
Chapter 1
Analytical Methods in the Interpretation
of Self-Potential
Anomalies—A Comprehensive Review

N. Sundararajan and Y. Srinivas

Abstract The self potential (SP) method is one of the simple, elegant and econom-
ical geophysical tools that hasmanydiverse applications in the subsurface exploration
for minerals, ground water etc. It is a passive method based on the natural occurrence
of electrical field ranging from less than amilli volt to a maximum of one or two volts
on/under the surface of earth. The surface measurements of SP caused by subsurface
targets can be estimated in terms of its size, dimension, depth, width, inclination etc.
often by qualitative methods directly from the shape of the anomalies. In this, the
profile shape, amplitude, polarity and contour pattern are also considered. In addi-
tion, the target/source is assumed to lie directly below the minimum of the anomaly.
On the other hand, a large number of quantitative methods that are in vogue approx-
imate the subsurface targets as regular geometrical shapes such as cylinder, sphere
etc. These quantitative methods are mostly based on mathematical transforms such
as Fourier, Hartley, Hilbert transforms and some of their modifications in addition to
a few soft computing tools like artificial neural network (ANN) etc. In this chapter,
some of these methods are illustrated with theoretical examples and also exemplified
with real field data. A simplified mathematical treatment of these techniques, the
merits of the methods are also included.

Keywords Self-Potential · Analytical methods · Subsurface structures · Mineral
exploration

1.1 General Introduction

The self-potential (SP) method is one of the oldest methods that was proposed in the
beginning of nineteenth century (1830) by Robert Fox) who carried out SP exper-
iments with mines in UK. The SP method is a passive method similar to gravity
and magnetic methods that measures the natural electrical potential observed on/in
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the subsurface due to geological/hydrogeological and geochemical reasons which
usually cause potential difference between any two measuring points. The major
factor for the origin of SP is ground water and is sensitive to the flow of the ground
water and to the chemistry of both the pore water and the pore water mineral inter-
face. The SP is also known as Static potential or Spontaneous potentials that are
usually caused by charge separation in clay or other minerals, due to the presence
of semi-permeable interface impeding the diffusion of ions through the pore space
of rocks, or by natural flow of a conducting fluid through the rocks. In most cases,
the SP measured is only related to the electrochemical potential. The potentials are
measured in millivolts (mV) relative to a reference point (base station), where the
potential is assumed to be zero volts. SP can range from less than a milli volt (mv)
to over one volt and the sign of the potential is an important diagnostic factor in the
interpretation of SP anomalies.

Further, there exist two different types of SP anomalies namely mineral potential
and background potential. The mineral potential is due to sulphide ore bodies—
generally –ve in the range of a few 100 mv and it is the most important in mineral
exploration associated with massive sulphide ore bodies. It is characterized by large
negativeSPanomalies (100–1000mV) that canbeobservedparticularly over deposits
of pyrite, chalcopyrite, pyrrhotite, magnetite,and graphite. The potentials are almost
invariably negative over the top of the deposit and are quite stable in time. Also,
mineral potential is constant and unidirectional due to electrochemical processes.
Background potential is due to geochemical process, bioelecric activity, groundwater
movement and topography, either + ve or –ve and ranges from less than 300 mv
except in the case of topography wherein it varies up to−2 V. Background potentials
fluctuate with time caused by different processes ranging from AC currents induced
by thunderstorms.

Variations in Earth’s magnetic fields, effects of heavy rainfalls etc. also fluc-
tuate background potentials. Generally to measure SP, two non polarisable porous
pot electrodes are connected to a high precision multi meter with an impedance >108

� and capable of measuring to at least 1 mv.Each electrode is made up of a copper
(cu). Electrodes dipped in a saturated solution of copper sulphate (CuSo4) which can
penetrate through the porous base to the pot in order to make electrical contact with
the ground. Zinc & silver electrodes and their respective sulphate solutions can also
be used.

There are two techniques by which SP can be measured and they are known
as potential gradient and potential amplitude. In potential gradient method, two
electrodes at a fixed separation (5–10 m) between which the potential difference- pd-
measured is divided by the electrode separation results potential gradient in mv/m.
The point to which this observation applied is the mid point between two electrodes.
The electrodes are moved along the traverse and the pd measured every time and
recorded. On the other hand, in potential amplitude method, one electrode is fixed at
a base station on a mineralized ground and to measure the pd, the second electrode
is moved along the traverse. Depth of investigation ranges approximately 30–100 m
depending upon the depth to targets as well nature of overburden.
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Generally, SP consists of two different components of potentials known as
Staticand Variable potential. Static part of SP is called signal and the variable part
of SP is termed as noise. The variable part is due to atmospheric effect which is in
the range of 5–10 Hz and at best be minimized by repeated measurements along
the profile and averaged for further interpretation. Electrical noise may incur if the
measurements are made too soon after heavy rain or near running water. Best be
avoided by suspending the SPwork during rainy days. Topography also causes minor
variation and hence require correction.

Further, SP measured over a large area may have a regional trend due to “telluric
current” of 100 mv/km. Mineral potential may be superimposed upon this regional
gradient. Prior to interpretation of the anomaly which is due to the source/target, it
has to be isolated from regional gradient as is done in gravity regional and residual
separation (R/R) separation. Topography causes potential variation particularly at
the highly elevated locations, the SP anomaly is –ve for which a minor correction
need to be applied prior to interpretation.

1.2 Interpretation of SP Anomalies

Usually, interpretation consists of looking for the order of magnitude of anomalies
in the range 0–20 mv as normal variation, 20–50 mv possibly of interest, especially
if observed over a fairly large area, more than 50 mv as definite anomaly and 400–
1000 mv as very large anomalies. Generally, SP anomalies are interpreted by means
of “qualitative method”, wherein the target/source is assumed to lie directly below
the minimum of the anomaly. The anomaly half width provides a rough estimate of
depth. The symmetry or asymmetry of anomaly provides the attitude of the body. The
presence and type of over burden can have strong effect on the presence or absence
of SP anomaly. For example sand has very little effect where as a clay cover may
mask the SP anomaly of the subsurface source/target.

In quantitative interpretation of SP anomalies, generally it is assumed that the
causative bodies to be regular geometrical shapes that can be described with appro-
priate analytical formulas. Logarithmic-curve matching (Murty and Haricharan
1984), the method of characteristic points (Rao et al. 1970), and the method of
nomograms (Bhattacharya and Roy 1981) all involve many approximations. The
method of least squares necessitates a series of trials to minimize the error between
the observed and calculated values. Spectral analysis is reliable only for very long
profiles. Whereas the ease of use and accuracy of results vary with the specific inter-
pretation technique, they are all subject to many constraints. None of these methods
yields a precise location of origin of the source of the anomaly, which is a prerequisite
for meaningful interpretation.

Some of the analytical methods of self potential anomaly interpretation based on
mathematical tools and techniques employing Hilbert transform, modified Hilbert
transform/Sundararajan transform, Fourier transform/Hartley transform, Mellin
transform etc.besides soft computing tools such as artificial neural networks (ANN)
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etc.play a significant role to realize reliable estimation of source parameters of subsur-
face targets. In this chapter, a brief review of thesemathematical tools and the process
of interpretation are given as hereunder.

During early 1990s, Sundararajan et al. (1990, 1998), Sundararajan and Chary
(1993) suggested the use of Hilbert transforms for the interpretation of SP anoma-
lies because this method is effective in the presence of random noise. This method is
basedonusing the real roots of the anomaly and itsHilbert transform/modifiedHilbert
transform, horizontal and vertical derivatives, avoids many of the drawbacks listed
above. In addition, a precise location of origin is achieved by using the Hilbert trans-
form and its modified version by means of amplitude of analytic signal. The method
is simple, elegant, straightforward, and above all is free from any assumptions. It
also can be automated easily. Theoretical and field examples illustrate the method in
the following section of some selected models and well known field anomalies.

1.3 Hilbert Transforms

The Hilbert transform (HT) and its modified version in geophysical data processing
and interpretation has gained importance over the last more than half a century
(Nabhigian 1972; Mohan et al. 1982; Sundararajan et al. 1998, 2000; Sundararajan
and Srinivas 2010). In these methods, the parameters of the causative bodies are
evaluated as functions of some characteristic points of the anomaly and its Hilbert
transform. The HT can physically be realized as a 90° (270° in the case of MHT)
phase shifter is not only useful in extracting the parameters such as depth, inclination,
width etc. of the causative bodies but also plays a significant role in exact spatial
location of the subsurface sources. The modified Hilbert transform is also known as
‘Sundararajan transform’ in literature (Sundararajan et al. 2000). In this section, it is
illustrated some basic concepts of HT and how they are applied in the interpretation
of self potential anomalies of certain simple geometrical structures such as 2-D
horizontal circular cylinder, sphere, inclined sheet etc.

The Hilbert transform HT(x) and modified Hilbert transform MHT(x) of self
potential anomalies represented by any real function SP(x) can be defined as

HT 1(x) = 1

π

∫ ∞

0
[Im SP(ω)cos(ωx) − ReSP(ω)sin(ωx)]dω

HT 2(x) = 1

π

∫ ∞

0
[Im SP(ω)cos(ωx) + ReSP(ω)sin(ωx)]dω

where ImSP(ω) and ReSP(ω) are the imaginaray and real components of the Fourier
transform of SP(x) implying that the HT can be computed via the Fourier transform.

Alternatively, the HT can also be computed in space domain as convolution of
SP(x) with 1/πx given by
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HT(x) = (1/πx) ∗ SP(x)

where * is the convolution operator.
Yet another way by which the Hilbert transform can be conceived is the horizontal

and vertical derivatives of SP(x) that form a Hilbert transform pair. That is,

SPx (x)〈− − − − −〉 SPz (x)

Here SPz (x) is the vertical derivative and SPx(x) is the horizontal derivative of
the SP anomaly SP(x) which form the Hilbert transform pair.

1.4 Analytic Signal and Amplitude

Locating the origin is of paramount importance in the interpretation of all geophysical
anomalies, that can be achieved with utmost accuracy by the amplitude of analytical
signal in a couple of ways as discussed hereunder.

The analytic signal of a self potential represented by SP(x) can be expressed as:

AS(x) = SP(x) − iHT(x)

where HT(x) is the Hilbert transform of SP(x). The amplitude of analytic signal can
be deciphered as:

A(x) =
√
SP(x)2 + HT (x)2

In general, the amplitude A(x) of analytic signal attains its maximum exactly over
the subsurface targets/source in structures whose width is less than the depth. On the
other hand, for the structures whose width is greater than the depth, A(x) results two
peaks flanked by a minimum at the centre. In this case, the minimum corresponds
to the centre of the source/target and the distance between the two peaks yields
the width of the target. Further, if the modified Hilbert transform HT2(x) is used
for the extraction of parameters, then in the above relation, HT(x) can be replaced
with its modified version HT2(x). This can be defined as under while using Hilbert
transform or modified Hilbert transform (Nabhigian 1972; Sundararajan et al. 1998;
Sundararajan and Srinivs 2010)

A1(x) =
√
SP(x)2 + HT 1(x)2

and
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A2(x) =
√
SP(x)2 + HT 2(x)2

Alternatively, the intersection of the HT1(x) and HT2(x) also corresponds to the
origin (Fig. 1.1). Similarly, the amplitudes as defined above A1(x) and A2(x) do
intersect over the origin (Fig. 1.2).

Fig. 1.1 Hilbert transform and its modified version

Fig. 1.2 Amplitudes A1(x) and A2(x) of analytic signal
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1.5 2-D Horizontal Circular Cylinder

The geometry of obliquely polarized 2-D horizontal circular cylinder with radius
is shown in Fig. 1.3. In the Cartesian coordinate system, ‘O’ is the origin which is
on the surface at a point vertically above the center of the cylinder. The axis of the
cylinder is parallel to the y-axis. AA′ is the axis of polarization. It makes an angle
‘α’ with the x-axis. P is the point of observation at a distance ‘x’ from the origin, ‘α’
is the angle between the axis of polarization and the line passing through the centre
of the sphere and P and Po is the point where the potential is zero. Therefore, the
potential at a point P on the surface is given (Sundararajan and Srinivas 1996) as:

The self potential due to such a cylindrical structure can be expressed as
(Sundararajan and Srinivas 1996):

SP1(x) = A[ x cos(α) − zsin(α)(
x2 + z2

)

where z-is the depth to the centre of the cylinder, ‘α’ is the angle between the hori-
zontal axis and the axis of polarization andA is a constant comprising the polarization
current (I) and the resistivity (ρ).

In this case, the computation of Hilbert transformHT1(x) and its modified version
HT2(x) can be realized via the Fourier transform and therefore, the real and imaginary

Fig. 1.3 Geometry of the 2-D horizontal circular cylinder
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components of the Fourier transform of SP1(x) are derived as:

ReSP1(ω) = Kπ sin(α)e−ωz

lmSP1(ω) = Kπ cos(α)e−ωz

Using these ReSP1 (ω) and ImSP1 (ω) components in the equations of HT and
the MHT, the Hilbert transform and its modified version can be obtained as:

HT 1(x) = A[ z cos(α) + x sin(α)(
x2 + z2

)

HT 2(x) = A[ z cos(α) − x sin(α)(
x2 + z2

)

The graphical plots of SP1(x) and HT1(x) or [SP1(x) and HT2(x)] intersect at one
point since SP1(x) and HT1(x) or H2(x) are of first degree in x and at this point of
intersection say x1, the following holds good:

SP1(x) = HT1(x) at x = x1

SP1(x) = HT2(x) at x = x1

That is, when

SPl(x) = HT1(x)

i, e
A[ x cos(α) − zsin(α)(

x2 + z2
) = A[ z cos(α) + x sin(α)(

x2 + z2
) at x = x1

On simplification it results, the depth ‘z’ as

z = x1

[
sin α − cosα

sin α + cosα

]

This solution for depth ‘z’ is dependent in ‘α’ which itself is an unknown to be
evaluated and therefore to be ignored. On the other hand, the following results the
depth independently as a function of the abscissa as illustrated hereunder.

SP1(x) = HT2(x)

i, e
A[ x cos(α) − zsin(α)(

x2 + z2
) = A[ z cos(α) − x sin(α)(

x2 + z2
) at x = x1
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Further simplification lead to the required solution for depth ‘z’ as,

z = x1

This implies that the depth is directly equal to the point of intersection of the
SP anomaly SP1(x) and its modified Hilbert transform HT2(x). Once the depth is
evaluated, the angle of polarization ‘α’ can be determined from the SP anomaly
SP1(x) and its modified Hilbert transform HT2(x) as:

α = tan−1 [zSP1(x) − xHT 2(x)]
[xSP1(x) − zHT 2(x)]

A more accurate solution for ‘α’ can be obtained as an average taken over several
values of ‘x’. Finally, the constant term consisting of I (the polarization current) and
ρ (resistivity) can be evaluated at x= 0 from equations SP1(0) and HT2(0) as under:

A =
√
SP1(0)2 + HT 2(0)2

By knowing either current or the resistivity, the other quantity may fairly well be
determined. Thus, the depth ‘z’, the polarization angle ‘α’ and the constant term can
be estimated based on the above analysis.

Theoretical and Field Examples: The interpretation procedure elucidated above is
illustratedwith a theoreticalmodel and exemplifiedwith a field data of Sulleymonkey
anomaly of length 260 m in the Ergani copper district, Turkey. The Hilbert and the
modified Hilbert transforms HT1(x) and HT2(x) and the SP anomaly SP1(x) are
computed and shown in Fig. 1.4 in the case of theoretical model. The point of

Fig. 1.4 The self potential anomaly due to a 2-D horizontal circular cylinder, the Hilbert transform
and the modified Hilbert transform of a theoretical model
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intersection of Hilbert transform and the modified Hilbert transform yield precisely
the origin, and the abscissa results the depth to the centre of the cylinder. The other
parameters are evaluated as discussed in the text. Similarly, the Hilbert transform and
its modified versions in addition to the amplitudes of field Sulleymonkey anomaly
are computed and shown in Fig. 1.5a–c. The evaluated parameters in both theoretical
as well as field examples are presented in Table 1.1 and compared with the other
available methods.

1.6 Spherical Structures

The geometry of the obliquely polarized sphere with radius ‘a’ is considered for the
analysis and shown in Fig. 1.6. In the Cartesian coordinate system, ‘O’ is the origin,
on the surface at a point vertically above the centre of the sphere. The axis of the
sphere is parallel to the y-axis and AA’ is the axis of polarization, ‘θ ’ is included
between the polarization and x-axis. P is the point of observation at a distance ‘x’
from the origin, ‘α’ is the angle between the axis of polarization and the line passing
through the centre of the sphere and P. Q is the point where the potential is zero. The
potential at a point P on the surface is given as (Sundararajan and Chary 1993):

SP2(x) = C

[
z cos(θ) + x sin(θ)(

x2 + z2
)1/2

]

where ‘z’ is the depth to the centre of the sphere, ‘θ ’ is the angle of polarization
and ‘C’ is constant comprising the current density (I) and the resistivity (ρ) of the
surrounding medium given by C = I ρ/2π.

As stated earlier, the horizontal and vertical derivatives of SP2(x) are obtained as:

SPx 2(x) = C

⎡
⎣ (z 2 − 2x2) sin(θ) − 3xzcos(θ)(

x2 + z2
) 5

2

⎤
⎦

SPz 2(x) = C

⎡
⎣ (x 2 − 2z2) cos(θ) − 3xzsin(θ)(

x2 + z2
) 5

2

⎤
⎦

At x = 0, the horizontal and vertical derivatives reduce to,

SPx 2(0) = Csin(θ)/z3

and

SPz 2(0) = −2Ccos(θ)/z3
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Fig. 1.5 a The self potential field of Sulleymonkey anomaly in the Ergani copper District, Turkey,
and the modified Hilbert transform b The Hilbert transform of the anomaly and its modified version
and c The amplitudes A1(x) and A2(x)
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Table 1.1 SP interpretation of theoretical model of 2-D horizontal circular cylinder and field self
potential Sulleymonkey anomaly, Ergani copper district, Turkey

Parameters Depth (z) Polarization
angle (α)

A = (I ρ)

Theoretical Example

Assumed values 4.00 units 60° 1.00

Interpreted values 4.00 units 59° 0.98

Field Example

Interpreted values by the present method 36.00 m 45° –

By Youngal (1950) 38.00 m 64° –

Hartley spectral analysis (Al-Garni and Sundararajan
2011)

35.00 m 48° –

Fig. 1.6 Geometry of the spherical structure

From the above relations, the angle of polarization ‘θ ’ can be determined as:

θ = tan−1[−2SPx 2(0)/SPz 2(0)]

Further, the derivatives SPx 2(x) and SPz 2(x) are of second degree in x, they
have two real roots say x1 and x2 and therefore it can be written as,

SPx 2(x) = SPz 2(x) at x = x1 and x2

i, e C

[
(z 2 − 2x2) sin(θ)− 3xzcos(θ)

(x2+ z2)
5
2

]
= C

[
(x 2 − 2z2) cos(θ)− 3xzsin(θ)

(x2+ z2)
5
2

]
at x = x1 and

x2.
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On simplification, the depth ‘z’ can be obtained as

z = (x1 + x2 )

[
(cos(θ) + 2 sin(θ))

3(sin(θ) − cos(θ))

]

As ′θ ′, is known already, the depth can be evaluated from the above relation.
However, it would be worth mentioning here that the depth tends to ‘∞’ at θ = 45 °
which is purely a hypothetical in such an analysis and that can be attributed to the fact
that (x1 + x2 ) = 0. This introduces a catastrophe in the mathematical procedure.
That is, the magnitude of the roots of the derivatives are equal and opposite in sign
which is seldom encountered in practice in which case the depth further simplified
as:

z = x1 = −x2

Finally, the constant term C can be evaluated as by squaring and adding SPx 2(0)
and SPz 2(0) as

C = 2z3
[
SPx 2(0)

2 + SPz 2(0)
2
]1/2

(
1 + 3cos2(θ)

)

Field Example: The procedure detailed above is exemplified by the well known
‘Weiss anomaly’ of the copper district in eastern Turkey. The anomaly represents
the principle profile AA’ shown in the contour map (Fig. 1.7). The ‘Weiss’ anomaly
is approximately 1 km north west of the Madam copper mine and is assumed to
be due to spherical structure. The assumption is validated by comparing with the
computed values and shown in Fig. 1.8. For further clarity, the ‘Weiss” anomaly is
shown exclusively in Fig. 1.9. The horizontal derivative is obtained by the numerical
differentiation and the vertical derivative is computed by the Hilbert transform. The
horizontal and vertical derivatives along with amplitude of analytic signal are shown
in Fig. 1.10. The depth (z) to the centre of the sphere and the angle of polarization
(θ) are evaluated based on the analytical procedure discussed in the text and shown
in the following Table 1.2. The depth (z) and the polarization angle (θ) obtained are
compared with those of Youngal (1950) and the method of Bhattacharya and Roy
(1981).

2-D Inclined Sheets.

The SP field at any given point P on the surface perpendicular to the strike of 2-
D inclined sheet of infinite horizontal extent (Fig. 1.11) is given as (Murty and
Haricharan 1985)

SP3(x) = Iρ

2π
In

[
(x − acos(α))2 + ( h − asin(α))2

(x + acos(α))2 + ( h − asin(α))2

]
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Fig. 1.7 Contour map of the self potential (Weiss) of the Ergani copper district in eastern Turkey
with elevation. AA′ is the principle profile

Fig. 1.8 Measured and calculated self potential along AA’ over theWeiss anomaly, Ergani, Turkey
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Fig. 1.9 Self potential anomaly (Weiss) of the Ergani copper district in eastern Turkey

Fig. 1.10 First horizontal derivative of the Weiss SP anomaly, the vertical derivative(the Hilbert
transform) and their amplitude
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Table 1.2 Interpreted
parameters of Weiss SP
anomaly, Ergani copper
district of eastern Turkey

Parameters Depth (z) in m Polarization angle (θ)

in degrees

Present method 79.00 52.00

Yungul (1950) 64.00 53.00

Bhattacharya and Roy
(1981)

54.00 30.00

Fig. 1.11 Geometry of the inclined sheet

where ‘h’ is the depth to the top of the sheet, ′α′ is the inclination, ‘a’ is the half width,
and ‘ρ’ is the resistivity and ‘I’ is the current density of the surrounding medium.

In this case SP3(x) is log function andhence, the partial differentiationwith respect
to ‘x’ frees the logarithm and yields the horizontal derivative from which the Hilbert
transform and its modified version can be obtained as in the case of 2-D horizontal
circular cylinder.

SPx 3(x) = K

[
(x − acos(α))

(x − acos(α))2 + ( h − asin(α))2

+ (x + acos(α))

(x + acos(α))2 + ( h + asin(α))2

]

The real and imaginary components of the Fourier transform of SPx 3(x) can be
obtained as:
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ReSPx 3(ω) = Kπ sin(ωacos(α))
[
e−ω(h+a sin(a)) − e−ω(h−a sin(α))

]

ImSPx 3(ω) = Kπ cos(ωasin(α))
[
e−ω(h+a sin(α)) − e−ω(h−a sin(α))

]

Using these components in the equations of HT1(x) and HT2(x), the Hilbert
transform and the modified Hilbert transform of SPx 3(x) can be obtained as:

HT1(x) = K

[
(h − asin(α))

(x − acos(α))2 + ( h − asin(α))2

+ (h + asin(α))

(x + acos(α))2 + ( h + asin(α))2

]

HT2(x) = K

[
(h − asin(α))

(x − acos(α))2 + ( h − asin(α))2

+ (h + asin(α))

(x − acos(α))2 + ( h + asin(α))2

]

It may be noted that the equation HT1(x) can also be obtained directly as the
partial derivative of SP3(x) with respect to ‘h’.

Equations of SPx 3(x) and HT1(x) are quadratic in x, hence we can write the
following,

SPx 3(x) = HT1(x) at x = x1 and x2

where the roots x1 and x2 are nothing but, the abscissa of the points of intersection
of the plots of SPx 3(x) and HT1(x).

Further algebraic simplification results,

x2 + 2Q ahx + Qa2 − h2 = 0

Then, sum of the roots of this quadratic equation may be expressed as,

x1 + x2 = −2Qh

where Q = (sin(α) − cos(α))/(sin(α) + cos(α)).
The above relation yields the depth ‘h’ once the value of ‘α’ is known.
Further, at x = 0, the equations SPx 3(x) and HT1(x) reduce to,

HT 1(0)

SPx 3(0)
= [ (a

2 − h2)

(a2 + h2)
tan(α) = S

By simplifying the last three equations [quadratic in x, sum of the roots and the
S], a cubic equation in tan(α) is obtained as:
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Atan3(α) + Btan2(α) + C tan(α) + D = 0,

where

A = 2x1 · x2, B = ( x1 + x2)
2 (S − 1) − A(S + 2)

C = ( x1 + x2)
2 (1 − S) − A(2S + 1) andD = −SA

In this cubic equation in tan(α), x1 and x2 as well as S are known and hence ‘α’
can be determined.

Subsequently, the depth ‘h’ and the half width ‘a’ can also be evaluated as:

h = ( x1 + x2)(cos(α) + sin(α))

(cos(α) − sin(α))

a =
√ (

x1.x2 + h2
) (cos(α) + sin(α))

(cos(α) − sin(α))

In evaluating ‘h’ and ‘a’, there is a singularity at α = 45° which can be attributed
to the fact that (x1 + x2) = 0 and

(
x1.x2 + h2

) = 0 in the above equations. That
is, the roots are equal and opposite. In such a case, the depth ‘h’ and the half width
‘a’are evaluated as

h = x1 = −x2

and

a = h = √−x1 · x2
Finally the constant term ‘K’ ( K = I ρ) can be evaluated as:
K = N R

DR where

NR = (a2 + h2 − 2ahsin(α))(
(
a2 + h2 − 2ahsin(α)

)
/2a

DR =
√√√√

[ (
a4 + h4 + 2ahcos(2α)

)
SPx 3(0)

2 + HT !(0)2
]

where K being the product of polarization current (I) and the resistivity ′ρ ′, with the
knowledge of one of them, the other quantity can be estimated approximately. Thus,
all the parameters like depth (h), half width (a), the polarization angle (α) and the
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Fig. 1.12 SP field anomaly in Surda area of Rakha mines, Singhbhum copper belt, Bihar, India

constant term (K) can be determined from the above analysis (Sundararajan et al.
1998).

Field Example: The practicability of the method is tested on an SP profile (E −19 +
100) in the Surda area of the Rakha mines Singhbhum copper belt, Bihar, India. The
anomaly (Murthy and Haricharan 1984) of the profile is shown in Fig. 1.12. The first
horizontal derivative is computed numerically, and the vertical derivative is obtained
by means of the Hilbert transform. The derivatives, along with the amplitude, A(x)
are shown in Fig. 1.13. The maximum value of the amplitude corresponds to the
origin; the roots, are determined from the points of intersection of the derivatives.
The parameters obtained are compared with the results of Paul (1965), Rao et al.
(1970), Murthy and Haricharan (1984) and presented in Table 1.3. In the area under
discussion, sulfides occur at depths ranging between 12.2 and 30.5 m. The present
method yields a depth value of 27.65 m.

1.7 Hartley Spectral Analysis of SP Anomalies

In general, the use of Hartley transform in geophysical data analysis has gained
importance since the early 1990s (Saatcilar and Ergintov 1991, Sundararajan 1995,
1997; Sundararajan et al. 2007). The familiarity of the Fourier transforms attracts the
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Fig. 1.13 The horizontal and vertical derivatives with their amplitude of the SP anomaly of Rakha
mines, Singhbhum copper belt, Bihar, India

Table 1.3 Hilbert transform interpretation of SP anomaly in the Surda area of the Rakha mines,
Sighbhum copper belt, Bihar, India

Parameters Depth (z) in m Polarization angle (α) in
degrees

The half width (a) in m

Present method 27.65 13.20 32.35

Paul (1965) 21.40 20.01 40.20

Rao et al. (1970) 30.48 10.01 34.87

Murthy and Haricharan
(1984)

29.50 30.00 29.50

scientists and engineers from the advantages of the Hartley transform. The Hartley
and Fourier transforms are fully equivalent; however, Hartley transform differs in
phase by 45° from its progenitor—the Fourier transform. The Hartley transform is
purely real (Bracewell 1983; and Sundararajan 1995). The physical implication of
both transforms is exactly the same and the frequency in both transforms has the same
meaning. In this section, the Hartley transform is applied to a theoretical example
to illustrate the method and then applied to a field example of the “Sulleymonkey”
anomaly in the Ergoni copper district, Turkey to demonstrate the applicability of
the method. It may be noted that the Spectral analysis of geophysical data either by
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Fourier transform or Hartley transform encores identical results as their amplitude
spectra in 1-D are identical.

The Hartley transform H(x) of the real function V(x) is defined by Hartley (1942)
as:

H(ω) =
∫ ∞

−∞
V (x)Cas(ωx) dx

where

Cas(ωx) = Cos(ωx) + Sin(ωx)

is considered as the kernel that is 45° phase-shifted sine wave. It takes the harmonics
of both cosine and sine functions as real and the frequency (ω) does have the same
physical meaning as that of Fourier transform (Bracewell 1983; Sundararajan 1995).

Basically, the Hartley and Fourier transforms can be related using the even and
odd components with the real and imaginary components of the Fourier transform
(Bracewell 1983; Sundararajan 1995) as

H(ω) = E(ω) + O(ω)

F(ω) = Re(ω) − iIm(ω)

where E(ω) and O(ω) of Hartley transform H(ω) are numerically equal to real and
imaginary parts Re(ω) and Im(ω) of the Fourier transform F(ω). Thus, the amplitude
of the Hartley transform can be expressed as in the case of Fourier amplitude.:

A(ω) =
√
E(ω)2 + O(ω)2

Alternatively, the amplitude spectrumcan also be expressed in terms of theHartley
transform H(w) as:

A(ω) =
√

[H 2(ω) + H 2(−ω)]
2

Also, the phase of the Hartley transform can be expressed in the same way as that
of Fourier phase as:

∅(ω) = tan−1

[
−O(ω)

E(ω)

]

Alternatively, the phase spectrum can be realized as a function of H(ω) and
H(−ω)
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∅(ω) = tan−1

[
H(−ω) − H(ω)

H(−ω) + H(ω)

]

The self potential due to 2-D horizontal circular cylinder given earlier can be
written as:

SP4(x) = A[ x cos(α) − zsin(α)(
x2 + z2

)

where ‘z’, ‘α’ and ‘A’ have same meaning as defined earlier.
The even and odd components of the Hartley transform of the SP anomaly due to

horizontal circular cylinder given above can be obtained as:

E(ω) = Kπsin(α)e−ωz

and

O(ω) = Kπ cos(α)e−ωz

Therefore, the amplitude spectrum of the Hartley transform can be obtained by
squaring and adding and taking the square root as:

A(ω) = Kπ e−ωz

And the phase also can be obtained as the arctan of odd by even components of
the Hartley transform as

∅(ω) = α − π/4

Theoretically, it is feasible to express the amplitude at two different frequencies
say ωi and ωi+1 as

A( ωi ) = Kπ e−ωi z

and

A( ωi+1 ) = Kπ e−ωi+1z

By a simple algebraic division of the above equations with i = 1 and also taking
natural logarithm, the depth ‘z’ can be obtained as:

z = 1

ω1− ω2
ln

A( ω1 )

A( ω2 )
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and the angle of polarization ‘α’ can be evaluated by dividing the even and odd as

α = tan−1[O(ω)/E(ω)]

For a complete solution, the constant termA= I ρ can be evaluated by substituting
the depth ‘z’ in the equation of amplitude as:

A = A(ω)

π
eωz

Theoretical and Field Examples

The Hartley spectral analysis of geophysical data particularly in SP interpretation
is relatively a recent procedure (Al-Garni and Sundararajan 2011) in comparison
with the traditional Fourier spectral analysis. It may be emphasized that both are
identical in magnitude however differs in phase by 45° and therefore ensure equality
in applications. But being a real tool, the computation of Hartley transform is faster
than its progenitor the Fourier transform. Therefore in such studies, it makes no
difference in either of the transforms. Here it is illustrated with a theoretical model
and substantiated with a field data of Sulleymonkey anomaly of length 260 m in the
Ergani copper district, Turkey. The even and odd components, the Hartley transform
of SP4(x) and amplitude spectrum are computed and shown in Fig. 1.14a–d in the
case of theoretical model. The SP field of Sulleymonkey anomaly in Ergani copper
district, Turkey is shown in Fig. 1.15. On the other hand, Fig. 1.16a–d illustrate the
even, odd components of field SP Sulleymonkey anomaly in addition to the Hartley
transform as an algebraic sum of even and odd components and also the amplitude
spectrum. All the parameters are evaluated as discussed in the text. The evaluated
parameters in both theoretical as well as field examples are presented in Table 1.4
and compared with the other available methods in the literature.

1.8 Artificial Neural Network Analysis

Soft computing tools such as artificial neural network (ANN) has been gaining impor-
tance in the recent past in the interpretation of geophysical data particularly self-
potential anomalies (Bescoby et al. 2006; Bhagwan Das and Sundararajan 2016).
Self-potential anomaly due to a horizontal circular cylinder can be approximated
by an artificial neural network, as they are universal approximators. The universal
approximation theorem for multilayer perception (MLP) was proved by several
authors in the early 1980s although the results depend on how many hidden units
are necessary which is yet to be known. In this section, the analysis of self- potential
anomalies due to a 2D horizontal circular cylinder (the interpretation of the very
same geometrical structure was carried out in the previous sections using modified
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Fig. 1.14 Hartley spectral analysis of theoretical model. a the even component, b the odd
component, c the Hartley transform and d the amplitude spectrum

Hilbert transform as well as Hartley spectral analysis) is performed using ANN-
based committee machine. The soundness of the method is illustrated with the study
of theoretical model and a field example.

The salient features of ANNs include that it does not require any prior knowl-
edge about the input/output mapping that is required for model development. The
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Fig. 1.14 (continued)

Fig. 1.15 The SP field of Sulleymonkey anomaly in Ergani copper district, Turkey

fitted function is represented by the network and do not have to be explicitly defined.
Further, it has the ability to model highly nonlinear as well as linear input/output
mapping with good generalization, i.e., it responds correctly to new data. The inter-
pretation of SP anomalies based on ANN approach consists of two phases namely
phase-I and phase-II, in phase I, a trial-and-error method is implemented for the
analysis. The trial and error method starts from assuming (i.e., trial) an initial set of
different ranges for required parameters (may be far from actual values), computes
the predicted data values by using the self-potential effect and compares themwith the
observed data. Then, corrections are applied based on error to the range of parameters
so that it minimizes the misfits between calculated and observed data. The procedure
is repeated until a satisfying result is obtained. This process is carried out with a
mathematical algorithm and implemented in Matlab which enables an efficient way
of changing the model parameters. Themain purpose of phase I is to obtain a suitable
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Fig. 1.16 Hartley spectral analysis of SP field of Sulleymonkey anomaly, Ergani copper district,
Turkey. a even component, b odd component, c Hartley transform and d the amplitude spectrum

and close range of parameters which in turn ensures a very few training examples
that are sufficient enough to train in order to extract the parameters of the model.

In phase-II, a committee machine is a type of ANN using the divide-and-conquer
strategy in which the responses of multiple experts (MLPs) are combined into a
single response. A committee machine is a method in which different experts sharing
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Fig. 1.16 (continued)

Table 1.4 Hartley spectral analysis of theoretical model and field self potential Sulleymonkey
anomaly, Ergani copper district, Turkey

Parameters Depth (z) Polarization
angle (α)

A = (I ρ)

Theoretical Example

Assumed values 4.00 units 60° 1.00

Interpreted values 4.13 units 56.769° 0.92

Field Example

Interpreted values by the present method 35.80 m 47.7° –

By Youngal (1950) 38.00 m 64° –

Sundararajan and Srinivas (1996) 36.45 m 45.00° –

Tlas and Asfahani (2008) 35.41 m 72.24° …

a common input and whose individuals are combined to produce an overall output;
such a technique is referred to as an ensemble averaging method. In phase II, initially
training examples are created based on the close range of parameters obtained in
phase I, and then an ANN-based committee machine is constructed by replacing
each expert by MLP of the same topology (i.e., same number of layers, number of
neurons in each layer). Each MLP is trained to extract exactly one parameter with
examples, using the Levenberg–Marquart algorithm in batch mode. An extensive
further mathematical details are given in Bhagwan Das and Sundararajan (2016).

Theoretical and Field Examples

TheANNbased interpretation of SPanomalies are illustratedwith a theoreticalmodel
in the case of 2-D horizontal circular cylinder and further studied on a field data of the
Sulleymonkey anomaly in the Ergani copper district, Turkey. The interpreted results
of both theoretical and field anomaly are presented in Table 1.5 and compared with
the methods that are in vogue. All the computations are presented as illustrations in
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Table 1.5 ANN based interpretation of theoretical model of 2-D horizontal circular cylinder and
field self potential Sulleymonkey anomaly, Ergani copper district, Turkey

Parameters Depth (z) Polarization
angle (α)

A = (I ρ)

Theoretical Example

Assumed values 4.00 units 60.00° 150

Interpreted values 4.17 units 60.11° 17,519

Field Example

Interpreted values by the present method 38.13 m 51.39° –

By Youngal (1950) 38.00 m 64° –

Sundararajan and Srinivas (1996) 36.00 m 46.00°

Hartley spectral analysis (Al-Garni and Sundararajan
2011)

35.00 m 48° –

Fig. 1.17 (theoretical model) and Fig. 1.18 (Field anomaly). In addition, comparison
of artificial neural network generated self potential response with that of generated
by other techniques for self-potential field of the Sulleymonkey anomaly in Ergani
Copper district, Turkey are shown in Fig. 1.19.

1.9 Noise Analysis

The effect of random noise is investigated on the interpretive process by adding
various levels say 5%, 10% and 20% of white Gaussian noise (WGN) to the self-
potential of the 2-D horizontal circular cylinder. In Hartely spectral analysis, the
noisy anomalies were not subjected to smoothing using a statistical method such as
moving average which is optional (Sundararajan and Srinivas 1996). But in Hilbert
transform analysis, they show that this process should be carried out prior to the
computation of Hilbert transform because their interpretation is based on the abscissa
of the points of the intersection of the self-potential anomaly and themodifiedHilbert
transform. In the case of Hartley spectral analysis, the even and odd components,
the Hartley, and the amplitude spectrum are computed from the noisy anomaly. The
interpretation should be carried out earlier as in the case of prior to addition of noise.
The interpreted results with and without noise did not differ much and presented
(Table 1.6) for a specific case of 2-D horizontal circular cylinder model with identical
assumed parameters based modified Hilbert transform and Hartley spectral analysis
(Fig. 1.20). Therefore, the effect of the noise of 10% of WGN or even more on the
interpretive process detailed in all the methods seem to be negligible and confirming
that these methods of interpretation are not much prone to the presence of noise in
the acquired data. It may be noted here that similar is the noise effect on the on
interpretation of SP anomalies over spherical and 2-D cylindrical models based on
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Fig. 1.17 ANN based interpretation of SP anomalies due to 2-D horizontal circular cylindrical
model. a Self potential anomaly of the model, b ANN-generated self-potential response and c Self
potential anomaly as in (a) and ANN-generated self potential response
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Fig. 1.18 ANN based interpretation of field data. a The self-potential field of the Sulleymonkey
anomaly in Ergani Copper district, Turkey. b ANN-generated self-potential response and c The self
potential anomaly as in (a) and ANN-generated self-potential response
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Fig. 1.19 Comparison of artificial neural network generated self potential response with other
techniques of the self-potential field of the Sulleymonkey anomaly in Ergani Copper district, Turkey

Table 1.6 Effect of random
noise on the interpretation of
theoretical SP anomalies due
to 2-D horizontal circular
cylinder

Parameters Depth (z) Polarization
angle (α)

A = (I ρ)

Modified Hilbert transform

Assumed values 4.00 units 60.00° 1.00

Interpreted values 4.00 units 59.00° 0.98

Interpreted values
with
10% random noise

4.30 units 49.00° 1.40

Hartley spectral analysis

Interpreted values 4.13 56.80° 0.93

Interpreted values
with
10% random noise

4.28 55.23° 0.91

the techniques of horizontal and vertical derivatives and artificial neural networks
(ANN).
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Fig. 1.20 Effect of randomnoise on the interpretation of SP anomalies due to 2-d horizontal circular
cylinder a SP anomaly and its modified Hilbert transform. b Hilbert transform of SP anomaly and
the modified Hilbert transform and c Hartley amplitude spectrum

1.10 Discussion

In general, all geophysical data invariably contaminated with various noise factors,
including inappropriate interval measurements etc. SP data interpretation also is
prone to error because of the choice of computation algorithm, assumptions etc. In
this regards, the Hilbert transform/modified Hilbert transform based interpretation
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ensures maximum accuracy in extraction of body parameters as they are directly
dependent on the real roots of the equations of SP potential of geometrical structures
considered. However, the accuracy of thismethod depends on the accurate estimation
of the abscissa of the points of intersections of the anomaly and its Hilbert trans-
form/modified Hilbert transform or the horizontal and vertical derivatives of the SP
anomaly.

The modified Hilbert transform is equal in magnitude to the Hilbert transform but
differs in phase by 270°. The salient feature of the modified version of the Hilbert
transform is that it facilitates in precise spatial location of subsurface targets in
a couple of ways. As discussed and demonstrated, the point of intersection of the
Hilbert transform of SP anomalies andmodified Hilbert transform aid in determining
the origin. Similar is the case with the, the amplitude of analytic signal A1(x) and
A2 (x) based on Hilbert transform and the modified Hilbert transform that the point
of intersection of A1(x) and A2(x) confirm the exact location of in the targets.

This procedure is an analytical onewithout any assumptions; however, the inherent
weakness of the method while obtaining the horizontal derivative of the SP anomaly
by numerical differentiation which incorporates a bit of noise in the computation,
and this can be minimized by any simple statistical filtering prior to computation of
the vertical derivative by means of Hilbert transform. The method of interpretation is
not influenced significantly by the presence of random noise in the data as evidenced
by the noise analysis.

Hartley spectral analysis is not only similar to the traditional Fourier spectral anal-
ysis of geophysical data, but also numerically identical with all merits and demerits.
However, Hartley transform being real function, unlike the complex Fourier trans-
form, ensure efficiency in computation, particularly while using a large amount of
data.

Applications of artificial neural network (ANN) is seen almost in every field of
science and engineering including processing and interpretation of various geophys-
ical data. It is elegant in its mathematical frame work, however, in the extraction
of parameters from potential field data including SP data, the choice of training
parameters of the targets may cost large computational time if the training set differs
widely from the actual ones, else ANN techniques are simple to implement and does
not require any prior knowledge about the input/output mapping that is required for
model development.
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