r resources on a formula,
one will have confidence c in the formula. The monotonicity condition above
enforces that, by spending more resources, confidence should not decrease.

Note that f(0) can be different from (0, 0), which corresponds to the fact
that engineers usually have some confidence in the components they use. This
feature also makes it easy to use our approach in continuous development, by
using confidence functions fs(r) = f(r + s) where s is the amount of resource
that has been already spent to test a component.

Note also that a confidence function may increase the false confidence, theo-
retically capturing the fact that faults may found by testing. For an application
on the TRAP, however, we assume that faults will be fixed and thus false confi-
dence always stays at 0. In the following, we thus define confidence functions as
increasing functions f : R+ → [0, 1], which represents the true confidence, and
assume the false confidence is always 0.

Designing Confidence Functions. Of course, expert knowledge on a com-
ponent can be used to give a good estimate of confidence functions, but other
techniques, such as defect prediction [11], exist for when knowledge is limited.

When testing is the canonical way to increase confidence, notions of test
coverage serve as a good estimate of confidence. If we have a hardware test suite
of n tests that achieves 100% coverage (but not enough budget to execute them
all), and each test costs r0 resources, then the coverage achieved by spending r
resources in testing can be estimated as the confidence f(r) = min(r/nr0, 1).

If we do not have such a test suite, then a reasonable way to model confidence
is to assume uniform random testing. There we assume that each test covers a
randomly sampled fraction p of the input space, but parts of it might be already
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covered by previous tests. If running a test costs r0 resources, then a good
estimate of confidence function is f(r) = 1 − (1 − p)r/r0 .

If more is known about the component, then it is possible to design confidence
functions that are better suited for this component. In particular, if we have
some a priori knowledge about fault distributions, then it is possible to use
SRGMs [18] as confidence functions.

4.2 The Optimisation Problem

We now formulate the TRAP as an optimisation problem in terms of QCL as
follows: given a QCL proof, a confidence function for each premise, and a resource
budget to spend, how should we spend the budget on the different premises to
maximise confidence in the proof’s conclusion?

We only consider the problem of optimising true confidence because the appli-
cation we are aiming at is about reliability. However, with the same ingredients,
we could define similar optimisation problems. For example, we could try to opti-
mise total confidence t + f under limited resources, or try to minimise resources
spent to reach a given confidence objective (either in true or total confidence).

We begin with a simple observation: if ϕ1 : c1, . . . , ϕn : cn � ϕ : c is provable,
then c is a non-decreasing function of the ci’s (for the confidence order 
). Hence,
increases in the ci’s confidence lead to increases in c.

Because, for the translation of an FT, the true confidence of the conclusion
has to be a function f(t1, . . . , tn) of the true confidences of the hypotheses, if the
confidence of each hypothesis is given by applying a confidence function fi to an
amount of resources ri spent on that hypothesis, then the true confidence of the
conclusion is itself a function f(f1(r1), . . . , fn(rn)) of the amount of resources
spent on the hypotheses.

The problem is thus the following: given an initial condition r1, . . . , rn, confi-
dence functions f1, . . . , fn, a proof of {ϕi : (ci, 0) | i ∈ n} � ϕ : (f(c1, . . . , cn),−),
and a budget r, maximise f(f1(r1 + r′

1), . . . , fn(rn + r′
n)) under r′

i ≥ 0 for all
i ∈ n and

∑
i∈n r′

1 ≤ r.
We thus reduce the TRAP to a classic constrained optimisation problem,

which we can solve using well-known algorithms. In our implementation, we
use simulated annealing [16], but any other method (such as CMA-ES [9] or
Lagrange multipliers [2]) would work too.

Example 16. Take the QCL proof from Example 13. Suppose that the confidence
functions of components follow f(r) = 1−1/2r, the amount of resources already
spent on the components are 0 for A, 5 for B and C, and 10 for D, and we have
a test resource budget of 10. Then we want to maximise

(1 − 1/2a)(1 − 1/25+b) + (1 − 1/25+c)(1 − 1/210+d)

− (1 − 1/2a)(1 − 1/25+b)(1 − 1/25+c)(1 − 1/210+d)

under the constraints a, b, c, d ≥ 0, and a + b + c + d ≤ 10. There are two major
points to note here. First, due to the fact that (∨I) requires both disjuncts to
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be proved, the optimisation will try to increase confidence of both A and B,
rather than choose one. Second, since we take system structure into accounr,
the algorithm can give B and C different budgets, even though they share the
same initial confidence and confidence function.

Our approach has significant advantages over other TRAP solutions. First, it
makes use of the system’s architecture, which is not the case of most approaches.
Even other approaches that take system architecture into account generally
only consider simple architectures, such as parallel-series architecture [19]. These
architectures can be directly translated to FTs, but the converse is not possible
without duplicating modules, which puts artificial weight to these duplicated
modules. Moreover, we explained how to convert an FT to a QCL proof, but our
algorithm is not limited to FTs and would work on other proofs.

Another advantage of our method is that it is not tied to any specific confi-
dence function. The main advantage of this generality is that it allows the user
to pick different confidence functions for different components. In particular, this
approach should be helpful when allocating test resources for CPSs, where some
components are software, while others are hardware, which most likely require
to be modelled using different confidence functions.

5 Experimental Results

In this section, we describe the results of our experiments, showing that our
tool Astrahl2 can increase system reliability more consistently than others. To
demonstrate the tool’s performance, we designed two experiments. The first one
compares Astrahl’s confidence gain to other test resource allocation (TRA)
strategies. The second, more involved experiment tests whether the increase
in confidence provided by Astrahl is linked to an increase in system reliabil-
ity. Given an FT and confidence functions, we simulate existence of component
faults, before splitting a fixed testing budget according to different TRA strate-
gies (one of which is our approach). We then mimic component testing according
to the allocated budget and fix faults if they are found, thereby increasing sys-
tem reliability. Our evaluation repeats the probabilistic process to test which
method gives the best reliability on average.

We developed Astrahl, which implements the TRA algorithm described in
Sect. 4. It takes as input JSON descriptions of the fault tree and the confidence
functions (as parse trees), an initial condition (a float for each basic event), and
a budget (a float), and returns a splitting of the budget between the different
basic events (a float for each basic event).

This section evaluates our claims and analyses Astrahl’s system confidence
gains to other, more naive approaches. We first ask how much confidence we
can gain by using Astrahl, rather than simpler TRA approaches. Then, we test
whether using Astrahl can increase system reliability in practice. Specifically,
this section will investigate the following two research questions:
2 The code and experimental data are publicly available on https://github.com/

ERATOMMSD/qcl tap 2021.

https://github.com/ERATOMMSD/qcl_tap_2021
https://github.com/ERATOMMSD/qcl_tap_2021


34 C. Eberhart et al.

RQ1 Given a certain TRA budget, how much is the calculated confidence gain
when using Astrahl and how do these figures compare to alternative TRA
methods?

RQ2 Does Astrahl’s gain in confidence translate to a gain in system reliability
in a practical scenario where testing practice is simulated?

Alternative TRA Approaches. There exist numerous solutions to test
resource splitting, however some of the most common ones are the uniform and
proportional resource allocation strategies (see Fig. 4), as they do not require
knowledge of the system structure or fault distribution. Uniform TRA, for
instance, evenly distributes the available resources among the candidate com-
ponents. This technique is completely agnostic of the current system and com-
ponent confidences. Proportional TRA on the other hand aims to take current
component confidence into account and provide proportionally more resources
to components in which we have lower confidence. Although it uses current con-
fidences for resource allocation, the system’s structure is still not considered.

0.0 resources
0

confidence
1.0 c(r) = 1 − 0.99(r+1)

100 200 300 400 500100

0.64

200

0.87

300

0.95

•

•
•

Uniform
Proportional

Fig. 4. Allocation of test budget according to common strategies

5.1 RQ1: Theoretical Evaluation

Naive approaches might coincidentally be equally good as elaborate techniques,
given the right system architecture and initial confidences. We therefore chose
to perform our comparison on a set of randomly generated initial confidences
(later referred to as starting points (SPs)) and fault trees (FTs). It is natural
to expect Astrahl’s insight into system structure and component confidences
to outperform naive strategies as the systems grow in size and complexity3.
Therefore, we only verify Astrahl’s superiority on relatively small systems and
simple confidence functions. We thus fixed an FT size of six devices connected
by five binary AND and OR gates. Furthermore, confidences behave according to

3 Functional optimisation may not be as efficient in larger dimensions, but even a naive
estimate should give a better result than completely ignoring system structure.
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the function c(r) = 1 − 0.99(r+1) for all devices, where r represents the invested
resources and c the confidence, as displayed in Fig. 4.

Using these settings, we generated 200 FTs and instantiated each with 100
random SPs in the range of 100 to 300, corresponding to initial confidences
between approximately 0.64 and 0.95. Using this data set we let Astrahl and its
competitors distribute total budgets of size 1, 10, 50, 100, 250, 500, and 1000.

5.2 RQ2: Empirical Evaluation

To address RQ2 it is necessary to create an evaluation setting that allows the
simulated distribution of (hidden) component faults, their (potential) discovery
through testing or experimentation effort and subsequent removal, and finally
a calculation of the system confidence based on the remaining, undiscovered
faults. Our approach is based on the probabilistic creation of fault distributions
(FDs), i. e. assignments of faults to components according to their respective
confidences. These faults will be probabilistically found and removed by allocat-
ing resources to a component, simulating e. g. experimentation or testing. Our
hypothesis is that, given initial component confidences that reflect the compo-
nents’ reliabilities, Astrahl should be able to outperform its competitor algo-
rithms and on average lead to higher overall system confidence.

The evaluation process is split into three phases. First, faults are assigned to
components according to geometric distributions with parameter p = 1−c, where
c is our initial confidence in the component. Therefore, components in which we
have more confidence will on average contain fewer faults. Next, the faults are
removed probabilistically during a “testing phase” as follows. We arbitrarily
assume that each test costs 10 resources4. Each fault has an observability of 0.1,
i. e. each test has a 10% chance to detect this particular fault. When a TRA
strategy assigns r resources to a component with n faults, t = � r

10� full tests are
run on it. Each test has a 10% chance to find and remove each of a component’s
n faults. If r > 10t, i. e. there is remaining budget, a “partial” test is run with
proportionally reduced chance to find faults. After this phase, we end up with
n′ faults in each component. Finally, the system fault probability is calculated.
As above, during operation each fault’s observability is 0.1, so a component’s
failure probability can be calculated as 1 − 0.9n′

if it contains n′ faults. The
entire system’s failure probability can then be calculated using all components’
failure probabilities and the standard propagation of fault probabilities in FTs.

Due to the probabilistic nature of this evaluation we repeated this process
for 50 FTs, 50 SPs (range 10 to 70)5 for each FT and 50 random FDs for each
SP, totalling to 125,000 FDs. We computed test resource allocations using test
budgets of 60, 120, 240, 360, 480 and 600, executed the testing and fault removal
process 100 times for each FD and test budget, and subsequently calculated the
average FT failure probability, for a total of 75,000,000 computations.

4 It would equally be possible to assume a test costs one resource and scale the budget.
5 We used smaller confidence so that components will usually contain faults.
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5.3 Evaluation Results

The experiment results for RQ1 are shown in Fig. 5a and Fig. 5b. Figure 5a shows
the average system reliability according to the total budget and relative differ-
ence to Astrahl’s score (1−r)−(1−r′)

1−r = r′−r
1−r , where r is the reliability computed

by Astrahl, and r′ that computed by its competitor (this measure is closer to
intuition than (r − r′)/r when both confidences are close 1). The error bars in
Fig. 5b represent mean squared error in system reliability. Note that Astrahl
outperforms each of the competitors independent of the budget size. It is also
noteworthy that although with higher budgets the system becomes very reliable
independent of the strategy, the relative performance increase of Astrahl when
compared to its competitors grows significantly. In other words, spending a large
amount of resources increases obviously the system performance, but it is still
better to follow Astrahl’s suggestions.

Fig. 5. Theoretical evaluation: average system reliability and relative difference

Fig. 6. Empirical evaluation: system reliability and relative difference

Figure 6a and Fig. 6b display the results of the empirical evaluation (RQ2).
Here, the error bars correspond to mean squared error of the average over all
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FDs (for each SP). As can be seen, also here Astrahl outperforms other TRA
strategies. Interestingly though, Astrahl’s relative advantage is not as high.
An initial investigation suggests the cause for this observation at the discrete
nature of the evaluation setting, where in many cases all faults of a component
are removed, which leads to full confidence in this component.

Summarising our evaluations it can be said that Astrahl is better-suited
for identifying where to place test effort than alternative approaches. The
experiments show significant relative gains in both theoretical and practical
approaches, even for rather small, straightforward systems as in our setting.
For more complex systems, we expect Astrahl’s insight into the system’s struc-
ture and the components’ confidence should make its advantage even clearer,
although this has yet to be validated by experimental results.

6 Conclusion and Future Work

We have defined Quantitative Confidence Logic, which represents confidence in
assertions and have argued that this logic can help us take system architecture
into account when solving the test resource allocation problem (TRAP) and
shown the validity of the approach through experimental results. We have also
argued that this approach is widely applicable, e. g., because it does not rely on
particular assumptions about fault distributions.

The simplicity and versatility of our approach makes it possible to tackle
different problems with the same ingredients. An obvious possible future work
is to study the TRAP in different settings, for example by implementing multi-
objective optimisation, or by studying it in a broader setting, where the con-
fidence gained by running a test depends on the result of the test. We should
also experimentally validate our expectation on the scalability of our approach
in industry-scale case studies. It would also be interesting to see how solving the
TRAP when optimising the total confidence t + f compares to solving it with
the current setting, especially on volatile systems. Another possible direction
is to study how this approach can be used to solve test prioritisation between
different components of a system.

We also want to investigate the logic itself more thouroughly from a purely
logical point of view. For example, by changing the interpretation of connectives
in three-valued logic, or using different T-norms and T-conorms in the definitions
of the rules. Another interesting aspect would be to investigate its links with
fuzzy logics and Dempster-Shafer theory deeper, as there seems to be some deep
connections. In particular, ties to fuzzy logics would give a bridge between a
logic about confidence and a logic about truth, which could help us develop
QCL further.
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1 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
dylan.marinho@loria.fr

2 Department of Computer Science, Aarhus University, Aarhus, Denmark

Abstract. Parametric timed automata are a powerful formalism for
reasoning on concurrent real-time systems with unknown or uncertain
timing constants. In order to test the efficiency of new algorithms, a
fair set of benchmarks is required. We present an extension of the IMI-
TATOR benchmarks library, that accumulated over the years a number
of case studies from academic and industrial contexts. We extend here
the library with several dozens of new benchmarks; these benchmarks
highlight several new features: liveness properties, extensions of (para-
metric) timed automata (including stopwatches or multi-rate clocks), and
unsolvable toy benchmarks. These latter additions help to emphasize the
limits of state-of-the-art parameter synthesis techniques, with the hope
to develop new dedicated algorithms in the future.

Keywords: Case studies · Models · Parametric timed automata

1 Introduction

Timed automata (TAs) [10] are a powerful formalism for reasoning on concur-
rent real-time systems. Their parametric extension (parametric timed automata,
PTAs [11]) offer the use of timing parameters (unknown or uncertain timing
constants), allowing to verify properties on a model at an earlier design stage,
or when the exact values of constants at runtime may be unknown. The model
checking problem with its binary answer (“yes”/“no”) becomes the parameter
synthesis problem: “for which values of the parameters does the model satisfy
its specification?”.

In the past few years, a growing number of new synthesis algorithms were
proposed for PTAs, e.g., using bounded model-checking [38], compositional veri-
fication [24,26], distributed verification [20], for liveness properties [18,27,43], for
dedicated problems [31]—notably for testing timed systems [14,17,18,34,41,42].
However, these works consider different benchmarks sets, making it difficult to
evaluate which technique is the most efficient for each application domain.
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A benchmarks suite for (extended) PTAs can be used for different purposes: i)
when developing new algorithms for (extensions of) PTAs and testing their effi-
ciency by comparing them with existing techniques; ii) when evaluating bench-
marks for extensions of TAs [10] (note that valuating our benchmarks with a
parameter valuation yields a timed or multi-rate automaton); and iii) when
looking for benchmarks fitting in the larger class of hybrid automata [9].

Contribution. In [2,15], we introduced a first library of 34 benchmarks and
122 properties, for PTAs. However, this former library suffers from sev-
eral issues. First, its syntax is only compatible with the syntax of version
2.12 of IMITATOR [21], while IMITATOR recently shifted to version 3.0 [16],
with a different calling paradigm.1 Second, the former version contains exclu-
sively safety/reachability properties (plus some “robustness” computations [23]).
Third, only syntactic information is provided (benchmarks, metrics on the bench-
marks), and no semantic information (expected result, approximate computation
time, and number of states to explore).

In this work, we extend our former library with a list of new features, includ-
ing syntactic extensions (notably multi-rate clocks [8]); we also focus on unsolv-
able case studies, i.e., simple examples for which no known algorithm allows
computation of the result, with the ultimate goal to encourage the community
to address these cases. In addition, we add liveness properties. Also, we add
semantic criteria, with an approximate computation time for the properties, an
expected result (whenever available) and an approximate number of explored
states. The rationale is to help users by giving them an idea of what to expect
for each case study. Also, our consolidated classification aims at helping tool
developers to select within our library which benchmarks suit them (e.g., “PTAs
without stopwatches, with many locations and a large state space”).

To summarize, we propose a new version of our library enhancing the former
one as follows:

1. adding 22 new benchmarks (39 models)
– adding benchmarks for liveness properties;
– adding a set of toy unsolvable benchmarks, to emphasize the limits of

state-of-the-art parametric verification techniques, and to encourage the
community to develop new dedicated algorithms in the future;

2. refactoring all existing benchmarks, so that they now implement the syntax
of the 3.0 version of IMITATOR;

3. providing a better classification of benchmarks;
4. highlighting extensions of (parametric) timed automata, such as multi-rate

clocks [8], stopwatches [29], . . .
5. offering an automated translation of our benchmarks to the new JANI [1,

28] model interchange format, offering a unified format for quantitative

1 While many keywords remain the same in the model, the property syntax has been
completely rewritten, and the model checker now takes as input a model file and a
property file. In addition, new properties are now possible, and the syntax has been
extended with some useful features such as multi-rate clocks.

https://github.com/imitator-model-checker/imitator/releases/tag/v2.12
https://github.com/imitator-model-checker/imitator/releases/tag/v3.0.0
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automata-based formalisms. This way, the library can be used by any tool
using JANI as an input format, and supporting (extensions of) TAs. Even
though other tools implementing the JANI formalism do not handle param-
eters, they can run on instances of our benchmarks, i.e., by valuating the
PTAs with concrete valuations of the parameters.

Table 1. Selected new features

Library Size Metrics Format Categories Properties Analysis
Version Bench. Models Prop. Static Semantic .imi JANI Unsolvable EF TPS liveness Results
1.0 [2] 34 80 122

√ × 2.12 × × √ √ × ×
2.0 [6] 56 119 216

√ √
3.0

√ √ √ √ √ √

We summarize the most significant dimensions of our extension in Table 1. EF
(using the TCTL syntax) denotes reachability/safety, and TPS (“trace preser-
vation synthesis”) denotes robustness analysis.

Outline. We discuss related libraries in Sect. 2. We briefly recall IMITATOR
PTAs in Sect. 3. We present our library in Sect. 4, and we give perspectives in
Sect. 5.

2 Related Libraries

RTLib [45] is a library of real-time systems modeled as timed automata. Contrary
to our solution, it does not consider parametric models.

Two hybrid systems benchmarks libraries were proposed in [30,32]. Despite
being more expressive than PTAs in theory, these formalisms cannot be com-
pared in practice: most of them do not refer to timing parameters. Moreover,
these libraries only focus on reachability properties.

The PRISM benchmark suite [39] collects probabilistic models and proper-
ties. Despite including some timing aspects, time is not the focus there.

The collection of Matlab/Simulink models [36] focuses on timed model check-
ing, but has no parametric extensions. Two of our benchmarks (accel and gear)
originate from a translation of their models to (extensions of) PTAs [22].

The JANI specification [28] defines a representation of automata with quanti-
tative extensions and variables. A library of JANI benchmarks is also provided;
such benchmarks come from PRISM, Modest, Storm and FIG, and therefore
cannot be applied to parameter synthesis for timed systems.

Also, a number of model checking competitions started in the last two
decades, accumulating over the years a number of sets of benchmarks, such
as the ARCH “friendly competition” [3,33], the Petri Nets model checking
contest [5,12], the MARS workshop repository [4], the WATERS workshop
series [44], etc.
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Our library aims at providing benchmarks for parameter synthesis for (exten-
sions of) TAs. Notably, we go beyond the TA syntax (offering some benchmarks
with multi-rate clocks, stopwatches, timing parameters, additional global vari-
ables), while not offering the full power of hybrid automata (differential equa-
tions, complex flows). To the best of our knowledge, no other set of benchmarks
addresses specifically the synthesis of timing parameters.

3 Parametric Timed Automata

Parametric Timed Automata (PTAs). Timed automata (TAs) [10] extend finite-
state automata with clocks, i.e., real-valued variables evolving at the same rate 1,
that can be compared to integers along edges (“guards”) or within locations
(“invariants”). Clocks can be reset (to 0) along transitions. PTAs extend TAs
with (timing) parameters, i.e., unknown rational-valued constants [11]. These
timing parameters can have two main purposes:

– model unknown constants, and synthesize suitable values for them, at an
early design stage; or

– verify the system for a full range of constants, as their actual value may not
be exactly known before execution; this is notably the case of the FMTV
Challenge by Thales at WATERS 2015 [44] that features periods known with
a limited precision only (i.e., constant but of unknown exact value), and that
we were able to solve using parametric timed automata [46]. (This benchmark
FMTV1 is part of our library.)

PTAs can be synchronized together on shared actions, or by reading shared
variables. That is, it is possible to perform the parallel composition of several
PTAs, using a common actions alphabet. This allows users to define models
component by component.

Example 1. Consider the toy PTA in Fig. 2a. It features two clocks x and y, one
parameter p and two locations. �0 is the initial location, while �f is accepting.
The invariant, defining the condition to be fulfilled to remain in a location, is
depicted as a dotted box below the location (e.g., x ≤ 1 in �0). A transition
from �0 to �f can be taken when its guard (“x = 0 ∧ y = p”) is satisfied; the
other transition (looping on �0) can be taken whenever x = 1, resetting x to 0.

Observe that, if p = 0, then the guard x = 0 ∧ y = 0 is immediately true,
and �f is reachable in 0-time. If p = 1, the guard becomes x = 0∧y = 1, which is
not initially satisfied, and one needs to loop once over �0, yielding x = 0∧y = 1,
after which �f is reachable. In fact, it can be shown that the answer to the
reachability synthesis problem “synthesize the valuations of p such that �f is
reachable” is exactly p = i, i ∈ N.

Extending the PTAs Syntax. Our library follows the IMITATOR syntax. There-
fore, some benchmarks (clearly marked as such) go beyond the traditional PTAs
syntax, and are referred to IPTAs (IMITATOR PTAs). These extensions include:
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Fig. 1. The IMITATOR benchmark library Web page

Urgent locations. Locations where time cannot elapse.
Global rational-valued variables. Such “discrete” variables can be updated

along transitions, and can also be part of the clock guards and invariants.
Arbitrary flows. Some benchmarks require arbitrary (constant) flows for

clocks; this way, clocks do not necessary evolve at the same time, and can
encode different concepts from only time, e.g., temperature, amount of com-
pletion, continuous cost. Their value can increase or decrease at any prede-
fined rate in each location, and can become negative. In that sense, these
clocks are closer to continuous variables (as in hybrid automata) rather
than TAs’ clocks; nevertheless, they still have a constant flow, while hybrid
automata can have more general flows. This makes some of our benchmarks fit
into a parametric extension of multi-rate automata [8]. This notably includes
stopwatches, where clocks can have a 1 or 0-rate [29].

4 The Benchmarks Library

4.1 Organization

The library is made of a set of benchmarks. Each benchmark may have different
models: for example, Gear comes with ten models, of different sizes (the number
of locations notably varies), named Gear:1000 to Gear:10000. Similarly, some
Fischer benchmarks come with several models, each of them corresponding
to a different number of processes. Finally, each model comes with one or more
properties. For example, for Gear:2000, one can run either reachability synthesis,
or minimal reachability synthesis.

The benchmark library, in its 2.0 version, covers 56 benchmarks, which group
119 models and 216 properties.

From the previous version [15], 39 models have been added: beyond all
Unsolvable models, and a few more additions, we notably added a second model
of the Bounded Retransmission Protocol (BRPAAPP21), recently proposed in [18].

Benchmarks come from industrial collaborations (e.g., with Thales, ST-
Microelectronics, ArianeGroup, Astrium), from academic papers from different
communities (e.g., real-time systems, monitoring, testing) describing case stud-
ies, and from our experience in the field (notably the “unsolvable” benchmarks).
For benchmarks extracted from published works, a complete bibliographic ref-
erence is given.
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4.2 Distribution

The benchmark library is presented on a Web page available at [6] and per-
manently available at [25]. Several columns (metrics, syntax used, categories,
properties) allow users to select easily which benchmarks fit their need (see Fig.
1).

Our benchmarks are distributed in the well-documented IMITATOR 3.0.0
input format [16], which is a de facto standard for PTAs. IMITATOR can provide
automated translations to the non-parametric timed model checker Uppaal [40],
as well as the hybrid systems model checker HyTech [35] (not maintained any-
more). However, some differences (presence of timing parameters or complex
guards in IMITATOR, difference in the semantics of the synchronization model)
may not preserve the semantic equivalence of the models.

In addition, we offer all benchmarks in the JANI format [28]. We recently
implemented to this end (within IMITATOR) an automatic translation of IPTAs
to their JANI specification. Thus, all of our benchmarks can be fed to other
verification tools supporting JANI as input.

All our benchmarks are released under the CC by 4.0 license.

4.3 Benchmarks Classification

For each benchmark, we provide multiple criteria, notably the following ones.

Scalability. Whether the models can be scaled according to some metrics, e.g.,
the FischerPS08 benchmark can be scaled according to the number of pro-
cesses competing for the critical section;

Generation method. Whether the models are automatically generated or not
(e.g., by a script, notably for scheduling real-time systems using PTAs, or
to generate random words in benchmarks from the testing or monitoring
communities);

Categorization. Benchmarks are tagged with one or more categories: 1) Aca-
demic, 2) Automotive, 3) Education, 4) Hardware, 5) Industrial, 6) Monitor-
ing, 7) Producer-consumer, 8) Protocol, 9) Real-time system, 10) Scheduling,
11) Toy, 12) Unsolvable. The proportion of each of these tags are given in
Table 2 (the sum exceeds 100 % since benchmarks can belong to multiple
categories).

Moreover, we use the following static metrics to categorize our benchmarks:
1) the numbers of PTA components (subject to parallel composition), of clocks,
parameters, discrete variables and actions; 2) whether the benchmark has invari-
ants, whether some clocks have a rate not equal to 1 (multi-rate/stopwatch) and
silent actions (“ε-transitions”); 3) whether the benchmark is an L/U-PTA2; 5)
the numbers of locations and transitions, and the total number of transitions.

In Table 3, we present some statistics on our benchmarks. Because of the
presence of 3 benchmarks and 25 models (all in the “monitoring” category) with
2 A subclass of PTAs where the set of parameters is partitioned into “lower-bound”

and “upper-bound” parameters [37]. L/U-PTAs enjoy nicer decidability properties.

https://creativecommons.org/licenses/by/4.0/
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Table 2. Proportion of each category over the models

Category Number of models Proportion

All 119 100%

Academic 54 45%

Automotive 20 17%

Education 9 8%

Hardware 6 5%

Industrial 33 28%

Monitoring 25 21%

ProdCons 5 4%

Protocol 34 29%

RTS 46 39%

Scheduling 3 3%

Toy 34 29%

Unsolvable 18 15%

Table 3. Statistics on the benchmarks

Metric Average Median

Number of IPTAs 3 3

Number of clocks 4 3

Number of parameters 4 3

Number of discrete variables 4 2

Number of actions 12 11

Total number of locations 2004 22

Total number of transitions 2280 54

Metric Percentage

Has invariants? 92%

Has discrete variables? 24%

Has multi-rate clocks 17%

L/U subclass 19%

Has silent actions? 67%

Strongly deterministic? 78%

a very large number of locations (up to several dozens of thousands), only giving
the average of some metrics is irrelevant. To this end, we also provide the median
values. Moreover, the average and the median of the number of discrete variables
are computed only on the benchmarks which contains at least 1 such variable;
they represent 24% of our models.

4.4 Properties

Properties follow the IMITATOR syntax. In the 1.0 version, they mainly consisted
of reachability/safety properties; in addition, the properties were not explicitly
provided, since IMITATOR 2.x did not specify properties (they were provided
using options in the executed command). In the new version of our library,
we added several liveness (cycle synthesis) properties, i.e., for which one aims
at synthesizing parameter valuations featuring at least one infinite (accept-
ing) run [18,43]; in addition, we added properties such as deadlock-freeness
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Fig. 2. Examples of unsolvable benchmarks

Table 4. Statistics on executions (over 157 properties)

Metric Average Median

Total computation time 245.8 2.819

Number of states 20817.8 580

Number of computed states 34571.7 1089

synthesis (“exhibit parameter valuations for which the model is deadlock-
free”) [14], optimal-parameter or minimal-time reachability [19], and some
“pattern”-based properties [13] that eventually reduce to reachability check-
ing [7].

4.5 Unsolvable Benchmarks

A novelty of our library is to provide a set of toy unsolvable benchmarks. They
have been chosen for being beyond the limits of the state-of-the-art techniques.
Four of them are illustrated in Fig. 2. For example, in Fig. 2a, the reachability
of �f is achievable only if p ∈ N; but no verification tool—to the best of our
knowledge—terminates this computation. Moreover, the final location of the
PTA presented in Fig. 2d is reachable for all p ≥ 0, which is a convex constraint,
but this solution remains not computable.

4.6 Expected Performances

Another novelty of the 2.0 version is to provide users with all the expected results,
as generated by IMITATOR. For all properties, we provide either a computed
result, or (for the “unsolvable” benchmarks), a human-solved theoretical result.

We also give an approximate execution time, and the number of (symbolic)
states explored. These metrics are not strict, as they may depend on the target
model checker and the target hardware/OS, but this provides the user an idea
of the complexity of our models.

In Table 4, we present the statistics over 157 imitator executions. Note that
the unsolvable executions are not included in this table.
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5 Perspectives

Ultimately, we hope our library can serve as a basis for a parametric timed model
checking competition, a concept yet missing in the model checking community.

Opening the library to volunteer contributions is also on our agenda.

Acknowledgements. Experiments presented in this paper were carried out using
the Grid’5000 testbed, supported by a scientific interest group hosted by Inria and
including CNRS, RENATER and several Universities as well as other organizations
(see https://www.grid5000.fr).
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2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32759-9 6
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25. André, É., Marinho, D., van de Pol, J.: The IMITATOR benchmarks library 2.0: a
benchmarks library for extended parametric timed automata, April 2021. https://
doi.org/10.5281/zenodo.4730980
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A benchmark suite for hybrid systems reachability analysis. In: Havelund, K.,
Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 408–414. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-17524-9 29

31. Cimatti, A., Palopoli, L., Ramadian, Y.: Symbolic computation of schedulability
regions using parametric timed automata. In: RTSS, pp. 80–89. IEEE Computer
Society (2008). https://doi.org/10.1109/RTSS.2008.36
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Abstract. One of the largest communities on learning programming
and sharing code is built around the Scratch programming language,
which fosters visual and block-based programming. An essential require-
ment for building learning environments that support learners and edu-
cators is automated program analysis. Although the code written by
learners is often simple, analyzing this code to show its correctness or
to provide support is challenging, since Scratch programs are graph-
ical, game-like programs that are controlled by the user using mouse
and keyboard. While model checking offers an effective means to analyze
such programs, the output of a model checker is difficult to interpret for
users, in particular for novices. In this work, we introduce the notion of
Scratch error witnesses that help to explain the presence of a speci-
fication violation. Scratch error witnesses describe sequences of timed
inputs to Scratch programs leading to a program state that violates
the specification. We present an approach for automatically extracting
error witnesses from counterexamples produced by a model checking pro-
cedure. The resulting error witnesses can be exchanged with a testing
framework, where they can be automatically re-played in order to re-
produce the specification violations. Error witnesses can not only aid the
user in understanding the misbehavior of a program, but can also enable
the interaction between different verification tools, and therefore open
up new possibilities for the combination of static and dynamic analysis.

Keywords: Error witnesses · Model checking · Reachability · Dynamic
analysis · Test generation · Block-based programming · UI testing

1 Introduction

Block-based programming languages like Scratch have gained momentum as
part of the general trend to integrate programming into general education. Their
widespread use will crucially depend on automated program analysis to enable
learning environments in which learners and educators receive the necessary help
for assessing progress, finding errors, and receiving feedback or hints on how to
proceed with a problem at hand. Although learners’ programs tend to be small
c© Springer Nature Switzerland AG 2021
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Fig. 1. Generation, verification, and visualization of Scratch error witnesses

and their code is usually not very complex, Scratch programs nevertheless
pose unique challenges for program analysis tools: they are highly concurrent,
graphical, driven by user interactions, typically game-like and nondeterministic,
and story-components and animations often lead to very long execution times.
Model checking has been suggested as a solution for tackling these challenges [19],
but verification results such as counterexamples are abstract and neither suitable
for interpretation by learners, nor for application in dynamic analysis tools that
aim to generate explanations or hints.

Observing program executions in terms of the user interactions and their
graphical responses is potentially a more intuitive way to communicate coun-
terexamples to learners, as it hides all details of the internal models of the anal-
ysis and verification tool and instead shows what a user would see. In this paper
we therefore introduce the concept of Scratch error witnesses as a means to
explain the presence of specification violations, and describe an automatic app-
roach for extracting error witnesses for Scratch programs from counterexam-
ples. Scratch error witnesses describe sequences of timed inputs (e.g., mouse
and keyboard inputs) to Scratch programs leading to a program state that vio-
lates the specification. Error witnesses are, essentially, UI tests, and thus enable
any form of dynamic analysis to help produce more elaborate explanations or
feedback, such as fault localization or generation of fix suggestions.

Figure 1 provides an overview of the overall process of generating, verifying,
and visualizing error witnesses. A Scratch program and its formal specifica-
tion is given 1. to the static analysis tool, in this case to Bastet [19]. To
analyze the program, Bastet constructs an abstract reachability graph (ARG),
which represents an overapproximation of all possible states and behaviors of
the program—a node in this graph is an abstract state, representing a set of
concrete program states. When Bastet runs into an abstract state in which
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the specification is violated, an error witness w is produced. An abstract witness
may represent multiple concrete test candidates, and depending on the analysis
configuration of Bastet (for example, model checking, or data-flow analysis),
some of these may be false positives. To increase confidence in the witness, it
is handed over 2. to a dynamic analysis (in this case Whisker [20]), which
runs the tests that are described by the witness, and produces a new error wit-
ness w′

3. , with [[w′]] ⊆ [[w]]. In case none of the tests in w are feasible, the
result is an empty witness, that is, [[w′]] = ∅. With this increased confidence in
the presence of a specification violation, the refined witness can be visualized 4.

for the user, without reducing his or her trust in the analysis results. Trust in
analysis results is crucial, for example, for learners who are not familiar with
program analysis, and for automated grading or feedback approaches.

Error witnesses do not only have the potential to aid the user in under-
standing the misbehavior of a program, but they can also be exchanged among
different verification tools [3]. This makes it possible to take advantage of the
complementary strengths of both dynamic and static analyses. For example, one
can use dynamic analysis for verifying the witnesses, for applying fault localiza-
tion to narrow down the origin the failure, for generating fixes and repair sug-
gestions, or for guiding the state-space exploration to reach a particular state.
Error witnesses thus lay the foundations for future research on presenting coun-
terexamples for specification violations in Scratch programs to users.

2 Preliminaries

We stick to the notation that is used in recent work on formalizing Scratch pro-
grams [19,20]. Uppercase letters A, . . . , Z denote sets, lowercase letters a, . . . , z
denote set elements. Sequences are enclosed in angled brackets 〈a1, a2, . . .〉, tuples
are enclosed in parentheses (a1, b1, . . .), sets are enclosed in curly braces {a1, . . .}.
Symbols with an overline a denote sequences, lists, or vectors. Symbols with a
hat â denote sets. Symbols with a tilde ã denote relations. The set of all finite
words over an alphabet A is denoted by A∗, the set of all infinite words by Aω.

Scratch Program. A Scratch program App is defined by a set A of actors.
There is at most one actor that fills the role of the stage and several other actors
that are in the sprites role [16]. An actor [19] can be instantiated several times;
each actor instance is represented by a list of processes. A concrete state c ∈ C
of a program is a list of concrete process states c = 〈p1, . . . , pn〉. A process state
pi : X → V is a mapping of typed program variables x ∈ X to their values v ∈ V .

A concrete program trace is a sequence c ∈ C∞ of concrete program states.
The set of all possible concrete program traces C∞ = C∗ ∪Cω consists of the set
of finite traces C∗ and the set of infinite traces Cω [19]. The semantics [[App]]
of a Scratch [16,19] program App are defined by the set of concrete program
traces it exhibits, that is, [[App]] ⊆ C∞.

Scratch programs and their actors have a well-defined set of programs
with defined meaning, along with user-defined variables. The variables are either
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actor-local or globally scoped. The set of actor-local variables of sprite actors
includes, for example, the variables {x, y, direction}, which define the position
and orientation of a sprite.

Abstract Domain. To cope with the restrictions of reasoning about programs,
abstraction is needed [8]. Multiple concrete states can be represented by an
abstract state. The abstract domain D = (C,

...
E, 〈〈·〉〉, [[·]], 〈〈·〉〉π,Π) [19] determines

the mapping between abstract states E and concrete states C. An inclusion
relation between the abstract states E is defined by the partial order 	⊆ E ×E
of the lattice

...
E = (E,	,
,�,�,⊥). The mapping between the abstract and

concrete world is realized in the concretization function [[·]] : E → 2C and the
abstraction function 〈〈·〉〉 : 2C → E. The widening function 〈〈·〉〉π : E × Π →
E computes an abstraction of a given abstract state by removing irrelevant
details according to the abstraction precision π ∈ Π by defining an equivalence
relation π : C → 2C . We also use formulas F in predicate logic to describe sets
of concrete states: a formula φ ∈ F denotes [[φ]] ⊆ C a set of concrete states.

Abstract Reachability Graph. A reachability analysis constructs an abstract
reachability graph to determine whether or not a target state is reachable; it
proves the absence of such a state if a fixed point is reached, that is, all states have
been visited. An abstract reachability graph is a directed graph R = (E, e0,�)
of abstract states E rooted in the initial abstract state e0 ∈ E. The structure
of the reachability graph R is determined by its transition relation �⊆ E ×
E and we write e � e′ iff (e, e′) ∈�. An abstract (program) trace is a finite
sequence e = 〈e0, . . . , en−1〉 where each pair (e, e′) ∈ e is an element of the
transition relation �. Each abstract (program) trace e denotes a possibly infinite
set of concrete program traces [[e]] ⊆ C∞. An abstract trace is feasible, if and
only if [[e]] ∩ [[App]] �= ∅, otherwise it is infeasible.

Each transition e
op� e′ of the abstract reachability graph can be labeled with

a sequence op = 〈op1, . . . , opn〉 ∈ Op∗ of program operations executed to arrive
at the abstract successor state e′. The set of program operations Op consists of
operations of various types, which can manipulate or check the set of program
variables [19]. A Scratch block corresponds to a sequence of operations from
Op. To simplify the description, we extend Op with call and return operations,
where a call represents the beginning of the execution of such a sequence of
operations, and a return marks its end.

Static Reachability Analysis. A static analysis (typically) conducts a reach-
ability analysis by creating an overapproximation [8] of all possible states and
state sequences of the program under analysis. The resulting abstract reacha-
bility graph R possibly denotes (in case the analysis terminated with a fixed
point) a larger set of program traces than the original program has, that is,
[[App]] ⊆ [[R]]. An example for a static analysis framework is Bastet [19], which
focuses on analyzing Scratch programs. An operator target : E → 2S deter-
mines the set of properties that are considered violated by a given abstract state.

Dynamic Reachability Analysis. Dynamic program analyses are also a form
of reachability analysis: The program under execution is steered by an input
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generator and its behavior is observed by a monitor process. The tool Whisker
[20] guides a Scratch program App in its original execution environment by
sending user inputs or providing mocks for functions that interact with the envi-
ronment, while observing the resulting behavior of App. No abstract semantics
are used. In contrast to static reachability analysis the results are always sound.

3 Scratch Error Witnesses

In general, an error witness is an abstract entity that describes inputs from the
user and the environment to reproduce (to witness) the presence of a specification
violation [3]. By not defining all inputs explicitly and keeping them nondetermin-
istic, the degree of abstractness can be varied: An error witness can be refined
by making more inputs deterministic, and it can be abstracted by increasing
nondeterminism. In this work, we aim at error witnesses for Scratch programs
that can be produced and consumed by both static and dynamic analyses, and
that are easy to visualize and follow by users, for example, by novice program-
mers. Scratch error witnesses perform actions that could potentially also be
conducted by a user controlling the Scratch program manually and provide
means to mock parts of the Scratch environment to control input sources that
would behave nondeterministically otherwise.

Note that while a Scratch program can exhibit infinite program traces,
the counterexamples and error witnesses we discuss in this work are finite, that
is, describing the violation of safety properties—witnessing that something bad
(undesired) can happen after finitely many execution steps. We do not consider
this to be a practically relevant limitation of our approach since bounded liveness
properties—requiring that something good happens within a finite time span—
are also safety properties.

A Scratch error witness is a tuple that defines inputs from the user and
the environment to reproduce a specification violation in a particular program.
Formally, it is a tuple (m̃, u, s) ∈ W consisting of a mock mapping m̃ : Op → M ,
a finite sequence of timed user interface inputs u = 〈u1, . . . , un〉 ∈ U∗, and the
property s ∈ S that is supposed to be violated. The mock mapping is a partial
function from the set of operations Op to the mocks M by which to substitute
the functionality. A timed user input u = (d, a) ∈ R × A is a tuple consisting of
an input delay d ≥ 0 in milliseconds, and an action a ∈ A to perform after the
delay d elapsed. Note that we abstract from the fact that one mock instance can
replace operations of Op of several actor instances. The set of all error witnesses
is denoted by W .

For debugging purposes, a timed user input can be enriched by an expected
state condition p ∈ F , which is a formula in predicate logic on the state of a
Scratch program that characterizes the states that are expected to be reached
after conducting the action, that is, [[p]] ⊆ C. The expected state condition can
be used to (1) check if the witness replay steers the program execution to the
expected state space region, and to (2) provide details to the user on the sequence
of concrete program states leading to the specification violation.
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3.1 User Inputs

Scratch programs are controlled by the user mainly using mouse and key-
board input actions. To specify possible input actions, we adopt an existing
grammar [20] to formulate such actions—with the natural numbers N and the
set of Unicode characters L. An input action a ∈ A is built based on the following
grammar:

input = Epsilon | KeyDown key | KeyUp key | MouseDown pos |
MouseUp pos | MouseMoveTo pos | TextInput text

key = keycode code

pos = xpos x ypos y

text = txt string

code ∈ N, string ∈ L
∗, x ∈ [−240..240], y ∈ [−180..180]

3.2 Mocks

Mocks replace specified operations in specified actor instances to control the
program execution and steer it towards a target state. Compared to a stub, a
mock is stateful, that is, the value returned by the mock and side effects can be
different from call to call, depending on its internal state.

A Scratch block (represented by a sequence of operations from Op) that
is supposed to return a new random number with each call (a random number
generator) is a typical example that has to be mocked to reproduce a partic-
ular behavior. That is, any block that leads to some form of nondeterministic
program execution is a good candidate to be mocked. Scratch allows to add
various (custom) extensions—to use Scratch for programming hardware com-
ponents, such as Lego Mindstorms—that add additional variables (or inputs)
that require mocking. For example, to sense the motor position, distance, bright-
ness, or acceleration. Even mocking date or time functions might be necessary
to reproduce a specific behavior within a dynamic analysis.

We distinguish between different types of mocks. The set of all possible mocks
is denoted by the symbol M .

Conditional Effects. A mock with conditional effects (op0, p, op, r) is initialized
by a sequence of program operations op0 ∈ Op∗ before its first invocation,
describes a sequence of state-space conditions p = 〈p1, . . . , pn〉 ∈ F∗, and has a
sequence of assignment sequences op = 〈op1, . . . , opn〉 ∈ (Op∗)∗ and a sequence
of mock return values r = 〈r1, . . . , rn〉 ∈ V ∗. An initialization operation op ∈ op0

can, for example, declare and initialize mock-local variables to keep track of the
mock’s state between different invocations. We require that |op| ∈ {|p|, 0} and
|r| ∈ {|p|, 0} (a mock might not produce a return value, or might not conduct
any operations but return a value). In case the current program state c is in
one of the regions described by a state-space condition pi when the mock is
invoked, that is, if c ∈ [[pi]], then also the operation sequence opi is performed
and the value ri returned. A condition p is a formula in predicate logic over
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Algorithm 1. testGen(App)
Input: A Scratch program App to verify
Output: A set of error witnesses W (empty if the program is safe)
1: (frontier, reached) ← initApp()
2: (·, reached) ← wrapped(frontier, reached)
3: targets ← {e | target(e) �= ∅ ∧ e ∈ reached}
4: return

⋃
t∈targets toWitness(testify�

1(reached, t))

the program’s variables—including those local to the current actor or mock, and
global variables. A nondeterministic (random) value is returned in case none of
the conditions pi ∈ p was applicable for an invocation.

Mocks with sequential effects and those with timed effects are specializations
of mocks with conditional effects:

Sequential Effects. A mock with sequential effects (op, r) ∈ (Op∗)∗ × V ∗

describes a sequence of assignment sequences op = 〈op1, . . . , opn〉 and a sequence
of mock return values r = 〈r1, . . . , rn〉, both with the same length, that is,
|op| = |r|. The mock has an internal state variable x that tracks the number of
the mock’s invocations and corresponds to the position in the sequences. That is,
at invocation x, the sequence of assignments opx is performed and the value rx

is returned. A nondeterministic (random) value is returned in case the position x
is out of the sequences bounds.

Timed Effects. A mock with timed effects (y, op, r) ∈ (R×R)∗ × (Op∗)∗ × V ∗

describes a sequence of disjoint time (in milliseconds) intervals y = 〈y1, . . . , yn〉,
a sequence of assignment sequences op = 〈op1, . . . , opn〉, and a sequence of mock
return values r = 〈r1, . . . , rn〉. In case the milliseconds up ∈ R since the program
under test was started is in one of the time intervals yi, then also the operation
sequence opi is performed and the value ri returned when the mock is invoked.

4 Witness Generation

After we have introduced the notion of a user interface error witness for Scratch
programs, we now describe how such a witness can be derived from a con-
crete program trace that violates the specification—which can be recorded by
a dynamic analysis tool such as Whisker and from the abstract reachability
graph produced by a static analysis framework such as Bastet.

4.1 Concrete Program Trace from an Abstract Reachability Graph

We first describe how a finite concrete program trace c = 〈c1, . . . , cn〉 ∈ C∞

that leads to a (violating) target state et ∈ E, with target(et) �= ∅ ∧ cn ∈ [[et]],
can be extracted from an abstract reachability graph. This process is typically
implemented in a procedure for model checking or model-based test generation.
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The outermost algorithm of a model checker with test generation is out-
lined in Algorithm 1. All abstract states that have been reached by the analysis
can be found in the set reached ⊆ E, the set frontier ⊆ reached contains all
abstract states from which successor states remain to be explored. These sets
are initialized by the operator init with the initial abstract states to analyze
the program App. The actual reachability analysis is performed by the wrapped
algorithm, represented by the method wrapped, which can, for example, con-
duct an analysis based on predicate abstraction [13] and counterexample-guided
abstraction refinement [7]. This wrapped (pseudo) algorithm terminates when
it has reached a fixed point without reaching a violating state or after one or
more violations have been identified. The set targets ⊆ E contains all states that
violate the specification.

An abstract reachability graph R = (E, e0,�) describes the predecessor-
successor-relation of the states in this set—represented by the transfer rela-
tion �⊆ E × E. An abstract state represents a set of concrete states, that is,
[[e]] ⊆ C. A sequence e = 〈e0, . . . , en−1〉 ∈ E∗ of abstract states that starts in
an initial abstract state e0 and that is well-founded in the transfer relation � is
called an abstract program trace. An abstract program trace e represents a set
of concrete program traces, i.e., [[e]] ⊆ C∗. That is, to get to a concrete program
trace c that reaches a target state e ∈ E, we first have to select a feasible abstract
program trace from graph R, and can then concretize this trace. An abstract
program trace is called feasible if it denotes at least one concrete program trace.
Note that an abstract reachability graph can also contain abstract states that
do not have a counterpart in the real world, that is, which are infeasible.

Generic Analysis Operators. We define a list of new analysis operators in
line with the configurable program analysis framework [5,19] to extract abstract
program traces and concrete program traces from a given set of reached states,
reaching a target state:

1. The abstract testification operator testify : 2E ×E → 2E∗
returns a collection

of abstract program traces. Given a set of abstract states R ⊆ reached and
a target state et ∈ E, this analysis operator returns only feasible program
traces—describing only feasible sequences of abstract states, all starting in
an initial abstract state, and all leading to the given target state et. That
is, all infeasible traces that would lead to the target are eliminated by this
operator. An empty collection is returned in case the given target state is
infeasible.
The abstract single testification operator testify1 : 2E × E → 2E∗

strengthens
the operator testify and describes at most one feasible abstract program trace.

2. The concrete testification operator testify� : 2E×E → 2C∗
returns all concrete

program traces reaching a given target state. Note that, assuming unbounded
value domains, this collection can have infinitely many elements.
The concrete single testification operator is supposed to return at most one
concrete program trace that reaches the given target state and has the signa-
ture testify�

1 : 2E × E → 2C×C .
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Algorithm 2. toWitness : C∗ → 2W

Input: A concrete program trace c ∈ C∗

Output: A set of error witnesses ∈ 2W

1: m̃ ← constructMocks(c)
2: u ← constructInputSeq(c)
3: return {(m̃, u, s) | s ∈ target(t)}

Algorithm 3. constructInputSeqAx : C∗ → U∗

Input: A concrete program trace c ∈ C∗

Output: A timed input sequence ∈ U∗

1: a ← 〈〉
2: for (op, c) in Γ (c) do
3: a ← a ◦ 〈choose({ ax(op, c) | ax ∈ Ax })〉
4: return foldEpsilonDelays(a, c)

Note that these operators do not guarantee any particular strategy for choos-
ing abstract or concrete program traces. Nevertheless, different implementations
or parameterizations of these operators can be provided that realize different
strategies—contributing to the idea of configurable program analysis.

Operator Implementations. The implementations of the testification oper-
ators vary depending on the composed analysis procedure and its abstract
domain—see the literature [5,19] for details on composing analyses. We pro-
vide a first implementation of these operators in the Bastet program analysis
framework, in which program traces are chosen arbitrarily.

For a bounded model-checking configuration that does not compute
any (block) abstractions, concrete program traces can be produced simply by
asking an SMT solver for a satisfying assignment (a model) for a formula with
which a violating state is supposed to be reached.

4.2 Error Witness from a Concrete Program Trace

We now describe how Scratch error witnesses (m̃, u, s) ∈ W can be produced
from a given finite concrete program trace c = 〈c1, . . . , cn〉 ∈ C∗. Such a trace
can be created from a model checking run using one of the proposed testification
operators, or can be created from the states observed while running the program
on a machine, e.g., along with a dynamic analysis. Algorithm 2 outlines the
process of generating a Scratch error witness from a concrete program trace.

We assume that there is a transition labelling function Γ : C × C → Op∗ for
labelling state transitions. Given a pair c1, c2 ∈ C of concrete states, the func-
tion returns a (possibly empty) sequence 〈op1, . . . , opn〉 of program operations
conducted to reach from state c1 to state c2. We extend the labelling function to
sequences, resulting in an overloaded version Γ : C∗ → (Op ×C)∗ that produces
sequences of pairs of program operations and concrete (successor) states; the
first concrete state in the given concrete program trace is skipped.
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Fig. 2. Generation of the sequence of timed inputs in Bastet

Algorithm 4. constructMocksMx : C∗ → 2Op×M

Input: A concrete program trace c ∈ C∗

Output: A mock mapping ⊆ Op × M
1: return {mx(c, Γ (c)) | mx ∈ Mx}

Timed Inputs. A witness contains the sequence of timed user inputs u =
〈u1, . . . , un〉 ∈ U∗, where each element ui = (d, a) ∈ u consists of a delay d ∈ R

(in milliseconds) to wait before conducting an input action a. Algorithm 3 out-
lines the process of creating this sequence and Fig. 2 provides a visual per-
spective on the process and the example to discuss. The algorithm is implic-
itly parameterized with a collection of action extractors Ax. Generally, there
is one action extractor ax ∈ Ax for each class of input action—see the gram-
mar of input actions in Sect. 3.1. In our example, we use 2. an extractor for the
action MouseMoveTo and a composite action extractor MouseClick that produces
two different actions (MouseDown and MouseUp, resulting in a “mouse click”).

The algorithm starts from a given 1. concrete program trace c ∈ C∗ lead-
ing to a target state that violates one or more properties ⊆ S. The trace is
traversed from its start to the end (with the target) state, and the action extrac-
tors are invoked along this trace. A call to the action extractor for a given
concrete state c that is reached by a program operation op returns a sequence
of input actions a to execute at this point in the resulting witness. For exam-
ple, the actions 〈a1, a2〉 are produced by the MouseClick action extractor for
the operation op2 reaching state c3, with a1 = MouseDown xpos 23 ypos 8 and
a2 = MouseUp xpos 23 ypos 8. This action sequence is emitted because oper-
ation op2 signaled a click to the sprite, the mouse position is extracted from
the concrete state c3. MouseMove actions are produced whenever the mouse is
expected to be on a particular position, for example, queried by a mouse x or
mouse y Scratch block. The result 3. of applying the action extractors along
the trace is a sequence a ∈ A∗∗ of sequences of input actions. In case mul-
tiple action extractors provide a non-empty sequence for a particular position
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Fig. 3. Generation of mocks in Bastet

along the trace, the operator choose chooses an action sequence based on pri-
orities. In the last step 4. , empty elements (containing an empty sequence)
are eliminated from a and a delay is added that determines how long to wait
before executing a particular action. This functionality is provided by the func-
tion foldEpsilonDelays.

Mock Mappings. A Scratch error witness contains a mock mapping m̃ :
Op → M , which specifies mocks used for substituting particular operations of
the program or the runtime environment to steer a program execution (or a state
space traversal) towards a target state that violates the specification.

The creation of the mocks from a given concrete program trace is imple-
mented in the function constructMocks, which is outlined in Algorithm4. The
algorithm is implicitly parameterized by a list of mock extractors Mx. A mock
extractor is a function that creates a mock for a Scratch block or a function of
the runtime environment based on a given trace. Section 3.2 already motivated
why we need mocks for Scratch programs, and discussed mocks with differ-
ent degrees of expressiveness. Typically, we have one mock extractor for each
block that interacts with the environment (the operating system, the runtime
environment, connected hardware components).

Figure 3 illustrates the process of generating mocks based on a given con-
crete program trace 1. leading to a target state, which violates one or more
properties ⊆ S. Three mock extractors are in place: Goto Rand produces a mock
for the Scratch block go to random position , Pick Rand produces a mock for
pick random (..) to (..) , and Username produces a mock for the block username .
All mock extractors operate by consuming the input trace from left-to-right,
starting with an empty mock 2. , and then enriching it from step-to-step. In
contrast to action extractors, mock extractors determine their behavior after
the observed block returns 3. to the calling block, then, the mock is updated
based on the concrete state found at that point in the trace 4. .
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Note that each mock extractor can produce another type of mock—see
Sect. 3.2 for mock types. The mock extractor Goto Rand returns a mock with
sequential effects and operation sequences to perform: It assigns new values to
the sprite’s variables x and y in each invocation, and does not have a return
value. The extractor Username returns a mock with conditional effects: This
mock returns the value “admin” in case the condition true applies, that is,
always.

5 Evaluation

We illustrate the practicality of generating and replaying (validating) UI error
witnesses for Scratch programs. In particular, we are interested if our concepts
are effective and if they contribute to a more efficient tool chain to show the
presence of bugs in UI centered programs.

5.1 Experiment Setup

Implementation. We implemented the concepts presented in this paper in
the static program analysis framework Bastet [19] and in the dynamic analy-
sis tool Whisker [20]. We added support to generate error witnesses from an
abstract reachability graph into Bastet, and enriched Whisker with support
for replaying these witnesses. We also defined a witness exchange format based
on JSON to exchange error witnesses between analysis tools.

Benchmarking Environment. Students and teachers in educational contexts
such as schools typically do not have access to large computing clusters. For
this reason, we tried to aim for a more practical setting and conducted our
experiments on a single desktop workstation featuring an Intel(R) Core(TM)
i7-2600 processor with 3.40 GHz and 32 GiB of RAM (although as little as 2 to
4 GiB would have been sufficient for our case study). The machine runs Debian
GNU/Linux 10 and the current LTS version of Node.js (v14.16.0 at the time
of writing). Our additions to support Scratch error witness generation are
implemented in Bastet (version af0a20db) and its replay in Whisker (ver-
sion 392712bf). We used the Node.js API provided by Puppeteer1 to control
a browser and automatically stimulate our case study Scratch programs with
user input.

Case Study. Scratch is backed by a large online ecosystem and community.
For example, Code Club2 is a global network of free coding clubs for 9 to 13 year-
olds with the aim of helping children develop programming skills in Scratch,
among other languages. We took inspiration from one of their Scratch projects
called “Brain Game”3 and use it as a case study.

1 https://github.com/puppeteer/puppeteer.
2 https://codeclub.org/en.
3 https://projects.raspberrypi.org/en/projects/brain-game-cc.

https://github.com/puppeteer/puppeteer
https://codeclub.org/en
https://projects.raspberrypi.org/en/projects/brain-game-cc
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Fig. 4. The Brain Game example program (Color figure online)

Here, the task is to implement a game with a quiz master asking the player
for the result of five randomly chosen arithmetic computations (see Fig. 4). Only
a correct answer increases the player’s score. The game ends when all questions
were answered correctly (in which case a green check mark sprite is displayed)
or when a wrong answer was given (in which case a black cross appears).

We chose Brain Game because its size and complexity are typical of the
programs developed by learners. Moreover, it exhibits randomness and requires
user interaction, which is challenging for program analysis tools.

Afterwards, we devised four properties that constitute our notion of a correct
Brain Game implementation:

P1. The score must have been initialized with 0 before the first question is asked.
P2. The green check mark must be shown within 200 ms when all questions were

answered correctly.
P3. The black cross must be shown within 200 ms when a question was answered

incorrectly.
P4. The score must not decrease.

We formalized these properties as both LeILa [19] programs and Whisker
tests. The former can be fed to Bastet with the aim of checking a given pro-
gram against this specification and generating an error witness, and the latter is
handed to Whisker to verify the error witness. We implemented five erroneous
variants V1–V5, each violating one of the above properties:

V1. Violates P1: the score is not initialized at all.
V2. Violates P2: the sprite for the wrong answer is not shown when a question

was answered incorrectly.
V3. Violates P3: the sprite for the correct answer is not shown when all five

questions were answered correctly.
V4. Violates P4: the score decreases by one when an incorrect answer is given.
V5. Violates P4: the score decreases by one when an incorrect answer is given

except when it would turn negative.
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Table 1. Effectiveness, execution times in seconds rounded to two significant digits

Variant Replay successful? Replay time

V1 × 2.953

V2 � 4.036

V3 � 7.997

V4 � 4.099

V5 � 5.010

5.2 Witness Replay and Validation (Effectiveness)

Effectiveness describes the ability to replay and validate the statically generated
witnesses by a dynamic analysis. To this end, we ran each of the five erroneous
Brain Game variants along with the specification in Bastet and extracted the
error witnesses. Then, we ran Whisker together with the specification and the
Scratch error witness on each program under test to investigate if the witness
generated by Bastet can be verified in Whisker.

The results are summarized in Table 1 and show that four out of five errors
were reproducible. In detail, the violations of properties P2–P4 by programs
V2–V5 were revealed via static analysis by Bastet and confirmed by dynamic
replay in Whisker. V2 and V4 both require a wrong answer for the fault to
be exposed. P3 requires five correct answers. Finally, V5 requires at least one
correct answer followed by a wrong answer.

While V2–V5 were validated successfully, the tools disagree when it comes
to the violation of property P1 by variant V1: Bastet detected a violation
but this could not be confirmed by Whisker. When first reading the score
variable, Bastet detects that it has not been initialized yet, thus deeming its
usage unsafe and reporting a violation. This requires no user interaction and the
generated replay contains no user input. When replaying the generated witness
in Whisker, however, no violation is detected. This is because uninitialized
variables in Scratch have a default value of 0 before the first program execution,
which just so happens to be the value demanded by the specification. However,
the violation could be detected by Whisker when at least one correct answer
is given (thus increasing the score to at least 1) and the game is played for a
second time, where the score would still be 1 as it is not reset from the previous
game.

The failure to detect V1 highlights a limitation in our work: the current
definition of a Scratch error witness only allows for mock mappings but not
for setting the initial state of a Scratch program. While the formalism in Sect. 3
can be easily extended, more implementation work in Whisker is necessary to
support this. We plan to address both issues in future work.

We conclude that Scratch error witness reuse among different tools is pos-
sible, but may reveal differences in implicit assumptions or approximations.



Generating Timed UI Tests from Counterexamples 67

Table 2. Efficiency for different verification tasks, execution times in seconds rounded
to two significant digits

Variant Error witness generation and replay Random input
generation (estimated)Analysis Concretization Replay Combined

V1 25 0.52 3.0 28 400

V2 50 0.83 4.0 54 400

V3 1500 10 8.0 1500 7.6 × 1010

V4 47 1.0 4.1 51 400

V5 210 2.1 5.0 220 500

5.3 Sequential Tool Combination (Efficiency)

The second question we investigate is whether guiding a dynamic analysis by
tests generated from a static analysis can increase the testing efficiency. For this
purpose, we measured the combined execution times of Bastet and Whisker
to generate and replay an error witness, and compare it against the expected
average runtime of Whisker when purely unguided random input generation
were to be used. Table 2 contains the results of this experiment.

Looking at the combined times in Table 2, we see that the fault in program
variant V1 is easiest to reveal for Bastet since it requires no user interaction.
V2 and V4 entail similar effort, both require one wrong answer. V5 requires a
wrong and a correct answer and poses more challenges to Bastet, increasing
verification time by one order of magnitude. V3 requires 5 correct answers; as this
requires covering more program states, the additional analysis effort increases
the time by another order of magnitude.

To contrast this with the time it would take to reveal the faults using only
random input generation in Whisker, we consider the average expected execu-
tion time of this inherently randomized approach: The space of possible answers
to each question asked in Brain Game consists of 200 − 2 = 198 numbers. (The
two summands range between 1 and 100). In the best case scenario, Whisker
manages to generate the correct answer on the first try. In the worst case scenario,
there is no upper limit to how many tries are necessary. However, assuming that
the random number generator produces evenly distributed numbers the average
number of tries can be computed as 198/2 = 99. Moreover, from Table 2 we can
infer that a Scratch error witness replay for one question takes roughly 4 s.
With this, the average execution time can be estimated as 4 × 99 = 396 s for V2
and V4. Similarly, for V5 (which requires one correct and one wrong answer), a
wrong answer is given in one try on average but replay lasts longer (5 s). Thus,
the estimated time is 5 × (99 × 1) = 495 s.
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Table 3. Scaling experiment conducted on differently sized variants of program V3,
execution times in seconds rounded to two significant digits

Variant Analysis Concretization Replay Combined

V31 57 0.90 5.9 63

V32 170 2.4 5.2 170

V33 410 4.7 6.0 420

V34 810 7.0 7.0 820

V35 1500 10 8.0 1500

To reveal the fault in V1, however, we would require at least one correct
answer, followed by a restart of the game. The replay time for this cannot be
extracted from the table (since we did not have user interaction) but using a
conservative estimation of 4 s, similar to V2 and V4, the estimated execution
time is also 396 s. Exposing the fault in V3 requires 5 correct answers in a row.
An average number of 995 tries with a replay time of 8 s results in a total runtime
of 7.6 × 1010 s, which is more than 2400 years.

While these results suggest the combined approach is more efficient, this
depends on how Bastet’s performance scales with increasing size of the pro-
grams to generate error witnesses for. We therefore analyze the impact of the
size of the state space in Bastet on the verification time using four alternate
versions V31, V32, V33 and V34 of V3 requiring one, two, three and four cor-
rect answers instead of five, respectively. We use V35 synonymously for V3.
Afterwards, we generated error witnesses for each of the four new variants using
Bastet. The run times are presented in Table 3. For each additional question
asked, the results indicate that the verification time increases linearly by a factor
of 2. Since error witness generation dominates the costs, the same increase can
also be seen for the combined execution time.

Overall, the results indicate that guiding a dynamic analysis by tests gen-
erated from a static analysis can increase the testing efficiency, and scales well
with increasing test program size.

6 Related Work

As it can be beneficial to hide the internal models of analysis and verification
tools to support adoption by users or developers [21], the idea of producing
executable tests from counterexamples has been revisited in different contexts
over time. An early approach to produce executable tests from counterexam-
ples [2] was implemented for the BLAST model checker [14], and many alter-
native approaches followed. For example, Rocha et al. [18] generate executable
programs for counterexamples produced for C programs by ESBMC [9], Muller
and Ruskiewicz [17] produce .NET executables from Spec# programs and sym-
bolic counterexamples, Csallner and Smaragdakis [10] produce Java tests for
counterexamples generated by ESC/Java [11], and Beyer et al. [4] presented
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an approach that converts verification results produced by CPAChecker [6] to
executable C code. Our approach applies similar principles, but considers inter-
active, graphical programs, where verification tasks consider possible sequences
of user interactions. Executable error witnesses for interactive programs with
user interactions need to mock not only user inputs, but also other environmen-
tal dependencies. Gennari et al. [12] described an approach that also builds mock
environments, but again targets C programs. Besides the interactive nature of
UI error witnesses, a further property that distinguishes our problem from prior
work is that we are considering timed traces. Timed counterexamples are pro-
duced, for example, by Kronos [22,23] or Uppaal-Tron [15]; however, we are not
aware of any approaches to produce executable tests from such counterexamples.
Testification of error witnesses has not only been proposed for producing exe-
cutable tests, but also as an interchange format for different verification tools [3];
again a main difference of our approach is that our interchange format considers
UI error witnesses rather than C function invocations. Aljazzar and Leue [1]
produced interactive visualizations of counterexamples to support debugging.
By producing UI tests from UI error witnesses we achieve a similar goal: Users
can observe program executions and the interactions with the program along
described by the error witness.

7 Conclusions

This paper introduced the notion of error witnesses for programs with graphi-
cal user interfaces—controlled by mouse and keyboard inputs, sent at particular
points in time. We illustrated our concepts and implementation in the context of
the analysis of game-like programs that were developed using visual- and block-
based programming, in Scratch. We (1) formalized the notion of UI error
witnesses, (2) described how these witnesses can be generated from the abstract
reachability graph that was constructed with an SMT-based (Satisfiability Mod-
ulo Theories) software model checker, and (3) demonstrated their practicality
for confirming the presence of errors in a dynamic analysis.

The exchange of error witnesses between different verification tools opens up
possibilities to develop hybrid approaches that increase efficiency. Our findings
also indicate that error witnesses can be useful in order to cross-check and test
tools. Besides the technical aspects, however, there also remains the larger prob-
lem of making UI error witnesses accessible and useful for learning programmers.

References

1. Aljazzar, H., Leue, S.: Debugging of dependability models using interactive visu-
alization of counterexamples. In: QEST, pp. 189–198. IEEE Computer Society
(2008)

2. Beyer, D., Chlipala, A., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating tests
from counterexamples. In: ICSE, pp. 326–335. IEEE Computer Society (2004)



70 D. Diner et al.

3. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness valida-
tion and stepwise testification across software verifiers. In: ESEC/SIGSOFT FSE,
pp. 721–733. ACM (2015)

4. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses. In:
Dubois, C., Wolff, B. (eds.) TAP 2018. LNCS, vol. 10889, pp. 3–23. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-92994-1 1
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Abstract. Software is widely used in critical systems. Thus, it is impor-
tant that developers can quickly find semantic bugs with testing; how-
ever, semantic bugs can only be revealed by tests that use valid inputs.
Guided fuzzers can create input tests that cover all branches; however,
they may not necessarily cover all branches with valid inputs. Therefore,
the problem is how to guide a fuzzer to cover all branches in a program
with only valid inputs. We perform a study of an idea that guarantees
that all inputs generated by a guided fuzzer that reach the program under
test are valid using formal specifications and runtime assertion checking.
Our results show that this idea improves the feedback given to a guided
fuzzer.

Keywords: Guided fuzzing · Testing · Branch coverage · Valid
inputs · Formal methods · Runtime assertion checking

1 Introduction

Two effective techniques for discovering software vulnerabilities are runtime
assertion checking [15,34,42,45] and guided fuzzing [43,44,48].

Runtime assertion checking (RAC) checks formal specifications during test-
ing a program to dynamically detect violations of a program’s specified behavior.
However, formal specifications are conditional; only if inputs satisfy a program’s
precondition does it make sense to run the program and check for semantic bugs
by checking the program’s postcondition. That is, a semantic bug is a program
behavior that fails to satisfy the program’s postcondition when started in an
input state that satisfies the program’s precondition. Thus for finding seman-
tic bugs, valid inputs for the program’s entry method are essential. Moreover,
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to maximize the chances of finding semantic bugs, test suites should be high-
quality; a high-quality test suite would cover all branches in a program.

One way to create high-quality test suites is to use a guided fuzzing tool.
Guided fuzzing is the process of using feedback from test runs to generate inputs
that may cover more branches in hopes of leading to a program crash. However,
guided fuzzers (such as AFL [66]) may generate many invalid inputs, which are
useless for finding semantic bugs; furthermore, running a program with invalid
inputs sometimes is very time-consuming and can lead to infinite loops.

Most guided fuzzer tools work with a driver that translates generated input
data from the fuzzer to the program’s input types. The driver can use that
input data to generate valid inputs for the program. However, such drivers do
not guarantee that all inputs are valid. Therefore, the problem we address is
how to work with a guided fuzzer so that it only runs the program under test
(PUT) with valid inputs. Different methods have been proposed for filtering
invalid inputs from a fuzzer, like taint analysis [58] and machine learning [25].
However, these techniques do not guarantee that they will catch and ignore all
invalid inputs. Thus invalid inputs may slow the process of running the tests. We
guarantee that the PUT will not be executed on invalid input. Our work confirms
previous work [18,33,36,53] that emphasizes the importance of providing valid
inputs to help guided fuzzers, making the testing process more efficient and
effective.

To solve this problem, we propose combining formal precondition speci-
fications with a guided fuzzer and demonstrate this idea by combining the
JML formal behavioral specification language [9,37–41] with the guided fuzzer
Kelinci [33,52,53]. We call this combination JMLKelinci, as it uses JML’s RAC
(OpenJML) [16,17] to test a program’s preconditions and a Java version of
AFL [66], namely Kelinci [33], to generate tests. While in this paper we use
JML to specify preconditions and Kelinci as the guided fuzzer, our idea could
be implemented with other formal specification languages and guided fuzzers.

Given a program P and its precondition, Pre, an input is valid for P if
the input satisfies Pre; otherwise, the input is invalid. For example, consider
a factorial program with a precondition that the input should be an integer
number between 0 and 20 (to avoid overflow). An input of 6 would be a valid
input, while an input of 21 would be invalid.

Our idea is to guide the fuzzer by dynamically checking each of the generated
inputs using a RAC; all invalid inputs are directed to a single branch in the
program’s driver. Thus when the guided fuzzer tries to cover all branches, it will
try to avoid such invalid inputs. JMLKelinci only executes programs on valid
inputs; thus, it acts like a guided fuzzer that only generates valid inputs. We
note that if a formal specification is available, one can use a verification tool
instead of a fuzzer. However, successful use of a static verification tool, such
as JML’s extended static checker [12,16,17], requires much more effort, such as
more detailed specifications, than are needed for JML’s RAC. For verification,
one needs to write, for example, loop invariants, which are not needed to use
RAC successfully. In particular, writing a precondition and postcondition is much
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simpler than writing all of the specifications needed for static verification. Indeed,
JMLKelinci can filter invalid inputs using only a precondition for the entry
method of the program being tested (and any needed constructors). Thus even
preconditions are not needed for all methods in the program; this reduces the
amount of effort needed to use preconditions and a guided fuzzer. Furthermore,
some tools can infer preconditions for JML automatically [19,49].

Our results show that JMLKelinci covers all branches of the program under
test with valid inputs, which is a first step towards using the benefits of both
RAC and a guided fuzzer to detect semantic bugs. However, Kelinci cannot
cover all branches for programs with nontrivial1 preconditions. Also, JMLKelinci
covers branches faster than standard Kelinci for some programs with nontrivial
preconditions, because running invalid tests can be very time-consuming. In
sum, our preliminary results with JMLKelinci indicate that, when combined
with postcondition checking, the combination of a guided fuzzer and a RAC can
detect many kinds of semantic bugs instead of only finding semantic bugs that
lead to a program crash.

2 Related Work

Various authors have presented approaches to generating valid inputs. Gode-
froid et al. [25] used machine learning in a grammar-based fuzzer to generate
a grammar for the program under test (PUT) to create valid inputs. Rajpal et
al. [57] proposed using deep learning to predict which bytes of selected inputs
should be mutated to create a valid input. TaintScope [62] uses taint analysis to
bypass invalid inputs. However, while these approaches increase the probability
of generating valid inputs, they do not guarantee them.

Several network protocol fuzzers provide a specification or grammar of the
input structure, like SNOOZE [3] and TFuzz [32]. Some Kernel API fuzzers
provide templates that specify the number and types of input arguments, like
syzkaller [30]. Furthermore, some fuzzers are designed for a specific language,
and the model of language with its specification is built into the fuzzer for
generating valid inputs, like funfuzz [35] for JavaScript. By contrast, our idea is
not limited to particular input structure formats or languages but can work with
any programming language for which one can formally specify preconditions.

Several works [13,14,56,64,67] use a RAC to decide if tests pass, but require
users to generate their own test data or only provide a small amount of test
data. These works do not attempt to achieve branch coverage.

Some other tools [1,2,4,6,8,10,23,24,46,61] use symbolic execution and/or
model checking to generate input tests. However, they do not use branch coverage
metrics; because these tools use model checking their execution time depends on
the size of the PUT, so they have limited scalability.

Korat [5,47] is similar to our work in that it uses JML preconditions for val-
idating inputs. However, while Korat can automatically create inputs that are

1 An assertion is trivial if it is always true.
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Fig. 1. The architecture of JMLKelinci

complex data structures, Korat does not measure branch coverage or attempt
to increase it. Furthermore, Korat has limited scalability. Future work could
consider combining Korat’s techniques with ours, perhaps enabling a more auto-
matic synthesis of complex inputs for testing.

Some recent studies [11,53,59,60] have combined fuzzing with symbolic exe-
cution. These works add tests generated using symbolic execution to the pool of
(interesting) inputs that guide the fuzzer. However, they cannot guarantee that
all generated inputs are valid.

The following tools measure code coverage and attempt to improve it when
generating test suites: EvoSuite [20–22], Randoop [54,55], and TSTL [26,27,29].
However, they cannot guarantee that only valid inputs are passed to the PUT.
TSTL allows the specification of invariant properties that must hold during
testing, but not preconditions. Randoop can document program behavior with
assertions, but does not filter inputs based on user-specified preconditions, which
would guarantee that only valid inputs are passed to the PUT.

3 JMLKelinci

To demonstrate our idea for combining formal methods with a fuzzer, we devel-
oped a prototype tool, JMLKelinci, that acts like a guided fuzzer but only gener-
ates valid inputs by combining Kelinci and JML’s RAC tool. As shown in Fig. 1,
the prototype tool uses the guided fuzzer, Kelinci, to generate input data and
runs the PUT with JML’s RAC tool. The user writes a driver for the PUT that
takes the input data (bytes generated by Kelinci), converts them to the types of
inputs needed by the PUT (program arguments), and then runs the PUT using
JML’s RAC tool. If the converted inputs do not pass the specified precondition,
then the driver catches the precondition violation exception thrown by JML’s
RAC and returns (normally). This precondition checking guarantees that no
invalid inputs are passed to the body of the PUT. Furthermore, all precondition
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violations lead the program down a single branch, which Kelinci thus tries to
avoid in its quest to achieve higher branch coverage.

The Kelinci tool in our prototype generates input data and monitors the
execution of the combined driver and PUT when running with each input. Kelinci
tries to reach the highest branch coverage (and find input data that lead to
uncaught exceptions or other crashes). The generated input data that lead to
new branches (or such crashes) are saved in a pool of “interesting” inputs. Kelinci
uses such interesting input data in a genetic algorithm to help it generate other
such input data using byte mutation.

Our idea provides four advantages for fuzzing compared to the standard
Kelinci tool. First, it makes testing more efficient since it catches and bypasses
invalid inputs before running the PUT. Second, by avoiding covering branches
with invalid inputs, it could find semantic bugs with valid inputs. Third, because
the pool of interesting tests consists of valid inputs (except for at most one
invalid input) the genetic algorithm used by Kelinci has an increased probability
of generating other valid inputs; this should result in achieving branch coverage
of the PUT with valid inputs more efficiently [63,65]. Finally, the initial seed for
the fuzzer can be chosen with fewer restrictions. The initial seed for Kelinci must
be an input that does not lead to an infinite loop or a crash, but when combined
with JML, this property is guaranteed even if the initial input is invalid.

As with other guided fuzzers, with JMLKelinci a tester must write a driver to
generate valid inputs. Thus, what is the reason for using precondition checking?
Using precondition checking guarantees that the PUT will always execute with
valid inputs. At the same time, a driver might not consider all program pre-
conditions, so a guided fuzzer using a driver might still generate invalid inputs.
Furthermore, as we will show in the next section, when a driver always generates
valid arguments for the PUT, checking preconditions does not affect the PUT’s
execution time much. Also, checking preconditions with RAC will improve the
execution time of PUTs that catch an internally thrown exception during exe-
cution, because when the precondition is violated, the PUT is not run at all.

4 Experimental Study

To determine if our approach is practical, we compare JMLKelinci with standard
Kelinci, measuring2: (1) the percentage of branches covered with valid inputs
and (2) the time taken to achieve 100% branch coverage. We measured validity
using JML’s RAC and used JaCoCo [28] to measure the percentage of branches
covered with valid inputs.

The programs tested were 28 (correct) programs annotated with JML precon-
ditions from the Java+JML dataset [31,51]. Although this dataset’s programs
are small, it was chosen because it already has JML specifications, and we also
wanted to extend our study to detecting semantic bugs with postconditions. In
this study, the same initial seed input was used for Kelinci and JMLKelinci,

2 Our study used an Intel i7-3770 CPU @ 3.40 GHz with 15 GB of RAM.
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which required us to find initial seeds that did not crash the program using
standard Kelinci. Also, we did not use JML to specify the exceptional behavior
of the program’s entry method; that is, the precondition specified guaranteed
that no exceptions were thrown.

In this study, both tools were run five times on each program, and the average
execution time and covered branches are calculated.

Table 1. Nontrivial programs. “JK” stands for JMLKelinci and “K” stands for Kelinci.

Program
name

Avg. JK
Valid
Coverage

Avg. JK
Time
(sec.)

Avg. K
Valid
Coverage

Avg. K
Time
(sec.)

Best K
Valid
Coverage

AddLoop 100% 26.8 36.6% 21 50%

BankAccount 100% 10606.2 99.5% 26181 100%

BinarySearch 100% 349.2 10% 119.6 10%

Calculator 100% 10720.8 76.6% 12681.8 83%

ComboPermut 100% 364.6 6.6% 949 33%

CopyArray 100% 8704.2 0% 10 0%

Factorial 100% 59.2 25% 179.6 25%

FindFirstSorted 100% 1110.2 6% 224.2 30%

FindInSorted 100% 1007.4 0% 5 0%

LeapYear 100% 32.2 89.8% 38.6 100%

Perimeter 100% 5730.4 8.6% 581.8 29%

PrimeCheck 100% 21 75% 5.2 75%

StudentEnroll 100% 98.2 83.3% 84.4 89.5%

Time 100% 8434.2 5.8% 19981 29.1%

Average 100% 3376 37.3% 4361.6 46.7%

Table 1 shows the results of 14 programs in the dataset that have non-
trivial preconditions. In this table JK and K stand for JMLKelinci and stan-
dard Kelinci, respectively. The “Best K Valid Coverage” is the highest coverage
achieved with valid inputs in one individual run of a program using standard
Kelinci. Also, “Avg. K Valid Coverage” and “Avg. JK Valid Coverage” are the
average branch coverage using valid inputs with Kelinci and JMLKelinci, respec-
tively. The time and coverage averages of five runs for each individual program
are rounded to one decimal point. Recall that branch coverage is based on normal
behavior, excluding paths that throw exceptions.

The results in Table 1 show that tests generated by JMLKelinci, as expected,
covered all branches with valid inputs in these 14 nontrivial programs. However,
the tests generated by standard Kelinci did not cover all branches with valid
inputs since we stopped a run of Kelinci when it reached 100% branch coverage,
while some of the branches may be covered with invalid inputs. Results show that
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standard Kelinci, on average, covered about 37.3% of branches in these nontrivial
programs with valid inputs. Also, the average of the maximum coverage with
valid inputs achieved by standard Kelinci on each program was about 46.7%.

Among nontrivial programs, JMLKelinci covered branches with valid inputs
about 22.5% faster than standard Kelinci covered branches (possibly with invalid
inputs). However, standard Kelinci covered branches faster in nine programs
(some branches covered with invalid inputs) than JMLKelinci. Also, in some
programs, standard Kelinci covered branches much faster, like “BinarySearch,”
“FindInSorted” and “FindFirstSorted,” because JMLKelinci enforces the pre-
condition that a sorted array is needed as an input; thus, JMLKelinci must exam-
ine many generated inputs until it finds one representing a sorted array. In these
examples, unsorted arrays generated by standard Kelinci covered all branches,
even though they were not valid inputs. Also, in these three examples, less than
10% of branches were covered with valid inputs by standard Kelinci. However, in
five programs like “Factorial,” “CombinationPermutation” and “Time” JMLKe-
linci could cover branches with valid inputs around three times faster than stan-
dard Kelinci (which may use invalid inputs to cover branches). This is because
the execution time of these three programs can be very high when generated
inputs are invalid. Also, the range of valid inputs for these programs is small.
For example, the range of inputs in “Factorial” is limited to zero to twenty to
avoid (long) integer overflow, but such valid inputs also finish much more quickly.

Table 2. Trivial programs. “JK” stands for JMLKelinci and “K” stands for Kelinci.

Program
name

Avg. JK
Valid
Coverage

Avg. JK
Time (sec.)

Avg. K Valid
Coverage

Avg. K Time
(sec.)

Absolute 100% 6 100% 6

Alphabet 100% 20053.8 100% 13822.2

BubbleSort 100% 5 100% 5

Fibonacci 100% 155.6 100% 322.4

FindFirstZero 100% 765.6 100% 605.6

FindInArray 100% 5 100% 5

GCD 100% 1674.8 100% 2185.8

Inverse 100% 748.2 100% 650.8

LCM 100% 1524.6 100% 3558.4

LinearSearch 100% 16.2 100% 10.2

OddEven 100% 5 100% 5

Smallest 100% 400.6 100% 485.6

StrPalindrome 100% 5 100% 5

Transpose 100% 5 100% 5

Average 100% 1812.2 100% 1548
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Table 2 indicates the results of 14 programs that have trivial preconditions.
A program’s precondition is trivial if it is true for almost all possible inputs. For
example, “Absolute” is noted as having a trivial precondition since almost all
integer inputs are valid (except the minimum Java integer value).

Results in Table 2 shows the “Avg. K Valid Coverage” and “Avg. JK Valid
Coverage” that are the average branch coverage using valid inputs with Kelinci
and JMLKelinci in five runs, respectively, are 100% for all trivial programs.
Thus, both JMLKelinci and Kelinci covered all branches with valid inputs as
was expected. On average, the time for covering all branches with standard
Kelinci was about 14.5% faster than JMLKelinci, results are rounded to one
decimal point. While in six programs, both covered branches simultaneously,
and in four programs, JMLKelinci covered branches faster. In these programs,
almost all inputs are valid. Thus the inputs generated by standard Kelinci are
usually valid, and there are few invalid inputs to waste time. However, some
programs, like “Fibonacci,” in which all inputs are valid because the program
throws an exception (caught internally) when an input is too large or too small.
For such programs, JMLKelinci is about two times faster because we specified
the JML preconditions to avoid the cases where exceptions would be thrown
(and caught internally in the PUT).

We were also interested in whether our approach would help find semantic
bugs. Thus, we also performed a preliminary study using a guided fuzzer and a
RAC to check preconditions for discovering potential semantic bugs. We used 28
buggy programs from the BuggyJava+JML dataset [7,51], each the first version
(“bug1”) of a correct program. We ran JMLKelinci on these buggy programs,
which provided a set of valid inputs for these programs that cover all branches.
Then we tested these buggy programs with these valid inputs using JML’s RAC
to check pre- and postconditions. Our preliminary results show that using a
RAC with a guided fuzzer effectively detects semantic bugs for 26 out of 28
buggy programs. JML’s RAC did not find a semantic bug for “CombinationPer-
mutation” and “FindFirstSorted” programs because the input test that covered
the buggy branch worked correctly. In future work, we will expand this study by
using postconditions automatically with all valid inputs generated by the guided
fuzzer.

All experimental results for correct and buggy programs and the instruc-
tion for reproducing the JMLKelinci’s experiments are available in a GitHub
repository [50].

5 Conclusion

We described a technique for combining formal methods and a guided fuzzer
by catching precondition violation exceptions thrown by the RAC and directing
them down a single branch. Thus, JMLKelinci guarantees that the program
under test is only given valid inputs. This technique is not limited to JML, Java,
or Kelinci but can be applied to any language with a RAC and a guided fuzzer.

Our experiments show that JMLKelinci can cover all branches of programs
with valid inputs, which does not happen with a (guided) fuzzer used by itself. In
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contrast, standard Kelinci covered some branches with invalid inputs in respect
to the program precondition. Our preliminary study also shows that formal
behavior specification using guided fuzzer tools can be used to discover semantic
bugs by using pre- and postconditions.
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Abstract. We describe and evaluate a novel approach to automated test
generation that exploits fuzzing and Bounded Model Checking (BMC)
engines to detect security vulnerabilities in C programs. We implement
this approach in a new tool FuSeBMC that explores and analyzes the
target C program by injecting labels that guide the engines to produce
test cases. FuSeBMC also exploits a selective fuzzer to produce test cases
for the labels that fuzzing and BMC engines could not produce test cases.
Lastly, we manage each engine’s execution time to improve FuSeBMC ’s
energy consumption. We evaluate FuSeBMC by analysing the results of
its participation in Test-Comp 2021 whose two main categories evaluate a
tool’s ability to provide code coverage and bug detection. The competition
results show that FuSeBMC performs well compared to the state-of-the-
art software testing tools. FuSeBMC achieved 3 awards in the Test-Comp
2021: first place in the Cover-Error category, second place in the Overall
category, and third place in the Low Energy Consumption category.

Keywords: Automated test generation · Bounded model checking ·
Fuzzing · Security

1 Introduction

Developing software that is secure and bug-free is an extraordinarily challenging
task. Due to the devastating effects vulnerabilities may have, financially or on
an individual’s well-being, software verification is a necessity [1]. For example,
Airbus found a software vulnerability in the A400M aircraft that caused a crash
in 2015. This vulnerability created a fault in the control units for the engines,
which caused them to power off shortly after taking-off [2]. A software vulner-
ability is best described as a defect or weakness in software design [3]. That
design can be verified by Model Checking [4] or Fuzzing [5]. Model-checking
and fuzzing are two techniques that are well suited to find bugs. In particular,
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model-checking has proven to be one of the most successful techniques based
on its use in research and industry [6]. This paper will focus on fuzzing and
bounded model checking (BMC) techniques for code coverage and vulnerability
detection. Code coverage has proven to be a challenge due to the state space
problem, where the search space to be explored becomes extremely large [6].
For example, vulnerabilities are hard to detect in network protocols because the
state-space of sophisticated protocol software is too large to be explored [7]. Vul-
nerability detection is another challenge that we have to take besides the code
coverage. Some vulnerabilities cannot be detected without going deep into the
software implementation. Many reasons motivate us to verify software for cov-
erage and to detect security vulnerabilities formally. Therefore, these problems
have attracted many researchers’ attention to developing automated tools.

Researchers have been advancing the state-of-the-art to detect software vul-
nerabilities, as observed in the recent edition of the International Competition
on Software Testing (Test-Comp 2021) [8]. Test-Comp is a competition that aims
to reflect the state-of-the-art in software testing to the community and establish
a set of benchmarks for software testing. Test-Comp 2021 [8], had two categories
Error Coverage (or Cover-Error) and Branch Coverage (or Cover-Branches).
The Error Coverage category tests the tool’s ability to discover bugs where
every C program in the benchmarks contains a bug. The aim of the Branch Cov-
erage category is to cover as many program branches as possible. Test-Comp
2021 works as follows: each tool task is a pair of an input program (a program
under test) and a test specification. The tool then should generate a test suite
according to the test specification. A test suite is a sequence of test cases, given
as a directory of files according to the format for exchangeable test-suites1. The
specification for testing a program is given to the test generator as an input file
(either coverage-error-call.prp or coverage branches.prp for Test-Comp 2021) [8].

Techniques such as fuzzing [9], symbolic execution [10], static code analy-
sis [11], and taint tracking [12] are the most common techniques, which were
employed in Test-Comp 2021 to cover branches and detect security vulnera-
bilities [8]. Fuzzing is generally unable to create various inputs that exercise
all paths in the software execution. Symbolic execution might also not achieve
high path coverage because of the dependence on Satisfiability Modulo Theo-
ries (SMT) solvers and the path-explosion problem. Consequently, fuzzing and
symbolic execution by themselves often cannot reach deep software states. In
particular, the deep states’ vulnerabilities cannot be identified and detected by
these techniques in isolation [13]. Therefore, a hybrid technique involving fuzzing
and symbolic execution might achieve better code coverage than fuzzing or sym-
bolic execution alone. VeriFuzz [14] and LibKluzzer [15] are the most prominent
tools that combine these techniques. VeriFuzz combines the power of feedback-
driven evolutionary fuzz testing with static analysis, where LibKluzzer combines
the strengths of coverage-guided fuzzing and dynamic symbolic execution.

This paper proposes a novel method for detecting security vulnerabilities in
C programs that combines fuzzing with symbolic execution via bounded model

1 https://gitlab.com/sosy-lab/software/test-format/.

https://github.com/sosy-lab/sv-benchmarks/blob/testcomp21/c/properties/coverage-error-call.prp
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp21/c/properties/coverage-branches.prp
https://gitlab.com/sosy-lab/software/test-format/
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checking. We make use of coverage-guided fuzzing to produce random inputs
to locate security vulnerabilities in C programs. Separately, we make use of
BMC techniques [16,17]. BMC unfolds a program up to depth k by evaluating
(conditional) branch sides and merging states after that branch. It builds one
logical formula expressed in a fragment of first-order theories and checks the
satisfiability of the resulting formula using SMT solvers. These two methods are
combined in our tool FuSeBMC which can consequently handle the two main
features in software testing: bug detection and code coverage, as defined by Beyer
et al. [18]. We also manage each engine’s execution time to improve FuSeBMC ’s
efficiency in terms of verification time. Therefore, we raise the chance of bug
detection due to its ability to cover different blocks of the C program, which
other tools could not reach, e.g., KLEE [19], CPAchecker [20], VeriFuzz [14],
and LibKluzzer [15].

Contributions. This paper extends our prior work [21] by making the following
original contributions.

– We detail how FuSeBMC guides fuzzing and BMC engines to produce test
cases that can detect security vulnerabilities and achieve high code coverage
while massively reducing the consumption of both CPU and memory. Fur-
thermore, we discuss using a custom fuzzer we refer to as a selective fuzzer
as a third engine that learns from the test cases produced by fuzzing/BMC
to produce new test cases for the uncovered goals.

– We provide a detailed analysis of the results from FuSeBMC ’s successful
participation in Test-Comp 2021. FuSeBMC achieved first place in Cover-
Error category and second place in Overall category. FuSeBMC achieved
first place in the subcategories ReachSafety-BitVectors, ReachSafety-Floats,
ReachSafety-Recursive, ReachSafety-Sequentialized and ReachSafety-XCSP.
We analyse the results in depth and explain how our research has enabled
FuSeBMC ’s success across these categories as well its low energy consump-
tion.

2 Preliminaries

2.1 Fuzzing

Fuzzing is a cost-effective software testing technique to exploit vulnerabilities in
software systems [22]. The basic idea is to generate random inputs and check
whether an application crashes; it is not testing functional correctness (compli-
ance). Critical security flaws most often occur because program inputs are not
adequately checked [23]. Therefore, fuzzing prepares random or semi-random
inputs, which might consider, e.g., (1) very long or completely blank strings; (2)
min/max values of integers, or only zero and negative values; and (3) include
unique values or characters likely to trigger bugs. Software systems that cannot
endure fuzzing could potentially lead to security holes. For example, a bug was
found in Apple wireless driver by utilizing file system fuzzing. The driver could
not handle some beacon frames, which led to out-of-bounds memory access.
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2.2 Symbolic Execution

Introduced in the 1970s, symbolic execution [24] is a software analysis technique
that allowed developers to test specific properties in their software. The main
idea is to execute a program symbolically using a symbolic execution engine that
keeps track of every path the program may take for every input [24]. Moreover,
each input represents symbolic input values instead of concrete input values.
This method treats the paths as symbolic constraints and solves the constraints
to output a concrete input as a test case. Symbolic execution is widely used to
find security vulnerabilities by analyzing program behavior and generating test
cases [25]. BMC is an instance of symbolic execution, where it merges all execu-
tion paths into one single logical formula instead of exploring them individually.

2.3 Types of Vulnerabilities

Software, in general, is prone to vulnerabilities caused by developer errors, which
include: buffer overflow, where a running program attempts to write data outside
the memory buffer, which is intended to store this data [26]; memory leak, which
occurs when programmers create a memory in a heap and forget to delete it [27];
integer overflows, when the value of an integer is greater than the integer’s
maximum size in memory or less than the minimum value of an integer. It
usually occurs when converting a signed integer to an unsigned integer and vice-
versa [28]. Another example is string manipulation, where the string may contain
malicious code and is accepted as an input; this is reasonably common in the
C programming language [29]. Denial-of-service attack (DoS) is a security event
that occurs when an attacker prevents legitimate users from accessing specific
computer systems, devices, services, or other IT resources [30]. For example,
a vulnerability in the Cisco Discovery Protocol (CDP) module of Cisco IOS
XE Software Releases 16.6.1 and 16.6.2 could have allowed an unauthenticated,
adjacent attacker to cause a memory leak, which could have lead to a DoS
condition [31]. Part of our motivation is to mitigate the harm done by these
vulnerabilities by the proposed method FuSeBMC.

3 FuSeBMC : An Energy-Efficient Test Generator for
Finding Security Vulnerabilities in C Programs

We propose a novel verification method named FuSeBMC (cf. Fig. 1) for detect-
ing security vulnerabilities in C programs using fuzzing and BMC techniques.
FuSeBMC builds on top of the Clang compiler [32] to instrument the C program,
uses Map2check [33,34] as a fuzzing engine, and ESBMC (Efficient SMT-based
Bounded Model Checker) [35,36] as BMC and symbolic execution engines, thus
combining dynamic and static verification techniques.

The method proceeds as follows. First, FuSeBMC takes a C program and
a test specification as input. Then, FuSeBMC invokes the fuzzing and BMC
engines sequentially to find an execution path that violates a given property.
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Fig. 1. FuSeBMC : an energy-efficient test generator framework.

It uses an iterative BMC approach that incrementally unwinds the program
until it finds a property violation or exhausts time or memory limits. In code
coverage mode, FuSeBMC explores and analyzes the target C program using the
clang compiler to inject labels incrementally. FuSeBMC traverses every branch
of the Clang AST and injects a label in each of the form GOALi for i ∈ N. Then,
both engines will check whether these injected labels are reachable to produce
test cases for branch coverage. After that, FuSeBMC analyzes the counterex-
amples and saves them as a graphml file. It checks whether the fuzzing and
BMC engines could produce counterexamples for both categories Cover-Error
and Cover-Branches. If that is not the case, FuSeBMC employs a second fuzzing
engine, the so-called selective fuzzer (cf. Sect. 3.6), which attempts to produce
test cases for the rest of the labels. The selective fuzzer produces test cases by
learning from the two previous engines’ output.

FuSeBMC introduces a novel algorithm for managing the time allocated to
its component engines. In particular, FuSeBMC manages the time allocated to
each engine to avoid wasting time for a specific engine to find test cases for
challenging goals. For example, let us assume we have 100 goals injected by
FuSeBMC and1000 s to produce test cases. In this case, FuSeBMC distributes
the time per engine per goal so that each goal will have 10s and recalculate the
time for the goals remaining after each goal passed. If an engine succeeds on a
particular goal within the time limit, the extra time is redistributed to the other
goals; otherwise, FuSeBMC kills the process that passes the time set for it.

Furthermore, FuSeBMC has a minimum time, which a goal must be allo-
cated. If there are too many goals for all to receive this minimum time, FuSeBMC
will select a subset to attempt using a quasi-random strategy (e.g., all even-
numbered goals). FuSeBMC also manages the global time of the fuzzing, BMC,
and selective fuzzing engines. It gives 13% of the time for fuzzing, 77% for BMC,
and 10% for selective fuzzing. FuSeBMC further carries out time management
at this global level to maximize engine usage. If, for example, the fuzzing engine
is finished before the time allocated to it, its remaining time will be carried
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over and added to the allocated time of the BMC engine. Similarly, we add the
remaining time from the BMC engine to the selective fuzzer allocated time.

FuSeBMC prepares valid test cases with metadata to test a target C pro-
gram using TestCov [37] as a test validator. The metadata file is an XML file that
describes the test suite and is consistently named metadata.xml. Figure 2 illus-
trates an example metadata file with all available fields [37]. Some essential fields
include the program function that is tested by the test suite 〈entryfunction〉,
the coverage criterion for the test suite 〈specification〉, the programming lan-
guage of the program under test 〈sourcecodelang〉, the system architecture the
program tests were created for 〈architecture〉, the creation time 〈creationtime〉,
the SHA-256 hash of the program under test 〈programhash〉, the producer of
counterexample 〈producer〉 and the name of the target program 〈programfile〉.
A test case file contains a sequence of tags 〈input〉 that describes the input values
sequence. Figure 3 illustrates an example of the test case file.

Algorithm 1 describes the main steps we implemented in FuSeBMC. It con-
sists of extracting all goals of a C program (line 1). For each goal, the instru-
mented C program, containing the goals (line 2), is executed on our verifica-
tion engines (fuzzing and BMC) to check the reachability property produced by
REACH(G) for that goal (lines 8 & 20). REACH is a function; it takes a goal
(G) as input and produces a corresponding property for fuzzing/BMC (line 7
& 19). If our engines find that the property is violated, meaning that there is a
valid execution path that reaches the goal (counterexample), then the goals are
marked as covered, and the test case is saved for later (lines 9–11). Then, we
continue if we still have time allotted for each engine. Otherwise, if our verifi-
cation engines could not reach some goals, then we employ the selective fuzzer
in attempt to reach these as yet uncovered goals. In the end, we return all test
cases for all the goals we have found in the specified XML format (line 41).

Fig. 2. An example of a metadata.

3.1 Analyze C Code

FuSeBMC explores and analyzes the target C programs as the first step using
Clang [38]. In this phase, FuSeBMC analyzes every single line in the C code
and considers the conditional statements such as the if -conditions, for, while,
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Algorithm 1. Proposed FuSeBMC algorithm.
Require: program P
1: goals ← clang extract goals(P )
2: instrumentedP ← clang instrument goals(P, goals)
3: reached goals ← ∅
4: tests ← ∅
5: FuzzingT ime = 150
6: for all G ∈ goals do
7: φ ← REACH(G)
8: result, test case ← Fuzzing(instrumentedP, φ, FuzzingT ime)
9: if result = false then

10: reached goals ← reached goals ∪ G
11: tests ← tests ∪ test case
12: end if
13: if FuzzingT ime = 0 then
14: break
15: end if
16: end for
17: BMCTime = FuzzingT ime + 700
18: for all G ∈ (goals − reached goals) do
19: φ ← REACH(G)
20: result, test case ← BMC(instrumentedP, φ, BMCTime)
21: if result = false then
22: reached goals ← reached goals ∪ G
23: tests ← tests ∪ test case
24: end if
25: if BMCTime = 0 then
26: break
27: end if
28: end for
29: SelectiveFuzzerT ime = BMCTime + 50
30: for all G ∈ (goals − reached goals) do
31: φ ← REACH(G)
32: result ← selectivefuzzer(instrumentedP, φ, SelectiveFuzzerT ime)
33: if result = false then
34: reached goals ← reached goals ∪ G
35: tests ← tests ∪ test case
36: end if
37: if SelectiveFuzzerT ime = 0 then
38: break
39: end if
40: end for
41: return tests

and do while loops in the code. FuSeBMC takes all these branches as path
conditions, containing different values due to the conditions set used to produce
the counterexamples, thus helping increase the code coverage. It supports blocks,
branches, and conditions. All the values of the variables within each path are
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Fig. 3. An example of test case file.

taken into account. Parentheses and the else-branch are added to compile the
target code without errors.

3.2 Inject Labels

FuSeBMC injects labels of the form GOALi in every branch in the C code as
the second step. In particular, FuSeBMC adds else to the C code that has an
if -condition with no else at the end of the condition. Additionally, FuSeBMC
will consider this as another branch that should produce a counterexample for
it to increase the chance of detecting bugs and covering more statements in
the program. For example, the code in Fig. 4 consists of two branches: the if -
branch is entered if condition x < 0 holds; otherwise, the else-branch is entered
implicitly, which can exercise the remaining execution paths. Also, Fig. 4 shows
how FuSeBMC injects the labels and considers it as a new branch.

Fig. 4. Original C code vs code instrumented.

3.3 Produce Counterexamples

FuSeBMC uses its verification engines to generate test cases that can reach
goals amongst GOAL1, GOAL2, ..., GOALn inserted in the previous phase.
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FuSeBMC then checks whether all goals within the C program are covered.
If so, FuSeBMC continues to the next phase; otherwise, FuSeBMC passes the
goals that are not covered to the selective fuzzer to produce test cases for it
using randomly generated inputs learned from the test cases produced from
both engines. Figure 5 illustrates how the method works.

Fig. 5. Produce counterexamples.

3.4 Create Graphml

FuSeBMC will generate a graphml for each goal injected and then name it. The
name of the graphml takes the number of the goal extended by the graphml
extension, e.g., (GOAL1.graphml). The graphml file contains data about the
counterexample, such as data types, values, and line numbers for the variables,
which will be used to obtain the values of the target variable.

3.5 Produce Test Cases

In this phase, FuSeBMC will analyze all the graphml files produced in the pre-
vious phase. Practically, FuSeBMC will focus on the <edge> tags in the graphml
that refer to the variable with a type non-deterministic. These variables will
store their value in a file called, for example, (testcase1.xml). Figure 6 illustrates
the edges and values used to create the test cases.

3.6 Selective Fuzzer

In this phase, we apply the selective fuzzer to learn from the test cases produced
by either fuzzing or BMC engines to produce test cases for the goals that have



94 K. M. Alshmrany et al.

Fig. 6. An example of target edges

not been covered by the two. The selective fuzzer uses the previously produced
test cases by extracting from each the number of assignments required to reach
an error. For example, in Fig. 7, we assumed that the fuzzing/BMC produced
a test case that contains values 18 (1000 times) generated from a random seed.
The selective fuzzer will produce random numbers (1000 times) based on the
test case produced by the fuzzer. In several cases, the BMC engine can exhaust
the time limit before providing the information needed by the selective fuzzer,
such as the number of inputs, when large arrays need to be initialized at the
beginning of the program.

Fig. 7. The selective fuzzer

3.7 Test Validator

The test validator takes as input the test cases produced by FuSeBMC and
then validates these test cases by executing the program on all test cases. The
test validator checks whether the bug is exposed if the test was bug-detection,
and it reports the code coverage if the test was a measure of the coverage. In
our experiments, we use the tool TESTCOV [37] as a test validator. The tool
provides coverage statistics per test. It supports block, branch, and condition
coverage and covering calls to an error function. TESTCOV uses the XML-
based exchange format for test cases specifications defined by Test-Comp [16].
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TESTCOV was successfully used in recent editions of Test-Comp 2019, 2020,
and 2021 to execute almost 9 million tests on 1720 different programs [37].

4 Evaluation

4.1 Description of Benchmarks and Setup

We conducted experiments with FuSeBMC on the benchmarks of Test-Comp
2021 [39] to check the tool’s ability in the previously mentioned criteria. Our
evaluation benchmarks are taken from the largest and most diverse open-source
repository of software verification tasks. The same benchmark collection is used
by SV-COMP [40]. These benchmarks yield 3173 test tasks, namely 607 test
tasks for the category Error Coverage and 2566 test tasks for the category Code
Coverage. Both categories contain C programs with loops, arrays, bit-vectors,
floating-point numbers, dynamic memory allocation, and recursive functions.

The experiments were conducted on the server of Test-Comp 2021 [39]. Each
run was limited to 8 processing units, 15 GB of memory, and 15 min of CPU
time. The test suite validation was limited to 2 processing units, 7 GB of memory,
and 5 min of CPU time. Also, the machine had the following specification of the
test node was: one Intel Xeon E3-1230 v5 CPU, with 8 processing units each,
a frequency of 3.4 GHz, 33 GB of RAM, and a GNU/Linux operating system
(x86-64-Linux, Ubuntu 20.04 with Linux kernel 5.4).

FuSeBMC source code is written in C++; it is available for downloading
at GitHub,2 which includes the latest release of FuSeBMC v3.6.6. FuSeBMC is
publicly available under the terms of the MIT license. Instructions for building
FuSeBMC from the source code are given in the file README.md.

4.2 Objectives

This evaluation’s main goal is to check the performance of FuSeBMC and the
system’s suitability for detecting security vulnerabilities in open-source C pro-
grams. Our experimental evaluation aims to answer three experimental goals:

EG1 (Security Vulnerability Detection) Can FuSeBMC generate
test cases that lead to more security vulnerabilities than state-of-
the-art software testing tools?

EG2 (Coverage Capacity) Can FuSeBMC achieve a higher coverage
when compared with other state-of-the-art software testing tools?

EG3 (Low Energy Consumption) Can FuSeBMC reduce the con-
sumption of CPU and memory compared with the state-of-the-art
tools?

2 https://github.com/kaled-alshmrany/FuSeBMC.

https://github.com/kaled-alshmrany/FuSeBMC
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4.3 Results

First, we evaluated FuSeBMC on the Error Coverage category. Table 1 shows
the experimental results compared with other tools in Test-Comp 2021 [39],
where FuSeBMC achieved the 1st place in this category by solving 500 out of
607 tasks, an 82% success rate.

In detail, FuSeBMC achieved 1st place in the subcategories ReachSafety-
BitVectors, ReachSafety-Floats, ReachSafety-Recursive, ReachSafety-XCSP and
ReachSafety-Sequentialized. FuSeBMC solved 10 out of 10 tasks in ReachSafety-
BitVectors, 32 out of 33 tasks in ReachSafety-Floats, 19 out of 20 tasks in
ReachSafety-Recursive, 53 out of 59 tasks in ReachSafety-XCSP and 101 out
of 107 tasks in ReachSafety-Sequentialized.

FuSeBMC outperformed the top tools in Test-Comp 2021, such as KLEE [19],
CPAchecker [20], Symbiotic [41], LibKluzzer [15], and VeriFuzz [14] in these
subcategories. However, FuSeBMC did not perform as well in the ReachSafety-
ECA subcategory if compared with leading tools in the competition. We suspect
that this is due to the prevalence of nested branches in these benchmarks. The
FuSeBMC ’s verification engines and the selective fuzzer could not produce test
cases to reach the error due to the existence of too many path conditions, making
the logical formula hard to solve and making it difficult to create random inputs
to reach the error.

Overall, the results show that FuSeBMC produces test cases that detect
more security vulnerabilities in C programs than state-of-the-art tools,
which successfully answers EG1.

FuSeBMC also participated in the Branch Coverage category at Test-Comp
2021. Table 2 shows the experimental results from this category. FuSeBMC
achieved 4th place in the category by successfully achieving a score of 1161
out of 2566, behind the 3rd place system by 8 scores only. In the subcategory
ReachSafety-Floats, FuSeBMC obtained the first place by achieving 103 out of
226 scores. Thus, FuSeBMC outperformed the top tools in Test-Comp 2021. Fur-
ther, FuSeBMC obtained the first place in the subcategory ReachSafety-XCSP
by achieving 97 out of 119 scores. However, FuSeBMC did not perform well in
the subcategory ReachSafety-ECA compared with the leading tools in the Test-
Comp 2021. Again we suspect the cause to be the prevalence of nested branches
in these benchmarks.

These results validate EG2. FuSeBMC proved its capability in Branch
Coverage category, especially in the subcategories ReachSafety-Floats and
ReachSafety-XCSP, where it ranked first.

FuSeBMC achieved 2nd place overall at Test-Comp 2021, with a score of
1776 out of 3173. Table 4 and Fig. 8 shows the overall results compared with
other tools in the competition. Overall, FuSeBMC performed well compared
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Table 1. Cover-Error resultsa. We identify the best for each tool in bold.

Cover-Error
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ReachSafety-Arrays 100 93 0 59 69 88 67 96 11 73 75 95

ReachSafety-BitVectors 10 10 0 8 6 9 0 9 5 8 7 9

ReachSafety-ControlFlow 32 8 0 8 8 10 0 11 0 7 9 9

ReachSafety-ECA 18 8 0 2 1 14 0 11 0 15 2 16

ReachSafety-Floats 33 32 0 16 22 6 0 30 3 0 0 30

ReachSafety-Heap 57 45 0 37 38 46 0 47 9 47 44 47

ReachSafety-Loops 158 131 0 35 53 96 4 138 102 82 78 136

ReachSafety-Recursive 20 19 0 0 5 16 0 17 1 17 14 13

ReachSafety-Sequentialized 107 101 0 61 93 86 0 83 0 79 57 99

ReachSafety-XCSP 59 53 0 46 52 37 0 3 0 41 31 25

SoftwareSystems-BusyBox-MemSafety 11 0 0 0 0 0 0 0 0 0 0 0

DeviceDriversLinux64-ReachSafety 2 0 0 0 0 0 0 0 0 0 0 0

Overall 607 405 0 225 266 339 35 359 79 314 246 385
ahttps://test-comp.sosy-lab.org/2021/results/results-verified/.

Table 2. Cover-Branches resultsa. We identify the best for each tool in bold.
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ReachSafety-Arrays 400 284 139 229 225 96 195 296 119 226 223 295

ReachSafety-BitVectors 62 37 23 39 13 28 29 40 27 37 37 38

ReachSafety-ControlFlow 67 15 4 16 3 8 8 16 5 18 15 18

ReachSafety-ECA 29 5 0 6 2 7 3 10 2 10 7 12

ReachSafety-Floats 226 103 51 98 84 16 64 90 41 50 48 99

ReachSafety-Heap 143 88 19 79 74 81 69 90 40 84 86 86

ReachSafety-Loops 581 412 152 402 338 274 271 419 252 383 385 424

ReachSafety-Recursive 53 36 19 31 31 18 20 36 9 38 34 35

ReachSafety-Sequentialized 82 62 0 61 39 26 1 55 8 36 41 71

ReachSafety-XCSP 119 97 0 80 80 81 2 80 79 93 69 88

ReachSafety-Combinations 210 15 0 31 8 82 18 139 2 135 99 180

SoftwareSystems-BusyBox-MemSafety 72 1 0 5 4 6 0 6 4 7 4 8

DeviceDriversLinux64-ReachSafety 290 35 13 60 6 25 56 58 16 44 56 57

SoftwareSystemsSQLite-MemSafety 1 0 0 0 0 0 0 0 0 0 0 0

Termination-MainHeap 231 202 138 193 189 119 166 199 51 178 185 204

Overall 2566 1161 411 1128 860 784 651 1292 519 1169 1087 1389
ahttps://test-comp.sosy-lab.org/2021/results/results-verified/.

https://test-comp.sosy-lab.org/2021/results/results-verified/
https://test-comp.sosy-lab.org/2021/results/results-verified/
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Fig. 8. Quantile functions for category Overall. [8]

Table 3. The consumption of CPU and memory [8].

Rank Test
generator

Quality
(sp)

CPU time
(h)

CPU Energy
(kWh)

Rank
measure

Green testing (kj/sp)

1 TRACERX 1315 210 2.5 6.8

2 KLEE 1370 210 2.6 6.8

3 FuSeBMC 1776 410 4.8 9.7

Worst 51

with top tools in the subcategories ReachSafety-BitVectors, ReachSafety-Floats,
ReachSafety-Recursive, ReachSafety-Sequentialized and ReachSafety-XCSP.

Test-Comp 2021 also considers energy efficiency in rankings since a large
part of the cost of test generation is caused by energy consumption. FuSeBMC
is classified as a Green-testing tool - Low Energy Consumption tool (see Table 3).
FuSeBMC consumed less energy than many other tools in the competition. This
ranking category uses the energy consumption per score point as a rank measure:
CPU Energy Quality, with the unit kilo-joule per score point (kJ/sp). It uses
CPU Energy Meter [42] for measuring the energy.

These experimental results showed that FuSeBMC could reduce the con-
sumption of CPU and memory efficiently and effectively in C programs,
which answers EG3.
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Table 4. Test-Comp 2021 Overall resultsa.
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OVERALL 3173 1776 254 1286 1228 1370 495 1738 526 1543 1315 1865
ahttps://test-comp.sosy-lab.org/2021/results/results-verified/.

5 Related Work

For more than 20 years, software vulnerabilities have been mainly identified by
fuzzing [43]. American fuzzy lop (AFL) [44,45] is a tool that aims to find soft-
ware vulnerabilities. AFL increases the coverage of test cases by utilizing genetic
algorithms (GA) with guided fuzzing. Another fuzzing tool is LibFuzzer [46].
LibFuzzer generates test cases by using code coverage information provided by
LLVM’s Sanitizer Coverage instrumentation. It is best used for programs with
small inputs that have a run-time of less than a fraction of a second for each
input as it is guaranteed not to crash on invalid inputs. AutoFuzz [47] is a tool
that verifies network protocols using fuzzing. First, it determines the specifica-
tion for the protocol, then utilizes fuzzing to find vulnerabilities. Additionally,
Peach [48] is an advanced and robust fuzzing framework that provides an XML
file to create a data model and state model definition.

Symbolic execution has also been used to identify security vulnerabilities.
One of the most popular symbolic execution engines is KLEE [19]. It is built on
top of the LLVM compiler infrastructure and employs dynamic symbolic execu-
tion to explore the search space path-by-path. KLEE has proven to be a reliable
symbolic execution engine for its utilization in many specialized tools such as
TracerX [49] and Map2Check [33] for software verification, also SymbexNet [50]
and SymNet [51] for verification of network protocols implementation.

The combination of symbolic execution and fuzzing has been proposed before.
It started with the tool that earned first place in Test-Comp 2020 [18], Veri-
Fuzz [14]. VeriFuzz is a state-of-the-art tool we have compared to FuSeBMC. It
is a program-aware fuzz tester that combines the power of feedback-driven evolu-
tionary fuzz testing with static analysis. It is built based on grey-box fuzzing to
exploit lightweight instrumentation for observing the behaviors that occur during
test runs. There is also LibKluzzer [15], which is a novel implementation that com-
bines the strengths of coverage-guided fuzzing and white-box fuzzing. LibKluzzer
is a combination of LibFuzzer and an extension of KLEE called KLUZZER [52].
Driller [53] is a hybrid vulnerability excavation tool, which leverages fuzzing and
selective concolic execution in a complementary manner to find deeply embedded
bugs. The authors avoid the path explosion inherent in concolic analysis and the
incompleteness of fuzzing by combining the two techniques’ strengths and miti-
gating the weaknesses. Driller splits the application into compartments based on
checks of particular values of a specific input. The proficiency of fuzzing allows it

https://test-comp.sosy-lab.org/2021/results/results-verified/
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to explore possible values of general input in a compartment. However, when it
comes to values that satisfy checks on an input that guides the execution between
compartments, fuzzing struggles to identify such values. In contrast, selective con-
colic execution excels at identifying such values required by checks and drive the
execution between compartments.

Another example is hybrid fuzzer [54], which provides an efficient way to gen-
erate provably random test cases that guarantee the execution of unique paths.
It uses symbolic execution to determine frontier nodes that lead to a unique exe-
cution path. Given some resource constraints, the tool collects as many frontier
nodes as possible. With these nodes, fuzzing is employed with provably random
input, preconditioned to lead to each frontier node. Badger [55] is a hybrid testing
approach for complexity analysis. It uses Symbolic PathFinder [56] to generate
new inputs and provides the Kelinci fuzzer with worst-case analysis. Munch [57]
is a hybrid tool introduced to increase function coverage. It employs fuzzing
with seed inputs generated by symbolic execution and targets symbolic execu-
tion when fuzzing saturates. SAGE (Scalable Automated Guided Execution) [58]
is a hybrid fuzzer developed at Microsoft Research. It extends dynamic symbolic
execution with a generational search; it negates and solves the path predicates to
increase the code coverage. SAGE is used extensively at Microsoft, where it has
been successful at finding many security-related bugs. SAFL [59] is an efficient
fuzzer for C/C++ programs. It generates initial seeds that can get an appropri-
ate fuzzing direction by employing symbolic execution in a lightweight approach.
He et al. [60] describe a new approach for learning a fuzzer from symbolic exe-
cution; they instantiated it to the domain of smart contracts. First, it learns a
fuzzing policy using neural networks. Then it generates inputs for fuzzing unseen
smart contracts by this learning fuzzing policy. In summary, many tools have
combined fuzzers with BMC and symbolic execution to perform software veri-
fication. However, our approach’s novelty lies with the addition of the selective
fuzzer and time management algorithm between engines and goals. These fea-
tures were what distinguished FuSeBMC from other tools at Test-Comp 2021.

6 Conclusions and Future Work

We proposed a novel test case generation approach that combined Fuzzing and
BMC and implemented it in the FuSeBMC tool. FuSeBMC explores and ana-
lyzes the target C programs by incrementally injecting labels to guide the fuzzing
and BMC engines to produce test cases. We inject labels in every program branch
to check for their reachability, producing test cases if these labels are reachable.
We also exploit the selective fuzzer to produce test cases for the labels that
fuzzing and BMC could not produce test cases. FuSeBMC achieved two sig-
nificant awards from Test-Comp 2021. First place in the Cover-Error category
and second place in the Overall category. FuSeBMC outperformed the leading
state-of-the-art tools because of two main factors. Firstly, the usage of the selec-
tive fuzzer as a third engine that learns from the test cases of fuzzing/BMC to
produce new test cases for the as-yet uncovered goals. Overall, it substantially
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increased the percentage of successful tasks. Secondly, we apply a novel algorithm
of managing the time allocated for each engine and goal. This algorithm prevents
FuSeBMC from wasting time finding test cases for difficult goals so that if the
fuzzing engine is finished before the time allocated to it, the remaining time will
be carried over and added to the allocated time of the BMC engine. Similarly, we
add the remaining time from the BMC engine to the selective fuzzer allocated
time. As a result, FuSeBMC raised the bar for the competition, thus advancing
state-of-the-art software testing. Future work will investigate the extension of
FuSeBMC to test multi-threaded programs [61,62] and reinforcement learning
techniques to guide our selective fuzzer to find test cases that path-based fuzzing
and BMC could not find.

A Appendix

A.1 Artifact

We have set up a zenodo entry that contains the necessary materials to reproduce
the results given in this paper: https://doi.org/10.5281/zenodo.4710599. Also,
it contains instructions to run the tool.

A.2 Tool Availability

FuSeBMC contents are publicly available in our repository in GitHub under the
terms of the MIT License. FuSeBMC provides, besides other files, a script called
fusebmc.py. In order to run our fusebmc.py script, one must set the architecture
(i.e., 32 or 64-bit), the competition strategy (i.e., k-induction, falsification, or
incremental BMC), the property file path, and the benchmark path. FuSeBMC
participated in the 3rd international competition, Test-Comp 21, and met all the
requirements each tool needs to meet to qualify and participate. The results in
our paper are also available on the Test-Comp 21 website. Finally, instructions
for building FuSeBMC from the source code are given in the file README.md
in our GitHub repository, including the description of all dependencies.

A.3 Tool Setup

FuSeBMC is available to download from the link.3 To generate test cases for a
C program a command of the following form is run:

fusebmc.py [-a {32, 64}] [-p PROPERTY_FILE]

[-s {kinduction,falsi,incr,fixed}] [<file>.c]

where -a sets the architecture (either 32- or 64-bit), -p sets the property file
path, -s sets the strategy (one of kinduction, falsi, incr, or fixed) and
<file>.c is the C program to be checked. FuSeBMC produces the test cases in
the XML format.
3 https://doi.org/10.5281/zenodo.4710599.

https://doi.org/10.5281/zenodo.4710599
https://doi.org/10.5281/zenodo.4710599
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