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Preface

Self-Potential (SP) is a passive method, as it employs measurements of naturally
occurring potential differences (PDs) due to electrochemical, electrokinetic, and
thermoelectric fields in the earth’s subsurface. The method was first used for under-
standing mineralization potential primarily associated with sulfide ore bodies, which
was explained by electrochemicalmechanismandoxidation potential. Self-potentials
are generated by electrochemical processes involving reductions and oxidations that
occur when ores or buried metals come into contact with rocks, groundwater, or
rock fluids. Different kinds of electrical potentials are produced in the ground or
within the subsurface. Natural potentials can occur between dissimilar materials,
near varying concentrations of electrolytic solutions, and due to the flow of fluids
through porous rocks. In geophysical prospecting, the spontaneous potential method
takes advantage of the natural electrical potential phenomenon in the subsurface. If
two electrodes are driven into the ground and connected to a sensitive voltmeter, an
electric voltage is present between them. Such PDs may range from a few millivolts
to one volt or more. SP prospecting is the simplest in terms of operation and is inex-
pensive compared to other geophysical methods. The controlling factor in all cases is
underground water. Sulfide ore bodies have been detected by the SP generated by ore
bodies acting as batteries. These potentials are associated with various occurrences
such as weathering of sulfide mineral bodies, variation in rock properties (mineral
content) at geological contacts, bioelectric activity of organic material, corrosion of
metals, thermal and pressure gradients in underground fluids, and other phenomena
of a similar nature such as nuclear blasts, thunderstorms, and charge clouds.

Mineralization potentials are of interest in mineral exploration because they are
associated predominantly with massive sulfide ore bodies and explained using an
electrochemical mechanism or related to oxidation potential. The amplitude of SP
anomalies encountered over mineralized targets can be in the range of hundreds of
millivolts (mV) such that other naturally occurring potentials are typically ignored
and considered noise. A number of these “background” potentials are signals of
interest in other applications of the method. The superposition of multiple source
contributions can explain the anomaly. These source mechanisms may be described
using the coupled flow theory. Thermoelectric, electrochemical, and electrokinetic
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vi Preface

source mechanisms give rise to electrical conduction current flow that can be
characterized using the SP method.

The fundamental nature of SP anomalies is identified with the half-redox reac-
tions where both electron contributors and acceptors are cooperating with an elec-
tronic conductor permitting the long-range transport of electrons. Also, fault, vein,
and thin sheet-like mineralization show a solid self-potential anomaly that have
demonstrated the mechanism of generation of SP anomaly in a tank experiment.
Also, aside from SP anomalies identified with mineralization, it has likewise been
explained by the action of plant roots, i.e., bioelectric potential. Moreover, stable
SP anomalies of comparable magnitude may also be registered due to the presence
of metallic cultural noise such as pipelines, steel well casings, metallic fences, and
utility boxes. This type of SP signal is believed to be caused by themovement of elec-
trons in response to spatial variations in the redox potential at heterogeneous metal–
electrolyte interfaces. Since its discovery, the SP method has been widely used in
manygeophysical applications, such as sulfide and graphite exploration, groundwater
exploration, geothermal exploration, landslide studies, seepage control/dam seepage,
cavity detection, earthquake prediction from fluid flow, volcanic eruptions, buried
palaeochannels, hydraulic fracturing in rocks for hydrocarbon recovery, archaeology,
glaciology/glacial geomorphology, tracing shear zones in the continental crust, coal
firemapping, and engineering and environmental applications.Moreover, SP logging
methods have been widely applied in oil exploration. Mineral exploration and very
recently in the problems of saline water intrusion.

This edited book provides stimulating, theoretical modeling and its advance-
ment in SP data and its applications in various investigations. Some chapters on
the data analysis and inverse theory are provided, and case studies amply illustrate
chapters. This is an essential edited book for advanced undergraduate and graduate
students in geophysics and a treasured reference for enthusiastic geophysicists, geol-
ogists, hydrologists, archaeologists, civil and geotechnical engineers, and others who
use geophysics and its application in their professional research and teaching. The
book will also serve as a valuable reference for geoscientists, engineers, and others
engaged in academic, government, or industrial pursuits that call for SP investigation.
The accessible techniques are characterized by different penetration and resolution
capabilities. Theoretical advancements, modeling, inversion, and case studies on the
application of SP are also illustrated.

Varanasi, India Arkoprovo Biswas



Acknowledgments

The present work has developed from a prolonged series of energetic communication
with my colleagues, seniors, and juniors both in India and abroad, especially during
the last few years, and also my past ten year experiences working on the topic
Self-Potential Method: Theoretical Modeling and Applications in Geosciences. The
present bookwill showcase some advancements inmathematicalmodeling, inversion
on self-potential methods, and its application in actual field data. This work also
stresses the significance of SP in various studies such as exploration, contamination,
and environmental problems. The book has a broad literature survey, and all pains
have taken to take care of proper citation at the requisite places. I would personally
like to thank themon behalf of the authors of other chapters andme, respectively. Any
inadvertent error/omission in this regard is regretted. Also, we thank the “Authors” of
respective chapters, who have contributed to the samewith their valuable time, effort,
and expertise in the separate area of research/study, as provided in each chapter, and
also completed their chapter on time even though the current pandemic situation. I
would also like to present my sincere gratitude to my mentor Prof. S. P. Sharma,
IIT Kharagpur, who introduced me to work in SP and its application in exploration
to contamination and other studies. I would also like to thank my University for
supporting me in the successful development of this book.

Arkoprovo Biswas

vii



Contents

1 Analytical Methods in the Interpretation of Self-Potential
Anomalies—A Comprehensive Review . . . . . . . . . . . . . . . . . . . . . . . . . . 1
N. Sundararajan and Y. Srinivas

2 Metaheuristics Inversion of Self-Potential Anomalies . . . . . . . . . . . . . 35
Mohamed Gobashy and Maha Abdelazeem

3 Self-potential Inversion and Uncertainty Analysis
via the Particle Swarm Optimization (PSO) Family . . . . . . . . . . . . . . . 105
Juan Luis Fernández-Martínez and Zulima Fernández-Muñiz

4 A Comparison of the Model Parameter Estimations
from Self-Potential Anomalies by Levenberg-Marquardt
(LM), Differential Evolution (DE) and Particle
Swarm Optimization (PSO) Algorithms: An Example
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Uma Shankar Department of Geophysics, Banaras Hindu University, Varanasi,
India

Petek Sindirgi Faculty of Engineering, Department of Geophysical Engineering,
Dokuz Eylül University, İzmir, Turkey
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Chapter 1
Analytical Methods in the Interpretation
of Self-Potential
Anomalies—A Comprehensive Review

N. Sundararajan and Y. Srinivas

Abstract The self potential (SP) method is one of the simple, elegant and econom-
ical geophysical tools that hasmanydiverse applications in the subsurface exploration
for minerals, ground water etc. It is a passive method based on the natural occurrence
of electrical field ranging from less than amilli volt to a maximum of one or two volts
on/under the surface of earth. The surface measurements of SP caused by subsurface
targets can be estimated in terms of its size, dimension, depth, width, inclination etc.
often by qualitative methods directly from the shape of the anomalies. In this, the
profile shape, amplitude, polarity and contour pattern are also considered. In addi-
tion, the target/source is assumed to lie directly below the minimum of the anomaly.
On the other hand, a large number of quantitative methods that are in vogue approx-
imate the subsurface targets as regular geometrical shapes such as cylinder, sphere
etc. These quantitative methods are mostly based on mathematical transforms such
as Fourier, Hartley, Hilbert transforms and some of their modifications in addition to
a few soft computing tools like artificial neural network (ANN) etc. In this chapter,
some of these methods are illustrated with theoretical examples and also exemplified
with real field data. A simplified mathematical treatment of these techniques, the
merits of the methods are also included.

Keywords Self-Potential · Analytical methods · Subsurface structures · Mineral
exploration

1.1 General Introduction

The self-potential (SP) method is one of the oldest methods that was proposed in the
beginning of nineteenth century (1830) by Robert Fox) who carried out SP exper-
iments with mines in UK. The SP method is a passive method similar to gravity
and magnetic methods that measures the natural electrical potential observed on/in

N. Sundararajan (B)
Department of Earth Sciences, Sultan Qaboos University, Muscat, Oman
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2 N. Sundararajan and Y. Srinivas

the subsurface due to geological/hydrogeological and geochemical reasons which
usually cause potential difference between any two measuring points. The major
factor for the origin of SP is ground water and is sensitive to the flow of the ground
water and to the chemistry of both the pore water and the pore water mineral inter-
face. The SP is also known as Static potential or Spontaneous potentials that are
usually caused by charge separation in clay or other minerals, due to the presence
of semi-permeable interface impeding the diffusion of ions through the pore space
of rocks, or by natural flow of a conducting fluid through the rocks. In most cases,
the SP measured is only related to the electrochemical potential. The potentials are
measured in millivolts (mV) relative to a reference point (base station), where the
potential is assumed to be zero volts. SP can range from less than a milli volt (mv)
to over one volt and the sign of the potential is an important diagnostic factor in the
interpretation of SP anomalies.

Further, there exist two different types of SP anomalies namely mineral potential
and background potential. The mineral potential is due to sulphide ore bodies—
generally –ve in the range of a few 100 mv and it is the most important in mineral
exploration associated with massive sulphide ore bodies. It is characterized by large
negativeSPanomalies (100–1000mV) that canbeobservedparticularly over deposits
of pyrite, chalcopyrite, pyrrhotite, magnetite,and graphite. The potentials are almost
invariably negative over the top of the deposit and are quite stable in time. Also,
mineral potential is constant and unidirectional due to electrochemical processes.
Background potential is due to geochemical process, bioelecric activity, groundwater
movement and topography, either + ve or –ve and ranges from less than 300 mv
except in the case of topography wherein it varies up to−2 V. Background potentials
fluctuate with time caused by different processes ranging from AC currents induced
by thunderstorms.

Variations in Earth’s magnetic fields, effects of heavy rainfalls etc. also fluc-
tuate background potentials. Generally to measure SP, two non polarisable porous
pot electrodes are connected to a high precision multi meter with an impedance >108

� and capable of measuring to at least 1 mv.Each electrode is made up of a copper
(cu). Electrodes dipped in a saturated solution of copper sulphate (CuSo4) which can
penetrate through the porous base to the pot in order to make electrical contact with
the ground. Zinc & silver electrodes and their respective sulphate solutions can also
be used.

There are two techniques by which SP can be measured and they are known
as potential gradient and potential amplitude. In potential gradient method, two
electrodes at a fixed separation (5–10 m) between which the potential difference- pd-
measured is divided by the electrode separation results potential gradient in mv/m.
The point to which this observation applied is the mid point between two electrodes.
The electrodes are moved along the traverse and the pd measured every time and
recorded. On the other hand, in potential amplitude method, one electrode is fixed at
a base station on a mineralized ground and to measure the pd, the second electrode
is moved along the traverse. Depth of investigation ranges approximately 30–100 m
depending upon the depth to targets as well nature of overburden.
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Generally, SP consists of two different components of potentials known as
Staticand Variable potential. Static part of SP is called signal and the variable part
of SP is termed as noise. The variable part is due to atmospheric effect which is in
the range of 5–10 Hz and at best be minimized by repeated measurements along
the profile and averaged for further interpretation. Electrical noise may incur if the
measurements are made too soon after heavy rain or near running water. Best be
avoided by suspending the SPwork during rainy days. Topography also causes minor
variation and hence require correction.

Further, SP measured over a large area may have a regional trend due to “telluric
current” of 100 mv/km. Mineral potential may be superimposed upon this regional
gradient. Prior to interpretation of the anomaly which is due to the source/target, it
has to be isolated from regional gradient as is done in gravity regional and residual
separation (R/R) separation. Topography causes potential variation particularly at
the highly elevated locations, the SP anomaly is –ve for which a minor correction
need to be applied prior to interpretation.

1.2 Interpretation of SP Anomalies

Usually, interpretation consists of looking for the order of magnitude of anomalies
in the range 0–20 mv as normal variation, 20–50 mv possibly of interest, especially
if observed over a fairly large area, more than 50 mv as definite anomaly and 400–
1000 mv as very large anomalies. Generally, SP anomalies are interpreted by means
of “qualitative method”, wherein the target/source is assumed to lie directly below
the minimum of the anomaly. The anomaly half width provides a rough estimate of
depth. The symmetry or asymmetry of anomaly provides the attitude of the body. The
presence and type of over burden can have strong effect on the presence or absence
of SP anomaly. For example sand has very little effect where as a clay cover may
mask the SP anomaly of the subsurface source/target.

In quantitative interpretation of SP anomalies, generally it is assumed that the
causative bodies to be regular geometrical shapes that can be described with appro-
priate analytical formulas. Logarithmic-curve matching (Murty and Haricharan
1984), the method of characteristic points (Rao et al. 1970), and the method of
nomograms (Bhattacharya and Roy 1981) all involve many approximations. The
method of least squares necessitates a series of trials to minimize the error between
the observed and calculated values. Spectral analysis is reliable only for very long
profiles. Whereas the ease of use and accuracy of results vary with the specific inter-
pretation technique, they are all subject to many constraints. None of these methods
yields a precise location of origin of the source of the anomaly, which is a prerequisite
for meaningful interpretation.

Some of the analytical methods of self potential anomaly interpretation based on
mathematical tools and techniques employing Hilbert transform, modified Hilbert
transform/Sundararajan transform, Fourier transform/Hartley transform, Mellin
transform etc.besides soft computing tools such as artificial neural networks (ANN)
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etc.play a significant role to realize reliable estimation of source parameters of subsur-
face targets. In this chapter, a brief review of thesemathematical tools and the process
of interpretation are given as hereunder.

During early 1990s, Sundararajan et al. (1990, 1998), Sundararajan and Chary
(1993) suggested the use of Hilbert transforms for the interpretation of SP anoma-
lies because this method is effective in the presence of random noise. This method is
basedonusing the real roots of the anomaly and itsHilbert transform/modifiedHilbert
transform, horizontal and vertical derivatives, avoids many of the drawbacks listed
above. In addition, a precise location of origin is achieved by using the Hilbert trans-
form and its modified version by means of amplitude of analytic signal. The method
is simple, elegant, straightforward, and above all is free from any assumptions. It
also can be automated easily. Theoretical and field examples illustrate the method in
the following section of some selected models and well known field anomalies.

1.3 Hilbert Transforms

The Hilbert transform (HT) and its modified version in geophysical data processing
and interpretation has gained importance over the last more than half a century
(Nabhigian 1972; Mohan et al. 1982; Sundararajan et al. 1998, 2000; Sundararajan
and Srinivas 2010). In these methods, the parameters of the causative bodies are
evaluated as functions of some characteristic points of the anomaly and its Hilbert
transform. The HT can physically be realized as a 90° (270° in the case of MHT)
phase shifter is not only useful in extracting the parameters such as depth, inclination,
width etc. of the causative bodies but also plays a significant role in exact spatial
location of the subsurface sources. The modified Hilbert transform is also known as
‘Sundararajan transform’ in literature (Sundararajan et al. 2000). In this section, it is
illustrated some basic concepts of HT and how they are applied in the interpretation
of self potential anomalies of certain simple geometrical structures such as 2-D
horizontal circular cylinder, sphere, inclined sheet etc.

The Hilbert transform HT(x) and modified Hilbert transform MHT(x) of self
potential anomalies represented by any real function SP(x) can be defined as

HT 1(x) = 1

π

∫ ∞

0
[Im SP(ω)cos(ωx) − ReSP(ω)sin(ωx)]dω

HT 2(x) = 1

π

∫ ∞

0
[Im SP(ω)cos(ωx) + ReSP(ω)sin(ωx)]dω

where ImSP(ω) and ReSP(ω) are the imaginaray and real components of the Fourier
transform of SP(x) implying that the HT can be computed via the Fourier transform.

Alternatively, the HT can also be computed in space domain as convolution of
SP(x) with 1/πx given by
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HT(x) = (1/πx) ∗ SP(x)

where * is the convolution operator.
Yet another way by which the Hilbert transform can be conceived is the horizontal

and vertical derivatives of SP(x) that form a Hilbert transform pair. That is,

SPx (x)〈− − − − −〉 SPz (x)

Here SPz (x) is the vertical derivative and SPx(x) is the horizontal derivative of
the SP anomaly SP(x) which form the Hilbert transform pair.

1.4 Analytic Signal and Amplitude

Locating the origin is of paramount importance in the interpretation of all geophysical
anomalies, that can be achieved with utmost accuracy by the amplitude of analytical
signal in a couple of ways as discussed hereunder.

The analytic signal of a self potential represented by SP(x) can be expressed as:

AS(x) = SP(x) − iHT(x)

where HT(x) is the Hilbert transform of SP(x). The amplitude of analytic signal can
be deciphered as:

A(x) =
√
SP(x)2 + HT (x)2

In general, the amplitude A(x) of analytic signal attains its maximum exactly over
the subsurface targets/source in structures whose width is less than the depth. On the
other hand, for the structures whose width is greater than the depth, A(x) results two
peaks flanked by a minimum at the centre. In this case, the minimum corresponds
to the centre of the source/target and the distance between the two peaks yields
the width of the target. Further, if the modified Hilbert transform HT2(x) is used
for the extraction of parameters, then in the above relation, HT(x) can be replaced
with its modified version HT2(x). This can be defined as under while using Hilbert
transform or modified Hilbert transform (Nabhigian 1972; Sundararajan et al. 1998;
Sundararajan and Srinivs 2010)

A1(x) =
√
SP(x)2 + HT 1(x)2

and
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A2(x) =
√
SP(x)2 + HT 2(x)2

Alternatively, the intersection of the HT1(x) and HT2(x) also corresponds to the
origin (Fig. 1.1). Similarly, the amplitudes as defined above A1(x) and A2(x) do
intersect over the origin (Fig. 1.2).

Fig. 1.1 Hilbert transform and its modified version

Fig. 1.2 Amplitudes A1(x) and A2(x) of analytic signal
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1.5 2-D Horizontal Circular Cylinder

The geometry of obliquely polarized 2-D horizontal circular cylinder with radius
is shown in Fig. 1.3. In the Cartesian coordinate system, ‘O’ is the origin which is
on the surface at a point vertically above the center of the cylinder. The axis of the
cylinder is parallel to the y-axis. AA′ is the axis of polarization. It makes an angle
‘α’ with the x-axis. P is the point of observation at a distance ‘x’ from the origin, ‘α’
is the angle between the axis of polarization and the line passing through the centre
of the sphere and P and Po is the point where the potential is zero. Therefore, the
potential at a point P on the surface is given (Sundararajan and Srinivas 1996) as:

The self potential due to such a cylindrical structure can be expressed as
(Sundararajan and Srinivas 1996):

SP1(x) = A[ x cos(α) − zsin(α)(
x2 + z2

)

where z-is the depth to the centre of the cylinder, ‘α’ is the angle between the hori-
zontal axis and the axis of polarization andA is a constant comprising the polarization
current (I) and the resistivity (ρ).

In this case, the computation of Hilbert transformHT1(x) and its modified version
HT2(x) can be realized via the Fourier transform and therefore, the real and imaginary

Fig. 1.3 Geometry of the 2-D horizontal circular cylinder
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components of the Fourier transform of SP1(x) are derived as:

ReSP1(ω) = Kπ sin(α)e−ωz

lmSP1(ω) = Kπ cos(α)e−ωz

Using these ReSP1 (ω) and ImSP1 (ω) components in the equations of HT and
the MHT, the Hilbert transform and its modified version can be obtained as:

HT 1(x) = A[ z cos(α) + x sin(α)(
x2 + z2

)

HT 2(x) = A[ z cos(α) − x sin(α)(
x2 + z2

)

The graphical plots of SP1(x) and HT1(x) or [SP1(x) and HT2(x)] intersect at one
point since SP1(x) and HT1(x) or H2(x) are of first degree in x and at this point of
intersection say x1, the following holds good:

SP1(x) = HT1(x) at x = x1

SP1(x) = HT2(x) at x = x1

That is, when

SPl(x) = HT1(x)

i, e
A[ x cos(α) − zsin(α)(

x2 + z2
) = A[ z cos(α) + x sin(α)(

x2 + z2
) at x = x1

On simplification it results, the depth ‘z’ as

z = x1

[
sin α − cosα

sin α + cosα

]

This solution for depth ‘z’ is dependent in ‘α’ which itself is an unknown to be
evaluated and therefore to be ignored. On the other hand, the following results the
depth independently as a function of the abscissa as illustrated hereunder.

SP1(x) = HT2(x)

i, e
A[ x cos(α) − zsin(α)(

x2 + z2
) = A[ z cos(α) − x sin(α)(

x2 + z2
) at x = x1
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Further simplification lead to the required solution for depth ‘z’ as,

z = x1

This implies that the depth is directly equal to the point of intersection of the
SP anomaly SP1(x) and its modified Hilbert transform HT2(x). Once the depth is
evaluated, the angle of polarization ‘α’ can be determined from the SP anomaly
SP1(x) and its modified Hilbert transform HT2(x) as:

α = tan−1 [zSP1(x) − xHT 2(x)]
[xSP1(x) − zHT 2(x)]

A more accurate solution for ‘α’ can be obtained as an average taken over several
values of ‘x’. Finally, the constant term consisting of I (the polarization current) and
ρ (resistivity) can be evaluated at x= 0 from equations SP1(0) and HT2(0) as under:

A =
√
SP1(0)2 + HT 2(0)2

By knowing either current or the resistivity, the other quantity may fairly well be
determined. Thus, the depth ‘z’, the polarization angle ‘α’ and the constant term can
be estimated based on the above analysis.

Theoretical and Field Examples: The interpretation procedure elucidated above is
illustratedwith a theoreticalmodel and exemplifiedwith a field data of Sulleymonkey
anomaly of length 260 m in the Ergani copper district, Turkey. The Hilbert and the
modified Hilbert transforms HT1(x) and HT2(x) and the SP anomaly SP1(x) are
computed and shown in Fig. 1.4 in the case of theoretical model. The point of

Fig. 1.4 The self potential anomaly due to a 2-D horizontal circular cylinder, the Hilbert transform
and the modified Hilbert transform of a theoretical model
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intersection of Hilbert transform and the modified Hilbert transform yield precisely
the origin, and the abscissa results the depth to the centre of the cylinder. The other
parameters are evaluated as discussed in the text. Similarly, the Hilbert transform and
its modified versions in addition to the amplitudes of field Sulleymonkey anomaly
are computed and shown in Fig. 1.5a–c. The evaluated parameters in both theoretical
as well as field examples are presented in Table 1.1 and compared with the other
available methods.

1.6 Spherical Structures

The geometry of the obliquely polarized sphere with radius ‘a’ is considered for the
analysis and shown in Fig. 1.6. In the Cartesian coordinate system, ‘O’ is the origin,
on the surface at a point vertically above the centre of the sphere. The axis of the
sphere is parallel to the y-axis and AA’ is the axis of polarization, ‘θ ’ is included
between the polarization and x-axis. P is the point of observation at a distance ‘x’
from the origin, ‘α’ is the angle between the axis of polarization and the line passing
through the centre of the sphere and P. Q is the point where the potential is zero. The
potential at a point P on the surface is given as (Sundararajan and Chary 1993):

SP2(x) = C

[
z cos(θ) + x sin(θ)(

x2 + z2
)1/2

]

where ‘z’ is the depth to the centre of the sphere, ‘θ ’ is the angle of polarization
and ‘C’ is constant comprising the current density (I) and the resistivity (ρ) of the
surrounding medium given by C = I ρ/2π.

As stated earlier, the horizontal and vertical derivatives of SP2(x) are obtained as:

SPx 2(x) = C

⎡
⎣ (z 2 − 2x2) sin(θ) − 3xzcos(θ)(

x2 + z2
) 5

2

⎤
⎦

SPz 2(x) = C

⎡
⎣ (x 2 − 2z2) cos(θ) − 3xzsin(θ)(

x2 + z2
) 5

2

⎤
⎦

At x = 0, the horizontal and vertical derivatives reduce to,

SPx 2(0) = Csin(θ)/z3

and

SPz 2(0) = −2Ccos(θ)/z3
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Fig. 1.5 a The self potential field of Sulleymonkey anomaly in the Ergani copper District, Turkey,
and the modified Hilbert transform b The Hilbert transform of the anomaly and its modified version
and c The amplitudes A1(x) and A2(x)
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Table 1.1 SP interpretation of theoretical model of 2-D horizontal circular cylinder and field self
potential Sulleymonkey anomaly, Ergani copper district, Turkey

Parameters Depth (z) Polarization
angle (α)

A = (I ρ)

Theoretical Example

Assumed values 4.00 units 60° 1.00

Interpreted values 4.00 units 59° 0.98

Field Example

Interpreted values by the present method 36.00 m 45° –

By Youngal (1950) 38.00 m 64° –

Hartley spectral analysis (Al-Garni and Sundararajan
2011)

35.00 m 48° –

Fig. 1.6 Geometry of the spherical structure

From the above relations, the angle of polarization ‘θ ’ can be determined as:

θ = tan−1[−2SPx 2(0)/SPz 2(0)]

Further, the derivatives SPx 2(x) and SPz 2(x) are of second degree in x, they
have two real roots say x1 and x2 and therefore it can be written as,

SPx 2(x) = SPz 2(x) at x = x1 and x2

i, e C

[
(z 2 − 2x2) sin(θ)− 3xzcos(θ)

(x2+ z2)
5
2

]
= C

[
(x 2 − 2z2) cos(θ)− 3xzsin(θ)

(x2+ z2)
5
2

]
at x = x1 and

x2.
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On simplification, the depth ‘z’ can be obtained as

z = (x1 + x2 )

[
(cos(θ) + 2 sin(θ))

3(sin(θ) − cos(θ))

]

As ′θ ′, is known already, the depth can be evaluated from the above relation.
However, it would be worth mentioning here that the depth tends to ‘∞’ at θ = 45 °
which is purely a hypothetical in such an analysis and that can be attributed to the fact
that (x1 + x2 ) = 0. This introduces a catastrophe in the mathematical procedure.
That is, the magnitude of the roots of the derivatives are equal and opposite in sign
which is seldom encountered in practice in which case the depth further simplified
as:

z = x1 = −x2

Finally, the constant term C can be evaluated as by squaring and adding SPx 2(0)
and SPz 2(0) as

C = 2z3
[
SPx 2(0)

2 + SPz 2(0)
2
]1/2

(
1 + 3cos2(θ)

)

Field Example: The procedure detailed above is exemplified by the well known
‘Weiss anomaly’ of the copper district in eastern Turkey. The anomaly represents
the principle profile AA’ shown in the contour map (Fig. 1.7). The ‘Weiss’ anomaly
is approximately 1 km north west of the Madam copper mine and is assumed to
be due to spherical structure. The assumption is validated by comparing with the
computed values and shown in Fig. 1.8. For further clarity, the ‘Weiss” anomaly is
shown exclusively in Fig. 1.9. The horizontal derivative is obtained by the numerical
differentiation and the vertical derivative is computed by the Hilbert transform. The
horizontal and vertical derivatives along with amplitude of analytic signal are shown
in Fig. 1.10. The depth (z) to the centre of the sphere and the angle of polarization
(θ) are evaluated based on the analytical procedure discussed in the text and shown
in the following Table 1.2. The depth (z) and the polarization angle (θ) obtained are
compared with those of Youngal (1950) and the method of Bhattacharya and Roy
(1981).

2-D Inclined Sheets.

The SP field at any given point P on the surface perpendicular to the strike of 2-
D inclined sheet of infinite horizontal extent (Fig. 1.11) is given as (Murty and
Haricharan 1985)

SP3(x) = Iρ

2π
In

[
(x − acos(α))2 + ( h − asin(α))2

(x + acos(α))2 + ( h − asin(α))2

]
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Fig. 1.7 Contour map of the self potential (Weiss) of the Ergani copper district in eastern Turkey
with elevation. AA′ is the principle profile

Fig. 1.8 Measured and calculated self potential along AA’ over theWeiss anomaly, Ergani, Turkey
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Fig. 1.9 Self potential anomaly (Weiss) of the Ergani copper district in eastern Turkey

Fig. 1.10 First horizontal derivative of the Weiss SP anomaly, the vertical derivative(the Hilbert
transform) and their amplitude
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Table 1.2 Interpreted
parameters of Weiss SP
anomaly, Ergani copper
district of eastern Turkey

Parameters Depth (z) in m Polarization angle (θ)

in degrees

Present method 79.00 52.00

Yungul (1950) 64.00 53.00

Bhattacharya and Roy
(1981)

54.00 30.00

Fig. 1.11 Geometry of the inclined sheet

where ‘h’ is the depth to the top of the sheet, ′α′ is the inclination, ‘a’ is the half width,
and ‘ρ’ is the resistivity and ‘I’ is the current density of the surrounding medium.

In this case SP3(x) is log function andhence, the partial differentiationwith respect
to ‘x’ frees the logarithm and yields the horizontal derivative from which the Hilbert
transform and its modified version can be obtained as in the case of 2-D horizontal
circular cylinder.

SPx 3(x) = K

[
(x − acos(α))

(x − acos(α))2 + ( h − asin(α))2

+ (x + acos(α))

(x + acos(α))2 + ( h + asin(α))2

]

The real and imaginary components of the Fourier transform of SPx 3(x) can be
obtained as:
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ReSPx 3(ω) = Kπ sin(ωacos(α))
[
e−ω(h+a sin(a)) − e−ω(h−a sin(α))

]

ImSPx 3(ω) = Kπ cos(ωasin(α))
[
e−ω(h+a sin(α)) − e−ω(h−a sin(α))

]

Using these components in the equations of HT1(x) and HT2(x), the Hilbert
transform and the modified Hilbert transform of SPx 3(x) can be obtained as:

HT1(x) = K

[
(h − asin(α))

(x − acos(α))2 + ( h − asin(α))2

+ (h + asin(α))

(x + acos(α))2 + ( h + asin(α))2

]

HT2(x) = K

[
(h − asin(α))

(x − acos(α))2 + ( h − asin(α))2

+ (h + asin(α))

(x − acos(α))2 + ( h + asin(α))2

]

It may be noted that the equation HT1(x) can also be obtained directly as the
partial derivative of SP3(x) with respect to ‘h’.

Equations of SPx 3(x) and HT1(x) are quadratic in x, hence we can write the
following,

SPx 3(x) = HT1(x) at x = x1 and x2

where the roots x1 and x2 are nothing but, the abscissa of the points of intersection
of the plots of SPx 3(x) and HT1(x).

Further algebraic simplification results,

x2 + 2Q ahx + Qa2 − h2 = 0

Then, sum of the roots of this quadratic equation may be expressed as,

x1 + x2 = −2Qh

where Q = (sin(α) − cos(α))/(sin(α) + cos(α)).
The above relation yields the depth ‘h’ once the value of ‘α’ is known.
Further, at x = 0, the equations SPx 3(x) and HT1(x) reduce to,

HT 1(0)

SPx 3(0)
= [ (a

2 − h2)

(a2 + h2)
tan(α) = S

By simplifying the last three equations [quadratic in x, sum of the roots and the
S], a cubic equation in tan(α) is obtained as:
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Atan3(α) + Btan2(α) + C tan(α) + D = 0,

where

A = 2x1 · x2, B = ( x1 + x2)
2 (S − 1) − A(S + 2)

C = ( x1 + x2)
2 (1 − S) − A(2S + 1) andD = −SA

In this cubic equation in tan(α), x1 and x2 as well as S are known and hence ‘α’
can be determined.

Subsequently, the depth ‘h’ and the half width ‘a’ can also be evaluated as:

h = ( x1 + x2)(cos(α) + sin(α))

(cos(α) − sin(α))

a =
√ (

x1.x2 + h2
) (cos(α) + sin(α))

(cos(α) − sin(α))

In evaluating ‘h’ and ‘a’, there is a singularity at α = 45° which can be attributed
to the fact that (x1 + x2) = 0 and

(
x1.x2 + h2

) = 0 in the above equations. That
is, the roots are equal and opposite. In such a case, the depth ‘h’ and the half width
‘a’are evaluated as

h = x1 = −x2

and

a = h = √−x1 · x2
Finally the constant term ‘K’ ( K = I ρ) can be evaluated as:
K = N R

DR where

NR = (a2 + h2 − 2ahsin(α))(
(
a2 + h2 − 2ahsin(α)

)
/2a

DR =
√√√√

[ (
a4 + h4 + 2ahcos(2α)

)
SPx 3(0)

2 + HT !(0)2
]

where K being the product of polarization current (I) and the resistivity ′ρ ′, with the
knowledge of one of them, the other quantity can be estimated approximately. Thus,
all the parameters like depth (h), half width (a), the polarization angle (α) and the
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Fig. 1.12 SP field anomaly in Surda area of Rakha mines, Singhbhum copper belt, Bihar, India

constant term (K) can be determined from the above analysis (Sundararajan et al.
1998).

Field Example: The practicability of the method is tested on an SP profile (E −19 +
100) in the Surda area of the Rakha mines Singhbhum copper belt, Bihar, India. The
anomaly (Murthy and Haricharan 1984) of the profile is shown in Fig. 1.12. The first
horizontal derivative is computed numerically, and the vertical derivative is obtained
by means of the Hilbert transform. The derivatives, along with the amplitude, A(x)
are shown in Fig. 1.13. The maximum value of the amplitude corresponds to the
origin; the roots, are determined from the points of intersection of the derivatives.
The parameters obtained are compared with the results of Paul (1965), Rao et al.
(1970), Murthy and Haricharan (1984) and presented in Table 1.3. In the area under
discussion, sulfides occur at depths ranging between 12.2 and 30.5 m. The present
method yields a depth value of 27.65 m.

1.7 Hartley Spectral Analysis of SP Anomalies

In general, the use of Hartley transform in geophysical data analysis has gained
importance since the early 1990s (Saatcilar and Ergintov 1991, Sundararajan 1995,
1997; Sundararajan et al. 2007). The familiarity of the Fourier transforms attracts the
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Fig. 1.13 The horizontal and vertical derivatives with their amplitude of the SP anomaly of Rakha
mines, Singhbhum copper belt, Bihar, India

Table 1.3 Hilbert transform interpretation of SP anomaly in the Surda area of the Rakha mines,
Sighbhum copper belt, Bihar, India

Parameters Depth (z) in m Polarization angle (α) in
degrees

The half width (a) in m

Present method 27.65 13.20 32.35

Paul (1965) 21.40 20.01 40.20

Rao et al. (1970) 30.48 10.01 34.87

Murthy and Haricharan
(1984)

29.50 30.00 29.50

scientists and engineers from the advantages of the Hartley transform. The Hartley
and Fourier transforms are fully equivalent; however, Hartley transform differs in
phase by 45° from its progenitor—the Fourier transform. The Hartley transform is
purely real (Bracewell 1983; and Sundararajan 1995). The physical implication of
both transforms is exactly the same and the frequency in both transforms has the same
meaning. In this section, the Hartley transform is applied to a theoretical example
to illustrate the method and then applied to a field example of the “Sulleymonkey”
anomaly in the Ergoni copper district, Turkey to demonstrate the applicability of
the method. It may be noted that the Spectral analysis of geophysical data either by
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Fourier transform or Hartley transform encores identical results as their amplitude
spectra in 1-D are identical.

The Hartley transform H(x) of the real function V(x) is defined by Hartley (1942)
as:

H(ω) =
∫ ∞

−∞
V (x)Cas(ωx) dx

where

Cas(ωx) = Cos(ωx) + Sin(ωx)

is considered as the kernel that is 45° phase-shifted sine wave. It takes the harmonics
of both cosine and sine functions as real and the frequency (ω) does have the same
physical meaning as that of Fourier transform (Bracewell 1983; Sundararajan 1995).

Basically, the Hartley and Fourier transforms can be related using the even and
odd components with the real and imaginary components of the Fourier transform
(Bracewell 1983; Sundararajan 1995) as

H(ω) = E(ω) + O(ω)

F(ω) = Re(ω) − iIm(ω)

where E(ω) and O(ω) of Hartley transform H(ω) are numerically equal to real and
imaginary parts Re(ω) and Im(ω) of the Fourier transform F(ω). Thus, the amplitude
of the Hartley transform can be expressed as in the case of Fourier amplitude.:

A(ω) =
√
E(ω)2 + O(ω)2

Alternatively, the amplitude spectrumcan also be expressed in terms of theHartley
transform H(w) as:

A(ω) =
√

[H 2(ω) + H 2(−ω)]
2

Also, the phase of the Hartley transform can be expressed in the same way as that
of Fourier phase as:

∅(ω) = tan−1

[
−O(ω)

E(ω)

]

Alternatively, the phase spectrum can be realized as a function of H(ω) and
H(−ω)
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∅(ω) = tan−1

[
H(−ω) − H(ω)

H(−ω) + H(ω)

]

The self potential due to 2-D horizontal circular cylinder given earlier can be
written as:

SP4(x) = A[ x cos(α) − zsin(α)(
x2 + z2

)

where ‘z’, ‘α’ and ‘A’ have same meaning as defined earlier.
The even and odd components of the Hartley transform of the SP anomaly due to

horizontal circular cylinder given above can be obtained as:

E(ω) = Kπsin(α)e−ωz

and

O(ω) = Kπ cos(α)e−ωz

Therefore, the amplitude spectrum of the Hartley transform can be obtained by
squaring and adding and taking the square root as:

A(ω) = Kπ e−ωz

And the phase also can be obtained as the arctan of odd by even components of
the Hartley transform as

∅(ω) = α − π/4

Theoretically, it is feasible to express the amplitude at two different frequencies
say ωi and ωi+1 as

A( ωi ) = Kπ e−ωi z

and

A( ωi+1 ) = Kπ e−ωi+1z

By a simple algebraic division of the above equations with i = 1 and also taking
natural logarithm, the depth ‘z’ can be obtained as:

z = 1

ω1− ω2
ln

A( ω1 )

A( ω2 )
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and the angle of polarization ‘α’ can be evaluated by dividing the even and odd as

α = tan−1[O(ω)/E(ω)]

For a complete solution, the constant termA= I ρ can be evaluated by substituting
the depth ‘z’ in the equation of amplitude as:

A = A(ω)

π
eωz

Theoretical and Field Examples

The Hartley spectral analysis of geophysical data particularly in SP interpretation
is relatively a recent procedure (Al-Garni and Sundararajan 2011) in comparison
with the traditional Fourier spectral analysis. It may be emphasized that both are
identical in magnitude however differs in phase by 45° and therefore ensure equality
in applications. But being a real tool, the computation of Hartley transform is faster
than its progenitor the Fourier transform. Therefore in such studies, it makes no
difference in either of the transforms. Here it is illustrated with a theoretical model
and substantiated with a field data of Sulleymonkey anomaly of length 260 m in the
Ergani copper district, Turkey. The even and odd components, the Hartley transform
of SP4(x) and amplitude spectrum are computed and shown in Fig. 1.14a–d in the
case of theoretical model. The SP field of Sulleymonkey anomaly in Ergani copper
district, Turkey is shown in Fig. 1.15. On the other hand, Fig. 1.16a–d illustrate the
even, odd components of field SP Sulleymonkey anomaly in addition to the Hartley
transform as an algebraic sum of even and odd components and also the amplitude
spectrum. All the parameters are evaluated as discussed in the text. The evaluated
parameters in both theoretical as well as field examples are presented in Table 1.4
and compared with the other available methods in the literature.

1.8 Artificial Neural Network Analysis

Soft computing tools such as artificial neural network (ANN) has been gaining impor-
tance in the recent past in the interpretation of geophysical data particularly self-
potential anomalies (Bescoby et al. 2006; Bhagwan Das and Sundararajan 2016).
Self-potential anomaly due to a horizontal circular cylinder can be approximated
by an artificial neural network, as they are universal approximators. The universal
approximation theorem for multilayer perception (MLP) was proved by several
authors in the early 1980s although the results depend on how many hidden units
are necessary which is yet to be known. In this section, the analysis of self- potential
anomalies due to a 2D horizontal circular cylinder (the interpretation of the very
same geometrical structure was carried out in the previous sections using modified
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Fig. 1.14 Hartley spectral analysis of theoretical model. a the even component, b the odd
component, c the Hartley transform and d the amplitude spectrum

Hilbert transform as well as Hartley spectral analysis) is performed using ANN-
based committee machine. The soundness of the method is illustrated with the study
of theoretical model and a field example.

The salient features of ANNs include that it does not require any prior knowl-
edge about the input/output mapping that is required for model development. The
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Fig. 1.14 (continued)

Fig. 1.15 The SP field of Sulleymonkey anomaly in Ergani copper district, Turkey

fitted function is represented by the network and do not have to be explicitly defined.
Further, it has the ability to model highly nonlinear as well as linear input/output
mapping with good generalization, i.e., it responds correctly to new data. The inter-
pretation of SP anomalies based on ANN approach consists of two phases namely
phase-I and phase-II, in phase I, a trial-and-error method is implemented for the
analysis. The trial and error method starts from assuming (i.e., trial) an initial set of
different ranges for required parameters (may be far from actual values), computes
the predicted data values by using the self-potential effect and compares themwith the
observed data. Then, corrections are applied based on error to the range of parameters
so that it minimizes the misfits between calculated and observed data. The procedure
is repeated until a satisfying result is obtained. This process is carried out with a
mathematical algorithm and implemented in Matlab which enables an efficient way
of changing the model parameters. Themain purpose of phase I is to obtain a suitable
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Fig. 1.16 Hartley spectral analysis of SP field of Sulleymonkey anomaly, Ergani copper district,
Turkey. a even component, b odd component, c Hartley transform and d the amplitude spectrum

and close range of parameters which in turn ensures a very few training examples
that are sufficient enough to train in order to extract the parameters of the model.

In phase-II, a committee machine is a type of ANN using the divide-and-conquer
strategy in which the responses of multiple experts (MLPs) are combined into a
single response. A committee machine is a method in which different experts sharing
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Fig. 1.16 (continued)

Table 1.4 Hartley spectral analysis of theoretical model and field self potential Sulleymonkey
anomaly, Ergani copper district, Turkey

Parameters Depth (z) Polarization
angle (α)

A = (I ρ)

Theoretical Example

Assumed values 4.00 units 60° 1.00

Interpreted values 4.13 units 56.769° 0.92

Field Example

Interpreted values by the present method 35.80 m 47.7° –

By Youngal (1950) 38.00 m 64° –

Sundararajan and Srinivas (1996) 36.45 m 45.00° –

Tlas and Asfahani (2008) 35.41 m 72.24° …

a common input and whose individuals are combined to produce an overall output;
such a technique is referred to as an ensemble averaging method. In phase II, initially
training examples are created based on the close range of parameters obtained in
phase I, and then an ANN-based committee machine is constructed by replacing
each expert by MLP of the same topology (i.e., same number of layers, number of
neurons in each layer). Each MLP is trained to extract exactly one parameter with
examples, using the Levenberg–Marquart algorithm in batch mode. An extensive
further mathematical details are given in Bhagwan Das and Sundararajan (2016).

Theoretical and Field Examples

TheANNbased interpretation of SPanomalies are illustratedwith a theoreticalmodel
in the case of 2-D horizontal circular cylinder and further studied on a field data of the
Sulleymonkey anomaly in the Ergani copper district, Turkey. The interpreted results
of both theoretical and field anomaly are presented in Table 1.5 and compared with
the methods that are in vogue. All the computations are presented as illustrations in
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Table 1.5 ANN based interpretation of theoretical model of 2-D horizontal circular cylinder and
field self potential Sulleymonkey anomaly, Ergani copper district, Turkey

Parameters Depth (z) Polarization
angle (α)

A = (I ρ)

Theoretical Example

Assumed values 4.00 units 60.00° 150

Interpreted values 4.17 units 60.11° 17,519

Field Example

Interpreted values by the present method 38.13 m 51.39° –

By Youngal (1950) 38.00 m 64° –

Sundararajan and Srinivas (1996) 36.00 m 46.00°

Hartley spectral analysis (Al-Garni and Sundararajan
2011)

35.00 m 48° –

Fig. 1.17 (theoretical model) and Fig. 1.18 (Field anomaly). In addition, comparison
of artificial neural network generated self potential response with that of generated
by other techniques for self-potential field of the Sulleymonkey anomaly in Ergani
Copper district, Turkey are shown in Fig. 1.19.

1.9 Noise Analysis

The effect of random noise is investigated on the interpretive process by adding
various levels say 5%, 10% and 20% of white Gaussian noise (WGN) to the self-
potential of the 2-D horizontal circular cylinder. In Hartely spectral analysis, the
noisy anomalies were not subjected to smoothing using a statistical method such as
moving average which is optional (Sundararajan and Srinivas 1996). But in Hilbert
transform analysis, they show that this process should be carried out prior to the
computation of Hilbert transform because their interpretation is based on the abscissa
of the points of the intersection of the self-potential anomaly and themodifiedHilbert
transform. In the case of Hartley spectral analysis, the even and odd components,
the Hartley, and the amplitude spectrum are computed from the noisy anomaly. The
interpretation should be carried out earlier as in the case of prior to addition of noise.
The interpreted results with and without noise did not differ much and presented
(Table 1.6) for a specific case of 2-D horizontal circular cylinder model with identical
assumed parameters based modified Hilbert transform and Hartley spectral analysis
(Fig. 1.20). Therefore, the effect of the noise of 10% of WGN or even more on the
interpretive process detailed in all the methods seem to be negligible and confirming
that these methods of interpretation are not much prone to the presence of noise in
the acquired data. It may be noted here that similar is the noise effect on the on
interpretation of SP anomalies over spherical and 2-D cylindrical models based on
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Fig. 1.17 ANN based interpretation of SP anomalies due to 2-D horizontal circular cylindrical
model. a Self potential anomaly of the model, b ANN-generated self-potential response and c Self
potential anomaly as in (a) and ANN-generated self potential response
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Fig. 1.18 ANN based interpretation of field data. a The self-potential field of the Sulleymonkey
anomaly in Ergani Copper district, Turkey. b ANN-generated self-potential response and c The self
potential anomaly as in (a) and ANN-generated self-potential response
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Fig. 1.19 Comparison of artificial neural network generated self potential response with other
techniques of the self-potential field of the Sulleymonkey anomaly in Ergani Copper district, Turkey

Table 1.6 Effect of random
noise on the interpretation of
theoretical SP anomalies due
to 2-D horizontal circular
cylinder

Parameters Depth (z) Polarization
angle (α)

A = (I ρ)

Modified Hilbert transform

Assumed values 4.00 units 60.00° 1.00

Interpreted values 4.00 units 59.00° 0.98

Interpreted values
with
10% random noise

4.30 units 49.00° 1.40

Hartley spectral analysis

Interpreted values 4.13 56.80° 0.93

Interpreted values
with
10% random noise

4.28 55.23° 0.91

the techniques of horizontal and vertical derivatives and artificial neural networks
(ANN).
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Fig. 1.20 Effect of randomnoise on the interpretation of SP anomalies due to 2-d horizontal circular
cylinder a SP anomaly and its modified Hilbert transform. b Hilbert transform of SP anomaly and
the modified Hilbert transform and c Hartley amplitude spectrum

1.10 Discussion

In general, all geophysical data invariably contaminated with various noise factors,
including inappropriate interval measurements etc. SP data interpretation also is
prone to error because of the choice of computation algorithm, assumptions etc. In
this regards, the Hilbert transform/modified Hilbert transform based interpretation
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ensures maximum accuracy in extraction of body parameters as they are directly
dependent on the real roots of the equations of SP potential of geometrical structures
considered. However, the accuracy of thismethod depends on the accurate estimation
of the abscissa of the points of intersections of the anomaly and its Hilbert trans-
form/modified Hilbert transform or the horizontal and vertical derivatives of the SP
anomaly.

The modified Hilbert transform is equal in magnitude to the Hilbert transform but
differs in phase by 270°. The salient feature of the modified version of the Hilbert
transform is that it facilitates in precise spatial location of subsurface targets in
a couple of ways. As discussed and demonstrated, the point of intersection of the
Hilbert transform of SP anomalies andmodified Hilbert transform aid in determining
the origin. Similar is the case with the, the amplitude of analytic signal A1(x) and
A2 (x) based on Hilbert transform and the modified Hilbert transform that the point
of intersection of A1(x) and A2(x) confirm the exact location of in the targets.

This procedure is an analytical onewithout any assumptions; however, the inherent
weakness of the method while obtaining the horizontal derivative of the SP anomaly
by numerical differentiation which incorporates a bit of noise in the computation,
and this can be minimized by any simple statistical filtering prior to computation of
the vertical derivative by means of Hilbert transform. The method of interpretation is
not influenced significantly by the presence of random noise in the data as evidenced
by the noise analysis.

Hartley spectral analysis is not only similar to the traditional Fourier spectral anal-
ysis of geophysical data, but also numerically identical with all merits and demerits.
However, Hartley transform being real function, unlike the complex Fourier trans-
form, ensure efficiency in computation, particularly while using a large amount of
data.

Applications of artificial neural network (ANN) is seen almost in every field of
science and engineering including processing and interpretation of various geophys-
ical data. It is elegant in its mathematical frame work, however, in the extraction
of parameters from potential field data including SP data, the choice of training
parameters of the targets may cost large computational time if the training set differs
widely from the actual ones, else ANN techniques are simple to implement and does
not require any prior knowledge about the input/output mapping that is required for
model development.

References

Al-Garni MA, Sundararajan N (2011) Hartley spectral analysis of self potential anomalies caused
by a 2-D circular cylinder. Arab J Geosci 3:27–32

Bescoby DJ, Cawley GC, Chroston PN (2006) Enhanced interpretation of magnetic survey data
from archaeological sites using artificial neural networks. Geophysics 71(5):45–53

Bhagwan Das M, Sundararajan N (2016) Analysis of self-potential anomalies due to 2D horizontal
cylindrical structures—an artificial neural network approach. Arab J Geosci 9:490. https://doi.
org/10.1007/s12517-016-2492-9

https://doi.org/10.1007/s12517-016-2492-9


34 N. Sundararajan and Y. Srinivas

Bhattacharya BB, Roy N (1981) A note on the use of a nomogram for self-potential anomalies.
Geophy Prosp 29(1):102–107

Bracewell RN (1983) The discrete Hartley transform. J Opt Soc Am 73:1832–1835
Mohan NL, Sundararajan N, Seshagiri Rao SV (1982) Interpretation of some two dimensional
magnetic bodies using Hilbert transform. Geophysics 47:376–387

Murthy BVS, Haricharan P (1984) Self-potential anomaly over double line of poles-interpretation
through log curves. Proc Indian Acad Sci Earth Planet Sci 93:437–445

Murthy BVS, Haricharan P (1985) Nomograms for the complete interpretation of spontaneous
potential profiles over sheet like and cylindrical 2-D structures. Geophysics 50:1127–1135

Nabhigian MN (1972) The analytical signal of two-dimensional magnetic bodies with polygonal
cross section, its properties and use for automated anomaly interpretation. Geophysics 37:507–
512

Paul MK (1965) Direct interpretations of self-potential extension anomalies caused by inclined
sheets of infinite horizontal extension. Geophysics 30:418–423

Rao BSR, Murthy IVR, Reddy SJ (1970) Interpretation of self-potential anomalies of some simple
geometric bodies. PAGEOPH 78:66–67

Saatcilar R, Ergintov S (1991) Solving elastic wave equations with the Hartley method. Geophysics
56:274–278

Sundararajan N, Arunkumar I, Mohan NL (1990) Use of the Hilbert transform to interpret self
potential anomalies due to 2-D inclined sheets. Pure Appl Geophys 133:117–126

Sundararajan N, Narasimha Chary M (1993) Direct interpretation of self-potential anomalies due
to spherical structures–a Hilbert transform technique. Geophys Trans 38:151–165

Sundararajan N (1995) 2-D Hartley transforms. Geophysics 60:262–267
Sundararajan N, Srinivas Y (1996) A modified Hilbert transform and its application to SP
Interpretation. J Appl Geophys 36:137–143

Sundararajan N (1997) Fourier and Hartley transforms—a mathematical twin. Indian J Pure Appl
Math 28:1361–1365

Sundararajan N, Srinivasa Rao P, Sunitha V (1998) An analytical method to interpret SP anomalies
due to 2-D inclined sheets. Geophysics 63:1551–1555

SundararajanN, Srinivas Y, Laxminarayana Rao T (2000) Sundararajan transform-a tool to interpret
potentiaql field anomalies. Exploration Geophys 31:622–638

Sundararajan N, Al-Garni MA, Ramabrahmam G, Srinivas Y (2007) A real spectral analysis of
the deformation of a homogenous electric field over a thin bed–a Hartley transform approach.
Geophys Prospect 55(6):901–910

Sundararajan N, Srinivas Y (2010) Fourier–hilbert versus hartley–hilbert transforms with some
geophysical applications. J Appl Geophys 71(4):157–161

Tlas M, Asfahani J (2008) Using of the Adaptive Simulated Annealing (ASA) for quantitative
interpretation of self-potential anomalies due to simple geometrical structures. J King Abdulaziz
Univ Earth Sci 19:99–118

Yungul S (1950) Interpretation of spontaneous polarization anomalies caused spherical ore bodies.
Geophysics 15(2):237–246



Chapter 2
Metaheuristics Inversion of Self-Potential
Anomalies

Mohamed Gobashy and Maha Abdelazeem

Abstract Artificial intelligence and metaheuristic approaches had gained a remark-
able position in last-millennium geophysical inversion. The past two decades have
witnessed the development of numerous metaheuristics in various communities that
sit at the intersection of several fields including geophysics. Many inverse problems
in geophysics are considered as constrained optimization, as the aim of the process
is to find the best parameter estimates so as to minimize the differences between
the predicted results and the observations while satisfying all known constraints or
thresholds. Such optimization problems can thus be solved by efficient traditional
optimization techniques (e.g.: Least-squares). However, as the number of degrees
of freedom is usually very large, metaheuristic algorithms such as, Whale, Grey
Wolf, particle swarm, genetic, Bat, and Cuckoo Search algorithms are particularly
suitable for inverse problems of that kind, because metaheuristics are very efficient
for solving non-linear global optimization problems. The inversion of spontaneous
potential (SP) anomalies in particular, attracted many authors. This chapter provides
a complete view of metaheuristics as effective tool for parameter estimation from the
SP signal. We show the main design questions and search components for selected
families of metaheuristics. Not only the design aspect of metaheuristics but also their
implementation including the formulation of the Objective/target function. After
covering the synthetic examples with the noise tests, many field examples will be
presented to show its effectiveness and suitability for various geologic conditions
and a diverse range of application domains.
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2.1 Introduction

The main critical problem of geophysical potential field inversion is the developing
of a stable and plausible inverse problem solution which solves simple geophysical
models and at the same time can resolve complicated geological structures. The
potential field data analysis and inversion is of major interest because it is relatively
fast, inexpensive and allow in most cases a full coverage for inaccessible areas.
Several problems arose when dealing with the inversion. First, the inverse problem
has nounique solution. For a given set ofmodel parameters, the forward problemhas a
unique solution, but for a given set of observedfield data, the inverse problemcanhave
an infinite number of possible solutions. This property is one of the important conse-
quences of the Green’s third identity of the potential theory. Changing the number
of parameters or observations or type of measurement does not solve this problem.
Ill-posedness of the inverse problem is a consequent results since the forward model
has to simplify the real world using a finite set of parameters. This means that for
the inverse problem, minor changes in the observed field data can result in randomly
large changes in the calculated model parameters. The second problem usually arose
from the simplifying assumptions that most users put forward to constrain their
inverse solutions. For example, the effects of transversely anisotropic background
in self-potential inversion are not generally included as parameters in the inversion
process, so any data containing effects when inverted using methods which does not
incorporate them cannot possibly generate optimal correct plausible solution.

The third problem has an extreme importance such that whatever the formulation
used for solving an inverse problem, a feasible model is generated. This is a simple
consequence of the traditional iterative inversion process wrapped around a forward
problem inwhich the forwardmodel is successivelymodified until it fits the observed
field data to the desired threshold. However, just because themodel is feasible, it does
not mean that it is either realistic or plausible (Paine 2007; Boschetti et al. 1999).

The above concise survey on the main controlling parameters of geophysical
inversions and the non-linearity of most of the geophysical problems, fueled a greater
desire to include much more sophisticated or complex algorithms rather than simple
direct modelling techniques. Moreover, the improvements in hardware andmodeling
software have permitted a major increase in the problems dimensions which can be
handled and initiated the interest to model even larger problems. The major advances
in the last decade have been focused on providing methods for doing this (Paine
2007). Among this, is the introduction of voxel based inversion programs which
use regularization techniques to generate geologically reasonable models (Li and
Oldenburg 1996, 1998, 2000). The implementation of compression techniques to
improve the computational performance of the algorithms (Li and Oldenburg 2003)
and in the field of self-potential inversion, many progress can be observed where
tomographic methods are presented (Di Maio and Patella 1994; Patella 1997; Di
Maio et al. 2013, 2016a), least squares inversion (Abdelrahman et al. 2008; Agarwal
and Srivastava 2009; Li andYin 2012), spectral analysis (Rani et al. 2015), and global
optimization approaches (Tlas and Asfahani 2008; Srivastava et al. 2014; Di Maio
et al. 2016b).
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2.2 Forward SP Model

Self-potential (SP) method is commonly used to explore metallic sulfides and
graphite ore bodies. It is considered one of the oldest geoelectrical methods, that
is still in use in many fields of applied geophysics, such as mining (Sato andMooney
1960; Logn and Bolviken1974; Corry 1985), archaeological surveying (Wynn and
Sherwood 1984; Cammarano et al. 1998), engineering geophysics (Bogoslovsky
and Ogilvey l977; Bogoslovsky et al. 1977; Corwin 1990) in dam and embank-
ment (Bogoslovsky et al. 1977; Corwin 1990) in dam and embankment seepage
control (Bogoslovsky and Ogilvy 1970a, b) and in many other geophysical fields.
Many source mechanisms have been proposed to explain the genesis, time and space
patterns of the SP field, either in the applied geophysics or in the tectonophysics.
In general, the common aspect of many source models is that, an electric charge
polarization is setup, which is responsible for the current flow in conductive rocks.

The current approaches to SP quantitative interpretation schemes are all based on
the comparison between theSPfield anomalies or signals and the computed responses
due to simple sources like monopole, dipole, multipole or line sources located either
in a homogeneous and isotropic half space or in layered or faulted geometries (Stern
1945; Rao et al. 1970; Telford et al. 1976; Demoully and Corwin 1980; Fitterman
1979, 1983; Patella 1997).

For few simple charge geometries where individual SP anomalies (Fig. 2.1) are
found in a clear and resolvable form (i.e. can simply be separated from the regional
and topographic effects), numerical estimates of the source parameters: depth to
the source (z), electric charge polarization angle (ψ), electric dipole moment (k),
and shape factor (q) can be directly derived from the analysis of the SP anomaly
(Petrowsky 1928; Bhattacharya and Roy 1981; Fitterman and Corwin 1982; Rao and
Babu 1984; Murty and Haricharan 1985).

Although, in many cases, the modeling of the phenomena associated with
large and/or small-scale geophysical source, which may fully justify the estimated
polarization state, cannot as a rule deduced from the specified source geometries

Fig. 2.1 2D model of a a sphere or horizontal cylinder and b a vertical cylinder model
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Fig. 2.2 2D inclined sheet
model

(Patella 1997). However, such simple geometries are still in use and their interpre-
tation techniques are reported in many case studies. As an example, spherical and
cylindrical-like models are used by Yüngül (1950), Murty and Haricharan (1985),
Abdelrahman and Sharafeldin (1997), Abdelrahman et al. (2003), Abdelazeem and
Gobashy (2006), Abdelrahman et al. (2019), and Abdelrahman and Gobashy (2021)
as shown in Eq. (2.1). Sheet-like models (Fig. 2.2) studied by Paul (1965), Murty
and Haricharan (1985), as shown in Eq. (2.2).

V (x, D, ψ, z, q) = K
(x − D)sinψ−zcosψ

(
(x + D)2 + z2

)q (2.1)

where, K is defined as the electric dipole moment, D and h are the horizontal loca-
tion of the center axis of the buried body and its depth, respectively, ψ defines the
polarization angle, x denotes the surface measurement point and q refers to the shape
factor, q = 0.5 for the vertical cylinder, q = 1.0 for the horizontal cylinder and q =
1.5 for sphere.

V (x, D, a, h, α) = kln
[(x − D) − acosα]2 + (h − asinα)2

[(x − D) + acosα] + (h + asinα)2
(2.2)

The formula expressing the self-potential anomaly at any surface point V(x) along
a line normal to the strike of a 2D inclined sheet model where k is the polarization
amplitude,D is the horizontal location of the sheet center, h refers to the depth to the
sheet center, a denotes the half-width of the sheet and a defines the inclination angle.
If the sought model consists of fewer parameter than the number of field data points,
then the inverse problem is said to be OVERDETERMINED and can be formally
solved using methods based on achieving a best fit to the data.
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2.3 Optimization Methods

Based on the complexity of the given problem, it may be solved by an exact method
or an approximate method (Fig. 2.3). Exact methods obtain optimal solutions and
guarantee their optimality,while approximate (or heuristic)methods give high quality
solutions in an acceptable time for practical use, but there is no guarantee of finding
a global optimal solution.

In more detail, the Exact Methods include, dynamic programming that divides the
problem into simpler Sub-problems, the branch and X family of algorithms (branch
and bound, branch and cut, branch and price) that support an implicit enumeration of
solutions of the considered optimization problem and developed in the field of oper-
ations research, constraint programming which is a language built around concepts
of tree search and logical implications and A∗ family of search algorithms (A∗,
IDA∗-iterative deepening algorithms) (Korf 1985) developed in the field of artificial
intelligence (Russell and Norvig 1995).

Under the approximate strategies, two subclasses of algorithms could also
be distinguished: approximation algorithms and heuristic algorithms. The approx-
imation algorithms give verifiable solution quality and provable run-time bounds
and there is a guarantee on the boundof the obtained solution from theglobal optimum
(Hochbaum 1996). The heuristics typically find “good” solutions in a very afford-
able time on large-size problem. They allow to get acceptable answer perfor-
mance at acceptable costs in a very wide range of problems. In general, heuris-
tics don’t have an approximation guarantee on the obtained solutions. They may be
classified into two families: specific heuristics and metaheuristics.

Optimization 
methods

Approximate 
methods

Exact methods

Heurestic 
algorithms

Approximation 
algorithms

Metaheuristics

Single solution 
based

population 
based

Problem-specefic
heurestic

Fig. 2.3 General classification of optimization methods (modified after El-Ghazali 1965)
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The first who coined the term “metaheuristic” was (Glover 1986) so as to differ-
entiate and generalize heuristic method without problem-specific characteristic. The
reason behind the robust searching mechanism of metaheuristic is the synchro-
nization between two search schemas: exploration (diversification) and exploitation
(intensification) (Blum and Roli 2003). However, the heuristic concept in solving
optimization problems was firstly introduced by Polya (1945). The simplex algo-
rithm, introduced by Dantzig (1947), may be recalled as a local search algorithm
for linear programming problems. J. Edmonds was the first to discuss the greedy
heuristic in the combinatorial optimization literature in 1971 (Edmonds 1971). The
original references of the following metaheuristics are based on their application to
optimization and/or machine learning problems.

Since that time, many metaheuristics applications are introduced, among them:
AIS (artificial immune systems) (Bersini and Varela 1990; Farmer et al. 1986), CA
(cultural algorithms), CMA-ES (covariance matrix adaptation evolution strategy)
(Hansen and Ostermeier 1996), GLS (guided local search) (Voudouris and Tsang
1995; Voudouris 1998), GP (genetic programming) (Koza, 1992), evolutionary
programming (EP) (Fogel 1962), DE (differential evolution) (Pric 1994; Storn and
Price 1995), GA (genetic algorithms) (Holland 1962, 1975), SM (smoothingmethod)
(Glover and McMillan 1986), SS (scatter search) (Glover 1977), ILS (iterated local
search) (Martin et al. 1991), EDA (estimation of distribution algorithms) (Baluja
1994), NM (noisy method) (Charon and Hudry 1993), PSO (particle swarm opti-
mization) (Kennedy and Eberhart 1995), ACO (ant colonies optimization) (Dorigo
1992), CEA (coevolutionary algorithms) (Hillis 1990; Ho et al. 2005), BC (bee
colony) (Shaw 1998), GDA (great deluge) (Dueck 1993), ES (evolution strategies)
(Rechenberg 1965), CSO (Cuckoo search optimization) is a recent optimization algo-
rithm suggested by (Xin-She Yang 2010), WOA (Whale optimization) (Mirjalili and
Lewis 2016), and many others.

Many classification criteria may be used for metaheuristics. Following Abdel-
Basset et al. (2018), a classification of metaheuristics that divides metaheuristics
into metaphor primarily based and non-metaphor based metaheuristics controlled
by the nature of the algorithm could be accepted. Themetaphor primarily basedmeta-
heuristics are algorithms that simulate natural phenomena, human behavior or
maybe mathematic, etc. On the other hand, non-metaphor based metaheuristics
didn’t use any simulation for decisive their search strategy. Figure 2.4 provides a
comprehensive review of the common metaheuristic taxonomies.

2.4 Inversion of Spontaneous Potential (SP) Anomalies

The inversion of spontaneous or self-potential (SP) anomalies in particular, attracted
many authors as it can be used in many fields of applied geophysics, such as mining,
archaeology, dam seepage and many other problems. Also the simplification of
the causative body to sheet, sphere or cylinder guarantee that the problem is over
determined and consequently, with constraints, there is a plausible solution.
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METAHEURISTICS
inversion approaches

Memory usage Memoryless

Metaphor based Non-Metaphor based

Iterative Greedy

Fig. 2.4 Classification of metaheuristics (modified after Abdel-Basset et al. 2018)

2.4.1 Ambiguity and Non-uniqueness of SP Inverse Solutions

It is understood that the potential within any sub-region of a regionR can be related to
an infinite variety of surface distributions (Green’s third identity). Hence, no unique
boundary conditions exist for a given harmonic function (Blakely 1995), and an infi-
nite number of possible solutions can be found that satisfy the data equally well.
This property of non-uniqueness constitutes an important limitation that faces any
interpretation of a measured potential field in terms of its causative sources and
consequently affects all numerical inversion techniques used in interpretation of
potential fields. However, many authors attempted to overcome this critical problem
by different strategies. Among these is forcing a non-unique problem to behave as a
unique one. This can be done by looking for solutions with unique features. However,
this leaves the actual extent of the ambiguity unknown (Boschetti et al. 1999), and
a critical question arose dealing with the effectiveness of parameterization in the
final results? Many authors dealt with such problem that apparently affects the relia-
bility of the overall inversion process. Among them Parker (1974, 1975), Ander and
Huestis (1987), Huestis and Parker (1977), Al-Chalabi (1971), Vasco et al. (1993)
and Boschetti et al. (1997). These techniques suffer from the inherent limitation that
the extent of the ambiguity domain is so large, and its shape so complicated, that
reasonable results may be obtained only for very simple problems (Boschetti et al.
1999). Fedi and Abbas (2013) and earlier Boschetti et al. (1999), modified the above
techniques dealing with the self-potential fields. In Boschetti et al. (1999), a tomo-
graphic map of the distribution of electrical source strength from which the possible
location of discrete sources can be estimated in the ambiguity domain using the
source imaging methods. This technique is thought to reduce ambiguity, but actually
they are only useful in problems where we have limited knowledge of the source
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mechanism, or where multiple source mechanisms (electrochemical, electrokinetic
or thermoelectric) are at work. However, the above mentioned approaches do not
give direct interpretation of the unknown associated with a certain source mecha-
nism (Biswas 2017a). This specific problem requires inversion of SP data considering
simple geometrical sources according to Biswas and Sharma (2014).

2.4.1.1 Transverse Anisotropy as a Source of Ambiguity

Anisotropy is a major source of uncertainty or ambiguity in inversion of SP fields.
Wheremodels of dipole current distribution in a homogeneous and isotropic medium
is usually considered in the formulation of most of the interpretation techniques of
SP field (Skianis and Hernandez 1999). Ground electrical inhomogeneity or ground
electrical anisotropy is rarely taken into consideration. Anisotropy, either micro or
macro, however, distorts the electric current flow and, consequently, significant errors
in the interpretation of the SP anomaly may be introduced (Skianis et al. 2000).
The former occurs in rocks, which contain mineral grains, preferentially oriented
with respect to their internal crystal structure. While, the later, occur in sedimentary
formations, where thin layers of different resistivity may alternate. In geoelectrical
exploration, the term anisotropy is generally employed, including all cases of micro-
and macro-anisotropy. When the resistivity in the plane of schistosity is constant
and different from the resistivity in the perpendicular transverse plan, a rock or a
formation is said to be transversely anisotropic. This is the most dominant type of
anisotropy encountered in geoelectrical prospecting (Bhatacharya and Patra 1968;
Skianis and Hernandez 1999). We summarize some of the important techniques that
are used to control the potential field ambiguity problem, particularly, of the SP fields
in the following section.

2.4.2 Ambiguity Control

As mentioned above, potential-field interpretation is characterized by an inherent
ambiguity in the determination of the source from field data, which may lead to a
loss of depth information (Fedi et al. 2005). Blakely (1995) proved mathematically
using Green’s third identity that any potential field in a sub-region can be reproduced
by an infinite variety of surface (shallow) distributions. Also, the annihilator or the
source distributionwhich produces a null field, couldn’t be determined (Parker 1977).

Mathematically, if the system is underdetermined, i.e. with more unknowns than
data, this leads to algebraic ambiguity. Many authors solved such ambiguity prob-
lems by using additional information about the problem (Gobashy and Abdelazeem
2005). The direct and most easy way to assume simple geometric shapes with homo-
geneous source distributions to represent the solution using the parametric discretiza-
tion (Menke 1989; Cordell andGrauch 1985). Consequently, the algebraic ambiguity
can be solved assuming a 2- or 3-Diemnsional array of cubes or prisms or simply



2 Metaheuristics Inversion of Self-Potential Anomalies 43

vertical prisms variable depth to top, and the position of the prism source’s boundaries
is contained in the field derivatives (Blakely and Simpson 1986).

Other additional a priori information is implementing lower and upper bounds, as
example in gravity field inversion, for a density monotonically increasing with depth
(Fisher and Howard 1980), constraining the source to have minimum momentum
of inertia (Guillen and Menichetti 1984), assuming a condition of compact volume
(Last and Kubik 1983) to the causative body requiring compactness along several
axes using a priori information about the axes’ length using approximate equality
(linear) constraints and many other ideas to reduce the ambiguity.

Stable inversion is not by default a well-posed one. All kinds of data smoothing,
introduction of different kinds of constraints, application of data andmodel variance–
covariance matrices for bringing stability in an inversion algorithm are the members
of the regularization family. In the next sections we present the formulation of few
commonly used types of ambiguity controllers: the linear and nonlinear constraints
and the probability density function, active set strategy, Depth weighting matrix, and
Covariance matrix.

2.4.2.1 Linear and Nonlinear Constraints

We can incorporate previously obtained information about the sought model param-
eters in our problem formulation. This external information could be results from
previous experiments or quantified expectations dictated by the physics of the
problem. Generally, these external data help to single out a possible unique solution
from all equivalent ones and the process is said to be constraint.

2.4.2.2 Probability Density Function

The usefulness of this technique depends, in part, on the complexity of p(m), the
complete probability density function formodel parameters. If the probability density
functions p(mi) for an individual model parametermi has only one peak (Fig. 2.5A),
then it provides little more information than an estimate based on the position of
the peak’s center with error bounds based on the peak’s shape. On the other hand,
if the probability density function is very complicated (Fig. 2.5C), it is basically
uninterpretable (except in the sense that it implies that themodel parameter cannot be
well estimated).Only in those exceptional instances inwhich it has some intermediate
complexity (Fig. 2.5B) does it really provide information toward the solution of an
inverse problem.

2.4.2.3 Active Set Strategy

In source imaging methods and tomographic inversion of SP signals, the concept
of active set strategy (Gill and Murray 1974) can be used to control ambiguity
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Fig. 2.5 Synthetic probability density functions (PDF) for a specific model parameter, m. A In
the first properties can be given by its position, at m = 5, and the width of its peak. B The second
suggests that the model parameter has two probable ranges of values, one near m = 3 and the other
near m = 8. C The third is a composite one. It provides complex interpretable information about
the model parameter. Narrow ranges are usually used for accurate data, while wide ranges are used
for noisy data

and constraining solutions during inversion and for the minimization of a target
(objective) function of the form:

min f (x), l < x < u, x ⊂ Rn (2.3)

where, an active set IA, that contains the indices of the variables at their bounds, is
built for a given starting vector xc. A variable is called a “free variable” if it is not
in the active set. The free variables search directions is calculated according to the
formula:

S = −A−1∇ f (2.4)

where, (A) is the Hessian and (∇ f ) is the gradient evaluated at xc; both are computed
relative to the free variables.

Figure 2.6 Shows a complete flowchart to the FD-Newton method with active set
strategy. At Each iteration, a line search method is used to find a new point (xn), such
that:

xn = xc + λS, λ ∈ (0, 1] (2.5)

Finally, the optimality conditions are:

‖∇ f (xi )‖ ≤ ε, li < xi < ui
∇ f (xi ) < 0, xi = ui
∇ f (xi ) > 0, xi = li

(2.6)
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Fig. 2.6 A proposed flowchart for Active set Strategy as a constraint tool of SP signal (modified
after Abdelazeem et al. 2003)

Such conditions are checked: where, ε is a gradient tolerance. When optimality is
not achieved, another search direction is computed to begin the next iteration. This
process is repeated until the optimality criterion is met.

During the course of iteration, if a free variable hits the bounds, or the stopping
criteria is met for the free variables, the active set is changed. Moreover, the variable
that violates the optimality conditions will be excluded from the IA set (Dennis and
Schnabel 1996; Gill and Murray 1974).

2.4.3 Formulation of the Objective/target Function for SP
Problem

Methodologies based on simple geometric source can interpret SP data when
the number of the unknown is very limited (1–6 unknown parameters), forward
modeling, imaging methods, and inversion. In the inversion class, the number of
unknown parameters vary based on the proposed anomaly source. Consequently,
the quantitative interpretations can be grouped into two major categories (Biswas
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2017a): The first category is based on the multi-dimensional SP inversion of some
arbitrary structures, which can be classified as 2D or 3D subsurface structures. The
second category is based on fixed simple geometrical methods of which 2-D and
3-D continuous modeling (Guptasarma 1983; Furness 1992; Minsley et al. 2007a,
b). Based on the dimensionality of the energy surface and type of unknown physical
parameters, the choice of the form of the error formula is becoming critical.Where, as
the number of the parameters increase, the possibility of trapping in a local minimum
also increases (Abdelrahman et al. 1998). This is due to the ill-posendness and non-
linearity of the SP problem. These problems can significantly be less sensitive when
a nonlinear algorithm is used to estimate the unknowns using a suitable objective
function (Gobashy 2000).

The aim of the inversion is to find a parameter vector p (share factor q, and
depth z, or more parameters) of length M which minimize the disagreement/error
between the observations (f i) and theoretical prediction (Vi) calculated from the
forward equation. A measure of the misfit (objective function or target function or
misfit function) can be defined in various ways. Following Silva and Hohmann 1983;
Gobashy 2000). We can express the following forms:

ϕ(p) = 1

N

N∑

i=1

| fi − Vi |, (2.7)

where, (f i) and (Vi) the observed and computed responses, respectively for L1 norm
or:

ϕ(p) = 1

N

[
N∑

i=1

( fi − Vi )
2

]1/2

, (2.8)

which, is equivalent to the form in Eq. 2.5 except in using L2 norm. The objective
function in both definitions is a dimensional quantity with a function space of dimen-
sion depends on the length of p and as a result, depends upon the absolute values
of both synthetic and field data. This dependency may cause difficulties in defining
a general criterion for a good fit between both fields. Moreover, the contribution of
each observation to the objective function depends upon the magnitude of the obser-
vations. Thismay cause an exaggerated influence of one part of the curvewith respect
to all others. A more dynamic form of the objective function may be expressed as
the sum of squares of the deviations between the observed and theoretical responses
normalized by the observed data (Eq. 2.9 or by the synthetic field, Eq. 2.10).

ϕ(p) =
∑N

1
{( fi − Vi (p))/ fi }2 (2.9)

ϕ(p) =
∑N

1
{( fi − Vi (p))/Vi (p)}2 (2.10)
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The above definitions (Eqs. 2.9 and 2.10) are usually called variable weighting
(after Bevington 1969). They provide an equivalent contribution of each observation
to the objective function. Another form of ϕ may be given as,

ϕ(p) =
(
1

N

N∑

i=1

( fi − Vi (p))
2/ f 2i

)1/2

(2.11)

The above equation defines ϕ as the root mean squares (rms) relative error (Jupp
and Vozoff 1975).

Monteiro Santos (2010) and Abdelazeem et al. (2019) used a misfit between
observed and calculated SP data as in Eq. (2.12) and the average relative error
percentage evaluated by Eq. (2.13).

ϕ(p) = 2||V 0
i − V c

i ||/[||V 0
i − V c

i || + ||V 0
i + V c

i ||] (2.12)

Mis f i t Err(%) =
(
100

N

)
√√
√√

N∑

i=1

[(
V 0
i − V c

i

)
/V 0

i

]2
(2.13)

where, N are the number of measured or observed Self potential readings, V 0
i and

V c
i are the measured and calculated fields respectively. The above expression is to

be highly stable and convergent in inverting the ill-posed SP problem.
Di Maio et al. (2016a, b) expressed an objective function for minimizing the

variance of the fitting:

σ 2
p/sheet = 1

(Nobs − m)

(
Nobs∑

i=1

V ∗
i (λ)p/sheet − Vobs

)2

(2.14)

where, Nobs is the number of measured samples, m is the number of parameters,
V ∗
i (λ)p/sheet is the output of the model corresponding to the forward function, for a

given λ, and Vobsi are the measured SP values. The above expressions are some of
many various forms that can be used (Menke 1989).

Traditional algorithms have been successfully used and tested with SP data
by many authors. Fourier transform (Roy and Mohan 1984), Least-square fitting
(Fitterman and Corwin 1982; El-Araby 2004; Abdelrahman et al. 2008). Deriva-
tive analysis and gradient method (Abdelrahman et al. 2003), moving average
(Abdelrahman et al. 2009), and spectral method developed by Sundararajan et al.
(1990).

However, the effectiveness and applicability of these techniques have many draw-
backs (Biswas 2017a). It iswell known that by increasing the number ofmodel param-
eters the objective function shows several local minima in the ambiguity domain
(Ramillien and Mazzega 1999) contrarily to a continuous inverse solution where the
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number is infinite. Although, the entrapment in a local minimum has been partially
treated in Mehanee (2015) who solved non-linear SP and gravity inverse problem
using gradient type techniques, but the problem of ill-posedness due to error propa-
gation in is solutions when using derivatives and gradient is still present. Moreover,
the problem of transverse anisotropy as a major source of ambiguity which entails
-if present- increase the dimensionality of the problem is not solved.

The above uncertainty and drawbacks with the applications of traditional algo-
rithms together with the advances in the computation, hardware efficiency, and the
increase in the number of unknown parameters led to the development of another
class of optimization strategies named global optimizers. These are in many cases
naturally inspired metaheuristic and heuristic artificial intelligence based algorithms
that overcome the common limitations of the conventional techniques. They played a
major role in enhancing the solution quality and better treating the ambiguity. In the
next section we focus on the use of metaheuristics and naturally inspired algorithm
to solve SP problem. We start with briefly demonstrate the mechanisms of most
commonly used metaheuristic algorithms in SP inversion.

2.5 Metaheuristics Inversion of SP Anomalies

As we previously mentioned, the majority of metaheuristics are based on biolog-
ical evolution principles, i.e., they are concerned with simulating various biolog-
ical metaphors that differ in the nature of the representation schemes (structure,
components, etc.) (Abdel-Basset et al. 2018). There are three main models: evolu-
tionary, swarm, and immune systems which are at the same time metaphor based
metaheuristics.

2.5.1 Evolutionary Algorithms (EAs)

Mimic the biological progression of evolution at the cellular level employing selec-
tion, crossover, mutation, and reproduction processes to generate increasingly better
chromosomes. There are four historic paradigms for evolutionary computation:
programming, strategies, genetic algorithms, and genetic programming.

2.5.1.1 Swarm Intelligence (SI)

Simulate the communal behavior of agents in a community, such as birds, fish,
and insects. SI mainly depends on updating the candidate solutions through the
local interaction with their environment and with each other. The most popular SI
algorithms are Particle Swarm Optimizer (PSO) and Ant Colony Optimizer (ACO).
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2.5.1.2 Artificial Immune Systems (AIS)

Originated from observed immune functions and theoretical immunology principles
and models. The antibodies represent possible solutions in optimization process and
iteratively develop through iterating the operators: cloning, mutation and selection.
The objective function is represented by the antigen and accepted solutions are stored
in memory cells.

Application of metaheuristics in SP inversion is mainly belongs to the first and
second categories, EA’s (Gobashy et al. 2019; Abdelazeem and Gobashy 2006; Li
and Yin 2012; Göktürkler and Balkaya 2012; Di Maio et al. 2016b; Balkaya et al.
2017) and SI’s (Sweilam et al. 2007; Monteiro Santos 2010; Srivastava et al. 2014;
Singh and Biswas 2016). The application of AIS in SP or geophysical inversion is
not yet notices in any literature.The physics based metaheuristics are presented in SP
inversion by the simulated annealing (SA), as in (Sharma and Biswas 2013; Biswas
and Sharma 2014, 2015).

All of the above algorithms use similar mechanisms this is shown in Fig. 2.7. This
mechanism is summarized in two main steps: exploration and exploitation. The first
is responsible for searching in the best solution surrounded areaswhile the latter tends
to invade new searching areas. These two steps are the inherent core of robustness
of metaheuristics.

Broadly speaking, artificial intelligence (AI) is the intelligence exhibited by
machines presently common approaches of AI include traditional statistical methods
(Agarwal 2006), computational intelligence (CI) (Voges and Pope 2006) and tradi-
tional symbolic AI. CI is a relatively new research area. These are computational
methodologies, naturally inspired, used to solve complex problems, where tradi-
tional or conventional approaches are infeasible. CI includes fuzzy logic, evolu-
tionary computation/algorithms (EC), and artificial neural network (ANN). Swarm
intelligence (SI) is a part of EC.

Fig. 2.7 Generalized
algorithmic framework for
metaheuristics (modified
after Abdel-Basset et al.
2018)

Create initial solution/s 
While (stopping criterial is not met) do

If exploit then 
 Create new solution by exploitation; 
Else 
Create updated solution by exploration; 
End 

 Update best found solution 
End 

Return  
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2.5.2 When Using Metaheuristics?

An important question may arise during practices. When using metaheuristics?
Generally, the complexity of the problem and the dimensionality is the key answer to
this question. It is not recommended to use metaheuristics to solve problems where
efficient exact algorithms are available. Hence for easy and small (low number of
unknown parameters) optimization problems which can be solved by non-iterative
simple techniques, metaheuristics are seldom used. So the first guideline in solving
a problem is to analyze first its complexity and dimensionality. If the problem can
be transformed to a classical, then a better choice to one of the working optimization
algorithms will help in solving the problem. Otherwise, if there are related problems,
the same methodology must be applied (El-Ghazali 1965; Gobashy et al. 2020).

2.5.3 Examples of the Metaphor Based Algorithms

In this section, a brief review on the mechanism of some selected algorithms are
given together with the main design and search components for selected families of
metaheuristics.

2.5.3.1 Genetic Algorithm (GA)

Genetic algorithms are biological based metaheuristic algorithms that simulate the
process of biological evolution and natural selection to reach their power, and their
operational characteristics are typically equivalent to the evolution theory. GAs
initially work with a group of individuals, each representing a likely problem solu-
tion. Each candidate solution, or individual, is generally represented as a string of bits
(a set of binary character strings) equivalent to chromosomes and genes in evolution
theory. GAs assign to each individual a fitness value based on its solution quality it
shows, and highly fit and promising individuals are reproduced. To reach the fitness
of the objective function, the GA go through three stages: selection, crossover, and
mutation (Fig. 2.8). These are called reproduction operators.

In the selection phase, a stochastic sampling mechanism of the parents that is
mainly based on the Roulette wheel algorithm (Goldberg 1989) is used. This proce-
dure is such that individual’s fitness is proportional to the probability of selection.

During crossover phase, some parts of two selected chromosomes are swapped
and a portion of two fit parent individuals combine to produce two child individuals.
There are three types of crossover operations typically used: single-point, two-point
and uniform crossover. Figure 2.9 is an example of two point cross-over mechanism.
Mutation is the third operator Fig. 2.8 that offers a theoretical guarantee that no bit
value is ever permanently fixed in all strings. Mutation introduces random adjust-
ments, thereby inducing a random walk through the search space. During mutation,
with a low probability, a portion of the new individuals will be flipped to generate a
new bit (Abdelazeem and Gobashy 2006).
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Fig. 2.8 A flowchart for the
GA (modified after
Abdelazeem and Gobashy
2006)

2.5.3.2 The Particle Swarm Optimization (PSO)

A key feature of SI systems is self-organization, where some regional or global
order arises out of the local relations between the components of an initially random
system. Bonabeau et al. (1999) implemented these feature into swarm systems in
three steps: (1) Strong dynamical nonlinearity, (2) Balance between exploration and
exploitation, and (3) Multiple interactions of agents. Another important principals
or features proposed by Millonas (1994) that SI must satisfy are: quality principle,
proximity principle, diverse response principle, adaptability principle, and stability
principle. Particle swarm (PSO) search via a swarm or population of particles that
change during iterations. To seek the optimal solution, each particle moves in the
direction to its previously best (pbest) position and the global best (gbest) position in
the swarm (Sweilam et al. 2007, 2008; Zhang et al. 2014) (Fig. 2.10). In more detail:
by assuming a D-dimensional search space S ⊂ RD and a swarm consisting of N
particle, the algorithm begins with a population of potential solutions (particles or
agents) to the problem under consideration and uses them to probe the search space.
By definition, a point of position coordinate Xi = (xi1, xi2, . . . , xiD)T moving in a
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Fig. 2.9 Two point cross-over mechanism (modified after Abdelazeem and Gobashy 2006)

Start

Initialize the default 
parameters

initialize the 
particles each with 
random velocity and

position

find the value of 
fittnes function

Evaluate fitness

Update Pbest 
particle

Update Gbest 
particle

Update position 
and velocity

Stopping criteria 
satesfied?

print Gbest and 
optima optimal 

solution parameters
Stop

Yes

No

Fig. 2.10 a A flowchart for PSO and bMechanism of Pbest and Gbest particles in standard Particle
swarm optimization PSO
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Initialize the population, the velocities randomly, and the best value
While stopping criterion is not met do

If the best value is not changed for long time
compute the population new positions, new velocities, and new best          
value using the objective function V(k, D, ψ, z, q)

Else
Compute the population new positions, new velocities, and new best 

value using the objective function V(k, D, ψ, z, q)
End if

End while
Print the result

Fig. 2.11 Pseudo code for solving SP inverse problem with standard PSO

D-dimension hyperspace is a particle ‘i’. Each individual or particle of the swarm has
a variable velocity (position change)Vi = (vi1, vi2, . . . , viD)T , accordingly it travels
in the function search space. Each individual particle performance is assessed by
the objective or target function. The best particle position of all previous iterations,
the global best, Pgb, and the optimum particle position of the current swarm, the
local best, Plb, are both stored and used for adaptation of the new particle speed and
position (Eberhart and Kennedy 1995; Eberhart and Shi 1998a, b). The adjustment
of the particles speeds and position is given by the following equations:

vn+1
id = w · vnid + α(Pn

lb − xnid) + β(Pn
gb − xnid) (2.15)

xn+1
id = xnid + vn+1

id , (2.16)

where, i is current particle, n is the iteration number, d is the current dimen-
sion index, α, β are bounded positive random numbers, uniformly distributed, that
control particle global minimum approaching mechanism. The speed of the particle
is constraint to ±Vmax to avoid search explosion. A critical source of the swarm’s
capability to search is the interrelations among particles as they react to one another’s
findings. A pseudo code for the algorithm shown in Fig. 2.11.

Inversion of Self potential anomalies using PSO started with Sweilam et al. (2007,
2008) in a classical two papers where the l1–norm is chosen instead of the quadratic
norm where large noise are usually expected in the field data. Discretization of the
forward formula of the response due to simple geometrical forms (Spheres, cylinders)
can be obtained at x = xi , i = 1, 2, ..., n as follows (Sweilam et al. 2007):

J (zi , θi , qi , K ) =
n∑

i=1

| Vobs(xi ) − k (xi cos(θi ) + zi sin(θi ))

(x2i + z2i )
qi

|, (2.17)

where J represents the chosen form of objective or target functions to be minimized
by Particle swarm technique. Several authors implemented the PSO to invert
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SP anomalies (Monteiro Santos 2010; Göktürkler and Balkaya 2012). Detailed
application on synthetic and real cases will be shown in Sect. 6.

2.5.3.3 Grey Wolf Optimization

Grey Wolves are typical social animals having clear separation of social work. This
Grey Wolves algorithm simulates and describes the actions and rules of grey wolf
behavior in nature and how to implement in optimization problems. To understand
the algorithm, social dominant hierarchy of Grey wolfs should be understood. Grey
wolf (Canis lupus) belongs to Canidae family and are considered as apex predators,
meaning that they are at the top of the food chain. They tend to live in a small group.
The group size ranges from 5–12 on average. Their social dominant hierarchy is very
strict as given in Fig. 2.12. The leaders are amale or a female, called alphas. The alpha
member is responsible for making decisions about hunting, … etc. The beta member
is in the second level in the grey wolf’s hierarchy. The betas are wolves that help the
alpha in making decisions, i.e. subordinate. They can be either male or female. The
beta wolf strictly respect the alpha, but can command the other lower-level wolves
as well. The lowest ranking grey wolf is Omega member.

They always have to submit to all the other dominant wolves. Although Omega is
not an important individual in the pack,most pack face internal fighting and problems
in case of losing the omega. Delta wolves (he/she) are those who are not omega, beta,
or alpha. They are subordinate. Delta wolves are in lower level than alphas and betas,
have to obey alphas and betas, but they lead the omega group. Hunting is another

Fig. 2.12 Hierarchy of grey wolves a dominance decreases from top down, b 2D position vectors
and their possible next locations, and c Position updating in GWO (compiled from Mirjalili et al.
2014)
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interesting social action of grey wolves, main phases of grey wolf hunting are as
follows (Mirjalili et al. 2014; Kuliev et al. 2019):

– Tracking, chasing, and approaching the prey.
– harassing and encircling and the prey until it stops.
– Attack towards the prey.

The design of GWO and its optimization properties are inspired from the social
hierarchy and hunting of grey wolves. Briefly, this is mathematically modelled in the
following steps:

1 Social hierarchy

Here, the fittest solution as the alpha (α). Beta (β) and delta (δ) are the next best
solutions, respectively.Theother solutions are omega (ω). Thehunting (optimization)
in the present algorithm is led by α, β and δ. The ω wolves follow these wolves.

2 Encircling prey

This is mathematically may be expressed as (Mirjalili et al. 2014):

−→
D = |−→C · −→

X p(t) − −→
X (t)| (2.18)

−→
X (t + 1) = −→

X p(t) − −→
A · −→

D (2.19)

t is the iteration number,
−→
A and

−→
C are coefficient,

−→
X p(t) is the prey position, and−→

X (t) indicates the position of a grey wolf. All quantities are vectors.
The vectors

−→
A and

−→
C are calculated as follows:

−→
A = 2−→α · −→r 1 − −→α (2.20)

−→
C = 2 · −→r 2 (2.21)

where, components of −→α are linearly decreased from 2 to 0 over the course of
iterations and −→r 1 and

−→r 2 are random vectors in [0, 1] (Mirjalili et al. 2014; Kuliev
et al. 2019).

3 Hunting

The hunt is guided by the alpha. Moreover, to model mathematically the hunting
mechanism of grey wolves, we assume that alpha, beta, and delta have the knowledge
about the best location of prey. Therefore, we save the first three best solutions and
these solutions lead all other search agents. The new updated positions of the agents
follow the following equations:
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	Dα = 	C1 · 	Xα − 	X |, 	Dβ = 	C2 · 	Xβ − 	X | 	Dγ = 	C3 · 	Xγ − 	X |, (2.22)

	X1 = 	Xα − 	A1 · ( 	Dα), 	X2 = 	Xβ − 	A2 · ( 	Dβ), 	X3 = 	Xγ − 	A3 · ( 	Dγ ), (2.23)

	X (t + 1) = 	X1 + 	X2 + 	X3

3
, (2.24)

4 Attacking prey (exploitation)

The grey wolves finish the hunt by attacking the prey when it stops moving. This
is expressed mathematically by decreasing the value of −→α and consequently, the
fluctuation range of

−→
A is also decreased by −→α . In other words

−→
A is a random value

in the interval [−2a, 2a]where ‘a’ is decreased from2 to0over the course of iterations.
When random values of

−→
A are in [−1, 1], the next position of a search agent can be

in any position (Mirjalili et al. 2014). The search agents update their position based
on the current location of the delta, beta, and alpha, and attack towards the prey.

5 Search for prey (exploration)

The Grey wolf’s algorithm system operates according to agents’ location. They
diverge from each other to search for prey and converge to attack prey. Mathemat-
ically, divergences is simulated by utilizing

−→
A with random values greater than 1

or less than − 1 to oblige the search agent to diverge from the prey. This support
exploration and allow the global behavior of the algorithm.

2.5.3.4 Whale Optimization WOA

This algorithm is a naturally inspired meta-heuristic optimization algorithm that
imitates the hunting behavior of humpback whales. It is firstly presented by
Mirjalili and Lewis (2016). Its performance benefits from modeling the hunting
behavior using random or the best quest agent to pursue the prey and use a
spiral to mimic the humpback whale bubble-net attacking process. Whales are
smart, they have twice the number of spindle cells that a human adult have,
that makes them different from other creatures. This is the main cause of their
smartness. It makes them think, learn, judge, communicate, become even emotional
as a human does, and some of them can develop their own dialect. Some of
them can live in family over their entire life period. Like the humpback whales
(Megaptera novaeangliae). These type of whales have the most interesting way of
hunting called bubble-net feeding method. During hunting, they create two maneu-
vers associated with bubble: ‘upward-spirals’ and ‘double- loops’. Goldbogen
et al. (2013) discovered such tricks. They are using sensors to investigate their
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3-Dimensional maneuver during hunting. In the upward spiraling maneuver, hump-
back whales plunge around 12 m below and then continue to build a spiral-
shaped bubble around the prey and swim up to the surface. The double loop tech-
nique consists of three separate stages: the coral loop, the lobtail and the capture
loop. This spiral bubble net feeder maneuver is mathematically modeled for opti-
mization.

Encircling prey

The position of the optimal design in the search space usually is not known a priori,
the WOA algorithm assumes that the current best candidate solution is the target or
is close to the best. After the best search agent is defined, the other search agents
will then try to update their positions towards the best search agent. This behavior is
represented by the following equations (Mirjalili and Lewis 2016):

−→
D = |−→C · −→

X
∗
(t) − −→

X (t)| (2.25)

	X(t + 1) = 	X ∗ (t) − 	A · 	D (2.26)

where t is the current iteration,
−→
X

∗
(t) the position vector of the best solution obtained

so far,
−→
X (t) is the position vector,

−→
A and

−→
C are coefficient vectors, | | is the absolute

value, and—is an element-by-element multiplication. Notice that
−→
X

∗
(t) should be

updated in each iteration if there is a better solution. The vectors
−→
A and

−→
C are

calculated as follows:

−→
A = 2−→α · −→r 1 − −→α (2.27)

−→
C = 2 · −→r 2 (2.28)

where,−→α is linearly decreased from 2 to 0 over the course of iterations in both phases
and −→r is a random vector in [0,1]. It is worth mentioning here that this procedure is
similar to the same Encircling prey used in GreyWolf Optimization (Eqs. 2.20–2.21)

Bubble-net attacking method (exploitation phase).
Here two approaches are designed as follows (Mirjalili and Lewis 2016):

1 Shrinking encircling mechanism:

−→
A is a random value in the interval [−a, a], where a is decreased from 2 to 0 over
the course of iterations. Setting random values for

−→
A in [−1, 1], the new position of

a search agent can be defined anywhere in between the original position of the agent
and the position of the current best agent (Fig. 13a).
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2 Spiral updating position:

This approach first calculates the distance between the whale located at (X, Y ) and
prey located at (X ∗, Y ∗). A spiral equation is then created between the position of
whale and prey to mimic the helix-shaped movement of humpback whales as follows
(Fig. 2.13b):

−→
X (t + 1) = −→

D
’ · ebi · cos(2πl) + −→

X
∗
(t) (2.29)

−→
D

’ = |−→X ∗
(t) − −→

X (t)| is the distance of the ith whale to the best solution obtained
so far or the prey, l is a random number in [ −1, 1], b is a constant for defining the
shape of the logarithmic spiral, and. is an element-by-element multiplication.

−→
X (t + 1) =

{ −→
X

∗
(t) − −→

A · −→
D i f p < 0.5

−→
D

’ · ebl · cos(2πl) + −→
X

∗
(t)i f p ≥ 0.5

(2.30)

where, p is a random number in the rang [0,1].

Search for prey (exploration phase):

Actually, humpback whales search randomly according to the position of each other.
Therefore, we use

−→
A with the random values as − 1 <

−→
A < 1 to force search agent

to move far away from a reference whale. Figure 2.14 is a flowchart describing the
main steps in the algorithm.

Fig. 2.13 a A flowchart for the WOA heuristic algorithm, b Bubble-net search mechanism. (x*
is the best solution obtained so far): (A) Shrinking encircling mechanism and (B) spiral updating
position (modified after Abdel-Basset et al. 2018)
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Fig. 2.14 A flowchart for the WOA (modified after Gobashy et al. 2019)

2.5.3.5 Cuckoo Search Algorithms

The reproduction strategy of Cuckoo birds have an interesting aggressive behavior.
The the ani and Guira cuckoos species lay their eggs in an obligate brood parasitism
(Joshi et al. 2016; Yang and Deb 2009), i.e., communal nests. Though they may
remove others’ eggs and by this way, they increase the probability of hatching of
their own eggs. Generally, there are three basic types of brood parasitism: cooperative
breeding, intraspecific brood parasitism, and nest takeover. If a host bird discovers
the eggs are not their own, they will either throw these alien eggs away or simply
abandon its nest and build a new nest elsewhere. In some species, the female parasitic
cuckoos are often very specialized in themimicry in shape of the eggs of a few chosen
host species. This reduces the probability of their eggs being abandoned and thus
increases their reproductively. Another two interesting actions are observed, the first
is that some parasitic cuckoos often choose a nest where the eggs are just laid.
In general, the cuckoo eggs hatch earlier than their host eggs. Once the first cuckoo
chick is hatched, the first instinct action it will take is to evict the host eggs by blindly
propelling the eggs out of the nest. The second is the Lévy-flight-style intermittent
scale free search pattern that is usually observed during the flight of Cuckoo birds.
Both actions are used to design promising optimization algorithm (CS). A flowchart
for the standard Cuckoo is shown in Fig. 2.15. The basic steps of the Cuckoo Search
(CS) can be summarized as: When generating new solutions x(t + 1) for, say, a
cuckoo i, a Lévy flight is performed (Joshi et al. 2016),
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Fig. 2.15 A flowchart for the standard Cuckoo (after Reddy 2017)

X (t+1)
i = Xt

i + α
⊕

Lévy (λ), (2.31)

where, α > 0 is the step size which should be related to the scales of the problem
of interests. In general, α = 1 is used. The above equation is the stochastic form for
random walk. A random walk is a Markov chain whose next status/location only
depends on the present location (Xt

i ) and the transition probability (α
⊕

Lévy (λ)).
The product

⊕
means entry wise multiplications; the random walk via Lévy flight

is more efficient in exploring the search space as its step length is much longer in
the long run. This entry wise product is similar but more efficient than those used in
PSO. The Lévy flight provides a random walk while the random step length is drawn
from Lévy distribution (Yang and Deb 2009):

Lévy u = t−λ, (1 < λ ≤ 3), (2.32)
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2.5.3.6 Salp Swarm Optimization SSO

Salp swarm optimization (Mirjalili et al. 2017) is different from other metaheuristics
in termsof inspiration,mathematical formulation, and real-world application.Briefly,
Salps are from the family of Salpidae, have transparent and body barrel-shaped. They
are similar to the jelly fish in their movement by pumping water through the body
to move forwards as sort of propulsion (Madin 1990). The shape of a salp is shown
in Fig. 2.16a. An interesting trait is their swarming behavior. Salps, in deep oceans,
often form a swarm called salp chain Fig. 2.16b. Researchers believe that this is
done for achieving better locomotion using rapid coordinated changes and foraging.
Mathematically, the population is divided to two parts: leader and followers. The
salp at the front of the chain is the leader, while all other salps are called followers. A
two dimensional matrix x is used to store the positions of each salp. The food source
F (the swarm target) is located in the n-dimensional search space.

x1j =
{
Fj + c1(

(
ub j − lb j

)
c2 + lb j c3 ≥ 0

Fj − c1(
(
ub j − lb j

)
c2 + lb j c3 < 0

(2.33)

where x1j represent the first salp position (leader), ub j indicates the upper bound of jth
dimension, lb j indicates the lower bound of jth dimension, c1, c2, and c 3 are random
numbers, and Fj is the food source position in the jth dimension, c1 it balances
between the exploration and exploitation phases of the algorithms. Parameter c3 and

Fig. 2.16 a Individual salp, b swarm of salps (salps chain)
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c2 are uniformly generated random numbers in the interval of [0, 1]. Newton’s law
is used to change the position of the followers in the form (Mirjalili et al. 2017):

xij = 1

2
at2 + v0t (2.34)

Considering v 0 = 0, the above equation may be expressed as:

xij = 1

2
(xij + xi−1

j ) (2.35)

where, jth is the dimension, i ≥ 2, xij shows the ith salp position, v0 is the starting
velocity, and t is time,

2.5.3.7 Artificial Bee Colony Optimizer (ABC)

The specific intelligent behaviors of the honey bee swarms have been suited by
many authors (Tereshko 2000; Tereshko and Lee 2002; Teodorovi´c 2003; Tereshko
and Loengarov 2005; Lucic and Teodorovi´c 2002; Wedde et al. 2004; Drias et al.
2005; Benatchba et al. 2005) and applied to solve several combinatorial problems.
In general, the colony of artificial bees contains three groups of bees: employed bees,
onlookers and scouts. A bee waiting on the dance area for making decision to choose
a food source, is called an onlooker, a bee going to the food source visited by itself
previously is named an employed bee, and a bee carrying out random search is called
a scout.

The ABC algorithm is designed such that the first half of the colony consists of
employed artificial bees and the second half constitutes the onlookers. Hence, for
every food source, there is only one employed bee. The main steps of the algorithm
are (Karaboga and Basturk 2007):

• Initialize.
• REPEAT (until requirements are met).

(a) Place the employed bees on the food sources in the memory;
(b) Place the onlooker bees on the food sources in the memory;
(c) Send the scouts to the search area for discovering new food sources.

• UNTIL.

These are shown in detail in the flowchart given in Fig. 2.17. Following Karaboga
and Basturk (2007), in the ABC algorithm, three steps constitute each cycle, these
are: sending the employed bees onto the food sources and then measuring their
nectar amounts of foods; the nectar amounts is determined by selecting of the food
sources by the onlookers after sharing the information of employed bees; determining
the scout bees and then sending them onto possible optimum food sources. At the
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Fig. 2.17 Artificial bee colony ABC algorithm flowchart (modified after Shah et al. 2017)
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initialization stage, food sources and the nectar amounts are determined randomly
by the bees. These information are transferred to the colony when they come back
on the dance area. After transferring the information and in the second stage, every
employed bee goes to the food source area visited by herself at the previous cycle
since that food source exists in her memory, and then chooses a new food source by
means of visual information in the neighborhood of the present one.At the third stage,
an onlooker favors a food source area depending on the nectar information distributed
by the employed bees on the dance area. The probability with which an onlooker
chooses that food source increases, as the nectar amount of a food source increases.
Hence, the dance of employed bees carrying higher nectar recruits the onlookers
for the food source areas with higher nectar amount. In the Artificial Bee colony
algorithm, mathematically, the nectar amount of a food source corresponds to the
quality (fitness) of the associated solution, and the position of a food source represents
a possible solution of the optimization problem. The number of the employed bees
or the onlooker bees is equal to the number of solutions in the population.

2.6 Application to Synthetic Model with and Without Noise

To examine stability and effectiveness of the above selected meta-heuristic algo-
rithms, they have all been applied to the same synthetic examples with and without
noise added to the calculated fields, using Eq. (2.1) for simple geometrical models
and Eq. (2.2) for thin sheet model. Search space for each parameter changes based
on the model used but is fixed with each run for comparison. For a vertical cylinder
model, the range for the different parameters are: K is −10,000 to 10,000 mV, D:
0–80, ψ: 0–90, z: 1–30, and q: 0.5–1.5. For a horizontal cylinder, K is −2000 to
2000 mV, D: 0–80, ψ: 1–180, z: 1–30, and q: 0.5–1.5. For a spherical model, K is
−5,000 to 15,000 mV, D: 0–80, ψ: 0–180, z: 0–30, and q: 0.5–1.5. For the 2D thin
sheet model the range for the different parameters are: K is − 200 to 200, D: 0–100,
a: 1–30, alpha: 30–180 and h: 0–20.

2.6.1 Application to Simple Geometrical Models

The selected metaphor have been used to invert a group of simple models using iden-
tical lower and upper bounds and the same number of iterations. The first synthetic
example is a vertical cylinder with parameters (K = −2000 mV, X0 = 2 m, ψo =
30°, z = 8 m and q = 0.5) and profile length is 101 units with (1 unit interval)
without adding noise. Table 2.1 shows the results from all methods, the upper and
lower limits used, misfit between inverted and real fields, number of iterations and
the elapsed time for each method. The calculated and inverted fields are shown in
Fig. 2.18 for each method (Fig. 2.19).
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Fig. 2.18 Inversion of Vertical cylinder model (noise free) with a WOA, b ABC, c SSO, d CSO,
e GWA, and f PSO methods

The second synthetic example is a horizontal cylinder with parameters (K = −
500 mV, X0 = 5 m, ψo = 90°, z = 3 m and q = 1), profile length = 101 units with (1
unit interval) and with adding noise of 10%. Table 2.2 shows the complete inverted
parameters, misfit, iterations and elapsed time taken by each method. Inverted fields
are drawn together with real one for each method (Fig. 2.21).

The third and fourth synthetic examples are SP fields due to a sphere with parame-
ters (K= −0,000 mV, X0 = 40 m,ψo = 60°, z= 10 m and q= 1.5), profile length=
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Fig. 2.19 Inversion of horizontal cylinder model (noise 10%) with aWOA, bABC, c SSO, dCSO,
e GWA, f PSO methods

101 units with 1-unit interval) and noise added is 20 and 30%. Results are presented
in Tables 2.3 and 2.4 and Figs. 2.20 and 2.21.
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Fig. 2.20 Inversion of spherical model (noise 20%) with aWOA, b ABC, c SSO, d CSO, e GWA,
f PSO methods

2.6.2 Application to Thin Sheet Model

The same six chosen methods are also applied to 2D inclined thin sheet model
(Eq. 2.2) with and without noise. The parameters of the calculated field are (K =
50 mV, D = 55 m, a = 12 m, α = 150° and h = 10 m) and profile length = 101 units
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Fig. 2.21 Inversion of Vertical cylinder model (with 30% noise) with a WOA, b ABC, c SSO,
d CSO, e GWA, f PSO methods

with 1-unit interval). Tables 2.5, 2.6, 2.7 and 2.8 show results of such model without
noise, with 10, 20 and 30% noise added respectively. Figures 2.22, 2.23, 2.24 and
2.25 presents the results for the same levels of noise tested by all methods.
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Fig. 2.22 Inversion of 2D inclined sheet model (without noise) with a WOA, b ABC, c SSO,
d CSO, e GWA, f PSO methods

Even though each algorithm yielded very similar results with the noise-free data
(Figs. 2.18 and 2.22), the minimum misfit error value (0.0004997 mV) was obtained
by CSO in case of vertical cylinder model, while the other ranges between 0.0039592
(SSO) and6.6778%for (GWO). In this later case theminimumfunctionvalue reached
is 8.5731e-06, and the elapsed time is 6.1719s during 1000 iterations using Inter®
core™ i7-8705GCPU@3.10GHzwith 16.0 GBRAMand 64-bit operating system.
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Fig. 2.23 Inversion of 2D inclined sheet model (with 10% noise) with a WOA, b ABC, c SSO,
d CSO, e GWA, f PSO methods

Results with noise added varies frommethod to another andwith the noise percentage
added, e.g.: for the spherical model with 30% noise added, in this particular case,
the allowed number of iterations is 5500, and the optimum parameters are obtained
with misfit error ranges between 56.9 and 60.34%. The elapsed time ranges between
124 s (PSO) and 14 s (GWO).
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Fig. 2.24 Inversion of 2D inclined sheet model (with 20% noise) with a WOA, b ABC, c SSO,
d CSO, e GWA, f PSO methods

Although, the overall misfit errors between the observed and calculated anomalies
are relatively high, because of the outliers, but the errors in the inverted parameter
are very acceptable (Table 2.9).
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Fig. 2.25 Inversion of 2D inclined sheet model (with 30% noise) with a WOA, b ABC, c SSO,
d CSO, e GWA, f PSO methods

For a thin sheet model (Tables 2.5, 2.6, 2.7 and 2.8), the iterations allowed varies
from 500 to 1200. The misfit error in all cases in very low and the obtained results
are close to true one even with higher percentage of noise.
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Table 2.9 Relative error percentage in the calculated parameters for the spherical model example
with 30% noise added

Parameter K(mV) X0 (m) ψo Z (m) q

True − 10,000 40 60 10 1.5

Inverted − 10,185.9 39.62 59.44 10.21 1.46

Percentage error % 1.85 0.95 0.95 2.1 2.6

The above synthetic cases shows the stability of the metaheuristics based algo-
rithms in dealing with SP fields. To test efficiency in real case, the AI techniques are
applied to different field examples with different complexities.

2.7 Application to Field Examples

2.7.1 Application to Field Data Approximated by Simple
Geometrical Models

2.7.1.1 Bender Anomaly

The Bender SP anomaly (Orissa, India) has been studied by many authors with
different methods (Table 2.9). The main lithological unit in this area belongs to the
Archaen cyrstalline complex. The exposed rocks aremainly garnetiferous andmostly
rocks are covered by laterite and alluvium (Agarwal and Srivastava 2009). Compar-
ison between the inverted solutions, obtained by different metaheuristic methods, are
presented (Table 2.10 and Fig. 2.26). The average values of the inverted parameters
are (K (mVm(2q−1)) = −8271, D(m) = 87.3, ψo = 55.9, z(m) = 22.8, q = 0.98).
The minimum misfit error is 22.36% between the observed and inverted anomalies
using the WOA algorithm.

2.7.1.2 Ahirwala Deposit Anomaly

The SP anomaly was measured in the Ahirwala deposit of the Neem-Ka-Thana
copper belt, Rajasthan, India (Reddi et al. 1982). The anomaly was observed along
a profile of 300 m; it has amplitudes ranging from −20 to −85 mV. Six different
metaheuristic approaches are run to determine the model parameters, using the same
upper and lower limits as shown in Table 2.11. The lowmisfit error percentage proves
the efficiency of such methods in determining the optimum parameters within the
desired range. Figure 2.27 presents the inverted fields and the measured one.

The average values of the inverted parameters are (K (mVm(2q−1)) = −111.67,
D(m) = 74.87, ψo = 4.2, z(m) = 21.1, q = 0.48). The minimum misfit error is
0.4784% between the observed and inverted anomalies using the GWO algorithm.
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Fig. 2.26 Inversion of
Bender anomaly (Orissa,
India)
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2.7.1.3 Malachite Anomaly

Malachite anomaly is associated with the Malachite mine in Jefferson County,
Colorado, USA. This anomaly was also interpreted by several authors as a vertical
cylindrical structure (e.g.: Tlas and Asfahani 2007, 2013; Biswas and Sharma 2015).
Biswas and Sharma (2015) also interpreted the same anomaly using multiple struc-
tures. However, the main anomaly was caused by such vertical cylinder. Table 2.12
illustrates the inverted model parameters from various published results together
with the heuristic algorithms results. Figure 2.28 Displays the fittings between the
inverted fields from different heuristic algorithms and the observed one. The misfit
percentage is about 2% or less.

The average values of the inverted parameters are (K (mVm(2q−1)) = −217.22,
D(m) = 89.56, ψo = 9.04, z(m) = 15.51, q = 0.55). The minimum misfit error is
1.3708% between the observed and inverted anomalies using the SSO algorithm.

2.7.1.4 Süleymanköy Anomaly

This Anomaly is from Eastern Turkey and lies in the Ergani Copper District, 65 km.
SE of Elazig (Bhattacharya and Roy 1981). It represents a polarized copper ore body
and is approximated as a simple geometrical model to be solved by the heuristic tech-
niques. Results are shown in Table 2.13 and compared to previous results processed
by many authors. Figure 2.29 shows the inverted fields using different methods
together with the measured data. For comparison, same number of iterations (3000)
and sameupper and lower bounds for parameters are used. Themisfit error percentage
is less than 2%, proving reliable solutions.



84 M. Gobashy and M. Abdelazeem

Ta
bl
e
2.
11

In
te
rp
re
ta
tio

n
of

A
hi
rw

al
a
de
po

si
ta
no

m
al
y
us
in
g
di
ff
er
en
th

eu
ri
st
ic
m
et
ho

ds
,w

ith
SP

fie
ld

ap
pr
ox

im
at
ed

by
a
si
m
pl
e
ge
om

et
ri
ca
lm

od
el

A
hi
rw

al
a
de
po
si
ta

no
m
al
y

A
lg
or
ith

m
K
(m

V
m

(2
q−

1)
D
(m

)
ψ
o

Z
(m

)
q

M
is
fit

er
ro
r
(%

)
F
va
l

It
er

E
la
ps
ed

tim
e
(s
)

W
O
A

−3
73
.1
3

70
.3
3

10
.6
23

30
0.
71
65

1.
28
3

0.
07
78
3

20
00

19
.3
28

A
B
C

−5
7.
76
8

74
.9
47

3.
09
22

18
.8
43

0.
43
28

0.
50
87

0.
04
00
1

20
00

13
.6
25

SS
O

−6
1.
58
9

75
.7
61

2.
99
48

19
.9
54

0.
44
69

0.
49
16

0.
03
79
4

20
00

6.
96
88

C
SO

−6
0.
17
1

75
.8
35

2.
92
79

19
.6
7

0.
44
27

0.
48
68

0.
03
79
1

20
00

7.
32
81

G
W
O

−5
5.
78
7

76
.6
82

2.
58
83

18
.7
19

0.
42
83

0.
47
84

0.
03
80
7

20
00

6.
40
63

PS
O

−6
1.
59
4

75
.7
11

3.
01
06

19
.9
37

0.
44
69

0.
49
17

0.
03
79
4

20
00

29
.6
56

G
ök
tü
rk
le
r
an
d
B
al
ka
ya

(2
01
2)

(S
A
)

−8
3.
49

76
.2
6

86
.4
8

23
.4

0.
5

2.
78

–
–

–

G
ök
tü
rk
le
r
an
d
B
al
ka
ya

(2
01
2)

(P
SO

)
−4

9.
53

76
.7
7

88
17
.5
6

0.
4

2.
4

–
–

–

Pa
ra
m
et
er

ra
ng
e

−1
00
0:
10
00

0:
10
0

0:
10
0

0:
30

0:
1.
5



2 Metaheuristics Inversion of Self-Potential Anomalies 85

Fig. 2.27 Inversion of
Ahirwala deposit anomaly
(Rajasthan, India)
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The average values of the inverted parameters are: (K (mVm(2q−1)) = − 2771.9,
D(m) = 77.7, ψo = 53.98, z(m) = 24.01, q = 0.842). The minimum misfit error is
1.4928% between the observed and inverted anomalies using the PSO algorithm.

The genetic algorithm GA is also used as an EA technique to invert the
same anomaly (Abdelazeem and Gobashy 2006; Göktürkler and Balkaya 2012).
The inverted parameters are shown in Table 2.14 and compared with previous
conventional results. The measured and inverted fields are shown in Fig. 30a, b.

2.7.2 Anomalies Approximated by Thin Sheet Model

2.7.2.1 Surda Anomaly

The Surda SP anomaly of Rakha mines, Singhbhum cooper belt, Jharkhand, India
are inverted by some metaheuristic methods and compared to previous inversions
(Murthy et al. 2005; Di Maio et al. 2016a, b). The inverted parameters are shown in
Table 2.15 and the inverted field are drawn in Fig. 2.31. The average values of the
inverted parameters are (K(mV = 88.89, D(m) = 146.92, a = 28.19, αo = 47.12,
h(m) = 31.29). All parameters are found to be in agreement with published results.
The minimum misfit error is 5.79% between the observed and inverted anomalies
using the GWO method.

2.7.2.2 Bavarian Anomaly

The graphite ore deposits in Bavarian Woods, Germany (Meiser 1962; Abdelazeem
and Gobashy 2006). These deposits are situated in a hercynic gneissic complex.
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Fig. 2.28 Inversion of
Malachite deposit anomaly
(Colorado, USA)
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Conformably intercalated between paragneiss and crystalline limestone of the same
age, they form seams that are to be interpreted as bituminous sediments of presumably
Precambrian age. The expected ore form a parallel sequence of lenses where it
is expanded between limestone and gneisses, variable in thickness, and can be in
some localities approximated by simple geometrical models. The Bavarianwoods SP
anomaly has been studied by various authors using different interpretation methods
(Table 2.16).

The inverted parameters, misfit error, elapsed time and the minimum value of the
function after 2000 iterations are shown in the Table 2.16. A good congruence among
the measured and inverted fields are clarified in (Fig. 2.32). The average values of
the inverted parameters are (K(mV) = − 5030.48, D(m) = 297.35, a = − 22.74, αo

= 38.50, h(m) = 0.75). The high percentage of misfit error is due to the difference
between the inverted fields and the observed at the right end of the anomaly.

Bavarian woods anomaly was also interpreted by many authors as simple
geometric model using Genetic algorithm, GA, the resulted inverted parameters
obtained are: depth h = 35.50 m, polarization angle ψ = −62.99° The, and shape
factor q = 0.792 (Fig. 33a, b). The (rms) error calculated between the observed and
calculated SP anomalies from the obtained parameters is = 1.7043 mV. The resulted
shape factor also suggests that a 2D horizontal cylinder model buried at a depth of
35.5 m can represent the shape of the source body (Table 2.17).

2.7.2.3 Pinggirsari Anomaly

The SP field data were measured in Pinggirsari village, West Java, Indonesia16. The
acquired profile was laid in S–N direction to cross the fault based on the cross section
from the geological map. The profile length was about 1040 m with a separation of
25 m between the measuring electrodes. In all cases, 200 search agents and 3000
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kö
y
an
om

al
y

A
lg
or
ith

m
K
(m

V
m

(2
q−

1)
D
(m

)
ψ
o

Z
(m

)
q

M
is
fit

er
ro
r
(%

)
F
va
l

It
er

E
la
ps
ed

tim
e
(s
)

W
O
A

−1
97
4.
2

80
48
.6
84

22
.0
36

0.
80
27

1.
85
92

0.
13
75
4

30
00

15
.3
13

A
B
C

−3
00
0

80
51
.8
74

24
.7
78

0.
85
48

1.
78
08

0.
13
02
8

30
00

18
.2
97

SS
O

−3
00
0

80
51
.8
97

24
.7
98

0.
85
46

1.
78
33

0.
13
02
7

30
00

9.
23
44

C
SO

−2
69
0.
7

73
.2
73

59
.4
28

23
.4
41

0.
83
88

1.
52
75

0.
10
57

30
00

24
.6
09

G
W
O

−3
00
0

80
51
.8
7

24
.7
76

0.
85
48

1.
78
03

0.
13
02
8

30
00

8.
21
88

PS
O

−2
96
6.
5

73
.2
24

60
.1
43

24
.2
43

0.
85
03

1.
49
28

0.
10
36
4

30
00

25
.4
06

A
bd
el
ra
hm

an
an
d

Sh
ar
af
el
di
n
(1
99
7)

−2
29
.2
8

–
79
.9
8

12
.7
9

–
–

–
–

–

E
l-
A
ra
by

(2
00
4)

−2
66
1.
2

–
14
.7
4

47
1.
46
8

–
–

–
–

Sr
iv
as
ta
va

an
d

A
ga
rw

al
(2
00
9)

–
64
.1

–
28
.9

1.
0

–
–

–
–

A
ga
rw

al
an
d

Sr
iv
as
ta
va

(2
00
9)

15
60

68
16
5

27
1.
0

–
–

–
–

Pa
ra
m
et
er

ra
ng
e

−3
00
0:

10
0,
00
0

80
:1
20

0:
18
0

0:
80

0.
5:
1.
5

–



2 Metaheuristics Inversion of Self-Potential Anomalies 89

0 50 100 150 200

Distance(m)

-300

-250

-200

-150

-100

-50

0

50

100

150
Suleymankoy anomaly

Observed
WOA
Bee
SSO
CSO
GW
PSO

SP
 A

no
m

al
y(

m
V)

Fig. 2.29 Inversion of Süleymanköy deposit anomaly (eastern Turkey)

Table 2.14 Results of inversion of Süleymanköy SP anomaly results of inversion of graphite ore
body, southern Bavarian woods, Germany using GA compared with other conventional techniques

Parameter Yungul
(1950)

Bhattacharya
and Roy
(1981)

Asfahani
et al. (2001)

Gobashy
(2000)

Abdelazeem
and Gobashy
(2006), GA

Göktürkler
and Balkaya
(2012), GA

Depth (h) m 38.8 40 27 33.6 29.999 32.68

Polarization
angle (α) deg

21 15 17.25 15 11.549 22.85

Shape factor
(q)

H. cylinder H. cylinder H. cylinder 0.99 0.961 1.16

K mv. m 2q−1 – – – – – − 36,724.18

X0 m – – – – – 79.24

Fig. 2.30 Inversion of Süleymanköy SP anomaly using genetic algorithm a after Abdelazeem and
Gobashy (2006) and b after Göktürkler and Balkaya (2012)
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Fig. 2.31 Inversion of Sudra
anomaly (Jharkhand, India)
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iterations were used. Inversion results of this anomaly is shown in Table 2.18 and
Fig. 2.34. The average values of the inverted parameters are (K(mV) = 44.26, D(m)
= 494.45, a = 37.60, αo = 235.17, h(m) = 13.43). Although the minimum misfit
error is 50.5% (relatively high) between the observed and inverted anomalies using
the GWO method due to the outliers in the observed data and the complex nature of
the surrounding structures, but the range of the inverted parameters is in agreement
with published results.

2.8 Conclusions

The problem of determining the controlling parameters of a buried structures or
mineralization zones from self-potential data can be solved with a high degree of
stability and efficiency using a bundle of metaheuristic algorithms (e.g.:WOA,ABC,
SSO, CSO, GWO, PSO, and GA). Results show a great stability of the AI metaphor
based techniques against high levels of noise (geologic or artificial). The complexity
of the geologic conditions does not affect the convergence behavior of the all global
optimizers. The advantages of the AI based techniques over conventional methods
are: (1) no computation of analytical or numerical derivatives with respect to the
model parameters, (2) less sensitive to errors in data and (3) the techniques are
independent of the base line determination. It is also emphasized that theAI inversion
can be used to gain geological insight concerning the subsurface, as illustrated in the
field examples.
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Fig. 2.32 Inversion of Bavarian deposit anomaly (Bavarian woods, Germany)

Fig. 2.33 Measured and calculated SP anomaly over a graphite ore body, southern Bavarian woods,
Germany (Meiser 1962). a Modified after Abdelazeem and Gobashy (2006), and b modified after
Göktürkler and Balkaya (2012)
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Table 2.17 Results of inversion of graphite ore body, southern Bavarian woods, Germany using
GA compared with other conventional techniques

Parameter Meiser (1962) Abdelrahman
et al. (2003)
Higher
derivatives

Abdelrahman
et al. (2003)
Lest-squares

Abdelazeem
and Gobashy
(2006) GA

Göktürkler
and Balkaya
(2012) GA

Depth (h) m 53 53 49.3 35 45.03

Polarization
angle (ψ) deg

– – −55.7 −62.9 −51.29

Shape factor
(q)

– 0.9 0.91 0.792 0.97

K mv. m 2q−1 – – – 21,272.91

Rms – – 25.3 1.704 –
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Fig. 2.34 Inversion of
Pinggirsari deposit anomaly
(South Bandung, Indonesia)
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Chapter 3
Self-potential Inversion and Uncertainty
Analysis via the Particle Swarm
Optimization (PSO) Family

Juan Luis Fernández-Martínez and Zulima Fernández-Muñiz

Abstract Water flow in the subsoil and pumping tests generate electrical currents
measurable at the ground surface and terms spontaneous potential (SP) anomalies that
are well correlated with the geometry of the water table. In this paper, we present
the application of the Particle Swarm Optimization (PSO) family to estimate the
water table elevation from SP measurements at the ground surface. The search is
performed in a reduced space that is generated via Principal Component analysis
performed in a set of models that are randomly generated taking into account the
regularity of the SP anomaly. The PSO members used in this research perform a
sampling of thewater table coordinates in the PCA space, the electro-kinetic coupling
constant and the reference hydraulic head, in a reduced dimensional space. Besides,
based on the samples gathered on the low misfit area we are able to compute a fast
approximation of the posterior distribution of the SP model parameters with very
humble computational resources.

Keywords Streaming potential · Global optimization · GPSO · CC-PSO ·
RR-PSO · Uncertainty analysis

3.1 Introduction

The self-potential technique in near surface geophysics involves the passivemeasure-
ment of the electrical potential distribution at the Earth’s surface acquired by non-
polarizable electrodes. SP anomalies are associated to a variety of situations such
as: 1. Water flow in subsoil that generates electrical currents measured at surface
named as streaming potential and correlate very well to the hydraulic head (Fournier
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1989). 2. Pumping tests used to estimate the physical parameters of the aquifers also
generate a SP signal that serves to monitor the shape of the cone of depression 3.
The “electro-redox” effect associated with redox potential gradients (Corry 1985;
Naudet et al. 2004; Naudet and Revil 2005).

The spontaneous potential inverse problem in hydrogeology is a non-intrusive
method that uses the spontaneous potential measurements at different points of the
surface to image the water table level. For that purpose, it is also needed to estimate
the electro-kinetic constant that serves to take into account the coupling between
the movement of the water molecules and its behavior as dipoles. This geophysical
method has been used to obtain hydraulic information on subsurface flows from the
analysis of SP data (Bogoslovsky and Ogilvy 1973; Morgan et al, 1989; Birch 1998;
Sailhac and Marquis 2001; Revil et al. 2003; Darnet et al. 2004; Bolève et al. 2007;
Minsley et al. 2007; Maineult et al. 2008), to monitor redox processes occurring in
ore bodies (Bigalke andGrabner 1997) and contaminant plumes (Naudet et al. 2004),
among other applications.

3.2 The Streaming Potential Forward and Inverse
Problems

The electric flow (Je in A/m2) in a water saturated porous medium is related to
the hydraulic pressure gradient (∇P) and to the electric potential gradient (∇V ) as
follows:

Je = σr∇V − Csσr∇P, (3.1)

where σ r is the rock conductivity (S/m) of the porous medium and Cs is called the
electro-kinetic coupling coefficient (V/Pa) of the saturated zone.Cs can be measured
in the laboratory as the ratio of the electric potential (∇V ) induced by applying fluid
flow (∇P) (Guichet et al. 2006).

In steady-state and without direct electric current source the conservation of flux:

∇ · Je = ∇ · (σr∇V − Csσr∇P) = 0, (3.2)

connects the electric streaming potentialV to the hydraulic pressureP. Equation (3.2)
can be written in integral form as follows (Fitterman 1978; Fournier 1989; Revil et al.
2003):

V (Q) = C ′

2π

∫
∂Ω

(h − h0)
r · n
‖r‖3 dΓ + 1

4π

∫

Ω

E
‖r‖ · ∇ρ

ρ
dV . (3.3)
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Expression (3.3) provides the electrical potential (V in Volts) measured at an
observation station Q located at the earth surface. In Eq. (3.3), h and h0 are the
hydraulic heads at any point of the water head and in a reference level,n is the
outward normal to the water table and r is position vector from any source point in
the water head to observation station Q. E = −∇φ is the electrical field produced in
the ground through the electro-kinetic coupling, ρ is the electrical resistivity of the
rock (in 	 m), and C ′ (in Vm−1) is the electro-kinetic coupling coefficient relating
the hydraulic piezometric head 
h (m/s) to the electrical potential difference 
V
(mV).

In this model the electrical potential is the sum of two terms:

1. The first one is related to the current density induced by the water movement.
The primary source term is such that each element of the water table acts as a
dipole of strength C ′(h − h0). The integral is the sum of all these dipoles that
contribute to the SP signals recorded at the observation station Q with strength
that depends on the distance between each dipole and the observation stationQ.

2. The second one is related to electrical resistivity contrasts in the ground
(secondary source of polarization). This second contribution can be neglected
in a quasi-homogeneous resistivity earth. If this approximation is unfeasible,
the electrical tomography can be used to determine the geoelectrical structure
of the terrain and take this contribution into account (resistivity correction).

In this paper we will only consider the first contribution of the potential. The
forward problem consists in, knowing the electro-kinetic constant and the water
table, to compute the electric potential in any point of the surface. This problem
involves the numerical approximation of the integral equation stated in (3.3).

3.3 The Inverse Problem and the Topology of the Cost
Function

The inverse problem consists in recovering the depth of the water table and the
coupling coefficient C ′ from the SP measurements performed at the ground surface.
As it has been already commented the contribution related to electrical resistivity
contrasts is either neglected or considered as a correction of the observed data
(spontaneous potentials) before solving the inverse problem.

The inverse problem can be written as a set of equations:

V (rk) = fk(h,C ′), k = 1, . . . ,m, (3.4)

where fk(h,C ′) stands for the integral equation that provides the potential in V (rk).
For that purpose, we will write this problem in the form

F(m) = dobs, dobs ∈ Rs, m ∈ Rn, (3.5)
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beingm = (h,C ′, h0) the model parameters,F = ( f1(m), f2(m), . . . , fn(m)), the
forward operator, and dobs = (V (r1), V (r2), . . . , V (rn)) contains the observed data
(potentials) at different points of the surface. In this case h represents the coordinates
of the water level in a given set of basis functions.

The inverse problem is typically cast into an optimization problem, consisting in
minimizing the cost function:

c(m) = w1‖d − F(m)‖p + w2

∥∥m − mre f

∥∥
p′ , (3.6)

which is a combination of the data misfit and the distance to a reference modelmre f ,

being w1,w2 real weights used to provide the relative importance of both terms. In
this paper the cost function is only composed by the data misfit.

The typology of the nonlinear system (3.5) depends on the number of observed
data (s) with respect to the number of model parameters (n), that coincide with
the number of discretization points of the water head plus one (C’). Very fine
discretization of the water head (h) provokes the nonlinear system (3.5) to have
a very high underdetermined character. This implies that when using linearization
methods, the corresponding Jacobian matrix corresponds to an underdetermined (or
rank-deficient) linear system with the corresponding difficulties associated to their
solution.

The topography of the cost function in linear and nonlinear inverse problems and
the effect of the noise and that of the regularization (Fernández-Martínez et al. 2012a,
b; 2014a, b), showing that in the case of nonlinear problems the plausible solutions
are located in one or several disconnected flat curvilinear valleys of the cost function
landscape. As a consequence, the reference model and the prior information used to
stabilize the inversion greatly influenced the results that have been obtained. This
way of solving the inverse problem is not robust independently of the algorithm that
has been used to find the solution.

Local optimization methods are not able to discriminate among the multiple
choices consistent with the end criteria and may land quite unpredictably at any
point of the nonlinear equivalence regionMtol :

Mtol =
∥∥F(m) − dobs

∥∥∥∥dobs
∥∥ < tol, (3.7)

which is composed by the geophysicalmodels that fit the observed datawithin a given
error tolerance. The case of linear inverse problems is simpler since the region of
equivalence for a given error bound coincides with hyper-quadric of equivalence, that
in the case of purely over determined systems is a hyper ellipsoid and degenerates to
a hyper elliptical cylinder in the case of underdetermined and rank deficient problems
(Fernández-Martínez et al. 2012). Besides the noise in data deforms the topography of
the cost function, shifting theminimum to anothermodel that belongs to the nonlinear
equivalence region (Fernández-Martínez et al. 2014a, b). Tikhonov’s regularization
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used in nonlinear least-squares methods only serve to obtain stable solutions, but it
does not provoke the uncertainty of the solution to vanish. Furthermore, the uncer-
tainty analysis of the corresponding linearized system does not provide a correct
estimation of the nonlinear uncertainty region (Fernández-Martínez et al. 2013).

Uncertainty in the inverse problem solutions is always present and it is mainly
due to several causes:

1. The forward model F is a simplification of reality: modelling hypothesis and
numerical approximations provoke that the inverse solution is not unique and
might differ drastically from the reality.

2. Data are noisy and only partially sample the domain of interest.
3. The data partially informs about the question that is going to be solved, that

is, the inverse problem is intrinsically ill-posed. A simple example would be
trying to identify two number whose sum is known. The ill-posed character of
this problem is related to the question itself.

The only solution consists in taking into account the uncertainty of the solution,
performing a correct quantification, which entitles the sampling of the nonlinear
uncertainty region stated in (3.7). Bayesian approaches and global optimization
methods when they are used in their exploratory forms are used to accomplish this
task.

Bayesian approaches and Monte Carlo methods (Scales and Tenorio 2001;
Mosegaard andTarantola 1995) canbeused to solve the inverse problemas a sampling
problem to perform the model appraisal. These methods provide the posterior proba-
bility distribution of the model parameters that is obviously related to the topography
of the cost function, since they sample many times in a random walk, with a bias
towards increased sampling of areas lower data misfit and higher posterior proba-
bility. This procedure is called in the mathematical literature importance sampling,
and tries to describe the topography of the cost function in the neighborhood of the
low misfit regions from the collected samples. These methods are hampered by the
curse of dimensionality (Fernández-Martínez and Fernández Muñiz, 2020).

Global optimization algorithms include among others, well known techniques
such as Genetic Algorithms (Holland 1992), Simulated Annealing (Kirkpatrick
et al. 1983), Particle Swarm Optimization (Kennedy and Eberhart 1995), Differen-
tial Evolution (Storn and Price 1997) and the Neighborhood Algorithm (Sambridge
1999a, b).

Posterior sampling techniques are closely related to global optimization algo-
rithms, which can be used to provide a proxy for the true posterior distribution. In
many practical situations, prior information is not available, and global optimization
methods are a good alternative for avoiding the strong dependence of the solution
upon noisy data.

Bayesian approaches are computationally expensive and they might not even be
feasible in the case of high dimensional problems with very costly forward prob-
lems. Linde et al. (2007) applied a Bayesian estimation method using geostatistical
techniques to integrate SP and piezometric data in order to estimate the water table
throughout a catchment. Jardani et al. (2009) proposed an algorithm to solve the
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SP inverse problem in a Bayesian framework. Darnet et al. (2003) used genetic
algorithms and Fernández-Martínez et al. (2010) used the generalized PSO (GPSO).

In this paper we present the application of different members of the PSO family
to estimate the depth of the water table from SP data, showing the application to
field self-potential data collected in the vicinity of a pumping well (Bogoslovsky
and Ogilvy 1973). The algorithm proposed here uses a dimensionality reduction of
the water head based on a set of preliminary templates that are generated using the
semi-empirical relationship proposed by Revil et al. (2003):

V (P) = (h − h0)C
′. (3.8)

Model reduction is achieved by PCA performed in this set of randommodels. The
PSO family members sample the electro-kinetic constant, the reference water head,
and the coordinates of water table in the PCA basis set. The use of exploratory PSO
versions allows approximating the posterior distribution of the model parameters as
it has been shown in different publications concerning the analysis an application
of the PSO family members (Fernández Martínez et al. 2010b, 2012b; Pallero et al.
2015, 2017).

3.4 The PSO Family

Particle Swarm Optimization (PSO) is a stochastic evolutionary computation tech-
nique (Kennedy and Eberhart 1995) that was initially inspired by the social behavior
of individuals (called particles) in nature, such as birds or fish. Let us suppose that
we want to solve an optimization problem that consists in the minimization of a cost
function C(m) in a given subset M of the n-dimensional space. In the present case
m are the geophysical model parameters, that is, the electro kinetic constant (C ′),
the reference water head (h0) and the coordinates of the water table h in a basis set
functions ϕk(x):

h(x) =
n∑

k=1

hkϕk(x) = (h1, h2, . . . , hn){ϕk }nk=1
= h{ϕk }nk=1

. (3.9)

In PSO, each model m, called a particle, samples the search space according to
its own, li (k) and its companions, g(k) searching experience, that depend on the cost
function, according to the following

Theway the PSO algorithm is applied to solve an inverse problem is very intuitive:

1. A prismatic space of admissible geophysical models,M, is defined:

l j ≤ x ji ≤ u j , 1 ≤ j ≤ n, 1 ≤ i ≤ Nsize,
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where l j , u j , are the lower and upper limits for the j-th coordinate of each geophys-
ical model (called i), n is the number of parameters in the inverse problem, and Nsize

is the swarm size. Each particle (or plausible geophysical model) has its own position
on the search space and velocity, which stand for the parameter perturbations needed
for these positions to find the solutions of the optimization problem. Without any
lack of generality the velocities are initially set to zero.

2. PSO updates at each iteration the positions,xi (k) and velocities,vi (k) of each
model in the swarm according to the following rule:

vi (k + 1) = w vi (k) + φ1(g(k) − xi (k)) + φ2(lki − xi (k))

xi (k + 1) = xi (k) + vi (k + 1). (3.10)

The velocity of each particle, i, at each iteration, k, is a function of three major
components: 1. The inertia term, which consists of the old velocity vector of the
particle,vi (k)weighted by a real constant,w called inertia. 2. The social learning term,
which is the difference between the global best position found g(k) and the particle’s
current position (xi (k)). 3. The cognitive learning term, which is the difference
between the particle’s best position so far found, li (k), and the particle current posi-
tion, xi (k). w, ag, al are the PSO parameters: the inertia and local and global accel-
eration constants; φ1 = r1ag, φ2 = r2al are the stochastic global and local accel-
erations, and r1, r2 are vectors of random numbers uniformly distributed in (0, 1),
to weight the global and local acceleration constants,ag and al of any coordinate
particle in the swarm.

The flowchart for the PSO algorithm is as follows:

1. A prismatic search space for the model parameters is given.
2. An initial swarm of Nsize particles is uniformly distributed in the search space

and their initial velocities are (usually) set to zero.
3. The misfit of the initial population is evaluated solving Nsize forward problems,

and the global best and the previous best of each particle are determined. This
step is very important since no inversion is performed, only the solution of the
forward models, one for each particle in the swarm, to establish their misfit.
Therefore, to use this kind of algorithms the forward problem has to be fast to
solve.

4. Drawing of the random numbers r1, r2, and updating of the velocities and
positions of each particle of the swarm using formula 7.

5. Iterate to point 3 till the maximum number iterations is finished or some criteria
are fulfilled. Typically, in this kind of sampling procedures, the algorithm
finishes by iterations, when a correct sampling is performed, and/or the swarm
has collapsed.

Although many PSO heuristic variants have been proposed in the literature, the
stochastic convergence of this algorithm is related to the stability of the swarm,
particularly, the first order stability (stability of the mean trajectories) depends on
the totalmean acceleration,φ = ag+al

2 and on the inertia constant. The PSO algorithm
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can be physically interpreted as a stochastic dampedmass-spring system (Fernández-
Martínez et al. 2008). PSO corresponds to a particular finite-difference discretization
of the differential equation:

x ′′(t) + (1 − w)x ′(t) + (φ1 + φ2)x(t) = φ1g(t) + φ2l(t). (3.11)

This equation describes the continuous movement of each particle in the swarm.
PSO corresponds to a centered discretization in acceleration,

x ′′(t) = x(t + 
t) − 2x(t) + x(t − 
t)


t2
, (3.12)

and a regressive schema in velocity,

x ′(t) = x(t) − x(t − 
t)


t
. (3.13)

The GPSO algorithm (Fernández Martínez and García Gonzalo 2008), which is
a PSO generalization for any time step, 
t , can be written as:

v(t + 
t) = (1 − (1 − w)
t)v(t) + φ1
t (g(t) − x(t)) + φ2
t (l(t) − x(t)),

x(t + 
t) = x(t) + 
t v(t + 
t).
(3.14)

Using 
t = 1, this equation reduces to the PSO algorithm (Eq. 3.7). Due to
the random effect introduced by the random numbers r1, r2, the particle trajecto-
ries have to be considered as stochastic processes whose first (mean) and second
order moments (variance and temporal covariance) are important to understand the
algorithm convergence. Other PSO family members (CC-PSO, CP-PSO, PP-PSO,
RR-PSO and the 4 points PSO optimizers) were developed using different discretiza-
tions for the velocity and the accelerations (Fernández-Martínez andGarcía-Gonzalo
2009, 2012; García-Gonzalo and Fernández-Martínez 2014).

The stochastic stability analysis of the PSO trajectories (Fernández-Martínez and
García-Gonzalo 2008, 2009, 2011) served to establish the relationship between PSO
convergence and the first- and second-order stability of the trajectories of the parti-
cles considered as stochastic processes. In general terms the good (or suitable) PSO
parameters sets (w, ag, al ) are located in the neighborhood of the upper border of the
second-order stability region for each member of the PSO family. This result was
also generalized for any statistical distribution of the PSO parameters (see García-
Gonzalo and Fernández-Martínez 2014). The cloud versions of these algorithms are
based on the stochastic stability analysis of the trajectories. The advantage of the
cloud versions is that no parameter tuning (inertia, local and global accelerations)
is needed, since each particle in the swarm has its own PSO parameters that are
randomly selected from a set of PSO parameters that are located in the neighbor-
hood of the upper limit of their second-order stability regions. Additionally, in the
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cloud design, each particle has its corresponding time-step 
t , which is a numer-
ical parameter that serves to achieve the exploration of the search space when this
parameter increases and it is greater than 1.0. Conversely, the algorithm freezes the
solution found when 
t is decreased to values lower than 1.0. Table 3.1 shows all
the GPSO family members, with the corresponding expressions and the references
where these algorithms have been published. Particularly, in the case of RR-PSO the
optimumparameter sets are located along the lineφ = 3(w − 3/2), mainly for inertia
valuesw > 2 (see Fernández-Martínez and García-Gonzalo 2012). This straight line
remains invariant when the number of parameters increases and it is independent on
the typology of the cost functions (multimodal or valley shape). Additionally this
line is located in a region of medium attenuation and very high frequency for the
particle trajectories. This feature confers to RR-PSO a good equilibrium between
exploration and exploitation, allowing for an efficient and exploratory search. The
numerical experiments using different benchmark functions have shown that the
best-performing algorithm of the PSO family is RR-PSO. Among the rest of family
members, CP-PSO is the most exploratory. Therefore, both, RR-PSO and CP-PSO
constitute an interesting choice for performing nonlinear uncertainty analysis and
exploring the cost-function topography efficiently. PP-PSO has the same velocity
update as GPSO, but the positions of the particles are in time t instead of t +1.
PP-PSO has a more exploratory character than GPSO but a lower convergence rate.
Finally, CC-PSO has showed in the numerical analysis the fastest convergence rate.

In general terms, all the PSO family members provide excellent results as long as
the parameter tuning is correct done taking into account the corresponding second-
order stability of the trajectories. Besides, no fancy mechanisms are needed to avoid
the misunderstood phenomenon of premature convergence.

All thesemathematical resultsmake the PSO family to be a very unique algorithm,
different from other heuristic approaches. Additionally, the PSO family members
are able to provide a set of representative samples of the nonlinear region of equiva-
lence, which can be used to infer an approximate posterior of the model parameters
in nonlinear inverse problems much faster than Monte Carlo methods and much
more realistically than linear analysis techniques combined with local optimization
methods.

3.5 PSO Design in the SP Case

The successful application of the PSO family to real problems is based on three main
features:

1. The understanding the physics involved in the forward problem and adapting
the PSO algorithm to the inverse problem peculiarities.

2. The use of a robust family of PSO optimizers. Particularly, the PSO family
members used in this paper (Fernández-Martínez and García-Gonzalo 2009,
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2012) belong to the category of free parameter tuning, since the optimumparam-
eters in each case are selected taking into account second order stability criteria
of the swarm trajectories.

3. The approach of the inverse problem as a sampling problem, since inverse
problemshavemultiple plausible solutions that are compatiblewith the observed
data.

In the SP case, the parameters optimized by the PSO algorithm are the piezometric
heads (hi), the electro kinetic coupling coefficient (C ′) using self-potential measure-
ments performed at the ground surface, and the reference hydraulic head (h0). The
forward model assumes that the electro kinetic coupling coefficient is homogeneous
in the saturated zone. The number of parameters is nnodes + 2, where nnodes is
the number of discretization nodes used to interpolate the water head. If the number
of nodes increases to finely discretize the water head, the inverse problem becomes
highly underdetermined. To avoid this fact, we use Principal Component Analysis
to reduce the dimension.

The algorithm workflow is as follows (Fig. 3.1):

Fig. 3.1 Algorithm
workflow
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1. First, we establish a search space for reference hydraulic head (h0).
2. The search space for the electro kinetic constant: [Cmin,Cmax] is based on the

relationship proposed by Revil et al. (2003): V (P) = (h − h0)C ′, taking into
account the bounds provided to the water head.

3. Based on these values we randomly generate a set of models within the
bounding limits, considering different realizations of h0, Cmin and Cmax in the
corresponding search space drawn with an uniform distribution:

hmin(P) = h0 + V (P)

C ′
max

,

hmax(P) = h0 + V (P)

C
′
min

. (3.15)

4. PCA is performed the diagonalization of the experimental Covariance matrix
C = (X − µ)T(X − µ) where X is the matrix that has as columns the random
models of water tables and µ is the average of all of them. The diagonalization
of C provides a set of q eigenvectors (PCA) that serve to span most of the
variability of the original set. A water model is expressed in the PCA basis set
as follows:

h j = µ +
q∑

k=1

ckpcak, (3.16)

where pcak are the q first PCA vectors of the expansion, and ck the corresponding
coordinates.

5. The search is performed in the PCA basis set and the search space is obtained by
projecting all the examples (geophysical models) into the pca basis and finding
their minimum and maximum.

The PSO methodology allows constraining of the search domain for the opti-
mization of the parameters. Figure 3.2 shows the search space of the water table
coordinates in the PCA basis set, composed of the first 15 vectors. In this case we
have used the maximum and minimum values of the coordinates. For the upper and
lower limits of the coupling coefficient C ′, we have used a broad interval at the
exploratory stages constrained to the fact that the water table stays within the prior
ranges. Beside, based on the SP anomaly, it is also convenient to establish the sign
of the C ′ constant to improve the search efficiency. In this case we have used such as

[
C

′
min,C

′
max

]
= [−20, 0.5]mV/m. (3.17)

The search space for the water reference level was:
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Fig. 3.2 Random generation of water head models and projection on to their PCA space of dimen-
sion 15. The search space has the shape of a funnel and it is obtained by finding the maximum and
the minimum of each of the PCA coordinates of these random models. This projection reduces the
dimension from n, being n the number of interpolation points of the water head, to 15

[h0min, h0max] = [15, 20]m. (3.18)

Some important peculiarities of the PSO version used for SP optimization are:

1. The SP inverse problem is ill-posed, that is, very different geophysical models
exhibiting very different spatial correlation lengths can account for the observed
data within the same error tolerance. Thewater head parameters are not spatially
independent, and to improve the analysis, the different inverted water models
are smoothed after PCA reconstruction. The smoothed length is estimated from
the autocorrelation function of the SP data. Figure 3.3 shows the autocorrelation
function of the SP data. The spatial correlation vanishes at a distance of 10 lags.
This is the length that was used to smooth the water table models after PCA
reconstruction.

2. In previous research concerning the streamingpotential inverse problemwehave
shown via synthetic modeling that the most important tradeoff between these
parameters appears occurs between the drawdown amplitude and the coupling
constant. This tradeoff is also observed on real cases (Fernández-Martínez et al.
2010b). Besides it has been shown that the topography of the cost function corre-
sponds to a valley shape whose size increases under the presence of noise. These
valleys exhibited sinkholes that might provoke entrapment of the geophysical
when local optimization methods are used.
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Fig. 3.3 Bogoslovsky-Ogilvy SP data. a Raw and Smoothed data using a length of 10 points. b SP
autocorrelation function. The autocorrelation vanishes approximately at 10 lags

3.6 Modeling the Bogoslovsky and Ogilvy Dataset

To show the performance of the methodology in a real case we used f the SP data
collected in the vicinity of a pumping well published by Bogoslovsky and Ogilvy
(1973). This dataset has been also modeled by several other authors (Revil et al.
2003; Darnet et al. 2004; Minsley et al. 2007; Fernández-Martínez et al. 2010b). In
this case we compared 3 main algorithms of the PSO family: GPSO, CP-PSO and
RR-PSO. GPSO is the cloud version of PSO, while CP-PSO and RR-PSO are more
exploratory versions.

Figure 3.4a shows the SP prediction and uncertainty analysis obtained via the
GPSO algorithm compared to the water table elevations measured in several moni-
toring wells (inversed triangles). The borehole information was not used for the
inversion. It can be observed that that the predicted (or inverted) SP anomaly is
close to the smoothed signal with the lag given by the ACF shown in Fig. 3.3. In
other words, the inversion can fit fairly well smoothed version of the anomaly but
not its higher frequency peaks. To obtain the inversion shown in Fig. 3.4a we have
used a correlation length of ten points, as suggested by the autocorrelation function
of the SP data (Fig. 3.3a), supposing that the water head and the SP signal have a
similar correlation length. This smoothing parameter is needed to introduce some
regularity requirements into the inverse solution which is performed in the PSO
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Fig. 3.4 Bogoslovsky-Ogilvy SP data-PSO. a Uncertainty analysis of the water table prediction.
b Posterior histograms of C’ and h0
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sampling procedure before solving the forward problem for each of the particles in
the swarm. Figure 3.4a also shows the median inverted water head and the lower and
upper bound given by the interquartile range obtained via the uncertainty analysis of
the water head models sampled by GPSO in the region of relative misfit lower than
20%. There is a good agreement between the prediction of the GPSO algorithm and
the water table measured at the monitoring wells except in the central borehole corre-
sponding to the deepest water table coordinate which is closer to the lower bound.
The rest are closer to the median and upper bound (lower interquartile). Expanding
the lower and upper percentiles to 10 and 90% will make a closer solution to these
points. The coupling coefficient shows and histogram with values between −13 and
−8, having the mode approximately in −10.5 mV/m. The reference water level has
the mode in 18.5 with a variability between 17.5 and 19.5 m (Fig. 3.4b).

Fig. 3.5 GPSO. a Error
curve. b Topography of the
cost function in the PCA
space
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Fig. 3.6 CP-PSO. a Uncertainty analysis of the water table. b Posterior histograms of C ′ and h0

Figure 3.5a shows the convergence curve for GPSO. It can be observed that the
relative error is highly variable since the global best was updated in each iteration,
although themisfit errormight increase. This non-elitist featuremakes the error curve
to be very variable. Figure 3.5b shows the topography function in the 2D PCA space
interpolated from the models that have been sampled by GPSO. It can be observed
the complex topography of the low misfit region with sinkholes. In this it can not be
clearly seen the valley shape.
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Fig. 3.7 CP-PPSO. a Error curve. b Topography of the cost function in the PCA space

Figures 3.6 and 3.7 show the same results for CP-PSO, and Figs. 3.8 and 3.9 for
the RR-PSO. These algorithms are more exploratory than GPSO. It can be observed
the following:

1. CP-PSO estimated the mode of the electro-kinetic constant between -9 and -10
and the reference level in 20 (Fig. 3.6b). The shape of the convergence curve is
also very noisy (Fig. 3.7a). The shape of the water head in sharper than in the
GPSO case, particularly close to the well (Fig. 3.6a). The bounds also include
most the observed data at the wells. This interpretation suggests the presence
of a normal fault around 100 meters. In this case the curvilinear valley shape of
the cost landscape is clearer seen than in the GPSO case (Fig. 3.7b).
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Fig. 3.8 RR-PSO. a Uncertainty analysis of the water table. b Posterior histograms of C ′ and h0

2. RR-PSO estimated the mode of the Electro kinetic constant at -14 and the
reference level in 19 meters (Fig. 3.8b). The convergence curve (Fig. 3.8a) is
almost monotonous, showing a greater convergence speed that the other two
algorithms, reaching the smallest misfit within the first 50 iterations, and the
valley shape (Fig. 3.9b) is in this case very well delineated embedded in a
broader area of highermisfits. Thewater headmodel and its uncertainty analysis
(Fig. 3.9a) shows an interpretation closer to CP-PSO. As it has been mentioned
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Fig. 3.9 RR-PPSO. a Error curve. b Topography of the cost function in the PCA space

RR-PSO is a very unique algorithm due to its exploratory and convergence
capabilities.

3. Figures. 3.10 and 3.11 show the results for PP-PSO, CC-PSO and the 4 points
algorithms. Although some results are different all the algorithms provide in
terms of the water head inverted levels a similar interpretation. The highest
variability is observed in the electro-kinetic constant, confirming the existing
trade-off with the water level. Also the interpolated topography of the cost
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Fig. 3.10 Water head and histograms of the Electrokinectic constant and water reference level
inverted by different PSO members: CC-GPSO, PP-GPSO, RP-GPSO, PR-GPSO, PC-GPSO and
RC-GPSO
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Fig. 3.10 (continued)

function obtained from the sampled models vary, but in all the cases we can
observe the valley shape, in some cases better outlined (PP-GSPO and RC-
GPS0) than the others.

3.7 Conclusions

The streaming potential inverse problem as many other geophysical problems is
recognized to be ill-posed. In absence of prior information, local methods provide
unstable solutions, which are greatly dependent on the initial guess used. We have
shown that the topography of the prediction error (cost function) for the streaming
potential inverse problem corresponds to elongated valleys with localized sinkholes.
This flat topography is also indicative of the existing trade-offs between the model
parameters. Therefore, theSP inverse problem is ill-posed asmanyother inverse prob-
lems, therefore uncertainty assessment of the inverse solution must be a compulsory
step. In this casewe have performed this task via differentmembers of the PSO family
whose stochastic stability analysis has been performed in different publications from
2008 to 2014. The sampling was performed in a reduced PCA basis generated by a
set of models that have been randomly generated between some prior bounds. The
results are very consistent. We can conclude that PSO is a very simple algorithm
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Fig. 3.11 Convergence curve and Topography of the cost function for different PSO members:
CC-GPSO, PP-GPSO, RP-GPSO, PR-GPSO, PC-GPSO and RC-GPSO
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Fig. 3.11 (continued)

able to find plausible solutions and sampling the model space according to some
minimum prior requirements: the search space and the regularity required for the
water head model. The uncertainty analysis provided by these algorithms help to
adopt the right geological decisions.
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Chapter 4
A Comparison of the Model Parameter
Estimations from Self-Potential
Anomalies by Levenberg-Marquardt
(LM), Differential Evolution (DE)
and Particle Swarm Optimization (PSO)
Algorithms: An Example
from Tamış-Çanakkale, Turkey

Petek Sindirgi and Şenol Özyalin

Abstract In geophysics, it is particularly important to choose an adequate optimiza-
tion algorithm for parameter estimation. In this study, the success of Levenberg-
Marquardt (LM), Differential Evolution (DE) and Particle Swarm Optimization
(PSO) inversion algorithms has been tested by applying to the synthetic and field
self-potential (SP) anomalies. Even though it is not preferred to compare derivative-
based algorithms with metaheuristics, thanks to a LM-based limitation procedure
first proposed in this study, a comparison could be realized. First, a synthetic SP
data have been inverted by LM, DE and PSO algorithms. Then, SP field data set
collected from Tamış-Çanakkale, Turkey was evaluated by the same algorithms. The
estimated model parameters by these algorithms were compared with each other.
We also inverted vertical electrical sounding (VES) data set collected from the same
region, and an earth model was constructed by using both SP and VES methods.
The results from each geophysical method point out the same location for a fault.
Based on these studies, it can be concluded that DE, PSO, and LM algorithms may
be confidently used in SP modelling studies.
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optimization · Self-potential · Vertical electrical sounding
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4.1 Introduction

Electrical methods are frequently used to detect the location of systems including the
groundwater. Self-potential (SP) and vertical electrical sounding (VES) are proven
methods to be successful in groundwater explorations such as groundwater pollution
studies, fresh, saltwater interference problems, and geothermal exploration (Ogilvy
et al. 1969; Corwin and Hoover 1979; Schiavone and Quarto 1984; Hamzah et al.
2007; Karlık and Kaya 2001).

The VES technique is used to determine the resistivity changes from the surface
to the depth. It is mainly based on the principle of measuring the response of the earth
to an electric current applied to the ground. The VESmethod is useful in determining
the depth, geometry and resistivity of the layers (Hamzah et al. 2007; Kaya et al.
2015).

Self-potential is an electrical phenomenon that is so easy to measure but it is
also so hard to determine the source mechanism. These mechanisms can be speci-
fied as electro-kinetic (streaming), thermo-electric, diffusion, and electro-chemical
potential. Self-potential method can be applied for determining the possible faults
containing fluid in the study area (Yüngül 1950; Fitterman and Corwin 1982; Corwin
1990; Monteiro Santos et al. 2002; Revil et al. 2003). Potential anomalies created by
fluid-containing faults are generally generated by electro-chemical sources.

SP anomalies can be analysed by different approaches. Since the use of the
graphic-based evaluation methods (Yüngül 1950; Paul 1965; Rao et al. 1970), a
new generation numerical methods have been developed for the evaluation of SP
data in parallel with developing computer technology: The Fourier, Hartley, Hilbert
Transforms and Wavelet analysis (Sundararajan et al. 1990; Asfahani et al. 2001;
Gilbert and Pessel 2001; Al-Garni and Sundararajan 2011; Di Maio et al. 2016),
Euler Deconvolution (Agarwal and Srivastava 2009; Sındırgı and Özyalın 2019),
Gradient and Derivative Analysis (Abdelrahman et al. 1997, 1998, 2006; El-Araby
2004; Essa et al. 2008; Sındırgı et al. 2008; Abedi et al. 2012; Mehanee 2015), tomo-
graphic approach (Di Maio and Patella 1994; Patella 1997; Revil et al. 2001; Juliano
et al.,2002), Artificial Neural Network algorithms (El-Kaliouby and Al-Garni 2009;
Kaftan et al. 2014), andmetaheuristic algorithms includingParticle SwarmOptimiza-
tion (PSO) (Juan et al. 2010, Monteiro Santos 2010; Göktürkler et al. 2016; Ekinci
et al. 2019; Pekşen et al. 2011), Simulated annealing (SA) (Sharma 2012; Biswas
and Sharma 2014, 2015), Genetic Algorithm (GA) and Differential Evaluation (DE)
(Abdelazeem and Gobashy 2006; Fernández-Martínez et al. 2010; Göktürkler and
Balkaya 2012; Di Maio et al. 2017; Ekinci et al. 2019).

In this study, a synthetic (noise-free and noisy) and a field SP data set (collected
from Tamış-Çanakkale, Turkey) have been evaluated by three algorithms including
the Levenberg-Marquardt (LM), PSO and DE. Also, to be able to compare LM to
the metaheuristics, a new initial model selection process for LM was developed.
Then, the estimated parameters have been compared with each other. The VES data
set, collected from the same location, is also inverted, and the subsurface model for
Tamış-Çanakkale anomaly has been constructed by combining the results from both
VES and SP data.
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4.2 Materials and Methods

4.2.1 Formulation of the SP Anomaly

Let V (x, x0, z0, K , θ, q) be the SP anomaly produced by a simple polarized causative
body observed at any point on the earth’s surface (Fig. 4.1). Formulation of the SP
anomaly (Yüngül 1950; Murty and Haricharan 1985) can be written as;

V (x, x0, z0, K , θ, q) = K
(x − x0)cosθ + z0sinθ

[
(x − x0)

2 + z20
]q (4.1)

where K is the electric dipole moment, x is the horizontal distance, x0 is the distance
from the origin, z0 is the depth of the centre of the body, θ is the polarization angle,
and q is the shape factor. The shape factor is dimensionless and its value for a
sphere, horizontal cylinder, and semi-infinite vertical cylinder are 1.5, 1.0, and 0.5,
respectively. The shape factor becomes near to zero as the structure approaches a
horizontal sheet.

Fig. 4.1 An infinitely long
horizontal cylinder model
and its noise-free and noisy
anomalies (The model
parameters and their
corresponding values are
listed on the figure)
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4.2.2 Algorithms

4.2.2.1 Levenberg-Marquardt (LM) Inversion Algorithm

Nonlinear least squares problems can be solved using the LMalgorithm. The solution
from the LM algorithm is not necessarily to be a global minimum. Generally, the LM
algorithm is often preferred toGauss-Newton and Steepest-Descentmethods because
it guarantees good convergence and non-singularity of the solution. Kenneth Leven-
berg introduced this algorithm in (1944), and Donald Marquardt (1963) improved it
subsequently.

Generalized formulation of forward modelling problems can be written as,

d = G(m) (4.2)

where d is the M-dimensional vector of observations and, m is a vector of model
parameters (in previous study model parameters are x0, z0, K , θ, q) with the size of
N×1. G(m) is a nonlinear function predicted by the model. Model parameter m can
be written by

m = m0 + �m (4.3)

where m0 is the initial model and �m is the model parameters update.
Minimizing the model perturbation to the Gauss-Newton solution can be fulfil via

minimizing the objective F,

F = (d − G(m0 + �m)) + λ�m2 (4.4)

The sensitivity (Jacobian) matrix J (M×N) can be written as,

J =

⎡

⎢⎢
⎣

∂Gi (m)

∂m1
. . . ∂Gi (m)

∂mN

...
. . .

...
∂GM (m)

∂m1
. . . ∂GM (m)

∂mN

⎤

⎥⎥
⎦

and using sensitivity matrix, �m can be defined as

�m = [
JTW J + I

]−1
JTW(d − G(m0)) (4.5)

where I is the identity matrix and λ is a damping factor shows the effect of model
perturbation. If λ is small, Eq. (4.4) will become equal to Gauss-Newton solution
equation. Generally, the initial value of λ is chosen large. If misfit is smaller than
previous iteration λ is reduced, if not it is increased.W is a positive definite matrix
and defined as (Jupp and Vozoff 1975)
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W = 1

M
d2
i , i = 1, 2, . . . , M (4.6)

RMSE, which means the standard deviation of the residuals, is calculated as
follows (Barnston 1992):

RMSE =
√√√√ 1

M

M∑

i=1

(d i − G(m)i )
2 (4.7)

4.2.2.2 Particle Swarm Optimization (PSO) Algorithm

The PSO was proposed in 1995 by the authors Kennedy and Eberhart. It is a
population-based metaheuristic technique and is based on the social behaviour of
animals (birds, fishes). While each individual searching for the solution in PSO is
called a particle, the population of the particles is called a swarm. Particles move
according to two important parameters in the search space. Pbest is the particle’s
best position found so far and Gbest is global best position found thus far in the
entire swarm. According to these definitions, basic steps of the PSO algorithm can
be listed as follows: (1) The algorithm is initialized by placing the particles with
random velocities (v) and positions (x) in the search space. (2) The fitness value is
used to understand how close a particle is to the solution. It is calculated for each
particle. (3) Individual and global bests are updated by comparing them with the
previous ones (pbesti) and equalized to the current value of the fitness. Then the
particle’s prior best position (pi ) is assumed to be as the current position (xi ). The
determined position of the particle with the best fitness value so far is assigned as
the global best (gi ). (4.4) New velocity and position values are updated for each
particle. (4.5) Stopping criterion is checked, if could not reach the threshold values,
it is continued with step (4.2) (Fig. 4.2).

The position and velocity of a particle i can be updated as follows (i = 1, 2, 3,
…, N);

vi = ωvi + c1rand()(pi − xi ) + c2rand()(gi − xi ) (4.8)

xi = xi + vi (4.9)

where w is a weighting factor (0 < ω < 1) known as inertia weight; c1 and c2
are individual and social behaviour coefficients, respectively. rand() is a function to
generate pseudo-random numbers within [0, 1]. The updates of position and velocity
of each particle end after reaching the stopping criterion (Kennedy and Eberhart
1995; Shi and Eberhart 1998; Poli et al. 2007; Luke 2009; Salmon 2011). In the light
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Fig. 4.2 The flow chart of the particle swarm optimization (Adopted from http://mnemstudio.org/
particle-swarm-introduction.htm)

http://mnemstudio.org/particle-swarm-introduction.htm
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Table 4.1 The values of the parameters used in PSO and DE algorithms

DE parameters Values PSO parameters Values

Number of parameter (D) 5 Number of parameter (D) 5

Population size and Weighting factor
(F)

100
0.7

Particle number
Inertia weight (ω)

100
1

Max. generation number (G) 100 Max. generation number (G) 100

Max. number of run 10 Max. number of run 10

Value to reach (VTR) (mV) 1e-11 Value to reach (VTR) (mV) 1e-11

Crossover probability (Cr ) 0.9 Cognitive and social scaling factors
(c1 and c2)

c1 = 2
c2 = 2

of this information, the values of the parameters used in PSO algorithm in this study
are listed in Table 4.1.

4.2.3 Differential Evolution (DE) Algorithm

DE algorithm (Storn and Price 1995, 1997) is a population-based optimization algo-
rithm and its applications in geophysics have increased in recent years. Different
from the conventional gradient-based inversion methods, a good starting model is
not a requirement for the DE algorithm to reach the global minimum. Three control
parameters are the only requirements: number of population (Np), weighting factor
(mutation constant, F) and crossover probability (Cr ). The initial population is gener-
ated randomly in the initialization stage of the algorithm, then in the evolution stage
population evolves from one generation to the next through mutation, crossover and
selection operations until the termination criterion is satisfied (Fig. 4.3) (Li and Yin
2012; Ekinci et al. 2016).

The target vectors can be defined as xi,G = (
x1i,G, x2i,G, . . . , xD

i,G

)
, i =

1, 2, . . . , Np, where G is the current generation, and D is the number of param-
eters ( j = 1, 2, . . . , D). The j th component of the i th vector can be generated as
follows:

x j
i,G = x j

l + rand().
(
x j
u − x j

l

)
(4.10)

where rand() symbolizes pseudo-random number between [0,1), also l and u are the
lower and upper limits for each parameter.

The evolution cycle includes mutation, crossover and selection operations
(Fig. 4.3). Mutation operation is run to form a donor (mutant) vector, vi,G =(
v1
i,G, v2

i,G, . . . ., vD
i,G

)
, i = 1, 2, . . . ., Np, for each target vector. Generally, there

are five differential mutation strategies (Li and Yin 2012). Previous studies (Balkaya
2013; Ekinci 2016; Ekinci et al. 2017, 2019) are indicated that DE/best/1/bin supplies
better solutions with a good estimation accuracy and less computing time for the
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Fig. 4.3 The flow chart of the DE optimization algorithm (from Ekinci et al. 2016)

inversion of geophysical data sets. This strategy is preferred in the DE optimizations
of the synthetic and field SP data in this work. Mutation operation for this strategy
can be defined as below:

vi,G = xbest,G + F.
(
xri1,G − xri2,G

)
(4.11)
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Here, xbest,G is the best individual vector in the population at generation G, and
(xr1 , xr2 ) is a pair of differential vectors.

Then, the trial vector (ui,G) is produced by a recombination of the donor vector(
vi,G

)
and the target vector (xi,G). The trail vector of the j th particle in the i th

dimension at the G th iteration can be written as:

u j
i,G =

{
v
j
i,G i f (rand(0, 1) ≤ Cr or j = jrand)
x jk
i,G otherwise.

, j = 1, 2, . . . , D (4.12)

whereCr is a crossover rate in the range [0,1] and jrand is a randomly chosen integer
in the range [1, D].

Selection operator is employed to select the next generation between the trial and
target vectors.

xi,G+1 =
{
ui,Gi f f (ui,G ≤ f

(
xi,G

)

xi,Gotherwise.
(4.13)

If the new generated trial vector gives a better fitness value than its previous one,
the target vector is updated by using Eq. 13, else it is kept in the present population.
The fitness value is calculated for each particle from the objective function, and the
particle with the best value is selected as the solution in the current generation.

Evolution cycle endswhen a predefined termination criterion ismet. This criterion
can be error energy, and/or maximum number of G. So, the vector yielding the lower
error energy value is chosen as an optimum solution for the optimization problem.
In this study both termination criteria were used.

For the number ofM data, the objective function (Relative Error) can be calculated
as follows:

φ = 1

M

M∑

i=1

(
gobsi − gcali

)2
(4.14)

where gobs and gcal are the observed and calculated data, respectively, and i indicates
the observations. The square root of theEq. (4.14) gives theRootMeanSquare (RMS)
value.

4.2.4 Parameter Estimation Studies

Synthetic noise-free and noisy (5%) infinitely long horizontal cylinder-shaped SP
model anomalies are generated to test the parameter solution quality of the proposed
algorithms. Then, to better analyse the pertinence of the suggested algorithms on real
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data, they applied to four SP profile data, which are selected from Tamış-Çanakkale
SP anomaly.

The values of the DE and PSO parameters used during the test and field studies
are summarized in Table 4.1. The codes for all algorithms are written in MATLAB®

(ver.R2019a) software with a 3.10 GHz compatible computer with 6 GB memory.

4.2.5 Synthetic Examples

First, to test the parameter solution quality of the proposed algorithms, synthetic
noise-free and noisy anomalies based on an infinitely long horizontal cylinder-shaped
model were generated. The parameters used for this model were selected as K =
100 000 mV.m, z0 = 500 m, x0 = 950 m, x0 = 145o, q = 1, and profile length is
2000m (assuming 50m sampling interval) (Fig. 4.1). To calculate the noisy synthetic
model, 5% Gaussian noise, were added to the synthetic data (Fig. 4.1). Thereafter
the proposed algorithms have been applied for estimating the model parameters of
the SP source body.

Local optimization (gradient-based) algorithms requires choose the initial param-
eter values close to the true solution, otherwise the algorithmmay end up with a local
minimum instead of a global one. To copewith this problem, a new approach to assign
the initial values to the LM inversion algorithm has been introduced in this study. For
this purpose, similar to the population-based metaheuristic methods, a set including
100 different models for SP have been generated randomly within certain ranges
(Table 4.2), then objective function values for each model have been calculated by
forward solution. Among these models the one with the lowest error energy has
been taken as the initial model for LM. Finally, a LM inversion has been carried
based on this initial model. Optionally this procedure may be repeated several times
(Göktürkler and Balkaya 2012; Li and Yin 2012; Balkaya 2013), the one with the
lowest error energy can be assigned as the solution.

Table 4.3 illustrates the initial models by the above mentioned routine for LM
algorithm for noise-free and noisy SP data sets. As can be seen from the table the
noisy data set produced larger RMSvalue as expected. The Tables 4.4 and 4.5 give the
results of the parameter estimations by the LM, DE and PSOwith both the noise-free

Table 4.2 Parameter ranges
used to select LM algorithm
initial parameters and
generate the initial models by
PSO and DE of noise-free and
noisy synthetic SP anomalies

Parameters True Search Space

Minimum Maximum

x0 (m) 950 500 1000

z0 (m) 250 100 500

θ (o) 145 0 180

K (mV. m(2q−1)) 100000 10000 250000

q 1 0.5 1.5
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Table 4.3 Estimated initial SPmodel parameters for LM algorithm by the proposed approach. This
approach has been repeated 10 times, and the model having the lowest error energy has been taken
as the initial model

Anomaly RUN Parameters

x0(m) z0(m) θ (o) K (mV. m(2q−1)) q RMS (mV)

Noise-free 2 904.82 465.38 142.67 167640.86 1.01 2197.28895

Noisy (5%) 2 721.55 341.32 84.28 120239.64 1.08 11271.51951

Table 4.4 The best solutions from noise-free synthetic data set by three algorithms at the end of
10 independent runs

Algorithm RUN Parameters

x0(m) z0(m) θ (o) K (mV. m(2q−1)) q RMS (mV)

DE 4 950.00 250.00 145.00 100020.65 1 0.00251022

PSO 6 949.72 248.69 144.84 95110.06 1 0.13

LM 2 950.00 250.00 144.77 100015.32 1 0.67

Table 4.5 The best solutions from noisy synthetic data set by three algorithms at the end of 10
independent runs

Algorithm RUN Parameters

x0(m) z0(m) θ (o) K (mV. m(2q−1)) q RMS (mV)

DE 7 949.34 241.83 143.51 67884.33 0.97 5.31

PSO 10 950.32 246.03 144.04 78618.48 0.98 5.32

LM 2 949.33 241.78 143.97 67762.78 0.97 5.47

and noisy SP anomalies. The comparisons of the synthetic and calculated anomalies
are illustrated in Fig. 4.4. When Tables 4.4 and 4.5 are compared for noise-free
data (Fig. 4.4a–c), it is observed that the algorithms generated similar results in the
vicinity of true model parameters. On the other hand, the results for noisy data sets
(Fig. 4.4d–f) are deviated from the true model parameters. Based on Fig. 4.4 and
Tables 4.4 and 4.5, it can be said that the DE algorithm is relatively better than the
others for both noise-free and noisy data sets. The behaviour of parameters and error
energy variations of DE solutions are only presented in figure form (Fig. 4.5), in
order to save some space in the text.

4.2.6 Field Example

Çanakkale is tectonically active region on the Alpine-Himalayan Mountain Belt that
corresponds to the northwardmovement of theArabianplate and located in themiddle
segment of the NAF zone (Altınok et al. 2012). The main fault systems of the region
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Fig. 4.4 Synthetic data: a–c Noise-free, d–f noisy data. Calculated anomalies from DE, PSO and
LM algorithms (The estimated best-fitting parameters are listed on the figures)

Fig. 4.5 The convergence characteristics of the DE algorithm. a Amplitude K , b the distance from
the origin x0, c depth z0, d polarization angle θ , e Shape factor q

areBalabanlı,Kestanbol, Tuzla andEdremit Faults. There are a number of geothermal
fields (Tuzla, Palamutova,Kestanbol,Küçükçetmi geothermal fields etc.) relatedwith
these faults in the study area. The field data sets including SP and VES in this study
were collected near a segment of the Tuzla fault system. It represents the transition
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Fig. 4.6 Geological map of the study area (adapted and modified from Karacık and Yılmaz 1998;
Sözbilir et al. 2018)

zone between the Beydağı Horst and Tuzla Basin. Geological units of the study area
are the Balabanlı volcanics, Dededağ formations, and Karadağ metamorphics. The
Balabanlı volcanics consist of pyroclastic rocks such as rhyodacitic ignimbrites and
lavas. The Dededağ formation contains andesitic and trachyandesitic lavas and flow-
breccias. The Balabanlı volcanics and Dededağ formation lie over the metamorphic
basement (Karacık and Yılmaz 1998; Sözbilir et al. 2018) (Fig. 4.6).

The SP contour map and the superimposed locations of the VES measurements
are shown in Fig. 4.7a. The VES method was carried out at five stations using the
Schlumberger array. They have been inverted by a software based on a least-squares
approach (IPI2WIN), and the inverted resistivity values can be seen in Fig. 4.7b.
They indicate two distinct units. The first one is the surface volcanics characterized
by low resistivities (10–50�m), and the second one is themetamorphic units (having
resistivities of 50–200 �m) forming the basement. It is seen that the depth to the
basement ranges between approximately 350-600 m from the station VES-1 to VES-
4, and the depth to the basement rock is approximately 180 m at the station VES-5.
The difference between the depths may be explained as the effect of the Tuzla Fault
System.

Four different profiles (P1, P2, P3, and P4) were selected for inversion (Fig. 4.7a).
They have been evaluated by LM, PSO, and DE algorithms. Search spaces for these
algorithms are given in Table 4.6. The procedure of assigning initial values for the
LM inversion algorithm introduced in the present study (see Sect. 3.2) has also
been applied to the Tamış-Çanakkale data set (Table 4.7). The same values for the
algorithm-based parameters as the synthetic data evaluation were also used for the
field data set. Themeasured and calculated data fromSPprofiles are given inFigs. 4.8,
4.9, 4.10 and 4.11. Tables 4.8, 4.9, 4.10 and 4.11 show the results of the model
parameter estimations from the field data sets. Similar to the synthetic data, LM,
PSO, and DE algorithms have been executed 10 times and the one has the minimum
RMS value has been selected as the best-fitting model (Tables 4.8, 4.9, 4.10 and
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Fig. 4.7 a SP anomaly map, location of selected SP profiles (P1, P2, P3, and P4), VES stations
(VES-1, VES-2, VES-3, VES-4, and VES-5), and estimated SP body locations (stars). b Layered
earth models obtained from VES studies

Table 4.6 Parameter ranges
used in LM, PSO and DE
optimizations of the
Tamış-Çanakkale anomalies

Parameters Search Space

Minimum Maximum

x0 (m) 100 1500

z0 (m) 100 1000

θ (o) 0 180

K (mV.m(2q−1)) 10000 750000

Q 0.5 1.5

4.11). Although DE and PSO algorithms have smaller RMS errors than does LM
with the help of the initial model determination procedure developed for the LM
algorithm in this study, it is seen that the parameters are also successfully predicted
with LM. When the tables are examined, it can be seen that all algorithms provided
similar z0 values (~500–700 m) for the SP profiles, except profile P4. On the other
hand, the algorithms have determined a smaller z0 values (~185 m) for P4. The
calculated average depths (z0) and origin to distances (xP10 , xP20 , xP30 and xP40 ) of the
SP body using by the algorithms are shown in Fig. 4.12. It is seen that there is a
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Table 4.7 The initial SP parameters by the proposed approach in the present study for LM inversion
of the Tamış-Çanakkale data set. This approach has been repeated 10 times, and the model having
the lowest error energy has been taken as the initial model

Profile RUN Parameters

x0(m) z0(m) θ (o) K (mV. m(2q−1)) q RMS (mV)

P1 10 445.77 820.21 147.64 635087.96 1.12 272.87181

P2 9 1038.32 323.03 156.4 390919.62 1.32 551.5644

P3 4 665.56 261.31 174.41 311517.25 1.34 294.73764

P4 10 629.73 783.03 144.68 605134.85 1.1 1344.37074

Algorithm RUN Parameters

x0(m) z0(m) θ (o) K (mV. m(2q−1)) q RMS (mV)

DE 4 557.3 504.52 145.81 750000 1.18 3.22

PSO 4 556.71 500.43 145.55 634540.45 1.16 3.23

LM 10 557.43 505.62 146.37 786066.39 1.18 3.32

Fig. 4.8 a DE, b PSO and, c LM inversions of P1-profile

Fig. 4.9 a DE, b PSO and, c LM inversions of P2-profile

depth difference between the points xP30 and xP40 . Considering that the study area is
in a horst-graben transition boundary, this difference may be related with the Tuzla
Fault System. These findings are accordance with those of VES studies.

When we combine the geological units of the study area (Fig. 4.6) with the SP
and VES findings, we can say that the surface volcanics become thinner and the
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Fig. 4.10 a DE, b PSO and, c LM inversions of P3-profile

Fig. 4.11 a DE, b PSO and, c LM inversions of P4-profile

Table 4.8 The best solutions from Tamış-Çanakkale P1 data set by three algorithms at the end of
10 independent runs

Algorithm RUN Parameters

x0(m) z0(m) θ (o) K (mV. m(2q−1)) q RMS (mV)

DE 4 557.3 504.52 145.81 750000 1.18 3.22

PSO 4 556.71 500.43 145.55 634540.45 1.16 3.23

LM 10 557.43 505.62 146.37 786066.39 1.18 3.32

Table 4.9 The best solutions from Tamış-Çanakkale P2 data set by three algorithms at the end of
10 independent runs

Algorithm RUN Parameters

x0(m) z0(m) θ (o) K (mV. m(2q−1)) q RMS (mV)

DE 1 836.57 686.04 161.14 749999.99 1.21 2.8

PSO 5 836.51 685.93 161.14 750000 1.21 2.8

LM 9 834.49 650.39 159.91 243277.16 1.13 2.88

metamorphic basement units reach the shallower depths in the east and northeast of
the study area. In the light of comparison of two geophysical methods we can said
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Table 4.10 The best solutions from Tamış-Çanakkale P3 data set by three algorithms at the end of
10 independent runs

Algorithm RUN Parameters

x0(m) z0(m) θ (o) K (mV. m(2q−1)) q RMS (mV)

DE 4 480.21 633.49 140.98 37624.04 0.93 3.93

PSO 1 488.31 695.96 144.07 199675.88 1.04 3.94

LM 6 489.89 709.06 144.85 281692.89 1.07 3.96

Table 4.11 The best solutions from Tamış-Çanakkale P4 data set by three algorithms at the end of
10 independent runs

Algorithm RUN Parameters

x0(m) z0(m) θ (o) K (mV. m(2q−1)) q RMS (mV)

DE 1 644.98 185.99 177.91 750000 1.37 2.36

PSO 1 644.96 185.99 177.9 750000 1.37 2.36

LM 4 645.15 180.37 177.34 476253.67 1.33 2.54

Fig. 4.12 Estimated source depths (dots) from the inversion of the SP profile data

that the depth values estimated from SP and VES methods are in good agreements
with each other.

4.3 Conclusions

In this study, the model parameters of a polarized body have been determined by
a derivative-based (LM), and two population-based optimization algorithms (DE
and PSO), and the results are compared. Even though it is not preferred to compare
derivative-based algorithmswithmetaheuristics, a comparison could be realized by a
LM-based limitation procedure introduced in this study. By this limitation procedure,
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the misfit values from the LM algorithm have been observed as being close to those
from DE and PSO for both synthetic and field data sets.

In this study, Tamış-Çanakkale SP anomaly from Turkey was also evaluated with
the mentioned algorithms and the solutions of them compared to each other. RMS
value of the LM solution is relatively higher than the others. Comparison of the
estimated SP model parameters to the VES sections has indicated that the surface
volcanics become thinner and the metamorphic basement units reach the shallower
depths in the east and northeast of the study area.

As a result, the solutions by DE, PSO, and LM (with limitation procedure intro-
duced by the present study) are represented by being in good agreement with each
other and they have the ability to converge from local best to the general best, can be
successfully applied in determining SP model parameters. The LM algorithm, after
the process introduced by the present study, has yielded results comparable with the
other algorithms PSO and DE. It also displayed better convergence characteristics
after the proposed process.
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Technical University Journal of Science and Technology B- Theoritical Sciences, Special Issue
of 4th international earthquake engineering and seismology conference, vol 6, 1–17. https://doi.
org/10.20290/aubtdb.498805

Storn R, Price KV (1995) Differential evolution-A simple and efficient adaptive scheme for
global optimization over continuous spaces. TechnicalReport TR-95-012. InternationalComputer
Science Institute, Berkeley, CA

Storn R and Price K (1997). Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J Glob Optim 11:341–359

Sundararajan N, Arun Kumar I, Mohan NL, Seshagiri Rao SV (1990) Use of the Hilbert transform
to interpret self-potential anomalies due to two-dimensional inclined sheets. Pure appl Geophys
133:117–126

Yüngül S (1950) Interpretation of spontaneous-polarization anomalies caused by spherical ore
bodies. Geophysics 15:237–246

https://doi.org/10.3906/yer-1811-14
https://doi.org/10.20290/aubtdb.498805


Chapter 5
Estimation of the Buried Model
Parameters from the Self-potential Data
Applying Advanced Approaches:
A Comparison Study

Mahmoud Elhussein and Khalid S. Essa

Abstract Acomparison study using the least-squaresminimizationmethod, particle
swamoptimizationmethod, and neural networkmethod for interpreting self-potential
data for typical shaped-models (spheres and cylinders). This interpretation process
contains the delineation buried sources parameters, which are the amplitude factor,
the depth to the structure, the source origin location, the angle of polarization, the
shape factor. The stability of the suggested methods was tested on two synthetic
data with and without noise and real data set from USA. The methods estimate the
different structures parameters efficiently and accurately.

Keywords Self-potential data · Least-squares · Particle swarm · Neural network

5.1 Introduction

Self-potentialmethod canbe considered as oneof themost effective geophysical tech-
niques in solving different geophysical problems (Sundararajan et al. 1998; Drahor
2004;Mehanee2014;Essa 2020;Elhussein 2020). Self-potential anomalies produced
by natural potential difference which resulted due to the oxidation-reduction process
of mineralized rocks which in contact with the ground water (Essa et al. 2008; Essa
2020).

To apply the self-potential technique in solving the different geophysical prob-
lems, the different subsurface geological bodies was approximated to simple geomet-
rical bodies (like, sphere, cylinder and thin sheet) (Essa 2011; Mehanee 2014, 2015;
Biswas 2017; Essa and Elhussein 2017; Sungkono and Warnana 2018; Essa 2020).
To estimate the different parameters (like, amplitude coefficient, depth, polarization
angle and body origin), different techniques were created and developed to overcome
the ill-posedness and non-uniqueness problems (Tarantola 2005; Sharma and Biswas
2013; Essa 2019). From these techniques, gradient techniques (Abdelrahman et al.
2004, 2009b; Essa and Elhussein 2017), moving average techniques (Abdelrahman
et al. 2006a; Mehanee et al. 2011; Essa 2019), characteristic curves and nomograms
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(Yungul 1950; Fitterman 1979; Essa 2007; Abdelrahman et al. 2009a), nonlinear and
liner least squares techniques (Abdelrahman et al. 2006b; Essa et al. 2008), Euler
deconvolution method (Agarwal and Srivastava 2009); most of the previous methods
require a priori information, other methods estimate the different parameters with
high uncertainty as the accuracy of the estimated parameters mainly depends upon
the accuracy of the regional-residual separation. Nowadays new recent techniques
have been developed, like particle swarm optimization (Essa 2019, 2020), genetic-
price technique (Di Maio et al. 2019), black-hole technique (Sungkono andWarnana
2018).

This chapter review different techniques applied to the different synthetic and real
field self-potential data to estimate the different bodies parameters.

5.2 Methodology

5.2.1 Forward Modeling

The SP anomaly (V ) caused by simple geometrical structures at any given point (p)
(Bhattacharya and Roy 1981; Essa 2019) (Fig. 5.1) is given by:

V
(
x j

) = K

(
x j − d

)
cosθ − zsinθ

((
x j − d

)2 + z2
)q , i = 0, 1, 2, 3, . . . , N (5.1)

Fig. 5.1 A sketch showing the different geometrical shapes and their parameters: a sphere,
b horizontal cylinder and c vertical cylinder
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where K is the amplitude factor (mV x m2q−1), z is the depth to the structure (m), d
is the source origin (m), θ is the angle of polarization (degrees), q is the shape factor
(dimensionless) which takes the following values: 1.5 for sphere, 1 for horizontal
cylinder and 0.5 for vertical cylinder (Essa et al. 2008; Di Maio et al. 2016; Essa
2019).

5.2.2 Least Squares Inversion Technique

Essa et al. (2008) developed a least square inversion approach to estimate the different
bodies parameters, by determining the depth applying the nonlinear equation:

δ(z) = 0, (5.2)

After estimating the depth, the angle of polarization is then calculated by the least
square, also, the amplitude factor is then determined from the estimate depth and the
polarization angle.

5.2.3 Particle Swarm Optimization

Essa (2019) developed a method based upon the PSO algorithm and the second
moving average for estimating the different structures parameters. PSO is stochastic
in its nature, the idea of PSO is based upon a group of birds or fishes looking for
food, the group of birds represent the models, and the paths of particles represent the
solutions (Essa 2019). The algorithm startswith randommodels, then the location and
the velocity of the particles are updated using the following formulas, respectively.

xk+1
i = xkj + V k+1

j (5.3)

V k+1
j = c3V

k
j + c1rand

(
Tbest − xk+1

j

)
+ c2rand

(
Jbest − xk+1

j

)
, (5.4)

where xkj is the location of jth particle at the iteration kth; V k
j is the velocity of the

jth model at the iteration kth; rand is any random number between [0, 1]; c1 and c2
are cognitive and social factors and equal 2 (Parsopoulos and Vrahatis 2002; Singh
and Biswas 2016; Essa 2019); c3 is the inertial coefficient which governs the velocity
of the model and usually takes a value less than one; Tbest is the best location for
individual model, and Jbest is the global best location for any model in the group.
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5.2.4 Neural Network Algorithm

Al-Garni (2009) proposed an approach based mainly on neural network (modular
algorithm) to estimate the different structures parameters.

5.3 Synthetic Examples

5.3.1 Sphere Model

A noise free SP anomaly was generated using sphere model with the following
parameters: K = 1200 mV x m2, z = 6, θ = 45°, d = 55 m, q = 1.5 and the profile
length = 100 m (Fig. 5.2).

The different previous techniques were applied to estimate the different param-
eters. First the least square inversion technique was applied to the SP profile and
the parameters were estimated accurately with no error (Table 5.1), then the PSO
technique produce the parameters with 0% error (Table 5.1), Finally, the data were
subjected to neural network and the parameterswere estimated efficiently (Table 5.1).

To test the effect of noisy data on the different techniques, a 10% randomnoisewas
added to the previous SP model. For least square inversion technique, the estimated
parameters are: K= 1020 mV x m2, z= 6.5, θ = 47°; while for PSO technique, the
estimated parameters are: K = 1140 mV x m2, z = 5.8, θ = 44.5°, d = 54.9 m, q =
1.45; and in case of neural network, the estimated parameters are: K = 1350 mV x
m2, z = 6.3, θ = 45.7°, q = 1.57 (Table 5.2). The error of the estimated parameters
is shown in (Table 5.2).

5.3.2 Horizontal Cylinder Model

A noise free SP anomaly was generated using horizontal cylinder model with the
following parameters: K = 900 mV x m, z = 6.5, θ = 40°, d = 60 m, q = 1 and the
profile length = 100 m (Fig. 5.3).

The different previous techniques were applied to estimate the different param-
eters. First the least square inversion technique was applied to the SP profile and
the parameters were estimated accurately with no error (Table 5.1), then the PSO
technique produce the parameters with 0% error (Table 5.2), Finally, the data were
subjected to neural network and the parameterswere estimated efficiently (Table 5.2).

To test the effect of noisy data on the different techniques, a 10% randomnoisewas
added to the previous SP model. For least square inversion technique, the estimated
parameters are: K = 1000 mV x m, z = 7.1, θ = 41.5°; while for PSO technique,
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Fig. 5.2 Self-potential anomaly profile of sphere model (K = 1200 mV × m2, z = 6 m, θ = 45°,
q = 1.5, and d = 55 m) and profile length 100 m

the estimated parameters are: K = 960 mV x m, z = 6.6, θ = 40.2°, d = 60.11 m, q
= 1.04; and in case of neural network, the estimated parameters are: K = 1010 mV
x m, z = 6.3, θ = 39.7°, q = 0.9 (Table 5.2). The error of the estimated parameters
is shown in (Table 5.2).
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Table 5.1 A correlation between results obtained from different methods applied to the self-
potential anomaly of sphere model (K = 1200 mV × m2, z = 6 m, θ = 45°, q = 1.5, and d =
55 m)

Methods parameters Essa et al. (2008)
method

Al-Garni (2009)
method

Essa (2019) method

Noise-freee

Results Error (%) Results Error (%) Results Error (%)

K (mV x m2) 1200 0 1200 0 1200 0

z (m) 6 0 6 0 6 0

θ (degree) 45 0 45 0 45 0

q (dimensionless) – – 1.5 0 1.5 0

d (m) – – – – 55 0

Results (after adding 10% random noise)

Results Error (%) Results Error (%) Results Error (%)

K (mV x m2) 1020 15 1350 12.5 1140 5

z (m) 6.5 8.33 6.3 5 5.8 3.33

θ (degree) 47 4.44 45.7 1.56 44.5 1.11

q (dimensionless) – – 1.57 4.67 1.45 3.33

d (m) – – – – 54.9 0.18

Table 5.2 A correlation between results obtained from different methods applied to the self-
potential anomaly of H.C. model (K = 900 mV × m, z = 6.5 m, θ = 40o, q = 1, and d =
60 m)

Methods parameters Essa et al. (2008)
method

Al-Garni (2009)
method

Essa (2019) method

Noise-freee

Results Error (%) Results Error (%) Results Error (%)

K (mV x m) 900 0 900 0 900 0

z (m) 6.5 0 6.5 0 6.5 0

θ (degree) 40 0 40 0 40 0

q (dimensionless) – – 1 0 1 0

d (m) – – – – 60 0

Results (after adding 10% random noise)

Results Error (%) Results Error (%) Results Error (%)

K (mV x m) 1000 11 1010 12.2 960 4

z (m) 7.1 9.23 6.3 3.08 6.6 1.54

θ (degree) 41.5 3.75 39.7 0.75 40.2 0.5

q (dimensionless) – – 0.9 10 1.04 4

d (m) – – – – 60.11 0.18
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Fig. 5.3 Self-potential anomaly profile of H.C. model (K = 900 mV × m, z = 6.5 m, θ = 40°, q
= 1, and d = 60 m) and profile length 100 m

5.4 Field Example

5.4.1 Malachite Mine, USA Real Data

Malachite mine is composed of amphibolite belt which surrounded by gneiss and
schist (Essa 2019). Self-potential profile was designed and measured by Heiland
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et al. (1945), the profile was taken above massive sulfide ore body which located in
the Malachite mine. The profile length was 164 m, digitized at 1.25 m (Fig. 5.4).
The SP profile was then subjected to the three different techniques to determine and
compare between the parameters estimated from these different methods (Table 5.3).
From Table 5.3 the parameters estimated using least square inversion method (Essa
et al. 2008) are: K = 275.39 mV, z = 12.87, θ = 103.58o; while the parameters
estimated by using PSO technique (Essa 2019) are: K = 236.53 mV, z = 13.74, θ =
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Fig. 5.4 Self-potential anomaly profile of Malachite mine, USA field example

Table 5.3 A correlation between results obtained from different methods applied to the self-
potential anomaly of Malachite mine, USA field example

Methods parameters Essa et al. (2008) method Al-Garni (2009) method Essa (2019) method

K (mV) 275.39 268.41 236.53

z (m) 12.87 13.2 13.74

θ (degree) 103.58 105 99.31

q (dimensionless) – 0.63 0.45

d (m) – – 0.20
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99.31o d= 0.20 m, q= 0.45; finally, the parameters estimated using neural network
(Al-Garni 2009) are: K = 268.41 mV, z = 13.2, θ = 105o, q = 0.63.

5.5 Conclusions

Acomparative studywasmade in this chapter to see the differences between different
methods in application to the self-potential data from different geological structures
(Sphere, horizontal cylinder and vertical cylinder). the different methods are least-
square (Essa 2008), neural network (Al-Garni 2009) and PSO (Essa 2019). These
different methods were applied to two different synthetic data without and with
10% random noise and one real data from USA. The methods estimate the different
structures parameters (K, z, d, θ and q) efficiently and accurately.
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Chapter 6
Determining the Structure Factor
and Parameters of a Buried Polarized
Structure from Self Potential Anomalies

Coşkun Sari and Emre Timur

Abstract The self-potential or spontaneous polarization (SP) method is based on
the surface measurement of natural potentials resulting from electrokinetic, electro-
chemical and thermoelectric reactions in the subsurface. This method in geophysics
refers to an electrical surveying method used for looking at natural electrical anoma-
lies in the ground. The self-potential method was the first electrical method primarily
used for mineral exploration and is still used therein. Mathematical methods such
as Bisection and Regula False have been used for several years for interpreting SP
data. In this study, it is aimed to compare these two interpretation methods for evalu-
ating SP data. Theoretical studies were carried out for four different models and the
outcomes were presented. Also the methods were used to evaluate a field data from
Turkey and the results were compared with previous studies. It is determined that
both methods give similar results in accordance with the geological structure in the
area.

Keywords Self-potential · RF method ·Modeling · Geological structure

6.1 Introduction

The Self Potential (SP) Method in geophysical exploration is mainly based on the
measurement of potential differences created by natural electrokinetic, electrochem-
ical and thermoelectric sources. The mineralization potentials measured in the areas
where mineralization exists are used to investigate the mineral sulfides, which are
concealed as natural potential (SP) anomalies, affected by topographic effects in the
study areas. However, a self potential anomaly can sometimes be easily separated
from topography and regional influences and it is possible to model it as a single
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e-mail: coskun.sari@deu.edu.tr

E. Timur
e-mail: emre.timur@deu.edu.tr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Biswas (ed.), Self-Potential Method: Theoretical Modeling and Applications
in Geosciences, Springer Geophysics, https://doi.org/10.1007/978-3-030-79333-3_6

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79333-3_6&domain=pdf
mailto:coskun.sari@deu.edu.tr
mailto:emre.timur@deu.edu.tr
https://doi.org/10.1007/978-3-030-79333-3_6


166 C. Sari and E. Timur

polarized structure. Interpretation of self potential data often contains many uncer-
tainties. Overburden structures with different geometric shapes can create the similar
self potential fields on earth’s surface. Besides, when the electric dipole moment is
a constant value and the bounded surface can be identified by a known geometrical
shape, a singular solution is obtained from the self potential data. This point of view
has been numerically proven by many researchers using various polarized struc-
tures classified in four types such as vertical cylinder, horizontal cylinder, sphere
and curved thin plates in mining research studies (Yüngül 1950; Banerjee 1971;
Fitterman 1979; Bhattacharya and Roy 1981; Abdelrahman and Sharafeldin 1997).
In these interpretation methods, the structural factor of the theoretical structure that
creates the self potential anomaly is necessary and required as preliminary informa-
tion. In this study, firstly the structural factor of the buried structure is determined
from the self potential data and the environment parameters such as the depth of
the structure, the electric dipole moment and the polarization angle of the structure
are determined. Estimation of the structural factor is a problem of calculating the
solution of a nonlinear relation in f(q) = 0 form is applied on the theoretical data
and applied to the field data, respectively.

6.2 Theory of the Method

Generalized equation of self-potential anomaly created by many polarized structures
can be presented as

V (xi , z, θ, q) = K
xi · cos θ + z · sin θ

(x2i + z2)q
; i = 1, 2, 3, . . . , N (6.1)

Yüngül (1950), Bhattacharya andRoy (1981). In this equation, z is the depth of the
structure, θ is the polarization angle, xi is the distance or location of measurement,K
is electrical dipol moment or polarization amplitude and q is structural shape factor.

The shape factor of a sphere is q = 1.5 and the shape factor of the semi-infinite
vertical cylinder is q = 0.5 for three-dimensional case (3-D), and the shape factor of
the horizontal cylinder is q = 1.0 for the two-dimensional case. When the shape of
the structure approaches a horizontal plate, the structure factor approaches to q = 0
(Fig. 6.1).

For all models,V(0) defines the anomaly value at xi = 0which is the starting point
of the measurement profile and it can be expressed as a function of q in Eq. (6.1) as;

K = V (0) · z2q−1

sin θ
(6.2)

If the Eq. (6.1) is equal to 0 and x0 is the distance between V(x) = 0 and starting
point of the profile (Fig. 6.1), then we can obtain
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Fig. 6.1 Schematic diagram
of sphere and horizontal
cylinder models

cot θ = −z

x0
(6.3)

After using Eqs. (6.2) and (6.3) in Eq. (6.1),

V (xi , z, q) = V (0) · z2q(x0 − xi )

x0(x2i + z2)q
, (6.4)

Equation (6.4) defines the anomaly value of xi = A point with the following
equation for all models.

V (A) = V (0) · z2q(x0 − A)

x0(A2 + z2)q
, A = ±1, 2, 3, 4, 5 (6.5)

By using this equation,
M = x0·V (A)

V (0)·(x0−A)
and the depth of the structure is defined as

z =
√

A2 · M1/ q

1− M1/ q
(6.6)

In these equations, x0 value is not equal toA, V(0) and V(A). Also it is not equal to
0 either. If the correlation (6.6) is replaced by the Eq. (6.4), the subsequent nonlinear
correlation for the structural factor (q) is obtained.

V (xi , q) = V (0) · A2q · M · (x0 − xi )

x0 · (x2i + M1/ q · (A2 − x2i ))
q

(6.7)

The requested and unknown structural factor parameter (q) defined in Eqs. (6.6)
and (6.7) is achieved by minimalizing the following equation

Φ(q) =
N∑
i=

[
L(xi ) − V (0) · A2q · M ·W (xi , q)/x0

]2
(6.8)
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In this equation, L(xi) represents the measured value of the self potential anomaly
at xi point and it is possible to rearrange the Eq. (6.7). If derivative of Φ(q) by q is
equal to 0, then

W (xi , q) = (x0 − xi )

(x2i + M1/ q(A2 − xi ))q
(6.9)

If derivative of Φ(q) by q is equal to 0, then a nonlinear equation is achieved.

f (q) =
N∑
i=1

{ [
L(xi ) − V (0) · A2q · M ·W (xi , q)/x0

] ·W (xi , q)

×
{
S(xi , q) · M1/ q · lnM + 2q2 ln A

} } = 0. (6.10)

In this equation, it is possible to define that

S(xi , q) = ln
{
x2i + M1/ q(A2 − x2i )

}
The theory of the equations from (6.2) to (6.10) can be found in Abdelrahman

and Sharafeldin (1997) in detail. It is possible to solve Eq. (6.10) for unknown q by
using known solution methods (such as Newton-Raphson, Regula False, Bisection,
Secant) for the solution of nonlinear equations. In these interpretation methods, it
is aimed to obtain the solution for following equation where qj is initial structural
factor and qf is corrected structural factor.

q f = f (q j ) (6.11)

The obtained qf value is used as the qj value in the next iteration of the analysis
process. The calculation process is repeated until the condition | qf−qj| ≤ e (e, is a
value very close to 0) is met or a defined iteration value is reached. When the (q)
structural factor is determined, the depth (z) of the structure causing the self potential
anomaly can be determined from the relation (6.6). When the parameter values (z)
and (x0) are known, the polarization angle (θ ) can be calculated from the correlation
(6.3). Since z, θ , q and V(0) values are known, electric dipole moment (K) can be
estimated from the Eq. (6.2).

6.2.1 Determination of X0 and V(0)

If the starting point of a self potential profile is known, x0 and V(0) values can be
determined.
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Fig. 6.2 An example of a
self potential anomaly of a
horizontal cylinder model. x0
represents zero offset point,
V(0) represents the anomaly
value at the origin, M and m
are the locations of the
maximum and minimum
anomaly values respectively

Otherwise, x0 and V(0)values can be obtained analytically through self potential
anomaly (Stanley 1977).

As shown in Fig. 6.2, the point where theM-m line cuts the self potential anomaly
is determined as xi = 0 and the value of V(0) is calculated at this point.

The base level of the anomaly is located between M and V(0) above the point
where the anomaly takes the smallest value (m). The location of x0 can be defined
with the following equation.

x0 = (xM − xm)
/
2 (6.12)

6.3 Theoretical and Field Applications

For the application of the method, theoretical self potential anomaly values were
calculated for a sphere model by taking the depth as z = 4 m, polarization angles as
θ = 30º and 60º, electric dipole moment as K = −10000 mV. x0 and V(0) values
are estimated from the calculated anomaly values.

The depth of the structure, electrical dipole moment and polarization angle and
primarily the structural factor of the underground medium are determined, using
the anomaly values with the root finding methods of the nonlinear equations such
as Regula False or Bisection (Appendix) by entering the detected anomaly values
and x0 and V(0) values as input to the prepared computer program. The obtained
solutions are presented in tables with the related comparative anomalies (Figs. 6.3
and 6.4).
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PARAMETER Model Regula False Solution Bisection Solution
Structural Factor (q) 1.5 1.414 1.368
Depth (z) 4.0 m 3.43 m. 3.22 m.
Polarization Angle (θ) 30° 29.65° 31.17°
Electric Dipol Moment (K) -10000 -10066.16 -10042.83
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Fig. 6.3 a Observed and calculated and model parameters for Regula False solution using 30°
sphere model, b Observed and calculated and model parameters for Bisection solution. Blue curve
and red curve represent the observed and calculated models respectively

Similar procedure has been applied to the self potential anomaly values calculated
by considering the structure depth as z = 4 m, polarization angles as θ = 30º and
60º, electric dipole moment as K =−10000 mV for a cylinder model. The obtained
outcomes are presented in tables with the related anomalies in comparison to each
other (Figs. 6.5 and 6.6).
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PARAMETER Model Regula False Solution Bisection Solution
Structural Factor (q) 1.5 1.499 1.497
Depth (z) 4.0 m 4.00 m. 3.99 m.
Polarization Angle (θ) 60° 60.12° 60.16°
Electric Dipol Moment (K) -10000 -9954.82 -9868.72
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Fig. 6.4 a Observed and calculated and model parameters for Regula False solution using 60°
sphere model, b Observed and calculated and model parameters for Bisection solution. Blue curve
and red curve represent the observed and calculated models respectively

After the application of the method to the theoretical anomaly values, it has been
applied to the self potential anomaly data of Süleymanköy interpreted by Yüngül
(1950) in the Ergani Copper Mine region in Turkey. These anomalies were also
evaluated with the theoretically explained method and the depth of the structure,
the electrical dipole moment and polarization angle parameters of the overburden
mass, especially the structural factor of the underground structure that constitutes the
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PARAMETER Model Regula False Solution Bisection Solution
Structural Factor (q) 1.0 1.022 1.051
Depth (z) 4.0 m 4.22 m. 34.41 m.
Polarization Angle (θ) 30° 29.63° 28.55°
Electric Dipol Moment (K) -10000 -11364.77 -13437.10
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Fig. 6.5 a Observed and calculated and model parameters for Regula False solution using 30°
cylinder model, b Observed and calculated and model parameters for Bisection solution. Blue
curve and red curve represent the observed and calculated models respectively
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PARAMETER Model Regula False Solution Bisection Solution
Structural Factor (q) 1.0 0.999 0.998
Depth (z) 4.0 m 4.01 m. 4.0 m.
Polarization Angle (θ) 60° 60.21° 60.23°
Electric Dipol Moment (K) -10000 -9960.42 -9940.50
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Fig. 6.6 a Observed and calculated and model parameters for Regula False solution using 60°
cylinder model, b Observed and calculated and model parameters for Bisection solution. Blue
curve and red curve represent the observed and calculated models respectively
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Fig. 6.7 Yüngül (1950) anomaly, Regula False and Bisection method results. Black line, blue line
and red line indicate the SP anomaly, Regula False and Bisection results respectively

anomaly, were tried to be determined. The determined results were given by Yüngül
(1950), Bhattacharya and Roy (1981) and Abdelrahman and Sharafeldin (1997) in
comparison with the results obtained using nomogram methods (Fig. 6.7).

6.4 Conclusion

We do not have any information about the type of the structure when using auxil-
iary curves (nomograms) in order to define the structure parameters of a polarized
structure embedded from SP anomalies. When using auxiliary curves, the structure
is considered to be a cylinder or a sphere and evaluation is made in accordance with
this condition. In the evaluationsmade using the nonlinear equation solutionmethods
introduced in this study, the structure factor is determined first. As a result of the
evaluation of self potential anomalies caused bymodel structures such as spheres and
cylinders, the structure parameters related to the model structures were determined
with great sensitivity and accuracy with both of the methods. Upon its success in
theoretical studies, the methods were applied on field data and the outcomes were
compared with the previous results. The problem of determining the depth of a
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horizontal cylinder or sphere embedded from the SP anomalies was changed to a
proposed process of determining a solution of a non-linear equation. It is quite easy
and practical to apply the described methods. Advantages of the method defined
compared to previous methods using distance values and nomograms in only a few
points are (1) using of all observation values, (2) the application of the methods are
automated, and (3) less sensitive to errors in self potential anomalies.

Appendix: Determination of Roots of Non-linear Equations

Regula False Method

In this method, convergence to the real root is relatively slow, but since it is always
convergence, it is more advantageous than simple iteration and Newton-Raphson
methods. This method requires two initial values. Figure 6.8 indicates the graphical
definition of the method. Let XL and XR be the two initial values. It can be assumed
that XL is located in the right side of the root. The line connecting the [XL, f(XL)]
and [XR, f(XR)] points intersects with the X-axis at the XM point. The f(XM) value
is compared to f(XL) and f(XR) points. If XL and XR are located at different sides
of the XM point, then the signs of f(XL) and f(XR) are different. The corresponding
points are also above and below the X-axis. After that, the signs of f(XM) and f(XL)
are compared. If the signs are the same then the root (x) is not between XL and XM.
If they have different signs, the root (x) is between XL and XM. Now, the XM point
becomes new XR. The operation is repeated with the line connecting the new XR and
XL points. In this way, the difference containing the root becomes smaller. Generally
the procedure can be summarized with the following two steps.

Fig. 6.8 Graphical representation of regula false method
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1. If f(XL). f(XM) < 0 then XR and XM change their locations.
2. If f(XR). f(XM) < 0 then XL and XM change their locations.

The XM can be defined with the following equations.

XM = XL − XR − XL

f (XR) − f (XL)
· f (XL)

XM = XL f (XR) − XR f (XL)

f (XR) − f (XL)

Bisection Method

Bisection method is very similar with the Regula False method, but it is much more
simple. Let XL and XR be the two initial values. In this method there is no need to
connect two points with a line The XM value is calculated with the arithmetic mean
of the initial values automatically using the following equation (Çağal 1998).

XM = XL + XR − XL

2
= XL + XR

2
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Chapter 7
Ensemble Kalman Inversion
for Determining Model Parameter
of Self-potential Data in the Mineral
Exploration

Sungkono, Erna Apriliani, Saifuddin, Fajriani, and Wahyu Srigutomo

Abstract Self-potential (SP) method has been increasingly popular in geophysical
exploration of mineral resources using an assumption that the causative bodies have
idealized geometry (horizontal andvertical cylinders, sphere, and 2-D inclined sheet).
In this study, ensemble Kalman inversion (EKI) is proposed to analyze the data
and hence determine the associated model parameters. As indicated by its name,
the algorithm is constructed based on the iterative ensemble Kalman filter. EKI
is applied perform inversion of noisy synthetic and field SP data. The field data
were the Neem-ka-Thana and Surda SP anomalies obtained from India, Malachite
mine anomaly from USA, and KTB anomaly from Germany containing information
of single and multiple anomalous bodies. The EKI exhibits high effectively and
accuracy in determination of model parameters and model uncertainty.

Keywords Ensemble kalman inversion · Self-potential data · Model uncertainty ·
Ore deposit
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7.1 Introduction

The self-potential method is categorized as a passive geophysical method since its
sources are generated from difference of natural potential in the subsurface. The
potential is caused by several phenomena including thermoelectric, electrochemical,
thermoelectric, and electro kinetic fields within the Earth’s interior (Biswas 2017;
Revil and Jardani 2013). The SP method has been widely used for subsurface char-
acterization such as groundwater and mining explorations, geothermal investigation,
archeological study, paleo-shear zone identification, and cavity detection (Al-Saigh
et al. 1994; Arora et al. 2007; Fernández-Martínez et al. 2010; Giang et al. 2018;
Mauri et al. 2012; Mehanee 2015; Moore et al. 2011; Sungkono 2020a; Sungkono
and Warnana 2018).

To delineate a subsurface profile from SP data, it is required several data anal-
yses. The analyses methods consist of characteristic point method (Fedi and Abbas
2013), nomograms (Bhattacharya and Roy 1981), window curves method (Hafez
2005), Gauss-Newton (GN) inversion (Abdelrahman et al. 2004; Candra et al. 2014;
Mehanee 2014), signal analysis including Hilbert transform, continuous wavelet
transform, horizontal gradient (Abdelrahman et al. 2004; Di Maio et al. 2017; Mauri
et al. 2011; Sundararajan and Srinivas 1996), and inversion using global optimization
(GO) methods such as neural networks (El-Kaliouby and Al-Garni 2009), particle
swarm optimization (Monteiro Santos 2010), differential evolution variants (Balkaya
2013; Sungkono 2020b), genetic algorithm (GA) and simulated annealing (SA)
(Göktürkler and Balkaya 2012), very fast SA (VFSA) (Biswas and Sharma 2017;
Sharma andBiswas 2013), genetic price algorithm (GPA) (DiMaio et al. 2019, 2016),
black hole algorithm (BHA) (Sungkono and Warnana 2018), whale optimization
algorithm (WOA) (Abdelazeem et al. 2019), and flower pollination algorithm (FPA)
(Sungkono 2020a). Additionally, combining method between horizontal derivative
and PSO are also applied to interpret the SP data (Elhussein 2020; Essa 2020),
where the horizontal derivative is used to eliminate regional effect, while the PSO is
employed to invert the SP data.

Inversion of SP data is ill-posed problems and has non-unique solutions. Accord-
ingly, different inversion approaches have been developed to handle these problems
as described above. As description in the free lunch theorem in optimization (in
the case is inversion problem), a method cannot handle all of problems (Wolpert
and Macready 1997). Thus, in this paper an inversion method based on ensemble
Kalman filter is proposed, further called ensembleKalman inversion (EKI), for deter-
mining model parameter and its uncertainty assuming the sources of anomaly are
caused by simple geometric structures (horizontal cylinder, vertical cylinder, sphere,
and 2-D inclined sheet). The EKI has several advantages including does not require
first derivative of function, ease implementation and application, and free tuning
parameter (Chada et al. 2019, 2018).
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7.2 Methodology

7.2.1 Ensemble Kalman Inversion

The ensemble Kalman Filter (EnKF) consists of Monte Carlo approach, which uses
an ensemble size Ne to determine the statistical features including the covariance
and mean of the model parameter (Evensen 2009, 2003; van Leeuwen and Evensen
1996). The covariance matrix is used to handle a unique solution in an inversion
(Cho and Olivera 2014; Oliver and Chen 2009) obtained from the ensemble size.
The EnKF with some iterations (called iterative EnKF) (Gu and Oliver 2007; Li
and Reynolds 2009) can be applied for determining model parameters. However,
this approach requires a Jacobian matrix in the Gauss-Newton to minimize the
least-square approach. Furthermore, EnKF inversion (EKI) or iterative EnKF, with
derivative-free is clearly proposed and descripted for solving inversion problems
by previous authors (Chada et al. 2019, 2018; Iglesias 2016; Iglesias et al. 2013).
However, EKI is linked to regularized least square-problems (Iglesias et al. 2013).
It means that the EKI is possible for solving nonlinear inverse problems with free
gradient of function calculation.

The EKI method for finding the solution of inverse problems of X given
observations data dobs of the form

dobs = f (X) + η (7.1)

where f (X) indicates a forward modeling, while η is a noise of observed data. A
probabilistic distribution P( X |dobs) is the solution in the inverse problem. P( X |dobs)
denotes themodel parameter X is given on observation data dobs . Themethod is based
on the Bayes’ theorem as following

P( X |dobs)∞P(X)P(dobs |X ) (7.2)

where P(X) and P(dobs |X ) indicate a prior distribution of the model parameter and
a likelihood, respectively, while P( X |dobs) denotes the posterior parameter distribu-
tion. Direct sampling of posterior parameter generally uses a Monte Carlo (Markov
Chain or Sequential) sampling which requires millions of evaluations of the forward
models (Sungkono and Santosa 2015; Zhang et al. 2020). Therefore, an efficient
method for estimating the samplingmodel parameter X has applied using global opti-
mizationmethod (GOM)with a threshold (Sungkono 2020a; Sungkono andWarnana
2018).

Assuming that both the observation noises and prior are Gaussian distribution,
the posterior in the Eq. (7.2) can be expressed as follows:

P( X |dobs)∞ exp(−S(X)) (7.3)
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where S(X) is an objective function. In the inversion process using stochastic or deter-
ministic approaches, it is generally to maximize posterior or minimize the objective
function. The objective function for the EKI is presented in Eq. (7.4).

S(Xk) = 1

2

[
rk

(
Cd

)−1
r Tk

]
+ 1

2

[
�Xk

(
CX
k

)−1
�XT

k

]
(7.4)

where �Xk reflects change of states for kth iteration and rk denotes the difference
between observed dobs and calculated f (Xk) data for kth iteration rk = dobs− f (Xk).
Additionally, CX and Cd , respectively, indicate the covariances of the prior model
parameters and the noises disturbed the observed data. The covarianceCX is obtained
from a limited size ensemble of model parameter. Using Gauss-Newton approach,
the Eq. (7.2) can easily determine change of model parameter reflecting minimum
objective function (Chada et al. 2018; Iglesias et al. 2013; Zhang et al. 2020).

�Xk = Kk−1{rk−1 + ek−1} (7.5)

where the of ek−1 is a measurement error with zero mean and has covariance Cd ,
ek−1 = √

CdN (0, 1), while Kk−1 denotes a Kalman gain for (k−1)th iterations.
The Eq. (7.5) shows that the state changing controlled by Kalman gain, where the

parameter can be represented by (Chada et al. 2018; Iglesias et al. 2013; Zhang et al.
2020):

Kk−1 = CXd
k−1

[
CXX
k−1 + Cd I

]−1
(7.6)

where CXd = cov(X, d) indicates a cross-covariance between model parameters X
and calculated model, while CXX = cov(X, X) represents an auto-covariance of
model parameters X. In addition, I denotes identity matrix. The Eq. (7.6) indicates
that the Kalman gain performance is controlled by the auto-covariance of the model
parameters derived froma limited size ensemble. Itmeans that theEKIperformance is
highly controlled by size of the ensemble number. A small ensemble size can produce
a significant error for calculating a covariance (Wang et al. 2010). In addition, the
Kalman gain can be singular when the ensemble of the parameter models is identic
and Cd is too small.

Furthermore, an updating model parameter for kth iteration Xk can be written as
follows:

Xk = Xk−1 + β�Xk (7.7)

where β denotes the step length parameter, which can be determined using standard
line search. The value of β can be used a random number of −1 or 1 (Zhang et al.
2020) or the value can be set between 0 and 1 (Liu et al. 2020). In this paper, the β

value uses a random number between 0 and 1 for all ensemble numbers. It means
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that different value of step length parameter for each ensemble member, where the
condition can improve the efficiency of the algorithm (Wang et al. 2010).

In the above, EKI generally consists of three steps (Chada et al. 2019, 2018,
2019; Iglesias 2016), such as: (1) generate an ensemble size of model parameters;
(2) calculate forward modeling for each ensemble member of model, (3) update each
ensemble member of model parameter using Eq. (7.7). In this paper, to improve the
EKI performance, both a greedy selection and a boundary handling are applied, that
is to select each ensemble member for existing in the future iterations and keep the
model parameter in the desired ranges, respectively. the Greedy selection is used
because the updated model parameter in the EKI does not guarantee to have better
the objective function as compared to the previous model parameter before updated
(Wang et al. 2010).

Furthermore, the EKI process requires some parameters including an ensemble
number Ne, a covariance of noise disturbed observed data Cd , and search
bounds of model parameters [Xmin, Xmax]. The EKI algorithm firstly generates
the ensemble number of the model parameters X , which uses random approaches
in the search spaces [Xmin, Xmax], where Xmin and Xmax denote lower and upper
bounds, respectively. The model parameters X = [

X [1], X [2], . . . , X [Ne]] contain
the ensemble number Ne, where each model parameter X [i] accommodates the
number of the estimated model parameter, generally called d dimension,X [i] =(
X [i],1, X [i],2, . . . , X [i],d

)
. The second step, a forward modeling for each ensemble

of the model parameter is estimated to calculate objective function. The third step,
auto- and cross-covariance matrices (CXX and CXd ) are determined for estimation
of Kalman gain (Eq. 7.6). The fourth step, the ensemble member of parameter model
is updated for kth iteration (using Eq. 7.9) and checked the boundary handling of the
model parameter. The boundary handling uses in the paper as follows:

Xk =
⎧
⎨
⎩
2Xmin − Xk i f Xk < Xmin

2Xmax − Xk elsei f Xk > Xmax

Xk else
(7.8)

Furthermore, the objective function for each ensemble is calculated and applied
using a greedy selection approach for the model parameter for selecting to further
iteration. The selection can be expressed as following

Xk =
{

Xk i f obj(Xk) ≤ obj(Xk−1)

Xk−1 else
(7.9)

where obj(Xk) indicates the objective function of model parameter for iteration kth.
The last step checks whether iteration has to stop, if the iteration number reaches

the maximum iteration, the iteration is stop, while the others is repeat the loop on go
to the third step.
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7.2.2 Forward Modeling

Forward modeling F(X) determines calculated data for giving model parameter
X . The Self-Potential (SP) anomaly is assumed the idealized body (e.g. sphere,
horizontal cylinder and vertical cylinder), at a point xi can be determined as (Mehanee
2014; Monteiro Santos 2010)

v(xi ) = K
(xi − D) cos(θ) + h sin(θ)(

(xi − D)2 + h2
)q (7.10)

where K and θ , respectively, denote a polarization magnitude and an angle, while
the anomalous source’s center for depth and position are represented by h and D,
respectively. In addition, q denotes a shape factor, which is 1.5, 1.0 and 0.5 for a
sphere, horizontal cylinder, and vertical cylinder, respectively. Furthermore, model
parameters X for the forward modeling contain K , θ, h, D and q. Moreover, SP
anomaly sourced by 2D inclined sheet (Fig. 7.1 c) can be expressed as follow (Biswas
and Sharma 2014a):

v(xi ) = K log

[ {(xi − D) − a cos θ}2 + (h − a sin θ)2

{(xi − D) + a cos θ}2 + (h + a sin θ)2

]
(7.11)

where θ describes the angle of inclination, while a indicates the half-width of the
sheet. The other is same with notation in the Eq. (7.11). Furthermore, the forward
modeling F(X) for calculated SP data sourced by multiple anomalies is estimated
using the summation from each responses resulted by individual anomalies (Biswas
and Sharma 2014c).

Fig. 7.1 Visualization of Model parameters from SP anomaly for sphere and horizontal cylinder
(a), vertical cylinder (b), and 2D inclined sheet (c) in subsurface
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7.2.3 Inversion Using EKI

As description above, EKI requires two parameters including ensemble numbers and
covariance noises disturbed the observed data Cd . The ensemble number in the EKI
can be set as 50, 100, 150, etc., the higher ensemble number needs the higher time
consuming for forward calculation. Thus, it requires long iterations for the ensemble
number to converge. Furthermore, Cd generally does not exist, consequently in this
paper Cd designed as Cd = σdobs , where σ = 0.02 for a high amplitude of SP data,
while σ = 0.2 for a low amplitude of SP data. The step is done so that the Eq. (7.6)
is not singular.

Furthermore, Eq. (7.7) shows that the inversion process using EKI is updated
using model parameters Xk . In this case, the model parameters Xk consists of K ,θ ,
h, D, and q for all anomalous sources assuming idealized bodies, while if the SP
anomaly is sourced by inclined sheet, the model parameter contains K ,x1, z1, x2,
and z2 for all anomalous sources.

Obtained ensemble number ofmodel parameters fromEKI can be used to estimate
uncertainties of model parameters (Cho and Olivera 2014; Gu and Oliver 2007), but
sometimes the model parameters from the last iteration is over fitting. Thus, the
uncertainty in the paper is assumed as limit of acceptability approach (Sungkono
2020a; Vrugt and Beven 2018) or objective function’s trade-off (Fernández-Martínez
et al. 2013; Fernández-Muñiz et al. 2019; Laby et al. 2016). Consequently, before
conducting a greedy selection (a step inEKI algorithm), an objective function for each
ensemble member of model parameters X is calculated using Eq. (7.12) (Monteiro
Santos 2010):

Obj(Xk) = 2‖dObs − F(Xk)‖
‖dObs − F(Xk)‖ + ‖dObs + F(Xk)‖ (7.12)

The geophysical data inversion does not have a unique solution due noise
containing in observed data, a physical assumption in a forward modeling, and also
an inherent theoretical relationship between observed and model parameters. Conse-
quently, several model parameters with different combination that have calculated
data match the observed data with some tolerances, called posterior distribution
model (PDM), which is can be expressed (|ddobs − Fi (X)| ≤ σdobs) (Vrugt and
Beven 2018). Where σ is standard deviation of noise in observed data.

As a description in the section about EKI, the EKI indicates that exploration
and exploitation capabilities have existed. The exploration capability depends on
ensemble number and the covariance noises disturbed the data, where both parame-
ters are directly proportional to exploration capability of the EKI, while exploitation
property indicated by step length parameter in Eq. (7.7), where the parameter is
inversely proportional to exploitation property in EKI. In addition, a greedy selec-
tion in Eq. (7.9) also improves exploitation capability. The exploration capability
is to avoid trap in local minima, while exploitation capability is to speed up the
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convergence. EKI is expected to have balance in both properties so that EKI is able
to quickly find a solution correlated to global minima

7.3 Synthetic Model

EKI performance is tested before application to field SP data. Based on the described
above, the EKI depends on the ensemble numbers Ne and assumption of covariance
noises Cd disturbs in observed data. In the EKI process, Ne sets 50, 500 maximum
iteration is used, and Cd = 0.02dobsi . To evaluate the EKI algorithm, the method is
applied to synthetic data sourced an anomaly (horizontal cylinder). After that, the
EKI is also tested to several noisy data. The last but not least, the performances of the
EKI algorithm is evaluated for multiples anomalies (sphere and semi-infinite vertical
cylinder). Because, EKI is based on Monte Carlo approach, each process of EKI has
a different result. Consequently, EKI has proceeded five times and the best fitting is
used for the analysis.

7.3.1 EKI in Single Anomaly

To evaluate EKI performances for SP data inversion, synthetic data with and without
10% of a Gaussian noise are reconstructed by a true model (2D inclined sheet) in
Table 7.1. In the inversion, search spaces of model parameters also presented in the
Table 7.2. Figure 7.2a shows the median of an objective function revealed by EKI.
The figure indicates that the median of the objective function relatively decreases
with increasing iteration until convergence. The condition is resulted by a greedy
selection to improve exploitation performance of EKI, in the standard EKI this step

Table 7.1 EKI algorithm applied to 2-D inclined sheet model with and without 10% Gaussian
noises

Parameters Ranges True models Noise-free 10% noise

K (mVm) −1000–1000 50 50.00 ± 0.06 53.53 ± 14.13

D(m) 0–100 55 55.00 ± 0.01 55.05 ± 0.53

a (m) 1–40 10 10.00 ± 0.01 10.62 ± 0.96

θ (°) 0–180 150 150.00 ± 0.02 151.58 ± 1.34

h (m) 0–80 12 12.00 ± 0.01 11.12 ± 2.22

Minimum of the objective function 7.87E-07 7.47E-02

Median of the objective function 8.21E-06 7.48E-02

Interquartile of the objective function 2.81E-05 2.00E-04
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Table 7.2 EKI algorithm tested to the two synthetic models (sphere and vertical cylinder) with and
without 10% Gaussian noise

Parameters Souces K (mVm) D (m) h (m) θ (°) q

Ranges 1 0–2000 −150–150 0–100 0–180 0.1–1.8

2 −700–700 50–150 0–100 0–180 0.1–1.8

True
parameters

1 1000 −100 7 30 1.5

2 −400 30 30 60 1

EKI for
free noise

1 1000.69 ± 9.64 −100.00 ± 0.01 7.00 ± 0.01 30.01 ± 0.04 1.5 ± 0.00

2 −401.45 ± 5.82 30.00 ± 0.02 30.01 ± 0.07 59.99 ± 0.07 1.00 ± 0.00

EKI for
10% noise
added

1 1488.08 ± 98.89 −99.83 ± 0.03 7.47 ± 0.07 29.60 ± 0.17 1.56 ± 0.01

2 −553.37 ± 20.38 31.34 ± 0.05 31.52 ± 0.18 59.21 ± 0.15 1.04 ± 0.00

Fig. 7.2 The statistics aMedian; (b interquartile) of objective function resulted by EKI in SP data
inversion with and without noise
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Fig. 7.3 Histogram of DPM for each parameter of noise-free SP data revealed by EKI. The highest
probability of PDM correlates with median of PDM (crosses) and true model parameter (dots).
Consequently, EKI is capable to determine PDM

does not exists. The figure also indicates the noise-added data can shift the objec-
tive function (Fernández-Martínez et al. 2014a, b; Sungkono 2020b). Furthermore,
Fig. 7.2b indicates interquartile (iqr) of the objective function for each iteration,
which indicates that the EKI has exploration capability until 150th and 300th itera-
tion for the noise-free and the noise-added data, respectively. Figure 7.2b does not
always decrease with increasing iteration. It means that the EKI has good explorative
capability. Consequently, the solution of model parameter cannot trap in the local
minimum.

Additionally, a PDM is constructed by EKI with a tolerance as described in
Fig. 7.3. Crosses indicate the median of PDM, while dots denote true model param-
eters. The Figure demonstrates that the median of PDM is very close to true model
parameter. Figure 7.4a, c showdatawith andwithout noises are fitted to calculate data
from the median of PDM resulted by EKI process, respectively. Both figures demon-
strate that the median of calculated data has very good fitting. Table 7.1 shows the
statistically (median±iqr) of model parameter from PDM determined by EKI, which
is visualized in Fig. 7.4b, d. The results demonstrates three things including EKI can
provide PDMusing a tolerance of an objective function, the EKI is capable and accu-
rately to solve inversion of SP data, and the noises-added in the data can increase the
uncertainty of the model parameter.

7.3.2 EKI in Multiple Anomalies

An SP anomaly is usually caused by more than one of sources. In the section, EKI is
applied for solving two anomalous sourceswith (10%ofGaussian noise) andwithout
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Fig. 7.4 Inversion of synthetic SP data with and without noises results uses EKI. a, c Fitting of
synthetic and calculated data (median of PDM) for noise-free and noise-added, respectively; b,
d The sketches are showing the model parameter (blue lines) determined by EKI for noise-free
and noise-added of SP data, respectively. The model parameter (blue lines) inverted by EKI is very
close to true model (red lines)

noise-added as in the Fig. 7.5a, c, respectively. Model parameters of both data are
optimizing using EKIwith search ranges as in Table 7.4. Table 7.4. also demonstrates
that the EKI is successfully applied for two anomalous SP data inversion, where the
true model parameter is closed to the medians of PDM with and without noise-
added. The results can be viewed in the Fig. 7.5b, d for without and with noises
added, respectively. Again, Table 7.4 also shows the noises-added can increase the
uncertainty of model parameter in the inversion result.

7.4 Field Examples

In order to demonstrate EKI performance in the real data, three fields of SP data
in different areas (e.g. Neem-Ka-Thana anomaly in India, Malachite mine in USA,
and Surda anomaly, India). In the inversion process, EKI applies 500 and 1000 of
maximum iteration for single andmultiple anomalous sources, respectively,Cd set as
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Fig. 7.5 The description is like on the Fig. 7.4, but for two sources of SP anomalies

Cd = 0.02dobsi and 50 is used in ensemble number. The EKI process are conducted
five times to know consistency and stability of the algorithm.

7.4.1 Neem-Ka-Thana, India

The SP anomaly in the Neem-ka-Thana was sourced by a deposit of copper belt in the
Ahirwala, India (Reddi et al. 1982). The deposit is commonly restricted within shear
planes and faults, which has concentrated between 0.6 to 1.2%. The measured SP
anomaly in Neem-Ka-Thana can be shown in Fig. 7.6a, c. The anomalies (Fig. 7.6a,
c) were analyzed by various authors (Agarwal and Srivastava 2009; Balkaya 2013;
Biswas and Sharma 2015; Göktürkler and Balkaya 2012; Sungkono 2020b). The
interpretation of the data can be classified into two parts including a single body
(main anomaly located around 170m in distance) (Balkaya 2013; Biswas and Sharma
2015; Göktürkler and Balkaya 2012; Sungkono 2020b) and multiple anomalies (two
peaks negative anomalies before main negative anomaly) (Biswas and Sharma 2015;
Sungkono 2020b). A global optimization method (GOM) is generally applied to
determine model parameters of the SP data (Balkaya 2013; Biswas and Sharma
2015; Göktürkler and Balkaya 2012; Sungkono 2020b).

The SP data are inverted using EKI considering that the anomaly contains an
anomaly (body around the high negative anomaly) with search spaces ranges can be
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Fig. 7.6 Inversion result of Neem-ka-Thana anomaly uses EKI with single and multiple sources
assumption; a, c comparison of observed and calculated data frommedian of PDM uses assumption
of single and multiples anomalous, respectively; c, d subsurface model revealed by EKI for single
and multiples anomalous assumption

shown in the Table 7.3. The inversion result s are shown in Table 7.3 and Fig. 7.6b,
while observed and calculated SP data are compared in Fig. 7.6a. Table 7.3 indicates
that the distances and the shape of the anomaly body for EKI are good agreement
with those of other GOMs. The Table also shows that source of the body using EKI
has a depth of 17.97±0.33 m, where the result is comparable with those of other
GOMs (10.8 to 18.81 m) (Balkaya 2013; Biswas and Sharma 2015; Göktürkler and
Balkaya 2012; Sungkono 2020b). Moreover, the estimated depth from EKI is rela-
tively closed with drilling information, where directional drilling found ore deposits
located between 10 and 15 m in the depth from the top of the sources (Srivastava and
Agarwal 2009).

Again, EKI is applied to determine model parameter of Neem-ka-Thana anomaly
considering that the SP data is sourced by three ores bodies. The search range for
multiple sources anomalies are shown in Table 7.4. The SP data has again simultane-
ously inverted considering multiple for all the bodies. The inversion result using EKI
for the anomaly can be shown in Table 7.4 and described in Fig. 7.6d. The Table also
indicates that the positions (distances and depths) of three ore bodies revealed by EKI
are closed to those of other GOMs (VSFA, μ JADE, vectorized random mutation
factor in DE orMVDE). Furthermore, the depth of third anomaly resulted byMVDE
and EKI is more appropriate with that of drilling information compared to others,
which the depth of ore deposits is between 10 and 15 m from the top (Srivastava and
Agarwal 2009).
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7.4.2 Malachite Mine, Jefferson County, Colorado, USA

The second example of field data study SP’s anomaly was measured in the Jefferson
County, Colorado, USA, where the SP data (Fig. 7.7a, c) are associated with the
Malachite mine in the Jefferson County, Colorado, USA. The anomaly indicates
that main anomaly (peak of negative) is around 0 m in distances and the others
may be around both edges in distance (negative peaks). Consequently, The anomaly
was analyzed considering as single body (Abdelrahman et al. 2004; Balkaya 2013;
Biswas and Sharma 2015; Fedi and Abbas 2013; Mehanee 2014; Tlas and Asfahani
2013) and multiple bodies (Biswas and Sharma 2015).

Using assumption that the SP data in the malachite mine considers a body, EKI is
appliedwith search ranges as Table 7.5. Table shows themodel parameter revealed by
EKI comparing with other methods including a horizontal gradient approach (HGA)
(Abdelrahman et al. 2004), DEXP (Fedi and Abbas 2013), DE (Balkaya 2013),
inversion using Fair function approach (FFA) (Tlas and Asfahani 2013), Gauss-
Newton (GN) (Mehanee 2014), and VFSA (Biswas and Sharma 2015), PSO (Essa
2019). The depth of the ore body has revealed 15.5 m by HGA, 13.6 m by EPM,
19.2 m by DE, 15.6 m by FFA, 12 m by GN, 15.2 m by VFSA, 21.42 by PSO, while

Fig. 7.7 The description is like on the Fig. 7.6, but for Malachite mine of SP data inversion
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the depth is 11.45±0.27 m by EKI. The depth determined by EKI indicates fair
agreement with that of the drilling information (13.7 m) (Dobrin and Savit 1988).
Moreover, Table 7.5 also indicates that the distance of anomaly body determined by
EKI is good agreement with those of DE, PSO and VFSA, while the shape factor of
EKI is sufficiency different with others, although the shape factor indicates that the
ore body is a vertical cylinder.

Furthermore, interpretation ofMalachitemine anomaly uses EKImultiple anoma-
lous bodies considering the peak negative anomalies considered as the center of
anomalies. The search ranges uses in the inversion is based on Biswas and Sharma
(2015), which is presented in the Table 7.6. Figure 7.7c indicates good fittings
between the observed andmedian of PDM fromEKI consideringmultiple anomalous
and Fig. 7.6d demonstrates the subsurface structure for multiple bodies. Table 7.6
reflects the model parameters of anomalous revealed by EKI are comparable with
those of VFSA. In addition, the shape bodies of VFSA also have same meaning
with EKI result, while the depth of second anomaly from EKI is closer with drilling
information (13.7 m) than VFSA result. It indicates that the source of the ore bodies
have been successfully estimated using EKI.

7.4.3 Surda Anomaly, Portugal

Surda anomaly was measured SP data in Surda area, which is correlated with Rakha
mines, Singhbhum copper belt, Jharkhand, India. The anomaly was interpreted using
global optimization (GO) including NN (El-Kaliouby and Al-Garni 2009), GPA (Di
Maio et al. 2016), PSO (Monteiro Santos 2010), VFSA (Sharma and Biswas 2013),
and BHA (Sungkono and Warnana 2018). In this paper, EKI inverts the SP anomaly
using the parameter range as in the Table 7.7. Furthermore, the results are compared
to those of other GOs.

Figure 7.8a shows the observed SP data comparing with calculated data from
median of PDM, resulted by EKI, indicates that the comparison of data are closed.
The EKI inversion results and the other approaches are tabulated in Table 7.7. The
result shows that the model parameters inverted by EKI is good agreement with those
of other GOs. Thus, the model parameter of anomaly has been accurately determined
using EKI.

7.5 Conclusion

Ensemble Kalman Inversion (EKI) has been developed and applied for SP data
inversion assuming models of a simple geometry such as horizontal and vertical
cylinders, sphere, and inclined sheet. The method was tested on noise-free and noise-
added synthetic data for a single and multiple anomalous sources. Additionally, the
EKI has also implemented on several fields SP data for ore bodies identifications
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Fig. 7.8 Inversion results of Surda anomaly uses EKI; a) Fitting SP data between observed (dots)
and calculated (median of PDM) data (lines) using EKI

including Neem-ka-Thana, Malachite mine, and Surda anomalies. The results of the
algorithm demonstrate that is good agreement with those of other methods result and
geological or drilling information.

Acknowledgements Computer codes used are available upon request to the corresponding author.
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Chapter 8
Advanced Analysis of Self-potential
Anomalies: Review of Case Studies
from Mining, Archaeology
and Environment

Lev V. Eppelbaum

Abstract Self-potential (SP) method is one of the most non-expensive and unso-
phisticated geophysical methods. However, its application is limited due to absence
of reliable interpreting methodology, first for the complex geological-environmental
conditions. The essential disturbances appearing in the SP method and some ways
for their removal (elimination) before the quantitative analysis are discussed. A brief
review of the available interpretation methods is presented. For the magnetic method
of geophysical prospecting, have been developed special quantitative procedures
applicable under complex physical-geological environments (oblique polarization,
uneven terrain relief and unknown level of the normal field). Earlier detected common
peculiarities between themagnetic and SP fields have been extended. These common
aspects make it possible to apply the advanced procedures developed in magnetic
prospecting to SP method. Besides the reliable determination of the depth of anoma-
lous targets, these methodologies enable to calculation of corrections for the non-
horizontal SP observations and direction of the polarization vector. For classification
of SP-anomalies is proposed to apply a new parameter—‘self-potential moment’.
The quantitative procedures (improved modifications of the characteristic point,
tangent techniques and areal method) have been successfully tested on SP models
and employed in numerous real situations in mining, archaeological, environmental
and technogenic geophysics. The obtained results indicate the practical importance
of the developed interpretation methodologies.
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8.1 Introduction

TheSelf-Potential (SP)method is based on the study of natural electric fields (in some
sources this method is named as ‘spontaneous polarization’). The term “natural” here
means that this field does not create by any external artificial sources. Permanent elec-
tric fields arise in the course of redox, filtration, and diffusion-adsorption processes
in the upper part of geological section. The registration of these fields is the goal of
the SP method, and the geophysical interpretation of the parameters generating this
field is the main purpose of SP data examination. An oxidizing object (e.g., ore body,
archaeological or other target) is a galvanic cell, the occurrence of which requires:
(1) the contact of electric conductors with different types of conductivity (electronic
and ionic), and (2) the difference in the redox conditions at different contact points of
these conductors. An appearance of these conditions is usually impossible without
the underground water contact (Sato and Mooney 1960).

In the geological section, the conditions for the formation of a galvanic cell arise
on targets with electronic conductivity, if these bodies occur in the water-saturated
rocks with ionic conductivity. The change in the redox conditions at the contact of the
electronic conductor (anomalous target) and the surrounding medium is associated
with a decrease in the oxygen content with a depth.

Fox’s (1830) SP observations at copper vein deposits in Cornwall (England) laid
the foundation of the application of all electric methods in geophysics as a whole. SP
is an effective, prompt and comparatively simple geophysical method. Equipment for
SP method is one of the most non-expensive in the applied geophysics (Table 8.1).

Conventional equipment employed in the SP method consists of microVoltmeter,
pair of non-polarizable electrodes, cable and CuSO4 solution (the latter is necessary
for the better contact of employed electrodes with the environment).

Without hesitation, ground penetration radar (GPR) and electric resistivity tomog-
raphy (ERT) are more powerful geophysical tools, which can theoretically produce a
lot more detailed geophysical-archaeological information. However, they are much
more expensive and, most importantly, water content in subsurface strongly compli-
cates application of these methods. At the same time, presence of water is only
positive factor for the SP method, since it enables to increase SP anomaly intensity
(Semenov 1980; Parasnis 1986).

In this investigation is considered SP method employment in mining geophysics
(e.g., Semenov 1980; Corry 1985; Babu and Rao 1988; Lile 1996; Golkdie 2002;
Bhattacharya et al. 2007; Dmitriev 2012; Fedi and Abbas 2013; Biswas and Sharma
2016; Eppelbaum 2019a, b; Eppelbaum 2021), archaeological geophysics (e.g.,
Wynn and Sherwood 1984; Mauriello et al. 1998; Eppelbaum et al. 2003a, b; Drahor
2004; Di Maio et al. 2010; Shevnin et al. 2014; De Giorgi and Leucci 2017, 2019;

Table 8.1 Averaged prices for geophysical potential field equipment

Method Gravity Magnetic Resistivity Self-Potential

Price of equipment, US $ 60,000–110,000 20,000–25,000 35,000–55,000 150–200
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Eppelbaum 2020), environmental geophysics (e.g., Corwin 1990; Quarto and Schi-
avone 1996; Jardani et al. 2006a; Eppelbaum 2007; Srigutomo et al. 2010; Chen et al.
2018; Gusev et al. 2018; Oliveti and Cardarelli 2019) and technogenic geophysics
(e.g., Castermant et al. 2008; Fomenko 2010; Onojasun and Takum 2015; Cui
et al. 2017). Application of quantitative analysis in the SP method for solving other
geological-geophysical problems is beyond the scope of this study.

8.2 Self-potential Observations: Common Disturbances

8.2.1 Different Kinds of Noise in SP Observations

The main kinds of noise appearing in the SP method are shown in a block-scheme
(Fig. 8.1). Some of these noise effects are considered below in detail.

8.2.1.1 Electrode Noise in the SP Method

Although the fact that SP electrode is called as “non-polarizable”, after some time it
accomplishes somepolarization effects from the surroundingmedia.However, taking
into account that we measure the value �U = (U1−U2), the most is important is
to keep not absolute non-polarizability, but an equivalent polarization on both of
the employed electrodes. For inspecting this equivalent, the following procedure
can be employed in field conditions (of course, direct measurements in a physical
laboratory are more precise). We can write a trivial equation for the first electrode:
U1 + e1 (U1 is the first “medium” signal, and e1 is the noise accumulated in the first
electrode). For the second electrode, correspondingly we have U2 + e2 (U2 is the
second “medium” signal, and e2 is the noise of accumulated in the second electrode).
According to (Semenov 1980), we measure

�U1 = (U1 + e1) − (U2 + e2). (8.1)

Let us will change electrodes by their places. In this case we will obtain

�U2 = (U1 + e2) − (U2 + e1). (8.2)

After this, calculating a difference between �U1 and �U2, we receive

∂U = �U1 − �U2 = [U1 + e1 −U2 − e2] − [U1 + e2 −U2 − e1] = 2(e1 − e2)
(8.3)

or
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Fig. 8.1 General scheme of disturbances in the SP method

(e1 − e2) = ∂U

2
. (8.4)

If the value (e1 − e2) is significant (e.g., ≥3 mV), the noised electrodes must be
replaced by new ones.

A similar methodology for the electrode noise detection was suggested by Perrier
and Pant (2005).

8.2.1.2 Temporal Variations in SP Method

Parasnis (1986) has been carried out SP measurements along the same profiles in
the Akulla region (Sweden) seven times during 1960–1967 years. These measure-
ments indicate a good repeatability despite of the fact that they were conducted under
different climatic conditions. Similar investigations performed by other researchers
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(e.g., Semenov 1980) generally confirm a good repeatability of the different SP time
observations.

For the estimation of accuracy ε of SP field measurements the following trivial
formula often employed in various geophysical methods may be applied

ε =

√
N∑
i=1

(
�Uinit

SP − �Urep
SP

)2
N

,

where N is the total number of SP observations, ‘init’ means the ordinary measure-
ments, and ‘rep’means the repeatedmeasurements. The number of repeatedmeasure-
ments should be at least 8–10% of the total number pf observations. If the value of
ε exceeds some a priori assumed value (this value usually depend on the concrete
spread of the SP amplitudes), results of SP survey can be rejected as non-reliable
ones.

8.2.1.3 Terrain Relief Correction

In the SP method, terrain relief influence is two-fold. On the one hand, over the posi-
tive topographic forms can be created negative SP anomalies caused by electromotive
force (this phenomena strongly depends on the peculiarities of underground water
circulations). Comparison of the SP graphs with the topographic data usually allows
to perform identifying anomalies of this type by the characteristic mirror images
(Khesin et al. 1996).

From other side, as follows from the very detailed SP measurements of Ernstson
and Schrerer (1986), at the inclined topographic surface, the SP field increases
directlywith increases in the relief highs (Fig. 8.2). In the last case, for the elimination
of the terrain relief influence, a correlationmethod developed inmagnetic prospecting

Fig. 8.2 SP observations at
inclined relief (after Ernstson
and Schrerer (1986), with
small modifications) (Middle
Keuper of the Steigerwald
highlands, 60 km east of
Würzburg, Germany)
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(Khesin et al. 1996) and VLF studies (Eppelbaum and Mishne 2011) can be applied.
The essence of this method is as follows. The method employs for removing the
terrain relief effect from the observed field �Uobser a linear least-squares relation
�Uappr (application of other relationships is also possible):

�Uappr = c + bh,

where h is the height of relief, b is the angle coefficient, and c is the free member.
Value �Uappr approximates the observed field as a function of elevation h

(SP anomalous zones usually do not include to the correlation field) and then we
obtain the corrected (residual) field �Ucorr , where the relief influence is essentially
eliminated:

�Ucorr = �Uobser − �Uappr .

It should be noted that this correction only eliminates the effect of the inclined
topographic masses with certain electric properties. Special methods allowing to
calculate the difference in altitudes of SP observations to the anomalous target on an
inclined profile, are considered in Sect. 4.2 ‘SP observations on an inclined profile’.

Wang and Geng (2015) studied the problem of terrain correction in the SPmethod
in detail on several field examples. They decided that themechanism of SP anomalies
formed by terrains is rather complex, and therefore it is difficult to obtain the corre-
sponding analytical formulas. The authors applied three types of relief fitting: (1)
linear, (2) quadratic and (3) exponential. After comprehensive analysis, Wang and
Geng (2015) concluded that the linear fitting is more optimal since it does not create
fictitious anomalies. Thus, the aforementioned investigation confirms the application
of the aforementioned linear least-squares relation.

8.2.1.4 Calculation of SP Anomaly Distortion Due to Observations
on Uneven Surface

SP anomalies (as and anomalies of other potential fields) distort due to observations
on uneven surfaces (and correspondingly, from different distances to anomalous
objects). This disturbing effect usually is calculated at the end of the interpretation
process (see Sect. 8.4.2).

8.2.1.5 Net Justification in Areal Observations (Elimination
of Temporal Variations)

Net justification of SP data (elimination of temporal variations caused by different
natural factors) is conventionally performed by the use of procedure identical to
justification of observations in gravity and magnetic prospecting (e.g., Telford et al.
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1990). Some other strategies for removing this effect are presented, for instance, in
Revil and Jardani (2013).

8.2.1.6 Influence of Meteorological Factors

Many scientists note that the rains increase the intensity of SP anomalies increases
(e.g., Semenov1980; Parasnis 1986;Revil and Jardani 2013). Therefore, occasionally
an artificial irrigation of site intended for SP research is recommended.

8.2.1.7 Presence of Magmatic Associations

Obviously development of magmatic associations (or other kinds of hard geological
rocks) in a site destined for field investigations does not allow for the grounding of SP
electrodes. The same reason may limit the water circulation at subsurface, which can
weaken, or even to completely cancel a generation of the SP anomalies.

8.2.1.8 Some Environmental Factors

The SP anomaly level may affect some environmental factors. One of these factors
is the shadowing of a part of the investigated area. For instance, Revil and Jardani
(2013) have documented the fact that the difference between the SP electrodes placed
in cold and warm media may exceed 10 mV. Another factor is a presence of some
hygrophilous plants (e.g., hazel and almonds)whose roots can pick over a lot ofmois-
ture from the upper part of the geological section (thereby hindering the generation
of SP anomalies).

According to Semenov (1980), polarization of the electrodes ε and difference of
their temperatures have the following relationship:

e(mV ) ≈ 0.75�T (◦C),

where e is the electrodes’ polarization and �T is the difference of the electrodes’
temperature.

Ernstson and Schrerer (1986) have been monitored SP and temperature anoma-
lies during 15 months (in 1980–1981) (Fig. 8.3). The correlation between SP and
soil temperature is interpreted as result of the influence of thermal diffusivity and
convection processes in subsurface (Ernstson and Schrerer 1986). Between these
parameters a correlation of r = 0.64 was established. It is not a high relationship,
but in any case should be taken into account.

Perrier and Morat (2000) also detected a correlation between the amplitudes of
the SP variations and soil temperatures. According to these authors, the state of the
soil in the first 30 cm seems to play an important role. Perrier and Morat (2000)
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Fig. 8.3 A correlation
between temperature and SP
observations: a temperature,
b SP intensity, c correlation
between these parameters
(a and b–after Ernstson and
Schrerer (1986)). SP
observations were carried out
in the Middle Keuper of the
Steigerwald highlands 60 km
east of Würzburg, Germany

concluded that the joint monitoring of electric potential and temperature appears to
be a powerful tool to monitor the underlying soil processes.

Jardani et al. (2008) proposed the following model for explanation of SP pattern
generating by geothermal flow:

grad · (σgradΠ) = grad · Js = ζ, (8.5)

where σ is the conductivity (in S/m), Js is the current density vector (in A/m2), and
ζ is the volumetric current density (in A/m3).

An essential relationship between the SP data and temperature values recorded
in boreholes at intermediate and large depths was established by Jardani and Revil
(2009) in the Cerro Prieto geothermal field (Baja California, USA). Existence of this
phenomenon under normal thermophysical conditions is not studied yet in detail.
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8.3 Review of Quantitative Interpretation Methods

An extensive literature is devoted to the interpretation of self-potential anomalies.
Unfortunately, it is not possible to cite even all themost important publications in this
review, and the author apologizes to those researchers whose excellent publications
were not included in this overlook.

The calculation of theoretical anomalies due to SP has long been based primarily
on Petrovsky’s (1928) solution which was derived for a vertically polarized sphere
(Zaborovsky 1963). Later on, some substantial solutions for sheet-like bodies and
inclined plates were obtained (Semenov 1980). The electric polarization vector was
generally considered to be directed along the sheet-like body dipping (along the
longer axis of the conductive body).

Other methods of SP anomaly quantitative interpretation include anomalous body
with a simple geometrical shape which approximates the anomaly source. Its param-
eters (i.e. the depth, the angle between the horizon and the direction of the polar-
ization vector) are usually determined: (1) graphically using characteristic points of
the anomaly plot, or (2) by trial-and-error method consisting of visual comparison
of the observed anomaly with a set of master curves (Semenov 1980).

Zaborovsky (1963), Semenov (1980) and Murty and Haricharan (1984) applied
to SP anomaly, generated by plate and calculated along the profile across its strike,
the following formula:

U (x) = jρ

2π
ln

r21
r22

, (8.6)

where j is the current per unit length, ρ is the host medium resistivity, r1 and r2 are the
distances from the plate left and right ends to the observation point. The interpretation
procedures based on use of Eq. (8.5), are undoubtedly useful for simple geological
(environmental) models.

Fitterman (1979) gave the method of SP anomaly calculation for field sources
of an arbitrary shape based on numerical integration using Green’s function. This
potentially promising approach is highly computer intensive even at the modern
computers and does not provide sufficient accuracy.

There are a number of recent interpretation techniques based on minimizing the
difference betweenobserved and theoretical anomalies. Theminimization is achieved
by sequential optimization of the interpretation parameters through computer-aided
iterations. These techniques are inapplicable for complex geological sections.

Quantitative procedures suggested by Rao and Babu (1983) for SP anomalies
from 2D sheet-like bodies does nor calculate such factors as oblique polarization
and uneven terrain relief.

Eskola and Hongisto (1987) have proposed a methodology of SP interpretation
constructed by use of the macroscopic physical model for the mineral SP effect. This
model is based on the SP electrochemical principles described by Logn and Bolviken
(1974). A further evolution of this methodology may be perspective one.
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A few groups of authors have performed spatial-frequency analysis of SP anoma-
lies produced by polarized bodies of various geometrical shapes: Rao et al. (1982),
Rao and Mohan (1984), Banerjee and Pal (1990), Skianis et al. (1991, 1995).

A series of publications (Abdelrahman and Sharafeldin 1997; Abdelrahman et al.
1997, 1998; El-Araby 2004; Essa et al. 2008) provided a large number of method-
ological approaches based mainly on application of the gradient analysis and calcu-
lation of derivatives. However, these approaches by their general usefulness, have
not caused a quantitative jump in this field.

Gibert and Pessel (2001) have applied the continuous wavelet transform for
the localization of SP anomalies. The wavelet analysis provided both an estimate
of the location and of the nature of the target responsible for a given self-potential
signal. The wavelet-based techniques as well as analytic signals were employed by
Sailhac and Marquis (2001) to interpret SP anomalies caused by subsurface fluid
flow in the Mt. Etna.

Patella (1997) suggested an application a tomographic presentation of SP images.
It consisted of scanning the section through SP profiles, by the unit strength elemen-
tary charge, which is given a regular grid of coordinates within the section. At the
each point of the section the charge occurrence probability function is calculated.
The complete set of calculated grid values is employed to draw colored sections.
This method was evaluated by Di Maio et al. (2016).

Mendonça (2008) has employed the Green’s functions to simplify the evaluation
of SP anomalies from buried conductors. This approach was used by this author to
simulate geoelectric targets in mineral exploration and to obtain current source terms
by inverting an SP data set.

Srivastava and Agarwal (2009) developed the ‘Enhanced Local Wave number
technique’ wherein the nature of the causative source has been determined by
computing structural indices basedon its horizontal location anddepth.This approach
was tested on several mineral deposits with complex ore body distribution.

An attempt to apply the neural network approach to compute the shape factor and
depth of the causative target from SP anomaly was undertaken in Al-Garni (2017).
Without denying the general promising of this approach, it should be noted some
inconclusiveness of the examples given in this work.

Gobashy et al. (2019) proposed a method based on utilizing the optimization
algorithm, which as an effective heuristic solution to the inverse problem of SP field
due to a 2D inclined bed. The realization of this algorithm in complex physical-
geological conditions is under question. Rao et al. (2020) proposed a global opti-
mization methodology expressed in development of inversion algorithm for 2D
inclined plates. Absence of geological sections in the mentioned work complicates
examination of this methodology.

Hristenko and Stepanov (2012) have demonstrated a system of 2Dmodeling of SP
field from several different anomalous bodies with introduced Gaussian noise under
conditions of uneven relief. Some applied transformations allowed to exclude effect
of near-surface geological inhomogeneties from the total SP field and to enhance
anomalies from the buried targets.
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Theprocedure based on the interpretation of self-potential anomalies due to simple
geometrical structures using Fair function minimization (Tlas and Asfahani 2013),
is of certain interest. Giannakis et al. (2019) suggested a hybrid optimization scheme
for SP measurements due to multiple sheet-like bodies. This procedure demands a
wide verification on concrete field examples. A special interest presents the recent
research of Oliveti and Cardarelli (2019) who developed the least square subspace
preconditionedmethod to compute the knownTikhonov solution to reliable detecting
the depth and the shape of shallow electrical current density sources.

Fedi and Abbas (2013) proposed the ‘depth from extreme points method’ and
employed it on several models and field examples. The method yields estimates of
the source horizontal location, depth (top or center), and geometry.

Kilty (1984) published a paper that acknowledged the analogy between the
current density of SP and magnetic induction. This author suggested interpreting SP
anomalies based on the conventional methods developed for magnetic prospecting.
However, the trivial methodologies are not acceptable for complex physical-
geological conditions when we should calculate influence of inclined relief and
oblique polarization as well as superposition of SP anomalies of various orders. A
similar approach, but with the improved interpretation methodology was proposed
by Khesin et al. (1996). Eppelbaum and Khesin (2012) proposed a new elaboration
of the interpretation process. The present research shows a final generalization of
this approach.

8.4 Some Common Aspects of Magnetic and SP Fields

The magnetic field is a potential one (when value of target’s magnetization is not
very high) and satisfies Poisson’s equation:

Ua = −gradV, (8.7)

where Ua is the anomalous magnetic field and V represents the magnetic potential.
SP polarization is generated by the spontaneous manifestation of electric double

layers on contacts of various geological (or environmental and artificial) objects. The
electric fields E of the electric double layer l caused by natural electric polarization
are defined as the gradient of a scalar potential 
i:

ESP = −grad Πi . (8.8)

The potential Πi satisfies Laplace’s equation everywhere outside the layer l
(Zhdanov and Keller 1994).

Analytical expressions for some interpreting models for magnetic and SP fields
are presented in Table 8.2.
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Table 8.2 Magnetic and SP
fields: comparison of
analytical expressions for
some interpreting models

Field Analytical expression

Magnetic Thin bed (TB) (9)
Zv = 2J2b z

x2+z2

Point source (rod) (10)
Zv = mz

(x2+z2)
3/ 2

Self-Potential Horizontal circular
cylinder (HCC) (11)
�U =
2 ρ1

ρ1+ρ2
U0r0

z
x2+z2

Sphere (12)

�U =
2ρ1

2ρ2+ρ1
U0R2 z

(x2+z2)
3/2

Here Zv is the vertical magnetic field component at vertical magnetization; J is
the magnetization; b is the horizontal semi-thickness of TB; m is the magnetic mass
(point pole magnetic charge); ρ1 is the host medium resistivity; ρ2 is the anomalous
object (HCC or sphere) resistivity; U0 is the potential jump at the source body/host
medium interface; r0 is the polarized cylinder radius; R is the sphere radius; x is the
current coordinate; z is the depth of the upper edge of TB (center of HCC or sphere)
occurrence.

Formulas describing potential character of magnetic (Eq. 8.7) and SP (Eq. 8.8)
fields are identical ones. The proportionality of analytical expressions (9) and (11),
(10) and (12) for magnetic and SP fields is obvious. It allows to employing in SP data
analysis advanced interpretation methods developed in magnetic prospecting (we
assume that the SP polarization vector is analogue of the vector of magnetization). It
is supposed that themajority of interpretationmethodologies developed for magnetic
and gravity fields are applicable for the SP method.

For instance, results of SP physical modeling on several buried spheres demon-
strate practical applicability of the downward continuation (Fig. 8.4). SP anoma-
lies are practically non-detectable at large distances from the anomalous bodies
(combined effect from four spheres give only regional anomalous background), but
separate SP anomalies can clearly be recognized atmore close distances to the hidden
spheres (Fig. 8.4).

In several workswas demonstrated application of some advanced procedures from
the most developed potential fields (gravity and magnetics), to the self-potential
data. Akgün (2001) applied the Hilbert transform (usually employed in gravity and
magnetic prospecting) for analysis of SP data. Sindirgi et al. (2008) successfully
tested on the SP anomalies method of the total normalized gradient developed in
gravity prospecting. This investigation has been continued in (Sindirgi and Özyalin
2019)with the application of the Euler deconvolution.Agarwal and Srivastava (2009)
successfully verified the extended Euler deconvolution techniques in some mineral
deposits and observations in deep borehole. Biswas (2018) suggested to studying SP
anomalies a 2D analytic signal developed in magnetic prospecting.

Of special interest is the recently published research of Sungkono (2020), where
the author proposed to employ posterior distribution model of the SP anomaly inver-
sion. The advantages of this approach are that the SP data may contain single and
multiples of SP sources and this method does not require prior assumptions over the
shape of the anomaly source.
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Fig. 8.4 The model SP curves over a group of the polarized spheres. The horizontal distance
d between spheres: A–3a, B–5a (after Tarasov (1961), withmodifications). The spheres are geomet-
rically and physically identical: P1 = P2 = P3 = P4. The levels of the SP observations: (1) z0 = 2a,
(2) z0 = 3a, (3) z0 = 5a, z0 is the depth from surface to the center of the sphere, x/a is the relative
distance

8.4.1 Quantitative Analysis of SP Anomalies by the Use
of Advanced Methodologies Developed in Magnetic
Prospecting

The improved methods for SP anomaly analysis include characteristic point, tangent
and arealmethods (thesemethods are described in detail in the publications suggested
to magnetic anomaly interpretation: e.g., Khesin et al. 1996; Eppelbaum et al. 2000,
2001;EppelbaumandMishne 2011;EppelbaumandKhesin 2012;Eppelbaum2015).
Formulas for interpretation SP anomalies by the use of characteristic point method
are shown in Table 8.3. Several figures below display some peculiarities of the
characteristic point and tangent methods application.

Preliminary results for SP anomalies to estimating HCC radius and length of
horizontal upper edge may be obtained from 3D magnetic field modeling (taking
into account a common similarity of these fields).
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The improved versions of tangent and areal methods are presented in detail in
Eppelbaum et al. (2000, 2001b), Eppelbaum and Mishne (2011) and Eppelbaum
(2015, 2019a).

8.4.2 SP Observations on an Inclined Profile

When potential geophysical anomalies are observed on an inclined profile, the
obtained parameters characterize some fictitious body (Eppelbaum 2019a). The tran-
sition from the parameters of fictitious target to those of real target is realized using
the following expressions:

{
hr = h f + x0 f tanω0

xr = −h f tanω0 + x0 f

}
, (8.13)

where h is the depth of the body upper edge occurrence (or HCC (sphere) center),
x0 is the shifting of the anomaly maximum from the projection of the center of the
anomalous body to the earth’s surface (produced by an oblique polarization), and ω0

is the angle of the terrain relief inclination (ω0 > 0 when the inclination is toward the
positive direction of the x-axis), the subscripts “r” and “f ” stand for parameters of
real and fictitious bodies, respectively.

The direction of the electric self-polarization vector φp is calculated from the
expression

ϕp = 90o − θ, (8.14)

and on an inclined relief

ϕp,r = 90o − θ + ω0. (8.15)

The performed calculations of the vector φp direction on concrete field examples
indicates that for the interpreting models closed to the model of inclined (vertical)
thin bed, the direction of this vector approximately coincides with the anomalous
body dipping. It enables to obtain a supplementary interpretation parameter.

Besides the geometric parameters of the anomalous target, the self-potential moment
can also be determined (see Table 8.3). For the models of thin bed and HCC, the self-
potentialmoment can be calculated by the use of Eq. (8.16a) and (8.16b), respectively
(see also Tables 8.3 and 8.4)

M�U = 1

2
�Uah0, (8.16a)
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Table 8.4 Nomenclature of variables applied for quantitative analysis of SP anomalies due to
model of thin bed and horizontal circular cylinder (see Table 8.3)

Variable Description

θ Generalized angle reflecting the degree of SP anomaly asymmetry as a function
relation of an anomalous body depth of occurrence, geometric form, value of
polarization

x0 Horizontal displacement of projection of the middle of the upper edge of thin bed
to the earth’s surface due to oblique polarization

xc Horizontal displacement of projection of the center of the HCC to the earth’s
surface due to oblique polarization

h0 Depth to the upper edge of thin bed

hc Depth to the center of HCC

�Umax Maximum value of SP anomaly

�Umin Minimum value of SP anomaly

�UA Total amplitude of SP anomaly

d1 Difference of extremum abscissae for thin bed

d1r Difference of extremum abscissae for HCC

d2 Difference of semi amplitude point abscissae

d5 Difference of inflection point abscissae

xr Right inflection abscissae point

xl Left inflection abscissae point

�Ubackr Normal background level of SP anomaly

M�U Self-potential moment for the models of thin bed or HCC

M�U = �Uah2c(
3
√
3/2

)
cos

(
30o − θ

/
3
) , (8.16b)

where �Ua is the amplitude of SP anomaly (in mV), h0 is the depth of the upper
edge of thin bed (in meters), h2c is the squared depth to the center of the HCC (in
m2), and θ is the some generalized angle (see Tables 8.3 and 8.4). The self-potential
moment, by analogy with the magnetic field analysis, can be used for classification
of various SP anomalies (and, correspondingly, hidden targets).

Initial methodologies for quantitative analysis of magnetic anomalies under
complex physical-geological conditions for themodel of the thick bedwere presented
inKhesin et al. (1996) andEppelbaumet al. (2000, 2001) and its significant evaluation
(including the intermediate models between the thick and thin beds)–in Eppelbaum
(2015).

For observation on inclined profile, the real self-potential moment can be
calculated as follows:

M�U,r = M�U, f cosω0. (8.17)
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Here the subscripts “r” and “f ” stand for a parameter of real and fictitious self-
potential moments, respectively.

Undoubtedly, the calculation of all aforementioned parameters from SP data
should be joined to a unified computerized interpreting system with a minimal
participation of an interpreter.

For the testing of some SP anomalies, software for the 3D computation of
the magnetic field may be applied. In this case, magnetic vector orientation can
be utilized as analogue of self-potential vector.

8.5 Quantitative Analysis of SP Anomalies

Thus, the developed interpretation system in the SPmethod is applicable for complex
physical-geological conditions: oblique polarization, inclined relief and unknown
level of the SP normal field.

8.5.1 Testing on Theoretical Models

First of all the aforementioned interpretationmethods were successfully tested on the
SP anomalies from models presented in Semenov (1980), Göktürkler and Balkaya
(2012) and Hristenko and Stepanov (2012).

8.5.2 Mining Geophysics

The self-potential method often enough has been employing in ore deposits of
different kind (e.g., Stern 1945; Yüngül 1954; Sengupta et al. 1969; Logn and
Bolviken 1974; Cowan et al. 1975; Semenov 1980; Nayak 1981; Corry 1985;
Eskola and Hongisto 1987; Babu and Rao 1988; Lile 1996; Eppelbaum and
Khesin 2002; Goldie 2002; Bhattacharya et al. 2007; Mendonça 2008; Srivas-
tava and Agarwal 2009; Dmitriev 2012; Fedi and Abbas 2013; Biswas and
Sharma 2016; Alizadeh et al. 2017; Erofeev et al. 2017; Safipour et al. 2017;
Eppelbaum 2019a, b; Eppelbaum 2021; Zhu et al. 2021).

8.5.2.1 Chyragdere Sulfur Deposit (Central Azerbaijan)

It is interesting to compare SP studies carried out in the Ghyragdere sulfur deposit
(central Azerbaijan) during several years: 1930, 1937 and 1938 (Fig. 8.5). This figure
shows that the mining works in the underground shaft (1930–1938) strongly distort
the SP field observed at the earth’s surface (distance from the observation points to



8 Advanced Analysis of Self-potential Anomalies: Review of Case Studies … 221

Fig. 8.5 Displacement of self-potential isolines during exploitation of the new shaft of Chyragdere
sulfur deposit (Lesser Caucasus) (after Eppelbaum and Khesin 2012, with modifications). (1) stock
contour, (2) isolines of self-potential field (in milliVolts)

ore deposit consisted several tens of meters). This testifies to the tight correlation
between the mining processes and SP anomalies. It would be fascinating to compare
the volumes and contours of the mined ore with the SP isolines, separately for the
abovementioned years, but these documents have been lost over the past years.

8.5.2.2 Sariyer Sulphide-Pyrite Deposit (near Istanbul, Turkey)

Yüngül (1954) documented the results of the survey in the Sariyer area (Istanbul).
The performed interpretation indicates that the obtained position of HCC center is
in the line with geometrical and physical parameters of the sulphide-pyrite ore body
(Fig. 8.6). Here and in some other figures, displayed parameters d3 and d4 relate
to the improved tangent method (this method is described in detail, for instance,
in Eppelbaum et al. (2001)). Calculating the self-potential moment by the use of
Eqs. (8.16b) and (8.17), we obtain M�U = 31800mV ·m2. The calculated direction
of self-potential vector by use of Eq. (8.15) is estimated as vertical one (Fig. 8.6).

8.5.2.3 Polymetallic Deposit (Rudnyi Altai, Russia)

Figure 8.7 displays results of SP anomaly quantitative interpretation using character-
istic points and tangent methods (areal method based on the calculation of the area
occupied by SP anomaly has also been applied). The interpretation results, as can
easily see from Fig. 8.7, have a good agreement with the ore body location. The self-
potential moment (here model of a thin bed was selected and Eqs. (8.16a) and (8.17)
were applied) M�U = 1

260mV ·6.5m ·0.93 = 181mV ·m. The calculated direction
of self-potential vector (Eq. (8.15)) practically coincides with the polymetallic body
dipping (Fig. 8.7).
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Fig. 8.6 Quantitative interpretation of SP anomaly by the characteristic point and tangent methods
in the Sariyer area, Turkey. The “Θ” symbol marks the obtained position of the ore body center
(approximated by a HCC). Red arrow shows the orientation of self-polarization vector. Observed
SP curve and geological section are taken from Yüngül (1954)

8.5.2.4 Katsdag Polymetallic Deposit (Azerbaijan)

ThreeSP anomalieswere successfully interpreted in theKatsdag copper-polymetallic
deposit (southern slope of the Greater Caucasus, Azerbaijan) under conditions of
rugged terrain relief (Fig. 8.8). Anomalies 1 and 2 are intensive ones, but anomaly
3 is comparatively small. It is important to underline here an essential difference
between the quantitative results of SP anomalies analysis calculatedwithout andwith
estimation of the rugged relief influence. The SP moment calculated for anomaly
1 (after applying Eqs. (8.16a) and (8.17)) is M�U = 1

2180mV · 20m · 0.984 =
3450mV · m.

8.5.2.5 Filizchai Polymetallic Deposit (Azerbaijan)

An intensiveSPanomaly (almost 500mV)was observed in the portion of theFilizchai
copper-polymetallic field (southern slope of theGreater Caucasus, Azerbaijan) under
the conditions of highly complex terrain relief (Fig. 8.9). The results of the inter-
pretation (improved methods of characteristic points and tangents were applied)
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Fig. 8.7 Quantitative interpretation of SP anomaly over polymetallic body (Rudnyi Altai, Russia).
Observed SP curve and geological section are taken from Zaborovsky (1963). (1) limestone, (2)
shales, (3) copper-polymetallic ore body, SP observations carried out in (4) 1952 and (5) 1953, (6)
determined position of the center of the upper edge of the ore body, (7) direction of the self-potential
vector

also indicate significant difference of position of the upper edge of anomalous body
calculated without rugged terrain relief influence (blue circle) and after calcula-
tion of this influence (red circle). The calculated SP moment (after Eq. (8.16a)) is
M�U = 1

2440mV · 90m = 19800mV · m. The employment of Eq. (8.17) gives us
some decreased value: 14600 mV·m. It is a sufficiently high value of SP moment
(for a thin bed model). However, such large SP anomalies of polymetallic ore origin
are rarely observed. The direction of the self-potential vector was calculated by
the use of Eq. (8.15). Position of this vector agrees well with the dipping of this
pyrite-polymetallic body (Fig. 8.9).

8.5.2.6 Uchambo Ore Field (Georgia)

Figure 8.10 depicts the position of the HCC center (characteristic point, tangent and
areal methods were applied), which evidently fixes the edge of a flat-lying orebody
in the Uchambo polymetallic deposit (southern Georgia). The SPmoment calculated
using Eqs. (8.16b) and (8.17) is M�U = 13480mV · m2. The complex form of
ore-body obviously did not allow to determine an exact position of the self-potential
vector.
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Fig. 8.8 Results of quantitative interpretation of SP anomalies in the area of Katsdagh copper-
polymetallic deposits on the southern slope of the Greater Caucasus (Azerbaijan). (1) interbedding
of sands and clay schists, (2) clay schists with the flysh packages, (3) clay sandstone; (4) sand-
clay schists; (5) diabases, gabbro-diabases and diabasic porphyrites; (6) andesites and andesite-
porphyrites; (7) dacitic porphyrites; (8) faults; (9) massive ore of pyrite-polymetallic composition;
(10) oxidized ore; (11) zones of brecciation, crush and boudinage with lean pyrite-polymetallic ore;
(12) SP curves; location of anomalous source: (13) without calculation of inclined relief influence,
(14) after introducing correction for terrain relief, (15) position of the self-potential vector

8.5.2.7 Potentsialnoe Polymetallic Deposit (Rudnyi Altai, Russia)

Here three different interpreting models were utilized (thin bed, HCC and thick bed)
(Fig. 8.11).All three appliedmodels are suitable ones. The calculated SPmoment (for
the HCCmodel) is (after employing Eqs. (8.16b) and (8.17))M�U = 21890mV·m2.

The calculated position of the polarization vector (HCC) coincides with the dipping
of the polymetallic body (Fig. 8.11).

8.5.2.8 Graphite Body (Southern Bavarian Woods, Germany)

The graphite subvertical body occurring in the gneisses produces sufficiently large
SP anomaly—more than 600 mV (Fig. 8.12). Application of the aforementioned
interpretationmethods enabled to determine exactly positionof the center of the upper
edge of the anomalous body and to calculate position of the self-potential vector.
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Fig. 8.9 Results of
quantitative interpretation of
SP anomaly in the area of
Filizchay
copper-polymetallic deposit
in the southern slope of the
Greater Caucasus
(Azerbaijan) (revised after
Eppelbaum and Khesin
(2012)). (1) interbedding of
sands and clay schists, (2)
clay schists with the flysh
packages, (3) clay sandstone,
(4) faults; (5) massive ore of
pyrite-polymetallic
composition, (6) oxidized
ore, (7) SP curves, location
of the anomalous source: (8)
without calculation of
inclined relief influence, (9)
after introducing correction
for relief, (10) direction of
self-potential vector

Both these determined parameters nicely agreewith the body geometrical parameters
(Fig. 8.12). The calculated self-potential moment (after assumed correction for the
inclined relief) consists of 13465 mV·m.

8.5.2.9 Canyon Makhtesh Ramon (Negev Desert, Southern Israel)

The Makhtesh Ramon erosional–tectonic depression (canyon), 40 km long and
approximately 8 km wide, is situated in the Negev Desert (southern Israel), 65 km
southwest of the Dead Sea. On the basis of integrated geological-geophysical inves-
tigations, in this area were detected several tens of microdiamonds (largest sample
is 1.35 mm) and a large amount of mineral-satellites of diamond (Eppelbaum et al.
2006). Many geological-geophysical indicators showed that at least a part of the
indigenous sources (kimberlites or lamproites) of the aforementioned minerals can
occur here in subsurface. The compiled SP map (Fig. 8.13a) displayed the pres-
ence of some anomalous zones. Quantitative analysis of the SP anomaly was carried
out along profile A–B (Fig. 8.13b) crossing one of the mentioned zones. Results of
the performed interpretation indicated that the anomalous inclined body (having a
geometrical formclose to the thin bedmodel) occurs at the depth of 40mwhich agrees
with the preliminary available geophysical data.
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Fig. 8.10 Interpretation of SP anomaly by the method of characteristic points in the area of the
Uchambo ore field of the Adjar group of copper-polymetallic deposits (Georgia, Lesser Caucasus).
(1) SP observed values; (2) heteroclastic tuff breccia and their tuffs; (3) cover trachyandesite-basalts
with pyroclastic interbeds; (4) disjunctive dislocations; (5) zones of increased mineralization; (6)
drilled wells; (7) location of HCC center according to the interpretation results, (8) orientation of
self-potential vector ((1–6) from Bukhnikashvili et al. (1974))

8.5.2.10 SP as a Component of Multimodel Approach

Themultimodel approach to geophysical data analysis may be illustrated on example
of quantitative analysis of different geophysical data. Quantitative interpretation
is traditionally oriented to a single model for the hidden objects identification. In
the case of the existence of several hypotheses relating to the parameters of the
body causing the disturbance (i.e., the buried object) usually only one model was
selected roughly presenting the object in the domain�x of k-dimensional space of the
physical-geological factors. At the same time, many geological features are strongly
disturbed by the various geological processes (erosion, tectonic-geodynamic activity,
metamorphism, etc.) and can be reflected in different ways in various geophysical
fields.
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Fig. 8.11 Interpretation of SP anomaly by the developed techniques in the area of the Potentsialnoe
ore deposit (Rudny Altai, Russia) (initial data from Semenov (1975)). (1) soil-vegetative layer; (2)
alternation of lavas and tuffs of acid composition and chlorite-sericitic schists; (3) sulfide ores; (4)
sulfide impregnation, pyritization; (5) level of ground waters; (6) drilling wells (a) and adits (b); (7)
plot of SP; (8) interpretation results: a—upper edge of the thin bed, b—mid-point of the inclined
thick bed’s upper edge, c—center of a horizontal circular cylinder (arrow indicates the direction of
the polarization vector obtained by interpretation)

Additional noise affecting quantitative interpretation includes the rugged terrain
relief, anisotropy (polarization) of geological objects and heterogeneous host
medium. As a consequence, the response function � i—geophysical field—may
ambiguously represent the studied targets. Therefore, the domain�x may be divided
into several subdomains �1, �2,…, �m and in each of them a single model will
dominate (Eppelbaum 1987). In such a way we could developm physical-geological
models of the same target, each corrected for the separate subdomains �1, �2,…,
�m.

The multimodel approach can also be applied at varying levels of the geophysical
field observations. Hence, different explanatorymodels may be used in the process of
quantitative interpretation. Integrating several response functions �i, yields a more
accurate and reliable physical-geological model of the buried target.
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Fig. 8.12 Quantitative interpretation of SP anomaly over graphite body in the southern Bavarian
woods, Germany (geological section and observed SP curve are taken from Meiser 1962). (1)
position of the middle of the upper edge of thin bed, (2) orientation of the self-potential vector

Rapid methods of quantitative interpretation make it possible to determine the
following parameters: position of the mass center of the anomaly-forming body by
the �g curve (Fig. 8.14a), position of the upper edge by the �Z curve (Fig. 8.14b)
and position of the HCC center in the upper portion of the ore-body at the ground
water level by the SP curve (Fig. 8.14c). Thus, the obtained specific models reflect
the contrasting character of the physical properties of the target and the host medium.
They allowobtaining exhaustive description of the geometric parameters of the buried
target. Combining these three models (we have three response functions �1, �2 and
�3 from the subdomains �1, �2 and �3), yields a combined model of the anomalous
body (Fig. 8.14d), which is in a good agreement with the initial (prescribed) model.

8.5.3 Archaeological Sites

SPmeasurements are not frequently applied for searching and localization of archae-
ological targets (e.g., Wynn and Sherwood 1984; Mauriello et al. 1998; Eppelbaum
et al. 2003a, b; Drahor 2004; Drahor et al. 2006; Di Maio et al. 2010; Shevnin et al.
2014; Tsokas et al. 2014; DeGiorgi and Leucci 2017, 2019; Eppelbaum 2020). Obvi-
ously, absence of reliable methodologies for quantitative analysis of SP anomalies,
weak SP anomalies and different kinds of noise impedes a wide employment of
the self-potential method in archaeological prospection.

The territory of Israel contains more than 35,000 discovered archaeological sites
of different age and origin. For SP observations several typical archaeological sites
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Fig. 8.13 a SP map
observed in the western
Makhtesh Ramon (northern
Negev desert).
b Interpretation of the SP
anomaly along profile A–B,
western Makhtesh Ramon
(see Fig. 8.13a). The red
cross indicates the position
of the center of the upper
edge of the anomalous body,
and the red arrow indicates
the orientation of the
self-potential vector
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Fig. 8.14 Combined interpretation of the model gravity (�g), magnetic (�Z) and self-potential
(�USP) due to generalized ore body model of the Filizchai type under different approximations of
the anomalous body: a–c results of the model fields interpretation, d anomalous object according
to the results of integrated interpretation. (1) anomalous body; (2) host medium; (3) topography;
(4) position of the ground water level; physical properties: (5) density (g/cm3), (6) magnetization
(mA/m); (7) mass center (for a horizontal circular cylinder) by �g plot; (8) mid-point of the upper
edge of an inclined thin bed by �Z plot; (9) position of the center of HCC inscribed into the
upper portion of the anomalous body at the ground water level by �USP plot; (10) contour of the
anomalous body obtained from the results of integrated quantitative interpretation

located in different regions of the country were selected (Eppelbaum et al. 2001a,
b, 2004). All SP measurements were performed using microVoltmeter with the high
input impedance and distinctive non-polarizable electrodes (Cu in CuSO4 solution).
The interpretation results obtained earlier at these sites were revised and generalized
(the joined methodologies were employed) (Eppelbaum 2020).
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8.5.3.1 Roman Site of Banias, Northern Continuation (Northern Israel)

The remains of the city of Banias are located in northern Israel, at the foot of
Mt. Hermon. Banias was the principal city of the Golan and Batanaea regions
in the Roman period and occupied an area of more than 250 acres (Kempinsky
and Reich 1992). Here different ancient remains of Roman and other historical
periods were found. The area of the present study is located several km north of
the well-investigated Banias site (Meyers 1996). In the nearest vicinity of the area
of geophysical examination (SP and magnetic surveys), the remains of an ancient
Roman cemetery and aqueduct (Hartal 1997) were discovered. Mineralogical and
geochemical analyses of the excavated Roman chambers indicated that these objects
were composed from the special type of hot worked limestone.

SP observations were carried out by the grid of 1 × 1 m. A compiled SP map
(Fig. 8.15) nicely indicates two anomalies. Interpretation profiles I–I and II–II were
selected crossing centers of these anomalies (Fig. 8.16). The upper edges of the
recognized anomalous targets occur at the depth of 1.1–1.3 meters. Presence of these
anomalous sourceswas confirmed by a comprehensivemagnetic data analysis. Angle
ϕp for anomaly I consists of 75o, but it is calculated from the opposite side (due to
inversion of parameters d3 and d4 on the SP curve). SP moment for the anomaly
I (thin bed) is M�U = 1

216.5mV · 1.2m = 9.9mV · m. Interestingly that this SP

Fig. 8.15 Self-potential map observed in the Banias site (northern Israel) and location of
interpreting profiles I–I’ and II–II’
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Fig. 8.16 Quantitative analysis of anomalies I–I’ and II–II’ (see Fig. 8.15) in the Banias site
(northern Israel). Red cross indicates position of the center of upper edge, bold red point testifies
position of the HCC center, and the black arrows show direction of the self-potential vector ϕp

moment is almost 1,500 times smaller than the same parameter calculated for the
giant SP anomaly in the Filizchai deposit, Azerbaijan (see Fig. 8.9). For anomaly
II, taking into account that parameters d3 and d4 are practically equal (θ ≈ 0),
value of polarization angle ϕp is close to 90o. SP moment for anomaly II (HCC) is
M�U = 2.79m2·18mV

2.6·cos 15o ∼= 20mV · m2.

8.5.3.2 Nabatean Site of Halutza (Southern Israel)

The Halutza site is located 20 km southwest of the city of Be’er-Sheva (southern
Israel). It was the central city of southern Palestine in the Roman and Byzantine
periods and was founded as a way-station for Nabatean (7th–2nd centuries BC)
traders traveling between Petra (Jordan) and Gaza. This site was occupied mainly
throughout the Byzantine period (4th–7th centuries AD) (Kenyon 1979; Kempinski
and Reich 1992).

At this site self-potential and magnetic measurements were carried out in a 20
× 10 m area with a 1 × 1 m grid (Eppelbaum et al. 2003b). The buried targets
(ancient Roman limestone constructions) have produced negative anomalies in both
geophysical potential fields. Results of the quantitative examination (here interpre-
tation models of thin bed were utilized) are practically identical (Fig. 8.17a, b).
Amplitude of the SP anomaly reached 40 mV; it is the largest from the anomalies
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Fig. 8.17 Quantitative analysis of magnetic (A) and self-potential (B) anomalies in the site of
Halutza (southern Israel). Red cross in both models indicates position of the center of the upper
edge, and the red arrow shows direction of polarization vector ϕp (Fig. 8.17B)

observed in this site. The depth of both these anomalous targets is about 0.85 m. The
calculated moments for the magnetic and self-potential anomalies, are following:
M�T = 3.61 nT · m and M�U = 20mV · m.ϕp angle for SP anomaly is calculated
from the opposite side and consists of 70o (Fig. 8.17b). It may be also concluded that
the recognized anomalous target approximated by thin bed in the SP method has not
vertical dipping, but coinciding with the ϕp angle. The obtained quantitative param-
eters of ancient constructions agree with the results of archaeological excavations
performed in the vicinity of this site.

8.5.3.3 Christian Site of Emmaus-Nikopolis (Central Israel)

The Christian archaeological site Emmaus-Nikopolis is well known in the ancient
and Biblical history. The site is situated roughly halfway between Jerusalem and Tel
Aviv (central Israel). The Crusaders rebuilt it on a smaller scale in the 12th century
(Meyers 1996). The site of Nikopolis is displayed in almost all Christian Pilgrim
texts from the 4th century onward; in majority of archaeological sources this site is
named as Emmaus-Nikopolis. Many scientists note that this site is characterized by
a multilayer sequence (e.g., Kempinski and Reich 1992).
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Fig. 8.18 Self-potential map observed in the site of Emmaus-Nikopolis (central Israel)

SP measurements in this site were performed by the grid of 1 × 1.5 m. In the
complied SPmap (Fig. 8.18), one local anomalywas selected for quantitative analysis
(Profile A–B). The determined depth of the target upper edge is about 1.5 m (depth of
the HCC center is about 2.1 m) (Fig. 8.19). The ϕp angle here is 85o and is calculated
from the opposite side. Self-potential moment of this anomaly is 4.5 mV·m2. The
fragments of some glass vessels discovered in this burial cave allowed to attributing it
to the Byzantine period. Interestingly to note that magnetic field examination allowed
recognizing the same cave by the integrated effect from a few tens of small magnetic
anomalies produced by the oil lamps (made from the fired clay). Corresponding
photos of the localized buried cave and one of ancient oil lamp stored here are shown
in accordingly in Fig. 8.20a, b (Eppelbaum et al. 2007).

8.5.4 Environmental Geophysics

Other SP application revealed some dangerous environmental phenomena (karst
cavities, faults, rockslides) (e.g., Ogilvi and Bogoslovsky 1979; Corwin 1990, 1996;
Quarto and Schiavone 1996; Gurk and Bosch 2001; Vichabian and Morgan 2002;
Lapenna et al. 2003; Jardani et al. 2006a, b; Eppelbaum 2007; Jardani et al. 2007;
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Fig. 8.19 Quantitative analysis of self-potential anomaly along profile A–B in the site of Emmaus-
Nikopolis (SP map is presented in Fig. 8.18). The bold red point indicates position of the HCC
center, and black arrow shows the direction of the self-potential vector ϕp

Rozycki et al. 2006; Gibert and Sailhac 2008; Srigutomo et al. 2010; Tripathi and
Frayar 2016; Chen et al. 2018; Gusev et al. 2018; Oliveti and Cardarelli 2019;
Eppelbaum 2021).

8.5.4.1 Buried Cavities in Dolomitic Limestone (Southern Italy)

Several impressive examples of SP application for the detection of underground cavi-
ties in southern Italy were displayed in Quarto and Schiavone (1996). Let us will
consider one of these field cases, where the buried karst cavity exists in dolomitic
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Fig. 8.20 The site of
Emmaus-Nikopolis (central
Israel). a—revealed
underground cavity (see
Figs. 8.18 and 8.19), b—one
of the oil lamps discovered
in the cavity

limestones (Fig. 8.21). The cavity is horizontally extended, and over it, a significant
SP anomaly (up to 100 mV) was observed. Quantitative examination along profile
A–B crossing the center of this anomaly has been performed (Fig. 8.22). For inter-
preting models of thin bed (upper edge) and center of HCC were obtained depths of
6.0 and 9.5 meters, respectively. The self-potential vector is oriented near-vertically.
Self-potentialmoment of anomaly from this cave (HCCmodel) is about 3300mV·m2.
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Fig. 8.21 SP map over the underground cave and position of the interpreting profile A–B (SP map
after Quarto and Schiavone (1996))

8.5.4.2 Cavities in the Djuanda Forest Park (Bandung, Indonesia)

The next example displays the results of SP and electric resistivity observations
carried out above cavities (built during the WW II in early 1940 s) at the Djuanda
Forest Park, Bandung, Indonesia. Fascinatingly, the resistivity section (Fig. 8.23b)
nicely shows two bright anomalies whereas the SP graph (Fig. 8.23a) indicates
comparatively significant anomaly (amplitude is more than 20 mV) over cave II,
whereas the anomaly over the cave I is only emerging (its amplitude is about 2 mV).
Obviously, this fact is associatedwith the hydrogeological peculiarities of the subsur-
face section in the area under study. Quantitative analysis of SP over the cave II (here,
an interpretation model of thin bed was applied) gave satisfactory results generally
coinciding with the results of resistivity section. Calculated self-potential moment
here is M�U = 52mV · m.

8.5.4.3 Subvertical Fissure Zone (Russia)

Figure 8.24 displays the SP and resistivity graphs over the subvertical-fissured zone.
SP quantitative examination showed significant disagreement between the results of
interpretation and the available geological section. However, it is interestingly to note
that the performed quantitative analysis of the resistivity curve ρa (presented in the
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Fig. 8.22 Quantitative analysis of SP anomaly along profile A–B (location of profile is shown in
Fig. 8.17). The red cross shows the position of the middle of the thin bed upper edge, and the red
point shows the position of the center of the horizontal circular cylinder. The black arrow shows
the orientation of the polarization vector

upper part of Fig. 8.24) by the use of the same methodology gave the similar results.
Theoretical possibilities of such analysis were reported in Eppelbaum (2007) and
evaluated in Eppelbaum (2019). Shevnin (2018) also indicates a good correlation
between the SP and resistivity methods.

Obviously, this disagreement can be explained by some erosion of the upper
part of anomalous body (fissured zone) and corresponding changes of its phys-
ical properties (possibly appearing to be close to the physical properties of the
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Fig. 8.23 Quantitative analysis of SP anomaly over underground cave in the Djuanda Forest Park,
Bandung (Indonesia). A: SP profile with interpretation of anomaly II, B: ERT section, C: geological
section. Initial data are taken from Srigumoto et al. (2010). The white circle and arrow indicate the
position of upper edge of the cave II and its dipping, respectively

host media). Nevertheless, the orientation of the self-potential vector coincides with
the fissured zone dipping (Fig. 8.24). Value of the self-potential moment is estimated
as M�U = 23mV · m.

8.5.5 Technogenic Geophysics

Let us designate technogenic geophysics as geophysical studies applied to the detec-
tion or determination of certain parameters of hidden modern industrial objects. The
SP method fits well in such studies.

Onojasun and Takum (2015) have been successfully applied SP investigations for
the localization of an underground concreate water pipeline at the Kwinana industrial
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Fig. 8.24 The interpretation of SP anomaly over the fissured zone (Russia) (resistivity and SP
graphs and geological section are from Ogilvy and Bogoslovsky (1979)). The red and green crosses
show the positions of the upper edge of the anomalous target determined from SP and resistivity
curves, respectively. The red arrow indicates position of the self-potential vector

area of Southern Perth (Western Australia). In a second example, comprehensive
examination of SP imaging over a metallic contamination plume was performed by
Cui et al. (2017). The authors have concluded that the SPmethod can be successfully
used to monitor the underground metallic contaminants.

It was established that examination of the SP anomalies is significant for the local-
ization of corrosion in the buried oil, gas and water pipes (e.g., Corwin 1996; Cast-
ermant et al. 2008; Ekine and Emujakporve 2010; Rittgers et al. 2013; Oliveti and
Cardarelli 2019).

8.5.5.1 Underground Metallic Water-Pipe (Southern Russia)

Fomenko (2010) presented a case of a typical SP field distribution over the buried
metallic water-pipe (Fig. 8.25). This anomaly has been interpreted by the use of
tangent and characteristic point methods. The obtained position of the HCC center
agrees (with some assumptions) with a center of the hidden water-pipe. The calculate
self-potential moment M�U = 79.8mV · m2.
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Fig. 8.25 Quantitative
examination of SP anomaly
from the buried metallic pipe
(southern Russia). Observed
SP graph and environmental
section are taken from
Fomenko (2010). Small red
circle indicates determined
position of the center of
HCC, and arrow shows
position of the self-potential
vector

8.5.6 Generalization of the Calculated Self-Potential
Moments

The calculated self-potential moments for the variety of investigated targets are
compiled in Table 8.5.

The values of self-potential moments M�U presented in Table 8.5 demonstrate
a wide range of the calculated parameters. The M�U values can be divided in
three groups: (1) comparatively large values corresponding to comparatively big ore
bodies, (2) middle values relating to targets studying in environmental and techno-
genic geophysics, and (3) relatively small values reflecting archaeological targets.
However, even the smallest M�U value calculated, for instance, for the ancient cave
in the site of Emmaus-Nikopolis has independent importance.
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Table 8.5 Comparison of self-potential moments calculated from different anomalous targets
(considered in Sects. 8.5.2–8.5.5)

Object Location Approximation
model

Value of self-potential
moment M�U

I. Ore geophysics

Sariyer sulphide-pyrite
deposit

Near Istanbul,
Turkey

HCC 31800mV · m2

Polymetallic deposit Russia Thin bed 181mV · m
Katsdag polymetallic
deposit

Southern Greater
Caucasus,
Azerbaijan

Thin bed 3450mV · m

Filizchai polymetallic
deposit (Azerbaijan)

Southern Greater
Caucasus,
Azerbaijan

Thin bed 14600 mV·m

Uchambo ore field Lesser Caucasus,
Georgia

HCC 13480mV · m2

Potentsialnoe
polymetallic deposit

Rudnyi Altai,
Russia

Thin bed, thick bed,
HCC

21890mV · m2

Southern Bavarian
woods, graphite body

Germany Thin bed 13465 mV·m

II. Archaeogeophysics

Banias (anomaly I) Northern Israel Thin bed 9.9mV · m
Banias (anomaly II) “—” HCC 20mV · m2

Halutza Southern Israel Thin bed 20mV · m
Emmaus-Nikopolis central Israel HCC 4.5 mV·m2

III. Environmental geophysics

Underground cave Southern Italy HCC 3300mV · m2

Underground cave Bandung,
Indonesia

Thin bed 52mV · m

Fissured zone Russia Thin bed 23mV · m
IV. Technogenic geophysics

Underground metallic
water-pipe

Southern Russia HCC 79.8mV · m2

8.6 Conclusions

The self-potential method is one of the oldest and simultaneously non-expensive
geophysical methods. One of its main preferences is that the presence of water
in the subsurface does not limit this method capability. The various disturbances
complicated the SP observations under different physical-geological environments
are analyzed. The available interpretation methodologies are briefly discussed. The
proved common aspects between the magnetic and self-potential fields enable to
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apply for interpretation of SP anomalies the modern interpreting procedures devel-
oped for complicated environments in magnetic prospecting (oblique magnetiza-
tion (polarization), rugged topography and an unknown level of the normal field).
These interpretation procedures applied for SP anomalies enable to obtain reliably
geometric parameters of buried anomalous targets occurring in complex physical-
geological environments. The suggested calculation of the direction of the electric
self-polarization vector allows in many cases to estimate a dipping of anomalous
objects. It is proposed to apply in SP method a calculation of self-potential moment
which can be used for the classification of observed the SP anomalies. An applica-
bility of the multimodel approach with application of the SP and other methods is
demonstrated on the generalized physical-geological model of ore body of Filizchai
type. Testing interpretation procedures in mining, environmental, archaeological
and technogenic geophysics in various regions of the world indicates the practical
effectiveness of these methodologies.
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Chapter 9
Preferential Water Flow Pathways
Detection in Sinkholes Using
Self-Potential (SP) Method. The Study
Case of Anina Karst Region (Banat
Mountains, Romania)

Laurent,iu Artugyan and Petru Urdea

Abstract Limestone covers about 4500 km2 in Romania, meaning about 2% from
the country surface, being specific for the karst of the temperate zones due to its
landforms, terrain diversity and the amplitude of the exo and endokarst particulari-
ties. Carbonate rocks are spread in the mountains and sub-mountains areas, with the
most compact and the largest surface of this type of rocks in the Banat Mountains,
more exactly in the Reşiţa-Moldova Nouă Synclinorium. The aim of this study to
examine the use of the self-potential as geophysical method in detection of water
flow and water resources in shallow karst depressions (sinkholes) in the Anina Karst
Region, Banat Mountains, Romania. The self-potential (SP) method—also known
as spontaneous potential—is founded on the measurements regarding the natural or
spontaneous potentials that are forming in the ground. Our SP approach in several
sinkholes in the Anina Karst Region shows that most of the anomalous zones with
positive spontaneous electric potential are localized in the middle of the sinkholes,
indicating the higher retention of water within the bottom part of the karst depres-
sions. Also, the most of the values showing negative anomalies are situated in those
parts where the karrens are developed. SPmethod applied in the Anina Karst Region,
Banat Mountains, Romania, has shown the feasibility of this geophysical method in
the study of water circulation in shallow karst environment. Since sinkholes are
landforms that favor the fast circulation of the water from the surface into the under-
ground, the SP approach could be a feasiblemethod to study aquifers and the presence
of contaminants in karst aquifers since water is a very important resource in karst
areas. Moreover, SP method is reliable in characterization of shallow karst topog-
raphy research and this geophysical method can be combined with other geophysical
method in karst terrain analysis, methods like GPR and ERT.
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9.1 Introduction

Karst terrains represent a distinct geological environment and geomorphological
based on its characteristics, both at surface and in the underground. Karst ecosys-
tems are about to be studied and discovered even nowadays (De Waele et al. 2009).
Karst environment is highly vulnerable as a consequence of the fast connection
between the surface and the underground karst landforms. Pollution and deteriora-
tion events occurring at the surface in karst terrains have negative consequences in
the underground (Parise and Pascali 2003). In order to solve these risks and to protect
karst environment, geomorphological studies on karst topography should focus both
on surface (exokarst) and underground landforms (endokarst), but also on the link
between surface and subterranean karst features.

The consequence of the rock massifs dissolution that creates karst topography is
represented by an effective underground flow (Waltham et al. 2005). Understanding
karst topography implies the understandingof those factors those generate dissolution
processes in karst terrains and the understanding of the nature of drainage generated
by these dissolution processes (Ford andWilliams 2011). The particularities of karst
regions include the lack of surface water as a consequence of porous and fissured
rocks, but also the water flowing into the underground. In karst regions the karst
aquifers represent a highly important source of drinking water. However due to the
fast circulation of surfacewater, the groundwater in karst aquifers is highly vulnerable
to pollution and contamination (Bakalowicz 2005; Andreo et al. 2008; Shirazi et al.
2012; Jeannin et al. 2012). Soil permeability is another factor that contributes to the
high vulnerability to pollution of karst groundwater. In karst terrains soil protective
covers are usually very thin or missing completely, favouring the fast circulation of
pollutants into the karst aquifers (Kaçaroğlu 1999).

The level of dissolution of the geological substrate in karst terrains is indicated
by the sizes and the density of the sinkholes (Shofner et al. 2001). Since the karst
system depends on the presence of fractures, fractures’ orientation in karst topog-
raphy provide valuable details regarding the drainage network (Chalikakis et al.
2011). In the recent years geomorphology has become a domain focused to study
the human impact on landforms evolution and on the environment (Church 2010).

Limestone covers about 4500 km2 in Romania, meaning about 2% from the
country surface (Orghidan et al. 1972), being specific for the karst of the temperate
zones due to its landforms, terrain diversity and the amplitude of the exo- and
endokarst particularities (Cocean 2001). Among the surfaces covered by limestone
Mesozoic deposits occupy the most extensive surfaces. Moreover, Mesozoic lime-
stone has the largest thickness deposits and the consequence is represented by the
highest degree of karstification processes among these limestone deposits (Trufas,
and Sencu 1967). Carbonate rocks are spread in the mountains and sub-mountains
areas, with the most compact and the largest surface of this type of rocks in the Banat
Mountains, more exactly in the Reşiţa-Moldova Nouă Synclinorium (Orăşeanu and
Iurkiewicz 2010).
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Among the geophysical methods self-potential has been used in various studies in
karst terrains (Revil et al. 2005; Rozycki et al. 2006; Jardani et al. 2006a, b; Wishart
et al. 2006, 2008; Suski et al. 2008; Robert et al. 2011). Jardani et al. (2006a) have
used previously self-potential method in sinkholes in order to delineate preferential
groundwater flow pathways.

According to Chen et al. (2018), the spontaneous potential method measuring
the natural electric field generated in the rock fissures networks in karst topography
has been used with success in various approaches such as the detection of karst
development and characteristics atmacroscopic level, infiltration processes, recharge
of stratified aquifers or the infiltration andmigration of the groundwater. On the other
hand, the SP method has been used very rare to analyze the karst water movement
and the characteristics of the fracture networks at small scale in mountains karst
areas or in the epikarst zone (Chen et al. 2018).

The aim of this study to examine the use of the self-potential (also known as
spontaneous potential) as geophysical method in detection of water flow and water
resources in shallow karst depressions (sinkholes) in the Anina Karst Region, Banat
Mountains, Romania.

In Romania the self-potential method has been used only sporadically as geophys-
ical method investigation in different environments and terrains. The self-potential
method has been used in Semenic Mountains (Urdea and Ţambris, 2014) and Anina
Mountains (Artugyan and Urdea 2014a, b; Artugyan et al. 2015).

9.2 Study Area and Investigation Sites Description

The Anina karst region is part of the Anina Mountains, which is a subunit of Banat
Mountains in the SW of Romania (Fig. 9.1). The study area is part of a folded region
with a Jurrasian relief characterized by the alternation of parallel anticlines and
synclines, oriented NNE-SSW (Mateescu 1961). This orientation has imposed the
main drainage direction of the entire area, acting as a boundary of the representative
karst systems (Iurkiewicz et al. 1996).

From geological perspective the study area is part of the most compact and the
largest surface covered by carbonate rocks in Romania, namely the typical structural
area Res, iţa-Moldova Nouă Synclinorium (Orăs,eanu and Iurkiewicz 2010). In this
typical structural area the Paleozoic–Mesozoic geological formations are placed over
the fundamental crystalline domain (Bucur 1997) since the Paleozoic and Mesozoic
sedimentary deposits have been deposited before or during the Meso-Cretaceous
phase (Oncescu 1965). Res, iţa-Moldova Nouă Synclinorium has functioned as a
marine depression area where the sedimentary cover had a complete succession
and erosion stage. Despite the fact that the sediments that covered a large part of the
area were removed by the erosion, this structural zone is considered as the standard
area of sedimentary domains (Mutihac and Ionesi 1974).

The core geomorphological characteristic of the study are is represented by the
long parallel ridges that are separated by karst plateaus and deep valleys (Bucur
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Fig. 9.1 Location of the study area within the Anina Mountains and Res, it,a-Moldova Nouă
Synclinorium

1997). Due to the presence of karst plateaus that are bordered by deep valleys the
Anina karst region is considered to be part of the suspended karst plateaus. These
suspended karst plateaus have as particularities a high degree of karstification (Onac
2000). Due to the high level of karstification the entire region has a high diversity
and very numerous landforms specific for karst terrains, both at surface and in the
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underground. Among exokarstic landforms that can be seen in the Anina karst region
we could mention karrens, karren fields, sinkholes, sinkholes valleys, uvalas, poljes,
blind valleys and dry valleys. Karst gorges sectors and karst springs are also very
numerous within this karst region in the Banat Mountains. As for the underground
karst landforms, caves and vertical shafts have a high density in the Anina karst
region. According to Goran (1982) the caves within this karst region are part of 6
karst basins.

Within the study area the largest karst plateaus are Brădet Plateau, Mărghitas,
Plateau, Colonovăt, Plateau, Cârneală Plateau and Ravnis, tea Plateau (Fig. 9.2). Four
of these karst plateaus were chosen as study sites of this research, namely Mărghitas,
Plateau, Colonovăt, Plateau, Cârneală Plateau and Brădet Plateau, in the Culmea
Neagră (Black Ridge) Area. These suspendend karst plateaus (Bleahu 1982) are
mostly covered with collapsed sinkholes (Sencu 1977).

All these karst plateaus have mostly a flat aspect disrupted by sinkholes and
sinkhole vallyes. Most of these sinkholes are surrounded by large karrens or karren
fields. Mărghitas, Plateau is covered mostly with pasture and the only clumps of trees
are situated around and inside the large sinkholes present here. On the other hand,
Colonovăt, Plateau and Cârneală Plateau are forested karst plateaus. Brădet Plateau
is the largest karst plateau in the Anina Karst Region and it is covered with both
pasture and dense forests. The Culmea Neagră (Black Ridge) Area (where we have
developed our self-potential measurements) is covered only with forest, as its names
says.

There is no surface water on the Mărghitas, Plateau and Colonovăt, Plateau, while
Cârneală Plateau has several small creeks. Buhui Cave, Cuptoare Cave andMărghitas,
Cave are situated in Buhui Valley, this river bordering Colonovăt, and Mărghitas,
plateaus. Cârneală Plateau has also some blind valleys, while themost important cave
in this karst plateau is Cârneală Cave. As for the Culmea Neagră Area, many of these
sinkholes host the entrances of several vertical karst shafts present in this area.Among
these vertical karst shafts Culmea Neagră (Black Ridge) Vertical Shaft has been
explored after 2000 (Burdan et al. 2007) and it has shown a high potential of further
exploration, pointing out the potential for further underground voids discovery. Due
to this we choose to develop our measurements in three sinkholes situated in the
proximity of the Culmea Neagră Vertical Shaft in order analyze the surface water
drainage in order to identify possible rapid underground flow and possible other
underground voids.

9.3 Self-Potential as Geophysical Method

Self-potential (SP) method has been utilized for the first time by Robert Fox in 1930
aiming to detect copper into the underground in Cornwall, England. SP is considered
as the oldest geophysical method and at the same time the simplest method. However,
due to the challenges and difficulties in the interpretation based on the lacuna of the
information regarding the mechanisms those generated SP signals, the SP method
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Fig. 9.2 Location of the karst plateaus representing the study areas for this research

has been a very long time an undeveloped geophysical method. Nowadays SP signals
and themechanism generating these signals are better understood (Boleve 2009). The
SP method is an electrical geophysical method and it is known as a passive method,
measuring the natural electrical fields occurring at the surface of the ground (Revil
and Jardani 2013). Revil et al. (2013) describe the SPmethod as a simple and flexible
method also in geophysical measurements.
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The self-potential (SP) method—also known as spontaneous potential—is
founded on the measurements regarding the natural or spontaneous potentials that
are forming in the ground. These spontaneous potentials are a consequence of the
electrochemical interactions between different minerals and subsurface fluids, or of
the electro kinetic processes generated by the flow of the ionic fluids (Sharma 2002).
The electro kinetic fields are generated during the infiltration of the water coming
from precipitation through the porous material in the ground. In contact with precipi-
tationwater all theminerals in the soil become electrically charged. This electric field
is called as the streaming potential or spontaneous potential (Sheffer 2007; Jardani
et al. 2007a). In the porous medium the electrical conduction and the ionic diffusion
could have a significant contribution to electrical conductivity. Therefore, it can have
an important role in the resistivity of certain spontaneous electric potentials (Revil
et al. 1997).

The streaming potential results in those situations when an electrolyte moves
towards a stationary solid feature and this phenomenon is highly important in
groundwater studies (Bérubé 2007).

According to Reynolds (1997), the processes that cause the self-potential in the
earth subsurface are still not completely understood. Even if the SP method has
seen important progresses, specialists consider that is a high difficulty in SP data
interpretation. Also, the electrical noise that may result in SP data acquisition is seen
as a challenge. On the other hand, the SP method is fast, nonintrusive and a cheap
geophysical method. This fact is appreciated by specialists (Nyquist 2002).

It is important to highlight that during the measurements of the natural or sponta-
neous electric field method in karst areas there are several factors that may interfere.
Regarding the sinkholes there are both natural and man-made features that may
interfere. The natural factors include the sink points, soil holes, fault rupture zones
generating the natural electric field, the gap networks, the carbonaceous limestone,
while the man-made factors include different electromagnetic fields (Chen et al.
2018).

The SP method is the only one geophysical method that is directly sensitive to
the flow of the underground water. The underground water flow certainly generates
an electric field that can be detected on the surface (Boleve 2009).

The seepage flow of the groundwater in karst depression follows the filtration
through the soil layer in the conditions of a certain thickness of the soil in the depres-
sion. The groundwater flow occurs along the fractures, by the underground river
channels or by the pore infiltration in the numerous karst pipes. The consequence
of these processes is represented by the natural polarization of the soil-rock layers
creating conductive ions. In this process the rock contains the anions and the flowing
solution transports the cations. Consequently, the cations and anions charged electri-
cally will be diffused freely. The simultaneous existence of both rock fractures and
soil generate a natural electric field in sinkholes. This natural electric field is proving
that the groundwater seepage occurs. Consequently, analyzing the natural electric
fields in sinkholes by their spatial and temporal distribution can locate the resources
represented by the shallow karst groundwater (Chen et al. 2018).
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In the recent years the SP method has an increased interest as geophysical study
method. This higher interest is due to the fact that it is a non-invasive method
(Jouniaux et al. 2009). Numerous studies trying to interpret and to explain self-
potential data and anomalies (Abdelrahman et al. 2008, 2009; Sharma and Biswas
2013; Roudsari and Beitollahi 2013; Biswas and Sharma 2014, 2015; Asfahani
and Tlas 2016; Biswas 2016, 2017; Essa 2019; Ekinci et al. 2020; Jougnot et al.
2020). Various domains like geothermal, environmental and engineering have used
the SPmethod in different goals like locating and delineating sources related with the
groundwater and thermal fluids movement (Jardani et al. 2008; Moore et al. 2011;
Susilo et al. 2017; Revil et al. 2017; Chen et al. 2018; Zhu et al. 2020). Jouniaux
et al. (2009) have used SPmethod in subsurface groundwater flow studies and also in
subsurface contamination studies, Carpenter et al. (2013) used SP method together
with other geophysical methods to identify contaminants in an aquifer, while salt
plume monitoring is done using SP method by Martínez-Pagán et al. (2010). Miner-
alogical and geological conditions studies have been developed using the SP method
(Chukwu et al. 2008; Chukwu 2013; Roudsari and Beitollahi 2013).

The SP method in karst terrains has been used in various studies: Stevanovic
and Dragisic (1998), Lange (1999), Gurk and Bosch (2001), Fagerlund and Heinson
(2003), Rozycki et al. (2006), Guichet et al. (2006), Jardani et al. (2006a, b, c,2007b),
Jardani et al. (2009), Jouniaux et al. (2009), Robert et al. (2011), Susilo et al. (2017),
Chen et al. (2018). Studies using SPmethod in detection of natural electrical potential
field in epikarst have been developed by Fagerlund and Heinson (2003) and Jardani
et al. (2006a, c), while Chen et al. (2018) have used SP method in order to detect
water in shallow karst depressions.

9.4 Methodology

In those sinkholes where the bedrock is exposed at the surface or it presents a thin
overburden the surface water infiltrates directly in the upper part of the rock fissure
network. This surface water flow contributes to the recharge of the underground
rivers and the karst pipes. In these conditions the natural electric field has a very weak
polarization, while the dominant role is played by the polarization that is generated
by the recharge in the upper rock fissure network. Accordingly, the anomaly of the
natural electric field is highly developed in those karst depressions with fracture
networks extending downward above the base represented by the underground river
or karst pipe (Chen et al. 2018).

In order to develop self-potential field measurements we have used two Petieau
nonpolarizing electrodes and a Voltcraft VC 850 digital multimeter. From those two
electrodes one of them is used as a fix electrode, while the other one is used as a
mobile electrode.

Field measurements using the SP method where repeated for two or even three
times in order to have results fromvarious seasons and atmospheric conditions. As SP
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measurements approaches we have used both linear profiles with various orientations
(N-S, E-W, SE-NW and NE-SW) and grids.

Due to the predominantly forest vegetation in the study area, we had to adapt
our measurements according to vegetation growth and to analyze most of the sites
using profiles. Moreover, since the natural electric field values are influenced by
the local soil characteristics and climatic conditions at a certain given time (Urdea
and T, ambris, 2014) we organized field campaigns in different seasons and various
atmospheric conditions in order to do SP measurements.

The procedure of field data acquisition requires introducing both electrodes into
a hole into the ground at about 10 cm deep (Fig. 9.3). For a better contact between
electodes and soil, we have used humid benthonitic clay. After 1 min or even faster,
when the digital voltmeter value has been stabilized, the value indicated on the display
is marked. The next step is to move the mobile electrode into the next hole in the
soil (Fig. 9.4). The space between stations (between the fix electrode and the first
measurement point and then between the previous and the next measurement point)
had various values (3 m and 5 m) depending on the study site size.

Stevanovic and Dragisic (1998) highlight that negative anomalies in the self-
potential occur in those points where the percolation water met the soil surface. On
the other hand, positive values in spontaneous potential measurements are specific
for the issuing points.

As a consequence of the groundwater movement within the aquifer a natural
electrical potential is generated (Jardani et al. 2009). The SP method can bring
relevant information related with the dynamics and the geometry of the groundwater
flow in real time (Jardani et al. 2007b, 2008). According to Rozycki et al. (2006),

Fig. 9.3 Aquistion data using the self-potential (SP) method (after Urdea and T, ambris, 2014)
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Fig. 9.4 Self-potential data acquisition in the field using a digital multimeter and the fix andmobile
electrodes

any anomaly in the SP obtained data may show a possible connection between the
physical model and the water infiltration.

In order to model and to interpret the SP data obtained during the field campaigns
the values where introduced in software able to generate profiles and grids. These
profiles and grids are aimed to help us to analyze and to interpret the SP data.
Accordingly, for the profiles we have used Microsoft Excel software where we have
developed different graphs, while for the grids we have used ArcGIS 10 software.
ArcGIS 10 software has been used to generate the gradient maps showing the SP
results using Natural Neighbor interpolation method for the grid approach.

9.5 Results

The results of the SP investigations in the 4 karst plateaus in the Anina Karst Region
totalized 54 measurements meaning 39 sinkholes. In this section are presented those
sites with the most representative results obtained after the SP measurements for
each one of the karst plateaus studied.
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9.5.1 Mărghitas, Plateau

Site MP-S1

This sinkhole has a circular shape and it presents karrens in the NW and SE sides
of the sinkhole, with thicker soil on the bottom. Even if the SP measurements were
developed after a long period without precipitations, the bottom of the sinkhole
presented higher moisture.

Based on the SP measurements we can observe very well the bottom of the sink-
hole having the highest values of natural electric field. The edges of the sinkhole
where the karrens are present indicate the highest anomalies of the SP data indicating
a water flow at the surface of this shallow karst depression (Fig. 9.5).

According to the SP results the water stagnates more on the bottom of the sinkhole
(Artugyan and Urdea 2014b), while the water flow is faster on the slopes of the
sinkhole.

Site MP-S2

This sinkhole is located in the immediate vicinity of MP-S1 site and it has the same
characteristics. For this site we have employed two SP measurements campaigns, in
May 2013 and in October 2013. The measurements were done as profiles oriented
N-S and W-E.

Fig. 9.5 Self-potential measurements in MP-S1 site
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The obtained results indicate very similar profiles as shape, with the highest SP
values in the bottom part of the sinkhole. The profiles obtained for both periods
(Figs. 9.6 and 9.7) have a funnel-shaped profile. The results in this site highlight that
the water circulation is faster on sinkhole edges where karrens are present and the
higher retention of water happens in the middle of the sinkhole.

The SP values obtained in October 2013 are more homogeneous, providing
profiles having amore linear aspect. This is due to the large periodswithout precipita-
tions which preceded our field campaigns in SP measurements (Artugyan and Urdea
2014a).

Fig. 9.6 Self-potential profiles in MP-S2 site on N-S orientation in May 2013 and October 2013

Fig. 9.7 Self-potential profiles in MP-S2 site on W-E orientation in May 2013 and October 2013
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Site MP-S3

For this site we have employed 2 field campaigns, in May 2013 and November 2013.
Data acquisition was done developing two grids. This sinkhole is covered with grass
and karrens on the edges, being oriented NW–SE and it is more inclined in the NE.
Consequently, in the southern part of the sinkhole to overburden material is thicker
as a consequence of the sheet-wash transport after precipitation or after snowmelting
periods. This is highlighted by the SP measurements too.

The results obtained in the field campaign in May 2013 indicate mostly negative
anomalies on the edges of the sinkhole, while the bottom of the sinkhole has positive
anomalies (Artugyan et al. 2015).

These results (Fig. 9.8) indicate that the water circulation is faster in those areas
with thinner soil cover. However, there are some negative anomalies even in the
middle of the sinkhole, indicating a possible sink connected with the underground
karst pipe or underground karst channel. This negative anomaly is evenmore obvious
in the field campaign measurements developed in November 2013 when the values
were almost exclusively positive, except for one negative anomaly. The highest SP
values were obtained in the central part of the sinkhole, confirming the results
obtained in May 2013 and showing a faster water circulation in those parts with
thinner soil and with exposed rock. Moreover, in May 2013 the negative anomalies
are disposed as certain alignments of negative values, being able to indicate certain
fractures in the bedrock.

Fig. 9.8 Self-potential results in sinkhole representingMP-S3 site inMay2013 (left) andNovember
2013 (right)
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Fig. 9.9 Self-potential gradient in MP-S4 site

Based on the SP results, the water drainage has similar direction with the main
tectonic orientation for this karst region, N-S or NW–SE (Artugyan et al. 2015).

Site MP-S4

This site is represented by a funnel-shaped sinkhole with a sink exactly in the middle
of the karst depression. Even if that sink has formed through dissolution and it
could represent a connection with underground fractures or karst channels, the SP
results based on the measurements developed in May 2013 show that there is a
higher retention of water indicating the fact that this sink is clogged with clay. On
the other hand, SP results indicate water circulation on the edges of the sinkhole
(Fig. 9.9), where karrens are present and where soil is thinner. All negative SP
anomalies obtained within this site are related to the presence of karrens and thicker
soil. These conditions favor faster water flow in the surface of the karst depression.

9.5.2 Colonovăt, Plateau

Site CP-S1

This site is a sinkhole situated in a forested area with a large density of sinkholes. In
the N and S sides of the sinkhole karrens are present. The sinkhole is not very deep
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Fig. 9.10 Self-potential grids in sinkhole representingCP-M1site inAugust 2013 (left) andOctober
2014 (right)

and it has a large flat bottom. For this site we have developed 2 field campaigns of
SP measurements, in August 2013 and in October 2014. The SP measurements were
done as grids. The results obtained in August 2013 (Fig. 9.10-left) indicate very well
the bottom of the sinkhole by the positive SP values, while the negative anomalies
obtained for the slopes of the sinkhole point out the water drainage. On the other
hand, in October 2014 the results are described only by negative anomalies, with the
higher values of SP in the middle part of the sinkhole.

Another observation regarding the SP values in October 2014 (Fig. 9.10-right)
could highlight a possible drainage direction from E to SW indicating a possible
fissure network in the underground. The higher values of SP in themiddle of the karst
depression in both field campaigns highlight very well the water retention proved by
the presence of thicker soil and vegetation, while karrens favor water flowing in the
surface of this karst depression.

Site CP-S2

This is a medium size sinkhole elongated to North and it presents steeper slopes on
East side. Karrens are present in the Southern part. We have developed 3 profiles
measurements for this site: September 2013, October 2013 and September 2014.
Based on the SP measurements developed in October 2013 we could identify that
positive values indicate acummulation tendency. However, the higher values are
present in the median part of the sinkholes, while the lower SP values are overlaying
those areas covered by karrens. On the steepest slope of the sinkholes the values are
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negative in October 2013 and September 2014 showing the faster flowing of water
in the surface (Fig. 9.11).

On N-S direction the accumulation tendency based on the SP results is kept.
Moreover, the SP values indicating a faster drainage are situated in the Northern part
of the sinkhole, which coincide with the longer slope of this sinkhole (Fig. 9.12).
From this observation arise the idea that the slope has an important role in the SP
data acquisition and interpretation in the study of water flow in karst depressions.

Fig. 9.11 Self-potential measurements and sinkhole topography on E-W profile in CP-S2 site

Fig. 9.12 Self-potential measurements and sinkhole topography on N-S profile in CP-S2 site
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Site CP-S3

This sinkhole has a circular shape and it is located into a forested area. The sinkhole
has no karrens and this is an important aspect since most of the analyzed sinkholes
had karrens.

OnN-S directionwe had developed 3 campaigns as profiles inApril 2013,October
2013 and October 2014. Most of SP values are negative indicating a fast drainage
of water. Again the higher SP values are seen in the median part of the sinkhole
(Fig. 9.13). However, on the profiles obtained in October 2013 and October 2014
we observe a more sinusoidal character of the profiles. This can be caused by both
higher soil moisture, thicker soil cover and the missing of surface rock. Moreover, on
the south side a faster drainage can be observed, especially in April 2013. Here we
developed also several humidity measurements obtaining higher values on sinkhole
slopes.

On E-W direction we have developed only 2 profiles. Again the values showed in
October 2013 indicate a tendencyofwater retention comparative to thefield campaign
developed in October 2014. Even if the higher values are in the median part of the
sinkhole, the values for both campaigns were very oscillating. However, the values
of the humidity and SP in October 2014 are strongly correlated since higher values
of humidity are associated to lower SP values, while lower values of humidity are
associated with higher SP values (Fig. 9.14). Consequently, the SP values associated
with a higher humidity are attributed to faster water flowing in this sinkhole.

Fig. 9.13 Self-potential measurements correlatedwith soil moisture values onN-S profile in CP-S3
site
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Fig. 9.14 Self-potentialmeasurements correlatedwith soilmoisture values onE-Wprofile inCP-S3
site

Site CP-S4

This site has a circular shape and it is less deep. This sinkhole is surrounded by
large karrens on three sides, except the Eastern side, which makes the connection
with another sinkhole. We have developled 3 SP profiles measurements, in May
2013, November 2013 and October 2014. On S–N profile all the SP values are
negative indicating faster water drainage within this sinkhole. On the results obtained
in October 2014 the highest values are located in the median part of the sinkhole
(Fig. 9.15).

On the E-W orientation SP values are also negative. Measurements developed in
May 2013 and November 2014 presents a sinusoidal aspect, while the measurements
from October 2014 point out the highest values on the bottom of the sinkhole. More-
over, the sinkhole slopes are indicating a faster drainage due to the lower values of
the SP (Fig. 9.16).

9.5.3 Cârneală Plateau

Sites CaP-S1, CaP-S2, CaP-S3

On Cârneală Plateau we have developed SP measurements in three sinkholes that are
a chain of sinkholes. Due to this on the N-S direction the results are presented as a
single profile graph, while on the W-E the results are presented as individual profiles
of SP measurements.
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Fig. 9.15 Self-potentialmeasurements correlatedwith soilmoisture values on S–Nprofile inCP-S4
site

Fig. 9.16 Self-potentialmeasurements correlatedwith soilmoisture values onE-Wprofile inCP-S4
site

All sites indicate higher values in the median part of the sinkholes. Site CaP-
S1 (Fig. 9.17) and site CaP-S3 have positive anomalies only on the bottom of the
sinkholes, while CaP-S2 has only negative SP anomalies, but with highest of them
located in the median part. These results indicate the higher retention and stagnation
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Fig. 9.17 Self-potential measurements on E-W profile in CaP-S1 site

of water on the bottom of the sinkholes, while the sinkholes’ slopes favor water
flowing as a consequence of the presence of karrens and thicker soil cover.

Moreover, for site CaP-S2 (Fig. 9.18) the higher slope on the Eastern side is
observed also on the SP graphic with lower values indicating that slope favors the
water circulation within this karst depression.

On the other hand, CaP-S3 present a negative anomaly at 12 m from starting
point, indicating a possible underground karst channel or karst pipe that favors water
circulation (Fig. 9.19).

Fig. 9.18 Self-potential measurements on E-W profile in CaP-S2 site
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Fig. 9.19 Self-potential measurements on E-W profile in CaP-S3 site

The N-S profiles presented as a single graph (Fig. 9.20) show very well that for
all the three sinkholes analyzed here the SP values are higher on the bottom of each
karst depression, while the lowest values and the negative anomalies are associated
with the slopes of each sinkhole.

Moreover, the SP positive anomalies are situated again only in the median part
of the sinkholes, being attributed to water retention and stagnation in this part of
the sinkholes. However, we could observe negative anomalies as one point in each
sinkhole, considering that a karst fissure could be associated with these negative
anomalies on the bottom of the sinkhole. Negative SP anomalies and the lowest
values associated with sinkholes’ slopes are caused by the presence of large karrens
and thick soil cover, characteristics that favor water drainage.

Fig. 9.20 Self-potential measurements on N-S profile in CaP-S1, CaP-S2 and CaP-S3 sites
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9.5.4 Brădet Plateau—Culmea Neagră Area

Site BP-BRA-S1

This site is a less deep circular sinkhole with a diameter of about 45 m. The N-S
profile is less homogeneous, but it presents the highest SP values in themedian part of
the sinkhole (Fig. 9.21). The S–N profile the SP values suggest a higher retention and
stagnation on the bottom of the sinkhole. On the other hand, on the E-W orientation
the SP values are also negative, indicating a fast water circulation (Fig. 9.22).

Fig. 9.21 Self-potential values measured for the BP-BRA-S1 site on S–N profile

Fig. 9.22 Self-potential values measured for the BP-BRA-S1 site on E-W profile
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Site BP-BRA-S2

This site is situated fewmeters to south to BP-BRA-S1 site. This is a deeper sinkhole
elongated on N-S direction. The SP values are all negative (Fig. 9.23), an exception
being present on the profile for W-E direction that presents a positive anomaly at the
bottom of the sinkhole slope on the Eastern part. As in the previous sinkholes, slopes
are indicating the faster drainage in water surface circulation (Fig. 9.24).

Fig. 9.23 Self-potential values measured for the BP-BRA-S2 site on S–N profile

Fig. 9.24 Self-potential values measured for the BP-BRA-S1 site on W-E profile
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Site BP-BRA-S3

This sinkhole is situated fewmeters south to BP-BRA-S2, being a less deep sinkhole
and a little bit elongated on N-S direction. As for the previous two sites in the Culmea
Neagră Area, this sinkhole indicates again SP values that show the tendency of water
retention and water stagnation in the middle part. The bottom of the sinkhole has the
highest values on both N-S and W-E profiles (Figs. 9.25 and 9.26).

Fig. 9.25 Self-potential values measured for the BP-BRA-S3 site on N-S profile

Fig. 9.26 Self-potential values measured for the BP-BRA-S3 site on E-W profile
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9.6 Discussions and Conclude Remarks

The sinkholes analyzed using the SP method in the Anina Karst Region (Banat
Mountains, Romania) have elongated or circular shape and various sizes. Most of
the sinkholes present karrens on sinkholes’ edges and flat or almost flat bottoms
covered with a thick layer of clay and soil. The sinkholes situated on the Mărghitas,
Plateau that are covered only with grass present smaller karrens on the edges of the
sinkholes.

However, some studied sites present significant changes in SP values between
measurements periods. These changes are explained by different weather conditions
and soil characteristics (Urdea and T, ambris, 2014) during field measurements.

The results obtained in all the sites studied using the SP method confirm the fact
that SP is a feasible method to analyze the water circulation at the surface of karst
depression. Using this geophysical method we were able to point out that the bottom
of the sinkhole, where the soil is thicker, retain more water. On the other hand the
edges of the sinkholes, having the bedrock exposed as karrens and very thin soil,
present faster water circulation.

The SP results on the karst plateaus in the Anina Karst Region are very similar
with previous studies implementing the SP method in karst depressions (Chen et al.
2018), indicating that most of the positive (or higher) anomalies are located within
the central part of the sinkhole. Our results indicate the positive anomalies (or higher
SP values) within the center of the sinkholes proving the effectiveness of the SP
method in the detection of water in epikarst zones in the karst depressions developed
on the suspended karst plateaus in the Anina Karst Region, Romania. Based on these
findings we consider that self-potential method has been used with success to detect
water preferential pathways in shallow karst depressions.

The SP approach developed in several sinkholes in the Anina Karst Region,
Romania shows that most of the anomalous zones with positive spontaneous electric
potential are localized in the middle of the sinkholes, indicating the higher retention
of water within the bottom part of the karst depressions. Also, the most of the values
showing negative anomalies are situated in those parts where the karrens are devel-
oped. Of course, there are also some exceptions in the SP values indicating that there
is a sink in the middle of the sinkhole, indicating the presence of a fast connection
with a possible karst pipe or an underground channel.

The SP method in karst investigations is useful especially in narrow karst depres-
sions since it provides better results in delineating the shallow karst formation discov-
ered in karst depressions. Moreover, the spontaneous electric field method is easier
to be implemented and provides fewer anomalous reactions (Chen et al. 2018).

In conclusion, the SP method applied in the Anina Karst Region, Banat Moun-
tains, Romania, has shown the feasibility of this geophysical method in the study of
water circulation in shallow karst environment. Based on previous studies indicating
the negative or smaller values of the natural electric field attributed to faster water
circulation in karst rocks (Chen et al. 2018), this study bring an important contri-
bution in karst depressions understanding and karst terrain analysis. Furthermore,



274 L. Artugyan and P. Urdea

since in Romania the SP method has been used only sporadically, this study can be
used as a reference study in the application of SP method in exokarst research and
in water circulation in karst terrains. Moreover, SP method could be used together
with other geopshyical methods in cavities detection studies (Jardani et al. 2006b)
and in sinkholes and karst terrain characterization (Artugyan et al. 2015).

Since sinkholes are landforms that favor the fast circulation of the water from
the surface into the underground (Jardani et al., 2006a), the SP approach could be a
feasible method to study aquifers and the presence of contaminants in karst aquifers
since water is a very important resource in karst areas. Moreover, SP method is
reliable in characterization of shallow karst topography research and this geophysical
method can be combinedwith other geophysical method in karst terrain analysis (like
GPR and ERT).
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Burdan M, Filip R, Masec F, Murvay PŞ (2007) Speleogeneza Avenului de sub Culmea Neagră
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Chapter 10
Interpretation of Self-Potential (SP) Log
and Depositional Environment
in the Upper Assam Basin, India

Dip Kumar Singha, Neha Rai, Madhvi, Mangal Maurya, Uma Shankar,
and Rima Chatterjee

Abstract Analysis of self-potential (SP) log and the subsurface petrophysical
parameters are important and basic study for evaluation of hydrocarbon reservoir.
The mechanism of SP is the electrical potential developed in the subsurface due to
some natural phenomena in the absence of any artificially applied current. The data
are acquired using only two electrodes, one in a borehole and the other at a surface
location that is also used for remote reference. The electric potential values recorded
during the acquisition are only the relative changes in the SP voltage in the borehole
environments of the formation rock. In this study, three wells (namely, KM, KT, and
KJ) are used to estimate the petrophysical parameters in the several depth intervals
of respective wells. The depth of the permeable zones which can act as reservoir
rocks is marked in all the three wells using SP data in the formations. The wells
were drilled in the sedimentary rock up to the basement in the Dhansiri valley of
upper Assam basin for oil and gas exploration. The thickness of sedimentary rocks
of tertiary age is found around 7000 m in the region. In the paper, the SP log data
with the help of resistivity data are used to delineate the presence of hydrocarbons in
the formations. The resistivity of formation water (Rw) has been determined using
SP data and hence, water saturation (Sw) is estimated using Archie’s equation and
deep resistivity data in the reservoir and adjacent rock. Several permeable zones
saturated by hydrocarbon are identified in Barail and Sylhet formations in KM well,
Kopili and Sylhet formations in KT well and Sylhet and Upper gondwana forma-
tions in KJ well respectively. The values of Rw and Sw using SP data are varying
0.241–1.399 �-m and 20–70% in the formations. The study has further emphasized
the importance of SP logs in lithofacies and depositional environment analysis. The
lithofacies and environment of deposition are identified with the SP shape analysis.
Two depositional features, Bell shaped and funnel shaped, are obtained in all the
three wells. Bell shaped trend comprises upward fining sequences and funnel shaped
trend comprises coarsening upward sequences. The shapes are identified with the
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lacustrine sand, delta distributaries, turbidity channels, and proximal deep-sea fans
deposit. These studies of SP data is helpful for further modeling and optimizing of
reservoir saturation and other petrophysical parameters in relation with rock physics
modeling.

Keywords Self-potential logging · Hydrocarbons · Upper Assam Basin

10.1 Introduction

Thewell log data provide almost all kind of the rock physical properties of a sedimen-
tary basin. For oil and gas sedimentary basin, the well data aremainly used to identify
the reservoir thickness and to carry out all the petrophysical parameters to charac-
terize the reservoir fluid (Paul 2012; Li et al. 2004). The basic conventional well logs
are self-potential, gamma ray, resistivity, velocity, density and neutron porositywhich
are used to compute porosity, volume of shale, water saturation and permeability of
a reservoir (Serra 1984; Rider 2002; Singha and Chatterjee 2017). The shape of well
log responses provides other geological information such as sedimentary grain size,
deposition environment, compaction and many more. The interpretation of well data
is greatly influenced by presence of shale in the reservoir. The shale is distributed in
three ways which are laminated, structural and dispersed shale distribution (Clavaud
et al. 2005; Sams and Andrea 2001). The self-potential or spontaneous (SP) well log
is best suitable log to identify permeable and non-permeable zones in the formation.
SP log is widely used not only in hydrocarbon expolration but for coal, mineral and
ground water exploration. The objectives of the chapter are to (1) analyses the SP
response of three wells in the upper Assam basin, (2) to determine formation water
resistivity (Rw) from SP and temperatures data, (3) to estimate water saturation (Sw),
porosity and volume of shale and (4) to study sediment grain size and depositional
environments using shape of SP data.

SP log was one of the earliest measurements used in the petroleum industry, and it
has continued to play a significant role inwell log interpretation. Primarily, the SP log
is used for determining gross lithology such as reservoir and non-reservoir through
its ability to distinguish permeable zones (i.e., sandstones) from impermeable zones
(i.e., shales) (Doll 1949). It is also used to correlate permeable and non-permeable
zones between wells of the basin (Fig. 10.1).

TheSP log is a record of direct current voltage (or potential) that develops naturally
between a moveable electrode in the well bore and a fixed electrode located at the
surface (Doll 1949). It is measured in millivolts (mV). Electric voltages arising
primarily from electrochemical factors within the borehole and the adjacent rock
create the SP log response. The SP phenomenon can be attributed to two processes
which involve the moment of ions:



10 Interpretation of Self-Potential (SP) Log and Depositional … 281

Fig. 10.1 The schematic
diagram represents the SP
currents flow in the borehole.
The effect of the shale
potential and the diffusion
potential act together at bed
boundaries and develop SP
log deflections (Rider 2002)

Electro kinetic potential (EK):

Electro kinetic potential (EK) develops when an electrolyte solution penetrates a
porous, non-metalicmedium under the differential pressure between themud column
and the formation. The resultant EK is produced across the mud-cake in front of the
permeable formation across the permeable formations, and across the shale beds.
The equation proposed to identify EK is shown below (Lynch 1962).

EK = −ζ � Pkρ

4πη
(10.1)

where

ζ: Zeta potential (adsorption),
�P: potential difference,
k: Solution dielectric constant,
ρ: Electrical resistivity,
η: Viscosity.
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Electrochemical potential:

Electrochemical potential (EC) develops when two fluids of different salinities are
either in direct contact, or separated by a semi –permeable membrane (i.e., Shale).
The electrochemical potential is the sum of two potential which is shown below:

EC = Em + Ej (10.2)

where

Em: Membrane potential,
Ej: Liquid junction potential or diffusion potential.

The electrochemical potential is categorized by membrane and liquid junction
potential.

(a) Membrane potential

The membrane potential develops when two electrolytes of different ionic concen-
trations such as mud and formation water are separated by shale. The value of the
membrane potential develops is shown below (Serra 1984):

Em = K1
RT

F
ln(

aw
amf

) (10.3)

where

R: Ideal gas constant (8.314 J/k-mol),
T: Absolute temperature,
aw: the ionic activity of the formation water,
amf: the ionic activity of the mud filtrate,
K1: 59.1 mV at 250C (770F).

(b) Liquid junction (diffusion) potential

The liquid junction or diffusion potential develops at the contact of the mud filtrate
and connate water in an invaded formation. The presence of different mobilities of
ions causes an e.m.f., Ej. The value of the diffusion potential develops is shown below
(Serra 1984):

Ej = K2
v − u

v + u

RT

F
ln(

aw
amf

) (10.4)

where

v: mobility of anion,
u: mobility of cation,
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aw: the ionic activity of the formation water,
amf: the ionic activity of the mud filtrate,
The coefficient K2: 11.6 mV at 250C (770F).

10.2 Geology

The study area is in the Dhansiri valley of the upper Assam Basin. The upper Assam
basin is south- east shelf-slope foreland basin, which is located in the north eastern
part of India (Mallick et al. 1997; Naidu and Panda 1997). The study area is shielded
by Mikir hills towards its west and Naga schuppen belt towards its east direction.
The ~7000 m thick sedimentary rocks of tertiary period are rested upon the frac-
tured granitic basement of Precambrian age. The successive formations such as
sylhet, kopili, barail, Tipam etc. were deposited over the unconformities (Ishwar
and Bhardwaj 2013; Mathur et al. 2001; Murty 1983). The sylhet formation of
late paleocene to early Eocene period comprises shallow marine limestone which
are interbedded with sandstone and shales. The Eocene Kopili formation comprises
fluvial shales and fine grained sandstones (Kumar et al. 2018). Barail formation of
late Eocene to Oligocene comprises finer to medium sandstone deposited over the
grey silty shale rock and the topmost Tipam formation of early Miocene period,
which consists of medium to fine grained massive sandstone having minor shales.
In the post tipam formations, sands were deposited with minor layers of shales and
coal (Ishwar and Bhardwaj 2013; Murty 1983).

Source Rock

The organic remains of marine life in Kopili shales (Dhansiri Valley’ source rock)
is mature, at the greater depth of the basin, at 3500 m depth. These rock formations
include platform carbonates, shallow marine shales and the siltstones, sandstone,
shales (Kumar et al. 2018; Singh et al. 2008). The production and accumulation of
petroleum in Assam Arakan basin are present throughout the basin (Chandra et al.
1995; Naidu and Panda 1997).

Reservoir Rock

Reservoir rocks are present throughout most of the stratigraphic section in the
Upper Assam basin. Reservoir rocks include the Eocene–Oligocene Jaintia Group
Sylhet Formation limestones andKopili Formation interbedded sandstones; Tura and
Langpar (basal) marine sandstones also have reservoir potential, and Surma Group
alluvial sandstone reservoirs are productive in the southwestern part of the Assam
geologic province (Kumar et al. 2018; Singh et al. 2010; Mathur et al. 2001; Murty
1983). The most productive reservoirs are the Barail main pay sands and the Bokabil
Group sandstones (Fig. 10.2).
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Fig. 10.2 The image illustrating the location of study area in upper Assam basin (modified after
Mallick et al. 1997; Naidu and Panda 1997)

Traps and Seals

Anticlines and faulted anticlinal structures, sub-parallel to and associated with the
northeast-trending Naga thrust fault, are the primary traps. Four sets of seal are
observed in Dhansiri valley (Wandrey 2004; Singh et al. 2010; Gogoi and Chatterjee
2019).

• Sylhet Limestone of Early Eocene
• Grey Shales of Tipam group of mid to late Eocene
• Grey silty Shales of Bokabil formation of Middle Miocene Age &
• Bluish Grey Shales of Upper Bokabil formation of Middle Miocene Age

(Fig. 10.3).

10.3 Methodology

As the basic mechanism of SP log is the potential measured between the borehole
electrode and the surface electrode in the absence of any artificially applied current.
The values recorded during the acquisition are only the relative changes in the SP
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Fig. 10.3 Generalized stratigraphy of Assam Shelf (modified after (Mathur et al. 2001; Murty
1983)

(Schlumberger 1972; Schlumberger 2000; Serra 1984; Rider 2002). We have consid-
ered three wells namely KM, KT, and KJ in the study area. The SP responses of three
wells are well developed for various formations as shown in Fig. 10.4. The SP value
varies in the different formations and the values vary from few tens to hundreds of
millivolts, relative to the base of shale in Fig. 10.4. The correlation of Kopili, Barail
and Sylhet formation are made based on the shape of SP log.

The uses of the SP log are listed below:

• The SP data is able to identify permeable beds (Fig. 10.4); where sand and shale
separately indicated their presence.

• The determination of formation water resistivity (Rw).
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Fig. 10.4 The self-potential log data for wells KM, KT, and KJ. The relative changes of self-
potential (mV) varying with subsurface depth in the formations

• The best suited method to show the quantitative availability of shale in the
formations.

10.3.1 The Determination of Formation Water Resistivity
(Rw)

The following procedure describes the determination of formation water (Rw) using
a SP curve for all the formations in the wells KM, KT, and KJ respectively.

1. In the initiation the formation temperature (Tf) (Eq. (10.5)) of the borehole is
measured, and then, the value of resistivity for themudfiltrate (Rmf) (Eq. (10.6))
and resistivity of the mud (Rm) are corrected to that formation temperature.

(a) The equation which measures the formation temperature is given below (After
Western Atlas Logging Services 1985):

Tf =
(
BHT − AMST

T D
∗ FD

)
+ AM (10.5)
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where

BHT: Bottom hole temperature
AMST: Annual mean surface temperature
FD: Formation depth
TD: Total depth
Tf: Formation temperature
AMST: Annual mean surface temperature

(b) The equation which calculates the resistivity of mud filtrate to the formation
temperature is shown below (After Western Atlas Logging Services 1985):

Rmf = RmfSurf(TSurf + 6.77)

Tf + 6.77
(10.6)

where

Rmfsurf: Rmf at measured temperature TSurf.
TSurf: TSurf measured temperature of Rmf.
Rmf: Rmf at formation temperature.

(c) The equation which calculates the equivalent formation water resistivity (Rwe)
is shown below (After Western Atlas Logging Services 1985):

Rwe = Rmf∗10SP/(61+0.133∗BHT) (10.7)

where

BHT: Bottom hole temperature

(d) The equation which uses for the estimation of formation water resistivity (Rw)
is shown below (After Western Atlas Logging Services 1985):

Rw = Rwe + 0.131 ∗ 10
(

1
log(BHT/19.9)

)
−2

−0.5 ∗ Rwe + 10
0.0426

log(BHT/50.8)

(10.8)

Next, the effect obtained due to different thickness in beds is minimized with the
correction made to the static self-potential (SSP) level-SSP which is the maximum
SP value (Fig. 10.5) obtained for the formation.

2. Once, the SSP has been calculated, the formation water resistivity will be
calculated with the following formula (Asquith 2004; Doll 1949):

SSP = −K∗ log
(
Rm f

RW

)
(10.9)

K = 60 + (0.133 ∗ Tf) (10.10)
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Fig. 10.5 The diagram
explained the definition of
SSP

10.3.2 The Determination of Volume of Shale (Vsh)
in the Formations

SP method is the best suited for the quantitative estimation of shale in the formation;
in the sand its availability is used to describe the shaly sand reservoirs and, it is
used as a mapping parameter in the analysis of both the sandstone and the carbonate
facies.

The equation, to estimate the volume of shale in the permeable zone is shown
below:

Vsh = 1 − PSP

SSP
(10.11)

where

Vshale = Volume of shale,
PSP = Pseudo-static spontaneous potential (maximum SP value for shale

lithology),
SSP = Static spontaneous potential of a nearby thick clean sand (Fig. 10.6).

10.3.3 SP Log Shape Analysis

The shape of SP curves is very important or the interpretation of depositional facies
because it is directly related to the grain size of rock successions (Selley 1979). There
are different curve shapes of log responses such as gamma ray log, resistivity etc.
are used to interpret the depositional environment and interpretation of facies in the
subsurface (Cant 1992). In the chapter, the SP log shapes have been used to identify
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Fig. 10.6 The SP log
varying with depth shows the
shale base line in the log and
with SSP and PSP the
volume of shale has
identified for KT well

SSP = 20-(-15) = 35mV 

PSP = 20-(-8) = 28 mV 

Vsh (%) = 1-  = 0.2 

Vsh = 20% 

the sedimentary facies. SP log shapes are categorized into bell, cylinder and funnel
shapes shown in Fig. 10.7 (Rider 2002).

10.3.3.1 Funnel-Shaped Successions

The funnel shape usually indicates deposition of cleaning upward sediment in onland
environment or an increase in the sand content of the turbidity bodies in a deepmarine
setting shown by zig-zag funnel shape (Fig. 10.7). The environments of shallowing-
upward and coarsening successions are sub-divided into three categories namely
which are regressive barrier bars, prograding marine shelf fans and prograding delta.
The first two environments are commonly deposited with glauconite, shell debris,
carbonaceous detritus and mica. The prograding delta is observed comparatively
large. (Nwagwu et al. 2019). The funnel shape indicates sediments size coarsening
up with sharp top.

10.3.3.2 Cylindrical-Shaped Successions

Cylindrical-shaped of SP logs generally indicate aggrading sand in a slope channel
and inner fan channel environments (Fig. 10.7). Cylindrical features trends with
greater range of bed thickness, indicating a turbidite sands deposition. Sandstone
beds are typically sharp and erosive with gradual transition to silt and mudstone. The
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Sharp base

Sharp top

Sharp base and base

Saw tooth

Fig. 10.7 The basic geometrical shapes which classify different depositional environments and
used in the analysis of SP log (Rider 2002; Nwagwu et al. 2019)

turbidites are deposits from turbulent flow of sediment-laden turbidity current down
a slope on the sea floor (Cant 1992; Nwagwu et al. 2019). This shape shows uniform
grain size of sediment rock with up and top sharp.

10.3.3.3 Bell-Shaped Successions

The bell-shaped successions are usually indicative of a transgressive sand, tidal
channel or deep tidal channel (Fig. 10.7). The tidal channels commonly contain
glauconite and shell debris. The Bell shaped successions with carbonaceous detritus
are also deposited in environments of fluvial or deltaic channels. The bell-shaped
successions are thin, which indicate that the sands were deposited in environment of
transgressive marine shelf (Nwagwu et al. 2019). This indicates fining up with sharp
top.

10.4 Estimation of Petrophysical Parameters

The water saturation is estimated by empirical formula using the value of Rw for all
the wells in the selective depth intervals in the formations. The porosity has been
calculated in the permeable and non-permeable zone using sonic transit time. The
following procedure are discussed below.
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10.4.1 Estimation of Water Saturation in the Formations

Archie proposed an empiricalmodel to estimatewater saturation in clean sandmatrix.
It usually works in clean sandstones and carbonate rocks (Archie 1942). The satura-
tion estimation does not only depend the resistivity ofwater but also depends upon the
matrix mineral when the matrix is electrical conductive; besides the non-conductive
quartz and calcite matrix grains. The empirical equation is greatly influenced by
presence clastic shaly rocks with the presence of clay minerals.

SW = 1/n

√
a

Φm
∗ Rw

Rt
(10.12)

where

Sw: saturation of water,
a: constant; 0.5 ≤ a ≤ 2.5,
m: cementation factor; 1.3 ≤ m ≤ 2.5,
n: saturation exponent; (often the value us is ~ 2),
Rw: formation water resistivity,
Rt: observed bulk resistivity,
�: porosity.

The Eq. (10.12) is applicable in clean sandstone formation whereas, the geology
of the study area shows the availability of shale in the formations too. Hence, the
above Eq. (10.12) is not enough for the evaluation of water saturation. Anothermodel
used to identify the water saturation is Poupone and Leveaux model (Poupon and
Leveaux 1971); the formula used in the model is shown below:

Sw = 2/n

√√√√√√
⎧⎪⎨
⎪⎩

√
1
Rt

V sh(1−0.5V sh)√
Rsh

+
√

�m
e

a∗Rw

⎫⎪⎬
⎪⎭ (10.13)

where

Sw: water saturation,
Rsh: Resistivity of shale (Usually taken from the resistivity reading of nearby pure

Shale),
Rt: True formation resistivity,
Rw: Resistivity of formation water,
Vsh: Volume of Shale,
�e: porosity,
a: Tortuosity factor,
m: Cementation factor,
n: Saturation exponent (Fig. 10.8).
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Fig. 10.8 Estimation of water saturation in well KJ for a Sylhet and b upper Gondwana formations
respectively

10.4.2 Estimation of porosity Φ(s)

Wyllie time average equation (Wyllie et al. 1956) is used to estimate sonic porosity
in loosely compacted sand and, the compaction factor is added to obtain the sonic
porosity; the empirical correction for hydrocarbon effect is applied too in the data
-when the sonic porosity value shown is too high. The Wyllie time average equation
is shown below:

φ(s) = 	t log−	tma

	tfl − 	tma
∗ 1

Cp
(10.14)

Cp = 	tsh∗(C/100) (10.15)

where

Cp: Compaction factor.
C: a constant (often it took ~ 1.0) (Hilchie 1978),
�(s): sonic porosity,
	tma: interval transit time for matrix; which is 47 μs/ft,
	tlog: interval transit time recorded in log data,
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Fig. 10.9 The porosity estimated from sonic transit time using Eq. (10.14) varying with depth in
KT and KM wells respectively

	tfl: interval transit time for the presence of fluid in the rocks; which is 185μs/ft,
	tsh: interval transit time for the Shale adjacent zone (Fig. 10.9).

10.4.3 Estimating the Types of Shale

The SP log is a vital tool to interpret shale distribution in the formations and for iden-
tification of its different types such as laminar shale, dispersed shale, and structural
shale. This distribution is identified by density and porosity cross plot in KT well
shown in Fig. 10.11.

Laminar shale

In this case, the important factors are the relative thickness of the shale, the resistivity
on the shape of the SP, and the permeable beds. The value of PSP (Pseudo SP
or maximum SP in shaly sand formation) is used to indicate the shaliness in the
formations (Serra 1984).



294 D. K. Singha et al.

Dispersed shale

Dispersed shales impede themovement ofCl− ions and the effect is strong attenuation
of the SP. the attenuation occurred in the SP is due to the presence of shale in the
pores. The diffusion of Cl− ions can be reduced to zero at a certain shale percentage
(Serra 1984).

Structural shale

As long as the sand grains constitute continuity in their phases the structural shales
act as dispersed shales. As soon as continuity in phases break, the no deflection can
be seen in the SP log and it indicates then that sand grains are surrounded by shale
(Serra 1984) (Figs. 10.10 and 10.11).

Fig. 10.10 Different shale distribution mode after Schlumberger 2000 and Serra 1984

Fig. 10.11 cross plot of neutron porosity vs. density porosity for a KT well at depth interval
2175–2250 and b KM well for depth 1950–2150 m
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10.5 Results and Discussions

Two formations are encountered in each of the wells KM,KT, andKJ. The permeable
zones delineated using SP log in the well KM are: Barail and Sylhet formations,
similarly, forwellKT:Kopili and sylhet formations, and inKJwells: Sylhet and upper
gondwana formations. First, we have identified SSP for clean sand in each formation
after drawing the shale base line shown in Fig. 10.6 for KT well. Then we have
estimated PSP from the shale base line for each possible permeable zone. The shape
of SP is greatly influenced by presence of shaliness and aswell as presence of resistive
hydrocarbon in the sand zone. For example of KT well, the shale baseline is drawn
at 20 mV and then, SSP and PSP are estimated 35 mV for depth interval 2488–2498
and 28 mV for depth interval 2502 to 2511 m. Similar procedure has been applied
to other formations of KM and KJ well data to draw shale base line and accordingly
identifying permeable zones. The preamble zones have been confirmed either by
water or hydrocarbon saturated. First we have checked the higher true resistivity
values shown in the tables. We have calculated saturation of the parmeable zones
using Archie’s equation. In the reservoirs depth interval, volume of shale calculated
using SP data varies from 13 to 51% in Sylhet formation, 24–42% respectively.
Minimum Sw is observed 43–59% and 40–41% for depth interval 2522–2530 in
Sylhet and 1690-1695 m for upper Gondawana formations respectively. The water
saturation is influenced by presence of shaliness in all the hydrocarbon reservoirs.
The estimation ofwater saturation extremely depends on accuracy of formationwater
resistivity. The petrophysical parameters estimated for all the three wells KM, KT,
and KJ wells are tabulated in Tables 10.1, 10.2 and 10.3.

10.6 Depositional Environment

Since shale and clay are basically fine grained than sand, a change in SP suggests a
change in grain size. SP deflections can indicate depositional sequences, where either
sorting, grain size and cementation change with depth and reflects a characterstic
change in SP shape. The thickness of each facies or sequences of facies, and the

Table 10.1 Computed petrophysical parameters for KM Well

S.N Depth(m) Vsh(%) Rt(�-m) �(%) Rw(�-m) Sw(%)

Barail

1. 1902–1912 ~24 ~10–13 ~14–25 0.243 ~60–81

2. 1934–1937 ~42 ~7–8 ~15–34 0.241 ~71–87

Sylhet

1. 2238–2241 ~17 ~8–9 ~21–32 0.349 ~65–78

2. 2248–2265 ~19 ~10–16 ~12–44 0.347 ~63–75
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Table 10.2 Computed petrophysical parameter for KT well

S.N Depth(m) Vsh(%) Rt(�-m) � (%) Rw(�-m) Sw(%)

Kopili

1. 2338–2341 ~41 ~35–40 ~28 ~0.30 ~64–78

Sylhet

1. 2505–2508 ~13 ~40–46 ~18 ~0.35 ~68–80

2. 2522–2530 ~43 ~48–52 ~26 ~0.35 ~43–59

3. 2538–2544 ~26 ~80–86 ~21 ~0.35 ~52–68

Table 10.3 Computed petrophysical parameter for KJ well

S.N Depth(m) Vsh(%) Rt(�-m) �(%) Rw(�-m) Sw(%)

Sylhet

1. 1483–1485 ~46 ~370–378 ~25 ~0.989 ~49–67

2. 1494–1495 ~51 ~390–398 ~33 ~0.985 ~67–79

3. 1520–1525 ~18 ~400–420 ~18 ~0.98 ~47–65

Upper Gondwana

1. 1690–1695 ~17 ~400–406 ~19 ~1.399 ~40–51

evolution occurring in the size of grains it accumulated are together related to its
depositional environment. It has already been mentioned in the paper that the bell
shaped and funnel shaped logs indicate the channel point of fluvial and delta border
progradation respectivelywhereas, the same log shapes also indicate the transgressive
marine shelf and prograding marine shelf.

In thewellsKM,KT, andKJ twomost profound depositional features are observed
on the SP log: Bell shape and funnel shape. The bell shaped trend comprises
fining upward sequences and the funnel shaped trend comprises coarsening upward
sequences. The shapes are identified on the SP log are delineated in Figs. 10.12,
10.13, and 10.14.

10.7 Conclusions

The well log data are vital for the determination of petrophysical parameters for eval-
uation of hydrocarbon reservoirs. The shale base lines are drawn on plot of SP for
individual formations in the study area for identifying permeable and non-permeable
zones. Resistivity of formation water (Rw) has been calculated using SP data for all
the formations and hence, water saturation is calculated using Archie’s empirical
formula in the upper Assam basin. Some permeable zones act as hydrocarbon reser-
voirs which are validated with high resistivity values and lower water saturations.
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KM
Depth Shape Low                                                  

High
Depositional Environment

1890-02 

Bell shape
Fining 
upwards 
sequences.

Lacustrine sands, 
Deltaic distributaries, 
Turbidite channels, 
Proximal deep-sea
Fans

1912-30 

Funnel
shape
Coarsening
upward 
sequences.

Distributary mouth bars , 
Delta marine fringe, 
Distal deep-sea fans

2232-42 

Bell shape
Fining 
upwards 
sequences

Lacustrine sands, 
Deltaic distributaries, 
Turbidite channels, 
Proximal deep-sea
Fans.

Fig. 10.12 Depositional shape observed on KM well from self-potential log

In three wells, total twelve reservoirs have been identified from all permeable zones
identified from SP log. The water saturation values are noticed higher values because
presence of higher shaliness values in the reservoirs. The porosity is varying from
12 to 44% using sonic transit data. The study has further emphasized the importance
of SP log in lithofacies and depositional environment analysis. The lithofacies and
environment of deposition are identified with SP shape analysis using three wells
KM, KT, and KJ. Two depositional features are obtained in all the three wells KM,
KT, and KJ: Bell shaped and funnel shaped. Bell shaped trend comprises upward
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KT
Depth Shape high                                            low Depositional 

Environment

2254-68 

Bell shape
Fining 
upwards 
sequences

Lacustrine sands, 
Deltaic distributaries, 
Turbidite channels, 
Proximal deep-sea
Fans.

2446-60 

Bell shape
Fining 
upwards 
sequences

Lacustrine sands, 
Deltaic distributaries, 
Turbidite channels, 
Proximal deep-sea
Fans.

2470-94 

Bell shape
Fining 
upwards 
sequences

Lacustrine sands, 
Deltaic distributaries, 
Turbidite channels, 
Proximal deep-sea
Fans.

2510-24 

Bell shape
Fining 
upwards 
sequences

Lacustrine sands, 
Deltaic distributaries, 
Turbidite channels, 
Proximal deep-sea
Fans.

Fig. 10.13 Depositional shape observed on KT well from self-potential log
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KJ
Depth Shape Low                                                            

High
Depositional 
Environment

1478-94 

Bell shape
Fining 
upwards 
sequences

Lacustrine sands, 
Deltaic distributaries, 
Turbidite channels, 
Proximal deep-sea
Fans.

1502-14 

Funnel
shape
Coarsening
upward 
sequences.

Distributary mouth
Bars, 
Delta marine fringe, 
Distal deep-sea fans. 

1532-46 

Funnel
shape
Coarsening
upward 
sequences.

Distributary mouth 
Bars, 
Delta marine fringe, 
Distal deep-sea fans. 

1656-82 

Bell shape
Fining 
upwards 
sequences

Lacustrine sands, 
Deltaic distributaries, 
Turbidite channels, 
Proximal deep-sea
Fans.

1686-07 

Funnel
shape
Coarsening
upward 
sequences.

Distributary mouth 
Bars, 
Delta marine fringe, 
Distal deep-sea fans. 

1818-34 

Funnel
shape
Coarsening
upward 
sequences

Distributary mouth
Bars, 
Delta marine fringe, 
Distal deep-sea fans. 

Fig. 10.14 The depositional shapes observed in KJ well from self-potential log
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fining sequences and funnel shaped trend comprises coarsening upward sequences.
The shapes are identified the lacustrine sand, delta distributaries, turbidite channels,
and proximal deep-sea fans.
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Chapter 11
High Resolution Electrical Resistivity
Tomography and Self-Potential Mapping
for Groundwater and Mineral
Exploration in Different Geological
Settings of India

Dewashish Kumar

Abstract High resolution electrical resistivity tomography is the state-of-the-art
geophysical technique to understand, conceptualize, delineate and demarcate the
subsurface geological strata and structure(s) in terms of prospect groundwater
scenario, its availability, sustainability and subsequent development. Nevertheless,
exploration and prospecting for different metallic mineralization within the subsur-
face under various geological settings is a major concern and challenge in the field of
earth science in our country. The exploration of these vital natural resources namely
water and minerals from near surface layers to 200–250 m depths in a different
geological environment is a major issue among the earth scientists and is of much
importance and significance, which are the present and future need as well as the
utmost demand of our country. This paper highlights the recent research work and
their outcome on groundwater and mineral resources in the areas of exploration,
prospecting and development in varied geological settings of our country.

Keywords Electrical resistivity and induced polarization tomography ·
Groundwater · Minerals · Exploration and prospecting · India

11.1 Introduction

Two dimensional high resolution electrical resistivity and induced polarization is
one of the unique electrical tomography techniques in exploring and mapping the
subsurface natural resources up to a maximum depth 250 m with a quite good preci-
sion mainly for groundwater and ploymetallic minerals deposit in different geolog-
ical terrain/settings. This technique is scientifically verified and proved in a number
of scientific studies conducted for groundwater and mineral resources both for the
exploration, prospecting and development of the natural resources. The benefit of
this technique is immense in conjunctionwith continuous high resolutionmapping of
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the subsurface geological formations as well as the large data density acquisition in
one go and the subsequent data processing, data analysis, the requisite modeling for
evaluation of the subsurface geology and the detailed interpretation of the models in
terms of groundwater and mineral resources for any type of the geological settings.
We acquired high resolution electrical resistivity and induced polarization full wave-
form sampling and recording of the dataset namely resistivity and chargeability
physical parameters (ABEM 2012) with 8 windows timing set up and equal duration
for current-on and current-off in themeasurement cycle for a complete analysis of the
output signal strength gathered from the various geological rocks. This paper high-
lights the important and significant results on groundwater studies on exploration,
prospecting and development as well as mineral exploration in different geological
settings of India.

11.2 Interpretation of 2D Inverted Resistivity and Induced
Polarization Models

11.2.1 Results and Discussions

Delineation of deep-seated weathered and fractured rock for groundwater explo-
ration: Choutuppal mandal, Nalgonda district Telangana, India

A geoscientific study was conducted at Choutuppal mandal, Nalgonda district Telan-
gana India to tackle the heavy crisis of water. In order to understand, mapping the
complex geological set up and delineated the hydrogeological strata for exploita-
tion of groundwater resources (Kumar et al. 2016b) a systematic groundwater
prospecting, exploration anddevelopmentworkwere conducted in the study area for a
long term availability and sustainability of groundwater resources within Choutuppal
area. Keeping in view high resolution electrical resistivity survey was conducted in
the problematic villages of the Choutuppal area where there was acute shortage of
groundwater both for drinking and agriculture purpose. The 2D inverted subsur-
face resistivity model connecting between two villages namely Mandollagudem and
Toorpugudem, which is underlain by granite hard rock is shown in Fig. 11.1. This
resistivity model depicted a smooth variation of resistivity for the geological forma-
tions but with a large resistivity contrast varying from ~10−1.6 × 105 �.m from
south to north end of the profile (Fig. 11.1). The near surface layered formation
shows low resistivity <160 �.m, which indicated a soil layer followed by weath-
ered granite until ~30 m depth. The weathered granite is clearly mapped between
160 and 480 m lateral distance, which is very well distinguished from the massive
granite (Fig. 11.1) with substantial resistivity contrast among them.At a lateral 240m
distance, the downward deepening of the geological bed indicates weathered/highly
weathered granite whose resistivity vary between 450–550 �.m with a good resis-
tivity contrast. The formation zone lying below 160 to 480 m lateral distance is
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Fig. 11.1 Depicted 2D inverted resistivity model between Mandollagudem and Toorpugudem
village showing a clear cut resistivity contrast between the low resistivity weathered/highly granite
and the high resistivity massive granite formation in a hard rock aquifer system (after Kumar et al.
2016b)

delineated as the most prospect and potential area for groundwater exploitation. This
is the major repository for groundwater reserve, which can be exploited to a deeper
depth of 200 m or beyond for long term sustainability of the natural resources. The
characteristics geological rock strata and the hydrogeological condition were highly
favourable for groundwater exploration and development at this anomalous zone of
the granitic rock. On the other hand, there is a clear cut indication of massive granite
rock with a high resistivity of the order of ~4 × 104 �.m from ~50 m down to
a deeper 131 m showing increase in resistivity with depth on northern side of the
profile (Fig. 11.1). This type of high resistivity massive structure was totally devoid
of water and must be avoided for groundwater exploration and exploitation strategy
in a hard rock aquifer system. On overall interpretation of this resistivity model it was
found that the southern side of the inverted section was more favourable in terms
of groundwater prospects and exploration rather than the northern side leading to
higher recharge to the groundwater table in the southern side, which leads to highly
favourable hydrogeological condition for groundwater exploration and development
in a granitic hard rock aquifer system (Fig. 11.1).

Delination of a weak zone/low resistivity formation: A potential target for ground-
water resources in a granite hard rock aquifer

Another study successfully conducted for mapping the potential groundwater zone in
a complexgranitic terrainwhere there is an acute shortageof drinkingwater in another
village within Choutuppal mandal, Nalgonda district Telangana India (Kumar et al.
2017c). The 2D inverted resistivity model at Yallagiri site is quite exciting as it shows
a clear cut low resistivity weak zone connected from the near surface layer and is
prominent until the deeper depth up to 131 m (Fig. 11.2). This low resistivity zone
was sandwiched between two high resistivity massive granite on either side of it
with a significant resistivity contrast of 11,350 �.m among them and it lies between
480 and 640 m lateral distance (Fig. 11.2). The low resistivity zone between ~200
and <1000 �.m was located right below 540 m lateral distance is a major conduit
of groundwater flow/recharge and is a prominent anomalous zone, which act as the
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Fig. 11.2 Depicted high resolution resistivity section at Yallagiri site showing high resistivity
granite towards eastern side and a low resistivity deep vertical contrasting prominent zone in west
direction—is the potential target for groundwater exploration and exploitation (after Kumar et al.
2017c)

potential target for groundwater exploration and exploitation (Fig. 11.2) from shallow
to deeper depths in this complex geological setting of Choutuppal area.

Groundwater Exploration in Granitic Terrain, Andhra Pradesh

We achieved in mapping the shallow (<100 m) as well deep (>200 m) weathered-
fractured zones, which is good repository for groundwater prospecting (after Rao
et al. 2008). At this site electrical resistivity tomography was carried out along W-E
direction in a granitic terrain, Andhra Pradesh using two different array as well as
Self Potential (SP) survey for a comparative study for groundwater exploration. The
Wenner-Schlumberger 2D model (Fig. 11.3) depicted that up to a depth of 15 m
the model shows a low resistivity layer from west to east direction, followed by
increasing resistivity layers up to 40 m and then a there is a change in the geological
variation at a depth of about 60 m and a sharp resistivity contrast is seen at a depth
of 65 m towards westward but in the eastern direction the situation is different, a
very high resistivity body is sitting at a depth of 78 m. Overall this resistivity model
shows a layered geological structure (Fig. 11.3).

Whereas the pole-pole 2D resistivity model shown in Fig. 11.4 shows a layered
geological structure with two high resistivity body separating almost at the center
of the profile (Fig. 11.4). As it is seen and even in continuation with Wenner-
Schlumberger 2D model (Fig. 11.3) above, the high resistivity is continuing upto

Fig. 11.3 2D Electrical resistivity model depicting a layered geological formation in a granitic
terrain <100 m depth (after Rao et al. 2008)
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Fig. 11.4 2D Electrical Resistivity Model depicting a layered geological formation in a granitic
terrain >200 m depth (after Rao et al. 2008)

150 m depth. Beyond 150 m depth there is a decrease in the resistivity value and at a
depth of ~200 m there is a sudden drop in the resistivity value and is of the order of
200–250�.m and from 210 to 293 m depth (Fig. 11.4) it revealed a further low resis-
tivity zone, resistivity of the order < 200 �.m, which indicates the fissured/fractured
zone saturated with water, which is the potential target for groundwater exploration.

SP Profile

The SP profile shown (Fig. 11.5) along the center of the 2D resistivity line (Figs. 11.3
and 11.4) was carried out, which indicated the anomalous zones as shown below.

As seen in the pole-pole 2D resistivity model (Fig. 11.4) there is correlation of
SP variation called natural subsurface potential of the earth with the 2D resistivity
model (Fig. 11.5a) along the center and it shows positive anomalies, which are the
indirect indication for groundwater prospecting for exploitation of the resource.

Exploration and exploitation of deep groundwater resources in a drought prone area
as well as delineation of a geological major fault structure

An integrated study was undertaken due to a major problem for groundwater
resources in a drought prone Tadipatri mandal, Anantapur district in Andhra Pradesh.
Both hydrogeological and high resolution geophysical surveys were carried out to
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understand the complex geological setting its characteristics constituting both the
hard and soft rocks (Kumar et al. 2015a, b). The high resolution electrical resis-
tivity tomography was conducted at one of the specific site—Tummalapenta in
order to evaluate and mapped the shallower to deeper geological strata and to delin-
eate, demarcate the prospect groundwater zone for deeper groundwater exploration
and exploitation of the groundwater resources (Fig. 11.6). The modeled resistivity
inverted section clearly shows a large resistivity contrast of the subsurface geological
scenario with a low resistivity zone <100 �.m towards the southern side (Fig. 11.6)
as compared to a very high resistivity massive formation towards the northern side of
the resistivity section (Fig. 11.6). Nevertheless, amajor fault was clearly revealed and
mapped, which separates the low resistivity zone and a high resistivity with a sharp
resistivity contrast right below ~320m lateral distance (Fig. 11.6). This inferred fault
was very deep and was extended up to more than 250 m depth. The resistivity of
the formation to the north of the fault structure was very high ranging from >17,000
�.m to 274 k �.m, which suggests no prospect groundwater zone(s) towards the
northern side of the section (Fig. 11.6) where there was all the massive formation.
The major potential target for groundwater is only towards the left side of the major
fault structure (Fig. 11.6) showing a sharp change in resistivity all along the fault
structure with a large resistivity contrast on either side of the fault (Fig. 11.6) was the
key location for groundwater exploration and exploitation from shallower to deeper
depths.

Exploration of deeper groundwater resources in a gneissic hard rock geological set
up

A research project on groundwaterwas undertaken in order to delineate the shallow to
deep groundwater resources in a plateau region of Chhotanagpur Gneissic Complex
(CGC) near Ranchi, Jharkhand. The exploration and exploitation of the groundwater

Fig. 11.6 Depicted high resolution 2D inverted resistivity model showing large resistivity contrast
between the lowest and the highest resistivity values as well as delineated a major fault (F-F)
structure and the groundwater potential zone towards the southern side of the fault plane, while
on the right side of the fault structure; it is totally a very massive formation with no prospect for
groundwater exploitation (after Kumar et al. 2015b)
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resources was successfully achieved both at the shallow and deeper depths in a
metamorphic East Indian shield region, which constitute the complex geological set
up at Ghar Khatanga (study area) in Namkum area near Ranchi, Jharkhand. The high
resolution 2D inverted resistivity section located in block-D and laid in S–N direction
revealed a clear cut both the resistive and the conductive zones of geological scenario,
which are of much interest and significance in terms of groundwater exploitation
and development (Kumar et al. 2016a). The model resistivity section depicted a
layered resistivity structure up to a depth of ~30 m (Fig. 11.7). Later down to 30 m
depth the subsurface geological strata was heterogeneous in nature and it revealed
a clear-cut high and low resistivity formations from 60 m to until bottom 170 m
depth, which is located almost in the centre of the resistivity section (Fig. 11.7).
The resistivity contrast between these two−the highest and the lowest resistivity
geological formations was inferred as a fault zone (F-F) separating the high and low
resistivity zone. It depicted a large resistivity contrast at the contact of the fault zone
(Fig. 11.7). The resistivity contrast developed between the two contrasting formations
is of the order of ~66,800�.m,which is very high and depicts that one side of the fault
is very resistive and the other side is very conductive, which is delineated between
70 and 170m depth (Fig. 11.7). The contact of the high and low resistivity zone is the
main potential target for groundwater exploration and development in this geological
setting of the study area.

Delineation of conductive mineralization in Mafic–Ultramafic Intrusive Rocks

High Resolution Electrical Resistivity and Induced Polarization Tomography study
was conducted in and around Betul district, Madhya Pradesh Central India for
sulphide minerals prospecting and exploration. Sulphide deposits in the Betul belt
define a spectrum from Zn-Cu type to Zn-Pb-Cu type of mineralization (Ghosh and
Praveen 2008). The study was aimed to look and locate both expensive and inex-
pensive type of minerals. One of the study was conducted near Padhar area, Betul
district, which is underlain by mafic–ultramafic complex of high density rocks. The

Fig. 11.7 Depicted high resolution 2D inverted resistivity model with heterogeneous subsurface
formation. Themodel resistivity clearly delineated a high and a low resistivity geological formation,
which is inferred as fault (F-F) structure. All along the fault plane it is themost prospect groundwater
zone in the given geological setting of the area (after Kumar et al. 2016a)
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Fig. 11.8 a Depicted high resolution 2D inverted resistivity model over ultra mafic, pyroxenite
gabbro host rock showing substantial resistivity contrast right over the two conductive anoma-
lies near 320 m and around 480 m lateral distance respectively. b. Shows the high resolution 2D
inverted chargeability model, which revealed two distinct well defined district conducting anoma-
lies extending in vertical and horizontal directions at Padhar area, Betul Madhya Pradesh, Central
India (after Kumar et al. 2016b)

high resolution electrical resistivity 2D inverted model depicted two sharp anoma-
lies, which are inferred to be due to the metallic mineralization preserved within
the host rock (Fig. 11.8a). The resistivity model indicated a disturbed geological
structure with a large variation in resistivity between 20 �.m and 5,200 �.m up
to a 131 m. Nevertheless, the 2D inverted chargeability model (Fig. 11.8b) clearly
revealed twohighly conductingmineralizedbodycorresponding to twomajor anoma-
lies as depicted from the resistivity model (Fig. 11.8a). The modeled data revealed
a sharp contrast with a significant variation in chargeability with respect to the host
rock. The 2D inverted chargeability model had evolved two prominent conducting
anomalies where the magnitude of chargeability values are ~30–40 mV/V and ~25–
50 mV/V lying between 300 and 600 m lateral distance (Fig. 11.8b). The nature of
one conducting body is circular while the other is elongated in shape and they are
lying within the depth range of 25–90 m from the surface. These anomalies indi-
cated the strong presence of disseminated sulphide mineral deposit namely porphyry
copper or the massive magnetite minerals where the body is extending both in lateral
and vertical directions. The modeled data revealed the width of the main conducting
anomalies are close to 90–150 m (Fig. 11.8b). The integrated study comprising the
type of geophysical anomalies, detailed geological and geochemical characterization
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Fig. 11.9 a Depicted high resolution resistivity model with two high resistivity bodies separated
by a low resistivity vertical zone with a resistivity contrast ≥1000 �.m. b. chargeability model
shows a large volume of rock mass with the high chargeability ~10–14 mV/V value corresponding
to the low resistivity vertical geological feature within the depth range of 40–131 m depth at the
Pharsabahar area (after Kumar et al. 2017b)

of rocks had proved the presence of magnetite, disseminated form of pyrite and chal-
copyrite with high concentration of Nickel (Ni) and Chromium (Cr) at this Padhar
area (Kumar et al. 2016c).

Mapping quartz vein geological structure: Implication for Gold-Sulphide Mineral-
ization

Yet another study deploying high resolution electrical resistivity & induced polar-
ization tomography was conducted at Parsabahar area Jashpur district, Chhattisgarh
State in Central India in the search of gold-sulphide mineralization. The aim of
the research work to investigate in detail and delineate the quartz vein geological
structure and their significance in terms of both precious and non-precious metallic
mineralization within the host rock. The high resolution modelled data answered the
main geological structure and clearly mapped the low resistivity vertical zone whose
resistivity vary from 785–1390 �.m between ~30 m to more than 131 m depth. The
low resistivity vertical geological feature was showing a sharp resistivity contrast
between the low and the high resistivity geological formation (Fig. 11.9a). The resis-
tivity model data also revealed high resistivity bodies with resistivity >400 �.m on
either side of the low resistivity vertical zone (Fig. 11.9a) and this high resistivity
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Fig. 11.10 a Depicted high resolution resistivity model showing high resistivity geological body
with a semi-oval shaped, extendingmore towards eastern side and it is at a shallower depth compared
to the western side of the profile. b chargeability model showing clear cut chargeability anomaly
between ~10−22.6 mV/V was prominent from ~45 to 86 m depth, which represents metallic
minerals with sulphide within the host rock (after Kumar et al. 2017a)

body is extending from close to 35–40 m depth to until 131 m depth and beyond. It
is very clearly seen that the near surface layer shows resistivity < 100 �.m, which is
inferred as the weathered rock materials. However, 2D inverted chargeability model
describes and clearly revealed high chargeability value ~10–14 mV/V between 40 m
and >131 m depth (Fig. 11.9, corresponding to low resistivity vertical zone and
this zone of high chargeability is inferred as the clear cut indicator of gold-sulphide
mineralization at the Parsabahar area (Fig. 11.9b). Here at the deeper depth the char-
grability is themaximum and highly concentrated and it covered a substantial volume
of rock mass, which is of much importance in terms of metallic mineralization in the
ultramafic–mafic-granite complex of Jashpur, Bastar craton, Central India.

Another new example ofmineralization in Sarni area, Betul district,MadhyaPradesh

TheSarni area,which is underlain bymafic and ultramafic intrusive rock type inBetul
district, Madhya Pradesh had been explored extensively for sulphide mineralization
using high resolution electrical tomography technique (Kumar et al. 2017a). The 2D
inverted resistivitymodels at the Sarni areawas quite interesting and thrilling in terms
of conducting mineral resources associated with sulphides within the host rock when
analyzed and viewed from the large density of good quality electrical tomography
dataset. The interpretation at one of the site was presented here in order to know
the magnitude of variation in the resistivity of geological structure and their corre-
sponding chargeability developed due to sulphide mineralization inherent within the
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host rock, which dictates about the nature, quality and quantity ofmineralizationwith
a rock mass. One of the 2D tomography profiles revealed a clear cut high resistivity
structural feature of the order of 900 �.m to a maximum 2900 �.m for the deeper
geological strata (Fig. 11.10a) and this high resistivity variation appears like a semi-
oval shaped. This high resistivity body is extending more towards eastern side and
it is at a shallower depth compared to the western side of the profile. The modelled
resistivity section depicted a weathered rock material with a resistivity <100 �.m
from west to east direction in the near surface layer of mafic and ultramafic intrusive
rock mass. The significance of this resistivity model suggests and it evaluates, there
is a large range of resistivity revealed with no well defined low resistivity zones
that might indicate mineral deposits within the host rock body (Fig. 11.10a). On the
other hand, 2D inverted chargeability model resulted from induced polarization data
shows a sharp and prominent anomaly (Fig. 11.10b) corresponding to high resistivity
variation within the host rock in this area. This high chargeability anomaly ranging
between ~0–22.6 mV/V is prominent from ~5 to 86 m depth (Fig. 11.10b) where
the highest value of chargeability 22.6 mV/V was concentrated at the deeper depth,
which suggests a strong association of metallic minerals with the sulphide within the
host rock. Thus the presence of sulphide bearing mineral is clearly revealed in the
present geological setting in this area.

11.3 Conclusions

High resolution electrical tomography is state-of-the-art geophysical technique in
mapping the various geological terrains with different characteristics, which are
inherent with different rock types. The advantage of recording the full waveform data
using 4 channel Terrameter® LS system during the whole measurement cycle in data
acquisition stage is immense, which helps to visualize the received measured signals
in detail and is totally uncompromised. Especially during the induced polarization
(IP) measurement, it records the discharge of the signals with a very high resolu-
tion, which helps in analysing the different conducting minerals lying underneath
the subsurface at different depths of the earth. This technique is powerful in distin-
guishing different variety of rocks with the highest resolution as well as capable of
acquiring large volume of data, which is utmost required for a meaningful and sound
interpretation over a simple and a complex geological settings and with a maximum
confidence level and accuracy in any hydrogeological, geological, structural and
mineralogical interpretation. The quantitative range of resistivity and chargeability
values and their contrasts evolved was very significant and helpful in demarcating
the zone of interest for groundwater prospecting and exploitation of the natural
resource as well as delineating the various geological structures, which controls the
occurrence and movement of groundwater within the host rock. Equally it is valid
for mineral exploration and prospecting where different values of modelled charge-
ability in association with resistivity had guided in inferring the different conductive
metallic mineralisation zones in various geological settings.
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