
Chapter 5
Estimation of the Buried Model
Parameters from the Self-potential Data
Applying Advanced Approaches:
A Comparison Study

Mahmoud Elhussein and Khalid S. Essa

Abstract Acomparison study using the least-squaresminimizationmethod, particle
swamoptimizationmethod, and neural networkmethod for interpreting self-potential
data for typical shaped-models (spheres and cylinders). This interpretation process
contains the delineation buried sources parameters, which are the amplitude factor,
the depth to the structure, the source origin location, the angle of polarization, the
shape factor. The stability of the suggested methods was tested on two synthetic
data with and without noise and real data set from USA. The methods estimate the
different structures parameters efficiently and accurately.
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5.1 Introduction

Self-potentialmethod canbe considered as oneof themost effective geophysical tech-
niques in solving different geophysical problems (Sundararajan et al. 1998; Drahor
2004;Mehanee2014;Essa 2020;Elhussein 2020). Self-potential anomalies produced
by natural potential difference which resulted due to the oxidation-reduction process
of mineralized rocks which in contact with the ground water (Essa et al. 2008; Essa
2020).

To apply the self-potential technique in solving the different geophysical prob-
lems, the different subsurface geological bodies was approximated to simple geomet-
rical bodies (like, sphere, cylinder and thin sheet) (Essa 2011; Mehanee 2014, 2015;
Biswas 2017; Essa and Elhussein 2017; Sungkono and Warnana 2018; Essa 2020).
To estimate the different parameters (like, amplitude coefficient, depth, polarization
angle and body origin), different techniques were created and developed to overcome
the ill-posedness and non-uniqueness problems (Tarantola 2005; Sharma and Biswas
2013; Essa 2019). From these techniques, gradient techniques (Abdelrahman et al.
2004, 2009b; Essa and Elhussein 2017), moving average techniques (Abdelrahman
et al. 2006a; Mehanee et al. 2011; Essa 2019), characteristic curves and nomograms
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(Yungul 1950; Fitterman 1979; Essa 2007; Abdelrahman et al. 2009a), nonlinear and
liner least squares techniques (Abdelrahman et al. 2006b; Essa et al. 2008), Euler
deconvolution method (Agarwal and Srivastava 2009); most of the previous methods
require a priori information, other methods estimate the different parameters with
high uncertainty as the accuracy of the estimated parameters mainly depends upon
the accuracy of the regional-residual separation. Nowadays new recent techniques
have been developed, like particle swarm optimization (Essa 2019, 2020), genetic-
price technique (Di Maio et al. 2019), black-hole technique (Sungkono andWarnana
2018).

This chapter review different techniques applied to the different synthetic and real
field self-potential data to estimate the different bodies parameters.

5.2 Methodology

5.2.1 Forward Modeling

The SP anomaly (V ) caused by simple geometrical structures at any given point (p)
(Bhattacharya and Roy 1981; Essa 2019) (Fig. 5.1) is given by:

V
(
x j

) = K

(
x j − d

)
cosθ − zsinθ

((
x j − d

)2 + z2
)q , i = 0, 1, 2, 3, . . . , N (5.1)

Fig. 5.1 A sketch showing the different geometrical shapes and their parameters: a sphere,
b horizontal cylinder and c vertical cylinder
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where K is the amplitude factor (mV x m2q−1), z is the depth to the structure (m), d
is the source origin (m), θ is the angle of polarization (degrees), q is the shape factor
(dimensionless) which takes the following values: 1.5 for sphere, 1 for horizontal
cylinder and 0.5 for vertical cylinder (Essa et al. 2008; Di Maio et al. 2016; Essa
2019).

5.2.2 Least Squares Inversion Technique

Essa et al. (2008) developed a least square inversion approach to estimate the different
bodies parameters, by determining the depth applying the nonlinear equation:

δ(z) = 0, (5.2)

After estimating the depth, the angle of polarization is then calculated by the least
square, also, the amplitude factor is then determined from the estimate depth and the
polarization angle.

5.2.3 Particle Swarm Optimization

Essa (2019) developed a method based upon the PSO algorithm and the second
moving average for estimating the different structures parameters. PSO is stochastic
in its nature, the idea of PSO is based upon a group of birds or fishes looking for
food, the group of birds represent the models, and the paths of particles represent the
solutions (Essa 2019). The algorithm startswith randommodels, then the location and
the velocity of the particles are updated using the following formulas, respectively.

xk+1
i = xkj + V k+1

j (5.3)

V k+1
j = c3V

k
j + c1rand

(
Tbest − xk+1

j

)
+ c2rand

(
Jbest − xk+1

j

)
, (5.4)

where xkj is the location of jth particle at the iteration kth; V k
j is the velocity of the

jth model at the iteration kth; rand is any random number between [0, 1]; c1 and c2
are cognitive and social factors and equal 2 (Parsopoulos and Vrahatis 2002; Singh
and Biswas 2016; Essa 2019); c3 is the inertial coefficient which governs the velocity
of the model and usually takes a value less than one; Tbest is the best location for
individual model, and Jbest is the global best location for any model in the group.
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5.2.4 Neural Network Algorithm

Al-Garni (2009) proposed an approach based mainly on neural network (modular
algorithm) to estimate the different structures parameters.

5.3 Synthetic Examples

5.3.1 Sphere Model

A noise free SP anomaly was generated using sphere model with the following
parameters: K = 1200 mV x m2, z = 6, θ = 45°, d = 55 m, q = 1.5 and the profile
length = 100 m (Fig. 5.2).

The different previous techniques were applied to estimate the different param-
eters. First the least square inversion technique was applied to the SP profile and
the parameters were estimated accurately with no error (Table 5.1), then the PSO
technique produce the parameters with 0% error (Table 5.1), Finally, the data were
subjected to neural network and the parameterswere estimated efficiently (Table 5.1).

To test the effect of noisy data on the different techniques, a 10% randomnoisewas
added to the previous SP model. For least square inversion technique, the estimated
parameters are: K= 1020 mV x m2, z= 6.5, θ = 47°; while for PSO technique, the
estimated parameters are: K = 1140 mV x m2, z = 5.8, θ = 44.5°, d = 54.9 m, q =
1.45; and in case of neural network, the estimated parameters are: K = 1350 mV x
m2, z = 6.3, θ = 45.7°, q = 1.57 (Table 5.2). The error of the estimated parameters
is shown in (Table 5.2).

5.3.2 Horizontal Cylinder Model

A noise free SP anomaly was generated using horizontal cylinder model with the
following parameters: K = 900 mV x m, z = 6.5, θ = 40°, d = 60 m, q = 1 and the
profile length = 100 m (Fig. 5.3).

The different previous techniques were applied to estimate the different param-
eters. First the least square inversion technique was applied to the SP profile and
the parameters were estimated accurately with no error (Table 5.1), then the PSO
technique produce the parameters with 0% error (Table 5.2), Finally, the data were
subjected to neural network and the parameterswere estimated efficiently (Table 5.2).

To test the effect of noisy data on the different techniques, a 10% randomnoisewas
added to the previous SP model. For least square inversion technique, the estimated
parameters are: K = 1000 mV x m, z = 7.1, θ = 41.5°; while for PSO technique,
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Fig. 5.2 Self-potential anomaly profile of sphere model (K = 1200 mV × m2, z = 6 m, θ = 45°,
q = 1.5, and d = 55 m) and profile length 100 m

the estimated parameters are: K = 960 mV x m, z = 6.6, θ = 40.2°, d = 60.11 m, q
= 1.04; and in case of neural network, the estimated parameters are: K = 1010 mV
x m, z = 6.3, θ = 39.7°, q = 0.9 (Table 5.2). The error of the estimated parameters
is shown in (Table 5.2).
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Table 5.1 A correlation between results obtained from different methods applied to the self-
potential anomaly of sphere model (K = 1200 mV × m2, z = 6 m, θ = 45°, q = 1.5, and d =
55 m)

Methods parameters Essa et al. (2008)
method

Al-Garni (2009)
method

Essa (2019) method

Noise-freee

Results Error (%) Results Error (%) Results Error (%)

K (mV x m2) 1200 0 1200 0 1200 0

z (m) 6 0 6 0 6 0

θ (degree) 45 0 45 0 45 0

q (dimensionless) – – 1.5 0 1.5 0

d (m) – – – – 55 0

Results (after adding 10% random noise)

Results Error (%) Results Error (%) Results Error (%)

K (mV x m2) 1020 15 1350 12.5 1140 5

z (m) 6.5 8.33 6.3 5 5.8 3.33

θ (degree) 47 4.44 45.7 1.56 44.5 1.11

q (dimensionless) – – 1.57 4.67 1.45 3.33

d (m) – – – – 54.9 0.18

Table 5.2 A correlation between results obtained from different methods applied to the self-
potential anomaly of H.C. model (K = 900 mV × m, z = 6.5 m, θ = 40o, q = 1, and d =
60 m)

Methods parameters Essa et al. (2008)
method

Al-Garni (2009)
method

Essa (2019) method

Noise-freee

Results Error (%) Results Error (%) Results Error (%)

K (mV x m) 900 0 900 0 900 0

z (m) 6.5 0 6.5 0 6.5 0

θ (degree) 40 0 40 0 40 0

q (dimensionless) – – 1 0 1 0

d (m) – – – – 60 0

Results (after adding 10% random noise)

Results Error (%) Results Error (%) Results Error (%)

K (mV x m) 1000 11 1010 12.2 960 4

z (m) 7.1 9.23 6.3 3.08 6.6 1.54

θ (degree) 41.5 3.75 39.7 0.75 40.2 0.5

q (dimensionless) – – 0.9 10 1.04 4

d (m) – – – – 60.11 0.18
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Fig. 5.3 Self-potential anomaly profile of H.C. model (K = 900 mV × m, z = 6.5 m, θ = 40°, q
= 1, and d = 60 m) and profile length 100 m

5.4 Field Example

5.4.1 Malachite Mine, USA Real Data

Malachite mine is composed of amphibolite belt which surrounded by gneiss and
schist (Essa 2019). Self-potential profile was designed and measured by Heiland
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et al. (1945), the profile was taken above massive sulfide ore body which located in
the Malachite mine. The profile length was 164 m, digitized at 1.25 m (Fig. 5.4).
The SP profile was then subjected to the three different techniques to determine and
compare between the parameters estimated from these different methods (Table 5.3).
From Table 5.3 the parameters estimated using least square inversion method (Essa
et al. 2008) are: K = 275.39 mV, z = 12.87, θ = 103.58o; while the parameters
estimated by using PSO technique (Essa 2019) are: K = 236.53 mV, z = 13.74, θ =

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

Horizontal distance (m)

-220

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

Se
lf-

Po
te

nt
ia

l a
no

m
al

y 
(m

V
)

Fig. 5.4 Self-potential anomaly profile of Malachite mine, USA field example

Table 5.3 A correlation between results obtained from different methods applied to the self-
potential anomaly of Malachite mine, USA field example

Methods parameters Essa et al. (2008) method Al-Garni (2009) method Essa (2019) method

K (mV) 275.39 268.41 236.53

z (m) 12.87 13.2 13.74

θ (degree) 103.58 105 99.31

q (dimensionless) – 0.63 0.45

d (m) – – 0.20
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99.31o d= 0.20 m, q= 0.45; finally, the parameters estimated using neural network
(Al-Garni 2009) are: K = 268.41 mV, z = 13.2, θ = 105o, q = 0.63.

5.5 Conclusions

Acomparative studywasmade in this chapter to see the differences between different
methods in application to the self-potential data from different geological structures
(Sphere, horizontal cylinder and vertical cylinder). the different methods are least-
square (Essa 2008), neural network (Al-Garni 2009) and PSO (Essa 2019). These
different methods were applied to two different synthetic data without and with
10% random noise and one real data from USA. The methods estimate the different
structures parameters (K, z, d, θ and q) efficiently and accurately.
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