
Chapter 18
Steady Motion of a Belt in Frictional
Contact with a Rotating Pulley

Jakob Scheidl and Yury Vetyukov

Abstract The steady-state motion of belt drives is studied extensively in the liter-
ature. While traditional models rely on the theory of an extensible string, we aim
to take bending effects into account. In this regard, it is well known that concen-
trated contact forces at the points of first and last contact with a pulley arise if shear
deformations are restricted. To circumvent this issue, we utilise a shear deformable,
Cosserat theory of rods. In particular, we study the contour motion of a belt that is
transported over a single, rigid pulley with zones of stick, sliding friction and no
contact. The Coulomb friction law governs the contact between the belt and the pul-
ley. We present a novel finite element model that allows to obtain the steady-state
solution directly. Furthermore, we deduce the corresponding closed boundary value
problem and integrate it numerically. Results obtained for a particular parameter set
demonstrate correspondence of the two approaches.

18.1 Problem Statement

We seek the steady-statemotion of the belt segment depicted in Fig. 18.1. The domain
of interest is enclosed by the two clamping positions, one on either side. The belt is
transported from left to right, entering and leaving the interval x ∈ [−Lx/2, Lx/2]
with a constant mass transport rate c = 1.1

A circular, rigid pulley with radius R = 0.7 is placed symmetrically in between
the borders and its centre is shifted by H = −0.575 in vertical direction j . The
material length in the control volume Ls equals the distance between the clamping
positions Lx = Ls = 1. The belt is made of linear elastic material with modulus
E = 5 × 107 and Poisson ratio ν = 0.45. It has a rectangular cross section with
thickness h = 0.05 and width w = 0.1. We assume Coulomb friction between belt

1The SI-system of units is used throughout the paper.
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Fig. 18.1 One-pulley belt drive at contour motion; geometry and global coordinates

and pulleywith the coefficientμ = 0.2. In this respect, the belt’s thickness is assumed
to be small enough, such that we consider the contact reaction forces being applied
at the middle line of the belt. Consequently, any distributed moments that would
arise due to tractions acting on the lower fibre are disregarded. Inertia effects are
ignored as well. Assuming that a solution with only one sticking and one sliding
region exists, the latter succeeding the former in direction of travel, we explicitly
set the position of the point where switching from stick to slip happens by means of
xtrans. Admittedly, it would have been more natural to specify the angular velocity
ω instead. However, in this academic example provision of xtrans is equally feasible
and even proves beneficial with reasons to be given at the end of Sect. 18.4. The belt
is modelled as a Cosserat elastic rod with bending stiffness a, extensional stiffness
b1 and shear stiffness b2:

a = E h3 w

12
, b1 = E h w , b2 = E

2 (1 + ν)
h w . (18.1)

Incorporating shear deformability is essential to avoid concentrated contact inter-
actions at the run-up- and the run-off-point, which are marked with xup and xoff in
Fig. 18.1, see [4].

In the usual Lagrangian kinematic setting, the actual configuration is described
by the position vector r as a function of the material arc coordinate r = r (s). The
tangential unit vector t and the corresponding normal vector n are parametrised with
an angle ϕ, which is measured against i ,

t = ∂sr/ |∂sr | = i cosϕ + j sin ϕ , n = −i sin ϕ + j cosϕ , (18.2)

where we have used the acronym ∂s(. . .) = ∂(. . .)/∂s to denote the material deriva-
tive. It is natural to describe the contact forces in this vector basis. The second system

e1 = i cos θ + j sin θ , e2 = −i sin θ + j cos θ , (18.3)
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grasps the rotation of a material point by an angle θ , again measured against i . In
the sense of a Timoshenko like theory, the vector e1 points in normal direction of the
deformed cross section. Thus, the shear deformation angle follows as

ψ = θ − ϕ . (18.4)

The undeformed state is assumed to be a straight line (r0 = x i) and we refer to [1]
for an example of a looped belt with a circular reference configuration.

The generalised force resultants M and Q are related to the deformations through
the constitutive law, again see [1],

M = a κ , Q = Q1 e1 + Q2 e2 = b1 ε e1 + b2 
 e2 , (18.5)

where κ is the bending strain measure; ε and 
 are the conjugate strain measures of
the force components Q1 and Q2. The strains are related to the deformations through

κ = ∂sθ , ε = (D cosψ − 1) , 
 = − (D sinψ) , D = |∂sr | , (18.6)

and in absence of shear deformation (ψ = 0) the axial strain ε corresponds to the
stretch D.

We use a dot to designate time derivatives and utilise the stationary material
transport rate c to introduce an appropriate coordinate transformation:

s = s (σ, t) = σ − c t , ∂sσ = 1 , σ̇ = c , (18.7)

where the last equation holds due to ṡ = 0. Rewriting the governing equations in
the new coordinate σ by simply replacing ∂s with ∂σ effectively eliminates the time
dependence of field variables.

18.2 Finite Element Formulation

One way to obtain the contour motion of the belt is to seek stationary points of the
total potential energy �:

δ� = δU + δV = 0 , (18.8)

where we have introduced the elastic strain energy U and the potential of contact
forces V . These energy contributions may be written as line integrals over σ :

U =
∫
Ls

(
1

2
a κ2 + 1

2
b1 ε2 + 1

2
b2 
2

)
dσ , (18.9)

V =
∫
Ls

(
1

2
Pp γ 2 + λp γ

)
dσ +

∫
Ls

(−λf t · r) dσ . (18.10)
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The strain energy is a simple quadratic form featuring couples of stiffness coeffi-
cients and squared strain components. The contact potential is more complicated
and deserves an in-depth discussion: It is divided into two separate integrals, the first
one dealing with the contributions attributed to the normal contact pressure p and the
second one with those related to the frictional force f . The strategy to compute the
contact forces in the finite element framework is known as augmented Lagrangian
method [3]. It features a penalty regularisation with penalty factors such as Pp and
combines it with an iterative update of Lagrangian multiplier estimates such as λp

and λf . Upon convergence of the iteration process, the penalty contributions vanish
and only the Lagrangian multipliers persist.

Concerning the normal contact, the main kinematic condition to enforce is that
the belt must not penetrate the pulley surface. We release this rigidity constraint and
aim to fulfil it approximately by penalising any penetration γ , defined as

γ = max (0, R − |r − H j |) ≥ 0 . (18.11)

The first quadratic term in (18.10) is further augmented with the actual Lagrangian
multiplier estimate λp, which is updated iteratively:

λp ← λp + Pp γ . (18.12)

Basically, the penalty contribution of the previous step is simply transferred to the
Lagrange multiplier, improving the estimate and thereby reducing the penetration γ

in the upcoming step.
The key condition for the frictional contact is that one must prevent any relative

motion in the sticking part of the contact region. The velocity of a material point
follows as the time derivative of the position vector:

v = ṙ = ∂σ r σ̇ = c ∂σ r = c D t . (18.13)

The absolute value of a point’s relative sliding velocity is

vrel = c D − R ω . (18.14)

Sinceω is considered unknown, we cannot fulfil vrel = 0 directly, but have to demand
∂σ vrel = 0 instead, which translates to

∂σ D = 0 ⇒ D = D̄ = const . (18.15)

The stretch in the sticking region D̄ is constant. The original condition vrel = 0 now
serves as an equation to calculate the corresponding value of ω. As the transition
position xtrans is provided explicitly, the zones of stick and slip are known in advance
and the frictional tractions can be assigned directly:

x < xtrans : λf ← Pf ∂σ D + λf , x ≥ xtrans : λf ← −μλp , (18.16)
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with Pf denoting the penalty factor for sticking contact. The negative sign in front
of μ indicates forward sliding of the belt.

The finite element formulation itself is based on a discretisation of the position
vector r as well as the angle of particle rotation θ . Cubic shape functions are used to
approximate the fields and their first derivatives in the local coordinate ξ ∈ [−1, 1]
of a single, two-node element. The integrals (18.9)–(18.10) are transformed to a
sum of finite element contributions in the usual manner and evaluated by means of
Gaussian quadrature rules with three integration points.

A pure Newton–Raphson algorithm is used to solve the non-linear system of
equations. In order to obtain results more reliably, the solution process is split into
two phases: Firstly, a frictionless solution with relaxed penalty for normal contact is
sought, which counteracts the ill-conditioning induced through the penalty terms and
simply disregards the second integral of (18.10). Secondly, the full penalty is applied
and frictional forces are taken into account. A number of steps is performed in order
to reach convergence of the Lagrange multiplier estimates. We resolve the contact
state discretely at individual integration points and call the update routines (18.12)
and (18.16) once after each successful Newton step. The size of the contact zone is
determined by the first and last integration point for which contact is recognised.

18.3 Analytic Model

Just like in the finite element model, we assume the solution to decompose into four
sequential segments: the left free span, the sticking region, the sliding region and the
right free span. In an effort to deduce the system of differential equations we will
address a single free span and the two contact segments individually, each time being
mindful of the particularities:

• No external forces act in any of the two free span regions.
• In the sticking region the belt adheres to the pulley surface.
• In the sliding region the friction forces must obey the friction law.

The model is an extension of the idealised one presented in [2]. We have already
provided the constitutive relations (18.5) and also given the definition of strains in
(18.6), but we have yet to present the balance equations of the non-linear theory:

∂s Q + q = 0 , ∂sM + D (Q1 sinψ + Q2 cosψ) = 0 . (18.17)

The vector of external forces vanishes in the free spans and otherwise equals the
contact forces, q = f t + p n.

Once again, we make use of the coordinate transformation (18.7) to get rid of the
time dependence of field variables and replace every single instance of ∂s with ∂σ in
the governing system. Beyond that, it is convenient to introduce spatial coordinates
like x or ϕ for each solution region with the main consequence that σ becomes an
additional unknown:
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free span regions: σ = σ(x) , ∂σ = ∂x/∂xσ , r = x i + y(x) j , (18.18)

contact regions: σ = σ(ϕ) , ∂σ = ∂ϕ/∂ϕσ , r = H j + R n(ϕ) . (18.19)

Owing to the absence of external forces, the derivation of a system of ODEs in the
free span region is quite simple. We obtain equations for σ and y through evaluation
of ∂σ r = D t with the above transformation rule (18.18) and projection onto the
Cartesian basis vectors. The constitutive relation (18.5) for M serves as an equation
for θ and the ones for the force components are used for substitution in the balance
of moments, which yields an ODE for M . Lastly, based on the balance of linear
momentum, we derive equations for the stretch D and the shear angle ψ :

∂xσ = (D cosϕ)−1 , ∂x y = tan ϕ , ∂xθ = ∂xσ M/a ,

∂x M = ∂xσ

(
D2 sin(2ψ)

b2 − b1
2

+ D b1 sinψ

)
,

∂x D = ∂xθ

(
D sin(2ψ)

b21 − b22
2 b1 b2

− b1
b2

sinψ

)
,

∂xψ = ∂xθ

(
cos(2ψ)

b21 − b22
2 b1 b2

+ b21 + b22
2 b1 b2

− b1
b2 D

cosψ

)
. (18.20)

Treating the sticking region is more concise, because only three ODEs for
{σ, θ, M} suffice. They resemble the ones given above, with the main differences
that the unknown constant stretch D̄ enters the equations and that ϕ is used for
parametrisation instead of x :

∂ϕσ = −R/D̄ , ∂ϕθ = ∂ϕσ M/a ,

∂ϕM = ∂ϕσ

(
D̄2 sin(2ψ)

b2 − b1
2

+ D̄ b1 sinψ

)
. (18.21)

The above three equations also apply to the sliding region, once the constant D̄ is
replaced with the variable D = D(ϕ). Consequently, another equation for the stretch
is needed, whose deduction is more tedious as it requires substitution of the friction
criterion f = −μ p in the balance of forces:

∂ϕD = D
(
2 ∂ϕθ − 1

)
(b1 − b2) (μ cos(2ψ) + sin(2ψ))

(b1 − b2) (cos(2ψ) − μ sin(2ψ)) + b1 + b2

+ μ D (b1 + b2) − 2 ∂ϕθ b1 (μ cosψ + sinψ)

(b1 − b2) (cos(2ψ) − μ sin(2ψ)) + b1 + b2
. (18.22)

This concludes the system with a total of nineteen ODEs: two times six for the
free spans, three for the sticking region and four for the sliding region. Boundary
conditions at x = ±Lx/2 demand continuity of σ , the vertical deflection and the
particle rotation (σ = ±Lx/2, y = 0, θ = 0). In general, the shear deformation ψ

will not vanish at these points and the beam axis will thus experience a slight kink.



18 Steady Motion of a Belt in Frictional Contact with a Rotating Pulley 215

Matching conditions have to be employed at the run-up- and the run-off-point (xup
and xoff in Fig. 18.1). There, we demand continuity of all six unknowns that appear
in the system (18.20). Lastly, at the transition point xtrans, we require continuity of
{σ, θ, M, D}. These are a total of 22 boundary conditions for 19 first order ODEs
and three unknown constants, namely: The points xup and xoff as well as the constant
stretch in the sticking region D̄. Before passing the system to theMatlab collocation
solver bvp4c, we further transform the equations to a normalised coordinate ξ ∈
[0, 1], see [1, 4], and introduce dimensionless constants to reduce the number of
parameters.

18.4 Results

Let us take a look at the contact forces in Fig. 18.2 and at the strains in Fig. 18.3.
Plots are drawn for the results obtained through integration of the boundary value
problem (BVP, dotted) as well as for a finite element simulation with 100 equally
sized elements (FEM, dashed). Though both approaches converge rapidly, the FEM
simulation requires a higher computational effort owing to the two-stage iterative
solution strategy and the number of elements needed to reach accurate results. The
transition point is set to xtrans = 0 and the contact zone borders xup and xoff aremarked
with additional vertical grid lines.

In Fig. 18.2, the normal contact pressure p shows distinct peaks at the points
xup and xoff. Contrary to unshearable rod theories though, the function does not
tend to infinity. The frictional tractions experience corresponding peaks as well as
a jump at the transition point xtrans = 0 in obedience to the friction law. The coarse
discretisation does not suffice to capture the high gradients at the two bordering
positions, which is most evident at xup in the right picture of Fig. 18.2. This issue can
be easily resolved by using more elements or an appropriately refined mesh.

Figure18.3 depicts the distribution of the two force strain measures. The results
obtainedwith 100 elements conformverywell to the semi-analytic reference solution.
The axial strains ε are constant in the sticking region, as demanded by (18.15), and
gradually increase in the sliding zone. The peaks of the shear strain distribution on

Fig. 18.2 Distributions of normal (left) and tangential contact forces (right)
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Fig. 18.3 Distributions of strain measures ε (left) and 
 (right)

the right are obviously related to the establishment and loss of contact and, aside
from the bordering regions, no significant shear deformation arises in the contact
domain. Different results are to be expected, once distributed contact moments come
into play, which are absent here.

Demanding vrel = 0 in (18.14) for xtrans = 0 yields an angular velocity of ω =
1.4807 (the relative error between themodels is less than 1 × 10−4). Now, to estimate
the range of meaningful values forω, we can simply shift xtrans towards the bordering
points xoff and xup to find limiting solutions of a pure sticking and a pure sliding
belt, respectively. The corresponding interval turns out to be extremely tight: ω ∈
[1.4779, 1.4825], which clearly demonstrates the advantage of providing xtrans as
part of the system parameters instead of ω.

18.5 Conclusion

Wehave developed a finite element procedure to compute the stationarymotion of the
considered one-pulley belt drive example. The scheme relies on the theory of shear
deformable rods, and the simulation results are compared to analytic results obtained
through numerical integration of the corresponding boundary value problem.

To this end, only a single pulley has been considered and the closed loop, two-
pulley belt drive problem is left for future research. Again, shear deformable rod
theory should be used when tackling this more complex problem with the proposed
solution strategies. For completeness, stationary dynamics should be considered as
well. A difficulty that arises in the looped problem is that the constant material
transport velocity c becomes an additional unknown.
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