
Chapter 21
Optimal Control for a Space Rendezvous

Alois Steindl, Alexander Schirrer, and Stefan Jakubek

Abstract We consider the transfer of a chaser vehicle to a space station using impul-
sive controlwithminimal fuel consumption. It is assumed that the space stationmoves
on a circular Keplerian orbit in a rotational symmetric gravitational field and that the
chaser vehicle has already reached the station’s orbital plane. The vehicle is steered
by impulsive burns of the rockets. The problem is solved numerically using Pontrya-
gin’s maximum principle for impulsive controls by a multiple shooting method and
a continuation procedure to study the variation of the optimal control strategy for
varying time constraints. The problem is studied using a local linearized system and
the fully nonlinear system using local Cartesian and polar coordinates.

21.1 Introduction

We investigate the energy-optimal impulsive control of a chaser vehicle (C) to a
space station (S), which moves on a circular Keplerian orbit (Fig. 21.1). The chaser
is steered by impulsive burns of its rockets. Finding the control strategy, which uses
the least amount of propellant, is one of the most important tasks in manoeuvre
planning.

The transfer problem between different Keplerian orbits has already been solved
by Hohmann [1]. He suggested applying two thrusts in a tangential direction, which
yields the optimal solution, as long as the orbits are not too far apart.

In this article we investigate the control problem using Pontryagin’s Maximum
principle, which is discussed in depth in [2]. In this reference also the problem with
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Fig. 21.1 A chaser vehicle
(C) should be transferred to
the vicinity of the space
station by impulsive thrusts
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impulsive control thrusts is considered and the proof relies on a previous article by
Blaquiere [3].

While most applications of Optimal Control Theory assume quadratic control
costs, we are interested in the more relevant L1-norm of the cost, the actually burned
fuel. This choice leads to a complication, because from the Maximum Principle
we cannot directly derive the optimal control depending on the state and costate
variables, as is the case for quadratic control costs.

A further topic in this article is the comparison between different sets of coordinate
systems: While localized coordinates around the space station lead to the frequently
used linear Clohessy-Wiltshire equations, we are also interested in the results for the
full nonlinear equations using either a local co-rotating Cartesian frame or localized
polar coordinates. While the Cartesian coordinates reflect the view from the space
station, the polar coordinates better reflect the orbital dynamics of the system. The
computed results demonstrate that one has to be careful in stating the initial con-
ditions, otherwise one obtains significant differences in the solutions. Although the
considered distances are very small compared to the orbital radius, the small differ-
ences in the different coordinate descriptions cause quite large effects in the optimal
solution.

The article is organized as follows: First, we introduce the used coordinate systems
and the equations of motion for the chaser vehicle in these coordinates. Then we
derive the difference equations for the considered impulsive control and state the
necessary optimality conditions following from Pontryagin’s Maximum Principle
for systems with impulsive controls, as given in [2]. Finally, we apply the method to
the chasing problem in the different coordinate systems.
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21.2 Equations of Motion

During free flight, the chaser vehicle’s motion is governed by the equations of a
body in the earth’s gravitational field. In planar Cartesian coordinates, the equations
of motion read

ẍ = − kx
|x|3 , (21.1)

with k = GmE , where G is the gravitational constant and mE is the mass of the
earth. The space station rotates on a circular part of radius rS with angular velocity
ω, where k = r3Sω

2.

xS = B(t)

(
rS
0

)
, where B(t) =

(
cosωt − sinωt
sinωt cosωt

)
. (21.2)

Introducing a relative rotating reference frame (see Fig. 21.2), in which the space
station S rests at the origin,

x = xS + B(t)X (21.3)

and rescaling the time by τ = ωt , we obtain the near-field dynamics

Ẍ = 2Ẏ + rS + X − r3S(rS + X)(
(rS + X)2 + Y 2

)3/2 , (21.4a)

Ÿ = −2Ẋ + Y − r3SY(
(rS + X)2 + Y 2

)3/2 , (21.4b)

where the dots now denote derivatives with respect to orbital time τ . For |X| �
rS , Eq. (21.4) can be approximated by the linear system, well known as Clohessy-
Wiltshire equations [4],

Ẍ = 2Ẏ + 3X, (21.5a)

Ÿ = −2Ẋ . (21.5b)

A second possible choice of coordinates are polar coordinates: x = r(cosϕ, sin ϕ)T .
In these coordinates, the equations of motion are given by

Fig. 21.2 Local Cartesian
(X, Y ) and polar coordinate
(XP , YP ) systems

0



246 A. Steindl et al.

r̈ − r ϕ̇2 = − k

r2
, (21.6a)

d

dt
r2ϕ̇ = r2ϕ̈ + 2rṙ ϕ̇ = 0. (21.6b)

Now we again introduce local variables XP = r − rS and YP = rS(ϕ − ωt) (see
Fig. 21.2), which agree with the Cartesian coordinates at first order. The positions in
the polar and Cartesian coordinate systems are related by

X = (rS + XP) cos(YP/rS) − rS, (21.7a)

Y = (rS + XP) sin(YP/rS). (21.7b)

We obtain the rescaled equations

Ẍ P − (rS + XP)

(
1 + ẎP

rS

)2

= − r3S
(rS + XP)2

, (21.8a)

2Ẋ P

(
1 + ẎP

rS

)
+ (rS + XP)

ŸP

rS
= 0. (21.8b)

As expected, at leading order we again obtain the linear system (21.5).

21.2.1 Impulsive Control Actions

In order to steer the chaser to its target position, a series of impulsive controls is
applied by firing the engine for infinitely short intervals.We assume, that the direction
andmagnitude of these impulses can be chosen arbitrarily. During firing, the position
of the vehicle remains unaltered, but the velocity changes instantaneously. If the
scaled impulsive control at time τi is denoted by vi , the change in the velocities is
given by

�Ẋ(τi ) = Ẋ(τ+
i ) − Ẋ(τ−

i ) = vi,1, (21.9a)

�Ẏ (τi ) = Ẏ (τ+
i ) − Ẏ (τ−

i ) = vi,2, (21.9b)

where Ẋ(τ+
i ) and Ẋ(τ−

i ) denote the values of Ẋ immediately before and after the
impulsive control action, respectively.

In polar coordinates, the impulse control leads to

�ṙ(τi ) = vi,r , with vi,r = vi,1 cosϕ + vi,2 sin ϕ, (21.10a)

�(r2ϕ̇)(τi ) = rvi,ϕ, vi,ϕ = −vi,1 sin ϕ + vi,2 cosϕ, . (21.10b)

Since r is unaffected by the impulse, (21.10b) becomes
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�ϕ̇(τi ) = vi,ϕ/r. (21.10c)

In local variables, (21.10) becomes

�Ẋ P(τi ) = vi,r , (21.11a)

�ẎP(τi ) = rSvi,ϕ/(rS + XP). (21.11b)

In these coordinates, the jump in ẎP also depends on the state variable XP ; since
|XP | � rS , this dependency vanishes in the linearized equations, but has to be taken
into consideration in the treatment of the nonlinear system. We further note that
|(vi,r , vi,ϕ)| = |(vi,1, vi,2)| holds.

21.2.2 Optimal Control Problem

In space missions, the propellant consumption is one of the most important topics,
therefore we search for a control strategy, which steers the chaser vehicle to its target
position and uses the least amount of fuel. Under some circumstances, it might be
necessary to reach the target in a shorter time at the cost of higher energy expenditure.
In this case, we prescribe the time interval for the manoeuvre, otherwise the final
time is left to be determined by optimizing fuel consumption alone.

We search for an optimal sequence of impulsive controls, which minimizes the
cost

C =
k∑

i=1

|vi |, (21.12)

where the number k of impulses, the time instances τi , the impulse vectors vi , and
possibly the time interval T have to be chosen optimally.

Let us stress here that we search the minimum propellant usage in the L1-norm,
which corresponds to the real costs. Quadratic cost functions are usually easier to
handle, but do not properly describe the minimal cost.

The necessary conditions for optimal control problems with impulsive controls
were already stated in [2, 3] and apply to the general optimal control problem with
continuous controls ui (t), impulsive controls vi , utility functions F(q(t), u(t), t),
and G(q(τ−

i ), vi , τi ) for the continuous and discrete controls, respectively, and a
terminal value S(q(T+)):

max
u,k,τi ,vi

{J =
∫ T

0
F(q(t), u(t), t)dt +

k∑
i=1

G(q(τ−
i ), vi , τi ) + S(q(T+))}, (21.13)

such that
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q̇(t) = f (q(t), u(t), t), q(0−) = q0, (21.14)

q(τ+
i ) − q(τ−

i ) = g(q(τ−
i ), vi , τi ). (21.15)

Similarly to the Maximum Principle by Pontryagin, one defines two Hamilton func-
tions, one for the continuous part, and one for the discontinuities

H(q, p, u, t) = F(q(t), u(t), t) + pT f (q(t), u(t), t), (21.16)

H(q, p, v, t) = G(q(t), v, t) + pT g(q(t), v, t). (21.17)

As usual, the (piecewise) optimal continuous control u� is obtained from the Maxi-
mum Principle for the Hamiltonian H , and the differential equations for the costate
variables are also determined by H . The optimal impulse controls v�

i are given by
maximizing H :

u� = argmax
u

H(q�(t), p(t), u, t), (21.18)

ṗ = −∂H(q�(t), p(t), u�, t)/∂q, (21.19)

v�
i = argmax

vi
H(q�(τ ∗−

i ), p(τ ∗+
i ), vi , τ �

i ), (21.20)

p(τ ∗+
i ) − p(τ ∗−

i ) = −∂H(q�(τ ∗−
i ), p(τ ∗+

i ), v�
i , τ

�
i )/∂q, (21.21)

H(q�(τ ∗+
i ), p(τ ∗+

i ), u�(τ ∗+
i ), τ �

i ) − H(q�(τ ∗−
i ), p(τ ∗−

i ), u�(τ ∗−
i ), τ �

i )⎧⎨
⎩

>

=
<

⎫⎬
⎭

∂H(q�(τ ∗−
i ), p(τ ∗+

i ), v�
i , τ

�
i )

∂τ
for τ �

i

⎧⎪⎨
⎪⎩

= 0

∈ (0, T ),

= T .

(21.22)

Here starred quantities denote optimal values for the controls, states, and firing times.
From (21.21), it follows that the adjoint variables become discontinuous, if the

jump conditions depend on the state variables, which is the case in our system for
the polar coordinates.

Finally,we see from (21.22),which ensures the optimality of the impulse instances
τi , that the Hamiltonian H is continuous at interior impulse times τi , if H doesn’t
depend on τ explicitly.

Since our model is autonomous, the optimal final time T � is obtained by the
boundary condition

H(q�(T �), p�(T �), u�) = 0. (21.23)

No continuous controls ui are present and the considered cost depends on the
impulsive controls vi , therefore the utility function F doesn’t show up in the Hamil-
tonian, and the Maximum condition (21.18) doesn’t apply.
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21.3 Optimal Control Problem for the Linearized System

Since during the considered phase of the chasing manoeuvre the chaser is already
quite close to the space station, the approximation (21.5) together with the jump
conditions (21.9) provides a good approximation for the dynamics. Rewriting (21.5)
as a first- order system, one obtains the Hamiltonian H and the adjoint differential
equations

q̇1 = q2, (21.24a)

q̇2 = −q1 + 2q4, (21.24b)

q̇3 = −2q1 + q4, (21.24c)

q̇4 = 0, (21.24d)

H(q, p) = p1q2 + p2(−q1 + 2q4) + p3(−2q1 + q4), (21.24e)

ṗ1 = p2 + 2p3, (21.24f)

ṗ2 = −p1, (21.24g)

ṗ3 = 0, (21.24h)

ṗ4 = −2p2 − p3, (21.24i)

where the state variables qi are given by q1 = X , q2 = Ẋ , q3 = Y , and q4 = Ẏ + 2X .
The choice of these variables is motivated by the rotational symmetry of the system,
by which the angular momentum d = r2ϕ̇ is a first integral. In the linearized system,
the variable q4 = Ẏ + 2X is constant, as can be seen from (21.5b).

In these state variables, the jump conditions (21.9) read

q(τ+
i ) − q(τ−

i ) = g(q(τ−
i ), vi ) = (0, vi,1, 0, vi,2)

T. (21.25)

With G = −C the Hamiltonian for the impulsive controls is therefore given by

H(q(τi ), p(τi ), vi , τi ) = −
√
v2i,1 + v2i,2 + p2vi,1 + p4vi,2. (21.26)

Now we find from (21.20)

vi,1√
v2i,1 + v2i,2

= p2,
vi,2√

v2i,1 + v2i,2

= p4, (21.27)

from which it follows that

vi ‖ (p2, p4) and
√
p22 + p24 = 1. (21.28)
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So we know only the direction of the impulsive controls; their magnitude has to be
obtained by solving the boundary value problem. We also know that at the instances
τi , the adjoint variables must satisfy |(p2, p4)| = 1.

Since H doesn’t depend on the state variables qi and on τi , the costate variables
p are continuous at τi by (21.21), and also the Hamilton function H is continuous
by (21.22). By (21.25), the continuity condition for H becomes

�H = p1vi,1 + (2p2 + p3)vi,2 = 0, (21.29)

which is equivalent to the condition d(p22 + p24)/dτ = 0 by (21.28).
The boundary conditions state that the chaser should be steered from a starting

position to a target point at the station’s orbit:

q1(0) = X0, q1(T ) = 0, (21.30a)

q2(0) = Ẋ0, q2(T ) = 0, (21.30b)

q3(0) = Y0, q3(T ) = 0, (21.30c)

q4(0) = Ẏ0 + 2X0, q4(T ) = 0. (21.30d)

Since the final position is an equilibrium, the Hamiltonian H(q(T ), p(T )) vanishes
for all choices of T . Therefore, the condition (21.23) for the optimal planning period
T has to be stated immediately before the last impulse.

We note that since q4 can only reach its final value by impulses in the horizontal
direction, the difference |q4(T ) − q4(0)| provides a lower bound for fuel consump-
tion. TheHohmann transfer [1]with two horizontal burns provides an energy-optimal
solution.

The boundary value problem (BVP) (21.24) and (21.30) is solved numerically
by the Multiple Shooting Method Boundsco [5], which is especially designed for
Optimal control problems with discontinuous state variables.

The following results are calculated for the initial conditions:

X (0) = −5 km, Ẋ(0) = 0, (21.31a)

Y (0) = −50 km, Ẏ (0) = 50 km/rev
∧≈ 9m/s, . (21.31b)

and orbit radius rS = 6778 km.
In the first step, a Hohmann transfer for the energy-optimal trajectory with two

horizontal burns is calculated. The first impulse occurs when the chaser reaches the
proper elliptical orbit, the second one occurs when it reaches its target position at
t = T ≈ 1.492T0.

Starting with this solution, a continuation method [6] is employed to decrease
the time interval from the value needed for an energetically optimal manoeuvre. By

monitoring the switching function S(τ ) =
√
p22 + p24 (see Fig. 21.3), we observe that

close to T = 1.465 T0, where T0 = 2π/ω denotes the revolution period, it crosses
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Fig. 21.3 Variation of the
switching function

S =
√
p22 + p24 for different
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Fig. 21.4 Trajectories and
directions of impulsive
thrusts for different planning
intervals
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the line S = 1 at t ≈ 0.2T , where a new firing event should occur. The trajectories
for T = 1.492 T0, and T = 1.465 T0 are displayed in Fig. 21.4. Although the thrusts
have different directions, the trajectories are almost the same.

Reducing T further, the new firing time decreases down to t = 0, as can be seen in
Fig. 21.5. The firing time τ2 also decreases and vanishes at T ≈ 0.65 T0: The impulse
magnitude |v2| shrinks to zero and the switching function S(τ ) separates from the
line S = 1. For shorter time horizons, only firings at the start and at the end of the
manoeuvre are executed.

The cost C depending on the permitted manoeuvre duration T is displayed in
Fig. 21.7; for quick transfers the fuel consumption increases strongly. The labels in
Fig. 21.7 denote the firing instances: “S” at the start, “I” in the interior, and “E” at
the end of the transfer.
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Fig. 21.5 Impulse times for
the linear system (21.5) and
for the system written in
local polar coordinates
(21.8). The firing instances
τi are sorted chronologically
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Fig. 21.6 Impulse times for
the nonlinear system (21.4)
in local Cartesian
coordinates
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21.4 Optimal Control Problem for the Nonlinear System

For validation of the linear approximation (21.5) also, the optimal control for the
nonlinear systems (21.4) and (21.8) was computed.

21.4.1 Optimal Control Problem for the Local Cartesian
Frame

Using the local Cartesian system (21.4), the equations of motion become nonlinear,
but the cost function C and the equations for the impulsive control (21.9) remain
the same as in the linear system (21.5). Since the jumps in (21.9) do not depend on
the state variables and time τ , the costate variables pi and the Hamiltonian remain
continuous at the firing instances τi .
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Fig. 21.7 Dependence of
fuel cost on the permitted
manoeuvre duration T for
systems (21.5) and (21.8)
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Fig. 21.8 Dependence of
fuel cost on the permitted
transfer duration T for
systems (21.4)
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As initial values, we choose the same ones as in the linear system and obtain the
results shown in Fig. 21.8, which differ significantly from the results obtained with
the linear system (21.5) and for the polar coordinates (21.8). Also the sequence of
impulse instances τi differs between these calculations, as can be seen fromFigs. 21.5
and 21.6. The optimal time T � for the least propellant consuming solution increases
from approximately 1.5 revolutions to 1.85 revolutions.

21.4.2 Optimal Control Problem for the Polar Coordinate
Frame

When using the local polar coordinate system (21.8), the jump conditions (21.11)
lead to the maximum condition
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Fig. 21.9 Comparison of the
energy-optimal trajectories
for the different choices of
coordinate systems. The
arrows indicate the direction
and magnitude of the
impulsive controls
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v�
i = argmax

vi

(
−

√
v2i,r + v2i,ϕ + p2vi,r + p4

rSvi,ϕ
rS + XP

)
, (21.32)

giving
vi,r√

v2i,r + v2i,ϕ

= p2,
vi,ϕ√

v2i,r + v2i,ϕ

= rS p4
rS + XP

.

The switching function S(τ ) which governs the impulse time instances becomes

S =
√
p22 + r2S p

2
4

(rS + XP)2
.

Since (21.11) is time-independent, due to (21.22) the Hamiltonian H is continuous at
the firing times. The occurrence of the state variable q1 = XP in the jump condition
(21.11) leads to the jump

p1(τ
∗+
i ) − p1(τ

∗−
i ) = rS p4

(rS + XP)2

∣∣∣∣
τ=τ �

i

(21.33)

in the costate variable p1, according to (21.21).
As initial values, we choose

XP(0) = −5 km, Ẋ P(0) = 0, (21.34a)

YP(0) = −50 km, ẎP(0) = 50 km/rev (21.34b)

and obtain the results shown in Figs. 21.5 and 21.7, which agree very well with the
results for the linear system.
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Fig. 21.10 Dependence of
the required time T for the
energy-optimal solution on
the initial height XP (0)
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Fig. 21.11 Different
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Now it remains to explain the significant difference between the results for the two
nonlinear variants: One might think that the difference between the initial positions
is negligible, since 50 km is much smaller than the earth circumference. Indeed the
positions given by (X,Y ) = (−5 km,−50 km) and (XP ,YP) = (−5 km,−50 km)

differ only by approximately 200m. In Fig. 21.9, the energy-optimal trajectories for
the different initial conditions are displayed. The initial values for solution A are
again given by (21.31), and those for solution B in (21.34), corresponding to

X (0) ≈ −5.184 km, Ẋ(0) ≈ 0.369 km/rev,

Y (0) ≈ −49.962 km, Ẏ (0) ≈ 49.962 km/rev.

Using the same initial conditions in both systems gives of course the same solu-
tions.

In order to study the dependence of the required time T of the energy-optimal
solution on the initial height, a continuationwith varying values of XP(0)was carried
out, with the remaining initial conditions kept fixed. The obtained curve is displayed
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in Fig. 21.10: It shows an increase of T/T0 from 1.488 to 1.936, when XP(0) varies
from −5 km to −4.8 km. Close to XP(0) = −4.55 km, a series of turning points can
be seen along the curve, leading to a series of different energy-optimal solutions for
the same initial conditions. In Fig. 21.11, three different trajectories are displayed
starting at the same initial position XP(0) = −4.6 km, corresponding to the points
in Fig. 21.10. After reaching the final orbit height, the system performs an increasing
number of oscillations, until it ends up in its target position.

21.5 Conclusions

The energy-optimal chasing strategy for a space rendezvous using the L1-norm for
the fuel consumption has been investigated for different sets of coordinate systems.
Using a homotopy strategy to reduce the time duration of the manoeuvre shows a
quite complicated variation of the applied impulsive control. In the considered range
of initial conditions, the control strategy and the optimal path depend sensitively on
the initial height X (0). When comparing the results calculated in different coordi-
nate systems, the seemingly small differences must therefore not be neglected. The
linear system governing the near-field dynamics, which approximates the equations
in the polar and the Cartesian frame, agrees better with the nonlinear system in polar
coordinates.
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