
Chapter 16
Theory of Critical Distances as a Method
of Failure Prediction Under Dynamic
Loading

Oleg A. Plekhov, Alena I. Vedernikova, and Anastasiia A. Kostina

Abstract The linear-elastic Theory of Critical Distances (TCD) is reformulated
to make it suitable for estimating the strength of notched components subjected
to dynamic loading. The theory modification in case of elasto-plastic stress–strain
behavior to enhance accuracy of strength assessment is presented. The efficiency of
the proposed methodologies is demonstrated for the experimental data on notched
Grade 2 specimens that were subjected to uniaxial tensile loads within the rate range
of 10−3–104 s−1. The obtained results showed that themodification of the TCDbased
on elasto-plastic analysis gives estimates that fall within an error interval of±5–10%,
more accurate predictions than the linear-elastic solution. The physical meaning of
the critical distance theory, in particular, the values of the critical distances L and
inherent material strength σ0, on the base of the original statistical thermo-dynamical
model of evolution of an ensemble of defects in metals developed by Naimark (2003)
in ICMM UB RAS is proposed. It has been observed that the critical distance value
can be considered as a fundamental length scale of dissipative structure developing
in a blow-up regime.

16.1 Introduction

The Theory of Critical Distances (TCD) is an effective tool developed by Taylor
[12], allowing the strength of components with geometrical discontinuities (cracks,
notches, holes) to be estimated accurately by directly post-processing the entire
linear-elastic stress fields in the vicinity of the stress concentrators. According to
the Theory of Critical Distances, failure occurs when an equivalent stress calculated
either at a certain distance from the notch tip, either averaged at the some distance or
area, becomes larger than the inherentmaterial strengthσ0. These are the central ideas
of TCD that are an extension of the approaches developed byNeuber [4], Novozhilov
[5], Peterson [6], Whitney and Nuismer [14], and Pluvinage [7] to estimate the
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strength of notched metallic materials. Recently, it was also proven that the TCD is
successful in estimating the static [10, 11], fatigue [1, 9, 13], and dynamic strength
[15, 16] of both ductile and brittle notched components.

The first part of this work is devoted to the verification TCD reformulation for
notched Grade 2 specimens at the strain rates of 10−3–104 s−1 [16]. The dynamic
TCD based on the simple power laws expression for the inherent strength and critical
distancewith regard to the strain rate and uses the post-process the linear-elastic stress
fields near the assumed crack initiation locations.

The second part ofwork is aimed tomodification of theTheory ofCriticalDistance
in case of elasto-plastic material behavior to enhance the accuracy of the fracture
assessment of notched components.

The second part ofwork is aimed tomodification of theTheory ofCriticalDistance
in case of elasto-plastic material behavior to enhance the accuracy of the fracture
assessment of notched components.

The final part of the work is devoted to the physical interpretation of the effective
length and inherent strength parameters, which is still an issue of fracture mechanics
and generally found empirically.

16.2 Extending TCD to Dynamic Loading

16.2.1 Critical Distance Concept for the Dynamic Loading

The TCD postulates that the notched component under Mode I static loading being
designed does not fail as long as the following condition is assured [12]

σe f f ≤ σ0, (16.1)

where σe f f is the effective stress determined according to one of the methods of
the theory of critical distances, σ0 is the inherent material strength. If the TCD is
used to perform the assessment of brittle notched materials, σ0 can be taken equal to
the material ultimate tensile strength σUT S [12], as far as for ductile materials, σ0 is
determined by testing of specimens with different notch sharpness [10].

Much experimental evidence [15] suggests that the dependence of the dynamic
strength of metal alloys on the strain rate can be summarized by adopting simple
power laws. The reformulation of theTheory ofCriticalDistances to dynamic loading
is based on the following hypothesis: since both the dynamic failure stress σ f and
dynamic fracture toughness KId vary as applied strain rate ε̇ increases, we assume
that in the same way the also the inherent material stress σ0 depends on the strain
rate, and hence the value of the critical distance L . Mathematically, the hypothesis
is formulated as follows:
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{
σ f = fσ f (ε̇) = a f ε̇

b f

K Id = fK Id (ε̇) = αε̇β
⇒

⎧⎨
⎩

σ0 = fσ0 (ε̇) = a0ε̇
b0

L = fL (ε̇) = 1
π

[
KId
σ0

]
= 1

π

[
αε̇β

a0 ε̇
b0

]
= M ε̇N

, (16.2)

where ε̇ is strain rate,a f ,b f ,α,β,a0,b0,M , N arematerial constants to bedetermined
by running appropriate experiments.

According to the Theory of Critical Distances, the dynamic effective stress σe f f to
perform the dynamic assessment has to be determined according to the Point method
(PM), the Line method (LM) or the Area method (AM) [16]

σe f f = σy

(
θ = 0, r = L

2

)
, (16.3)

σe f f = 1

2L

∫ 2L

0
σy(θ = 0, r)dr, (16.4)

σe f f = 2

πL2

∫ π/2

−π/2

∫ L

0
σ1(θ, r)rdrdθ, (16.5)

where σy is stress parallel to axis y, σ1 is maximum principal stress, L is critical
distance, (θ, r ) are polar coordinates.

16.2.1.1 Experimental Details

The accuracy and reliability of the proposed reformulation of the TCD was checked
against a set of experimental results generated by testing, under different strain rates,
specimens of titaniumalloyGrade 2 containing notches of different sharpness.Quasi-
static tensile tests were carried out with an electromechanical testing machine Shi-
madzu AG-X Plus (300 kN). A Hopkinson-Kolsky Split Bar was used to study the
high strain-ratematerial properties. The tensile testswere carried out in the strain-rate
range of 10−3–104s−1. Measurement of strain during materials testing was carried
out using video extensometer TRViewX240S f12.5. Three types of cylindrical spec-
imens with different stress concentrators such as semi-circular edge notches with
radius 1 and 2mm, V-shaped notches (notch root radius 0.1mm), and un-notched
(plain) specimens were used.

16.2.1.2 Validation by Experimental Data

The linear-elastic stress fields in the vicinity of the notches being investigated
were determined numerically by using commercial Finite Element (FE) software
ABAQUS.
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Fig. 16.1 Local linear-elastic stress fields under 0.0078/s (a) and 1.43/s (b) for notched Grade 2

Fig. 16.2 Accuracy of the TCD reformulation in the strength predicting for notched Grade 2

Since the tested titanium alloyGrade 2 specimenwere characterized by amechan-
ical behavior that was predominantly brittle, the hypothesis was formed that inherent
material strength could be taken equal to the ultimate tensile stress. After that, the
σ0 versus ε̇nom relationship was expressed by adopting a simple power law

σ0 = 538.968ε̇0.0214nom [MPa], (16.6)

Figure16.1a shows the linear-elastic stress-distance curves plotted under quasi-
static loading for Grade 2 specimens. This diagram fully confirms that, for this
material, the inherent material strength σ0 could be taken as equal to σUT S with little
loss of accuracy. Figure16.1b resulted a critical distance value for Grade 2 at a higher
strain rate. The function L = fL(ε̇) was derived

L = 2.592ε̇0.0869nom [mm], (16.7)
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Bymaking use of power laws (16.6), (16.7), the effective stress σe f f was evaluated
according to the Eqs. 16.3–16.5. The results are summarized in the Fig. 16.2, where
error was calculated as

δ = σe f f − σ0

σ0
[%], (16.8)

This validation exercise has demonstrated that the proposed reformulation of the
TCD is capable of accurately assessing the static and dynamic strength of notched
specimens from titanium alloy Grade 2, with the estimates falling within an error
interval of ±20%.

16.3 Theory of Critical Distances Based on Elasto-plastic
Analysis

16.3.1 The Simplified Johnson-Cook Model

In this part of work, a simplified Johnson-Cook law in a form of (16.9) is used to
model the material response, taking into consideration the changes in the strain rate.
To determine the value of the critical distance, elasto-plastic stress fields will be used.
The adoption of these measures is conditioned by the fact that the material behavior
being, by nature, highly nonlinear and cannot be described in the framework of the
linear theory of elasticity.

σ = (A + Bεn)

(
1 + Cln

ε̇

ε̇0

)
, (16.9)

where A, B, n, and C are material constants, ε̇0 is reference strain rate. In the
Johnson-Cook constitutivemodel, the combined twokeymaterial responses are strain
hardening and strain-rate effects. The adiabatic heating effect is considered negligible
for the tension tests, as the material necks down at relatively low strains before any
significant adiabatic heating. All the materials constants could be obtained from the
fitting equations (16.9) with experimental data obtained under different strain rates.
The material parameters for titanium alloy Grade 2: A = 363.1 MPa, B = 389.89
MPa, n = 0.435, and C = 0.0176.
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16.3.2 Using the TCD by Post-processing the Elasto-plastic
Stress Fields

The strength estimation algorithm remained similar to the previous case.Mises stress
field distributions at the cross section away from the notch tip at the time requiring to
calculation of the value of the critical distance and the effective stress according to the
TCD were determined. The cylindrical un-notched specimens and specimens with
sharp stress concentrators under different strain rates were used for determining the
values of the critical distance. The value of the critical distance for different strain
rates is constant, which is equal to 0.24mm (Fig. 16.3), while with linear-elastic
analysis, the critical distance is a function of the strain rate.

Using value of critical distance equal to 0.24mm, the effective stress for notched
specimens under different strain rates according to the Point and Line Methods of
the Theory of Critical Distances were calculated. The results of this analysis are
summarized in Fig. 16.4.

The results showed that the use of modification of the TCD based on elasto-
plastic analysis gives us estimates falling within an error band of±5–10%, that more
accurate predictions than the linear-elastic TCD solution. The use of an improved

Fig. 16.3 Local elasto-plastic stress fields under different strain rates
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Fig. 16.4 Accuracy of the TCD based on elasto-plastic analysis in predicting the strength

description of the stress–strain state at the notch tip allows introducing the critical
distances as a material parameter.

16.4 Physical Explanation of the Critical Distance Theory

16.4.1 Mathematical Model of Damage to Fracture
Transition

Accounting of plastic deformation, which allows one to switch from the function
of the critical distance of the strain rate to the material constant, makes it possi-
ble to introduce the hypothesis about critical distance as the fundamental length of
the dissipative structure in the ensemble of defects, which develops in the blow-up
regime. The description of the evolution of the ensemble of defects near the stress
concentrator based on original statistical thermo-dynamical model of evolution of
an ensemble of defects in metals, developed at ICMM UB RAS [3].

The constitutive equation for structural strain (deformation caused by the appear-
ance of defects) has the form

ṗ = 	p

(
σ − ρ

δF

δp

)
+ 	pσ σ , (16.10)

where	p,	pσ are kinetic coefficients, F is specificHelmholtz free energy,p is defect
density tensor (structural-sensitive parameter), σ is stress tensor, and ρ is volumetric
mass.

The approximation of function σ − ρ δF
δp , which determines equilibrium state of

material with defects in the one-dimensional case [2]
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Z − δ�

δp
= σ

σmax
− ap + qpβ + ∇̄ · (

kps
(∇̄ p

))
, (16.11)

where σmax is maximum value of the stress tensor component near the concentrator,
β, s are degree of polynomials that determines the character of generation and the rate
of diffusion of defects, q, k, a—material parameters, Z , �—dimensionless stress
and free energy corresponding.

The self-similar solution of Eq. (16.10) in the one-dimensional case with approx-
imation (16.11) for constant stress values and parameters β = s + 1 can be written
as [8]

p(x, t) = (q(t − tc))
− 1

s

(
2(s + 1)

s(s + 2)
sin2

[
πx

Lc

]) 1
s

, (16.12)

where tc—the critical time of and Lc—the fundamental length scale.
The time of structure localization is estimated according to the relation

tc = 2(s + 1)

s(s + 2)

1

psq
, (16.13)

The fundamental length scale is defined by the following expression:

Lc = 2
π

s

√
s + 1

√
k

q
. (16.14)

Equations (16.10)–(16.14) used for the explanation of the fracture mechanisms
near stress concentrators of the titanium alloy Grade 2 under tensile loading.

16.4.2 Application of the Proposed Model
in One-Dimensional Case

For the explanation of the fracture mechanisms near stress concentrators, consider
an analytical solution for stress at round-tip notch. In case of infinite plate with
semi-circular notch (notch root radius rn) under tensile, the stress components can
be evaluated as [17]

σy(x, 0) = Ktσ∞
3

(
1 + 1

2

(
x

rn
+ 1

)−2

+ 3

2

(
x

rn
+ 1

)−4
)

, (16.15)

where Kt—stress concentration factor, σ∞—nominal stress.
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Fig. 16.5 Relations between analytically estimated fundamental length of dissipative structures Lc
and spatial scale lcσ (line 1), numerically estimated fundamental length LT N and spatial scale lcσ

The Eqs. (16.11), (16.15) with initial condition py(x, t) |t=0= 0 and boundary

conditions py(x, t) |x=0= 0, δpyy(x,t)
δx |x→+∞ were solved numerically for different

value of nominal stress (model material).
The analysis of numerical simulation allows to conclude that the failure process

(initiation of dissipative structure) requests a simultaneous fulfillment of two condi-
tions: the stress should be bigger than critical value σ0 (inherent material strength)
in some area near the stress concentrator and the length of this area should be bigger
than some critical spatial scale lcσ ((∃l ≥ lcσ )) : (∀x ∈ [0, 1]), σy(x) > σ0.

Figure16.5 presents a relations between the analytical estimation of spatial scale
of dissipative structure by Eq. (16.14) (Lc) and scale lcσ , numerically obtained value
of fundamental length (LT N ) and scale lcσ . The points represent simulation results
for set of parameters β and s. Analysis of the data presented in Fig. 16.5 allow to
conclude that the analytical assessment gives an overestimation of the localization
scale. The estimation of the fundamental length scale by the results of numerical
simulation gives the exact ratio corresponding to the result of the Theory of Critical
Distances: the critical stress must be achieved at the half of the fundamental length
of the dissipative structure

lcσ = 1

2
LT N (16.16)



196 O. A. Plekhov et al.

16.4.3 Application of the Proposed Model in
Three-Dimensional Case

Consider the link between the critical distance and fundamental length scale of dis-
sipative structure using quasi-static tension of the U-notched specimen of titanium
alloy Grade 2 (notch root radius 1mm) as an example.

Figures16.6 and 16.7 show the values of the defect density tensor at the notch tip
for two cases: σy < σ0 and σy > σ0, 1 < LT N/2, respectively. In both cases, there is
a stable situation with an equilibrium concentration of defects in the notched area.

Figure16.8 shows numerical results of the defect density along the line charac-
terizing distance to the notch in the plane with the maximum normal stress. It can be
seen that when σy > σ0 and 1 = LT N/2 there is no equilibrium defect concentration
and the dissipative structure is localized on the spatial scale that is equal to the half
of the critical distance obtained for Grade 2 specimen under quasi-static loading.

Fig. 16.6 a Values of py versus distance from the notch (σy < σ0). b Spatial distribution of py
component in the cross-sectional area perpendicular to the loading direction at the end-point to
evolution

Fig. 16.7 a Values of py versus distance from the notch (σy > σ0, lcσ < LT N /2). b Spatial dis-
tribution of py component in the cross-sectional area perpendicular to the loading direction at the
end-point to evolution
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Fig. 16.8 a Values of py versus distance from the notch (σy > σ0, lcσ = LT N /2). b Spatial dis-
tribution of component in the cross-sectional area perpendicular to the loading direction at the
end-point to evolution

To get this scale equal to the 0.85mm, we have used the material parameters
included in Eq. (16.11): q = 50.9, k = 2 · 10−6, a = 5.1. Initial uniform distribution
of pyy is replaced by the heterogeneous pyy with the localization zones where we
can observe sharp increase in the defect density (Fig. 16.8b).

16.5 Conclusion

The aim of this work is to verify a reformulation of the linear-elastic TCDproposed in
[15, 16] for notched specimens from titanium alloy Grade 2 under dynamic loading.
It was shown that the TCD is capable of accurately assessing the static and dynamic
strength of notched specimens within an error interval of ±20%.

The modification of the TCD in cases of elasto-plastic material behavior for
dynamic loading was proposed. The use of an improved description of the stress–
strain state at the notch tip allows estimating the fall within an error up to 10% and
introducing the critical distances as a material parameter.

Last part of the work presents one of the possible physical explanation of the
critical distance theory based on the statistical theory of defect evolution. As a result,
it was shown that localization of the defect ensemble can be observed when two
requirements are fulfilled: existenceof the areawhere stresses are higher than inherent
material strength and the spatial size of this area should be equal to the half of the
critical distance. The critical distancemainly depends on themicrostructural material
morphology and can be considered as a fundamental length scale of dissipative
structure developing in a blow-up regime.
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