
Chapter 1
On Dynamic Optimality of
Anti-Sandwiches

Marcus Aßmus and Holm Altenbach

Abstract From the viewpoint of structural engineering, natural frequencies and
associated eigenmodes of Anti-Sandwiches are crucial points in the context of their
dynamic behavior.Herewe suggest a general format for dynamic analysis by employ-
ing an extended layerwise theory. A finite-element implementation ensures the effi-
ciency of the general solution approach. The set of control variables initially consists
of originally 14 geometry and material parameters. The nature of this input enables
to bound the space of parameters affecting the eigenbehavior. Due to the lack of
any generic measure for optimality, we determine optimal values of the reduced
parameters and propose general optimality criteria.

1.1 Prologue

In contrast to sandwich structures, a so-called Anti-Sandwich consists of a three-
layered composite structure with thick, shear-rigid skins and a thin, shear-soft core.
They are widely applied as structural bearing elements, for example, laminated
glasses [16] and photovoltaic modules [21]. In the context of the design, the main
challenges are among others

• excellent stiffness properties resulting in small deflections,
• effective boundary conditions [23], and
• eigenbehavior

The first two items are well studied [5, 15, 21, 23]. The optimization of the eigen-
behavior is in the focus of the present contribution. The eigenbehavior of Anti-
Sandwiches can be modified by the manipulation of the
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Fig. 1.1 Eigenmode as a
result of experimental modal
analysis by the aid of Laser
Doppler velocimetry

• material parameters,
• geometry parameters,
• damping properties of the core layer, and
• boundary conditions,

where K is a layer index. In the present treatise, the modification of these parameters
will be discussed from the point of view that the structural response should be outside
of any stimulus spectrum. For this purpose, the modal analysis is a powerful tool.
Figure1.1 is representative of the results of an experimental modal analysis at Anti-
Sandwiches. Since experiments are usually very expensive, an alternative procedure
is beneficial.

A first analysis is often based on the analysis of the natural frequencies. In this
course, it is possible to reduce to geometry and material parameters when restricting
to one sample boundary condition. Considering Anti-Sandwiches, the parameters
are

• plane length dimensions Lα ∀ α ∈ {1, 2},
• layer thicknesses hK ∀ K ∈ {t, c, b} (with overall thickness H = ∑

hK ),
• Young’s moduli EK ∀ K ∈ {t, c, b},
• Poisson’s ratios νK ∀ K ∈ {t, c, b}, and
• mass densities ρK ∀ K ∈ {t, c, b}.
Herein, wemake use of superscript designators t, c, b for top, core, and bottom layers
of the (three-layered) Anti-Sandwich, cf. Figure1.3. When reviewing the relevant
literature on such structural elements, one will find a wide but restricted domain
wherein preceding parameters can be located. An overview is given in Fig. 1.2. There,
the superscript index s is used representatively for the skin layers (t, b). However, as
is typically for Anti-Sandwiches, we can state the following characteristic properties,
which are also exploited in the present work.
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Fig. 1.2 Geometric and material variety of Anti-Sandwiches, data taken from [4]

L1 ≈ L2 (1.1a)

Lα � H (1.1b)

hs � hc (1.1c)

Gs � Gc (1.1d)

Zs � Zc (1.1e)

ρs � ρc (1.1f)

Herein, the shear modulus GK = EK (2 + 2νK )−1 ∀ K ∈ {c, s} is used due to the
isotropy assumed for present materials. Furthermore, ZK = GKhK ∀ K ∈ {c, s} is
a simple measure for the transverse shear sensitivity.

1.2 Theoretical Issues

Anti-Sandwiches are complex systems. Let us make the followingmodel assumption
allowing a simplified modeling for the analysis of the eigenbehavior of such struc-
tures. The assumed cross-section is shown in Fig. 1.3. As it was shown in previous
papers [21], in dependence of the material and geometry parameters, different the-
ories can be applied for the analysis. The simplest one is the classical layered plate
theory [2]. This is an analogy to Kirchhoff’s plate theory. As usual, this approach
failed in the case of sandwich structures. A refined approach is related to the so-
called first-order shear deformable theory [2]. Now the transverse shear is taken into
account which is helpful in the case of classical sandwich structures. But even in
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Fig. 1.3 Cross section of the assumed composite structure (t—top layer, c—core layer, b—bottom
layer)

Fig. 1.4 Coordinate system and degrees of freedom of the five-parameter plate continuum (eα, n—
orthonormal base of the coordinate system, uα—in-plane displacements, w—deflection, θα—
rotations)

the case of a non-standard shear correction [1] some ratios of the above-mentioned
parameters do not allow a correct analysis of Anti-Sandwiches. Better results one can
get applying the extended layerwise theory suggested in [18]. This theory is based
on the assumed cross section (Fig. 1.3), but in the first step, each layer of the three-
layered composite structure is modeled separately with the help of a five-parameter
plate continuum per layer based on the direct approach [3, 13, 24]. Within this the-
ory, five independent degrees of freedom (three translational and two rotational) are
used as shown in Fig. 1.4. The cross-sectional kinematic assumptions are similar to
Mindlin’s theory [17] for every layer separately [5]. In addition, it is assumed that

• geometrical symmetry in transverse direction w.r.t. midplane of the cross section,
• geometrically and physically linear setting,
• isotropic elastic materials,
• decoupled deformation states,
• layers are rigidly connected, and
• layers have a constant thickness.

The following statements are based on previous works performed at the Martin
Luther Universität Halle-Wittenberg and the Otto von Guericke Universität Magde-
burg during the last decade. The core layer behavior analysis, three-point bending
tests and experimental validation to theories were presented in [8–10, 20–23]. The
theoretical basics are given in [21, 23] for layerwise beams, in [18] for layerwise
plates, and in [19] for layerwise shells. Solutions were presented as closed-form solu-
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Fig. 1.5 Nine eigenform shapes φi and corresponding natural frequencies fi ∀ i ∈ {1, . . . , 9}

tions in [18], computational solution strategies were introduced in [4, 5, 15]. Last
but not least, application were shown for coupling with three-dimensional models in
[11], for natural loading scenarios in [6] and w.r.t. borders, frontiers and limits in [7,
12, 14].

In the context of the computational solution strategy to analyze the eigenbehavior,
[4, 5] introduced a special finite-element which incorporates all the degrees of free-
dom for all layers. The approach was implemented into the finite-element program
system ABAQUS® by using a “user element” (UEL) subroutine. We denominate
this computational approach FE-XLWT. The strategy developed proves itself to be
particularly efficient. It has emerged as a powerful tool to analyze general three-
layered composite structures [12, 14]. Examples of computational results gained are
presented in Fig. 1.5.

1.3 Optimal Parameter Basis

For the determination of the structural eigenbehavior ofAnti-Sandwiches, it is advan-
tageous to analyze the natural frequencies for different geometrical andmaterial com-
positions. In general, for three-layered composite structures, the parameter space is
defined by a set S of 14 parameters. To be exact, these are five geometries

Sgeo := {L1, L2, h
t , hc, hb} , (1.2)
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and nine material parameters

Smat := {Et , Ec, Eb, ν t , νc, νb, ρ t , ρc, ρb} , (1.3)

while S = Sgeo ∪ Smat holds. Since Anti-Sandwiches can be assigned to the genus
of symmetric composite structures, i.e.,

ht = hb Et = Eb ν t = νb ρ t = ρb (1.4)

hold, the number of parameters reduces to 10. The reduced set of parameters is
summarized as follows:

Sred := {L1, L2, h
s, hc, Es, Ec, νs, νc, ρs, ρc} , (1.5)

while we make use of the superscript index s for the parameters of the skin lay-
ers. Another reduction of this set is based on significant ratios introduced for Anti-
Sandwiches, cf. [12]. These are the thickness ratio TR, the length ratio LR, the
thickness to length ratio TLR, the shear modulus ratio GR, and the mass density ratio
MDR.

TR = hc

2hs
(1.6a)

LR = L2

L1
(1.6b)

TLR = H

Lmin
(1.6c)

GR = Gc

Gs
(1.6d)

MDR = ρc

ρs
(1.6e)

Obviously, ratios (1.6a), (1.6b), and (1.6c) refer to geometry parameters, while (1.6d)
and (1.6e) pertain on material parameters. Following the literature review of [4], we
can limit the parameter ranges due to practical applications at products available on
the market.

TR ≈ 0.125 . . . 0.45 LR ≈ 0.25 . . . 1 TLR ≈ 2·10−3 . . . 1.4·10−2

GR ≈ 7·10−6 . . . 1.5·10−2 MDR ≈ 4·10−2 . . . 1

These restrictions are naturally based on the possible ranges of the set of original
parameters (1.5). As a result, the new set is bounded by five parameters.

Sbound := {TR, LR, TLR,GR, MDR} , (1.7)



1 On Dynamic Optimality of Anti-Sandwiches 7

Fig. 1.6 Normalized first natural frequency in dependence of the bounded set of parameters Sbound

In the sequel, these parameters are varied systematically to study their influence
on the structural behavior. For the ease of evaluation, we make use of the natural
frequency of the first fundamental mode f1 = min( fi ) solely. There is a dependency
on the set of reduced parameters.

f1 = F(Sred) (1.8)

In present case, this dependence is sufficiently described the set of bounded param-
eters.

f1 = H(Sbound) (1.9)

For reasons of comparability, we normalize this criteria.

f̄1(�) = f1(�)

max[ f1(�)] ∀� ∈ {TR, LR, TLR,GR, MDR} (1.10)

In the present investigations, the parameterswere varied individually. Resulting func-
tional relationships are depicted in Fig. 1.6. A thorough discussion of these results is
given in [4, 5].

Following the results generated, subsequent universal implications for the five
reduced parameters for a low first natural frequency can be drawn.

1. TR high 2. LR high 3. TLR small 4. MDR high 5. GR small
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By the aid of these five statements, engineers are able to estimate and regulate the
vibration sensitivity, at least in the context of the product development process.

1.4 A General Optimality Criteria

Instead of working with five parameters and find optima for every parameter sepa-
rately, it is our aim to establish a generic measure to achieve a general representation
of the problem. For this purpose, we introduce a general parameter ratio 0 ≤ S ≤ 1.

S =̂ � with � = � − min(�)

max(�) − min(�)
∀� ∈ {TR, LR, TLR,GR, MDR} (1.11)

Herein, S is correlated with the structural stiffness. Based on this measure, we make
useof an equallyweightednormalizedfirst natural frequency0 ≤ fg ≤ 1.This results
in a regularized function fg(S).

fg(S) = 1

n

n∑

α=1

f̄1(�) ∀ �̄ ∈ {TR, LR, TLR,GR, MDR} (1.12)

With the aid of this generic measure, it is possible to reduce the multidimensional
problem.

For the set of results depicted in Fig. 1.6, this yields the function visualized in
Fig. 1.7. Due to the normalizations that have been introduced, this graph has general
validity, at least in the context ofAnti-Sandwiches in the applied boundary conditions.
Obviously, we can identify a minimum and a maximum value in the range of S. The
maximum is at S = 0.01, while the minimum is to be found at S = 0.36.

The goal of the generic measure S is to have a single parameter for eval-
uation. Based on this parameter, it is now possible to find sets of parameters
(TR, LR, TLR, MDR,GR aswell as EK , νK , ρK , Lα, hK ) for optimal S. In the present
case, this reads as follows.

Fig. 1.7 Results for
regularized function fg(S)

with minimum and
maximum
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Sopt = S[min( fg)] (1.13)

Such optima, however, can be found by different algorithms. Here, the constraints on
the set of parameters (1.5) depicted in Fig. 1.2 are decisive. Ultimately, this results
in a variety of combinations of these parameters which fulfill the generalized opti-
mality criteria. Thereby, every combination consists of a concrete specification of
the parameters in Sred.

1.5 Epilogue

In the present work, we have proposed general optimality criteria for the dynamic
behavior of Anti-Sandwiches by introducing a single measure which incorporates
geometry and material properties and thus describes the structural stiffness. The
analysis is based on an effective and efficient approach to determine eigenbehav-
ior of Anti-Sandwiches by the utilization of the extended layerwise theory and a
computational finite-element implementation based thereon. Significant geometry
and material ratios are introduced based on dimensional analysis, which reduced
the parameter space considerably. In the present context, the first natural frequency
is consulted as a representative sensitivity parameter for the eigenbehavior. Several
variant calculations are performed to determine optimal values of the ratios intro-
duced. In sequence, a general representation to assess an optimal eigenbehavior is
established. In contrast to the previous procedure, it is thus possible to generate a large
number of combinations of the original parameter set. This routine is solely limited
by the physical restrictions in the possible parameters for geometry and material. On
the other hand, such restrictions help to reduce the number of possible sets.

Finally, the task of selecting and applying an optimization algorithm to generate
specific datasets remains open whereby finding the minimum or maximum of a func-
tion in many variables is one of the most common problems in numerical computing.
Such an algorithm is then to be coupled to FE-XLWT for efficient computational
analyses of parameter sets.

References

1. Altenbach, H.: An alternative determination of transverse shear stiffnesses for sandwich and
laminated plates. Int. J. Solids Struct. 37(25), 3503–3520 (2000). https://doi.org/10.1016/
S0020-7683(99)00057-8

2. Altenbach, H., Altenbach, J., Kissing, W.: Mechanics of Composite Structural Elements, 2nd
edn. Springer (2018). https://doi.org/10.1007/978-981-10-8935-0

3. Altenbach, H., Zhilin, P.: A general theory of elastic simple shells (in russ.). Adv. Mech. 11(4),
107–148 (1988)

4. Aßmus, M.: Global structural analysis at photovoltaic-modules: theory, numerics, application
(in german). Dissertation thesis, Otto von Guericke University Magdeburg (2018)

https://doi.org/10.1016/S0020-7683(99)00057-8
https://doi.org/10.1016/S0020-7683(99)00057-8
https://doi.org/10.1007/978-981-10-8935-0


10 M. Aßmus and H. Altenbach

5. Aßmus, M.: Structural Mechanics of Anti-Sandwiches—An Introduction. SpringerBriefs in
ContinuumMechanics. Springer International Publishing (2019). https://doi.org/10.1007/978-
3-030-04354-4

6. Aßmus,M., Bergmann, S., Eisenträger, J., Naumenko,K., Altenbach,H.: Consideration of non-
uniform and non-orthogonal mechanical loads for structural analysis of photovoltaic composite
structures. In: Altenbach, H., Goldstein, R.V., Murashkin, E. (eds.) Mechanics for Materials
and Technologies, Advanced Structured Materials, vol. 46, pp. 73–122. Springer, Singapore
(2017). https://doi.org/10.1007/978-3-319-56050-2_4

7. Aßmus, M., Bergmann, S., Naumenko, K., Altenbach, H.: Mechanical behaviour of photo-
voltaic composite structures: a parameter study on the influence of geometric dimensions and
material properties under static loading. Compos. Commun. 5, 23–26 (2017). https://doi.org/
10.1016/j.coco.2017.06.003

8. Aßmus, M., Jack, S., Köhl, M., Weiß, K.A.: Dynamic mechanical loads on pv-modules. In:
Proceedings of the 24th European Photovoltaic Solar Energy Conference, pp. 3395–3397.
Hamburg, Germany (2009). https://doi.org/10.4229/24thEUPVSEC2009-4AV.3.34

9. Aßmus,M., Jack, S.,Weiss, K.A., Koehl, M.:Measurement and simulation of vibrations of PV-
modules induced by dynamic mechanical loads. Prog. Photovolt. Res. Appl. 19(6), 688–694
(2011). https://doi.org/10.1002/pip.1087

10. Aßmus, M., Köhl, M.: Experimental investigation of the mechanical behavior of photovoltaic
modules at defined inflow conditions. J. Photon. Energy 2(1), 1–11 (2012). https://doi.org/10.
1117/1.JPE.2.022002

11. Aßmus, M., Naumenko, K., Altenbach, H.: A multiscale projection approach for the coupled
global-local structural analysis of photovoltaic modules. Compos. Struct. 158(-), 340–358
(2016). https://doi.org/10.1016/j.compstruct.2016.09.036

12. Aßmus, M., Naumenko, K., Altenbach, H.: Mechanical behaviour of photovoltaic composite
structures: influence of geometric dimensions and material properties on the eigenfrequencies
of mechanical vibrations. Compos. Commun. 6, 59–62 (2017). https://doi.org/10.1016/j.coco.
2017.10.003

13. Aßmus, M., Naumenko, K., Altenbach, H.: Subclasses of mechanical problems arising from
the direct approach for homogeneous plates. In: Altenbach, H., Chróścielewski, J., Eremeyev,
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