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Abstract In geophysics, it is particularly important to choose an adequate optimiza-
tion algorithm for parameter estimation. In this study, the success of Levenberg-
Marquardt (LM), Differential Evolution (DE) and Particle Swarm Optimization
(PSO) inversion algorithms has been tested by applying to the synthetic and field
self-potential (SP) anomalies. Even though it is not preferred to compare derivative-
based algorithms with metaheuristics, thanks to a LM-based limitation procedure
first proposed in this study, a comparison could be realized. First, a synthetic SP
data have been inverted by LM, DE and PSO algorithms. Then, SP field data set
collected from Tamış-Çanakkale, Turkey was evaluated by the same algorithms. The
estimated model parameters by these algorithms were compared with each other.
We also inverted vertical electrical sounding (VES) data set collected from the same
region, and an earth model was constructed by using both SP and VES methods.
The results from each geophysical method point out the same location for a fault.
Based on these studies, it can be concluded that DE, PSO, and LM algorithms may
be confidently used in SP modelling studies.
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4.1 Introduction

Electrical methods are frequently used to detect the location of systems including the
groundwater. Self-potential (SP) and vertical electrical sounding (VES) are proven
methods to be successful in groundwater explorations such as groundwater pollution
studies, fresh, saltwater interference problems, and geothermal exploration (Ogilvy
et al. 1969; Corwin and Hoover 1979; Schiavone and Quarto 1984; Hamzah et al.
2007; Karlık and Kaya 2001).

The VES technique is used to determine the resistivity changes from the surface
to the depth. It is mainly based on the principle of measuring the response of the earth
to an electric current applied to the ground. The VESmethod is useful in determining
the depth, geometry and resistivity of the layers (Hamzah et al. 2007; Kaya et al.
2015).

Self-potential is an electrical phenomenon that is so easy to measure but it is
also so hard to determine the source mechanism. These mechanisms can be speci-
fied as electro-kinetic (streaming), thermo-electric, diffusion, and electro-chemical
potential. Self-potential method can be applied for determining the possible faults
containing fluid in the study area (Yüngül 1950; Fitterman and Corwin 1982; Corwin
1990; Monteiro Santos et al. 2002; Revil et al. 2003). Potential anomalies created by
fluid-containing faults are generally generated by electro-chemical sources.

SP anomalies can be analysed by different approaches. Since the use of the
graphic-based evaluation methods (Yüngül 1950; Paul 1965; Rao et al. 1970), a
new generation numerical methods have been developed for the evaluation of SP
data in parallel with developing computer technology: The Fourier, Hartley, Hilbert
Transforms and Wavelet analysis (Sundararajan et al. 1990; Asfahani et al. 2001;
Gilbert and Pessel 2001; Al-Garni and Sundararajan 2011; Di Maio et al. 2016),
Euler Deconvolution (Agarwal and Srivastava 2009; Sındırgı and Özyalın 2019),
Gradient and Derivative Analysis (Abdelrahman et al. 1997, 1998, 2006; El-Araby
2004; Essa et al. 2008; Sındırgı et al. 2008; Abedi et al. 2012; Mehanee 2015), tomo-
graphic approach (Di Maio and Patella 1994; Patella 1997; Revil et al. 2001; Juliano
et al.,2002), Artificial Neural Network algorithms (El-Kaliouby and Al-Garni 2009;
Kaftan et al. 2014), andmetaheuristic algorithms includingParticle SwarmOptimiza-
tion (PSO) (Juan et al. 2010, Monteiro Santos 2010; Göktürkler et al. 2016; Ekinci
et al. 2019; Pekşen et al. 2011), Simulated annealing (SA) (Sharma 2012; Biswas
and Sharma 2014, 2015), Genetic Algorithm (GA) and Differential Evaluation (DE)
(Abdelazeem and Gobashy 2006; Fernández-Martínez et al. 2010; Göktürkler and
Balkaya 2012; Di Maio et al. 2017; Ekinci et al. 2019).

In this study, a synthetic (noise-free and noisy) and a field SP data set (collected
from Tamış-Çanakkale, Turkey) have been evaluated by three algorithms including
the Levenberg-Marquardt (LM), PSO and DE. Also, to be able to compare LM to
the metaheuristics, a new initial model selection process for LM was developed.
Then, the estimated parameters have been compared with each other. The VES data
set, collected from the same location, is also inverted, and the subsurface model for
Tamış-Çanakkale anomaly has been constructed by combining the results from both
VES and SP data.
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4.2 Materials and Methods

4.2.1 Formulation of the SP Anomaly

Let V (x, x0, z0, K , θ, q) be the SP anomaly produced by a simple polarized causative
body observed at any point on the earth’s surface (Fig. 4.1). Formulation of the SP
anomaly (Yüngül 1950; Murty and Haricharan 1985) can be written as;

V (x, x0, z0, K , θ, q) = K
(x − x0)cosθ + z0sinθ

[
(x − x0)

2 + z20
]q (4.1)

where K is the electric dipole moment, x is the horizontal distance, x0 is the distance
from the origin, z0 is the depth of the centre of the body, θ is the polarization angle,
and q is the shape factor. The shape factor is dimensionless and its value for a
sphere, horizontal cylinder, and semi-infinite vertical cylinder are 1.5, 1.0, and 0.5,
respectively. The shape factor becomes near to zero as the structure approaches a
horizontal sheet.

Fig. 4.1 An infinitely long
horizontal cylinder model
and its noise-free and noisy
anomalies (The model
parameters and their
corresponding values are
listed on the figure)
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4.2.2 Algorithms

4.2.2.1 Levenberg-Marquardt (LM) Inversion Algorithm

Nonlinear least squares problems can be solved using the LMalgorithm. The solution
from the LM algorithm is not necessarily to be a global minimum. Generally, the LM
algorithm is often preferred toGauss-Newton and Steepest-Descentmethods because
it guarantees good convergence and non-singularity of the solution. Kenneth Leven-
berg introduced this algorithm in (1944), and Donald Marquardt (1963) improved it
subsequently.

Generalized formulation of forward modelling problems can be written as,

d = G(m) (4.2)

where d is the M-dimensional vector of observations and, m is a vector of model
parameters (in previous study model parameters are x0, z0, K , θ, q) with the size of
N×1. G(m) is a nonlinear function predicted by the model. Model parameter m can
be written by

m = m0 + �m (4.3)

where m0 is the initial model and �m is the model parameters update.
Minimizing the model perturbation to the Gauss-Newton solution can be fulfil via

minimizing the objective F,

F = (d − G(m0 + �m)) + λ�m2 (4.4)

The sensitivity (Jacobian) matrix J (M×N) can be written as,

J =

⎡

⎢⎢
⎣

∂Gi (m)

∂m1
. . . ∂Gi (m)

∂mN

...
. . .

...
∂GM (m)

∂m1
. . . ∂GM (m)

∂mN

⎤

⎥⎥
⎦

and using sensitivity matrix, �m can be defined as

�m = [
JTW J + I

]−1
JTW(d − G(m0)) (4.5)

where I is the identity matrix and λ is a damping factor shows the effect of model
perturbation. If λ is small, Eq. (4.4) will become equal to Gauss-Newton solution
equation. Generally, the initial value of λ is chosen large. If misfit is smaller than
previous iteration λ is reduced, if not it is increased.W is a positive definite matrix
and defined as (Jupp and Vozoff 1975)
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W = 1

M
d2
i , i = 1, 2, . . . , M (4.6)

RMSE, which means the standard deviation of the residuals, is calculated as
follows (Barnston 1992):

RMSE =
√√√√ 1

M

M∑

i=1

(d i − G(m)i )
2 (4.7)

4.2.2.2 Particle Swarm Optimization (PSO) Algorithm

The PSO was proposed in 1995 by the authors Kennedy and Eberhart. It is a
population-based metaheuristic technique and is based on the social behaviour of
animals (birds, fishes). While each individual searching for the solution in PSO is
called a particle, the population of the particles is called a swarm. Particles move
according to two important parameters in the search space. Pbest is the particle’s
best position found so far and Gbest is global best position found thus far in the
entire swarm. According to these definitions, basic steps of the PSO algorithm can
be listed as follows: (1) The algorithm is initialized by placing the particles with
random velocities (v) and positions (x) in the search space. (2) The fitness value is
used to understand how close a particle is to the solution. It is calculated for each
particle. (3) Individual and global bests are updated by comparing them with the
previous ones (pbesti) and equalized to the current value of the fitness. Then the
particle’s prior best position (pi ) is assumed to be as the current position (xi ). The
determined position of the particle with the best fitness value so far is assigned as
the global best (gi ). (4.4) New velocity and position values are updated for each
particle. (4.5) Stopping criterion is checked, if could not reach the threshold values,
it is continued with step (4.2) (Fig. 4.2).

The position and velocity of a particle i can be updated as follows (i = 1, 2, 3,
…, N);

vi = ωvi + c1rand()(pi − xi ) + c2rand()(gi − xi ) (4.8)

xi = xi + vi (4.9)

where w is a weighting factor (0 < ω < 1) known as inertia weight; c1 and c2
are individual and social behaviour coefficients, respectively. rand() is a function to
generate pseudo-random numbers within [0, 1]. The updates of position and velocity
of each particle end after reaching the stopping criterion (Kennedy and Eberhart
1995; Shi and Eberhart 1998; Poli et al. 2007; Luke 2009; Salmon 2011). In the light
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Fig. 4.2 The flow chart of the particle swarm optimization (Adopted from http://mnemstudio.org/
particle-swarm-introduction.htm)

http://mnemstudio.org/particle-swarm-introduction.htm
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Table 4.1 The values of the parameters used in PSO and DE algorithms

DE parameters Values PSO parameters Values

Number of parameter (D) 5 Number of parameter (D) 5

Population size and Weighting factor
(F)

100
0.7

Particle number
Inertia weight (ω)

100
1

Max. generation number (G) 100 Max. generation number (G) 100

Max. number of run 10 Max. number of run 10

Value to reach (VTR) (mV) 1e-11 Value to reach (VTR) (mV) 1e-11

Crossover probability (Cr ) 0.9 Cognitive and social scaling factors
(c1 and c2)

c1 = 2
c2 = 2

of this information, the values of the parameters used in PSO algorithm in this study
are listed in Table 4.1.

4.2.3 Differential Evolution (DE) Algorithm

DE algorithm (Storn and Price 1995, 1997) is a population-based optimization algo-
rithm and its applications in geophysics have increased in recent years. Different
from the conventional gradient-based inversion methods, a good starting model is
not a requirement for the DE algorithm to reach the global minimum. Three control
parameters are the only requirements: number of population (Np), weighting factor
(mutation constant, F) and crossover probability (Cr ). The initial population is gener-
ated randomly in the initialization stage of the algorithm, then in the evolution stage
population evolves from one generation to the next through mutation, crossover and
selection operations until the termination criterion is satisfied (Fig. 4.3) (Li and Yin
2012; Ekinci et al. 2016).

The target vectors can be defined as xi,G = (
x1i,G, x2i,G, . . . , xD

i,G

)
, i =

1, 2, . . . , Np, where G is the current generation, and D is the number of param-
eters ( j = 1, 2, . . . , D). The j th component of the i th vector can be generated as
follows:

x j
i,G = x j

l + rand().
(
x j
u − x j

l

)
(4.10)

where rand() symbolizes pseudo-random number between [0,1), also l and u are the
lower and upper limits for each parameter.

The evolution cycle includes mutation, crossover and selection operations
(Fig. 4.3). Mutation operation is run to form a donor (mutant) vector, vi,G =(
v1
i,G, v2

i,G, . . . ., vD
i,G

)
, i = 1, 2, . . . ., Np, for each target vector. Generally, there

are five differential mutation strategies (Li and Yin 2012). Previous studies (Balkaya
2013; Ekinci 2016; Ekinci et al. 2017, 2019) are indicated that DE/best/1/bin supplies
better solutions with a good estimation accuracy and less computing time for the
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Fig. 4.3 The flow chart of the DE optimization algorithm (from Ekinci et al. 2016)

inversion of geophysical data sets. This strategy is preferred in the DE optimizations
of the synthetic and field SP data in this work. Mutation operation for this strategy
can be defined as below:

vi,G = xbest,G + F.
(
xri1,G − xri2,G

)
(4.11)
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Here, xbest,G is the best individual vector in the population at generation G, and
(xr1 , xr2 ) is a pair of differential vectors.

Then, the trial vector (ui,G) is produced by a recombination of the donor vector(
vi,G

)
and the target vector (xi,G). The trail vector of the j th particle in the i th

dimension at the G th iteration can be written as:

u j
i,G =

{
v
j
i,G i f (rand(0, 1) ≤ Cr or j = jrand)
x jk
i,G otherwise.

, j = 1, 2, . . . , D (4.12)

whereCr is a crossover rate in the range [0,1] and jrand is a randomly chosen integer
in the range [1, D].

Selection operator is employed to select the next generation between the trial and
target vectors.

xi,G+1 =
{
ui,Gi f f (ui,G ≤ f

(
xi,G

)

xi,Gotherwise.
(4.13)

If the new generated trial vector gives a better fitness value than its previous one,
the target vector is updated by using Eq. 13, else it is kept in the present population.
The fitness value is calculated for each particle from the objective function, and the
particle with the best value is selected as the solution in the current generation.

Evolution cycle endswhen a predefined termination criterion ismet. This criterion
can be error energy, and/or maximum number of G. So, the vector yielding the lower
error energy value is chosen as an optimum solution for the optimization problem.
In this study both termination criteria were used.

For the number ofM data, the objective function (Relative Error) can be calculated
as follows:

φ = 1

M

M∑

i=1

(
gobsi − gcali

)2
(4.14)

where gobs and gcal are the observed and calculated data, respectively, and i indicates
the observations. The square root of theEq. (4.14) gives theRootMeanSquare (RMS)
value.

4.2.4 Parameter Estimation Studies

Synthetic noise-free and noisy (5%) infinitely long horizontal cylinder-shaped SP
model anomalies are generated to test the parameter solution quality of the proposed
algorithms. Then, to better analyse the pertinence of the suggested algorithms on real
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data, they applied to four SP profile data, which are selected from Tamış-Çanakkale
SP anomaly.

The values of the DE and PSO parameters used during the test and field studies
are summarized in Table 4.1. The codes for all algorithms are written in MATLAB®

(ver.R2019a) software with a 3.10 GHz compatible computer with 6 GB memory.

4.2.5 Synthetic Examples

First, to test the parameter solution quality of the proposed algorithms, synthetic
noise-free and noisy anomalies based on an infinitely long horizontal cylinder-shaped
model were generated. The parameters used for this model were selected as K =
100 000 mV.m, z0 = 500 m, x0 = 950 m, x0 = 145o, q = 1, and profile length is
2000m (assuming 50m sampling interval) (Fig. 4.1). To calculate the noisy synthetic
model, 5% Gaussian noise, were added to the synthetic data (Fig. 4.1). Thereafter
the proposed algorithms have been applied for estimating the model parameters of
the SP source body.

Local optimization (gradient-based) algorithms requires choose the initial param-
eter values close to the true solution, otherwise the algorithmmay end up with a local
minimum instead of a global one. To copewith this problem, a new approach to assign
the initial values to the LM inversion algorithm has been introduced in this study. For
this purpose, similar to the population-based metaheuristic methods, a set including
100 different models for SP have been generated randomly within certain ranges
(Table 4.2), then objective function values for each model have been calculated by
forward solution. Among these models the one with the lowest error energy has
been taken as the initial model for LM. Finally, a LM inversion has been carried
based on this initial model. Optionally this procedure may be repeated several times
(Göktürkler and Balkaya 2012; Li and Yin 2012; Balkaya 2013), the one with the
lowest error energy can be assigned as the solution.

Table 4.3 illustrates the initial models by the above mentioned routine for LM
algorithm for noise-free and noisy SP data sets. As can be seen from the table the
noisy data set produced larger RMSvalue as expected. The Tables 4.4 and 4.5 give the
results of the parameter estimations by the LM, DE and PSOwith both the noise-free

Table 4.2 Parameter ranges
used to select LM algorithm
initial parameters and
generate the initial models by
PSO and DE of noise-free and
noisy synthetic SP anomalies

Parameters True Search Space

Minimum Maximum

x0 (m) 950 500 1000

z0 (m) 250 100 500

θ (o) 145 0 180

K (mV. m(2q−1)) 100000 10000 250000

q 1 0.5 1.5
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Table 4.3 Estimated initial SPmodel parameters for LM algorithm by the proposed approach. This
approach has been repeated 10 times, and the model having the lowest error energy has been taken
as the initial model

Anomaly RUN Parameters

x0(m) z0(m) θ (o) K (mV. m(2q−1)) q RMS (mV)

Noise-free 2 904.82 465.38 142.67 167640.86 1.01 2197.28895

Noisy (5%) 2 721.55 341.32 84.28 120239.64 1.08 11271.51951

Table 4.4 The best solutions from noise-free synthetic data set by three algorithms at the end of
10 independent runs

Algorithm RUN Parameters

x0(m) z0(m) θ (o) K (mV. m(2q−1)) q RMS (mV)

DE 4 950.00 250.00 145.00 100020.65 1 0.00251022

PSO 6 949.72 248.69 144.84 95110.06 1 0.13

LM 2 950.00 250.00 144.77 100015.32 1 0.67

Table 4.5 The best solutions from noisy synthetic data set by three algorithms at the end of 10
independent runs

Algorithm RUN Parameters

x0(m) z0(m) θ (o) K (mV. m(2q−1)) q RMS (mV)

DE 7 949.34 241.83 143.51 67884.33 0.97 5.31

PSO 10 950.32 246.03 144.04 78618.48 0.98 5.32

LM 2 949.33 241.78 143.97 67762.78 0.97 5.47

and noisy SP anomalies. The comparisons of the synthetic and calculated anomalies
are illustrated in Fig. 4.4. When Tables 4.4 and 4.5 are compared for noise-free
data (Fig. 4.4a–c), it is observed that the algorithms generated similar results in the
vicinity of true model parameters. On the other hand, the results for noisy data sets
(Fig. 4.4d–f) are deviated from the true model parameters. Based on Fig. 4.4 and
Tables 4.4 and 4.5, it can be said that the DE algorithm is relatively better than the
others for both noise-free and noisy data sets. The behaviour of parameters and error
energy variations of DE solutions are only presented in figure form (Fig. 4.5), in
order to save some space in the text.

4.2.6 Field Example

Çanakkale is tectonically active region on the Alpine-Himalayan Mountain Belt that
corresponds to the northwardmovement of theArabianplate and located in themiddle
segment of the NAF zone (Altınok et al. 2012). The main fault systems of the region
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Fig. 4.4 Synthetic data: a–c Noise-free, d–f noisy data. Calculated anomalies from DE, PSO and
LM algorithms (The estimated best-fitting parameters are listed on the figures)

Fig. 4.5 The convergence characteristics of the DE algorithm. a Amplitude K , b the distance from
the origin x0, c depth z0, d polarization angle θ , e Shape factor q

areBalabanlı,Kestanbol, Tuzla andEdremit Faults. There are a number of geothermal
fields (Tuzla, Palamutova,Kestanbol,Küçükçetmi geothermal fields etc.) relatedwith
these faults in the study area. The field data sets including SP and VES in this study
were collected near a segment of the Tuzla fault system. It represents the transition
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Fig. 4.6 Geological map of the study area (adapted and modified from Karacık and Yılmaz 1998;
Sözbilir et al. 2018)

zone between the Beydağı Horst and Tuzla Basin. Geological units of the study area
are the Balabanlı volcanics, Dededağ formations, and Karadağ metamorphics. The
Balabanlı volcanics consist of pyroclastic rocks such as rhyodacitic ignimbrites and
lavas. The Dededağ formation contains andesitic and trachyandesitic lavas and flow-
breccias. The Balabanlı volcanics and Dededağ formation lie over the metamorphic
basement (Karacık and Yılmaz 1998; Sözbilir et al. 2018) (Fig. 4.6).

The SP contour map and the superimposed locations of the VES measurements
are shown in Fig. 4.7a. The VES method was carried out at five stations using the
Schlumberger array. They have been inverted by a software based on a least-squares
approach (IPI2WIN), and the inverted resistivity values can be seen in Fig. 4.7b.
They indicate two distinct units. The first one is the surface volcanics characterized
by low resistivities (10–50�m), and the second one is themetamorphic units (having
resistivities of 50–200 �m) forming the basement. It is seen that the depth to the
basement ranges between approximately 350-600 m from the station VES-1 to VES-
4, and the depth to the basement rock is approximately 180 m at the station VES-5.
The difference between the depths may be explained as the effect of the Tuzla Fault
System.

Four different profiles (P1, P2, P3, and P4) were selected for inversion (Fig. 4.7a).
They have been evaluated by LM, PSO, and DE algorithms. Search spaces for these
algorithms are given in Table 4.6. The procedure of assigning initial values for the
LM inversion algorithm introduced in the present study (see Sect. 3.2) has also
been applied to the Tamış-Çanakkale data set (Table 4.7). The same values for the
algorithm-based parameters as the synthetic data evaluation were also used for the
field data set. Themeasured and calculated data fromSPprofiles are given inFigs. 4.8,
4.9, 4.10 and 4.11. Tables 4.8, 4.9, 4.10 and 4.11 show the results of the model
parameter estimations from the field data sets. Similar to the synthetic data, LM,
PSO, and DE algorithms have been executed 10 times and the one has the minimum
RMS value has been selected as the best-fitting model (Tables 4.8, 4.9, 4.10 and
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Fig. 4.7 a SP anomaly map, location of selected SP profiles (P1, P2, P3, and P4), VES stations
(VES-1, VES-2, VES-3, VES-4, and VES-5), and estimated SP body locations (stars). b Layered
earth models obtained from VES studies

Table 4.6 Parameter ranges
used in LM, PSO and DE
optimizations of the
Tamış-Çanakkale anomalies

Parameters Search Space

Minimum Maximum

x0 (m) 100 1500

z0 (m) 100 1000

θ (o) 0 180

K (mV.m(2q−1)) 10000 750000

Q 0.5 1.5

4.11). Although DE and PSO algorithms have smaller RMS errors than does LM
with the help of the initial model determination procedure developed for the LM
algorithm in this study, it is seen that the parameters are also successfully predicted
with LM. When the tables are examined, it can be seen that all algorithms provided
similar z0 values (~500–700 m) for the SP profiles, except profile P4. On the other
hand, the algorithms have determined a smaller z0 values (~185 m) for P4. The
calculated average depths (z0) and origin to distances (xP10 , xP20 , xP30 and xP40 ) of the
SP body using by the algorithms are shown in Fig. 4.12. It is seen that there is a
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Table 4.7 The initial SP parameters by the proposed approach in the present study for LM inversion
of the Tamış-Çanakkale data set. This approach has been repeated 10 times, and the model having
the lowest error energy has been taken as the initial model

Profile RUN Parameters

x0(m) z0(m) θ (o) K (mV. m(2q−1)) q RMS (mV)

P1 10 445.77 820.21 147.64 635087.96 1.12 272.87181

P2 9 1038.32 323.03 156.4 390919.62 1.32 551.5644

P3 4 665.56 261.31 174.41 311517.25 1.34 294.73764

P4 10 629.73 783.03 144.68 605134.85 1.1 1344.37074

Algorithm RUN Parameters

x0(m) z0(m) θ (o) K (mV. m(2q−1)) q RMS (mV)

DE 4 557.3 504.52 145.81 750000 1.18 3.22

PSO 4 556.71 500.43 145.55 634540.45 1.16 3.23

LM 10 557.43 505.62 146.37 786066.39 1.18 3.32

Fig. 4.8 a DE, b PSO and, c LM inversions of P1-profile

Fig. 4.9 a DE, b PSO and, c LM inversions of P2-profile

depth difference between the points xP30 and xP40 . Considering that the study area is
in a horst-graben transition boundary, this difference may be related with the Tuzla
Fault System. These findings are accordance with those of VES studies.

When we combine the geological units of the study area (Fig. 4.6) with the SP
and VES findings, we can say that the surface volcanics become thinner and the
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Fig. 4.10 a DE, b PSO and, c LM inversions of P3-profile

Fig. 4.11 a DE, b PSO and, c LM inversions of P4-profile

Table 4.8 The best solutions from Tamış-Çanakkale P1 data set by three algorithms at the end of
10 independent runs

Algorithm RUN Parameters

x0(m) z0(m) θ (o) K (mV. m(2q−1)) q RMS (mV)

DE 4 557.3 504.52 145.81 750000 1.18 3.22

PSO 4 556.71 500.43 145.55 634540.45 1.16 3.23

LM 10 557.43 505.62 146.37 786066.39 1.18 3.32

Table 4.9 The best solutions from Tamış-Çanakkale P2 data set by three algorithms at the end of
10 independent runs

Algorithm RUN Parameters

x0(m) z0(m) θ (o) K (mV. m(2q−1)) q RMS (mV)

DE 1 836.57 686.04 161.14 749999.99 1.21 2.8

PSO 5 836.51 685.93 161.14 750000 1.21 2.8

LM 9 834.49 650.39 159.91 243277.16 1.13 2.88

metamorphic basement units reach the shallower depths in the east and northeast of
the study area. In the light of comparison of two geophysical methods we can said
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Table 4.10 The best solutions from Tamış-Çanakkale P3 data set by three algorithms at the end of
10 independent runs

Algorithm RUN Parameters

x0(m) z0(m) θ (o) K (mV. m(2q−1)) q RMS (mV)

DE 4 480.21 633.49 140.98 37624.04 0.93 3.93

PSO 1 488.31 695.96 144.07 199675.88 1.04 3.94

LM 6 489.89 709.06 144.85 281692.89 1.07 3.96

Table 4.11 The best solutions from Tamış-Çanakkale P4 data set by three algorithms at the end of
10 independent runs

Algorithm RUN Parameters

x0(m) z0(m) θ (o) K (mV. m(2q−1)) q RMS (mV)

DE 1 644.98 185.99 177.91 750000 1.37 2.36

PSO 1 644.96 185.99 177.9 750000 1.37 2.36

LM 4 645.15 180.37 177.34 476253.67 1.33 2.54

Fig. 4.12 Estimated source depths (dots) from the inversion of the SP profile data

that the depth values estimated from SP and VES methods are in good agreements
with each other.

4.3 Conclusions

In this study, the model parameters of a polarized body have been determined by
a derivative-based (LM), and two population-based optimization algorithms (DE
and PSO), and the results are compared. Even though it is not preferred to compare
derivative-based algorithmswithmetaheuristics, a comparison could be realized by a
LM-based limitation procedure introduced in this study. By this limitation procedure,
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the misfit values from the LM algorithm have been observed as being close to those
from DE and PSO for both synthetic and field data sets.

In this study, Tamış-Çanakkale SP anomaly from Turkey was also evaluated with
the mentioned algorithms and the solutions of them compared to each other. RMS
value of the LM solution is relatively higher than the others. Comparison of the
estimated SP model parameters to the VES sections has indicated that the surface
volcanics become thinner and the metamorphic basement units reach the shallower
depths in the east and northeast of the study area.

As a result, the solutions by DE, PSO, and LM (with limitation procedure intro-
duced by the present study) are represented by being in good agreement with each
other and they have the ability to converge from local best to the general best, can be
successfully applied in determining SP model parameters. The LM algorithm, after
the process introduced by the present study, has yielded results comparable with the
other algorithms PSO and DE. It also displayed better convergence characteristics
after the proposed process.
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