
Chapter 15
Locking Free High-Order Mixed
Elements for Ferroelectric Polarization

Astrid S. Pechstein, Martin Meindlhumer, Alexander Humer,
and Michael Krommer

Abstract In this contribution, a finite element discretization for a thermodynami-
cally consistent macroscopic model of the ferroelectric polarization process is intro-
duced. Usually, finite elements are based on an incremental optimization problem
for the electric enthalpy, and displacement and electric potential are the degrees of
freedom of choice. Less common, energy-based models involving displacement and
dielectric displacement have beenproposed. In thiswork, themodel is reformulated in
terms of the mechanic enthalpy, leading to stress and dielectric displacement as inde-
pendent unknowns. Choosing stable pairs of mixed finite elements for the mechanic
and the electric quantities, a locking-free finite element method of arbitrary order is
designed. Numerical results show the robustness of the method.

15.1 Introduction

The piezoelectric effect allows to convert electric loads intomechanical deformations
and vice versa. Modern piezoceramics provide high precision actuation and sensing
at moderate cost. In order to exhibit the piezoelectric effect, these ceramics have
to be polarized initially by a high electric field. In most applications, it is assumed
that the consequent remanent polarization state is unidirectional and constant, which
leads essentially to Voigt’s theory of linear piezoelasticity [22]. However, the rema-
nent polarization state can change under different—sufficiently high—mechanical
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or electrical loadings. On the other hand, for involved geometries as occurring in
macro-fiber composites (MFCs), the applied poling electric field does not lead to a
unidirectional polarization state. For these reasons, the numerical simulation of the
polarization process and of mechanic and electric depolarization is an active field of
research.

In this work, a phenomenological description of the macroscopic material behav-
ior is adopted. The remanent polarization state is considered as an internal variable,
similar to the plastic strain in elastoplasticity. The proposed model is thermodynami-
cally consistent. The first to suggest such thermodynamically consistent models were
the group aroundMaugin [1–4]. McMeeking and Landis [9], as well as Schröder and
Romanowski [19] provided models including a remanent polarization strain depend-
ing directly on the remanent polarization. However, these models are still capable of
mechanical depolarization. Independent polarization strains were considered, e.g.,
by Landis [7] or Klinkel [6].

An extensive introduction on variational frameworks for these models is provided
by Miehe et al. [12]. In their work, energy and electric enthalpy-based models are
considered. These different models require different sets of free unknowns. Most
classical finite element methods are electric enthalpy based, where displacement
(or strain) and electric potential (or electric field) are the primary unknowns. Few
methods are energy-based with displacement and dielectric displacement as inde-
pendent unknowns. We cite a vector potential model by Semenov et al. [20] and a
one-dimensional model by Sands and Guz [18]. An energy-based method involving
mixed finite elements was suggested by Pechstein et al. [16, 17].

The present work deals with a model based on the mechanic enthalpy. Stress
and dielectric displacement are the primary unknowns of this model. For both the
mechanical and the electrical quantities, stable pairs ofmixed elements are employed.
The major benefit of this approach is the fact that the mixed mechanic elements are
locking free with respect to shear locking for flat elements.We choose tangential dis-
placement normal-normal stress (TDNNS) elements, which were used in the context
of simulation of linear piezoelectric materials by Pechstein et al. [15] and Meindl-
humer et al. [10, 11]. Thus, these elements are well designed for the discretization of
flat piezoelectric patches or thin integrated structures. The electric mixed elements
were designed by Lehrenfeld and Schöberl [8] such that Gauss’ law of zero charges
is satisfied exactly.

15.2 Thermodynamic Model

Let � ⊂ R
3 denote the domain of interest. We introduce the quantities of interest

in our electromechanically coupled model. First, u : � → R
3 shall denote the dis-

placement field.We assume to stay in small-strain regime, where the linearized strain
tensor S = 1

2 (∇u + (∇u)T ) is used. Its work conjugate is the symmetric total stress
tensor T. For the electric quantities, we introduce the electric potential ϕ : � → R

and the electric field as its negative derivative, E = −∇ϕ. Its work conjugate is the
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dielectric displacement vector denoted by D. In the following, we will refer to dis-
placement u and electric potential ϕ as well as strain S and electric field E as primal
quantities, whereas the stress tensor T and dielectric displacement D are referred to
as dual quantities. Ferroelectric polarization is described by a further macroscopic
field, the remanent polarization Pi . In this contribution, we assume that the remanent
polarization Pi directly accounts for the polarization strain Si = Si (Pi ) due to the
smaller computational complexity of such a formulation.

The conjugate, dual quantities T and D both satisfy balance equations

− divT = f and − divD = 0, (15.1)

where f denotes the given volume loads. Additionally, boundary conditions have to
be satisfied. For the mechanic quantities, we assume the body is fixed on some part
�fix and free on the remaining part �free = ∂�\�fix. Moreover, we assume that the
electric potential is prescribed on some part of the boundary �pot, whereas the body
is insulated elsewhere on �ins = ∂�\�pot,

u = 0 on �fix and T · n = 0 on �free, (15.2)

ϕ = V0 on �pot and D · n = 0 on �ins. (15.3)

Primal and dual quantities are related to each other via the material law. We
assume a thermodynamically consistent material model, which is described by a
thermodynamic potential. For a detailed introduction, we refer toMiehe et al. [12], in
the following, we provide a short presentation of enthalpy-based material modeling.

Usually, a potential representing the electric enthalpy of the system is given,where
the primal unknowns and the remanent polarization are the free variables,

�e =
∫

�

ψe(S,E,Pi ) dx . (15.4)

Above, we used the convention that the lower-case expressionψe denotes the density
of the upper-case potential �e. Then, stress and dielectric displacement are defined
as (negative) derivatives of the potential density with respect to strain and electric
field

T = ∂ψe

∂S
, D = −∂ψe

∂E
. (15.5)

While �e corresponds to the energy stored in the system, the dissipated energy is
represented by the dissipation function �. The dissipation function depends only on
the rate of the irreversible polarization, and is again defined via a density function

�(Ṗ
i
) =

∫
�

φ(Ṗ
i
) dx . (15.6)
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We assume that the dissipation function is positively homogeneous, which corre-
sponds to rate-independent behavior (see also [12])

φ(αṖ
i
) = αφ(Ṗ

i
) for all α ≥ 0. (15.7)

With the above ingredients, for any time interval [t0, t1], the following incremental
optimization problem has to be satisfied

�(t1) − �(t0) +
∫ t1

t0

�(Ṗ
i
) dt +

∫ t1

t0

Pext dt → min
S(u)

max
E=−∇ϕ

min
Pi

(15.8)

Above, the work of external forces f is included in the external power by defining

Pext =
∫

�

f · u̇ dx . (15.9)

So far, only well-known contributions from the literature have been reviewed. In
the following, we propose to use the mechanic enthalpy �m of the system instead
of the electric enthalpy �e. Then, the dual quantites T and D are free variables. The
mechanic enthalpy is related to the electric enthalpy via a Legendre transformation
in the following way; see e.g. [21]

�m(T,D,Pi ) = min
S(u)

max
E=−∇ϕ

�e(S,E,Pi ) −
∫

�

T : S dx +
∫

�

D · E dx . (15.10)

In the simple case of potentials quadratic in strain and electric field, this transfor-
mation can be computed in the standard way: assume the electric enthalpy density
ψe is of the standard form

ψe = 1

2
(S − Si (Pi )) : CE : (S − Si (Pi ))

+ (S − Si (Pi )) : e · E
− 1

2
E · εS · E − Pi · E + ψi (Pi )

(15.11)

where all material moduli CE , e and εS may depend on the remanent polarization
state Pi , and where ψi (Pi ) denotes an additional hardening term. Then the mechanic
enthalpy is given by the relation

ψm = − 1

2
T : SD : T − T : g · (D − Pi )

+ 1

2
(D − Pi ) · βT · (D − Pi )

− Si (Pi ) : T + ψi (Pi ).

(15.12)
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The material moduli are connected to each other via

CE = (SE )−1,

SD = SE − dT · βT · d,

βT = (εT )−1,

εS = εT − d : CE : dT ,

e = d : CE ,

g = βT · d. (15.13)

An optimization problem equivalent to (15.8) can be posed

�m(t1) − �m(t0) +
∫ t1

t0

�(Ṗ
i
) dt → max

− divT=f
min

− divD=0
min
Pi

. (15.14)

Note that, in comparison to (15.8), the work of external forces f is now not included
in Pext , but

− divT = f (15.15)

is posed as constraint. Lagrangian multipliers may be introduced enforcing these
constraints. We define the Lagrangian L

L(T,D,Pi ,u, ϕ) = �m(T,D,Pi ) −
∫

�

u · (divT + f) dx −
∫

�

ϕ divD dx .

(15.16)

The corresponding optimization problem for the Lagrangian L reads

L(t1) − L(t0) +
∫ t1

t0

�(Ṗ
i
) dt → max

T
min
D

min
u

max
ϕ

min
Pi

. (15.17)

Above, u and ϕ have been introduced as Lagrangian multipliers. It shows that indeed
they resemble the primal kinematic quantities displacement and electric potential.

15.3 Discretization

15.3.1 Semidiscretization in Time

We consider a discretization of the time interval [0, T ] into (not necessarily equal-
sized) time steps {ti }i=0...N , such that t0 = 0 and tN = T . We propose a time step-
ping scheme, where we assume at some time tn−1 all quantities known. We use
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un−1 = u(tn−1) etc. as an abbreviation. Lett = tn − tn−1 denote the time step size.

Approximating the remanent polarization rate by the quotient Ṗ
i � (Pi

n − Pi
n−1)/t ,

we observe for positively homogeneous dissipation functions � that

∫ tn

tn−1

�(Ṗ
i
) dt = �(Pi

n − Pi
n−1). (15.18)

The optimization problem corresponding to (15.17) for this time step transforms into
the problem of finding Tn,un and Dn, ϕn,Pi

n such that

L(Tn,Dn,Pi
n,un, ϕn) − L(Tn−1,Dn−1,Pi

n−1,un−1, ϕn−1) + �(Pi
n − Pi

n−1)

→ max
Tn

min
Dn

min
un

max
ϕn

min
Pi
n

.

(15.19)

Together with a suitable choice of finite element bases, the variation of the above
optimization problem leads to a system of nonlinear variational equations, that can
be solved by a Newton-Raphson iteration.

15.3.2 Spatial Finite Element Discretization

The finite element discretization of the optimization problem for the Lagrangian
(15.19) has to be done with care. Stable families of finite elements have to be chosen
for the electric quantities D and ϕ as well as the mechanic quantities T and u. Both
pairs have to satisfy an inf-sup condition for the respective divergence operators,
which will be discussed in the following.

Below, we assume that T = {T } is a regular finite element mesh of the domain�.
The mesh T may contain tetrahedral, prismatic and hexahedral elements, but must
be free from hanging nodes. Due to the choice of discretization, flat prismatic or
hexahedral elements suitable for the discretization of plates or shells are admissible
without additional mechanical locking effects.

15.3.2.1 Discretization of the Electrical Quantities

When analyzing the different terms of the optimization problem (15.19), one notes
that different differentiabilities for D and ϕ are required as compared to standard
problems. The divergence of the dielectric displacement, divD, has to be computed,
while no derivatives of the electric potential ϕ are evaluated. This is a standard feature
of mixed methods. In choosing finite elements for D and ϕ, two requirements have
to be met:
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• the dielectric displacement D has to be divergence conforming, i.e., Dn = D · n
has to be continuous across element boundaries, and

• dielectric displacement D and electric potential ϕ have to satisfy an inf-sup con-
dition, i.e., there exists some constant c independent of the mesh size such that

inf
ϕ
sup
D

∫
�

ϕ divD dx

‖D‖H(div)‖ϕ‖L2
≥ c. (15.20)

We will not dwell any longer on these issues. The interested reader is referred to
the exhaustive monograph by Boffi, Brezzi, and Fortin [5] for theoretical background
on mixed problems. As a first choice, one could use standard mixed finite elements
for the electrical quantities

D ∈ VD := {D : D|T ∈ [Pk(T )]3, Dn continuous}, (15.21)

ϕ ∈ Vϕ := {ϕ : ϕ|T ∈ Pk(T )}. (15.22)

Using the notation of [5], this is the Brezzi-Douglas-Marini space BDMk for the
dielectric displacement, as well as a discontinuous polynomial space for the electric
potential. In [17], we discussed that the number of degrees of freedom can be reduced
significantly if one considers that divD = 0. Although this condition is non-local,
Lehrenfeld and Schöberl [8] showed that it is possible to eliminate at least the high-
order contributions locally on the element level. They designed a reduced set of basis
functions, such that the divD is at most constant per element. For this reduced set
of basis functions, a smaller number of Lagrangian multipliers (i.e. electric potential
ϕ basis functions) is necessary to enforce divD = 0. The finite element spaces are
reduced to

D ∈ VD,red := {D : D|T ∈ [Pk(T )]3, divD|T ∈ P0(T ), Dn continuous}, (15.23)

ϕ ∈ Vϕ,red := {ϕ : ϕ|T ∈ P0(T )}. (15.24)

15.3.2.2 Discretization of the Mechanical Quantities

In a mixed method comparable to Sect. 15.3.2.1, one would expect stress elements
with continuous stress vectorTn = T · n at element interfaces, whereas the displace-
ment vector is allowed to be discontinuous. Such methods are difficult to design, but
usually free from shear locking. For an overview on the mathematical properties of
mixed methods in elasticity; see [5].

In the current contribution, we use the mixed finite element method introduced by
Pechstein and Schöberl in [13]. There, only the normal component of the stress vector
Tnn = n · T · n is continuous, which makes it easier to design conforming symmetric
finite element basis functions. Complementarily, the tangential component of the
displacement vector ut = u − (u · n)n is continuous, and gaps between elements
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may open up only in normal direction. For straight simplicial elements, the finite
element spaces are

T ∈ VT := {T : T|T ∈ [Pk(T )]3×3
sym , Tnn continuous}, (15.25)

u ∈ Vu := {u : u|T ∈ [Pk(T )]3,ut continuous}. (15.26)

For prismatic, hexahedral or curved elements, the definition of the spaces is more
complex and addressed in [10, 14].

As such, the stress tensor is not divergence conforming. In other words, the work
pair

∫
�

divT · u dx (15.27)

cannot be evaluated as an integral, but has to be understood in distributional
sense. It contains volume terms on each element, and additionally element bound-
ary terms including the jumping tangential component of the stress vector Tnt =
T · n − (n · T · n)n. For a thorough discussion, we refer to the earlier works [13,
15]. For completeness, we provide the definition of the distributional divergence
operator for the tangential continuous finite element function u and normal-normal
continuous T by

〈divT,u〉� :=
∑
T∈T

(∫
T
divT · u dx −

∫
∂T

Tnt · ut ds

)
(15.28)

= −
∑
T∈T

(∫
T
S(u) : T dx −

∫
∂T

Tnn un ds

)
= −〈S(u),T〉�. (15.29)

Note that, also in this distributional sense, divergence and strain operator are dual.
In both (15.28) and (15.29), on the element interfaces, the continuous finite element
function (ut or Tnn , respectively) acts as a Lagrangianmultiplier enforcing continuity
of their discontinuous counterpart (Tnt or un , respectively).

15.3.2.3 Discretization of the Remanent Polarization

The remanent polarization can be discretized in a completely independent way. It
does not need to satisfy any continuity assumptions, as no derivatives of Pi occur
in the variational equations. To be of consistent order, we propose to use piecewise
polynomial elements for Pi that are of the same order as the dielectric elements,

Pi ∈ VP := {Pi : Pi |T ∈ [Pk(T )]3}. (15.30)
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15.4 Numerical Results

We present a benchmark example taken from Semenov et al. [20]. A quadratic plate
of size l = 20mm × 20mm and thickness h = 6mm has a circular hole of diameter
d = 4mm through its center. Choosing the xy plane as the in-plane direction, it is
electroded at x = 0 and x = l. By applying a potential of ±ϕ0 = ±15000V to the
electrodes an electric field is induced in in-plane x direction. Singularities evolve
around the circular hole. Due to symmetry, only one eigth of the plate is modeled by
finite elements.

The plate is made from PZT-5H, which is modeled in the following way using the
parameters from Table15.1: the mechanic enthalpy is chosen as in (15.12). Electric
permittivity at constant stress βT = 1/εT I is assumed isotropic constant. The piezo-
electric tensor d depends on the remanent polarization as in [7], such that it reflects
the d31 and d33 effect. The flexibility at constant dielectric displacement is chosen as

SD = S(YE , ν) − 0.6dT · βT · d, (15.31)

as for this choice

SE = SD + dT · βT · d (15.32)

is close to the anisotropic tensor found inmaterial databases. There, S(YE , ν) denotes
the standard isotropic flexibility tensor for given Young’s modulus YE and Poisson
ratio ν. Concerning ferroelectric hardening and saturation, the additive energy ψi in
(15.12) is chosen such that its derivative is

ψ ′
i (P

i ) = ψ̃ ′
i (|Pi |) Pi

|Pi |
with ψ̃ ′

i (r) = h0Pm
0

2(m − 1)

(
(P0 − r)1−m− (P0 + r)1−m

)
(15.33)

The remanent polarization strain, that depends fully on the remanent polarization, is
given as proposed by McMeeking and Landis [9]

S(Pi ) = 3

2

S0
P2
0

(
PiPi − 1

3
(Pi · Pi )I

)
. (15.34)

Finally, the dissipation function contains the coercive electric field, and describes the
onset of switching. Its density is defined as

φ(Ṗ
i
) = E0|Ṗi |. (15.35)

This choice is motivated in detail in [16]. As discussed in [17], the additive energy
ψi and the dissipation function are regularized by a small parameter ε = 10−4P0.
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Table 15.1 Material parameters for PZT-5H, see also [20]

Young’s modulus YE 61 × 109Nm−2

Poisson ratio ν 0.31

el. permittivity εT 2.77 × 10−8Fm−1

Piezoelectric d31 2.74 × 10−10mV−1

Piezoelectric d33 5.93 × 10−10mV−1

Coercive electric field E0 820 × 103Vm−1

Hardening parameter h0 714 × 103mF−1

Saturation polarization P0 0.24Cm−2

Saturation strain S0 9.3 × 10−3

Shape parameter m 1.4

The additive energy is modified such that its second derivative of ψi stays bounded
as |Pi | approaches saturation, whereas the dissipation function is approximated by a
differentiable function. We use

ψ ′
i,ε(P

i ) =
{

ψ ′
i (P

i ) if |Pi | ≤ P0 − ε,

(ψ̃ ′
i (P0 − ε) + ψ̃ ′′

i (P0 − ε)(|Pi | − ε + P0))
Pi

|Pi | if |Pi | > P0 − ε
,

(15.36)

φε = E0

√
|Pi |2 + ε2. (15.37)

In the original reference [20], the voltage was raised from zero to 15000V in
several load steps. For our formulation, we found that we could use as little as four
load steps and still observe convergence of a Newton iteration with linesearch. Note
that such a lownumber of load stepsmay impede accuracy in case of non-proportional
loading. However, in the present benchmark the focus lies on iteration numbers and
maximum loadstep size. In Table15.2, we present the iteration counts for different
finite element orders, using prismatic meshes.

For the first three results, there was no refinement of the prismatic mesh in thick-
ness z-direction, resulting in an overall count of 95 elements. For the latter three
results, we used three elements over thickness, see e.g. Fig. 15.1 for the two different
discretzations. We compare our values to the counts given by [20], where one layer
of hexahedral elements was used.

To highlight the accuracy of the method, we compare the results for the lowest
resolution (one layer of finite elements of order k = 1) to the highest resolution (three
layers of order k = 3). In the former case, the mesh consisted of 95 elements, 10184
overall degrees of freedom were obtained, of which 2864 were coupling, while in
the latter case we had 179631 degrees of freedom of which 35931 were coupling.
Figure15.1 shows the remanent polarization |Pi | at V = 15000V, and Fig. 15.2
shows the corresponding electric field.
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Table 15.2 Iteration counts for the plate with hole

5000V 8000V 10000V 15000V

Semenov [20] 5 6 27 (5 incr) 29 (6 incr)

One layer

k = 1 8 11 29 27

k = 2 10 12 39 28

k = 3 14 14 48 31

Three layers

k = 1 9 13 32 26

k = 2 10 16 34 29

k = 3 14 14 47 44 (2 incr)

Fig. 15.1 Remanent polarization |Pi | (unit MC/m2) for the coarsest discretization (one layer of
prismatic elements of order k = 1) and the finest discretization (three layers of elements of order
k = 3)

Fig. 15.2 Electric field |E| (unit MV/m) for the coarsest discretization (one layer of prismatic
elements of order k = 1) and the finest discretization (three layers of elements of order k = 3)

In Figs. 15.3 and 15.4, the longitudinal stress component Txx aswell as the in-plane
shear stress component Txy are depicted.Note that in all plots, no stress reconstruction
or smoothing was done, the fields are displayed directly as they were computed. The
absolute value of the electric field over the central line x = 0, y ∈ [2, 10mm], z = 0
is displayed in Fig. 15.5.
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Fig. 15.3 Longitudinal stress component Txx (unit N/(µm)2) for the coarsest discretization (one
layer of prismatic elements of order k = 1) and the finest discretization (three layers of elements of
order k = 3)

Fig. 15.4 In-plane shear stress component Txy (unit N/(µm)2) for the coarsest discretization (one
layer of prismatic elements of order k = 1) and the finest discretization (three layers of elements of
order k = 3)

Fig. 15.5 Absolute value of
the electric field |E| over the
central line x = 0, y ∈
[2, 10mm], z = 0 for the
two different discretizations
with k = 1 and k = 3
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15.5 Conclusion

A finite element method for a mechanic enthalpy-based model of the ferroelectric
polarization process has been presented. In such a model, dielectric displacement
and stress are the primary unknowns. Two stable pairs of mixed finite elements were
chosen to discretize the model. For the electric quantities, divergence-conforming
dielectric elements are proposed, such that Gauss’ law of zero charges is satisfied
exactly. Taking this law into account, the total number of degrees of freedom could
even be reduced, choosing only basis functions with at most constant divergence. For
the mechanic quantities, mixed TDNNS elements are used, as they have been shown
to be free from shear locking when using flat elements in thin layers of piezoelectric
structures. By way of a numerical benchmark example, robustness of the method
with respect to large load increments is shown.
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