
Chapter 23
Wave Attenuation in a Pre-tensioned
String with Periodic Spring Supports

Y.-B. Yang, J. D. Yau, and S. Urushadze

Abstract The overhead catenary system is a crucial conductor for delivering steady
electric power to the trains running on modern electrified railways. The propagation
of vibration waves in the catenary system is of interest to railway engineers due
to the pantograph-catenary interaction. To explore the wave transmission via the
contact wires of a catenary system supported by hanging devices offered by the
bracket structures, a simplifiedmodel composedof a pre-tensioned string periodically
suspended by hanging springs is adopted. For a periodic structure with wider band
gaps, also known as stop bands, awider cluster of frequencies ofwaves propagating in
the periodic structure can be attenuated (or filtered out). This will be beneficial to the
maintenance of the catenary system. To take advantage of such a feature, a resonator
is usually equipped on each of the hanging spring supports so as to widen band gaps
for better attenuation of the waves transmitted in the pre-tensioned string. In this
study, a unit cell conceived as a spring-resonator-string unit is adopted to formulate
the closed-form dispersion equation, from which the key condition for widening the
band gaps is derived. From the exemplar study, it was shown that the installation of
adjustable resonators on a catenary system can increase the band gap width, serving
as a wave filter for attenuating the pantograph-induced wave transmission in the
contact wires of the pantograph-catenary system.
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23.1 Introduction

High-speed railways have become one of the most efficient ground transportation
tools for passengers traveling between major cities in many countries. For high-
speed or traditional railways, the overhead catenary system contains contact wires
for transmitting the electrical current to the pantographs equipped on each train,
thereby supplying the power to the electrical engines of the locomotives of the train.
In the past decades, many studies were conducted on the dynamic behaviors of the
pantograph and catenary, considering their interaction. Sophisticated models have
been developed to carry out the response analysis of the pantograph-catenary system,
by which the effect of the locomotive motion was taken into account [6]. However,
few research has been conducted to explore the problem of wave attenuation via the
contact wires of a catenary system.

For the theoretical formulation aimed at obtaining a closed-form solution, the
overhead catenary system is simplified as a pre-tensioned string supported period-
ically by hanging springs in this study. Using the Floquet-Bloch theory [1, 5] to
account for the periodicity of a periodic structure, the dispersion relation between
thewavenumber and frequency of the pre-tensioned stringwill be derived.Moreover,
a resonator is installed on each of the hanging spring supports to widen the band gaps
(stop bands) of the pre-tensioned string for better attenuation of the wave compo-
nents transmitted via the string. Then, the key condition for determining the critical
resonator is identified from the closed-form dispersion equation of the pre-tensioned
string with resonators.

23.2 Problem Formulation of Overhead Catenary System

For the present purposes, the catenary system is simplified as a pre-tensioned string
supported by periodic hanging springswith identical interval L , as shown in Fig. 23.1.

To derive the closed-form solution for the dispersion equation of the pre-tensioned
string, the following assumptions are adopted:

1. The main contact wire of the catenary system is modeled as a horizontal pre-
tensioned string supported by periodic hanging springs of uniform interval L
[6];

2. The tensioned force T in the string is assumed to be constant during vibration.

Fig. 23.1 Schematic of a pre-tensioned string suspended by equal-distance hanging springs
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With the above tensioned stringmodel, the dispersion relation between thewavenum-
ber and frequency of the periodically supported tensile string will be derived and
presented in closed form.

23.2.1 Dynamic Stiffness Matrix of a Tensioned String

As shown in Fig. 23.1, the governing equation for the transversemotion of a tensioned
string can be written as follows [3]:

ms
∂2u(x, t)

∂t2
− T

∂2u(x, t)

∂x2
= 0 (23.1)

wherems is themass of the string per unit length and u(x, t) the vertical displacement
of the string. By letting a2 = msω

2/T , with ω denoting the frequency, and solving
Eq. (23.1), one can obtain the following solution:

u(x, t) = [C1 sin(ax) + C2 sin(a(L − x))] eiωt . (23.2)

By introducing the dynamic equilibrium conditions at the two ends of a string of
length L , thewell-knowndynamic stiffnessmatrix of the pre-tensioned string element
with length L can be written as [4]

D(aL)string = aT

sin(aL)

[
cos(aL) −1

−1/ cos(aL)

]
. (23.3)

With the dynamic stiffness matrix given in Eq. (23.3), one can conceive a unit cell
of the periodic spring-supported string as in Fig. 23.2, and derive from this the closed-
form expression for the dispersion relation of the wavenumber and the frequency, as
in the section to follow.

23.2.2 Dispersion Equation of a Tensioned String
with Periodical Spring Supports

With the dynamic stiffness matrix given in Eq. (23.3), the dynamic stiffness equation
of the unit cell in Fig. 23.2 for the pre-tensioned string with periodic spring supports
can be expressed as

[
dLL dLR
dLR dRR

] {
uL

uR

}
=

{
fL
fR

}
(23.4)
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Fig. 23.2 A spring-string
unit cell

where { f } and {u} are the element forces and displacements, respectively, and

dLR = dRL = −aT csc(aL/2)

2
(
cos(aL/2) + Kd

2aT sin(aL/2)
) , (23.5)

dLL = dRR = aT cot(aL/2) + dLR . (23.6)

By adopting the periodic boundary conditions of (uR = e−iκLuL , fR + e−iκL fL =
0) of the Floquet-Bloch theory [2] for the string element, the following dispersion
equation can be obtained [1, 5]:

cos(κL) = cos(aL) + KdL

2aL × T
sin(aL). (23.7)

For the pass-band condition of | cos(κL)| ≤ 1 in Eq. (23.7), the bounding frequen-
cies are defined by | cos(κL)| = ±1. Clearly, the condition of bounding frequencies
listed in Table23.1 depends on the stiffness parameter (KdL/T ), which is related to
the tensile force T in the string, spring stiffness Kd , and uniform interval L of the
hanging supports offered by the bracket structures. In real electrified railways, the
span interval L of the bracket structures and the pre-tensioned force T in a catenary
system are determined by the regulations or provisions suggested by railway codes.
Consequently, a change in the hanging spring stiffness Kd may lead to a spectral
band gap that allows certain frequency components to be attenuated (or filtered out)
during the wave transmission in the periodically spring-supported string. To further
this consideration, a resonator will be equipped in the hanging spring support for the
purpose of widening the band gaps for attenuating certain frequency components in
the pre-tensioned string.

Table 23.1 Bounding frequencies of the unit cell

Modes Bounding frequencies (aL)

Symmetrical Mode (uR = uL , cos(κL) = 1)

u(x, t) = sin
( aL

2

)
cos

( aL
2

(
1 − 2x

L

)) aL
2 tan

( aL
2

) = 1
2
Kd L
2T

Anti-symmetrical Mode
(uR = −uL , cos(κL) = −1)

u(x, t) = cos
( aL

2

)
sin

( aL
2

(
1 − 2x

L

)) aL
2 cot

( aL
2

) + 1
2
Kd L
2T = 0
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23.3 Dispersion Equation of the Unit Cell with Resonator

For a periodic structurewithwider band gaps,more frequencies ofwaves propagating
in the periodic structure can be attenuated (or filtered out). Tomake use of this feature,
a resonator is equipped on each of the hanging spring supports (Fig. 23.3) so that a
widened band gap (stop band) can be achieved, so as to attenuate a wider range of
frequencies of waves transmitted via the pre-tensioned string. By using the element
assemblage procedure, the spectral equation of the unit cell with two string elements
each of length L/2 and an intermediate resonator at the mid-node (see Fig. 23.3) can
be expressed as follows:

⎡
⎢⎢⎣

aT cot(aL/2) −aT csc(aL/2) 0 0
−aT csc(aL/2) 2aT cot(aL/2) + Kd + kr −kr −aT csc(aL/2)

0 −kr kr − mrω
2 0

0 −aT csc(aL/2) 0 aT cot(aL/2)

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

uL
um
ur
uR

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

fL
0
0
fR

⎫⎪⎪⎬
⎪⎪⎭

.

(23.8)

Here,mr is the lumped mass and kr the spring constant of the resonator, and (um, ur )
denote the vertical displacements of the mid-node of the string and the lumped mass.
By the matrix condensation method, one can condense the slaved displacements
(um, ur ) into the corresponding master displacements (uL , uR) of the unit cell, as
shown in Fig. 23.3. Then the condensed stiffness equation becomes

[
d̄LL d̄LR
d̄LR d̄RR

] {
uL

uR

}
=

{
fL
fR

}
(23.9)

where

d̄L R = d̄RL = −aT csc(aL/2)

2
(
cos (aL/2) + K̄d L

2aL×T sin(aL/2)
) , (23.10)

d̄LL = d̄RR = aT cot(aL/2) + d̄L R, (23.11)

K̄d = Kd

(
1 + kr

Kd

(ω/ωr )
2

(ω/ωr )2 − 1

)
(23.12)

with ωr = √
kr/mr denoting the frequency of the resonator. Clearly, the effect of the

resonator was taken into account in the expression for the condensed spring stiffness

Fig. 23.3 A spring-resonator-string unit cell
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in Eq. (23.12). For the special case when the spring constant kr of the resonator is
zero, the condensed stiffness equation of Eq. (23.9) reduces to Eq. (23.4) as expected.
By introducing the periodic boundary conditions mentioned above to Eq. (23.9), the
following dispersion equation can be derived

cos(κL) = cos(aL) + K̄d L

2aL × T
sin(aL). (23.13)

The second termon the right side of the preceding characteristic equationdescribes
the dispersive feature of a resonator to attenuate the wave components transmitting
from one span to the next one of the periodic pre-tensioned string. For the calculation
to follow, the frequency ratio ω/ωr is introduced:

(
ω

ωr

)2

= μT

kr L
(aL)2 (23.14)

where μ is the mass ratio defined as μ = mr/msL . Then the second term in
Eq. (23.13) can be rewritten as

K̄d L

2aL × T
sin(aL) = KdL

2aL × T
sin(aL) + μ

2

aL × sin(aL)

(aL)2μT/kr L − 1
. (23.15)

Let us consider the critical condition by letting aL → Nπ |N=1,2,3... and ω → ωr

(or (aL)2μT/kr L → 1) in Eq. (23.15), that is,

lim
aL→Nπ,ω→ωr

K̄d L

2aL × T
sin(aL) = (−1)N

μ

2
Nπ. (23.16)

With this, the dispersion relation in Eq. (23.13) reduces to

cos(κL) = (−1)N
(
1 + μ

(
Nπ

2

)2
)

(23.17)

or

| cos(κL)| = 1 + μ

(
Nπ

2

)2

> 1. (23.18)

As can be seen from Eq. (23.18), the resonator provides a widening mechanism
to increase the band gap of wave transmission in a pre-tensioned string supported by
the hanging springs. Concerning the band gap for attenuating the wave transmission
with specific frequencies in the string, some numerical analyses will be carried out
in the following section.
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23.4 Illustrative Example

Let us consider the simplified catenary system shown in Fig. 23.1. Using the empir-
ical data given by Ref. [6], the pre-tensioned force in the contact wire is set to be
T = 15 kN, the mass per unit length of the contact wire is ms = 0.925 kg/m, the
suspension stiffness of the registration arm assembly is Kd = 130 N/m, and the span
length of bracket structures is L = 65 m. See Table23.2 for a list of the properties

Table 23.2 Properties of the pre-tensioned string

L (m) ms (kg/m) T (N) Kd (N/m) vc =√
T/ms (m/s)

65 0.925 15000 130 127a

aCritical velocity of the pre-tensioned string

Fig. 23.4 Dispersion curves of the string with critical resonators with a kr,cr = π2μT/L; b kr,cr =
4π2μT/L
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adopted in the analysis. Correspondingly, the stiffness parameter (KdL/T ) is equal
to 0.564. Let us adopt a resonator with the mass of mr = 0.1 kg, msL = 6 kg. If the
nondimensional frequency aL is selected as aL = π for attenuating the frequencies,
then the critical spring stiffness (kr,cr = π2μT/L) of the resonator can be designed
as 228 N/m.

With these data, the dispersion curves of the pre-tensioned string derived have
been plotted in Fig. 23.4a, in which the black lines represent the dispersion curve of
the string without resonator and the lines with red dots the curve with resonators.

As indicated, the band gap (stop band) at aL = π is significantlywidened once the
critical resonator is taken into account. Similarly, if the nondimensional frequency is
set at aL = 2π , the critical spring stiffness is kr,cr = 911 N/m. Figure23.4b shows
the corresponding dispersion curves of the pre-tensioned string, in which the band
gaps (stop bands) at aL = 2π and aL = 3π have been significantly widened.

23.5 Concluding Remarks

In this study, a simplified model composed of pre-tensioned string suspended peri-
odically by equal-distance springs is used to simulate the pantograph-catenary
interaction encountered in railway engineering. With this, the dispersion relation
between the wavenumber and frequency of the pre-tensioned string hung by peri-
odical spring supports is derived in closed form. For wave attenuation, a resonator
was attached to each hanging spring support, for which the closed-form solution
was also derived from the corresponding dispersion relation. The numerical results
indicate that the installation of resonators can widen the band gaps (or stop bands)
of the dispersion curves of the pre-tensioned string. With this conclusion, a fur-
ther pantograph/catenary interaction model will be carried out to study the overall
pantograph-catenary interaction dynamics.
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