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Preface

This present book presents a collection of 23 contributions presented during the 4th
International Workshop on Advanced Dynamics and Model Based Control of Struc-
tures and Machines, which was held in September 2019 at the Institute of Technical
Mechanics of the Johannes Kepler University Linz, Austria. 13 contributions are
from Austria, 5 from Russia, 3 from Taiwan and 1 each from Germany and France.

The workshop continued a series of international workshops—the Japan–Austria
Joint Workshop on Mechanics and Model Based Control of Smart Materials and
Structures, the Russia–Austria Joint Workshop on Advanced Dynamics and Model
Based Control of Structures and Machines and the first three editions of the Inter-
national Workshop on Advanced Dynamics and Model Based Control of Structures
and Machines. The previous workshops took place in Austria in 2008 (Linz), 2010
(Linz) and 2015 (Vienna) and in Russia in 2012 (St. Petersburg) and 2017 (Perm).

The general goal of these workshops has been to present and discuss the frontiers
in the mechanics of controlled machines and structures with the intention

• to enable the interchange of ideas from advanced mechanics of materials and
structures and control theory,

• to clarify the expectations of researchers in the field of mechanics from advanced
control theory and vice versa,

• to develop ideas for and to initiate future bilateral research proposals
• and to encourage collaborations among industry and universities across the

borders of the participating countries.

To meet the last objective, a special session on R&D in industry was organized by
the Linz Center of Mechatronics (LCM), which in the COMET-K2 center Symbiotic
Mechatronics conducts applied basic research projects together with company part-
ners. These projects exhibit a high scientific share and a high implementation riskwith
a possibly high gain. Four presentations sharing the latest cooperative research with
company partners were given by senior researchers of LCM and the corresponding
papers are part of this book.

v



vi Preface

The participation of a total of 31 scientists fromAustria, Russia, Taiwan,Germany,
France and the U.S.A. led to fruitful scientific discussions among the participants,
further deepening of long-lasting cooperations and friendships, and to the publication
of this book.

Linz, Austria
Linz, Austria
Perm, Russia
St. Petersburg, Russia
December 2020

Hans Irschik
Michael Krommer

Valerii P. Matveenko
Alexander K. Belyaev
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Chapter 1
On Dynamic Optimality of
Anti-Sandwiches

Marcus Aßmus and Holm Altenbach

Abstract From the viewpoint of structural engineering, natural frequencies and
associated eigenmodes of Anti-Sandwiches are crucial points in the context of their
dynamic behavior.Herewe suggest a general format for dynamic analysis by employ-
ing an extended layerwise theory. A finite-element implementation ensures the effi-
ciency of the general solution approach. The set of control variables initially consists
of originally 14 geometry and material parameters. The nature of this input enables
to bound the space of parameters affecting the eigenbehavior. Due to the lack of
any generic measure for optimality, we determine optimal values of the reduced
parameters and propose general optimality criteria.

1.1 Prologue

In contrast to sandwich structures, a so-called Anti-Sandwich consists of a three-
layered composite structure with thick, shear-rigid skins and a thin, shear-soft core.
They are widely applied as structural bearing elements, for example, laminated
glasses [16] and photovoltaic modules [21]. In the context of the design, the main
challenges are among others

• excellent stiffness properties resulting in small deflections,
• effective boundary conditions [23], and
• eigenbehavior

The first two items are well studied [5, 15, 21, 23]. The optimization of the eigen-
behavior is in the focus of the present contribution. The eigenbehavior of Anti-
Sandwiches can be modified by the manipulation of the
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2 M. Aßmus and H. Altenbach

Fig. 1.1 Eigenmode as a
result of experimental modal
analysis by the aid of Laser
Doppler velocimetry

• material parameters,
• geometry parameters,
• damping properties of the core layer, and
• boundary conditions,

where K is a layer index. In the present treatise, the modification of these parameters
will be discussed from the point of view that the structural response should be outside
of any stimulus spectrum. For this purpose, the modal analysis is a powerful tool.
Figure1.1 is representative of the results of an experimental modal analysis at Anti-
Sandwiches. Since experiments are usually very expensive, an alternative procedure
is beneficial.

A first analysis is often based on the analysis of the natural frequencies. In this
course, it is possible to reduce to geometry and material parameters when restricting
to one sample boundary condition. Considering Anti-Sandwiches, the parameters
are

• plane length dimensions Lα ∀ α ∈ {1, 2},
• layer thicknesses hK ∀ K ∈ {t, c, b} (with overall thickness H = ∑

hK ),
• Young’s moduli EK ∀ K ∈ {t, c, b},
• Poisson’s ratios νK ∀ K ∈ {t, c, b}, and
• mass densities ρK ∀ K ∈ {t, c, b}.
Herein, wemake use of superscript designators t, c, b for top, core, and bottom layers
of the (three-layered) Anti-Sandwich, cf. Figure1.3. When reviewing the relevant
literature on such structural elements, one will find a wide but restricted domain
wherein preceding parameters can be located. An overview is given in Fig. 1.2. There,
the superscript index s is used representatively for the skin layers (t, b). However, as
is typically for Anti-Sandwiches, we can state the following characteristic properties,
which are also exploited in the present work.
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Fig. 1.2 Geometric and material variety of Anti-Sandwiches, data taken from [4]

L1 ≈ L2 (1.1a)

Lα � H (1.1b)

hs � hc (1.1c)

Gs � Gc (1.1d)

Zs � Zc (1.1e)

ρs � ρc (1.1f)

Herein, the shear modulus GK = EK (2 + 2νK )−1 ∀ K ∈ {c, s} is used due to the
isotropy assumed for present materials. Furthermore, ZK = GKhK ∀ K ∈ {c, s} is
a simple measure for the transverse shear sensitivity.

1.2 Theoretical Issues

Anti-Sandwiches are complex systems. Let us make the followingmodel assumption
allowing a simplified modeling for the analysis of the eigenbehavior of such struc-
tures. The assumed cross-section is shown in Fig. 1.3. As it was shown in previous
papers [21], in dependence of the material and geometry parameters, different the-
ories can be applied for the analysis. The simplest one is the classical layered plate
theory [2]. This is an analogy to Kirchhoff’s plate theory. As usual, this approach
failed in the case of sandwich structures. A refined approach is related to the so-
called first-order shear deformable theory [2]. Now the transverse shear is taken into
account which is helpful in the case of classical sandwich structures. But even in
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Fig. 1.3 Cross section of the assumed composite structure (t—top layer, c—core layer, b—bottom
layer)

Fig. 1.4 Coordinate system and degrees of freedom of the five-parameter plate continuum (eα, n—
orthonormal base of the coordinate system, uα—in-plane displacements, w—deflection, θα—
rotations)

the case of a non-standard shear correction [1] some ratios of the above-mentioned
parameters do not allow a correct analysis of Anti-Sandwiches. Better results one can
get applying the extended layerwise theory suggested in [18]. This theory is based
on the assumed cross section (Fig. 1.3), but in the first step, each layer of the three-
layered composite structure is modeled separately with the help of a five-parameter
plate continuum per layer based on the direct approach [3, 13, 24]. Within this the-
ory, five independent degrees of freedom (three translational and two rotational) are
used as shown in Fig. 1.4. The cross-sectional kinematic assumptions are similar to
Mindlin’s theory [17] for every layer separately [5]. In addition, it is assumed that

• geometrical symmetry in transverse direction w.r.t. midplane of the cross section,
• geometrically and physically linear setting,
• isotropic elastic materials,
• decoupled deformation states,
• layers are rigidly connected, and
• layers have a constant thickness.

The following statements are based on previous works performed at the Martin
Luther Universität Halle-Wittenberg and the Otto von Guericke Universität Magde-
burg during the last decade. The core layer behavior analysis, three-point bending
tests and experimental validation to theories were presented in [8–10, 20–23]. The
theoretical basics are given in [21, 23] for layerwise beams, in [18] for layerwise
plates, and in [19] for layerwise shells. Solutions were presented as closed-form solu-
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Fig. 1.5 Nine eigenform shapes φi and corresponding natural frequencies fi ∀ i ∈ {1, . . . , 9}

tions in [18], computational solution strategies were introduced in [4, 5, 15]. Last
but not least, application were shown for coupling with three-dimensional models in
[11], for natural loading scenarios in [6] and w.r.t. borders, frontiers and limits in [7,
12, 14].

In the context of the computational solution strategy to analyze the eigenbehavior,
[4, 5] introduced a special finite-element which incorporates all the degrees of free-
dom for all layers. The approach was implemented into the finite-element program
system ABAQUS® by using a “user element” (UEL) subroutine. We denominate
this computational approach FE-XLWT. The strategy developed proves itself to be
particularly efficient. It has emerged as a powerful tool to analyze general three-
layered composite structures [12, 14]. Examples of computational results gained are
presented in Fig. 1.5.

1.3 Optimal Parameter Basis

For the determination of the structural eigenbehavior ofAnti-Sandwiches, it is advan-
tageous to analyze the natural frequencies for different geometrical andmaterial com-
positions. In general, for three-layered composite structures, the parameter space is
defined by a set S of 14 parameters. To be exact, these are five geometries

Sgeo := {L1, L2, h
t , hc, hb} , (1.2)
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and nine material parameters

Smat := {Et , Ec, Eb, ν t , νc, νb, ρ t , ρc, ρb} , (1.3)

while S = Sgeo ∪ Smat holds. Since Anti-Sandwiches can be assigned to the genus
of symmetric composite structures, i.e.,

ht = hb Et = Eb ν t = νb ρ t = ρb (1.4)

hold, the number of parameters reduces to 10. The reduced set of parameters is
summarized as follows:

Sred := {L1, L2, h
s, hc, Es, Ec, νs, νc, ρs, ρc} , (1.5)

while we make use of the superscript index s for the parameters of the skin lay-
ers. Another reduction of this set is based on significant ratios introduced for Anti-
Sandwiches, cf. [12]. These are the thickness ratio TR, the length ratio LR, the
thickness to length ratio TLR, the shear modulus ratio GR, and the mass density ratio
MDR.

TR = hc

2hs
(1.6a)

LR = L2

L1
(1.6b)

TLR = H

Lmin
(1.6c)

GR = Gc

Gs
(1.6d)

MDR = ρc

ρs
(1.6e)

Obviously, ratios (1.6a), (1.6b), and (1.6c) refer to geometry parameters, while (1.6d)
and (1.6e) pertain on material parameters. Following the literature review of [4], we
can limit the parameter ranges due to practical applications at products available on
the market.

TR ≈ 0.125 . . . 0.45 LR ≈ 0.25 . . . 1 TLR ≈ 2·10−3 . . . 1.4·10−2

GR ≈ 7·10−6 . . . 1.5·10−2 MDR ≈ 4·10−2 . . . 1

These restrictions are naturally based on the possible ranges of the set of original
parameters (1.5). As a result, the new set is bounded by five parameters.

Sbound := {TR, LR, TLR,GR, MDR} , (1.7)
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Fig. 1.6 Normalized first natural frequency in dependence of the bounded set of parameters Sbound

In the sequel, these parameters are varied systematically to study their influence
on the structural behavior. For the ease of evaluation, we make use of the natural
frequency of the first fundamental mode f1 = min( fi ) solely. There is a dependency
on the set of reduced parameters.

f1 = F(Sred) (1.8)

In present case, this dependence is sufficiently described the set of bounded param-
eters.

f1 = H(Sbound) (1.9)

For reasons of comparability, we normalize this criteria.

f̄1(�) = f1(�)

max[ f1(�)] ∀� ∈ {TR, LR, TLR,GR, MDR} (1.10)

In the present investigations, the parameterswere varied individually. Resulting func-
tional relationships are depicted in Fig. 1.6. A thorough discussion of these results is
given in [4, 5].

Following the results generated, subsequent universal implications for the five
reduced parameters for a low first natural frequency can be drawn.

1. TR high 2. LR high 3. TLR small 4. MDR high 5. GR small
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By the aid of these five statements, engineers are able to estimate and regulate the
vibration sensitivity, at least in the context of the product development process.

1.4 A General Optimality Criteria

Instead of working with five parameters and find optima for every parameter sepa-
rately, it is our aim to establish a generic measure to achieve a general representation
of the problem. For this purpose, we introduce a general parameter ratio 0 ≤ S ≤ 1.

S =̂ � with � = � − min(�)

max(�) − min(�)
∀� ∈ {TR, LR, TLR,GR, MDR} (1.11)

Herein, S is correlated with the structural stiffness. Based on this measure, we make
useof an equallyweightednormalizedfirst natural frequency0 ≤ fg ≤ 1.This results
in a regularized function fg(S).

fg(S) = 1

n

n∑

α=1

f̄1(�) ∀ �̄ ∈ {TR, LR, TLR,GR, MDR} (1.12)

With the aid of this generic measure, it is possible to reduce the multidimensional
problem.

For the set of results depicted in Fig. 1.6, this yields the function visualized in
Fig. 1.7. Due to the normalizations that have been introduced, this graph has general
validity, at least in the context ofAnti-Sandwiches in the applied boundary conditions.
Obviously, we can identify a minimum and a maximum value in the range of S. The
maximum is at S = 0.01, while the minimum is to be found at S = 0.36.

The goal of the generic measure S is to have a single parameter for eval-
uation. Based on this parameter, it is now possible to find sets of parameters
(TR, LR, TLR, MDR,GR aswell as EK , νK , ρK , Lα, hK ) for optimal S. In the present
case, this reads as follows.

Fig. 1.7 Results for
regularized function fg(S)

with minimum and
maximum
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Sopt = S[min( fg)] (1.13)

Such optima, however, can be found by different algorithms. Here, the constraints on
the set of parameters (1.5) depicted in Fig. 1.2 are decisive. Ultimately, this results
in a variety of combinations of these parameters which fulfill the generalized opti-
mality criteria. Thereby, every combination consists of a concrete specification of
the parameters in Sred.

1.5 Epilogue

In the present work, we have proposed general optimality criteria for the dynamic
behavior of Anti-Sandwiches by introducing a single measure which incorporates
geometry and material properties and thus describes the structural stiffness. The
analysis is based on an effective and efficient approach to determine eigenbehav-
ior of Anti-Sandwiches by the utilization of the extended layerwise theory and a
computational finite-element implementation based thereon. Significant geometry
and material ratios are introduced based on dimensional analysis, which reduced
the parameter space considerably. In the present context, the first natural frequency
is consulted as a representative sensitivity parameter for the eigenbehavior. Several
variant calculations are performed to determine optimal values of the ratios intro-
duced. In sequence, a general representation to assess an optimal eigenbehavior is
established. In contrast to the previous procedure, it is thus possible to generate a large
number of combinations of the original parameter set. This routine is solely limited
by the physical restrictions in the possible parameters for geometry and material. On
the other hand, such restrictions help to reduce the number of possible sets.

Finally, the task of selecting and applying an optimization algorithm to generate
specific datasets remains open whereby finding the minimum or maximum of a func-
tion in many variables is one of the most common problems in numerical computing.
Such an algorithm is then to be coupled to FE-XLWT for efficient computational
analyses of parameter sets.
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Chapter 2
On a New Model for Predicting
Landslide Events

Vladimir A. Babeshko, Olga V. Evdokimova, and Olga M. Babeshko

Abstract Amathematical model of the most poorly studied pre-landslide structure,
called horizontally propagating, is constructed. The spatial pre-landslide structure
occupies an unbounded cylindrical area with the third quadrant in the cross section.
It is filled with a medium described by the anisotropic Helmholtz equation, which is
extremely fluid among other water-saturated media. Taking into account the physi-
cal and mechanical properties of the pre-slide structure, it is a vertical deformable
containment wall with a deformable horizontal coating. To construct a model that
is adequately formulated, we consider the boundary value problem for the three-
dimensional Helmholtz equation in the specified region, taking into account the
presence of deformable walls and coatings. The block element method is used to
construct an exact solution of the boundary problem for the accepted coatings on the
membrane boundary. The properties of the constructed model are investigated.

2.1 Introduction

Landslides and mudslides are among the most difficult to predict processes that
cause huge damage to society, both material and related to victims. The complexity
of predicting the events of these phenomena is associated with a large complex of
physical, mechanical, hydro-mechanical, rheological, and plastic phenomena that
are closely intertwined with the geometric parameters of terrain and landscape areas.
This circumstance does not allow, except for certain special cases, to build a strictly
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justified mathematical theory and model of these processes. Creating a theory and
models of these phenomena will allow you to get enough reliable data about the
processes occurring in the zone that is dangerous for landslides, and to evaluate
the steps that allow you to regularly initiate landslides or prevent them. The slow
progress in modeling landslide events was largely due to the lack of a convenient
mathematical apparatus for this purpose. Currently, there is some progress in this
direction due to the creation of the block element method, which makes it possible to
model complex processes described by linear and nonlinear boundary value problems
for systems of high-order partial differential equations. Mathematically, this section
of continuum mechanics is one of the most complex and least developed sections of
mixed problems that have not been completely solved.

Often, these problems were presented with an extremely simplified task, which
assumed that a particular task was being considered only the spreading environment,
without assessing the conditions for the occurrence of such phenomena. The areas
occupied by the environmentwere assumed to be the simplest.Only a small number of
studies are devoted to attempts to account for the deformability of both the internal
mass of the pre-landslide structure and the restraining coatings. This article uses
a new block element method developed in Russia at the Kuban State University.
Among the ten types of pre-landslide structures, a model of the least studied type,
called horizontally propagating, is constructed. The area of this type of pre-landslide
structure is a vertical containment wall with a horizontal coating. In this area, the
landslide mass is concentrated, which is a softened fluid water-saturated medium.
The limiting case of its greatest fluidity is the anisotropic model described by the
anisotropic Helmholtz equation. The wall and coating are deformable and prevent
the mass from spreading. At the beginning of the landslide process, either a break
in the vertical wall or a break in the top cover occurs. The problem is considered
as close as possible to the real one. The deformation of all contacting objects is
taken into account, and the medium has a rheology, the ultimate fluidity, described
by the anisotropic Helmholtz equation. In addition, taking into account that the
beginning of the landslide process can be triggered by an external dynamic influence,
the possibility of its presence on the coating and wall at a harmonic vibration with
an arbitrary frequency is considered.

Currently, a strict theory of block structures has been developed, which is based
on the block element method. Its advantage is the ability to investigate boundary
value problems in almost any field since any object or structure can be considered as
a real or virtual block structure. At the same time, there are few cases of applying this
theory to real problems, which makes it difficult to use it in applied problems. In this
paper, this approach is applied to the Helmholtz equation often used in applications
in the area of a three-dimensional rectangular wedge in the presence of arbitrary
boundary conditions. Despite the simplicity of the problem statement, the authors
did not find a General solution to this boundary value problem. It should be noted
that a large number of papers are devoted to the study of the Helmholtz equation
arising in various fundamental and applied problems.

First of all, these are works in layered areas [1], where the method of integral
transformations is used for research and a fairly complete list of cited literature in
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this area of research is provided. In [2, 3], a ray method was developed and applied
that is effective at high frequencies in boundary value problems in arbitrary domains,
including for the Helmholtz equation.

In [4–7], a method is developed for presenting solutions to boundary value prob-
lems in the theory of elasticity of thermoelectroelasticity and poronasaturated Bio
media using solutions of the Helmholtz equation. In [8–11], boundary problems for
the Helmholtz and Laplace equations are investigated in hydrodynamics problems,
in particular, the behavior of ice floes and plates on the liquid surface, and their
acoustic properties. In [11], we consider the plane problem of hydrodynamics in
a rectangular wedge. The author finds an original method for studying a boundary
problem in a rectangular wedge by reducing it to a problem in half-space, using a
mirror image of the boundary problem on a symmetrical rectangular wedge. There
are other works in which researchers move away from solving the boundary value
problem in a rectangular wedge by using mirror reflections and moving to a layered
environment.

At the same time, the authors did not meet any studies and exact solutions of the
three-dimensional Helmholtz equation in the form of packed block elements under
arbitrary boundary conditions in the region of an unbounded rectangular wedge type.
The possibility of studying these problems is described in [12, 13]. In this paper, we
consider a three-dimensional Neumann boundary value problem for the Helmholtz
equation, for which solutions for arbitrary boundary conditions are constructed using
the block element method. The solution is constructed in integral form in a wedge-
shaped area in the form of packed and unpacked block elements. The block element
method is quite simple to use and can be used to investigate more complex problems.

2.2 Problem Statement

Let’s take a rectangular coordinate system, pointing the axes x1, ox3 horizontally,
and the axis x2 vertically upward, see the figure. The boundary problem for the three-
dimensional Helmholtz equation in a rectangular region �(|x3| ≤ ∞, x1 ≤ 0, x2 ≤
0) is considered under conditions of harmonic effects. The Neumann conditions are
set at the boundaries of the region�. Problems of this kind arise when studying the
acoustic properties of unbounded areas of the wedge type, as well as when preparing
initial data for the study of more complex boundary value problems for the Lame,
Navier–Stokes, Maxwell, and others equations in such areas. Building solutions in
the form of packed block elements is a necessary part of research when studying
block structures. The specified boundary problem in a bounded area, a rectangle,
was considered in [14], where pseudo-differential equations were constructed using
the block element method, with the introduction of a tangent bundle of the boundary.
We present one of them for the boundary value problem

[
A11∂

2x1 + A22∂
2x2 + A33∂

2x3 + A
]
φ(x1, x2, x3) = 0
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2 (2.1)

Here, a, b, c constants define a rectangle that is bounded if all constants are bounded,
or semi-bounded if there are infinite constants among them.

In this paper, we use a variant of the block element method based on binding local
coordinate systems to a single coordinate system, which, due to the shape of the area
�, allows us to perform the study more clearly. The three-dimensional anisotropic
Helmholtz equation with a reduced time multiplier is considered below e−iωt

[
∂2x1 + ∂2x2 + A33∂

2x3 + Ap2
]
u(x1, x2, x3) = 0

in the region �(|x3| ≤ ∞, x1 ≤ 0, x2 ≤ 0). Here p it can be a complex number.
To apply the block element method to a boundary value problem in a block

structure, you must perform three algorithms: external algebra, external analysis,
and factor topology construction. Because only one block element is considered, the
latter algorithm is no longer necessary.

Consider the Neumann boundary value problem for this equation.
We assume that the boundary conditions have the form

∂u(0, x2, x3)

∂x1
= f2(x2, x3),

∂u(x1, 0, x3)

∂x2
= f1(x1, x3)

Here, fn arbitrary functions have properties sufficient for the solvability of the corre-
sponding boundary problems in the spaces of slowly growing generalized functions,
which will be discussed below. Since the region � contains infinitely distant points,
if wave functions appear in the boundary problem, a solution is sought using the
radiation principle.
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By applying the Fourier transform to the differential equation for a parameter, we
obtain a differential equation with a parameter of the form

(
∂2x1 + ∂2x2 + k2

)
u(x1, x2, α3) = 0, k2 = Ap2 − A33α

2
3

2.3 Method of Solution

Using one of the methods of tangent stratification of the boundary in the region,
taking into account the adoption of a single coordinate system, after using the two-
dimensional Fourier transform and introducing external forms, we come to a func-
tional equation of the form:

(α2
1 + α2

2 + k2)U (α1, α2, α3) =
∫

∂�

ω

ω = ∂u(0, x2, α3)

∂x1
eiα2x2 dx2 − iα1u(0, x2, α3)e

iα2x2 dx2

+ ∂u(x1, 0, α3)

∂x2
eiα1x1 dx1 − iα2u(x1, 0, α3)e

iα1x1 dx1

Notation is accepted here

U (α1, α2, α3) =
∫∫∫

�

u(x1, x2, x3)e
i〈αx〉 dx1 dx2 dx3,

〈αx〉 = α1x1 + α2x2 + α3x3, (2.2)

u(x1, x2, x3) = 1

8π3

∫∫∫

R3

U (α1, α2, α3)e
−i〈αx〉 dα1 dα2 dα3

Taking into account the type of the coordinate system, the right part of the functional
equation can be represented in the form

∫

∂�

ω =
0∫

−∞

∂u(0, x2, α3)

∂x1
eiα2x2 dx2 − iα1

0∫

−∞
u(0, x2, α3)e

iα2x2 dx2

+
0∫

−∞

∂u(x1, 0, α3)

∂x2
eiα1x1 dx1 − iα2

0∫

−∞
u(x1, 0, α3)e

iα1x1 dx1



18 V. A. Babeshko et al.

After calculating the one-dimensional integrals, which are Fourier transforms of the
corresponding functions, we can present the functional equation in the form:

(α2
1 + α2

2 − k2)U (α1, α2, α3) = ∂U (0, α2, α3)

∂x1
− iα1U (0, α2, α3)

+ ∂U (α1, 0, α3)

∂x2
− iα2U (α1, 0, α3) (2.3)

In the future, the uppercase letter will denote the Fourier transforms calculated from
the functions represented by the corresponding lowercase letter. We add the values
of functions (2.1) to the right side of the functional equation (2.3), after calculating
the Fourier transforms for all coordinates. Have

(α2
1 + α2

2 − k2)U (α1, α2, α3)

= F2(α2, α3) − iα1U (0, α2, α3) + F1(α1, α3) − iα2U (α1, 0, α3)

To perform the external analysis algorithm, we factor the coefficient of the functional
equation for each parameter, which is trivial in this case

(α2
1 + α2

2 − k2) = (α1 − α1−)(α1 + α1−) = (α2 − α2−)(α2 + α2−)

α1− = −i
√

α2
2 − k2, α2− = −i

√
α2
1 − k2, Im α1− ≤ 0, Im α2− ≤ 0

The automorphism condition for the carrier and functions on it leads to pseudo-
differential equations of the form [14]

F2(0, α2−, α3) − iα1U (0, α2−, α3) + F1(α1, 0, α3) − iα2−U (α1, 0, α3) = 0

F2(0, α2, α3) − iα1−U (0, α2, α3) + F1(α1−, 0, α3) − iα2U (α1−, 0, α3) = 0

The unknowns in the pseudo-differential equation are the functions and functions

U (0, α2, α3), U (α1, 0, α3), U (0, α2−, α3), U (α1−, 0, α3)

The solution of pseudo-differential equations is searched for with the requirement
of zero conversions outside the domain of boundary value problem solutions. This
leads, after transformations, to the following kind of functional equation

(α2
1 + α2

2 − k2)U (α1, α2, α3)

= 1

α1−α2−

〈
(α2− − α2)

[
α1−F1(α1, α3) − α1F1(α1−, α3)

]

+ (α1− − α1)
[
α2−F2(α2, α3) − α2F2(α2−, α3)

]〉
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Then the solution in Fourier transforms representing a packed block element takes
the form

U (α1, α2, α3) = 1

(α2
1 + α2

2 − k2)

1

α1−α2−
〈
(α2− − α2) ×

[
α1−F1(α1, α3) − α1F1(α1−, α3)

] + (α1− − α1)
[
α2−F2(α2, α3) − α2F2(α2−, α3)

]〉

By reducing the same cofactors, the function U1(α1, α2, α3) can be represented as

U (α1, α2, α3) = i
1

α1−α2−

×
〈[

α1−F1(α1, α3) − α1F1(α1−, α3)
]

(α2 + α2−)
+

[
α2−F2(α2, α3) − α2F2(α2−, α3)

]

(α1 + α1−)

〉
(2.4)

The resulting representation allows us to formulate conditions for the specified
boundary functions. To build a mathematical model of the pre-landslide structure, an
anisotropic mediummust be taken cover with a membrane sarcophagus that prevents
spreading. To do this, build amathematical model of the sarcophagus, which includes
a vertical wall and a horizontal cover. We apply the method of block element.

The boundary value problem for horizontal coverage has the following formula-
tion:

(∂2x1 + ∂2x3 + p21)w1(x1, x3) = t1(x1, x3),

|x3| ≤ ∞, −∞ < x1 ≤ 0, ∂x1w1(0, x3) = g1(0, x3)

The boundary value problem for a vertical wall is described by the equation and
conditions

(∂2x2 + ∂2x3 + p22)w2(x2, x3) = t2(x2, x3),

|x3| ≤ ∞, −∞ < x2 ≤ 0, ∂x2w2(0, x3) = g2(0, x3)

Here, t1(x1, x3) and t2(x2, x3) are the amplitudes of external influences on the sar-
cophagus, and g1(0, x3) and g2(0, x3) are the angles of rotation corner ends of the
wall and coating, respectively. The wall and coating are tightly mated with the mass
being held.

Given that the function u(x1, x2, x3) represents the potential of thewater-saturated
mass, w1 and w2 are normal to the sarcophagus has a range of motion, then the
following conditions must be met

w1(x1, x3) = ∂x2u(x1, x2, x3), x2 = 0, −∞ < x1 ≤ 0

w2(x2, x3) = ∂x1u(x1, x2, x3), x1 = 0, −∞ < x2 ≤ 0
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After calculations, we get the following representation for the spreading landslide
model:

f1(x1, x3) = F−1
2 (x1, x3)

[
α1α

−1
1−T1(α1−, α3) − T1(α1, α3)

(α2
1 + α2

3 − p21)
− α1−g1(0, α3)

(α1 − α1+)

]

f2(x2, x3) = F−1
2 (x2, x3)

[
α2α

−1
2−T2(α2−, α3) − T2(α2, α3)

(α2
2 + α2

3 − p22)
− α2−g2(0, α3)

(α2 − α2+)

]

Adding these function values to formulas (2.4) and (2.2) allows you to get an analyt-
ical representation in the form of integrals of the model of a horizontally propagating
landslide. Here, F−1

2 (x1, x3), and F−1
2 (x2, x3) are two-dimensional inverse Fourier

operators.

2.4 Conclusions

Byconstruction, the function represents a potential that is proportional to thepressure.
The constructed solution of the problem allows it to be evaluated at any point in the
considered area, including near the border. In the model, you can choose different
problem statements, changing the effects on the walls and coatings, and also vary the
anisotropy parameters, thereby revealing the extremely critical States of the landslide
structure, after which there will be a gap between the sarcophagus and the landslide
process will begin.
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Chapter 3
Variable Kinematics Models
for Advanced Composite Plates

M. D’Ottavio, A. Krasnobrizha, E. Valot, O. Polit, R. Vescovini, and L. Dozio

Abstract This paper presents the application of a sublaminate-based variable kine-
matics approach to advanced composite structures with enhanced damping treat-
ments such as viscoelastic layers or piezoelectric plies. The Sublaminate General-
ized Unified Formulation (SGUF) is applied in conjunction with an efficient Ritz-
type solution to free-vibration problems involving various mechanical and electrical
boundary conditions. Conventional viscoelastic sandwich and piezoelectric bimorph
structures are considered as well as more complex double-core plates. The role of
thickness stretch in viscoelastic cores is pointed out and the possibility of reducing the
number of degrees of freedom by virtue of the sublaminate approach is highlighted.
The possibility of tailoring the accuracy and the number of degrees of freedomwill be
particularly meaningful for computationally intensive algorithms searching optimal
configurations.

3.1 Introduction

Vibration suppression is one of the most relevant challenges for lightweight struc-
tural components, as it drives relevant design aspects, e.g. noise attenuation and
fatigue life.A traditionalwayof improving the dampingproperties consists of embed-
ding viscoelastic material (VEM) plies within stiff layers [23]. The embedment of
piezoelectric sensors and/or actuators has been demonstrated to be among the most
indicated solutions for implementing an adaptive control strategy [21]. Solutions
involving both VEM and piezoelectric transducers have also attracted great interest
[4]. The design of such advanced composite structures requires dedicated tools for
coping with the complex underlying physical mechanisms and structural response.
In particular, efficient numerical tools are desired that allow to perform optimisation
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loops by grasping the structural response up to the desired degree of accuracy (e.g.
global and/or local analysis).

Among the very intensive research activity that is being dedicated to the devel-
opment of such numerical simulation tools for more than 30 years, the so-called
variable kinematics approach systematically developed by Carrera and co-workers
appears to be very efficient [7, 9, 11]. The basic idea is to provide within a unique
software, the possibility of tailoring the accuracy—thus the computational cost—by
adopting different models depending on the desired output quantity. The variable
kinematics approach has been shown to be particularly meaningful for multifield
problems, in which gradients of different field variables require an appropriate reso-
lution [3, 8, 15]. The variable kinematics approach also facilitates the implementa-
tion of global–local strategies [25], and it can be also employed for identifying the
problem-dependent best theory in an axiomatic/asymptotic sense [10].

This contribution summarises a variable kinematics approach called Sublami-
nate Generalized Unified Formulation (SGUF) [12] and presents its application to
advanced composite plate structures including piezoelectric and viscoelastic materi-
als. The two-dimensional partial differential equations governing the platemodels are
solved numerically by means of a Ritz method, which allows to efficiently deal with
structural vibrationproblems including arbitrary boundary conditions and anisotropic
coupling [13, 24]. The efficiency and accuracy of the proposed approach are demon-
strated by referring to free-vibration problems of composite plates with embedded
viscoelastic or piezoelectric plies, including proper electric boundary conditions for
these latter.

3.2 Modelling Approach

This section describes the axiomatic variable kinematics plate models employed in
conjunction with a Ritz-type approach for solving free-vibration problems in a small
perturbation setting. The piezoelectric coupling is taken into account by referring to
the “generalised displacements” formulation based on electric enthalpy. The weak
form of d’Alembert’s principle for traction- and electric charge-free vibrations of a
piezoelectric continuum is then expressed as

∫
V

δSi j Ti j − δEi Di + δui ρüi dx1 dx2 dx3 = 0 (3.1)

V = � × [− h
2 ≤ x3 ≤ h

2 ] is the volume occupied by the plate, that is considered to
have a uniform thickness h over the reference surface � lying in the plane x3 = 0.
Adopting the standard notation of [1], the primary mechanical field variables are the
three components of the displacement vector ui (x1, x2, x3) and the primary electrical
field variable is the electrostatic potential ϕ(x1, x2, x3). Linear gradient equations,
not reported here for the sake of brevity, are used to define the mechanical strain
tensor Si j and the electric field vector Ei from the primary variables. The classical
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constitutive law of linear piezoelectricity is employed for defining the mechanical
stress tensor Ti j and the electric displacement vector Di [1]:

Ti j = c̃Ei jkl Skl − eki j Ek; Di = eikl Skl + εSik Ek (3.2)

3.2.1 Complex Modulus Approach for VEM

Free-vibration problems involving VEM are suitably described within the complex
modulus approach, in which the time-dependent constitutive law is expressed in the
frequency domain as

Ti j = c̃∗
i jkl(ω) Skl (3.3)

Throughout the paper, complex quantities are characterised by an asterisk. The com-
plex stiffness coefficients are defined in terms of complex engineering moduli and
real Poisson’s ratios. Two models are considered for introducing the dependency
on the circular frequency ω. The well-known Anelastic Displacement Field model
(ADF) represents the VEM behaviour as a series of n Kelvin–Voigt elements and an
elastic spring [19]:

G∗(ω) = G0

⎛
⎝1 +

n∑
j=1

� j ω

ω − ı̂ � j

⎞
⎠ (3.4)

Alternatively, the four-parameter Zener fractional derivatives model (FDZ) is con-
sidered [22]:

G∗(ω) = G0 + G∞(ı̂ ω τ )α

1 + (ı̂ ω τ )α
(3.5)

In the above equations, ı̂ = √−1 is the imaginary unit, G0 represents the static
modulus and G∞ = G∗(ω → ∞) the unrelaxed modulus; in the ADF model, 1/� j

and � j are the relaxation time and strength, respectively, of the j th Kelvin–Voigt
element; in the FDZmodel,α is the fractional order of derivatives and τ the relaxation
time. Thermodynamic consistency of the FDZ model is ensured provided G∞ >

G0 > 0, τ > 0 and 0 < α ≤ 1 [2].
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Fig. 3.1 Subdivision of the
composite stack (left) in
sublaminates (right):
employed coordinates for
describing the kinematic
assumptions
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3.2.2 SGUF Variable Kinematics Modelling and Ritz-Type
Solution

The SGUF variable kinematics approach describes the composite plate as a stack
along its thickness direction x3 ≡ z of k = 1, 2 . . . Nk numerical layers, the sublam-
inates, each may regroup several physical plies or a fraction of a single physical
ply, see Fig. 3.1. In each ply p within the sublaminate k, the generic field variable
U p,k

r (x1, x2, z p) is axiomatically assumed in the form expressed in Generalized Uni-
fied Formulation (GUF) [11] as

U p,k
r (x1, x2, ζ) =

Nk
Ur∑

αUr =0

FαUr
(ζ) Û p,k

rαUr
(x1, x2) (3.6)

The index r ∈ [1, 4] identifies thefieldvariable,which is the displacement component
ur for r = 1, 2, 3, or the electrostatic potentialϕ for r = 4. Note that the electrostatic
potential variables are only present in piezoelectric plies. The thickness functions
F(ζ) describe the gradient across the sublaminate’s thickness either in a LayerWise
(LW) or in an Equivalent Single Layer (ESL) sense: the non-dimensional coordinate
ζ is thus defined over either the ply thickness h p, or the sublaminate thickness hk ,
respectively. The through-the-thickness approximation is defined as the sum of a
linear Lagrange interpolation and orthogonal Legendre polynomials of order Nk

Ur
.

This allows a hierarchic model enrichment while preserving direct access to the
top and bottom values and, hence, facilitating the subsequent assembly. The overall
kinematic model for the whole composite plate is obtained as an LW assembly of
the individual sublaminate contributions. More details can be found in [14].

The solution over the reference plane � is sought according to Ritz’ method in
the following form [13]:

Û p,k
rαUr

(x1, x2) =
M∑
j=1

NUr j (x1, x2)U p,k
rαUr

j (3.7)
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The two-dimensional shape functions NUr j (x1, x2) are constructed by multiply-
ing the products of one-dimensional orthogonal basis functions Pm(x1) and Pn(x2)
defined by Legendre polynomials, with appropriate boundary functions f (x1) and
g(x2) that represent the clamped, simply supported and free edge conditions [24]:

NUr j (x1, x2) = �Ur m(x1)�Ur n(x2) with

{
�Ur m(x1) = Pm(x1) f (x1)
�Ur n(x2) = Pn(x2)g(x2)

(3.8)

Taking m ∈ [1, R], n ∈ [1, S], the order of Ritz’ approximation is thus M = RS.

3.2.3 The Discrete Algebraic System

The through-the-thickness approximation of the plate model expressed by Eq. (3.6)
and the in-plane approximation expressed by Eq. (3.7) are introduced in the vari-
ational formulation Eq. (3.1); the thickness and in-plane integrals are carried out
separately and subsequently assembled to build the system matrices. Details about
the implied procedures can be found elsewhere [12–14], including the definition
of fundamental nuclei that characterise the implementation of unified formulation
approaches, their expansion and assembly. It is worth emphasising that the present
implementation is highly efficient since it employs analytically computed integrals,
see [24]: as a result, high-order approximations can be used without ill-conditioning
and the system matrices are shown to have a high degree of sparsity. One eventually
arrives at the discrete algebraic system defining the eigenvalue problem associated
to the free-vibration problem. Different solution procedures are adopted depending
on whether the structure contains a VEM or a piezoelectric ply, as described in the
following.

3.2.3.1 The Viscoelastic Case

In case of a viscoelastically damped structure, the eigenvalue problem is complex
and written as

(K ∗ − λ2M)U∗eı̂ωt = 0, with K ∗ = K R + ı̂K I (3.9)

where only the complex part K I of the stiffness matrix contains the frequency-
dependent VEM behaviour. In case of a frequency-independent VEM, the complex
eigenvalue problem is directly solved yielding the damped modal eigenfrequencies
and corresponding damping factors as

ω j =
√

	(λ2
j ) and η j = 
(λ2

j )

	(λ2
j )

(3.10)
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In the presence of a frequency-dependentVEM, K I = K I (ω) and the complex eigen-
value is nonlinear: an iterative fixed-point approach is adopted in conjunction with
the direct complex eigensolver to obtain the solution. Starting from an initial guess
defined by the undamped system, four to five iterations are in general required to
reach a converged solution with a tolerance of 10−6.

An alternative solution approach that avoids the use of the Complex Eigen-
Solver (CES), relies on the Modal Strain Energy (MSE) approach [16]. In this case,
a real eigenproblem is solved for obtaining the undamped eigenfrequencies and cor-
responding modes, from which the loss factor for mode j is estimated a posteriori
as

η j = UT
j K I U j

UT
j K R U j

(3.11)

3.2.3.2 The Piezoelectric Case

The vibratory response of plates with piezoelectric plies should properly take into
account the electrical boundary conditions at the electrodes. The essential boundary
condition for the electrostatic potential on an equipotential surface located at ze is
exactly verified by adopting a one-term, constant Ritz approximationϕ(x1, x2, ze) =
ϕe, see also [14]: this approximation is used for both, a prescribed electrostatic
potential, e.g. in the Short-Circuit (SC) condition ϕe = 0, and a prescribed zero-
charge condition of the Open-Circuit (OC) configuration, for which ϕe remains
unknown.

After having condensed out all internal degrees-of-freedom (DOF) related to the
electrostatic potential, the following electromechanically coupled linear and real
eigenvalue problem is obtained:

([
K̃ uu K̃ uϕe

K̃
T
uϕe

K̃ϕeϕe

]
− ω2

[
M 0
0 0

]) [
U
ϕe

]
=

[
0
0

]
(3.12)

where the only electrostatic potential DOF are those associated to the electrodes.
The appropriate electrical boundary conditions are subsequently applied and a purely
mechanical eigenvalue problem is finally obtained, see e.g. [5]

( ˜̃K uu − ω2M
)
U = 0 (3.13)

where ˜̃K uu = K̃ uu − K̃
T
uϕe

K̃
−1
ϕeϕe

K̃ uϕe is the equivalent mechanical stiffness matrix
that accounts for the unknown electrostatic potential DOF at OC electrodes.
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3.3 Numerical Results

The proposed modelling approach is next applied to some case problems available in
open literature in order to demonstrate its accuracy and versatility. At first, we shall
introduce the naming convention employed to identify the plate models that can be
implemented within the SGUF approach.

3.3.1 Naming Convention for the Models

The model adopted in each sublaminate is uniquely denoted by an acronym of the
formD

XNϕ

XNuα ,XNu3
, in which the letter ‘D’ indicates that a (generalised) displacements’

approach has been used. The subscripts indicate the assumptions for the in-plane
displacements uα = u1, u2 (the same model will be employed for the displacements
along x1 and x2 for simplicity), and the transverse displacement u3. The letter ‘X’ is
a placeholder that is replaced by ‘E’ if the displacement component is described in
an ESL sense, or by ‘L’ if an LW description is adopted. The integers Nuα

and Nu3
correspond to the order of the polynomial expansion. The superscript is used to define
the approximation for the electrostatic potential and follows the same convention. If
the sublaminate consists of only one ply, the ‘X’ letters are dropped out; furthermore,
if all variables are described in the same manner, the ‘X’ is placed before the ‘D’. So,
the model corresponding to the first-order shear deformation theory is ED1,0, while
an LW model with FSDT kinematics in each ply is LD1,0. Note that the reduced
constitutive law is employed enforcing the constraint T33 = 0 is usedwhenever Nu3 =
0.

3.3.2 Sandwich Plates with VEM Cores

A thin sandwich plate with a frequency-independent VEM core and metallic faces is
first considered as proposed by Zhang and Sainsbury, who provided accurate FEM
results for the first 100modes of a rectangular platewith all edges free [26]. Figure3.2
(left) displays the convergence of the present Ritz solution for a LD1,0 model in terms
of eigenfrequency andmodal loss factor for aVEMcorewhose loss factor is ηc = 0.5.
The relative errors between the results obtained by the MSE approach with respect
to the CES are illustrated in Fig. 3.2 (right). Three different VEM loss factors have
been considered and it is obvious that the MSE approach provides accurate results
as long as the damping is low. However, it should be noted that the MSE solution
took only approximately half of the time required by the CES for computing the 100
modes.

A fully clamped, thin sandwich plate with metallic faces and a frequency-
dependent VEM core is next considered as proposed by Bilasse et al. [6], who
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Fig. 3.2 First 100 modes of a rectangular sandwich plate with frequency-independent VEM: con-
vergence of the present Ritz solution for ηc = 0.5 (left) and comparison between the MSE and the
CES for different damping values ηc of the VEM

Table 3.1 Sandwich plate with frequency-dependent VEM: present results with ADF and FDZ
models obtained with the iterative CES, results in Ref. [6] obtained with ADF and ANM

Mode Reference [6] ADF model FDZ model

f (Hz) ηl f (Hz) η0 η f (Hz) η0 η

1 83.01 0.246 83.10 0.247 0.254 82.80 0.231 0.241

2 146.61 0.258 146.91 0.259 0.269 146.64 0.260 0.272

3 168.92 0.257 168.76 0.257 0.269 168.74 0.260 0.272

4 225.27 0.270 225.59 0.269 0.283 226.35 0.271 0.284

adopted the Asymptotic Numerical Method (ANM) to solve the nonlinear complex
eigenvalue problem arising from an ADF model for the VEM core. Present results
are obtained with the iterative complex eigensolver for an LD1,0 kinematics adopting
either the ADF or the FDZ model. Table3.1 shows that present results compare in a
satisfactory manner with the reference solution. Some small discrepancies are found
for the FDZ model which are due to the identification of the four parameters starting
from the ADF model.

In the following, the influence of the kinematics assumptions is addressed. The
third case problem concerns a moderately thick, double-core sandwich beam, com-
posed of three metallic plies and two frequency-dependent VEM cores described by
anFDZmodel. This configurationhas been analysedbyLewandowski andBaumwith
a model adopting Classical Plate Theory (CPT) for the metallic plies and FSDT for
the VEM cores [20]. The plane beam has been modelled within the present approach
by setting S = 1 in the Ritz expansion with free–free conditions at the edges parallel
to the beam axis x1, and upon using reduced stiffness coefficients that correspond
to the plane stress condition T22 = 0 along the beam width. The present results for
the modal loss factors obtained for different boundary conditions are reported in
Fig. 3.3 along with the solution proposed by Lewandowski and Baum. Three differ-
ent kinematics are compared: the LD1,0 model follows the results of Ref. [20], but the
quasi-3D model LD4 and the high-order model ED1,0/ED1,2, in which FSDT is used
for the metallic plates and the ED1,2 kinematics for the VEM cores, show significant
differences. The reason for the discrepancy is attributed to the full 3D constitutive law
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Fig. 3.3 Double-core sandwich beam with different boundary conditions: influence of the model
kinematics on the modal loss factor

retained by these refined models for the VEM cores: the through-thickness stretch
in the VEM cores entails an increase of the modal loss factor of higher modes, an
effect that is emphasised by the degree of hyperstaticity of the structure.

3.3.3 Plates with Piezoelectric Plies

Afirst case problem is considered for highlighting the role of electrical boundary con-
ditions on the free-vibration response of piezoelectric plates. A piezoelectric parallel
bimorph wide plate (cylindrical bending) is examined, for which Krommer provided
reference solutions based on anFSDTkinematics [18]. The plate is either cantilevered
(CF) or simply supported (SS); three sets of electrical boundary conditions are con-
sidered for the top and bottom surfaces of the bimorph (the interlaminar electrode
being grounded): a Short-Circuit (SC) configuration with ϕ(x1, x2, z = ±h/2) = 0,
an Open-Circuit (OC) configuration with ϕ(x1, x2, z = ±h/2) = const, and a Not-
Electroded (NE) configuration with ϕ(x1, x2, z = ±h/2) let free to vary without any
equipotentiality constraint. Figure3.4 reports the ratio between the eigenfrequencies
of the piezoelectric system and those of the purely elastic system for the first 6modes.
The same FSDT model of Ref. [18] has been used as well as a refined LD32 model
that retains the 3D constitutive law. Results for the SC and OC configurations com-
pare very accurately with the corresponding reference solution. The refined model
provides results that are only marginally different from those obtained by FSDT. It

Fig. 3.4 Piezoelectric
coupling effect of a bimorph
plate: influence of
mechanical and electrical
boundary conditions, and
comparison between ED1,0
(FSDT) and a high-order
model with 3D constitutive
law (LD3,2)
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Fig. 3.5 Double-core basis
plate with bonded
piezoelectric plies (left) and
three SGUF models (right):
two models with three
sublaminates (a1) and (a2)
and one model with seven
sublaminates (b)
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is worth noticing the different trends obtained by the NE configuration, which con-
firms the important role played by the equipotentiality condition on the piezoelectric
coupling.

A final case problem is considered, which allows to give evidence of the computa-
tional advantage gained by virtue of the SGUF approach. It consists of a double-core
sandwich plate with three composite faces and two thick orthotropic cores, with two
piezoelectric plies bonded at its top and bottom surfaces, see Fig. 3.5 (left). Ply thick-
nesses andmaterial data can be found in [17]. The plate is square of edge length a and
simply supported; different electrical boundary conditions are applied to the piezo-
electric plies: the ply at the bottomworks in OC, while that at the top is shunted (SC).
The interfaces between the piezoelectric plies and the basic structure are electroded
and grounded. Separate sublaminates are used for the piezoelectric plies in order to
introduce dedicated assumptions depending on the electrical boundary conditions
[15]: FSDT kinematics is used along with a linear and quadratic approximation for
ϕ(z) for the OC and SC piezoelectric ply, respectively. The basis double-core plate
has no electrostatic potential DOF and is modelled with either (a) a single sublami-
nate or (b) with five sublaminates, see Fig. 3.5 (right). Two models shall be declined
within description (a), namely (a1) the higher order ESL model ED3,2 retaining the
3D constitutive law, and (a2) the conventional LD1,0 model. Adopting five sublami-
nates for the basis plate, model (b) employs FSDT for the stiff laminated faces and
the refined model ED1,2 for the thick and soft cores; the resulting model will thus be
labelled ED1,0/ED1,2.

The results are reported in Fig. 3.6 for three different length-to-thickness ratios
S = a/h = 5, 10, 20 in terms of percentage difference with respect to the exact 3D
solution of the non-dimensional eigenfrequencies ω̄ for the three modes with (1, 1),
(1, 2) and (1, 3) halfwaves. The legend reports also the number of DOF for the three
considered models. It is obvious that higher errors are introduced for thick plates and
for higher modes (shorter wavelength). When adopting a single sublaminate for the
whole basis structure, model (a1) produces with 20 DOF a maximum error of about
20%, whereas the full LWmodel (a2) shows a maximum error of approximately 1%
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Fig. 3.6 Eigenfrequencies
of the double-core sandwich
plate with bonded outer
piezoelectric plies:
percentage errors with
respect to the 3D solution for
three different
length-to-thickness ratios S
and three different SGUF
models

with 34 DOF. Model (b) requires only 26 DOF and is affected by a maximum error
of approximately 0.5% for mode (1, 3) and for the thick plate case.

3.4 Conclusion

This paper has extended the variable kinematics SGUF approach to the free-vibration
analysis of advanced composite plates including viscoelastic and piezoelectric mate-
rials. VEM can display frequency-dependent damping properties, and different elec-
trical boundary conditions can be considered with good accuracy. The variable kine-
matics approach could highlight the important role of the transverse stretch in VEM
cores.Moreover, thanks to the sublaminate description, the accuracy of the axiomatic
models can be enhanced without an excessive use of DOF.

Future work shall be directed towards the FEM implementation of the SGUF
approach for an efficient simulation of structures with piezoelectric and/or viscoelas-
tic patches. The simultaneous solution of structures including both, piezoelectric plies
and VEM shall provide a flexible numerical tool for the optimisation of advanced
structures with hybrid active–passive damping treatments.
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Chapter 4
Magnetoelastic Phenomena and Their
Applications in Diagnostics
and Technology

E. S. Gorkunov

Abstract The paper studies the nature of magnetostriction and magnetoelastic phe-
nomena in ferromagnets and their application to the creation of transducers differ-
ent types. It also demonstrates the applicability of magnetoelastic parameters for
nondestructive evaluation of the level of macroscopic and microscopic stresses in
ferromagnetic parts and structural components.

4.1 Introduction

The study of the effect of elastic and plastic strains on the magnetization rever-
sal of ferromagnetic materials has both theoretical and practical aspects. Therefore,
specialists engaged in basic research and practical application of magnetoelastic
phenomena may talk entirely different languages and use different terms. In practi-
cal terms, the knowledge of magnetic behavior under elastic strains enables one to
use magnetoelastic phenomena when creating new types of transducers and, accord-
ingly, offering new capabilities of measuring equipment [4, 7] and nondestructive
testing [3, 6, 8, 9]. In the field of nondestructive testing, the study of magnetoelastic
phenomena in structural ferromagnetic materials allows one to progress in the evalu-
ation of the stress-strain parameters of individual structural components, and, in the
future, to evaluate the state and service life of a whole structure using these param-
eters and model representations of fracture mechanics. Magnetoelastic phenomena
in ferromagnetic metals and alloys began to be studied long ago [2]. As early as in
mid-1800s, Villari found that, affected by elastic tensile and compressive stresses, the
magnetic permeability of ferromagnetic bodies undergoes some changes depending
on magnetization. This phenomenon was supported by a number of later studies.
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4.2 The Basics of the Phenomenon

Magnetoelastic effects are based on the phenomenon of magnetostriction (a change
in the shape and dimensions of a body under magnetization) discovered in iron by
James Prescott Joule in 1842. The phenomenon of magnetostriction is inherent in all
substances, both strong magnetic magnets and dia- or paramagnets. In ferromagnets,
magnetostriction (percentage elongation λ = �l/ l) reaches 10−2. For iron-based
alloys, λ amounts to 10−6. In dia- and paramagnets, magnetostriction is low (10−7 to
10−5), except for Bi (diamagnet) and rare-earth paramagnets, where it reaches 10−4.
Magnetostriction is widely used for generating and receiving oscillations of vari-
ous frequencies (ultra- and hypersound) in ultrasonic technique and hydroacoustics,
as well as for creating various transducers [5]. The magnetoelastic effect is inverse
to magnetostriction. The operation of a magnetoelastic transducer is based on the
variation of its magnetic state under magnetization by a direct or alternating current
and due to the effect of elastic strain. Devices of this type are used for data storage,
for measuring magnetic field parameters, as magnetic amplifiers, and for measuring
nonelectric quantities (location, displacements (rotation), forces, strains, fluid level,
etc.) [4, 7]. Various effects are used in the design of transducers.

• The Villari effect (inverse to magnetostriction) consists in the variation of fer-
romagnet magnetization in the direction of mechanical strain (longitudinal and
lateral), Fig. 4.1a.

• The Guillemin effect implies that a ferromagnetic bar straightens up when placed
in a magnetic field.

• The Wiedemann effect (direct), discovered in 1858, means that, under circular
magnetization by a current (J ), the emerging torsion strain (τ ) generates an emf
(e) in the inductance coil (W ), and vice versa (the Matteucci effect).

• The Wertheim effect is as follows: as a magnetized rod (M) is twisted (τ ), an
emf (e) is generated between the two rod ends (the direct effect); as an alternating
current is applied to a magnetized rod, torsion strains appear in it (the inverse
effect).

Fig. 4.1 Schematic work of a transducer using the Villari effect (a) and the Wertheim effect (b)
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4.2.1 The Nature of Magnetostriction

The physical foundations of these processes are as follows. The shape and dimensions
of a ferromagnet change under magnetization, i.e., elastic deformation forces appear;
therefore, when evaluating the overall energy state, one must take into account four
kinds of energies in a ferromagnet [1, 10]. Magnetostriction appears at temperatures
below the Curie point (TC ) due to the action of exchange and magnetic bonding
forces. The four kinds of energies are as follows:

Eexch = −2
∑

i j

Ai j
(
SiS j

)
, (4.1)

where Eexch is exchange energy, Ai j is the exchange integral for the atoms i and j ,
depending on the ratio of the lattice constant a to the effective radius r of the 3D
level, and φi j is the angle between the spin moment vectors Si and S j the units �;

EK = K0 + K1α
2, (4.2)

where EK is crystallographic anisotropy energy and K1 is the anisotropy constant;

Eλ = Eλ2
S

2
, (4.3)

where Eλ is magnetostrictive strain energy, E is Young’s modulus, and λS is satura-
tion magnetostriction;

Eσ = −3

2
λSσ cos2 ϕ, (4.4)

where Eσ is magnetoelastic energy for the case of isotropic magnetostriction, σ is
applied stresses, and cos ϕ is a direction cosine taking into account the magnetiza-
tion direction and the acting force direction. The effect of these energies changes the
volume and shape of a ferromagnet. In what follows, this will be exemplified by iron.

Spontaneous (volume) magnetostriction If an iron ball, which is in the paramag-
netic state above the Curie point T > TC (the spinmagnetic moments are disordered)
is cooled, exchange energy appears as the Curie point TC is passed (the exchange
interaction of the electrons is accompanied by a parallel arrangement of the electron
spin moments and the appearance of spontaneous magnetization), and the param-
agnetic ball changes its radius (Fig. 4.2a), thus changing its volume �V/V , i.e.,
causing spontaneous (volume) magnetostriction. The ball becomes ferromagnetic
and grows in size. At the same instant, the second-order phase transition occurs at
the Curie point, and the appearance of spontaneous magnetostriction generates an
elastic wave in the ferromagnet, which can be used for performing test operations.



38 E. S. Gorkunov

Fig. 4.2 Magnetostrictive effects in a ball-shaped one-domain crystal

For example, the thickness of locally water-cooled hot-rolledmetal is tested this way.

Crystallographic anisotropy energy At the same time, with the appearance of
spontaneous magnetostriction, below the Curie point there appear magnetic forces
of the lattice, having anisotropy, and the ferromagnetic ball turns into an ellip-
soid (Fig. 4.2a). The lower the temperature, the stronger is the manifestation of the
anisotropic magnetic forces. For different crystallographic directions of iron, mag-
netostriction has different behaviors under magnetization (Fig. 4.3).

Linear magnetostriction and paraprocess magnetostriction When an ellipsoid
(Fig. 4.2a) is placed in a growing magnetic field H, the vector M begins to rotate
and, accordingly, the ellipsoid changes its shape and spatial position (linear magne-
tostriction), Fig. 4.2b. Linear magnetostriction increases with the field and reaches
saturation λS in the field Hs . In fields above technical saturation (H > Hs), mag-
netization in the paraprocess region acquires an increment �Ms , and the ellipsoid
slightly changes its volume (Fig. 4.2c), this being paraprocess magnetostriction. The
case of the one-domain state under study is the model. In actual ferromagnets, a
multidomain structure appears below the Curie point, which is also shown in Fig. 4.4
as the Landau–Livshits model. A ferromagnet is divided into individual magnetic
domains, each being magnetized to saturation. Principal (180◦) and closure (90◦,
reducing the magnetostatic energy) domains are formed in iron. A schematic change
in the orientation of magnetic moments inside a 180◦. Bloch domain wall (a transi-

Fig. 4.3 Magnetostriction in
an iron single crystal for
different crystallographic
directions
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Fig. 4.4 The structure of plane parallel 180◦ and 90◦ closure domains in a magnetically uniaxial
crystal

tion layer between the domains) is shown in Fig. 4.4. The appearance of 90◦ closure
domains induces magnetostrictive strain energy represented by equation (4.4). The
volume of the domains changes under magnetization, and so do the magnetization
directions in each of them; however, the change in the magnetostrictive strain energy
is affected only by a change in the volume of 90◦ domains. Magnetostrictive strain
in 180◦ domain walls is here omitted since its value is too low.

4.3 The Effect of Changes in Metal Structure
and Stress-Strain State

The change in the structural state under external action (e.g., heat treatment or defor-
mation) is accompanied by a change in all the here-discussed kinds of energies and,
consequently, the domain structure of a ferromagnet, and this is reflected in the mag-
netoelastic behavior, Fig. 4.5. Magnetostriction is sensitive to the structural changes
occurring under heat treatment; therefore, the magnetoelastic parameters must also
sense the changes taking place in the structure of a material, i.e., magnetostriction
and the magnetoelastic parameters can be used to evaluate structural changes in fer-
romagnetic materials.

Formation of magnetic texture Acting elastic strains form a special domain struc-
ture (the so-called magnetic texture), which governs the processes of magnetization
andmagnetic reversal in a ferromagnet. Figure4.6 demonstrates that, ifmagnetostric-
tion is positive (λ > 0) and there are tensile strains (σ > 0), the domain structure
is rearranged so that there appears a predominant “easy axis” direction of the mag-
netization vectors, and magnetization reversal in the direction of stresses becomes
easier, see Fig. 4.6. Under compression (σ < 0), an “easy plane” magnetic texture
is formed, so that a perpendicular arrangement of magnetic vectors becomes pre-
vailing and magnetization reversal becomes more difficult, see Fig. 4.6. In turn, the
rearrangement of the domain structure affects the behavior of magnetostriction. It
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Fig. 4.5 The effect of heat treatment (quenching (a,b) and tempering (c,d)) on themagnetostriction
of the 34KhN3M structural steel (0.34% C, 1% Cr, 1% Ni, and 35% Mo)

Fig. 4.6 Formation of the
“easy axis” and “easy plane”
magnetic textures under
tension and compression,
respectively

decreases under tension to become negative and increases under compression. This
is visualized by the field dependences of longitudinal magnetostriction various val-
ues of applied tensile and compressive stresses for steel 45 (Fig. 4.7). An increase
in the degree of alloying is accompanied by a change in the behavior of λ(H). In
high-alloyed steels, the region of negative values of λ decreases under tension or
vanishes, this being due to the increasing elastic modulus, Poisson ratio, and magne-
tostrictive strain energy in alloyed steels (Fig. 4.8). Elastic strains form a magnetic
texture in a ferromagnet and affect the processes of magnetization reversal. Figure
4.9 shows the evolution of hysteresis loops under uniaxial compression and tension.
It is obvious that the hysteresis loops measured at different stresses, firstly, are sensi-
tive to applied stresses and, secondly, have regions of intersection, where induction
is poorly sensitive to stresses. Thus, the magnetoelastic characteristics determined
in these induction regions are poorly sensitive to elastic strains.

It is seen from Fig. 4.9 that the applied stresses differently affect magnetization
reversal in weak and strong magnetic fields. This can be more clearly exemplified
by coercive force. The behavior of the coercive force Hc depending on stresses σ

in strong fields is practically opposite to that in weak fields (Fig. 4.10a, b), i.e., the
choice of the value of the magnetized field can affect the magnetoelastic behav-
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Fig. 4.7 The field dependences of magnetostriction under elastic compression and tension for steel
45 (C ∼ 0.45%)

Fig. 4.8 The field dependences of magnetostriction for the steels 11KhN3D(0.11% C, 0.68% Mn,
0.88% Cr, 2.96% Ni, 0.27% Mo, 0.28% Si, 0.7% Cu) and 15KhN4D (0.15% C, 0.34% Mn, 0.69%
Cr, 4.11% Ni, 0.13% Si, 1.23% Cu)

Fig. 4.9 Magnetic hysteresis loops for the 11KhN3D steel measured in strong (a—major loops)
and weak magnetic fields (b—Bmax = 0.05T) as dependent on applied stresses. The loops change
from the zero stress value, with a step of 40 MPa, to +200 MPa under tension and to −200 MPa
under compression

ior. The effect of elastic strains (macrostresses) on the magnetic parameters of a
ferromagnet provides a basis for creating various devices, such as force-measuring
gauges, position sensors, displacement transducers, etc. [4, 7].

Up to now, we have been discussing the effect of macroscopic stresses on mag-
netic parameters. However, there are methods for evaluating microscopic stresses by
magnetic parameters.
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Fig. 4.10 The coercive force of the major (a) and minor cycles (Bmax = 0.05T) (b) as dependent
on compressive and tensile stresses

4.4 Microstress Evaluation Methods

All the evaluation methods deal with the redistribution of magnetoelastic energy
under magnetization reversal in the course of the motion of 90◦ domain walls. Two
evaluation methods are discussed in what follows, namely magnetoelastic acoustic
emission and double electromagnetic acoustic transduction (EMAT). When moving,
180◦ and 90◦ domain walls interact with magnetic imperfections, e.g., inclusion-type
defects. At the moment of 180◦ domain wall unpinning, an electromagnetic wave
is emitted (Barkhausen electromagnetic effect); at the moment of 90◦ domain wall
unpinning, both an electromagnetic wave and an ultrasonic wave (magnetoelastic
acoustic emission) are emitted, the nature of the latter being associated with the
redistribution of magnetoelastic energy with the motion of 90◦ domain walls. The
recorded parameters of magnetoelastic acoustic emission correlate with the level of
microstresses in a ferromagnet.

Magnetoelastic acoustic emission Using various parameters, one can correlatively
evaluate macroscopic and microscopic stresses by the parameters of magnetoelastic
acoustic emission (MAE) and Barkhausen jumps (BJ). It follows from Fig. 4.11 that
the BJ parameters had better be used to evaluate compressive stresses (red curve),
the parameters of magnetoelastic acoustic emission (blue curve) being preferable for
tension. It is obvious from Fig. 4.12, where the heat-treated 34Kh3M steel is used as
an example, that in certain heat treatment ranges (quenching followed by different
temperings) the level of microstresses (blue curve) can be evaluated by the correla-
tion method with the use of magnetoelastic acoustic emission (green curve).

Double electromagnetic acoustic transduction. Another way of making 90◦
domain walls move is double electromagnetic-acoustic transduction. In a ferromag-
net placed in a strong polarizing field, an electromagnetic wave of a certain frequency
is generated by an exciting coil at the air-ferromagnet interface; this wave makes 90◦
domain walls move and generates an elastic wave; the latter, in turn, going through
the ferromagnet, excites an electromagnetic wave at the ferromagnet-air interface,
which is recorded by a receiving coil. The recorded parameters are associated with
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Fig. 4.11 Effect of elastic strain in the Fe+3%Si alloy on magnetostriction, the RMS values of the
parameters of electromagnetic and magnetoelastic acoustic emissions

Fig. 4.12 The tempering temperature dependence of the parameters of magnetoelastic acoustic
emission and the level of microstresses

Fig. 4.13 The effect of crystallographic anisotropy on the values of the elastic modulus determined
by different methods: calculated from sound velocity measurements (1); obtained from the EMAT
spectrum for Fe-3%Si single-crystal strips (2); obtained from the EMAT spectrum for a Fe+3%Si
single-crystal disk (3)

the elastic subsystem of the ferromagnet, and they correlate with some magnetoe-
lastic parameters of the material, including the level of microstresses.

The applicability of the EMAT parameters is exemplified in Fig. 4.13 by the elastic
modulus as dependent on the angle α between the [001] crystallographic direction
of the specimen and the polarizing field. We can establish the existence of a cor-
relation between the elastic modulus calculated from the direct measurements of
sound velocity and the data obtained from the EMAT spectrum for single-crystal
strips and a single-crystal disk in the case of the existing crystallographic anisotropy
of the elastic modulus. It follows from Fig. 4.14 that the microdistortions (stresses)
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Fig. 4.14 The correlation of the EMAT signal and sound velocity parameters with crystal lat-
tice microdistortions in heat-treated (quenched and tempered at different temperatures ranging
between 150 and 650 ◦C) steels, namely 35(∼0.35% C), 65G (∼0.65% C, ∼1% Mn), U8(∼0.8%
C), ShKh15(∼0.9% C, ∼1.5% Cr), P6M5(∼0.85% C, ∼6% W, ∼5% Mo, ∼4% Cr, ∼2% V)

Fig. 4.15 Schematic diagram of the cyclic loading of a specimen (a); longitudinal sound wave
ve-locity as dependent on the number of loading cycles (b) and the value of accumulated plastic
strain (c) for specimens made of steel 45

in heat-treated steels can be evaluated by means of EMAT. The electromagnetic-
acoustic characteristics can be used to evaluate strain-induced damage. Thus, for
example, to evaluate low-cycle strain-induced damage, it is possible to use the value
of sound velocity determined by means of double electromagnetic-acoustic trans-
duction (Fig. 4.15). Besides, to evaluate damage high-cycle fatigue damage, we can
use magnetic parameters, such as the Barkhausen jump parameters N and U mea-
sured in mutually perpendicular directions with the use of attached magnetic devices
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Fig. 4.16 The number of jumps N and the RMS values of Barkhausen noise voltage U, measured
by attached magnetic devices, as dependent on the number of loading cycles for the 08G2B pipe
steel (∼0.08% C, ∼1.7% Mn, ∼0.3% Si, ∼0.07% Nb)

Fig. 4.17 The distribution of the normal component of the magnetic induction vector along the
gauge part of a U10 steel specimen(∼1% C) as dependent on the number of unidirectional zero-to-
tension cycles with an amplitude of 0.6 yield stress

Fig. 4.18 The effect of plastic strain localization bands in a carbon steel specimen on its magnetic
field

(Fig. 4.16). Using fluxgate transducers recording leakage magnetic fields, we can
record the pre-failure stage, which precedes the formation of the main crack (red
curve), see Fig. 4.17. In the case of plastic strain and localization of slip bands, they
can also be detected, even under a paint layer, by surface scanning and recording the
leakage fields from these bands (see Fig. 4.18).
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4.5 Conclusion

Magnetoelastic phenomena area basis for creating various transducers designed to
measure position, displacement (rotation), force, strain, and a liquid level using the
well-known Villari, Guillemin, Wiedemann, Wertheim, and Matteucci effects. A
number of magnetoelastic parameters can be used in nondestructive testing to evalu-
ate applied macrostresses. Magnetoelastic parameters associated with the displace-
ments of 90◦ domain walls, which correlate with changes occurring in the magne-
toelastic subsystem of a ferromagnet, have been proposed to be used for evaluating
microdistortions (microstresses).
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Chapter 5
Fault Diagnosis in a Hydraulic Circuit
Using a Support Vector Machine Trained
by a Digital Twin

Rainer Haas and Kurt Pichler

Abstract This paper presents a novel approach for detecting failures in a hydraulic
accumulator loading circuit.Bymeasuringonly the accumulator pressure, pump leak-
age and changes in the accumulator’s pre-fill pressure can be detected. A hydraulic
circuit model, which is part of the digital twin, is used to acquire simulated data for
the development and training of the condition monitoring method. Especially, it is
used to generate data containing different system failures. In a feature engineering
step, these data are used to extract meaningful features from the pressure signal.
Then an SVM classifier is applied to the feature space to classify the different failure
modes. For evaluation, the classifier is applied to different failure cases, and the pro-
posed approach is compared to a commonly used approach that observes the loading
time. The results show that the proposed approach is significantly better than the
commonly used one especially in the case of multiple failures.

5.1 Introduction

Digital Layers (DL) of industrial products are more and more on the spot. These
entities are also calledDigital Twins (DT), see [2] p. 92ff, [15], [10]—just to list a few
papers dealing with digital twins. Grieves and Vickers [2] state a distinction between
two DT types, the Digital Twin Prototypes (DTP) and Digital Twin Instances (DTI).
Shortly, it can be summarized that the DTP contains all artifacts and information
needed to design, optimize, and produce a certain product. This includes, e.g., the
physical system models used in the development process. Where, however, the DTI
type is linked to a certain product instance, containin all needed design artifacts, as
well as the product’s life time information like measurement data (from production
or operation).
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Besides DTs, it is important to say a few words about Cyber Physical Systems
(CPS), see [7] and [14], and how this concept is related to our work. As written in the
previous two cited references, CPSs are integrations of computational resources and
physical mechanisms in different tiers of interlacement. As an example, the compu-
tational resource can monitor (observe) or even control the mechanism, whereas this
can be done at the machine controller or from more abroad computational resources.
For the sake of simplicity, we break this concept down to the following three cases,
taking the time synchronicity between the simulation time of the DT’s model and
the real-time system, as well as the distance of the computational resource from the
mechanism into account.

1. Online and synchronous DTs,
2. online but asynchronous DTs,
3. offline and therefore asynchronous DTs.

Regarding the list above, so to say the classical one is working like a conventional
observer according to control theory. The second kind is also running on embed-
ded computers but the evaluation is not done in “real time”—it is done in parallel
whenever required. Amuch larger class of problems can be treated because real-time
restrictions can almost exclusively be neglected accepting an increase of needed data
storage. The last one, the offline one, needs the same data requirements as the online
asynchronous one but has the ability to use computation resources, which are not
necessarily located in the vicinity.

This paper won’t go deeper into this field of abstract definitions. Our goal is to
bring this concept closer to practical applications presenting a realized example. At
first glance, we are dealing with the third case especially using the DTI concept
because the used data is gathered by an embedded system and post-processed by a
distant computing resource using a model created during the design process. Results
are obtained in a way that they should be easily portable to the DTs of the second
kind.

The main concept for creating a DT can be summarized in the following steps:

1. Definition of system goals and requirements;
2. Create mathematical and geometric system models for system development;
3. Set up the real system;
4. Gather measurements data in order to validate the final design model;
5. If necessary, update the final model in order to fit the real entity

⇒ Digital Layer/Digital Twin;
6. Use the DT for further purposes like condition monitoring, …

This paper is organized as follows: In Sect. 5.2, the technical problem and the
favored solution technique are discussed whereas Sect. 5.3 contains the structure of
the hydraulic circuit and the equations for physical modeling. The built DT is used in
Sect. 5.4 dealing with fault diagnosis. Finally, results and conclusions are provided
in Sects. 5.5 and 5.6, respectively.
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5.2 Problem Statement

The complexity of fault diagnostics, respectively, condition monitoring in hydraulics
relates strongly with the system under study. Especially in the case of large hydraulic
systems containing various elements, simple—respectively trivial—ConditionMon-
itoring (CM) features do not always lead to a good fault diagnostics.

In the following, we will have a look at a broadly used simple hydraulic circuit,
the accumulator loading circuit. Even this example shows that simple CM features
can lead to misinterpreted faults, respectively, hidden fault cases. Nevertheless, it
is important to build up proper simulation models, modeling all necessary physical
effects of the system under study. Such models can later be used to train classifi-
cation algorithms without or even be less reliant on real-world measurements. A
photo and a hydraulic scheme of the system are depicted in Fig. 5.1a, b. The sys-
tem contains three relevant main elements, i.e., the pump, the hydraulic accumulator,
and the pressure relief valve. The following points describe a typical operation mode.

• The motor of the pump is started if the pressure drops below a critical pressure
level. It runs at a constant speed.

• If the pressure in the accumulator exceeds a certain level p2, the motor is turned
off.

• The system waits until the pressure drops again below the lower threshold—the
consuming elements of the connected hydraulic circuit take energy out of the accu-
mulator.

In the following paper, a model of the hydraulic circuit is built and fitted to
measurements of the real hydraulic system. This updated model is later called a

Fig. 5.1 Hydraulic system
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digital twin. Finally, the DT is used to generate data in order to train the classification
algorithm.

The performance of the algorithm is certainly limited by the quality of the training
data. Due to the fact that it is generally not trivial to model a pump or an accumulator
fault, we focused in the first step on two effects that can be modeled with reasonable
effort, i.e., the accumulator’s pre-filling pressure and a pump leakage change. At this
point, it has to be stated that the assumptions, taken as physical fault models, are
a simple approach and can therefore not be strictly applied to any other hydraulic
accumulator loading circuit. The detailed system under study has to be analyzed
properly. In our case, the used models are sufficient.

5.3 Hydraulic Circuit and Its Digital Layer

The simulationmodel representing theDigital Layer is declared in the current section.
As previously discussed, this paper focuses on the application of the concept of
digital representatives in the overall system design process. Therefore, the hydraulic
simulation model is kept simple not to lose focus on the underlying overall concept,
see Sect. 5.1.

The hydraulic pump is modeled as a fixed displacement pump with the displace-
ment �V , see [9] p. 139ff. It is driven at nominal speed n or stopped. The flow rate
Qpump can be calculated according to

Qpump = �V · n. (5.1)

The system also contains a pressure relief valve which is modeled by the flow
characteristic of an orifice, see [9] p. 48ff, supplemented with a linear pressure
depending opening.

Qprv =

⎧
⎪⎪⎨

⎪⎪⎩

0 p ≤ pprv,0

Qprv,n ·
√

pprv,S

pprv,n
· p−pprv,0

pprv,S−pprv,0
pprv,0 < p ≤ pprv,S

Q prv,n ·
√

p
pprv,n

p > pprv,S .

(5.2)

In the typical operating mode, the opening pressure of the valve is turned up to a
level higher than the max. accumulator loading pressure in order to be able to load
it. So it has no direct suggested influence on the operating system. Nevertheless,
measurements showed that this component has a not negligible leakage. In order to
fit the measured pressure during the charging, it is important to model the leakage
of the pressure relief valve. A sufficient model is a constant hydraulic resistance
Rprv,leak . In particular, the laminar flow through a rectangular gap, [9] p. 45ff, was
used writing
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(a) Screenshot of the simulation model
(b) Pressure during accumulator loading, with
and without leakage model for the pressure

relief value

Fig. 5.2 Simulation model and results

Rprv,leak = 12 · η · L
b · h3 , (5.3)

Qprv,leak = �p

Rprv,leak
. (5.4)

The pressure build up in the accumulator reads

dp

dt
= p κ

Vgas,0 ·
(

pgas,0
p

) 1
κ

· (
Qpump − Qprv − Qprv,leak

)
. (5.5)

Figure5.2b shows the comparison of the simulation result and the measurement.
It can be seen that the leakage model of the pressure relief valve is essential for a
good model measurement correlation.

The resulting model can now be extended by the suggested failure cases/models:

• Pump leakage and
• reduction of the accumulator’s pre-filling pressure.

The pump leakage Qpump,leak is modeled using a laminar hydraulic resistance
Rpump,ini t . The degree of wear is emulated using the scaling factor mp. A measure
of the pressure drop of the accumulator is the subtractor sa . It denotes the amount of
lost gas pre-fill pressure. The resulting equations read
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Rpump,leak = mp · Rpump,ini t , (5.6)

Qpump,leak = p − pT
Rpump,leak

, (5.7)

pgas,0, f ail = pgas,0 − sa . (5.8)

The resulting dynamical model of the DT reads

dp

dt
= p κ

Vgas,0 ·
(

pgas,0, f ail
p

) 1
κ

· (
Qpump − Qpump,leak − Qprv − Qprv,leak

)
. (5.9)

Data generated using this model can now be used to train and test fault diagnosis
methods.

5.4 Fault Diagnosis

For fault diagnosis in the hydraulic circuit, we employed a data-driven approach
trained with data from the digital twin. For that purpose, data with different pump
leakage and accumulator pressure were simulated. In particular, we simulated data
on a grid of mp ∈ [0.5, 4] and sa ∈ [0, 8]. Data of the different fault states,

• no fault
(
mp ≤ 1.6 and sa ≤ 0.8

)
,

• only pump leakage
(
mp > 1.6 and sa ≤ 0.8

)
,

• only decreased accumulator pressure
(
mp ≤ 1.6 and sa > 0.8

)
,

• pump leakage and decreased accumulator pressure
(
mp > 1.6 and sa > 0.8

)
,

were used for feature engineering. The extracted features and the classification
method are described in more detail in the following subsections.

5.4.1 Feature Extraction

In feature engineering, we extracted a number of features from the raw data. By
performing some tests with the wrapper as well as filter feature selection, the com-
bination of two features turned out to be best. The first feature is the loading time
�t , which is defined as the time from starting the pump until the target pressure is
reached, i.e.,

�t = tn − t1, (5.10)
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Fig. 5.3 Definition of feature �κ: area between the smoothed pressure loading curve and the
hypothetical linear loading curve

where t1 denotes the time when the pump starts and tn denotes the time when the
target pressure in the accumulator is reached.

The second feature�κ is somehow related to the curvature of the pressure loading
cycle. It measures the area between the actual pressure loading curve over time
and the (hypothetical) linear loading curve (Fig. 5.3). In the first step, the actual
pressure loading curve p (t) is smoothed. Since the signal p (t) is actually discrete
with values p1, . . . , pn at equidistant time instances t1, . . . , tn , we can utilize the
Whittaker smoother [16] for removing measurement noise. In this approach, the
smoothed signal ps1, . . . , p

s
n is determined by minimizing the cost function

f =
n∑

i=1

(
pi − psi

)2 + λ ·
n−d∑

i=i

(
�d psi

)2
. (5.11)

The parameter d ∈ N defines the order of the smoothness measure, for instance,
�1 psi = psi+1 − psi and �2 psi = (

psi+2 − psi+1

) − (
psi+1 − psi

)
; typical values are

d = 1 and d = 2. The Lagrange multiplier λ [13] weights the contribution of the
smoothness measure to the cost function: the higher λ, the smoother the resulting
signal ps . Rewriting the cost function in matrix form (for details see [3]) yields

f = ∥
∥p − ps

∥
∥2
2 + λ · ∥

∥D · ps∥∥2
2 , (5.12)

with a matrix D ∈ R
(n−d)×n such that
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D · ps =
n−d∑

i=1

�d psi · ei . (5.13)

Here,

ei =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...

0
1
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

←
←
←

i − 1
i
i + 1

(5.14)

is the i-th vector of the canonical basis [6] of Rn−d . By computing the first partial
derivative of the cost function f with respect to ps and solving it for zero, the cost
is minimized. Thus, the partial derivative

∂ f

∂ps
= −2 · (

p − ps
) + 2 · λ · DT · D · ps (5.15)

is solved for zero. This leads to the solution

ps = (
I + λ · DT · D)−1 · p (5.16)

with I ∈ R
n×n representing the unit matrix.

In the second step, the hypothetical linear loading curve is constructed. This is
done by solving the system of equations

t1 · k + d = p1
tn · k + d = pn

(5.17)

for k and d. This gives the solution

k = p1 − pn
t1 − tn

(5.18)

and

d = pnt1 − p1tn
t1 − tn

(5.19)

and therefore, the linear equation
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pl (t) = p1 − pn
t1 − tn

· t + pnt1 − p1tn
t1 − tn

(5.20)

for the linear loading curve pl . The area A between the linear loading curve pl and
the smoothed actual loading curve ps is subsequently the integral value

A =
∫ tn

t1

∣
∣pl (t) − ps (t)

∣
∣ · dt . (5.21)

Since the smoothed actual loading curve ps is a discrete measurement vector, the
integral is substituted by a sum, and the second feature �κ is defined as

�κ =
n−1∑

i=1

∣
∣
(
pli − psi

) + (
pli+1 − psi+1

)∣
∣

2
· (ti+1 − ti ) (5.22)

where pli = pl (ti ).

5.4.2 Classification

As in a lot of application settings, the degree of non-linearity is unknown in advance,
a very flexible type of machine learning classifier is used for classification, the SVMs
[12], which can handle decision boundaries between classes with arbitrary complex-
ities. SVMs are widely used for a great range of classification problems [8, 17]. Let
y ∈ {−1, 1} be the class information of an n-dimensional feature vector z ∈ R

n; in
this application, the feature vector z ∈ R

2 would be

z =
(

�t
�κ

)

. (5.23)

Let yi , i = 1, . . . ,m be the known class information ofm feature vectors zi , i =
1, . . . ,m, i.e., of accumulator loading cycles. SVMs try to find a decision boundary
which maximizes the margin between two classes. Based on this motivation, it falls
into the class of “flexible discriminants” [4], and an optimization problem can be
analytically derived and formulated in the following way:

min
w,b,ξ

1

2
· wT · w + C ·

n∑

i=1

ξi

subject to yi
(
wT · φ (zi ) + b

) ≥ 1 − ξi

ξi ≥ 0.

(5.24)
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Here, w denotes the weights and b denotes the bias; for more details, see for
instance [12]. The function φ maps the feature vectors into a higher dimensional
space. In this higher dimensional space, a linear separating hyperplane with max-
imal margin is found. The parameter C > 0 penalizes the error term. Since SVM
only needs to compute scalar products in the high-dimensional space, it uses the
kernel trick [11]. The scalar products in the higher dimensional space are computed
by a kernel function K

(
zi , z j

)
without actually transforming the data to the high-

dimensional space using the function φ. The kernel function has to fulfill Mercer’s
condition [1]. A number of kernel functions have been proposed by researchers. In
this application, one of the basic ones is used, the radial basis function, which gave
the best results for the application scenario. This kernel is defined as

K
(
zi , z j

) = e−γ‖zi−z j‖2

, γ > 0. (5.25)

Finally, the estimated class of a new feature vector z is determined by

y = sgn
(
wT · φ (z) + b

)
. (5.26)

Using the kernel function instead of transforming to the high-dimensional space
and calculating the scalar products there, the estimated class information can be
easily evaluated. The time consumption of training the classifier strongly depends
on the size of the training set and the parameters (basically C and γ ). For obtaining
good parameters, grid search can be applied [5]. The classification method can be
extended to more than the two target classes that are described here.

5.5 Results

Before applying the proposed approach to the running system, a classifier has to be
trained. For that purpose, we acquire training data on a meaningful grid for mp and
sa with different fault states as mentioned in Sect. 5.4. This results in feature space
as shown in Fig. 5.4. Based on that feature space, an SVM classifier as described in
Sect. 5.4.2 was trained.

For evaluation of themethod, we created some interesting test cases and compared
the output of the SVM to the commonly used approach of observing the loading time
�t of the accumulator. In the commonly used approach, a pump leakage is detected
when the loading time is significantly longer than in the nominal (fault-free) case. On
the other hand, if the loading time is shorter than in the nominal case, a too low initial
pressure of the accumulator is detected. The test cases (in the form of values of mp

and sa), the true system state, and the system states inferred with the commonly used
approach and the proposed approach are listed in Table5.1. Furthermore, for each test
case, the actual loading cycle (pressure over time) in comparison to a nominal loading
cycle as well as the position of the actual cycle in the feature space is presented in
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Fig. 5.4 Feature space for classifier training

Table 5.1 Application results

mp sa True system state Approach �t Proposed
approach

1 0 OK OK OK

3 0 Pump leakage Pump leakage Pump leakage

1 4 Low acc. pressure Low acc. pressure Low acc. pressure

3.9 7.6 Pump leakage
and low acc.
pressure

OK Pump leakage
and low acc.
pressure

2 6.9 Pump leakage
and low acc.
pressure

Low acc. pressure Pump leakage
and low acc.
pressure

Fig. 5.5a–e. In these figures, the colored areas represent the SVM classes according
to the classes in Fig. 5.4.

The results show that the first three trivial cases (no fault/only pump leakage/only
low accumulator pressure) are easily detectable by both methods. However, the latter
two cases are more interesting. In the case of mp = 3.9 and sa = 7.6 (i.e., pump
leakage and low accumulator pressure), the absolute loading time is approximately
equal to the nominal case (Fig. 5.5d). Hence, the commonly used approach detects
no fault. Since the curvature of the loading curve is different, the feature-based
proposed approach detects both failures correctly. Moreover, in the case of mp = 2
and sa = 6.9 (i.e., pump leakage and low accumulator pressure), the absolute loading
time is significantly shorter than in the nominal case (Fig. 5.5e). The commonly used
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Fig. 5.5 Examples in feature space
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approach detects accordingly just low accumulator pressure, while the proposed
feature-based approach detects again both failures correctly.

5.6 Conclusions

In this paper, a novel approach for detecting failures in a hydraulic accumulator load-
ing circuit is proposed. Based on the shape of the pressure record over time, features
are extracted and used for classification via SVM. The proposed method proves its
advantage over the commonly used observation of the loading time especially in case
of the multiple failures. Hence, the method can be used for monitoring the pump as
well as the accumulator of the hydraulic circuit by measuring only the accumulator
pressure. Compared to monitoring each component separately, this saves required
sensors and therefore costs.
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Chapter 6
On Nonlinear Vibrations of Bimodular
Beam Structures

Rudolf Heuer and Galeb El Chabaan

Abstract The paper is concerned with the modeling and numerical solution of the
dynamic response of the Bernoulli–Euler beams rigid in shear due to time-variant
excitation. The beams are assumed to be homogeneous and show classical boundary
conditions. However, they are composed of a bimodular material, thus behaving dif-
ferently in tension and compression. Generally, bimodular beams can be modeled as
effective two-layer laminates. However, their neutral axis depends on the curvature’s
sign. Thus, the equations of motion for flexural oscillations are developed by defin-
ing an effective composite layered structure with a discontinuous natural beam axis.
The position of the natural axis follows from a (highly) nonlinear equation that is
dependent on both the geometry of the cross-section and the elastic material proper-
ties. After an appropriate transformation, all calculations are formulated respecting
an independent reference axis of the bimodular beam structure. Within a numerical
study, structures of various cross-sections are considered showing the influence of
the bimodular material on the dynamic response. When considering mode shape
expansion, beams can be analyzed numerically by means of a modified Newmark
method.

6.1 Introduction

Composites exhibiting load-dependent elastic properties cannot be treated as struc-
tures with, e.g., effective isotropic parameters. The stress–strain curve of these so-
called bimodular materials is usually approximated by two straight lines with a slope
discontinuity at the origin, see, e.g., [5]. A comprehensive study about the mechani-
cal behavior of bimodular composite structures can be found in [1]. Publication [3]
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focuses on the nonlinear bending of laminated fibrous composite beams by incorpo-
rating a higher-order shear deformation beam theory. Bert and Tran [2] analyze the
transient response of moderately thick bimodular beams by means of the transfer-
matrix method. An analytical solution of tapered bimodular beams can be found
in [4]. The present contribution studies plane flexural vibrations of the bimodular
Bernoulli–Euler beams. The equations of motion for flexural oscillations are devel-
oped by defining an effective composite layered structure. The position of the natural
axis follows from a (highly) nonlinear equation that is dependent on both the geom-
etry of the cross-section and the elastic material properties.

Beams of trapezoidal as well as the limit cases “rectangular” and “triangular”
cross-sections are considered showing the nonlinear influence of the discontinuous
natural beam axis on the dynamic response.

6.2 Mechanical Modeling

6.2.1 Kinematic Relations

Considering the beam to bend cylindrically, the displacement field is expressed as

⎛
⎜⎜⎝

u(x, ζ ; t)
v(x, ζ ; t)
w(x, ζ ; t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
uS (x; t) + ζ ψ(x; t)

0

w(x; t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

(
u0 (x; t) − ζ0 (t) ψ(x; t)) + ζ ψ(x; t)

0

w(x; t)

⎞
⎟⎟⎠

(6.1)
where the origin of the Cartesian (x, ζ )-coordinate system is located in the geometri-
cal centroid of the cross-section, S. The axial and transverse (vertical) displacements
are described by u and w, respectively. x represents the axial beam coordinate and
ψ(x; t) denotes the cross-sectional rotation, see Fig. 6.1. Neglecting the effect of
transverse shear results in the kinematic Bernoulli–Euler hypothesis,

ψ = −∂w/∂x = −w
,x (6.2)

and thus the linearized axial and shear strains become
(

ε

γ

)
≡

(
εx

γxz

)
=

(
u

,x

γxz

)
=

(
u0,x + (

ζ0 − ζ
)
w

,xx

w
,x + ψ

)
=

(
ε0 + (

ζ0 − ζ
)
w

,xx

0

)

(6.3)
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Fig. 6.1 Geometry and axial deformation of a bimodular beam in case of upward bending
(w,xx < 0)

6.2.2 Governing Equations of Elastic Bimodular Beams

The constitutive relations for a linear elastic beam can be formulated according to
Hooke’s law,

σ(x, ζ ; t) = Eε = E

[(
ζ0 − ζ

)
w

,xx + ε0

]
(6.4)

where σ denotes the component of normal stress and E is time-independent Young’s
modulus. By spatial integration, the stress resultants, axial force N , and bending
moment M become

⎛
⎝ N

M

⎞
⎠ =

⎛
⎜⎜⎝

∫
A

σ dA

∫
A

σζ dA

⎞
⎟⎟⎠ =

⎛
⎝

(
A ζ0 − B

)
w

,xx + A ε0

(
B ζ0 − D

)
w

,xx + B ε0

⎞
⎠ (6.5)

where A and D define extensional and bending stiffness, respectively, as

A =
∫

A

E dA =
∫

h

E(ζ ) b(ζ ) dζ (6.6)
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D =
∫

A

E ζ 2 dA =
∫

h

E(ζ ) ζ 2 b(ζ ) dζ (6.7)

B represents a coupling term that arises due to the reference coordinate system (η, ζ )

which is kept fixed during the dynamic response,

B =
∫

A

E ζ dA =
∫

h

E(ζ ) ζ b(ζ ) dζ (6.8)

Furthermore, the vertical distance to the neutral axis ζ0 can be determined by means
of the following condition,

ζ0 = B

A
=

∫
A E ζ dA∫
A E dA

=
∑2

i=1 ζSi
Ei Ai∑2

i=1 Ei Ai

(6.9)

that leads to a nonlinear algebraic equation for ζ0 . Expressing the stress resultants
according toEq. (6.5) and subsequent application of both the conservation ofmomen-
tum and the conservation of angular momentum for an infinitesimal beam element
render

N
,x = (

A ζ0 − B
)
w

,xx + A ε0,x = 0 (6.10)

M
,xx = (

B ζ0 − D
)
w

,xxxx + B ε0,xx = μ ẅ − p (6.11)

where

μ =
∫

A

ρ dA =
∫

h

ρ(x, ζ ) b(ζ ) dζ (6.12)

denotes the mass per unit length. When considering only vertical loads, p, the strain
of the neutral axis ε0 and its derivatives can be neglected in the equation of flexural
deformation, Eq. (6.11), which finally leads to

(
D − B ζ0

)
w

,xxxx + μ ẅ = p (6.13)

6.3 Considered Geometries

In the following section, beams of symmetric trapezoidal as well as the limit cases
“rectangular” and “triangular” cross-sections are taken into account.
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6.3.1 Trapezoidal Cross-Section

Considering beamswith symmetric trapezoidal cross-section (see Fig. 6.1), thewidth
can be expressed by a linear function as

b(ζ ) = b0 + b1 ζ b0 = 2
(
b2 + b a + a2

)

3
(
b + a

) b1 = −2 b2 − b a − a2

h
(
2 b + a

) (6.14)

Determination of the stiffness parameters according to Eqs. (6.6–6.8) renders in case
of the configuration “upward bending”, w

,xx < 0,

A
(−) = Ec

[
b0

(
h

S
δ + hS

)
+ b1

2

(
h 2

S
δ − h

2

S

)
− b0

(
δ − 1

)
ζ0 − b1

2

(
δ − 1

)
ζ 2
0

]

(6.15)

B (−) = Ec

[
b0
2

(
h 2

S
δ − h

2

S

)
+ b1

3

(
h 3

S
δ + h

3

S

)
− b0

2

(
δ − 1

)
ζ 2
0 − b1

3

(
δ − 1

)
ζ 3
0

]

(6.16)

D (−) = Ec

[
b0
3

(
h 3

S
δ + h

3

S

)
+ b1

4

(
h 4

S
δ − h

4

S

)
− b0

3

(
δ − 1

)
ζ 3
0 − b1

4

(
δ − 1

)
ζ 4
0

]

(6.17)
and for “downward bending”, w

,xx > 0,

A
(+) = Ec

[
b0

(
hS δ + h

S

)
− b1

2

(
h
2
S

δ − h 2
S

)
+ b0

(
δ − 1

)
ζ0 + b1

2

(
δ − 1

)
ζ 2
0

]
(6.18)

B (+) = Ec

[
− b0

2

(
h
2
S

δ − h 2
S

)
+ b1

3

(
h
3
S

δ + h 3
S

)
+ b0

2

(
δ − 1

)
ζ 2
0 + b1

3

(
δ − 1

)
ζ 3
0

]

(6.19)

D (+) = Ec

[
b0
3

(
h
3
S

δ + h 3
S

)
− b1

4

(
h
4
S

δ − h 4
S

)
+ b0

3

(
δ − 1

)
ζ 3
0 + b1

4

(
δ − 1

)
ζ 4
0

]
(6.20)

where the modular ratio

δ = Et

Ec
(6.21)

contains bothYoung’smodulus of tension, Et , andof compression, Ec. The geometric
parameters h

S
and hS are shown in Fig. 6.1. The cross-section with the areas of

compression and tension for both cases is presented in Fig. 6.2, where it is assumed
that Et > Ec. The position of neutral axis can be obtained from the lowest root of an
algebraic equation of fifth order, that follows from Eq. (6.9). Equation (6.22) shows
that equation exemplarily for the configuration of negative curvature, w

,xx < 0,



66 R. Heuer and G. E. Chabaan

Fig. 6.2 Trapezoidal cross-section of a bimodular beam in the deformed state of negative and
positive curvature

(
b − a

)3(
δ − 1

)
ζ

5
0 − h

(
6 b3 − 11 b2a + 4 b a2 + a3

)(
δ − 1

)
ζ

4
0 +

+h2
[
b3

(
14 δ − 11

)
− b2a

(
9 δ − 6

)
− b a2

(
8 δ − 5

)
+ 3 a3 δ

]
ζ

3
0 −

−h3
[
b3

(
16 δ − 6

)
+ b2a

(
9 δ − 6

)
− 12 b a2 δ − a3 δ

]
ζ

2
0 +

+h4
(
9 b3 + 16 b2a + b a2 − 2 a3

)
δ ζ 0 − 2 h5

(
b3 + 3 b2a + 2 b a2

)
δ = 0 (6.22)

6.3.2 Limit Cases

In case of a = b, see Fig. 6.2, the governing equations lead to those of a bimodular
beam with rectangular cross-section. Setting a = 0 describes a beam with the cross-
section’s geometry of an isosceles triangle.

Assuming again that w
,xx < 0, Eq. (6.22) reduces to

(
δ − 1

)
ζ
2
0 − 2hδ ζ 0 + h2 δ = 0 (6.23)

for the rectangular cross-section, and in case of the shape of an isosceles triangle,
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Fig. 6.3
∣∣ζ (+)

0
/ζ (−)

0

∣∣ depending on the aspect ratio a/b; a = b... limit case “rectangle”; a = 0...
limit case “isosceles triangle”

(
δ − 1

)
ζ

5
0 − 6h

(
δ − 1

)
ζ

4
0 + h2

(
14δ − 11

)
ζ

3
0 − h3

(
16δ − 6

)
ζ

2
0 + 9h4δ ζ 0 − 2h5δ = 0

(6.24)
In Eqs. (6.23) and (6.24), the parameter δ is again defined according to Eq. (6.21).
Figure6.3 shows the result of an extensive parameter study

∣∣ζ (+)
0

/ζ (−)
0

∣∣ depending
on the aspect ratio a/b, where both limit cases a = b and a = 0 are included.

6.4 Numerical Studies

This numerical study deals with a simply supported beam of length of l = 8 m
subjected to uniformly distributed vertical dynamic load, p0 = 5 kN/m. Thematerial
of the beam is characterized by the following properties: Young’smodulus of tension,
Et = 12 000 kN/cm2, Young’s modulus of compresion, Ec = 3 000 kN/cm2, and
density, ρ = 2 500 kg/m3. The damping effects are included by the assumption of a
viscous damping with a modal damping ratio of ζn = 0.03. Within this analysis, two
cross-sections are considered, namely the trapezoidal and rectangular cross-section,
whose parameters are listed in Table6.1.

From Table6.1, it is obvious that the dimensions of both cross-sections are chosen
in such a way so that they have approximately equal cross-sectional area as well as
approximately equal moment of inertia with respect to the η-axis. Table6.2 contains
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Table 6.1 Cross-section parameters

Trapezoidal
cross-section

Rectangular
cross-section

Height h (cm) 33.00 30.00

Top width b (cm) 31.50 20.00

Bottom width a (cm) 5.00 20.00

Cross-sectional
area

A (cm2) 602.25 600.00

Moment of inertia
about η-axis

Iη (cm4) 45 051.16 45 000.00

Neutral axis
position
(w,xx < 0)

ζ
(−)
0 (cm) 5.25 5.00

Neutral axis
position
(w,xx > 0)

ζ
(+)
0 (cm) −4.59 −5.00

Table 6.2 Numerical comparison of natural circular frequencies ω0 (rad/s)

Trapezoidal cross-section Rectangular cross-section

ω
(−)
0 ω

(+)
0 ω

(−)
0 = ω

(+)
0

n = 1 65.38 58.68 61.68

n = 2 261.51 234.70 246.74

n = 3 588.39 528.08 555.16

n = 4 1 046.02 938.81 986.96

n = 5 1 634.41 1 466.90 1 542.13

n = 6 2 353.55 2 112.33 2 220.66

n = 7 3 203.44 2 875.12 3 022.56

n = 8 4 184.09 3 755.25 3 947.84

a comparison between the natural circular frequencies in the case of upward, ω(−)
0 ,

and downward, ω(+)
0 , bending motion for the first eight vibration modes.

In a first step, mode shape expansion in combination with Galerkin’s procedure
is applied to Eq. (6.13) to lead to a set of ordinary time-differential equations. The
corresponding initial conditions of displacement and velocity are assumed to be zero.
Their solution is found by Newmark’s method by using MATLAB R2018a. Within
this numerical investigation, the following two dynamic load cases are analyzed
separately:

Load case 1—Sinusoidal periodic excitation

p(x, t) = p0 sin(νt)
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Fig. 6.4 Load case 1—comparison of displacement response w(l/2; t)

where ν = 20 rad/s represents the exciting frequency.

Load case 2—Exponential pulse force

p(x, t) =

⎧⎪⎨
⎪⎩

p0

(
1 − t

td

)
e−2 t/td t ≤ td

0 t ≥ td

where td = 0.5 s is the exponential pulse duration.
The dynamic responses of the systems are compared in Figs. 6.4 and 6.5.
The dynamic response of the bimodular beam strongly depends not only on the

modular ratio δ but also on the geometry of the cross-section. Figures6.4 and 6.5
indicate that, based on different bending stiffness, there are significant differences
between the amplitudes of displacement response of unimodular and bimodular
beam. The effect of the geometry of the cross-section on the amplitude and period of
the vibration is also graphically illustrated. As can be seen, if Et > Ec, the downward
bending amplitudes of the bimodular beam with trapezoidal cross-section are larger
than the upward one, while the beam with rectangular cross-section has equal ampli-
tudes in both bending cases. The reason for that is the influence of the cross-section
geometry on finding the neutral axis position (hence on determining the stiffness and
frequency), whose absolute values are different for negative and positive curvatures
in the case of the trapezoidal but equal in the case of the rectangular cross-section.
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Fig. 6.5 Load case 2—comparison of displacement response w(l/2; t)

Because of that, the period of vibration of the bimodular beam with trapezoidal
cross-section is also affected by curvature-dependent frequency.

6.5 Conclusions

Bimodular beams can be modeled as effective two-layer laminates. However, their
neutral axis depends on the curvature’s sign and therefore shows discontinuous
behavior. The position of that natural axis follows from a nonlinear equation depend-
ing on both the geometry of the cross-section and the elastic material properties.
Thus, an independent reference axis must be used when formulating the equations
of motion for flexural oscillations.

Within numerical studies, the dynamic response of simply supported beams with
trapezoidal as well as rectangular cross-section is analyzed for transient sinusoidal
and exponential excitation. Comparison to the response of unimodular beams shows
a significant influence of the nonlinear bimodular effect.
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Chapter 7
Dynamic Modelling and Simulation of a
Production Machine with Moving Loads

Helmut J. Holl and Victoria Simader

Abstract In this contribution, a dynamic model for a production machine is dis-
cussed, that includes some submodels like belt drives, a moving beam and a moving
mass. For the derivation of a mechanical model of an industrial machine, these
submodels and their interactions are considered. The equations of motion of these
submodels are derived from the potential and kinetic energy applying the equation
of Lagrange. The model of the moving beam involves approximation functions for
bending and torsional motion. Furthermore, the friction is taken into account with a
modified Coulomb model. The interactions of the submodels are considered in the
derived equations, a numerical solution with reference parameters is calculated and
some test cases are shown.

7.1 Introduction

When designing a production machine, it is important to study the effects of different
components and their interaction carefully. Furthermore, if the machine should be
adapted to other production conditions or another size of the product, it has to be
evaluated by a suitable mechanical model. The accuracy and the quality of the manu-
factured work-pieces have to be independent of the specific operating parameters of
the machine. The goal is to simulate the production process and predict derivations
and vibrations in the early phase of development. Therefore, our analysis starts with
a basic mechanical model, which is derived from the potential and kinetic energy,
see [3, 8, 9]. Essential equations for details, submodels and knowledge as well as
identified parameters from measurements can be added subsequently to improve the
dynamic model.
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Different submodels have been analysed for driving systems for linear motion and
there is a lot of literature with respect to some special effects. The characteristics of
the dynamics and application for belt drives are discussed in [4], where also some
examples and simulations are given. In [10], some further important aspects are
discussed, like precision, vibrations, noise and force distribution. In such machines,
moving masses are present, and in [5], the vibration behaviour with applied moving
loads are analysed for various boundary conditions. As in the final equations of
motion, the mass matrix is not constant but a function of time, the behaviour of
variable mass machines is involved, see [2]. The accurate computation of such non-
linear dynamic systems with variable parameters is discussed in [6]. For the model
derived in this contribution, the most important effects have been considered and
some further details are kept for future analysis. The equations of motion for the
entiremachine are derived using the equation of Lagrange. This allows a combination
with further submodels and systems using approximation functions. The modelling
of the used submodels is described, which are combined to give the model of the
entire machine.

7.2 Dynamic Submodel of a Belt Drive

The equations of motion of the submodel of a belt drive shown in Fig. 7.1 are derived
using the potential and kinetic energy and approximation functions for the deforma-
tion of the elastic timing belt. The degrees of freedom are the rotation of the pulley
wheels on the left side q1 and on the right side q2. q3 represents the translational
motion of the mass m3. This mass is guided in the horizontal direction where a
friction force Ff is present. The model considers only the longitudinal elasticity of
the timing belt and no transversal vibrations. The transversal motion can be consid-
ered by an approximation function analogous to that used in [7], which will be done
within a refinement study of the present model. The detailed kinematic motion of the
timing belt on the pulley wheel is replaced by the condition of no relative slip. The
pulley wheels rotate due to an appropriate moment MT1 and MT2 . They are connected
with a timing belt with position-dependent length. The parts of the timing belt are
represented by springs with the position-dependent axial stiffness E A/L , see [8].
Due to these assumptions, the potential energy of this subsystem is

V = E A

2

(r1q1 − q3)2

(L1 + q3)
+ E A

2

(r2q2 − q3)2

(L3 − L1 − q3)
+ 1

2

E A

L3
(r1q1 − r2q2)

2. (7.1)

E A is the longitudinal stiffness, and the geometric parameters and degrees of freedom
are shown in Fig. 7.1. The kinetic energy

T = 1

2
J1q̇

2
1 + 1

2
J2q̇

2
2 + 1

2
m3q̇

2
3 (7.2)
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Fig. 7.1 Dynamic submodel of a belt drive

includes the secondmoment of inertia of the two rotating parts from the pulleywheels
J1 and J2 and the kinetic energy of the motion of the guided mass. Based on Eqs.
(7.1) and (7.2), the equation of motion can be derived using

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+ ∂V

∂qi
= Qi , (7.3)

whereQ = [
MT1 MT2 Ff

]T
represents the vector of the external excitation moments

and the friction force. This submodel is used in the derivation of themechanicalmodel
of a productionmachine, as it allows to compute the basic vibrations. Further degrees
of freedom like transversal vibrations, can be added for a more complex simulation
of coupled vibrations, see [7, 10]. As the stiffness parameters are position-dependent,
the vibration behaviour of this driving unit shows different eigenfrequencies, which
can be detected also experimentally, see [1] and confirmed by a detailed numerical
finite-element computation.

7.3 Submodel of Two Combined Belt Drives

In production machines with a plane rectangular working space, two linear belt
drives are combined and connected with torsional shafts as can be seen in Fig. 7.2.
The torsional shafts have a characteristic length, radius, cross section, moment of
inertia and shear modulus and, for different time-dependent moments, the difference
of the motion of both sides should be small and the relative longitudinal motion also
should be as small as possible. With the torsional stiffness Gi IT i/Li of the i-th shaft,
the potential energy for the two shafts is

Vs1 = 1

4

Gs1πr
4
s1

Ls1
(q1 − q4)

2 and Vs2 = 1

4

Gs2πr
4
s2

Ls2
(q2 − q5)

2 , (7.4)
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Fig. 7.2 Submodel of belt drives and moving beam

where the second polar moment of area Ip = IT = r4π

2
for a circular cross section

is used. The kinetic energy of the torsional shafts is considered with a linear Ritz
approximation function

Ts1 = 1

2
ρ Ip

∫ Ls1

0

(
q̇1 + (q̇4 − q̇1)

x

Ls1

)2
dx = 1

12
πρr4s1 Ls1

(
q̇21 + q̇24 + q̇1q̇4

)
, (7.5)

Ts2 = 1

12
πρr4s2 Ls2

(
q̇22 + q̇25 + q̇2q̇5

)
. (7.6)

The degrees of freedom and the external moments and friction forces are shown in
Fig. 7.2 and the vector of generalized forces isQ = [

MT1 MT2 Ff 3 MT4 MT5 Ff 6
]T
.

Simulations with this model can evaluate the necessary parameters of the torsional
shafts in order to minimize the difference of the motion of both sides q3 and q6.
Additionally, the position-dependent eigenfrequencies of the belt drive systems are
modified due to the coupling caused by the torsional shafts.

7.4 Submodel of Belt Drives and Moving Beam

In the production machine under consideration, a moving beam is added between the
belt drives at the position of the masses m3 and m6, see Fig. 7.2. This beam can have
translational vibrations in y- and z-direction and also allows torsional rotations. As



7 Dynamic Modelling and Simulation of a Production … 77

)b()a(

Fig. 7.3 Rotation of mass m15 (a) and detail of the driving timing belt in the beam (b)

this beamcan have an open thin-walledmulti-cell cross section, the centre of the cross
section and the centre of gravity are different. The bending and torsional vibrations
are coupled in such a configuration. The mass m15 with the centre of gravity at a
defined position yc and zc, see Fig. 7.3a, is moving in longitudinal direction with
the coordinate q15 relative to the initial position L7. With the approximation for
the bending deflection v∗(x, t) and w∗(x, t) and the torsional rotation ϑ∗(x, t), the
position vector of the centre of gravity is given by

rc =
⎡
⎣ L7 + q15(t)
v∗[L7 + q15(t), t]
w∗[L7 + q15(t), t]

⎤
⎦ +

⎡
⎣ 0

−yc cos
{
ϑ∗[L7 + q15(t), t]

} − zc sin
{
ϑ∗[L7 + q15(t), t]

}
−yc sin

{
ϑ∗[L7 + q15(t), t]

} + zc cos
{
ϑ∗[L7 + q15(t), t]

}
⎤
⎦ .

(7.7)
The actual speed of the centre of gravity of the mass m15 after a linearization for
small angles is computed to

ṙc ≈
⎡
⎣ q̇15(t)
v̇∗ + v∗′q̇15(t) − zc

(
ϑ∗′q̇15(t) + ϑ̇∗)

ẇ∗ + w∗′q̇15(t) − yc
(
ϑ∗′q̇15(t) + ϑ̇∗)

⎤
⎦ . (7.8)

As can be seen in Fig. 7.3b, there is also an additional timing belt drive installed to
control the motion of the mass in longitudinal direction q15. The equations of motion
have to consider the additional degrees of freedom, see Fig. 7.3b. The potential and
kinetic energies of the beam with the length LB are



78 H. J. Holl and V. Simader

Fig. 7.4 Sketch for bending
in the x–y-plane

VBeam = E Iy
2

LB∫
0

(
w∗′′)2 dx + E Iz

2

LB∫
0

(
v∗′′)2 dx + GIT

2

LB∫
0

(
ϑ∗′)2 dx − ρAg

LB∫
0

w∗dx

TBeam = ρA

2

LB∫
0

(
ẇ∗)2 dx + ρA

2

LB∫
0

(
v̇∗

)2 dx + ρ Ip
2

LB∫
0

(
ϑ̇∗)2 dx (7.9)

and the energy of mass m15 is

Vm = −m15 g
{
w∗[L7 + q15(t), t] − ycϑ

∗[L7 + q15(t), t]
}

Tm = 1

2
m15

(
ṙcy

)2 + 1

2
m15 (ṙcz)

2 + 1

2
J15

(
ϑ̇∗[L7 + q15(t), t]

)2
. (7.10)

For the integration of these equations, three approximation functions are needed.
The bending deflection of the beam in the x–y-plane, see Fig. 7.4, is assumed as a
superposition of the static bending and an approximation function for the dynamic
bending. For the position of both ends, q3 and q6 and the consideration of clamped
boundary conditions, a polynom can be computed for the static deflection. For the
dynamic deflection, an approximation function representing the first mode of vibra-
tion of a beam clamped on both ends with a constant cross section is assumed.

v∗(x, t) =
(

x

LB

)2 [
3 − 2

x

LB

]
[q6(t) − q3(t)] + q7(t)

1

2

[
1 − cos

(
2π

x

LB

)]

(7.11)
For the deflection in the x–z-plane, hinged boundary conditions are used on both

ends. As an approximation function, a series expansion is used

w∗(x, t) =
∞∑
n=1

q8n (t) sin

(
nπx

LB

)
. (7.12)

Here, only the first vibration mode with n = 1 is considered and the influence
of higher modes is analysed in a separate study. The boundary conditions can be
extended with torsional springs on both ends, where the parameters can be identified
by measurements.
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The approximation function for the rotation about the x-axis is chosen similarly
to the bending mode. The rotation is zero at x = 0 and x = LB so for the rotation

ϑ∗(x, t) =
∞∑
n=1

qϑn (t) sin

(
nπx

LB

)
(7.13)

a sine-function is selected and again only the first mode n = 1 is considered. This
is a more general approach than a linear function representing the static deflection.
Additionally, a torsional spring can be considered on both ends as an extension and
refinement of themodel.With these approximation functions the potential and kinetic
energy can be computed and the equations of motion can be derived which results
in lengthy equations which cannot be given here.

7.5 Description of the Friction Model

In the present model, friction occurs in all moving and guided parts. It is considered
only in the three motions q3, q6 and q15 and neglected in the other guides. Friction
is a complicated velocity-dependent reaction force. As a first approach the Coulomb
friction force Ff = −μFN sgn(q̇) was chosen, see [3]. As the numerical solution of
the whole model is computed, there are some jumps of the force when the velocity
is zero, so that vibrations occur at the beginning of the simulation. Therefore, the
Coulomb friction was modified as shown in Fig. 7.5, where three different forcing
functions are shown which have been analysed. Based on the simulation results, the
following friction force function F1 is used.

0.004 0.002 0.002 0.004

1.0

0.5

0.5

1.0
1

Coulomb friction

zero part

linear part

Fig. 7.5 Different friction force functions depending on the relative velocity
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Ff i (q̇i ) = μFN · F1(q̇i ) with F1 =

⎧⎪⎨
⎪⎩
1, q̇i < −0.001

0 −0.001 ≤ q̇i ≤ 0.001

−1, q̇i > 0.001

(7.14)

The friction force function vanishes below a defined threshold value of±0.001 m/s.
The normal force FN = mgi g in Eq. (7.14) considers each mass m3, m6 and m15,
where half of the mass of the beam ρALB and the moving mass m15 is added:

mg3 = m3 + ρALB

2
+ m15

2
, mg6 = m6 + ρALB

2
+ m15

2
and mg15 = m15.

7.6 Simulation of Operation Conditions

The developed model allows the numerical calculation of reference test cases, where
the parameters from Table7.1 have been used in the following simulations. There
are several configurations and operating conditions which have been simulated. Two
reference cases of the motion without external load and with a defined driving load
are shown.

In the first test case, all external moments, the friction forces, the distance to the
centre of gravity of the mass m15 and the initial conditions of all degrees of freedom
are homogeneous. Due to the gravity the deflection of the beam in z-direction, with
the degree of freedom q8(t), starts to oscillate around the associated static position,
as can be seen in Fig. 7.6a. A translational motion of mass m15 starts towards the
centre of the beam and there is an accompanying rotation of the pulley wheels with
the degrees of freedom q9(t), q10(t) and q16(t), as depicted in Fig. 7.6b. As the mass
m15 initially is not in the centre of the beam, i.e. L7 �= L8, the slope at the position of
the mass leads to a motion towards the lowest position on the beam. If the distances
L7 = L8 are chosen initially, the result for q15(t) is a homogeneous solution. With
this test case, to evaluate the static deflection, the importance of the suitable initial
conditions representing the static deflection for the calculation has been shown and,
in the further example, the static deflections are chosen as initial conditions, which
are inhomogeneous for the degrees of freedom q8 and qϑ with the parameters from
Table7.1. Two different moments are applied to the system, which are defined in Eq.
(7.15) with some given time parameters.

Mi = 4

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 t < T1
1/2 {1 − cos[25π(t − T1)]} T1 ≤ t ≤ T2
1 T2 ≤ t ≤ T3
1/2 {1 + cos[25π(t − T3)]} T3 ≤ t ≤ T4
0 t > T4

(7.15)

The moment MT1 with T1 = 0.1 s, T2 = 0.14 s, T3 = 0.2 s and T4 = 0.24 s acts
on the timing belt on one side of the beam and the moment MV 1 with T1 = 0.2 s,
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Table 7.1 Model parameters for the simulation

J1 = J2 = J4 = J5, moment of inertia 5.6 · 10−4 kgm2

m3 = m6, mass 7.7 kg

r1, r2, r4, r5, radius of the pulley wheels 0.0375 m

L1, L4, belt length 1 and 4 0.46 m

L2 = L3 − L1, L5 = L6 − L4, belt length 2 and 5 3.0 m

L3, L6, total belt length 3 and 6 3.46 m

E A, strain stiffness of the belt 2 120 000 N

MT1 , MT2 , MT4 , MT5 , moments at pulley wheels MT1 = 0 Nm or Eq. (7.15)

MT2 = MT4 = MT5 = 0 Nm

Ff 3 = Ff 6, friction force Ff 3 = Ff 6 = 0 N

or Ff 3 = Ff 6 = Eq. (7.14)

ρs , density of torsional shaft 2700 kg/m3

Ls1 = Ls2 , length of torsional shafts 2.1 m

rs1 = rs2 , radius of torsional shafts 0.03 m

Gs1 = Gs2 , shear modulus of torsional shafts 25.5 · 109 N/m2

L7, belt length 7 1.4 m

L8 = L9 − L7, belt length 8 1.1 m

L9, total belt length 9 2.5 m

L10, total belt length 10 0.06 m

yc , distance to the centre of gravity of mass m15 0.03 m

zc , distance to the centre of gravity of mass m15 0.1 m

m15, moving mass on the beam 4 kg

J15, moment of inertia of mass m15 J15 = m15 · i215 = 4 · 0.022 = 0.0016 kgm2

r9, r10, rV 1, rV 11, radius of pulley wheels 0.0375 m

J9, moment of inertia pulley wheel 9 2.4 · 10−4 kgm2

J10, moment of inertia pulley wheel 10 1.7 · 10−4 kgm2

JV 1, moment of inertia pulley wheel V 1 3.1 · 10−7 kgm2

JV 11, moment of inertia pulley wheel V 11 5.6 · 10−7 kgm2

ρ = ρB , density of the beam 2700 kg/m3

A, cross sectional area of the beam 0.006 m2

LB , length of the beam 2.5 m

E Iy , bending stiffness of the beam 4.2 · 105 Nm2

E Iz , bending stiffness of the beam 3.7 · 105 Nm2

GIT , torsional stiffness of the beam 1.2 · 105 Nm2

Ip , second polar moment of area of the beam 5.3 · 10−8 m4

E Av , strain stiffness of the small belt 212 000 N

iV 1, transmission ratio 1

MT9 , MT10 , MV 1, moments at pulley wheels MT9 = MT10 = 0 Nm

MV 1 = 0 Nm or Eq. (7.15)

Ff 15, friction force m15 0 N or Ff 15 = Eq. (7.14)

μ, coefficient of friction 0.01

g, gravity of Earth 9.81 m/s2
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Fig. 7.6 Deflection in z-direction (a) and solution for the motion of mass (b)

Fig. 7.7 Motion of mass m3, m6 (a) and m15 (b)

T2 = 0.24 s, T3 = 0.26 s and T4 = 0.3 s acts on the timing belt for the motion of
the mass m15. Both moments have a maximum of 4 Nm. For the given moments
and parameters the motion is computed. Figure7.7a shows the motion of the masses
m3 and m6 in y-direction. As can be seen, the beam starts to move at t = 0.1 s and
speeds up until 0.24 s. After that time, the moment is zero and the decreasing slope
of the curve corresponds to the effect of the friction force. Figure7.7b displays the
motion of the mass m15 in x-direction. This motion starts at t = 0.2 s. Due to the
small value of the mass m15 the influence of the friction force is not visible in the
diagram for the period of 1 s.

The beam moved about 0.2 m and the smaller mass m15 on the beam travels a
distance longer than 1 m. It is important to predefine the acting moments properly
because the end of the machine must not be reached and no collisions are checked
in the present model. The corresponding equations for the restrictions can be added
to consider these geometric constraints. In Fig. 7.8a the velocities of the masses m3

and m6 are depicted. This velocity is increasing in the period when the moment MT1
is different from zero and decreasing afterwards because of the friction force. The
friction force according to Eq. (7.14) is shown in Fig. 7.8b. There are no fluctuations
before the motion starts at t = 0.1 s as required.

The following pictures show the approximation functions of the beam over its
length and over the simulation time on the left-hand side and the relevant degrees
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Fig. 7.8 Velocity of mass m3 and m6 (a) and friction force at m3 and m6 (b)

Fig. 7.9 Approximation function for bending deflection in the z-direction (a) and DOF for deflec-
tion (b)

of freedom on the right-hand side. w∗(x, t) in Fig. 7.9a shows the deflection in z-
direction for the hinged beam. At the beginning of the simulation, the mass m15,
depicted with the blue points, is near the centre of the beam. When the mass starts to
move towards the end of the beam, the deflection decreases. This corresponds with
the diagram for the degree of freedom q8(t) shown in Fig. 7.9b.

The behaviour of the deflection in y-direction is different and much smaller, see
Fig. 7.10. After 0.1 s, the moment MT1 is increasing. In the next 0.14 s, the difference
between q3(t) and q6(t) is computed due to the moment MT1 acting on the side of
the system with mass m3. After that time, the moment vanishes and the difference
oscillates with a very small amplitude. The motion of the beam causes an oscillation
with small amplitudes that still remains after MT1 is zero again. The blue points, that
mark the position of mass m15 are not visible all the time, because they are hidden
behind the amplitude function in the three-dimensional plot. The degree of freedom
q7(t) is depicted in Fig. 7.10b and shows the vibration amplitude in the approximation
function v∗(x, t).

The approximation function for the rotation about the x-axis is shown in Fig. 7.11.
The mass m15 remains in the initial position for the first 0.1 s. Then the beam begins
to move and some small oscillation starts. The amplitude of vibration gets smaller
the closer the position of massm15 is to the end of the beam. Also, the absolute value
of the rotational angle decreases as can be seen in Fig. 7.11b.
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Fig. 7.10 Approximation function for bending deflection in the y-direction (a) and DOF for oscil-
lation (b)

Fig. 7.11 Approximation function for rotation about the x-axis (a) and DOF for rotation (b)

7.7 Conclusions and Outlook

The dynamic model of the production machine combines effects from different sub-
models. The numerical results without loads show the importance of the correct
initial values to compute suitable and reliable solutions. Due to the depiction of the
approximation functions and several degrees of freedom for some test cases, the
mechanical model is verified. The goal is to further improve the present model and
implement additional refined submodels. This will help to optimize the quality and
the accuracy of the productionmachine as some additional knowledge can be derived
from the analysis of the simulation results.
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Chapter 8
A Derivation of the Beam Theory of
Second-Order with Shear, Starting from
a Continuum Mechanics-Based
Extension of the Reissner Finite-Strain
Beam Theory

Hans Irschik

Abstract A consistent derivation of the beam theory of second order with shear
is presented. The geometrically exact Reissner finite-strain beam theory is taken
as the starting point, utilizing a continuum mechanics-based extension with respect
to stress–strain constitutive formulations. Corresponding incremental relations for
small deformations superimposed upon an intermediate configurationwith (possibly)
finite deformations are presented, from which the second-order beam theory with
shear eventually is derived using two slight approximations.

8.1 Introduction

The present contribution is concerned with a consistent derivation of the beam the-
ory of second order, taking into account the effect of shear, see Rubin and Vogel [9],
Rubin and Schneider [8]. The increase of the practical usage of the beam theory of
second order generally is due to both, economic and safety reasons, e.g. Petersen
[6] for steel structures. However, the fundamental relations of the beam theory of
second order have been stated in a somewhat ad hoc manner in the literature. Our
present derivation attempts to provide a consistent connection to non-linear structural
and continuum mechanics. From space restrictions, we consider plane deformations
of originally straight shear-deformable beams, utilizing the Timoshenko hypothesis
of cross sections remaining plane and un-deformed in the deformed configuration,
but, due to the effect of shear, not necessarily perpendicular to the deformed beam
axis, see Ziegler [12]. The geometrically exact Reissner finite-strain beam theory [7]
is taken as a starting point. In Sect. 8.2 below, we shortly recall the corresponding
fundamental relations of this theory, which is geometrically exact within the Timo-
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shenko hypothesis. Using virtual work considerations, Reissner in [7] showed that
the constitutive relations for the stress resultants must be formulated as functions
of certain generalized strains. In the Reissner finite-strain theory [7], the mathemat-
ical form of the constitutive relations however needs to be stipulated. In order to
overcome this problem, Irschik and Gerstmayr [5] presented an extension of the
Reissner finite-strain beam theory, where local stress–strain relations can be utilized,
the formulation being also geometrically exact within the Timoshenko hypothesis. A
three-dimensional hyperelastic stress-strain constitutive relation, dating back to Cia-
rlet [1] and proposed by Simo and Hughes [10], was treated exemplarily in [5], see
Sect. 8.3 below for an overview.Based on this continuummechanics-based extension,
the case of (infinitesimally) small deformations superimposed upon an intermediate
configuration with (possibly) large deformations are studied in Sect. 8.4, where a
method by DaDeppo [2] for beams rigid in shear is adopted, see Irschik [3] for the
Reissner finite-strain beam theory. Correspondingly, the fundamental relations are
differentiatedwith respect to a non-dimensional generalized time, e.g. a characteristic
load parameter, fromwhich the incremental (rate) forms of the equilibrium relations,
of the kinematic relations, as well as of the hyperelastic constitutive beam relations
are obtained directly. These relations form a system of linear algebraic and ordinary
differential equations for the rates, where generalized strains and stress resultants
of the intermediate configuration serve as generally non-constant but known coeffi-
cients. We particularly study a straight intermediate configuration under the single
action of a constant normal (axial) force. In Sect. 8.5 below, we eventually show that
two slight approximations are needed only to approach the beam theory of second
order from the exact linearization of the extended Reissner finite-strain beam theory
given in Sect. 8.4. The notational transitions necessary to obtain coincidence with
the relations introduced by Rubin and Vogel [9] are stated in some detail at the end
of the paper.

8.2 The Reissner Finite-Strain Beam Theory

In this Section, we shortly recall the Reissner shear-deformable, finite-strain beam
theory [7], which is geometrically exact within the Timoshenko hypothesis.We study
an initially straight beam, see Fig. 8.1 for the meaning of the subsequently used static
and kinematic entities.

The differential forms of the local equilibrium relations read

R′ + p = 0, (8.1)

M′ + r′ × R + m = 0, (8.2)

where
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Fig. 8.1 Kinematic and
static entities in the
finite-strain beam theory

R = Rxex + Rzez = Ne1 + Qe3, (8.3)

M = Mey . (8.4)

In the Reissner formulation [7], the normal force N is taken as perpendicular
to the cross section in the deformed configuration, the shear force Q being in the
direction of the cross section, see Fig. 8.1. The y-axis is perpendicular to the plane of
deformation, the corresponding moment M representing the bending moment. The
position vector of the deformed axis is

r0 = r = xex + u (8.5)

with the displacement vector of the axis

u = uxex + uzez = uex + wez . (8.6)

We utilize the Lagrange description of continuum mechanics; hence, every entity is
understood as a function of the axial coordinate x in the un-deformed configuration.
The global (x, z)- and the local (ξ, η)-coordinate systems are related by, see Fig. 8.1,

eξ = e1 = ex cosϕ − ez sin ϕ, eζ = e3 = ex sin ϕ + ez cosϕ. (8.7)

Derivatives with respect to the coordinate x and rates with respect to a generalized
non-dimensional time t are indicated by superimposed primes and dots, respectively:

f ′ = ∂ f

∂x
, ḟ = ∂ f

∂t
: e′

1 = −ϕ′e3, ė1 = −ϕ̇e3, e′
3 = ϕ′e1, ė3 = ϕ̇e1.

(8.8)

Particularly, the deformation gradient vector of the axis, being tangential to the latter,
is
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r′ = (1 + u′)ex + w′ez = �(cosχe1 − sin χe3), (8.9)

where � denotes the axial stretch,

� = ‖r′‖. (8.10)

Substituting Eq. (8.7), we find that

1 + u′ = � cos (ϕ − χ) , w′ = −� sin (ϕ − χ) . (8.11)

External forces and moments per unit axial length in the un-deformed configuration
are

p = pxex + pzez = ne1 + qe3, (8.12)

m = mey . (8.13)

The local equilibrium relations of the Reissner theory eventually can be written as

R′ + p = (
N ′ + ϕ′Q + n

)
e1 + (

Q′ − ϕ′N + q
)
e3 = 0, (8.14)

M ′ − �(Q cosχ − N sin χ) + m = 0. (8.15)

The problem must be closed by constitutive relations for normal force N , shear
force Q and bendingmomentM . Using virtual work arguments, Reissner [7] showed
that these constitutive relations must be formulated as functions of corresponding
generalized strains:

ε = � cosχ − 1, γ = � sin χ, κ = ϕ′. (8.16)

Reissner [7] exemplarily discussed the appropriateness of linear matrix-type consti-
tutive relations, where, in an example, he simplified to a decoupled form:

N = C−1ε, Q = B−1γ, M = Dκ. (8.17)

In Eqs. (8.17), D represents a cross-sectional bending stiffness, and C and B are
cross-sectional extensional and shear compliances, respectively.

8.3 Extension of the Reissner Theory with Respect
to Stress-Strain-Based Constitutive Relations

A problem associated with the phenomenological constitutive approach discussed in
[7] is that the mathematical form of the constitutive relations must be stipulated. In
order to allow a formulation utilizing the continuum mechanics level of stress–strain
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constitutive relations, the Reissner theory [7] was extended by Irschik and Gerstmayr
[5], see also [4] for beams rigid in shear, χ = 0. It was shown in [5] that the following
constitutive relations are work equivalent to the ones derived in [7]:

N =
∫

A
Sxx J d A, Q =

∫

A
(Sxz + Sxxγ ) d A, M =

∫

A
Sxx z J d A. (8.18)

In Eq. (8.18), integration is with respect to the beam cross section A in the un-
deformed reference configuration, and Sxx and Sxz represent respective compo-
nents of the matrix of the second Piola–Kirchhoff stress tensor in the global (x, z)-
coordinate system, see Washizu [11] for an enlightening geometric interpretation.
The Jacobian determinant of the deformation gradient tensor is denoted by J . For
the Timoshenko-type deformation assumed here, J reads

J = � cosχ + zϕ′ = 1 + ε + zκ. (8.19)

In order to exemplary illustrate the use of Eq. (8.18) in a non-linear context, we
address a hyperelastic constitutive relation dating back to Ciarlet [1], see also Simo
and Hughes [10]:

S = λ

2

(
J 2 − 1

)
C−1 + μ

(
1 − C−1

)
. (8.20)

The second Piola–Kirchhoff stress tensor is denoted by S, andC is the right Cauchy–
Green tensor. The Lamé parameters are λ and μ, and the unit tensor is written as 1.
Within the Timoshenko-type kinematic hypothesis, the matrix of the inverse tensor
C−1 is, see [5]:

[
C−1

] =
⎡

⎣

1
J 2 0 − γ

J 2

0 1 0

− γ

J 2 0 1 + γ 2

J 2

⎤

⎦ . (8.21)

Substituting Eqs. (8.20) and (8.21) into Eqs. (8.18), the following constitutive rela-
tions for normal force N , shear force Q, and bending moment M is obtained, see
again [5]:

N = 1

2
(2μ + λ)

∫

A

(
J − 1

J

)
d A, (8.22)

Q = μAγ, (8.23)

M = 1

2
(2μ + λ)

∫

A

(
J − 1

J

)
z d A. (8.24)

In Eqs. (8.22)–(8.24), it has been assumed that the beam is homogeneous in the
un-deformed reference configuration, such that the material parameters can be put
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in front of the cross-sectional integrals, and that the beam axis is formed by the
cross-sectional centroids, such that

∫

A
z d A = 0. (8.25)

Note that Eqs. (8.22)–(8.24) indeed represent functions of the generalized strains
introduced by Reissner [7], as this should be, cf. Eqs. (8.16) and (8.19) above.

8.4 Infinitesimally Small Deformations Superimposed
Upon an Intermediate Configuration

We now study (infinitesimally) small deformations that are superimposed upon some
intermediate configuration with a (possibly) large pre-deformation. For this sake, we
perform derivatives of the relations in Sect. 8.3 with respect to a generalized time,
following DaDeppo [2] and Irschik [3], see Eqs. (8.8). This yields the following set
of relations:

ε̇ = �̇ cosχ − �χ̇ sin χ, (8.26)

γ̇ = �̇ sin χ + �χ̇ cosχ, (8.27)

κ̇ = ϕ̇′, (8.28)

J̇ = ε̇ + zκ̇, (8.29)

u̇′ = �̇ cos(ϕ − χ) − �(ϕ̇ − χ̇) sin(ϕ − χ), (8.30)

ẇ′ = −�̇ sin(ϕ − χ) − �(ϕ̇ − χ̇ ) cos(ϕ − χ), (8.31)

Ṅ ′ + κ̇Q + κ Q̇ + ϕ̇Q′ − ϕ̇κN + ṅ + ϕ̇q = 0, (8.32)

Q̇′ − κ̇N − κ Ṅ − ϕ̇N ′ − ϕ̇κQ + q̇ − ϕ̇n = 0, (8.33)

Ṁ ′ − Qε̇ − Q̇(ε + 1) + N γ̇ + Ṅγ + ṁ = 0, (8.34)

Ṅ = 1

2
(2μ + λ)

∫

A
J̇

(
1 + 1

J 2

)
d A, (8.35)

Q̇ = μAγ̇ , (8.36)

Ṁ = 1

2
(2μ + λ)

∫

A
J̇

(
1 + 1

J 2

)
z d A. (8.37)

We particularly are interested in a straight intermediate configuration without
shear deformation, ϕ = 0, χ = 0. From Eq. (8.16), it follows that γ = 0, κ = 0, and
Eq. (8.19) implies that J = � = 1 + ε does not depend on the transverse coordi-
nate z. From Eqs. (8.22)–(8.25), we yield that M = 0, Q = 0, while N = const .
Moreover, Eqs. (8.14) and (8.15) clarify that there must be no distributed loadings



8 A Derivation of the Beam Theory of Second-Order … 93

then, n = 0, q = 0,m = 0. The kinematic relations for small deformations from this
straight intermediate deformation become, see Eqs. (8.26)–(8.31):

ε̇ = �̇, γ̇ = �χ̇ = (1 + ε)χ̇, κ̇ = ϕ̇′, (8.38)

J̇ = ε̇ + zκ̇, (8.39)

u̇′ = �̇ = ε̇, ẇ′ = −�(ϕ̇ − χ̇) = −(1 + ε)ϕ̇ + γ̇ . (8.40)

The incremental equilibrium relations, Eqs. (8.32)–(8.34), read

Ṅ ′ + ṅ = 0, (8.41)

Q̇′ − N κ̇ + q̇ = Q̇′ − N ϕ̇′ + q̇ = 0, (8.42)

Ṁ ′ − Q̇(ε + 1) + N γ̇ + ṁ = 0. (8.43)

The corresponding incremental constitutive relations, Eqs. (8.35)–(8.37), take on the
form

Ṅ = C−1 ε̇ = C−1 u̇′, C−1 = 1

2
(2μ + λ) A

(
1 + 1

(1 + ε)2

)
(8.44)

Q̇ = B−1γ̇ , B−1 = μA, (8.45)

Ṁ = D ϕ̇′ = D κ̇, D = 1

2
(2μ + λ) I

(
1 + 1

(1 + ε)2

)
, (8.46)

with the cross-sectional moment of inertia about the y-axis:

I =
∫

A
z2 d A. (8.47)

The constitutive relations presented in Eqs. (8.44)–(8.46) are of the linear form
that was stipulated byReissner in [7], see Eqs. (8.17). However, sincewe started from
the Ciarlet non-linear hyperelastic stress-strain relation stated in Eq. (8.20), our for-
mulation reflects the influence of the deformation ε in the intermediate configuration
upon stiffness and compliances.

Equations (8.40)–(8.46) form a set of eight linear relations for eight unknown
entities, namely the three incremental stress resultants Ṅ , Q̇ and Ṁ , the two incre-
mental displacements u̇ and ẇ, and the three generalized strains ε̇, γ̇ and ϕ̇. This
set can be considered as an exact linearization of the extended Reissner finite-strain
theory that has been discussed in Sect. 8.3 above.

By proper elimination, this set of eight relations can be decoupled into a linear
differential equation of second order for u̇, and a linear differential equation of fourth
order for ẇ. This demonstrates that prescribing the usual three static or kinematic
boundary conditions at each beam end is sufficient to obtain a complete linear bound-
ary value problem; e.g., at a clamped end, u̇, ẇ, and ϕ̇ must be prescribed, while at
a free end, one has to prescribe the two components of the internal force Ṙ, as well
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as the bending moment Ṁ . Note that there is

Ṙx = Ṅ + Qϕ̇, Ṙz = −N ϕ̇ + Q̇. (8.48)

The linear boundary value problem under consideration conveniently can be solved
in closed form using symbolic computer codes, given N ,�, and ε in the intermediate
configuration.

8.5 Beam Theory of Second Order with Shear

By inspection of the relations presented in Sect. 8.4, it becomes evident that two
slight approximations only are necessary for approaching the fundamental relations
of the beam theory of second order with shear as stated by Rubin and Vogel [9]. The
first approximation is that the extensional strain ε in the intermediate configuration
can be neglected

ε = 0 → � = 1, γ̇ = χ̇ , ẇ′ = −ϕ̇ + γ̇ , (8.49)

see Eqs. (8.38) and (8.40). Using Eq. (8.49), the incremental moment equilibrium
relation, Eq. (8.43), simplifies to

Ṁ ′ − Q̇ + N (ẇ′ + ϕ̇) + ṁ = 0. (8.50)

The constitutive relations, Eqs. (8.44)–(8.50) become

Ṅ = C−1u̇′, C−1 = (2μ + λ)A, (8.51)

Q̇ = B−1(ẇ′ + ϕ̇), (8.52)

Ṁ = Dϕ̇′, D = (2μ + λ)I. (8.53)

Equations (8.50)–(8.53), together with the unchanged force equilibrium relations,
Eqs. (8.41) and (8.42), form a set of six relations for the six unknowns Ṅ , Q̇, Ṁ , u̇, ẇ
and ϕ̇.We note that, although the approximation of inextensibility in the intermediate
configuration, Eq. (8.49), appears to be reasonable under many circumstances, it
does not result in considerable mathematical simplifications, when compared to the
formulation in Sect. 8.4.

In order to approach the particular formulas published in Rubin and Vogel [9], a
skew decomposition must be utilized for the internal force R. This decomposition
is to be performed into a normal force N̄ tangential to the deformed axis, i.e., in
the direction of r′, and into a shear force Q̄ in the direction of the deformed cross
section:
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N = N̄ cosχ, Q = Q̄ + N̄ sin χ. (8.54)

The corresponding rate forms are

Ṅ = ˙̄N cosχ + N̄ χ̇sinχ, Q̇ = ˙̄Q + ˙̄N sin χ + N̄ χ̇ cosχ. (8.55)

Since there is no shear in the intermediate configuration, χ = 0, we obtain that

N = N̄ , Ṅ = ˙̄N , Q̇ = ˙̄Q + N̄ χ̇ = ˙̄Q + N γ̇ = ˙̄Q + N
(
ẇ′ + ϕ̇

)
. (8.56)

We thus may write, instead of Eqs. (8.41), (8.42) and (8.50):

˙̄N ′ + ṅ = 0, ˙̄Q′ + N̄ ẇ′′ + q̇ = 0, Ṁ ′ − ˙̄Q + ṁ = 0. (8.57)

The constitutive force relations, Eqs. (8.51) and (8.52), become

˙̄N = C−1u̇′, ˙̄Q = (B−1 + N̄ )(ẇ′ + ϕ̇). (8.58)

Moreover, we consider the sign conventions introduced by Rubin and Vogel [9],
see Fig. 3.2-2 of [9]. Since rateswere not introduced explicitly in [9],we subsequently
avoid superimposed dots for the entities in the formulas of [9], but we indicate the
latter by the index RV :

ṅ = −nRV , q̇ = qRV , ṁ = −mRV , (8.59)

N̄ = −NRV , ˙̄N ′ = −N ′
RV , ˙̄Q = QRV , Ṁ = MRV , (8.60)

ẇ = wRV , u̇ = uRV , ϕ̇ = −ϕRV . (8.61)

Substituting Eqs. (8.59)–(8.61) into the above relation (8.57), we first obtain Eq. (3.2-
14) of [9]

N ′
RV + nRV = 0. (8.62)

Using Eqs. (8.57) above, we get

Q′
RV − NRVw

′′
RV + qRV = 0, (8.63)

which coincides with the result of substituting Eq. (3.2.-12) of [9].
From Eq. (8.57), one obtains Eq. (3.2.-13) of [9]

M ′
RV − QRV − mRV = 0. (8.64)

Concerning the constitutive relations, replace C−1 by DRV in Eq. (8.58) above.
This gives Eq. (3.2-17) of [9]
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NRV = −DRV u
′
RV . (8.65)

Similarly, replacing (B−1 + N̄ ) in Eq. (8.58) by SRV yields Eq. (3.2-16) of [9]:

QRV = SRV (w′
RV − ϕRV ). (8.66)

This clarifies that, when using B−1 for SRV directly, the influence of the normal
force in the intermediate configuration is neglected. Since this influence often will
be small, this second approximation appears to be reasonable, but again brings no
computational advantage.

Finally, replacement of D in Eq. (8.53) above by BRV finally results in Eq. (3.2-15)
of [9]:

MRV = −BRVϕ′
RV . (8.67)

This closes our derivation of the fundamental relations of the beam theory of second
order with shear, as stated in [9].

8.6 Conclusion

In Sects. 8.4 and 8.5 above, the fundamental relations of the beam theory of second
order, see Rubin and Vogel [9], have been shown to represent a slight simplification
of an exactly linearized version of the continuum mechanics-based extension of the
Reissner finite-strain beam theory discussed before in Sect. 8.3. The more involved
case of beams with shear and initial imperfections, which also was treated in [9],
will be studied in a further contribution.
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Chapter 9
Surface Tension Revisited

Bernhard Jakoby

Abstract Inspired by a paper by Prandtl, a simple explanation for the occurrence and
the character of the surface tension in liquids is devised, which connects a molecular
view with a continuum model of the liquid. Doing so, the nature of the so-called
surface tension can be understood as an imbalance between internal pressure and
cohesive forces related to (virtual) cut surfaces orthogonal to the liquid’s surface.
By including these cohesive forces as part of the stress tensor, a non-isotropic stress
tensor is obtained close to the surface.

9.1 Introduction

Surface tension is a cohesion-related phenomenon, which is best known for its effects
on the surfaces of liquids. Examples are the formation of droplets, the contact angles
of sessile droplets on substrates, and the ability of water striders to walk on water
surfaces.

For individual molecules, the cohesive forces between liquid molecules can be
modeled, e.g., using Lennard–Jones (LJ) potentials, which cover both, the repulsive
forces acting between intimately neighboring molecules as well as the attractive
forces acting when they are farther away.

On the macroscopic scale, continuum models are preferably used and thus it is
desirable to devise a continuum-theoretic model that correctly represents the effects
associated with surface tension. It turns out that surface tension can be represented
by means of a thin elastic layer coating a liquid surface. This fictitious layer is under
mechanical tension (stress), which conforms to the notion of surface tension. Such
a fictitious elastic layer, however, apparently contradicts a fundamental assumption
that is made in the continuum theory of ideal liquids, i.e., that an ideal liquid cannot
support shear stresses and thus the stress tensor is isotropic:
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Fig. 9.1 Attraction forces of molecules close to the surface and within the bulk of a liquid (blue
region) as commonly shown in textbooks. The picture suggests (and many textbooks claim) that
there is a net force towards the bulk of the liquid for molecules close to the surface while there
is none for molecules within the liquid. In reality (ignoring thermal motion), there is no force in
equilibrium as the attraction forces are balanced by pressure forces representing the interaction with
neighboring molecules

Ti j = −pδi j . (9.1)

Here, Ti j denotes the stress tensor (in component notation), p is the hydrostatic pres-
sure, and δi j is the Kronecker delta symbol which equals 1 if i = j and vanishes
otherwise. The explanation for this behavior or, more accurately, the link between
the microscopic and continuum-theoretical picture is scarcely discussed in the liter-
ature. Very often (particularly in textbooks) explanations of surface tension refer to
“uncompensated” interaction forces experienced by molecules at the surface of a liq-
uid, whereas molecules within the liquid (in the bulk of the liquid) feature balanced
interaction forces in all directions. This is very often illustrated by figures such as
Fig. 9.1. Here, the arrows indicate said attraction forces, which may indeed suggest
that molecules at the surface experience a resulting force into the liquid, which is
frequently also explicitly stated. In the author’s opinion, this view is ill-conceived not
only since this does not directly suggest the presence of a lateral tension in a surface
layer but also as, according to Newton’s third law, these seemingly non-vanishing
forces are, in equilibrium, balanced by repulsive forces from intimately neighbor-
ing molecules,1 which we will below relate to the so-called internal pressure. The
internal pressure is, in turn, directly related to the distance of neighboring molecules,
which thus changes (even if only slightly) when approaching the surface.

The author recently became aware of one of Ludwig Prandtl’s papers dating from
1947 [1], which essentially deals with the relation between the macroscopic and the
microscopic view, even though this was not Prandtl’s main motivation. According
to the Introduction in [1], Prandtl was rather disturbed by “physicists” refusing to
accept that the phenomenon of surface tension is actually related to “real forces”
and suspects that said physicists misinterpret or forgot the laws of balanced forces.

1 In reality we, of course, are faced with superposed Brownian motion leading to the continuous
movement of all individual molecules. For the sake of simplicity, we do not consider this motion
and the related additional forces, which here are simply interpreted as superposed noise.



9 Surface Tension Revisited 101

While these comments are clearly stimulated by specific discussions with several
colleagues, I see a certain connection to the above-mentioned ill-conceived attempts
to illustrate surface tension. Without explicitly saying so, Prandtl considers the bal-
ance of forces in a planar liquid surface using some simplifiedmodels to demonstrate
what the character of the surface tension is and how it can be calculated, in princi-
ple, if the cohesive force between two liquid molecules is known thus achieving the
aforementioned connection between the molecular level and continuum theory.

A key point in the approach is to distinguish between repelling forces essentially
occurring between neighboring molecules and attractive forces between molecules
that are farther away from each other. Using the concepts of continuum theory, the
latter are considered as volume forces, while only the former are associated with a
stress tensor, which is considered isotropic conforming to the previously mentioned
fundamental properties of ideal liquids. However, as the ranges of these volume
interaction forces are small, they could formally and approximately be considered
by equivalent stresses, which would, in turn, yield a non-isotropic stress tensor close
to the liquid surface as will be discussed below.

Prandtl does not characterize his approach in these terms and, at the same time,
considers a specific interaction model to demonstrate the appearance of the surface
tension. In this paper, we show that the same qualitative conclusions can be obtained
without assuming a specific interaction model using some simple, partly geometric
considerations. Also, the above interpretation with respect to stresses and volume
forces will be outlined in more detail.

There are numerous other papers dealing with the phenomenon of surface tension
and it is therefore impossible to provide a complete list of relevant references. In any
case, [2–4] may serve as starting points to explore other accounts on the topic.

9.2 Interaction Between Molecules

Before moving to continuum theory, we consider how the interaction between
molecules can be modeled. The Lennard–Jones potential VLJ represents an estab-
lished model describing repelling as well cohesive forces between molecules

VLJ = E0

((r0
r

)12 − 2
(r0
r

)6
)

, (9.2)

where E0 represents the (negative) interaction energy at theminimumof the potential,
which occurs at an equilibrium distance r = r0 between the molecules. The first term
represents a repulsive term, while the second accounts for the cohesive attractive
forces between the molecules, which can be caused by van der Waals or dispersion
forces. The exponent associated with the repulsive forces is much higher than that of
the attractive forces and represents the quantum-mechanical forces appearing once
the orbitals of the molecules start to overlap. There are other models representing
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Fig. 9.2 Lennard–Jones
potential and attraction force
(each suitably scaled) versus
particle distance. At r = r0
two interacting particles are
at equilibrium featuring a
minimum of the potential
and zero interaction force.
The dashed green line shows
the approximation of the
force characteristics
featuring arbitrary repulsion
forces as soon as r = r0 is
approached

the repulsion and we will also see in this paper that the exact model is less important
as long as it is considered that the repulsion is much stronger than the attraction.

The forces acting between the molecules can be obtained by differentiation with
respect to r (i.e., taking the gradient). Figure9.2 shows the obtained characteristics
for the potential and the associated force, where a positive force represents attraction.

Two particles in equilibrium assume the distance r = r0. For many particles
(molecules) in a liquid featuring a surface, the equilibrium distances turn out to
be slightly closer (which is represented by an internal pressure as we shall discuss
below). In this case, additional attractive forces to molecules farther away are bal-
anced by the repulsive forces to intimately neighboring molecules. However, as the
repulsion is very strong, the associated changes in distance are minute. This can be
used to justify a simple approximation, i.e., that distances r < r0 are prevented by
arbitrarily strong repulsion forces which occur as soon as r = r0 is reached. This
corresponds to an infinitely steep slope in the force characteristics as illustrated by
the dashed line in Fig. 9.2. Using this approximation, the density in the macroscopic
description remains the same everywhere, which is one key assumption that was also
used in Prandtl’s considerations.

We shall also note that in our considerations, we will ignore the effects of super-
posed thermal motion, which, of course, affects the average distances assumed by the
molecules. The basic mechanisms discussed here, however, remain intact and since
we are not aiming at a quantitative description of the phenomenon, this approach
appears justified.

In the followingwewill thus assume that themolecules are densely packedwith an
equilibrium distance r = r0 exerting repulsive forces on their closest neighbors while
attractingmolecules farther away. Adopting a continuumview, these attraction forces
can thus be assumed to occur for distances r > r0 obeying a dependence on r as, e.g.,
described by the LJ force. In his paper [1], Prandtl assumes a simple form for this
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characteristic, i.e., a linearly increasing force which abruptly drops to zero at some
distance r = R > r0. Prandtl pointed out, that amore general relation can bemodeled
by superposing such characteristics. Since we are not going to calculate the surface
tension quantitatively, we deal no further with specific interaction characteristics.
Yet, it is useful to observe that the attraction force strongly decays with increasing
distance such that it turns out to be beneficial to assume that the forces are negligible
once r has exceeded a certain value. In the case of Prandtl’s model, this distance is
denoted by R and we will also use R to denote this distance (which is not strictly
defined by the LJ potential).

9.3 Internal Pressure

The phenomenon of surface pressure can also be investigated theoretically for a plane
liquid surface even though its effects are not directly visible such as in other cases as
for liquids in a capillary, etc. Adopting the notions of continuum theory and consid-
ering the liquid at mechanical equilibrium, we require that the total forces acting on
an arbitrary volume element of the liquid must vanish. According to the concepts of
continuum theory, these total forces are represented by the surface stresses integrated
over the surface of the volume plus a volume integral over body forces.

As discussed above,when considering individualmolecules, we recognize that the
repulsive forces with intimate neighbors can be associated with the internal pressure
p of the liquid, whereas the mutual attraction forces with molecules farther away
can be considered as body forces f (forces per volume) acting over longer, though
in reality not very long, distances up to the order of r = R. In equilibrium, we have,
according to Cauchy’s first law of continuum mechanics,

∇ p = f. (9.3)

In our considerations, we assume zero gravity (which would merely represent an
additional contribution to the body forces) and zero ambient pressure outside the
liquid, which means that the internal pressure when approaching the surface must
vanish. In Fig. 9.3, the effective interaction radius of a particular molecule close to
the surface, is indicated by a circle (with radius R). It can be seen that in this case
a net body force directed into the liquid results, as a part of the “interaction circle,”
i.e. the parts outside the liquid, is not filled with interaction partners. In contrast,
a particle deeper within the liquid (depth larger than R) in total experiences zero
attraction forces as, within the effective interaction range R, interaction partners in
all directions are present and equally distributed. This consideration corresponds to
the common observation illustrated in Fig. 9.1. Accordingly, we obtain a pressure
gradient balancing these resulting body forces f and hence the pressure into the
liquid increases up to a constant level pi , yielding a vanishing gradient ∇ p deeper
within the liquid where f = 0 (see Fig. 9.3).



104 B. Jakoby

Fig. 9.3 Effective interaction ranges of particles with respect to attraction forces. Interactions with
molecules outside this range (radius R)—if any—are considered to be negligible. It can be seen that
for molecules close to the surface a net attraction force into the liquid (orthogonal to the surface) is
obtained, which corresponds to the observation in Fig. 9.1. These forces, however, in the considered
case of equilibrium, are balanced by repulsive forces from intimately neighboring molecules which
represent the so-called internal pressure of the liquid

Fig. 9.4 Virtually cutout volume including the surface of the liquid. The attractive (volume) forces
with particles outside the volume are represented by green arrows. The repulsive forces with inti-
mately neighboring molecules are represented by blue arrows. Equilibrium in the vertical (y) direc-
tion is achieved by balancing the net attractive forces with the pressure forces acting on the lower
boundary surface. Equilibrium in lateral (x) direction is warranted by the symmetry, i.e., the attrac-
tive forces traversing the vertical side walls need not be balanced by the pressures acting on the side
walls. It turns out that close to the surface, this balance is indeed not fulfilled (illustrated by slightly
longer green arrows in this region) which gives rise to the phenomenon referred to as surface tension
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This conclusion can also be made in a similar manner by considering a finite
volume V enclosed by a surface S as indicated in Fig. 9.4, where we obtain for the
integral form of the previous equation (using the divergence theorem):

∫
V
fdV = −

∮
S
pdS (9.4)

That means that the total (integrated) body forces within this volume are balanced by
the integrated pressure at the circumference. Note that only interaction forces with
molecules outside the volume contribute to the volume integral whereas the mutual
interaction forces between molecules within V cancel each other.

9.4 Surface Tension

We can also extend the volume laterally into infinity yielding a slab of liquid. As
we now have a laterally spatially invariant situation, the integrated pressure acting
along a surface element �S must be balanced by all interaction forces (body forces)
whose lines of action traverse �S (see Fig. 9.5 left). If we consider such a particular
surface element �S for slabs of liquids with different thicknesses, we again find
that the maximum pressure is asymptotically approached as soon as the thickness of
the slab goes beyond those distances R where significant attraction forces between
two molecules occur. We can illustrate this by drawing a circle (or sphere in 3D2),
centered at �S, whose radius R represents such a distance3 as shown in Fig. 9.5.
For thin slabs, i.e., virtual cuts close to the surface, not the entire circle is filled
with molecules such that the resulting interaction forces associated with �S are
smaller than for the case, where the entire circle is submerged under the surface. As
these attraction forces are balanced by the pressure force p�S, the gradual increase
of the pressure from the surface to an asymptotic value deep inside the liquid is
demonstrated again. As gravitation was ruled out and no external pressure is applied,
this pressure corresponds to the “internal pressure” of thermodynamics.

When considering virtual cuts in the vertical direction such as the side walls of
the virtually cutout volume in Fig. 9.4, the equilibrium conditions do not require
that pressure and attraction forces (with lines of action traversing the cut line) are
balanced. This is because, concerning lateral forces, said volume is already in equi-
librium by virtue of the symmetry with respect to the vertical axis, i.e., forces that
are associated with the left cut surface (pressures and interaction forces with lines

2 Note that here and, in the following, we restrict ourselves to 2D considerations; the generalization
to the 3D case is straightforward.
3 By doing so, we not only guarantee that we cover all interactions up to a distance R but also
consider some (not all) interactions beyond that distance—for oppositely positioned molecules at
the circumference of the circle even in a distance 2R. But since we consider all interaction forces
beyond R to be negligible, this partial contribution does not affect our approach.
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Fig. 9.5 Pressures and body forces associated with elements �S of a horizontal (left) and vertical
(right) cut surface. In the case of horizontal cut surfaces, the pressures acting on�S are balanced by
body forces between particles inside and outside the cutout volume whose lines of action traverse
�S. In the case of the vertical cut surface, an element at the same depth level experiences the same
pressures as in the horizontal case. However, the associated body forces, in general, do not balance
these pressures. The scheme in the lower part of the figure is used to compare these forces

of action traversing the respective cut surface), are also present, equally strong but
oppositely oriented, on the right side due to the symmetry of the arrangement.

It turns out that the forces associated with a particular portion of a vertical cut
surface are indeed not balanced and this essentially represents the phenomenon that is
commonly referred to as surface tension. The internal pressure in a particular depth
beneath the liquid surface is given by the previous considerations and, due to the
assumed isotropy of the stress tensor, this pressure also occurs as virtual tension at
vertical cut surfaces. The attraction forces are again interpreted as body forces. As
for the horizontal cut before, one may assign these body forces to a particular surface
element �S of the vertical cut surface, if their lines of action traverse �S.

In the following, compare the magnitude of the pressure forces to that of the body
forces associated with a vertical cut element �S. The upper drawings in Fig. 9.5
illustrate the situation for an element�S of a virtual horizontal (left) and vertical cut
surface, where both elements are located at the same depth level. In equilibrium, as
outlined above, the forces p�S are balanced by the body forces whose line of action
traverses the element �S in case of the horizontal cut surface. As outlined above,
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due to the limited interaction distance, which we consider only within the range
indicated by a red circle (sphere in 3D), these forces decrease when approaching the
surface as an increasing portion of the circle is not occupied by liquid molecules. In
the corresponding lower scheme in Fig. 9.5, this portion is marked.

In case of the vertical cut surface, by virtue of the isotropy of the pressure, the
same pressure forces apply. The body forces associated with the surface element �S
(right upper illustration) are different, though. Again, the scheme in the lower part of
Fig. 9.5 indicates, what portions of the considered interaction range aremissingwhen
approaching the liquid surface. To ease the comparison with the corresponding case
for the horizontal cut line, the scheme is rotated 90◦ counterclockwise. The marked
region in the lower half of the sphere can furthermore be moved as indicated into
the lower right plot yielding the same interaction forces when integrating over all
possible interaction partners in the lower and upper half of the circles drawn.

Thus, when comparing the schemes, we can also develop a notion about the
degree of imbalance between attraction forces and pressure forces when considering
horizontal cuts as the interaction forces corresponding to the scheme on the left
(horizontal cut) exactly represent the pressure forces due to the balance in case of
horizontal cuts.

First, it becomes obvious that the mentioned imbalance vanishes once the consid-
eration is made in a depth, which is larger than the interaction distance, i.e., where
the indicated circles are completely within the region filled with liquid such that the
marked portions in the schemes vanish. This means that the pressure forces inside
the liquid are in fact balanced by attraction forces in all directions (for vertical and
horizontal cuts).

Closer to the surface the situation is different. In terms of area, themarked portions
(representing missing interaction partners) are equally large in both cases. However,
in the case associated with the horizontal cuts, these portions are located at the sides,
while in the left case (vertical cut) the portion concerns the top of the circle. In the
following, we consider the impact of this difference on the resulting normal force
components.

Figure9.6 shows the schemes for both cases again in an overlapping drawing. It
turns out that, depending on the considered level, there can be a portion (marked B)
that is missing in both cases, when the attraction forces are summed up. Portions A
and C are not contributing in case of vertical and horizontal cuts, respectively. As A
and C feature the same shape and the same distance to the center of the considered
surface element �S, one might erroneously assume that the associated missing inte-
grated attraction forces are equal in both cases. However, when comparing the lines
of actions for particles at corresponding positions (for each point in A there is a cor-
responding point in region C; Fig. 9.6 shows a particular example) one can find out
that the lines of action for all points associated with region A traverse�S at a smaller
angle α than the line of action with the corresponding point in region C (angle β)
thus yielding a smaller contribution to the normal force component (which is the one
we are interested in). Furthermore, the integration of all interaction forces concerns
all lines of action passing through the small, but finite, element. It can be seen that
a point in region A interacts with a smaller part of the lower region (characterized
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Fig. 9.6 Schematic drawing of portions not contributing to attraction forces in case of horizontal
(B&C) and vertical cuts (A&B)

by the angle γ ) than the corresponding point in region C (angle δ). So in summary,
points in region A correspond to smaller force contributions than the corresponding
ones in region C. Thus, in view of the fact that these forces are missing in the calcu-
lation of the attraction forces, the attraction forces corresponding to a vertical cut at
a certain level are larger than the ones for a horizontal cut. As the pressure forces are
the same in both cases, there remains a non-compensated attraction force for vertical
cuts.

In our considerations, following Prandtl’s idea, we took the attraction forces into
account as body forces. Yet, in view of the strong decay of the LJ-potential significant
contributions will only arise from particles very close (within a few molecule diam-
eters) to the virtual cut. Hence, it could be argued that these forces could be included
in the stress tensor. Doing so, the total pressure deep inside the liquid vanishes as
the previously considered pressures (“internal pressure”) are fully compensated by
the attraction forces yielding zero pressures—just as one would expect as we did not
consider the impact of gravity and did not assume any ambient pressure above the
liquid surface. Approaching the surface, this compensation does not hold for com-
ponents in the surface plane (tangential components) giving rise to a non-vanishing
component of the so defined stress tensor—these are the stresses associated with
surface tension. In this model, the stress tensor of the liquid is not isotropic close to
the surface!
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9.5 Conclusions

Inspired by a paper by Prandtl, we devised a simple explanation for the occurrence
and the character of the surface tension in liquids, where we connected a molecular
view (incorporating repulsive and attractive forces between molecules as described
by the LJ potential) with a continuum model of the liquid. We assigned repulsive
forces between neighboring molecules to the internal pressure of the liquid and
considered attractive forces as body forces. By considering the balance of cut-out
liquid volumes, we were able to establish that close to the surface, attractive forces
traversing virtual vertical cuts in the liquid are not balanced by opposing pressures,
which represents the phenomenon referred to as surface tension. By including these
attraction forces in the stress tensor (which can be justified by the fact that they
only occur close to the virtual cut surface), the so obtained stress tensor appears
non-isotropic close to the surface corresponding to the continuum model of surface
tension in terms of a stretched thin elastic sheet covering the surface.
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Chapter 10
Flatness-Based Control of a
Closed-Circuit Hydraulic Press

Helmut Kogler, Karl Ladner, and Peter Ladner

Abstract Hydraulic drive technology is well known for its high force density and,
hence, basically qualified for press applications. While systems with constant pres-
sure supply suffer from a bad energy efficiency due to resistance control and, fur-
thermore, an inferior controllability in particular at fast movement operation, the
presented hydraulic press concept overcomes these drawbacks by using a synchro-
nized cylinder in a closed circuit displacement control for rapid movement and in
press mode. In this paper, a flatness-based control of the position of the main press
actuator is presented. The derivation of the controller design is followed by simula-
tion experiments and, furthermore, by a discussion of measurements on a two-axis
prototype with a load capacity of 50 tons.

10.1 Introduction

Conventional hydraulic presses (see for instance [1, 5]) use hydraulic load sensing
for the press mode and a controlled falling of the upper press tool for a fast movement
downward. Since in the load-sensing mode and, furthermore, during the fast motion
operation, the movement is controlled by resistance control a certain loss of energy
occurs. The resulting heating of the oil must be reduced by additional coolers, at least
in some cases. Another drawback of such systems is the permanent operation of the
constant pressure supply, which results in additional energy losses and unnecessary
noise (see, for instance, [6, 10]). The conventional concept has a single hydraulic
supply for one machine, which needs besides pump, motor also transmission lines
from a tank, and auxiliary components, which inhibit a strict modular and compact
design of the machine, where each axis would be completely individual and real-
ized in a compact manner. Furthermore, during the assembling process, numerous
hydraulic connections must be installed, which constitute a potential danger of exter-
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Fig. 10.1 Functional
scheme of a closed circuit
hydraulic press
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nal leakage, hose breaking, and replacement by spare parts which results in additional
maintenance work.

In contrast to conventional hydraulic presseswith the presented concept according
to Fig. 10.1, the mentioned drawbacks can be prevented. The main actuator is a
hydraulic cylinder, which is controlled by a pump, i.e., the rotational speed of the
pump corresponds to the velocity of the piston. The cylinder has three hydraulic
chambers, where the cross-sectional areas follow the relation

A1 = A2 + A3, (10.1)

which enables a different transmission ratio between the rotational speed of the
pump and the velocity of the piston. In particular, if the valve V1 is switched, then
the effective cross-sectional area A2 = A1 − A3 is active. Thus, a rapid motion at
low forces can be achieved. If the valve V2 is switched, then A1 is the effective
cross-sectional area and high forces can be produced at low velocities. The valve
V3 represents an emergency valve and, during a normal operation of the press, this
valve is always open. In case of an emergency case, the valve V3 must be shut quickly
in order to prevent severe injuries of human operators. The accumulator keeps the
whole configuration at aminimumpressure level. In combinationwith the unlockable
check valves, V4 and V5, the compressibility of the fluid and certain leakage flows
can be compensated.

In this paper, the application of a flatness-based controller according to the estab-
lished literature (see, for instance, [2, 4, 8, 9]) for the position of the piston of the
press is presented. In contrast to common PI controllers, which are only capable to
stabilize a rest position, the flatness-based approach stabilizes the trajectory of the
piston. Thus, with a properly designed flatness-based controller multiple press axes
can be easily realized without an additional synchronizing controller.



10 Flatness-Based Control of a Closed-Circuit Hydraulic Press 113

10.2 Modeling

With regard to Fig. 10.1, the mechanical part of the press, respectively, the movement
of the piston, follows the momentum equation

[
ẋ
v̇

]
=

⎡
⎢⎢⎢⎢⎣

v

1
m

⎛
⎜⎜⎝FH − mg − FP −

(
sign (v)

(
(FS − dc) e

−| v
v0

| + dc
)

+ dvv
)

︸ ︷︷ ︸
static friction model

⎞
⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ ,

(10.2)
with the resulting hydraulic force FH = p2A2 − p1A1 + p3A3. This model consid-
eres a static friction model including a stick-slip effect in the motion of the piston.
The hydraulic model is represented by

⎡
⎢⎢⎢⎢⎣

ṗ1
ṗ2
ṗ3
ṗ4
ṗ5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Eoil
V01−A1x

(
uV1KV1

∧√p3 − p1 − VSnP + A1v − QL + QV4

)
Eoil

V02+A2x

(−A2v + uV3KV3
∧√p4 − p2

)
Eoil

V03+A3x

(−A3v − uV1KV1
∧√p3 − p1 + uV2KV2

∧√p4 − p3
)

Eoil
V04

(−uV3KV3
∧√p4 − p2 − uV2KV2

∧√p4 − p3 + VSnP + QL + QV5

)
κp5

(−QV4−QV5

)

V0S

(
p0
p5

) 1
κ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10.3)

with the flow rates through the unlockable check valves

QV4 =
{
KV4

∧√p5 − p1 0.45p4 > p1
KV4cv (p5 − p1) otherwise

QV5 =
{
KV5

∧√p5 − p4 0.45p1 > p4
KV5cv (p5 − p4) otherwise

cv (�p) =
{

∧√�p �p > 0

0 otherwise,

(10.4)

according to the orifice characteristics

∧
√

�p = sign(�p)
√|�p|, (10.5)

and the leakage flow through the pump

QL = qleak
pleak

(p1 − p4) . (10.6)

The resulting complete model of the press consisting of Eqs. (10.2) and (10.3) is
nonlinear and suffers from numerous square root characteristics due to the valve’s
flow equations and, furthermore, switching conditions of the check valves and the
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friction model. Thus, the model is evaluated as too complicated for an efficient
controller design but will be used for simulation experiments.

10.3 Synthesis

For an efficient controller design, a suitable dynamic model for the motion of the
piston must be found. Therefore, in a first step the compressibility of the fluid is
completely neglected. Then the continuity equation reduces to

0 = VDnP − AEv − qL , (10.7)

with the displacement volume VD of the pump, the effective cross-sectional area of
the piston AE and a certain leakage flow rate qL depending on the pressure difference
over the pump. Furthermore, the leakage flow qL represents a certain correction term
in Eq. (10.7) for the compressibility of the fluid, at least in a simplified manner. A
re-arrangement of Eq. (10.7) leads to

ẋ = − qL
AE︸ ︷︷ ︸
f

+ VD

AE︸︷︷︸
g

nP , (10.8)

which represents the basic model used for the following controller design. The
model (10.8) is nonlinear and input-state linearizable according to literature (see,
for instance, [3]). With the feedback of the input transformation

nP = vB − L f x

Lgx
(10.9)

the model is linearized and now represented by the so-called Brunovsky canonical
form

ẋ = − qL
AE

+ VD

AE

⎛
⎝

(
vB + qL

AE

)
AE

VD

⎞
⎠

︸ ︷︷ ︸
Eq. (10.9)

= vB (10.10)

with the new input vB . FromEq. (10.10) it is clear that the actual velocity of the piston
corresponds exactly to the new input vB of the system. Thus, defining a control error
e = x − xd with the desired piston position xd a flatness-based controller is derived
by

0 = (vB − vd)︸ ︷︷ ︸
ė

+ (x − xd)︸ ︷︷ ︸
e

γC , (10.11)
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which represents a linear differential equation for the trajectory error e. With the
correct choice of the controller parameter γC for asymptotic stability, Eq. (10.11)
can be solved for vB and the trajectory error e is forced to decay with time. However,
the controller only works properly, if the leakage flow rate qL is known. Assuming
that the dynamics of the process force FP is low compared to the desired dynamics
of the trajectory of the piston, then the leakage flow can be modeled like

q̇L = 0. (10.12)

With the new state qL the extended system calculates to

[
ẋ
q̇L

]
=

[
0 − 1

AE

0 0

]
︸ ︷︷ ︸

A

[
x
qL

]
+

[ VD
AE

0

]
︸ ︷︷ ︸

b

nP

y = [
1 0

]
︸ ︷︷ ︸

cᵀ

[
x
qL

]
,

(10.13)

which is linear and even time-invariant. Thus, for the system (10.13), now a complete
observer can be designed. For this purpose, the observability must be checked by the
calculation of the observability matrix

Q =
[

cᵀ

cᵀA

]
=

[
1 0
0 − 1

AE

]
, (10.14)

which is regular for every point in time and, thus, the system (10.13) is observable.
In order to simplify the observer design, the system is transformed into observer
canonical coordinates by using

z = �−1x (10.15)

and the transformation matrix [7]

�−1 =
[
Q−1

[
0
1

]
,AQ−1

[
0
1

]]
=

[
0 − 1

AE

1 0

]
. (10.16)

The system (10.13) in canonical coordinates calculates to

A� = �A�−1 =
[
0 0
1 0

]

c�ᵀ = [
0 1

]
,

(10.17)

where the dynamics of the observer can be easily designed

AO = A� +
[−α0

−α1

]
c�ᵀ =

[
0 −α0

1 −α1

]
. (10.18)
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After a transformation back into original coordinates, the complete observer reads

[ ˙̂x
˙̂qL

]
=

[− q̂L
AE

+ VD
AE
nP + α1 (x − x̂)

AEα0 (x − x̂)

]
. (10.19)

10.4 Simulations

The controller and the observer derivated in the previous sectionwere tested by simu-
lation inMatlab/Simulink. The corresponding block diagram is depicted in Fig. 10.2.
The blue-colored block on the right-hand side contains the dynamic model of the
press according to Eqs. (10.2) and (10.3). In the orange block left to the press model,
the flatness-based controller and the load observer are located. The block has five
inputs, as two for the desired position and velocity of the piston, the actual rotational
speed of the pump, the actual piston position, and, finally, the effective cross-sectional
area of the piston according to the switching states of the valves V1 and V2 in Fig. 10.1.
The decisions for the valve switching and, thus, the selection of fast or press mode
are calculated in the state machine depicted at the bottom of the block diagram in
Fig. 10.2. The remaining red blocks in the upper left corner of the simulation dia-
gram represent the parameterization of the piston trajectory, which must be at least
two times differentiable with respect to time according to the requirements for the
flatness-based control.

The simulation experiments were carried out for a spring load according to
Fig. 10.3, where the load was determined by the compressive force due to the dis-
placement x − xcontact of a linear spring. In Fig. 10.4, the simulation results for a
full exemplary press cycle are depicted. In Fig. 10.4a, the position and the velocity
of the piston are illustrated. The press cycle starts at an initial position of 200mm
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Fig. 10.2 Simulation model
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Fig. 10.3 Load model

with a rapid motion downward close to the position xcontact with a small effective
cross-sectional area A2. During this fast motion downward, some fluctuations in the
velocity are present, which result from the switching of the unlockable check valves
V4 and V5 according to the internal pressure states presented in the upper diagram of
Fig. 10.4b. Then the configuration is switched to the large effective cross-sectional
area A1 for the press mode and the motion against the spring load is executed, which
results in a pressure build up of p1 in the main cylinder chamber. A certain hold-
ing phase in the desired target press position is followed by a decompression phase
until the piston is losing contact with the load spring. Then the cross-sectional area is
switched to fast mode again and a rapid motion to the initial position is performed. In
the beginning of this phase, again fluctuations in the velocity can be observed, which

(a) Position and velocity (b) Pressure and rotational speed

Fig. 10.4 Simulation of an exemplary press cycle
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Fig. 10.5 Zoom into Press mode

results from switching to the small effective cross-sectional area A2 and, furthermore,
again from the switching of unlockable check valves V4 and V5.

Figure10.5 presents a close-up of the pressmode,which shows a satisfying control
performance of the piston trajectory. Only in the decompression phase at higher
velocity compared to the press motion and at switching to rapid motion configuration
some fluctuations in the trajectory occur. However, the controller copes with such
disturbances satisfyingly resulting in a nice decay of the trajectory error.

10.5 Measurements

In Fig. 10.6a, a picture of a single axis prototype with a force capacity of 25 tons is
presented, and the major parts with regard to Fig. 10.1 are indicated. In Fig. 10.6b,
a parallel arrangement of two single axes is depicted, which was considered for the
measurements. By the use of a beam, the two individual press axes act simultaneously
against the load, which is constituted by a distributed elastomer spring.

In Fig. 10.7, the measurements of an exemplary press cycle with the 50 tons two
axes press are illustrated. In the diagramon the left-hand side (Fig. 10.7a), the position
and the velocity of the piston are depicted.Like in the simulation results during the fast
motion downward fluctuations occur in the measurements as well. Here, additionally
to the effect of the switching of the unlockable check valves, a saturation effect in
the rotational speed of the motor comes into play, which can be seen in the lower
diagram of Fig. 10.7b.

In Fig. 10.8a, a zoom into the press mode phase is illustrated. The fluctuations
in the actual velocity result from the numeric differentiation of the position signal.
In Fig. 10.8b, a closer view to the target position of 37mm shows 60 consecutive
periods of one press cycle. In those measurements, an accuracy of approximately
40μm at a repeatability in the range of 10μm can be achieved. It must be remarked
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Fig. 10.6 Testrig for measurements
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Fig. 10.7 Measurements of a full exemplary press cycle

that the results could be achieved without any parameter identification. Due to the
simple structure of the dynamic model for the synthesis, only a few parameters from
datasheets and the mechanical design were necessary. Furthermore, the measure-
ments were carried out with a two axes prototype. Both axes respond a little bit
differently due to their individual friction behavior and, thus, each axis represents a
certain disturbance for the other press axis. Consequently, with a single axis press,
even a better accuracy can be achieved.
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10.6 Conclusions and Outlook

In this paper, the design and application of a flatness-based controller for a double-
axis closed-circuit hydraulic press prototype was presented. The press concept is
realized as displacement control, where the rotational speed of the pump corresponds
to the velocity of the piston, thus, no resistance control is applied and no proportional
valves are used. The transmission ratio between force and velocity of the piston with
regard to the rotational speed of the pump is controlled by on/off switching valves.
With regard to displacement control of the piston, an excellent energy efficiency
can be achieved compared to conventional hydraulic press concepts; no additional
cooler is needed. The closed-circuit system only needs a small amount of oil, thus,
a compact design can be realized in order to completely hide the hydraulics from
the operator; only electricity must be provided to the black-box system. For the
controller design, a simple dynamic model could be found, which was used for the
design of a flatness-based controller. This control strategy achieves a stabilization
of the trajectory, which means that multiple individual press axes can be arranged
and operated in parallel without any additional synchronizing controller. With the
presented controller, satisfying control performance could be achieved on a two-
axis press prototype. The next steps in development are focused on a more compact
integration of the motor-pump section.
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Chapter 11
On the Calculation of Differential
Parametrizations for the Feedforward
Control of an Euler–Bernoulli Beam

Bernd Kolar, Nicole Gehring, and Markus Schöberl

Abstract We are concerned with the motion planning for underactuated Euler–
Bernoulli beams. The design of the feedforward control is based on a differential
parametrization of the beam, where all system variables are expressed in terms of
a free time function and its infinitely many derivatives. We derive an advantageous
representation of the set of all formal differential parametrizations of the beam.
Based on this representation, we identify a well-known parametrization, for the first
time without the use of operational calculus. This parametrization is a flat one, as
the corresponding series representations of the system variables converge. Further-
more, we discuss a formal differential parametrization where the free time function
allows a physical interpretation as the bending moment at the unactuated bound-
ary. Even though the corresponding series do not converge, a numerical simulation
using the least term summation illustrates the usefulness of this formal differential
parametrization for motion planning.

11.1 Introduction

The feedforward control of boundary actuated Euler–Bernoulli beams is usually
concerned with the question of how an input has to be chosen in order to transition
the beam from one steady state to another. The flatness-based approach, originally
introduced for lumped-parameter systems, has proven very valuable for the motion
planning in distributed-parameter systems (e.g., [1, 4, 8, 11]). It relies on adifferential
parametrization of the spatially dependent system solution in terms of a parametrizing
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(boundary) output, and, in the case of the Euler–Bernoulli beam or parabolic systems
like the heat equation involves infinite series. As these series comprise infinitely
many time derivatives of the parametrizing output, in order to transition the system
between two steady states and have the series converge, the desired trajectory of the
parametrizing output has to be a non-analytic, smooth function of appropriate Gevrey
class (e.g., [7]). If a Gevrey class ensuring convergence exists, the parametrizing
output is called a flat output, and the differential parametrization is a flat one (e.g.,
[8]). On the other hand, if no suchGevrey class exists, the differential parametrization
is specified by the prefix formal. However, even in this case, a flatness-based motion
planning may still be possible (e.g. [7, 14]).

The main challenge of the flatness-based approach lies in finding a differential
parametrization. For the heat conduction problem, this is either based on the ansatz
of a power series in the spatial variable (e.g., [7]), the ansatz in [5] and [6] which
generalizes the Brunovsky decomposition, or some kind of operational calculus (e.g.,
[9, 11]). All these ideas could be applied in a straightforwardway to the fully actuated
Euler–Bernoulli beam, i.e., configurations with two boundary inputs at one end. In
contrast, in themore difficult casewith only one input, considered here, all differential
parametrizations found in the literature solely rely on operational calculus (e.g., [2,
10–12]), to the best of the authors’ knowledge.

In this paper, we demonstrate that a time-domain approach similar to [5] and [6]
is also applicable to an Euler–Bernoulli beam with one boundary input. One of our
main results is an advantageous representation of the set of all formal differential
parametrizations of the beam. Based on this representation, it is easy to identify a
distinguished differential parametrization that is a flat one and well known from the
literature (see e.g., [11]).As nophysical interpretation is known for this flat output,we
discuss an interesting formal differential parametrizationwith a parametrizing output
that allows an interpretation as the bending moment at the unactuated boundary.
Although the corresponding series do not converge (for any non-analytic function),
inspired by the computations with divergent series in [7], simulation results based
on the least term summation illustrate that this formal differential parametrization
can still be useful for motion planning.

We use the convention that the set of natural numbersN includes 0. Thus, (ak)k∈N
denotes the infinite sequence (a0, a1, a2, . . .). By (a0, a1, . . . , ak) we denote a finite
sequence with the last element ak for some fixed k.

11.2 A Series Ansatz for Solutions of the Euler–Bernoulli
Beam

In this contribution, we consider an Euler–Bernoulli beam with a clamped end at
z = 0 and a free end at z = 1, with the bending moment serving as the control input
u(t) at the latter. The deflection w(z, t) satisfies the (normalized) beam equation
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∂2
t w(z, t) = −∂4

z w(z, t) , 0 ≤ z ≤ 1 , t ≥ 0 (11.1a)

and the boundary conditions

w(0, t) = 0 , ∂zw(0, t) = 0 , ∂2
z w(1, t) = u(t) , ∂3

z w(1, t) = 0 . (11.1b)

This is a classical beam configuration that has been studied in the context of flatness-
based feedforward control, e.g., in [11] and [3].1

The objective of the present paper is the construction of formal differential
parametrizations for the Euler–Bernoulli beam (11.1). We call a representation

w(z, t) =
∞∑

k=0

αk(z)y
(k)(t) (11.2a)

u(t) =
∞∑

k=0

βk y
(k)(t) (11.2b)

of the deflectionw(z, t) and the input u(t) by a parametrizing output y(t) and its time
derivatives a formal differential parametrization of the system (11.1), if the series
(11.2a) and (11.2b) formally satisfy the PDE (11.1a) and the boundary conditions
(11.1b) for arbitrary smooth functions y(t). It is important to emphasize the word
formal sincewe are dealingwith formal solutions2 and discuss the problem of finding
parametrizations (11.2) separately from the question of convergence, see also [14] or
[7]. For a convergence analysis, y(t) has to be restricted to so-calledGevrey functions
with appropriately bounded derivatives, see e.g., [7].

Definition 1 A smooth function y(t) defined on R
+ is Gevrey of order γ if there

exist constants M, R > 0 such that

sup
t∈R+

∣∣y(m)(t)
∣∣ ≤ M (m!)γ

Rm , ∀m ∈ N . (11.3)

Gevrey functions of order γ = 1 are analytic. For planning transitions between
equilibria of the system (11.1), which are characterized by constant values of y(t),
they cannot be used. The reason is that any analytic function that is constant on
an open subset of R+ is constant everywhere. In contrast, this is no longer true for

1 The general constant-coefficient case

μ∂2t w(z, t) = −E I∂4z w(z, t) , 0 ≤ z ≤ L , t ≥ 0

with linear mass density μ > 0, flexural rigidity E I > 0, and a spatial domain [0, L] can always
be traced back to the normalized case (11.1) by transformations of the independent variables z and
t .
2 The series (11.2a) and (11.2b) are formal solutions if they satisfy (11.1a) and (11.1b) after formally
interchanging differentiation and summation, even if they do not converge.
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Gevrey functions y(t) of order γ > 1. If the series (11.2a) and (11.2b) converge for
a Gevrey class with γ > 1, the parametrizing output y(t) is called a flat output.

Remark 1 In the context of motion planning, the question arises whether the span
of the set {αk(z), k ∈ N} of functions of a parametrization (11.2a) is dense in the
state space, see also [5]. However, this question is not within the scope of the paper.

In order to derive conditions for the functions αk(z) and coefficients βk , let us plug
the ansatz (11.2) into the PDE (11.1a) and the boundary conditions (11.1b). Since
the resulting equations must hold for arbitrary smooth functions y(t), after formally
interchanging differentiation and summation, the factors of all time derivatives of
y(t) have to vanish. Hence, we get

α′′′′
0 (z) = 0 , α′′′′

1 (z) = 0 and α′′′′
k (z) = −αk−2(z) , k ≥ 2 (11.4a)

as well as

αk(0) = 0 , α′
k(0) = 0 , α′′

k (1) = βk , α′′′
k (1) = 0 , k ≥ 0 . (11.4b)

Therein, ′ denotes the differentiationwith respect to the spatial variable z.With (11.4)
we have to solve a sequence of boundary value problems in the independent variable
z. Obviously, for all k ≥ 2, the function αk(z) follows from a fourfold integration of
−αk−2(z). The integration constants are determined by the boundary values (11.4b).
Consequently, the functionsαk(z)of the series representation (11.2a) of the deflection
w(z, t) are uniquely determined by the coefficients (β0, β1, . . . , βk) of the series
representation (11.2b) of the input u(t). More precisely, the functions αk(z) with
even k are determined by the coefficients (β0, β2, . . . , βk) with even indices, the
functions αk(z) with odd k by the coefficients (β1, β3, . . . , βk) with odd indices.
Hence, the functionsαk(z)with even andodd indices canbe calculated independently.
In particular, setting all βk with odd k to zero yields a parametrization

w(z, t) =
∞∑

k=0

α2k(z)y
(2k)(t) (11.5a)

u(t) =
∞∑

k=0

β2k y
(2k)(t) , (11.5b)

where only time derivatives of even order occur. In the remainder of the paper, for
simplicity, we restrict ourselves to this special case. The calculations for the case
with odd indices could be performed in an analogous way.

Integrating α′′′′
0 (z) = 0 four times and using (11.4b) yields the first function

α0(z) = 1
2β0z

2 (11.6)

of (11.5a). Note that α0(z) corresponds to an equilibrium profile of the beam,
since all time derivatives of y(t) vanish in steady state. Continuing by solving
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α′′′′
2 (z) = −α0(z) and α′′′′

4 (z) = −α2(z), it can be shown that the functions α2k(z)
are polynomials

α2k(z) =
k∑

i=0

(
ck,i z

4i+2 + dk,i z
4i+3) (11.7)

with dk,k = 0, where ck,i denotes the coefficients of the even powers z4i+2, and
dk,i denotes the coefficients of the odd powers z4i+3. In principle, by successive
integration we could calculate all functions α2k(z)—up to some arbitrary index k—
in terms of the sequence (β0, β2, . . . , β2k). However, this is cumbersome and does
not answer the important question how one has to choose the sequence (β2k)k∈N in
order for the series (11.5a) and (11.5b) to converge for a sufficiently large class of
functions y(t). Therefore, in the following section, we study the connections between
the sequence (β2k)k∈N and the coefficients of the polynomials (11.7) in more detail.

11.3 Derivation of Formal Differential Parametrizations

First, we determine how the coefficients of (11.7) depend on the coefficients of

α2(k−1)(z) =
k−1∑

i=0

(
ck−1,i z

4i+2 + dk−1,i z
4i+3

)
. (11.8)

Integrating−α2(k−1)(z) four times and using (11.4b), a comparisonwith (11.7) shows
that the coefficients of (11.7) can be calculated from the coefficients of (11.8) accord-
ing to

ck,0 = 1
2β2k − 1

2

k−1∑

i=0

(
ck−1,i

1
4i+4 + dk−1,i

1
4i+5

)
(11.9)

dk,0 = 1
6

k−1∑

i=0

(
ck−1,i

1
4i+3 + dk−1,i

1
4i+4

)
(11.10)

and

ck,i = −ck−1,i−1
(4i−2)!
(4i+2)! , dk,i = −dk−1,i−1

(4i−1)!
(4i+3)! , 1 ≤ i ≤ k . (11.11)

It can be observed that, according to (11.9) and (11.10), the coefficients ck,0 and dk,0
of the powers z2 and z3 in (11.7) depend on all coefficients of (11.8) and on β2k .
In contrast, the coefficients of the higher powers of z in (11.7) depend only on one
coefficient of (11.8) each (cf. (11.11)). Next, it is straightforward to show that the
coefficients ck,0 and dk,0 of (11.7) can alternatively be expressed by the sequences
(c0,0, c1,0, . . . , ck−1,0) and (d0,0, d1,0, . . . , dk−1,0), i.e., the coefficients of z2 and z3



128 B. Kolar et al.

of the polynomials α0(z), . . . , α2(k−1)(z), as well as β2k : By a repeated application
of (11.11) we get

ck,i = (−1)i 2!
(4i+2)!ck−i,0 , dk,i = (−1)i 3!

(4i+3)!dk−i,0 , 0 ≤ i ≤ k , (11.12)

and plugging (11.12) into (11.9) and (11.10) results in

ck,0 = 1
2β2k − 1

2

k−1∑

i=0

(−1)i
(
ck−1−i,0

2(4i+3)
(4i+4)! + dk−1−i,0

6(4i+4)
(4i+5)!

)
(11.13)

dk,0 = 1
6

k−1∑

i=0

(−1)i
(
ck−1−i,0

2
(4i+3)! + dk−1−i,0

6
(4i+4)!

)
. (11.14)

Based on (11.12), (11.13), and (11.14), we can now formulate one of our key results.

Theorem 1 The functions α2k(z) and coefficients β2k of the formal differential
parametrization (11.5) are uniquely determined by the sequence (ck,0)k∈N.

Proof If we fix a sequence (ck,0)k∈N, (11.14) allows us to calculate step by step the
corresponding sequence (dk,0)k∈N, starting with d0,0 = 0. Subsequently, by (11.12),
the remaining coefficients of the functions α2k(z) of (11.5a) can be determined from
(ck,0)k∈N and (dk,0)k∈N. Finally, solving (11.13) for β2k yields the coefficients of
(11.5b). �

Based on the fact that the sequence (ck,0)k∈N can be chosen arbitrarily, the following
corollary can be formulated.

Corollary 1 There is a one-to-one correspondence between arbitrary sequences
(ck,0)k∈N and formal differential parametrizations (11.5) of the Euler–Bernoulli
beam.

Proof By Theorem 1, every sequence (ck,0)k∈N determines a unique formal differ-
ential parametrization (11.5). Conversely, since the sequence (ck,0)k∈N consists of
the coefficients of z2 in the functions α2k(z) of (11.5a), every formal differential
parametrization (11.5) determines a unique sequence (ck,0)k∈N. �

As already mentioned in Sect. 11.2, the functions α2k(z) of (11.5a) are uniquely
determined by the coefficients (β0, β2, . . . , β2k) of (11.5b). Hence, the formal differ-
ential parametrization (11.5) is also uniquely determined by the sequence (β2k)k∈N.
However, a representation of all formal differential parametrizations of the Euler–
Bernoulli beam using the sequence (ck,0)k∈N as the free design parameter is advanta-
geous. This becomes apparent when we want to find flat parametrizations, where the
series (11.5a) and (11.5b) converge for functions y(t) of appropriate Gevrey order:
Since the input u(t) is the bending moment at the free boundary, which follows
from the deflection w(z, t) as u(t) = ∂2

z w(1, t), the convergence of the series (11.5a)
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implies the convergence of the series (11.5b), under the assumption that w(z, t) is
twice differentiable with respect to z at z = 1. Thus, it is sufficient to check the con-
vergence of the series representation (11.5a) of the deflection w(z, t). In (11.5a), the
elements of the sequence (ck,0)k∈N appear as coefficients of the polynomials α2k(z).
This facilitates the construction of differential parametrizations, as will be illustrated
by means of the examples in Sect. 11.4.

In the following, we derive explicit expressions for the sequences (dk,0)k∈N and
(β2k)k∈N in terms of the sequence (ck,0)k∈N.

Lemma 1 The sequence (dk,0)k∈N is generated by the discrete convolution

dk,0 =
k∑

i=0

ηk−i ci,0 (11.15)

of the sequence (ck,0)k∈N with the sequence (ηk)k∈N, which is defined recursively by

η0 = 0 and ηk = − (−1)k

3(4k−1)! −
k∑

i=1

ηk−i
(−1)i

(4i)! , k ≥ 1. (11.16)

Proof First, it should be noted that dk,0 could be calculated from (11.14) by eliminat-
ing successively dk−1,0, dk−2,0, . . . with shifted versions of (11.14). This shows that
dk,0 is a linear combination of the coefficients of the sequence (c0,0, c1,0, . . . , ck,0),
justifying an ansatz of the form (11.15). Due to d0,0 = 0, from (11.15), we immedi-
ately get η0 = 0. In order to determine ηk , k ≥ 1, we plug the ansatz (11.15) into the
relation (11.14). After some simplifications, this yields the equation

k∑

i=0

ηk−i ci,0 = 1
3

k−1∑

n=0

(−1)k−1−n 1
(4(k−n)−1)!cn,0

+
k−1∑

n=0

(−1)k−1−n
n∑

j=0

ηn− j
1

(4(k−n))!c j,0, (11.17)

whichmust hold for every choice of the sequence (c0,0, c1,0, . . . , ck,0). By the special
choice (1, 0, . . . , 0), the relation (11.17) can be simplified to (11.16). �

Similarly, the sequence (β2k)k∈N can be calculated from the sequence (ck,0)k∈N.

Lemma 2 The sequence (β2k)k∈N is generated by the discrete convolution

β2k =
k∑

i=0

μk−i ci,0 (11.18)

of the sequence (ck,0)k∈N with the sequence (μk)k∈N, which is defined recursively by
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μ0 = 2 and μk = 4k

(4k)! −
k∑

i=1

μk−i
(−1)i

(4i)! , k ≥ 1. (11.19)

Proof In principle, β2k can be calculated by solving (11.13) for β2k and replacing
dk−1,0, dk−2,0, . . . successively with shifted versions of (11.14). This shows that β2k

is a linear combination of the coefficients of the sequence (c0,0, c1,0, . . . , ck,0), jus-
tifying an ansatz of the form (11.18). A comparison of (11.6) and (11.7) shows that
c0,0 = 1

2β0, and from (11.18) with k = 0 we immediately get μ0 = 2. In order to
determine μk , k ≥ 1, we solve (11.13) for β2k and insert the ansatz (11.18), which
yields

k∑

i=0

μk−i ci,0 = 2ck,0 +
k−1∑

i=0

(−1)i
(
ck−1−i,0

2(4i+3)
(4i+4)! + dk−1−i,0

6(4i+4)
(4i+5)!

)
. (11.20)

To get rid of the coefficients ci,0 and di,0 in (11.20), we can use the fact that the
particular sequence ck,0 = (−1)k

(4k)! determines the sequence dk,0 = − 4k(−1)k

3(4k)! . This fol-
lows rather easily from (11.15) and (11.16) and will be shown in Sect. 11.4.1. After
inserting these particular sequences, (11.20) can be simplified to (11.19). �

A numerical evaluation of the recursively defined sequences (11.16) and (11.19)
strongly suggests, that ηk and μk are defined by

ηk = 4k+1(1−16k )
6(4k)! B4k and μk = 2

4k (4k)!
2k∑

i=0

(−1)i E2i
(4k
2i

)
, k ≥ 0,

where Bi denotes the Bernoulli numbers and Ei the Euler numbers. This explicit rep-
resentation may be advantageous for a convergence analysis of the parametrizations
(11.5a) and (11.5b).

11.4 Two Notable Differential Parametrizations

In the previous section, we have shown that the sequence (ck,0)k∈N can be used as
a design parameter for the formal differential parametrizations (11.5) of the Euler–
Bernoulli beam. Based on the representations (11.15), (11.16) and (11.18), (11.19)
of the sequences (dk,0)k∈N and (β2k)k∈N, we show that there is a natural choice for
the sequence (ck,0)k∈N that leads to a flat parametrization, which is well known from
the literature (see e.g., [11]). Subsequently, we discuss a special formal differential
parametrizationwhere the parametrizing output y(t) allows a physical interpretation.
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11.4.1 A Natural Choice

Consider the sum (11.15). If we split off the term with i = 0 and substitute (11.16)
for ηk , we get

dk,0 = − (−1)k

3(4k−1)!c0,0 +
k∑

i=1

ηk−i

(
ci,0 − (−1)i

(4i)! c0,0
)

. (11.21)

With the special choice

ck,0 = (−1)k

(4k)! c0,0 , k ≥ 0 (11.22)

for the sequence (ck,0)k∈N, the sum in (11.21) vanishes, and therefore (11.21) sim-
plifies to dk,0 = − (−1)k

3(4k−1)!c0,0, k ≥ 1. Expanding with 4k finally yields the relation

dk,0 = − 4k(−1)k

3(4k)! c0,0 , k ≥ 0, (11.23)

which also includes the case k = 0 with d0,0 = 0.
Analogously, splitting off the term with i = 0 in the sum (11.18) and substituting

(11.19) for μk yields

β2k = 4k

(4k)!c0,0 +
k∑

i=1

μk−i

(
ci,0 − (−1)i

(4i)! c0,0
)

. (11.24)

By the choice (11.22) for the sequence (ck,0)k∈N, it is evident that the sum vanishes
again, and (11.24) simplifies toβ2k = 4k

(4k)!c0,0, k ≥ 1. For k = 0, we haveβ0 = 2c0,0,
and therefore, the complete sequence is given by

β2k =
{
2c0,0 , k = 0
4k

(4k)!c0,0 , k ≥ 1.
(11.25)

Finally, plugging (11.22) and (11.23) into (11.12) results in the complete set of
coefficients

ck,i = 4(−1)k

(4i+2)!(4(k−i))!c0,0 , 0 ≤ i ≤ k , k ≥ 0 (11.26)

dk,i = − 16(−1)k (k−i)
(4i+3)!(4(k−i))!c0,0 , 0 ≤ i ≤ k , k ≥ 0 (11.27)

of the polynomials (11.7). If we set the scaling factor in (11.22) to c0,0 = 2, we get
the same differential parametrization
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w(z, t) =
∞∑

k=0

4(−1)k
k∑

i=0

(
1

(4i+2)!(4(k−i))! z
4i+2 − 4(k−i)

(4i+3)!(4(k−i))! z
4i+3

)
y(2k)(t)

(11.28a)

u(t) = 4y(t) +
∞∑

k=1

2 4k

(4k)! y
(2k)(t) (11.28b)

that was derived, e.g., in [11] by means of operational calculus.3 As shown in [11],
the series (11.28a) and (11.28b) converge for all trajectories y(t) of Gevrey class
γ < 2. Hence, this parametrizing output y(t) is a flat output.

11.4.2 Formal Differential Parametrization by the Bending
Moment at the Clamped Boundary

In motion planning, one is often interested in a physical interpretation of the
parametrizing output y(t) in terms of a boundary value of the system. For the flat
output y(t) of the differential parametrization (11.28), no such physical interpreta-
tion is known. In contrast, for the fully actuated Euler–Bernoulli beam, with both
the bending moment and the shear force at the free end as inputs, it is not difficult
to show that the bending moment and the shear force at the clamped end form a
flat output. For our underactuated configuration (11.1), we show that there exists at
least one (useful) formal differential parametrization (11.5) where the parametrizing
output y(t) allows a physical interpretation.

First, let us restate the formal differential parametrization of the deflectionw(z, t)
by plugging (11.7) into (11.5a):

w(z, t) =
∞∑

k=0

k∑

i=0

(
ck,i z

4i+2 + dk,i z
4i+3

)
y(2k)(t).

Evaluating its second spatial derivative at z = 0 yields the parametrization of the
bending moment

∂2
z w(0, t) =

∞∑

k=0

2ck,0y
(2k)(t) (11.29)

at the clamped boundary. If we choose the sequence (ck,0)k∈N as

(c0,0, c1,0, c2,0, . . .) = ( 12 , 0, 0, . . .), (11.30)

3 In contrast to our double sum representation (11.28a), in [11], the parametrization of the deflection
w(z, t) is expressed by a single sum of real and imaginary parts of powers of complex numbers.
Also, the input used in [11] has the opposite sign as compared to our input u(t).
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only the first term of the sum is left, and (11.29) simplifies to

y(t) = ∂2
z w(0, t). (11.31)

Thus, in this case, the function y(t) is simply the bending moment at the clamped
boundary. By the choice (11.30) the discrete convolutions (11.15) and (11.18) sim-
plify to dk,0 = 1

2ηk , k ≥ 0 and β2k = 1
2μk , k ≥ 0. Then with (11.12) we get the

formal differential parametrization

w(z, t) =
∞∑

k=0

(
(−1)k 1

(4k+2)! z
4k+2 +

k−1∑

i=0

(−1)i 3
(4i+3)!ηk−i z

4i+3

)
y(2k)(t) (11.32a)

u(t) = 1
2

∞∑

k=0

μk y
(2k)(t) . (11.32b)

However, since the sequence (μk)k∈N does not go to zero fast enough, (11.32b) cannot
converge for any non-analytic function y(t) of Gevrey order γ > 1. Hence, neither
does (11.32a). A numerical evaluation of the elements μk reveals that μk+1

μk
≈ 1

24 ,

for k ≥ 2. Since 24k < (2k)! for large k, the bound supt∈R+
∣∣y(2k)(t)

∣∣ guaranteed by
(11.3) grows much faster than the coefficients μk converge to zero. Consequently,
the product μk y(2k)(t) diverges and the parametrizing output y(t) is not a flat one.

However, a flatness-based transition between two equilibria is still possible using
the divergent series (11.32b). In [7], simulation results for a heat conduction problem
showed that the least term summation allows feedforward control even based on
divergent series. More precisely, the divergent series discussed in [7] first converges
very fast and then diverges very fast. A similar effect can be observed for our beam
parametrization (11.32b), for suitable trajectories y(t). Now, the idea of the least
term summation in [7] is to take into account only the convergent part for each time
t . Hence, instead of the series (11.32b), the feedforward control u(t) is calculated by

u(t) = 1
2

nt∑

k=0

μk y
(2k)(t), (11.33)

with nt defined for each t as the smallest integer greater than 1 that meets

∣∣μnt+1y
(2(nt+1))(t)

∣∣ >
∣∣μnt y

(2nt )(t)
∣∣ .

Simulation studies were performed in order to illustrate the usefulness of this
approach. Here, we defined the desired trajectory for y(t) based on a function

�σ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 t ≤ 0
∫ t
0 φσ (τ )dτ

∫ 1
0 φσ (τ )dτ

t ∈ (0, 1)

1 t ≥ 1,
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with φσ (t) = exp (−1/((1 − t)t)σ ), scaled for a transition in 1 s. This function is
Gevrey of order 1 + 1

σ
for σ > 0. In order to transition the beam between the equi-

libria w(z, 0) = 0 and w(z, T ) = 1
2 z

2 in finite time T , based on the definition of
the parametrizing output y(t) in (11.31), the corresponding initial and final value of
y(t) are y(0) = 0 and y(T ) = 1. By setting T = 5 s and σ = 1.1, we use the same
reference trajectory

y(t) = �σ( t
T ) (11.34)

that was used in [3] for the flat output in (11.28).

Remark 2 In [3], the transition time is 11.5ms. As our normalized beam and the
one with physical parameters in [3] are related by a scaling of the spatial variable and
a time scaling with the factor 1

2.310
3, this corresponds to the transition time T = 5 s

used in our simulation.

Figures11.1 and 11.2 give simulation results for the feedforward control (11.33)
based on the reference trajectory (11.34). The distributed beam deflection in Fig. 11.1
shows that the desired transition is achieved. In Fig. 11.2, the (simulated) bending
moment at the clamped boundary, i.e., the parametrizing output y(t), matches the
desired reference trajectory (11.34), apart from some small deviations. Thus, using
only the formal differential parametrization (11.32), we managed to implement the
same transition considered in [3] on the basis of the flat differential parametrization
(11.28). However, in contrast to the flat output used in [3], our parametrizing output
offers a physical interpretation. This is particularly interesting for applications where
the bending moment must not exceed certain bounds since we can take account of
these bounds in the design of the desired trajectory y(t) directly. Nevertheless, it is
important to mention that choosing the transition time T too small means that the
series (11.32b) diverges too soon. Consequently, the least term summation would
not make sense anymore. In contrast, increasing the transition time improves the
results, in particular with respect to the small deviations visible in Fig. 11.2. For

Fig. 11.1 Deflection w(z, t)
of the beam
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Fig. 11.2 Bending moment
y(t) at z = 0

instance, with T = 10 s the simulated bending moment at the clamped boundary
almost perfectly matches the reference (11.34). We also expect that evaluating the
divergent series (11.32b) with the more sophisticated summation methods used in
[13] and [14] should further improve the results.

11.5 Conclusion

We have derived an advantageous representation of the set of all formal differen-
tial parametrizations for an underactuated Euler–Bernoulli beam with one boundary
input. Based on this result, it is straightforward to find the well-known classical
differential parametrization for the considered configuration of the beam, which is
usually derived bymeans of operational calculus. Since the parametrizing output y(t)
of this differential parametrization does not have a physical interpretation, we have
also discussed a formal differential parametrization where the parametrizing output
is the bending moment at the clamped boundary. This parametrization is particularly
useful for motion planning problems where the bending moment should stay within
certain limits.

The challenge with this formal differential parametrization is that for the trajec-
tories of the parametrizing output y(t) there does not exist a Gevrey class of order
γ > 1 which ensures convergence of the corresponding infinite series. We conjec-
ture that these non-convergent infinite series correspond to Taylor expansions of
non-ananlytic solutions of the Euler–Bernoulli beam. To give meaning to these non-
convergent infinite series, we have used the least term summation and presented the
corresponding simulation results. Even though the results are already very promis-
ing, it is to be expected that they can still be improved by using more advanced
summation methods.
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Chapter 12
An Application of Graphene Composites
for Additional Damping of Vibrations
of Smart Structures Based on
Piezoelectric Elements

Valerii P. Matveenko, Dmitriy A. Oshmarin, and Nataliia A. Iurlova

Abstract In this paper, we consider a modified version of smart structures, which
are the piecewise homogeneous bodies, incorporating elements made of elastic and
viscoelastic materials and piezoelectric elements, whose electrodes can be connected
to shunting circuits. One of the main intentions of such structures is the damping
of vibrations. The focus of this study is to investigate the possibility of fitting smart
structures with shunt circuits, in which the element made of a graphene composite
behaves not only as a deformable solid but also as a resistor. A mathematical for-
mulation of the problems of natural vibrations and forced steady-state vibrations is
developed. The results of numerical experiments show that graphene-based com-
posites can be used as an additional mechanism for damping vibrations in smart
structures with attached piezoelectric elements.

12.1 Introduction

In general terms, a distinguishing feature of smartmaterials is their ability tomaintain
or change their characteristics in a predictable and controlled manner according to
change of environmental conditions [6]. In this respect, they present considerable
promise for various industrial applications. The feasibility of such applications is a
challenging task. Its successful implementation involves the development of smart
materials or, more precisely, smart structures incorporating elements, which operate
as sensors, actuators, and processors, establishing the prescribed coupling between
sensors and actuators. An abundance of smart structures is represented by various
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combinations of elements, which are able to partially or completely satisfy the above
requirements [11].

It should be noted that in the last two to three decades, there has been almost an
exponential increase in the number of publications devoted to various aspects of smart
structures and their practical applications. Among the numerous smart structures,
which basic parameters are associated with their mechanical behavior, the piezo-
electric and optic fiber sensors are of considerable commercial importance, whereas
the element showing the shape memory effect, as well as piezoelectric, magnetorhe-
ological, electrorheological, and thermoelastic properties are used as actuators.

In this study, we consider smart structures, which are based on piezoelectric ele-
ments. It is worth noting the fact that nowadays such smart structures have a rapidly
developing resource base. Materials with a piezoelectric effect number more than
one and a half thousand [4]. One of the advantages of smart structures incorporating
based on the application of piezoelectric elements is the possibility of controlling
their dynamic behavior with the aid of electric shunt circuits, which consist of resis-
tive, capacitive, and inductive elements connected through to the electrodes to the
surfaces of piezoelectric elements. In such systems, the electric potential from the
piezoelectric elements is dissipated in the shunt circuits in the form of heat or electro-
magnetic radiation, while the elements of shunt circuits are themechanical analogues
of the additional mass, elasticity, and viscosity. The possibility of using shunt elec-
tric circuits in smart structures quickens the development of an appropriate base for
producing elements with resistive, capacitive, and inductive properties.

The analysis of information on graphene composites [7, 8] available in the lit-
erature allows us to conclude that the mechanical behavior of these composites can
be described by a model of the elastic or viscoelastic body. Moreover, the elements
made of these materials can act as resistors. Therefore, the objective of this study is
to substantiate the idea of using graphene composites both as a structural material
and resistive elements.

12.2 Mathematical Formulation of the Problem on
Vibrations of a Deformable Body with the Elements
Made of Piezoelectric Materials and Resistors

Amathematical formulation of the problem on vibrations of deformable bodies with
piezoelectric elements is based on the variational equation of motion of a deformable
body, whose elements exhibit a piezoelectric effect [5, 12]
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N∑

k=1

⎛

⎜⎝
∫

V k
1

(
σi jδεi j + ρk üi δui

)
dV

⎞

⎟⎠+

+
∫

V2

(
σi jδεi j − DiδEi + ρüiδui

)
dV =

=
∫

Sσ

piδuidS +
∫

Sp

qeδϕdS.

(12.1)

Here, V1 = ∑N
k V k

1 is a part of a piecewise homogeneous body of the volume
V = V1 + V2, consisting of homogeneous elastic or viscoelastic elements, and V2 is
the volume of the element showing piezoelectric properties; Di and Ei are the com-
ponents of the vectors of electric induction and electric field strength flux density
and electric field intensity, respectively; σi j are the components of the symmetric
Cauchy stress tensor; εi j are the components of the linear strain tensor; ui are the
components of the displacement vector; ρk is the specific density of the material of
the k-th component of a piecewise homogeneous body V k

i ; ρ is the specific density
of piezoelectric material; Sσ is a part of the surface of the body of volume V with
prescribed surface forces pi ; Sp is the surface of a piezoelectric body of volume V2;
qe is the surface density of free charges; and ϕ is the electric potential.

For the electric field, the potentiality condition is fulfilled:

ϕ,i = −Ei . (12.2)

For the examined body, the following physical relations hold true:

• For the elastic element of the volume V1,

σi j − σδi j = 2Gk

(
εi j − 1

3
ϑδi j

)
, σ = Bkϑ. (12.3)

• For the viscoelastic elements of the volume V1 [1],

si j = 2G0
k

⎛

⎝ei j −
t∫

0

Rk(t − τ)ei j (τ )dτ

⎞

⎠ ,

σ = B0
k

⎛

⎝ϑ −
t∫

0

Uk (t − τ) ϑ (τ) dτ

⎞

⎠ .

(12.4)

• For the piezoelectric element of the volume V2,
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σi j = Ci jklεkl − βi jk Ek

Dk = βi jkεi j + �ki Ei

}
. (12.5)

Here, Gk and Bk are the elastic shear and bulk modules, G0
k and B0

k are the instan-
taneous shear and bulk moduli, Rk and Uk are the relaxation kernels, σ is the mean
stress, ϑ is the volumetric strain, si j and ei j are the components of the deviators of the
stress and strain tensors,Ci jkl are the tensor components of the elastic constants of the
piezoelectric element, and βi jk and �kl are the tensor components of the piezoelectric
and dielectric coefficients.

In the problem under consideration, separate elements of the volume V1 can be
made of graphene composites, which, in addition to mechanical properties described
by relations (12.3) or (12.4), exhibit high electrical conductivity and, therefore, can
simultaneously play the role of a resistor. In the presence of electrode-covered sur-
faces

(
Si

�

)
, the element made of the graphene composite (Vk) (Fig. 12.1a) will behave

both as a deformable body and a resistor Rk . Furthermore, in the case when the elec-
trodes of the piezoelectric element are connected via a conductor to the electrodes
of the graphene element, the composite system will be considered as an electrode-
formable body incorporating elastic and viscoelastic elements and a resistor.

Due to the presence of such a resistor, Eq. (12.1) should involve the term δAR ,
which takes into account the work done by the electric field with the potential dif-
ference 
ϕ to move the charge q on the resistance R:


ϕR = ϕR
1 − ϕR

2 , δAR = 1

R

∫ (
ϕR
1 − ϕR

2

)
δϕdt. (12.6)

Here, ϕR
1 and ϕR

2 are the electric potentials on the electrode-covered surfaces of the
piezoelectric element.

Fig. 12.1 Piecewise homogeneous body, exhibiting piezoelectrical properties (V2) with electrode-
covered surfaces

(
S1

�
, S2

�
, S3

�
, S4

�

)
, containing element made of graphene composite (Vk)
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Taking into account expression (12.6), the variational equation of motion for an
electroviscoelastic body with a resistor can be written as follows [10]:

N∑

k=1

⎛

⎜⎝
∫

V k
1

(
σi jδεi j + ρk üi δui

)
dV

⎞

⎟⎠+

+
∫

V2

(
σi jδεi j − DiδEi + ρüiδui

)
dV−

−
∫

Sσ

piδuidS −
∫

Sp

qeδϕdS+

+
nR∑

q=1

1

Rq

∫ (
ϕ
Rq

1 − ϕ
Rq

2

)
δϕdt = 0.

(12.7)

Here, nR is the number of resistors in the system.
The dissipative properties of the systems under consideration are estimated using

the values of displacement amplitudes in the resonance regimes in case of forced
steady-state vibrations or the values of the decay rate of the corresponding vibration
mode in case of natural vibrations.

A solution to the forced steady-state vibration problem is found in the following
form [10]:

ui (x, t) = Ūi (x) eipt , ϕi (x, t) = ϕ̄i (x) eipt , (12.8)

where p is the frequency of an external, periodical impact.
The vibration damping rate is characterized by the imaginary component of the

complex natural vibration frequency [1, 9]. In the natural vibration problem with
homogeneous boundary conditions, the solution is taken as [10]

ui (x, t) = ūi (x) eiωt , ϕ (x, t) = ϕ̄ (x) eiωt . (12.9)

Here, ω = ωR + iωI is the complex eigenfrequency of vibrations, where ωR corre-
sponds to the eigenfrequency, whereas ωI characterizes the damping rate of vibra-
tions, ūi (x) and ϕ̄i (x) are the natural vibration modes. In the natural vibration prob-
lems, physical equations (12.4) are replaced by their complex analogues (12.10)
[9]:

si j = 2
(
GR

k + iG I
k

)
ei j ,

σ = (
BR
k + i B I

k

)
ϑ,

(12.10)

where GR
k , G

I
k , B

R
k , and BI

k are the real and imaginary components of the shear and
bulk complex dynamic moduli.
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Taking into account the form of solution (12.9), the variational equation for the
problem of natural vibrations of electroviscoelastic body with an external electric
circuit can be written as

N∑

k=1

⎛

⎜⎝
∫

V k
1

(
σi jδεi j + ρkω

2uiδui
)
dV

⎞

⎟⎠+

+
∫

V2

(
σi jδεi j − DiδEi + ρω2uiδui

)
dV+

+
nR∑

q=1

1

iωRq

∫ (
ϕ
Rq

1 − ϕ
Rq

2

)
δϕdt = 0.

(12.11)

12.3 Numerical Implementation of Dissipative Properties
of Deformable Solid Incorporating Elastic,
Viscoelastic Elements, and a Resistive Element

For the numerical implementation of the problem of forced steady-state and natural
vibrations of an electroviscoelastic body with external electric circuits consisting
of resistors, capacitors, and inductors, we used the procedures of the finite element
method [3, 10].

For the sake of illustration, we consider a plate (500 × 100 × 1 mm) shown
in Fig. 12.2. The base plate was made of aluminum: E = 6.85 · 1010 Pa; ν =
0.3; ρ = 2750 kg/m3. The piezoelectric element (60 × 90 × 1.3 mm) was made
of PKR7: C11 = C22 = 12.5 · 1010 Pa, C12 = 8.40 · 1010 Pa, C13 = C23 = 8.10 ·
1010 Pa, C33 = 12.1 · 1010 Pa, C44 = 2.05 · 1010 Pa, C55 = C66 = 2.36 · 1010 Pa,
β31 = β32 = −9.0C/m2,β33 = 28.3C/m2,β52 = β61 = 17.9C/m2, �11=�22= 1.27 ·
10−8 F/m, �33= 1.20 · 10−8 F/m, ρ = 7500 kg/m3.

The calculations were carried out for the variant of graphene composite, in which
polymethylmethacrylate (PMMA) was used as a matrix, while graphene served as a
filler [7]. For numerical modeling of this element within the framework of the elastic
model, the following material properties were set: shear modulus G = 2.29 · 108 Pa;
bulk modulus B = 5.96 · 108 Pa; specific density ρ = 1190 kg/m3.

In the case when numerical modeling of the element was carried out in the frame-
work of a viscoelastic model, the complex shear modulusG = GR + iG I and elastic
bulk modulus were specified as follows: GR = 2.29 · 108 Pa; GI = 5.73 · 107 Pa;
B = 5.96 · 108 Pa.

In the problem of forced, steady-state vibrations, it is assumed that the clamped
end of the plate executes vibrations

x = 0, ux = uy = 0, uz = U0e
ipt . (12.12)
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Fig. 12.2 A plate with piezoelectric element (1) and element made of graphene composite (2)

Figure12.1 shows the amplitude–frequency characteristics frequency response
plot of the component uz of the displacement vector of the free plate end in the vicinity
of the first and second resonances for three variants of modeling the examined system
incorporating the element made of graphene composite:

1. only viscoelastic properties of the element made of graphene composite (dash-
dotted line) are taken into account;

2. graphene composite is considered elastic and operates as a resistor (dashed line);
3. graphene composite is considered viscoelastic and operates as a resistor (solid

line).

For the same variants, we calculated the values of complex natural frequencies.
The complex eigenfrequencies for the first two modes of natural vibrations are sum-
marized in Table12.1. The imaginary parts of the eigenfrequencies characterize the
damping rate of natural modes.

For the results presented above, the values of resistance for the first vibrationmode
(210 k) and for the second mode (35 k) were found by the numerical modeling
under the condition of maximum vibration damping. The electric resistance (in) of
the elementmade of graphenematerial can be calculatedwith the use of the following
formula:

R = ρ
l

S
= l

γ · S , (12.13)

where ρ is the specific resistance of the material of the conductor, γ is the specific
conductivity of the conductor (the reciprocal of specific resistance), l is the length
of the conductor, and S is the cross-sectional area of the conductor.
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Table 12.1 The values of complex eigenfrequencies obtained for different scenarios of numerical
simulations of graphene composite

Variant of numerical simulation ω = ωR + iωI

First vibration mode

1 7.81597 − i 0.04401

2 7.78116 − i 0.03360

3 7.78344 − i 0.07784

Second vibration mode

1 46.33836 − i 0.16603

2 46.10908 − i 0.22177

3 46.11665 − i 0.38729

For the examined element made from the graphene composite, two variants of
electrode covering can be realized: on the two opposite lateral surfaces; on the two
large surfaces of the element. In the first case, l = 100 mm and S = 100 × 2 mm2,
and in the second case, l = 2 mm and S = 100 × 100 mm2.

From this, it follows that for the evaluated optimal values of resistance, the values
of the specific conductivity of graphene composite for the first and second variants
of electrode plating, respectively, are as follows:

• for the first vibration mode,

γ1 = 1/ρ � 2.38 · 10−3 S/m,

γ2 = 1/ρ � 9.52 · 10−7 S/m;

• for the second vibration mode,

γ1 = 1/ρ � 1.42 · 10−2 S/m,

γ2 = 1/ρ � 5.71 · 10−6 S/m.

It should be noted that the value of γ1 is in the range of specific conductivity of
graphene composites given in [2, 8].

The analysis of the results presented in Fig. 12.3 and the obtained values of the
complex natural vibration frequencies have shown that the use of the electrical con-
ductivity properties of graphene composites in smart structures incorporating piezo-
electric elements provides an additional vibration damping mechanism.
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Fig. 12.3 Frequency response plot for uz in the vicinity of the first (a) and second resonances (b)
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12.4 Conclusions

We have considered a variant of smart structures containing piezoelectric elements
and a shunt circuit, in which a deformable element made of a graphene composite
operates as a resistor. A mathematical formulation of the problem of forced steady-
state and natural vibrations has been developed for a smart structure, which is a
piecewise homogeneous body consisting of the elastic, viscoelastic, and piezoelectric
elements and the element made of graphene composite, which behaves not only as
a mechanically deformable body, but also as a resistor. The numerical experiments
have shown that in the smart structures of this kind, the electrical conductivity of
the element made of graphene composite leads to the appearance of an additional
damping mechanism.
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Chapter 13
Dynamics and Stability of Axially
Loaded Elastic Rods

Nikita F. Morozov, Alexander K. Belyaev, Petr E. Tovstik, Tatyana P. Tovstik,
and Chien-Ching Ma

Abstract The classical problem of buckling of a thin rod subjected to axial com-
pressive force is studied. Two cases are studied in detail: (i) case of short loading and
(ii) case of long-lasting loading. Dynamic buckling of a thin rod subjected to a con-
tinuously acting longitudinal load at the initial stage of the movement is studied. If
the applied static load significantly exceeds the critical Euler force, one of the higher
buckling modes has the maximum rate of amplitude growth at the initial stage of the
motion. This result is obtained in the framework of a linear statement of the problem,
and an explanation of the paradoxical result by Lavrentyev and Ishlinsky is provided.
A possibility of the appearance of buckling due to a suddenly applied longitudinal
load which is smaller than the Euler critical force is found out. This buckling can
occur only for the rod length from a certain range and is caused by the parametric
resonance. In the linear approximation, the amplitude increases unboundedly while
a small resistance leads to a significant increase in the amplitude. Introduction of
nonlinear terms into consideration results in beats with energy exchange between
longitudinal and transverse vibrations. Axial impact on the rod by an impactor is
considered as a way of reproduction of the jump force in the experiment. The contact
force is determined analytically and by means of finite element analysis. The results
of these two approaches are confirmed by test results on the example of the impact
time.
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13.1 Introduction

The classical problem of buckling of a thin rod under axial compression is studied. A
loading is said to be short provided that the impact time is comparable with the travel
time of longitudinal wave along the rod length. It is typical for a short loading that the
longitudinal wave runs along the rod and reflects many times from its ends. In the lin-
ear approximation, thiswave process can cause parametric resonanceswith unlimited
growth of the transverse vibration. Introducing damping results in bounded vibration
amplitude which is nonetheless unrealistically high. To get a realistic picture, one
applies a quasi-linear approach in which the longitudinal waves generate transverse
vibrations and, in turn, the transverse vibrations affect the longitudinal ones. As a
result, the vibrations look like beats with the energy exchange between longitudinal
and transverse vibrations. The beats decay if damping is taken into account. The
short impact is beyond the scope of the present paper, cf. [1, 2, 8, 9, 11].

The study of long-lasting compression refers to theworks byEuler [3], Lavrentyev
and Ishlinsky [6], Volmir [13], Ilgamov [5], and others. The transverse motion of the
rod essentially depends on theway of loading, as well as themechanical model. Euler
solved two static problems: (i) in the linear approximation, he determined the critical
load and possible buckling modes, and (ii) in nonlinear approach, he determined
various equilibrium shapes of the rod loaded at its ends (Euler elastica). Further
studies took into account the inertia forces in the rod. The paper by Lavrentyev
and Ishlinsky [6] is concerned with the compressive load considerably exceeding
the Euler critical load, and the highest growth rate of the amplitude of transverse
deflection was shown to have a buckling mode with a greater number of waves in the
axial direction. The nonlinear dynamic model used in the present paper shows that
first the buckling mode predicted by Lavrentyev and Ishlinsky develops and later
this mode transforms into a stable Euler elastica. Volmir [13] studied the transverse
stability rod at the initial stage of loading under the assumption that the longitudinal
compressive wave did not reach the opposite end of the rod. Instability begins if the
increasing length of the compressed portion of the rod is sufficient for static buckling.
Ilgamov [5] investigated the growth of the rod deflection at the initial time instants
without propagation of longitudinal waves.

In what follows, we discuss the effect of the way of applying a constant longitu-
dinal load on the dynamic buckling of a thin rod. In the case of linear statement and
a static load that significantly exceeds the critical Euler load, the solution coincides
with that obtained in [6], the greater rate of the buckling amplitude having one of the
higher modes.

It is shown that the rod can buckle under the suddenly applied axial load which
is smaller than the Euler force. This buckling can occur only under a constant force
suddenly applied at the rod end and is associated with the parametric resonance. In
the linear approximation, the amplitude grows beyond any bounds. Account for the
nonlinear terms leads to the appearance of beats with the energy exchange between
the longitudinal and transverse vibrations. The influence of the damping force and
duration of the leading front of the pulse is studied.
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The last part of the paper is concerned with the calculation of the contact force
between two colliding elastic bodies. This statement is inspirited by understanding
the fact that a jump force can be achieved in the field test and therefore another
way of producing a short-time loading is needed. Two approaches are suggested
which allow one to calculate the contact force. The results obtained are confirmed
experimentally.

13.2 Axial Waves in Rod

In the linear approximation, the propagation of the longitudinal waves in the rod is
governed by the equation

∂2u

∂x2
= 1

c2
∂2u

∂t2
, 0 ≤x ≤ L , u(L , t) = 0, (13.1)

where u(x, t) denotes the axial displacement and stands for the speed of sound.
The right end of the rod is fixed and three types of the boundary condition for

the left end of the rod (x = 0) are shown in Fig. 13.1, where w(x, t) denotes the
transverse displacement of the rod.

The boundary conditions of the left end of the rod for three types of fixing are as
follows:

∂u

∂x

∣
∣
∣
∣
x=0

= −ε0, (13.2)

u(0, t) = ε0ct, (13.3)

u(0, t) = 0, (13.4)

where ε0 > 0 denotes the axial strain. In the case (13.2), the rod is compressed by a
constant force P = ESε0, where E is Young’s modulus and S is the cross-sectional
area. In the case (13.3) the rod’s end moves with a constant velocity v = ε0c and,
e.g., this case can be realized by means of an axial impact of a heavy body. The last
case (13.4) implies that both ends of the rod do not move at all. Ignoring for the time
being condition (13.4), we obtain the solution for the first two boundary conditions
under zero initial conditions u(x, 0) = ut (x, 0) = 0.

Fig. 13.1 Three types of the rod under consideration



150 N. F. Morozov et al.

To investigate the transverse motion, we introduce the non-dimensional variables
in Eq. (13.1)

x = r x∗, L = r L∗, u = ru∗, t = r

c
t∗, r2 = J

S
, (13.5)

where J and r denote the geometrical moment of inertia and radius of inertia, respec-
tively. Inwhat follows, the asterisk ∗ is omitted. In terms of variables (13.5), the sound
speed is equal to one and the equation of sound (13.1) takes the form

∂2u

∂x2
= ∂2u

∂t2
. (13.6)

We are looking for the strain of axial compression ε(x, t), and the solutions of
boundary-value problems (13.6), (13.2) and (13.6), (13.3) are given by

ε(1)(x, t) = −∂u(1)

∂ x
= ε0 − 2ε0

L

∞
∑

k=1

1

νk
sin(νk x) cos(νk t), νk = (2k − 1)π

L
,

(13.7)

ε(2)(x, t) = −∂u(2)

∂ x
= ε0t + 2ε0

L

∞
∑

k=1

1

ν̂k
cos(ν̂k x) sin(ν̂k t), ν̂k = kπ

L
. (13.8)

Formulae (13.7) and (13.8) are actually the Fourier series in terms of the eigen-
functions of the corresponding boundary-value problems. Functions ε(1)(x, t) and
ε(2)(x, t) are piecewise constant with respect to x for any fixed value of t . In addi-
tion to this, for any fixed value of x , function ε(1)(x, t) is periodical function of
t having the period T = 4L , whereas function ε(2)(x, t) increases, cf. Fig. 13.2
showing functions ε(1)(x, t) and ε(2)(x, t) at x = L/2. For 0 ≤ t ≤ 2L , we have
ε(1)(x, t) = ε(2)(x, t). To prove it, one can present the solution as a sum of two of
traveling waves u(x, t) = f (x − t) + g(x + t) and take into account the reflection
conditions, namely, displacement u(x, t) does not change sign under reflection at the
fixed end and it changes sign at the free end.

Fig. 13.2 Types of the wave reflection
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13.3 Euler Solution and the Lavrentiev–Ishlinksky Solution

Using the Bernoulli–Euler model for the compressed pinned-pinned beam in terms
of variables (13.5), we describe the small transverse vibration by the equation

∂4w

∂x4
+ ∂

∂x

(

ε(x, t)
∂(w + w0)

∂x

)

+ ∂2w

∂t2
= 0, w = ∂2w

∂x2
= 0 (x = 0, L),

(13.9)

where w0(x, t) and w(x, t) stand for the initial and actual deflections, respectively.
The static problem of buckling of the pinned-pinned beam that was initially com-
pressed by a constant force (ε(x, t) = ε0 = const) under the conditions (13.4) and
w0(x, t) = 0 was first solved by Euler [3]. The buckling form with m half-waves
w(x) = w0 sin(mπx/L) corresponds to the compression strain

εm = m2π2/L2. (13.10)

In particular, for m = 1, one obtains the classical Euler critical (buckling) load
εcr = π2/L2.

In the case of a considerably large value of the initial compression strain ε0, the

buckling can occur at several first modes, namely, atm ≤ m0 =
[√

ε0L2/π2
]

where

[z] stands for the integer part of number z.
The authors of paper [6] paid attention to the fact that for m0 > 1, the maximum

rate of the buckling amplitude corresponds to a higher buckling mode, namelym∗ �
m0/

√
2. Indeed, the solution of Eq. (13.9) for ε(x, t) = ε0 = const , m ≤ m0 is as

follows:

w(x, t) = w0 sin
(mπx

L

)

eαmt , αm =
√

ε0m2π2 − m4π4/L2. (13.11)

Let us characterize the intensity of growth of the amplitude of m-th buckling
mode by parameter αm . Figure13.3 displays the plots αm(ε0) for m = 1, 2, . . . , 8
and L = 500.

Both the maximum intensity of the amplitude growth and the number of the
corresponding modes increase with the growth of the compression amplitude ε0.

The above-said is valid only for small deflections. In what follows, we discuss
the further change in the rod shape.
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Fig. 13.3 Parameter of growth of the amplitude of m-th buckling mode αm(ε0)

13.4 Buckling for Load Smaller Than the Euler Critical
Force

Up to now, we considered the axial force that exceeded the Euler critical load. As
proved in [10], the dynamic buckling is possible under the suddenly applied contin-
uous longitudinal load which is smaller than the Euler critical load.

Consider a pinned-pinned rod, see the first graph in Fig. 13.1 and assume that a
constant compressive force P is applied at the rod end at the initial time instant.
Under these assumptions, the wave propagation in the rod has period T = 4L , cf.
Fig. 13.2 (1). The periodic vibration in the rod is described by Eq. (13.9) where the
axial strain is given by formula (13.7). Let us rewrite this equation in the following
form:

ε(x, t) = ε0 + ε̂(x, t), ε̂(x, t) = −ε0

∞
∑

k=1

2

νk L
sin(νk x)e

−νkδ t/2 cos(νk t),

νk = (2k − 1)π

2L
. (13.12)

Here δ denotes the factor of the viscous resistance and function ε̂(x, t) has a zero
mean value at δ = 0. Let us put the solution to Eq. (13.9) in the form

w(x, t) =
∞

∑

m=1

Tm(t) sin(pmx), pm = mπ/L , (13.13)

where functions Tm(t) satisfy the following system of equations:
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d2Tm
dt2

+ ω2
mTm − ε0 p

2
mw

0
m + ε0

∞
∑

n=1

anm(t)(Tn + w0
n) = 0,

w0
m = 2

L

∫ L

0
w0(x) sin(pmx) dx, ω2

m = p4m − ε0 p
2
m, m = 1, 2, ..., (13.14)

anm(t) = 8mn

L2

∞
∑

k=1

(
1

(2k − 1)2 − 4(n − m)2
+ 1

(2k − 1)2 − 4(n + m)2

)

cos νk t.

Here ωm is the eigenfrequency of the transverse vibration and depends on strain ε0,
whereas the constant values w0

m are the coefficients of the Fourier series of the initial
imperfectionw0(x). Here we consider the case ε0 < εcr = π2/L2 in which the static
buckling does not occur.

For δ = 0 functions amn(t) are periodic, that is, amn(t + 4L) = amn(t), and sys-
tem (13.14) generates a three-parameter set of resonances at L = Lmnk = 2π(m2 ±
n2)/k, m, n, k = 1, 2, . . . . The overtone combination resonances are shown in [9]
to be excited with much less intensity than the principle resonances. For this reason,
we further restrict our consideration to the principle resonances, the latter having the
critical length Lm = 4πm2.We also neglect the interaction of themodes of transverse
vibrations. As a result, for w0

m = 0, we obtain the following equation:

d2Tm
dt2

+
(

ω2
m + 8ε0 p2m

π2

∞
∑

k=1

Ckm cos νk t

)

Tm = 0,

Ckm = 1

(2k − 1)2 − 16m2
+ 1

(2k − 1)2
.

(13.15)

The numerical integration of Eq. (13.15) yields the monodromy matrix, charac-
teristic exponents [14] and the instability regions in the plane of parameters (L , ε0)

which are adjacent to the axis ε0 = 0 at the points L = Lm .
The detailed analysis of the instability regions is given in [1, 9, 11]. Here we only

touch upon a particular issue on existence of the instability regions for ε0 < εcr =
(π/L)2. The sought-for values of length L for which the solution of Eq. (13.15) is
unstable for ε0 < εcr and prescribed value of m lie in the interval L∗

m < L < Lm .
Table13.1 provides one with the numerical values of the above parameters for 1 ≤
m ≤ 10.

One can see that the intervals L∗
m < L < Lm where buckling is possible at ε0 < εcr

occupy a relatively small part of axis L . The case m = 1 should be excluded from
consideration since the Bernoulli–Euler model of the beam Eq. (13.9) is not valid
for L < 12.6 (e.g., for a circular rod, the ratio of its length to diameter is less than
3.15). In the above table, αmax

m and Lmax
m denote, respectively, the maximum rate of

the amplitude growth and the corresponding length L . The rate α is determined from
the formula F(t) � eαt . One can see that the resonance intensity drops sharply with
increasing resonance number m.
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Table 13.1 Parameters of the instability regions

m L∗
m Lm αmax

m Lmax
m αmax

mδ

1 0 12.6 ∞ 0 ∞
2 40.6 50.3 0.0523 43.3 0.0447

3 104.0 113.1 0.0198 106.5 0.0156

4 192.2 201.1 0.0106 194.6 0.0065

5 305.4 314.2 0.0066 307.9 0.0026

6 443.8 452.4 0.0045 446.1 0.0006

7 607.1 615.8 0.0033 609.6 –

8 795.4 804.2 0.0025 797.8 –

9 1009.1 1017.9 0.0020 1011.6 –

10 1247.8 1256.6 0.0010 1250.4 –

Fig. 13.4 The curves αm(ε0) for a rod of length L = 45

The table column αmax
mδ demonstrates the influence of damping under the assump-

tion that the damping affects only the transverse vibrations. The calculations were
carried out for δ = 0.01. It was found out that the maximum rate of the amplitude
growth is smaller than that without damping, and the instability regions do not exist
for m ≥ 7 and ε0 ≤ εcr . The complete account of damping and the influence of
nonlinearity are given below.

13.5 Example of Developing the Parametric Vibrations

Let us consider a rod of length L = 45. At m = 2, this length turns out within
the interval (L∗

m, Lm) in which instability is possible for ε0 < εcr = 0.00487. In
Fig. 13.4, the curve m∗ = 2 shows the dependence the rate of the amplitude growth
αm(ε0) under the parametric resonancem = 2. The curvem = 1 displays the similar
dependence under the Euler instability due to the first buckling mode.



13 Dynamics and Stability of Axially Loaded Elastic Rods 155

Table 13.2 Increase in amplitude for some values of δ

δ 0.02 0.01 0.007 0.005 0.003 0.002 0.0015 0.001

Tmax
2 1.2 2.8 5.3 12.8 87.7 942.8 9823.0 1021345.0

Consider developing parametric vibration for ε0 = 0.0035 < εcr = 0.00487. The
amplitude first increases; however, with time, the longitudinal vibration (which is
the source of parametric excitation) decays and the solution of Eq. (13.15) tends to
zero. As a result of numerical integration for different coefficients of resistance, we
find the maximum value of the amplitude. Table13.2 shows the value that indicates
how many times the increased amplitude is compared with the initial value.

Numerical simulation was used to determine the maximum values of amplitude
for various damping factors δ. Table13.2 displays values of Tmax

2 indicating increase
in amplitude as compared with the initial value.

Small damping cannot prevent the development of large transverse vibrations so
we proceed to nonlinear formulation of the problem. This solution is given in [11]
and for this reason, we show here only some results.

Nonlinearity is taken into account only in the calculation of axial strain ε =
∂u/∂x + 1/2(∂w/∂x)2, which relates the longitudinal vibration to the transverse
one. An approximate solution is sought in the form

u(x, t) =
K

∑

k=1

ak(t) cos(νk x), w(x, t) =
N

∑

n=1

bn(t) sin pn x . (13.16)

A nonlinear system of ordinary differential equations is obtained in [11] for
unknown functions ak(t), bk(t). Five terms are taken for calculating sum (13.16). For
numerical work, we take L = 45, ε0 = 0.0035, and b2(0) = 0.0001, assume trivial
initial conditions, and perform integration in the interval 0 ≤ t ≤ 1000. Two cases
are considered: (i) no damping and (ii) the viscosity factor is δ = 0.002.

Figure13.5 shows the resonance amplitude b2(t) and a function a1(t) giving the
main part of the longitudinal displacement. In the absence of viscosity, the motion is
non-decaying beats manifesting an exchange of energy between axial and bending
vibrations. Calculations have shown that the amplitude of beats is weakly dependent
on the initial conditions. When δ = 0.002, we observe damped beats, with the rate
of decay being strongly dependent on the viscosity factor δ. The beat frequency also
changed in comparison with the undamped case. In the linear approximation and
for δ = 0.002, the maximum amplitude increased by 942 times compared with the
initial value, cf. Table13.2, while in the nonlinear approach, the amplitude of beats
is independent of the initial conditions.

It was assumed above that the applied force immediately takes a finite value.
Suppose now that ε0(t) = ε0th(t/τ) where τ denotes the duration of leading edge.
We consider now the same problem as above for δ = 0 and a number of values τ .
Table13.3 shows the maximum values of the beat amplitude bmax

2 = maxt b2(t).
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Fig. 13.5 Parametric resonance under nonlinear statement

Table 13.3 The amplitude of the beats versus the duration of leading edge of a shock pulse

τ 0 0.5 1 1.5 2 2.5

bmax
2 0.0045 0.0034 0.0036 0.0025 0.0015 0.0005

Fig. 13.6 Graph of function b2(t) at τ = 2

We see that the beat amplitude decreases with increase in the duration of the
leading edge. Figure13.6 shows a graph in function b2(t) at τ = 2 in the same scale
as in Fig. 13.5.

13.6 Estimation of the Impact Force

Exact reproduction of the jump force in the experiment is not possible. A simple way
of creating a short-time force is the axial impact on the rod by an impactor. Let us
carry out a theoretical analysis of the impact.
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Consider an elastic rod of length l with a fixed end. At the initial time instant, the
free end is impacted by a rigid body (impactor) of mass m with velocity ν0.

We apply the Sears method [12] in the form

ν0t − α − y1 − y2 = 0, (13.17)

implying the coincidence of the contact point of the rod and impactor. Here α denotes
the contact deformation due to the collision and y1 and y2 are the dynamic displace-
ments in the rod and impactor caused by the contact force P(t) without contact
deformation.

As the contact zone is small, we can neglect its mass and make use of Hertz’s
contact theory relating the contact force P and local displacement α, cf. [4]

P(α) = kα3/2, (13.18)

where k is a factor depending on mechanical and geometrical parameters of the
colliding bodies. In the case under consideration [7],

k = 2

3(1 − μ2)
E

√
R, (13.19)

where R is the curvature radius of the impact surface, E and μ are Young’s modulus
and Poisson’s ratio, and the material of both bodies being assumed to be the same.

The displacements y1 and y2 can be expressed in terms of the contact force

y1 =
∫ t

0
P(θ)Y (1)(t − θ)dθ, y2 =

∫ t

0
P(θ)Y (2)(t − θ)dθ, (13.20)

where Y (1) and Y (2) denote, respectively, the reaction of the rod and impactor on the
applied unit pulse and

Y (t) = c

ES

{+1, 0 < t < 2L/c
−1, 2L/c < t < 4L/c

, Y (t + 4L/c) = Y (t) . (13.21)

13.7 Results of Mathematical Modeling

The time dependence of the contact force was calculated using the above method.
The calculations show that the contact force is a smooth function of time which has
from one to three maxima depending on the parameters of colliding bodies.

An example of calculation of the contact force with three maxima is shown in
Fig. 13.7 (curve 1) for the parameters of the rod and impactor given in Table13.4.

The results of the numerical simulation were verified by finite element analysis
of the system with parameters of Table13.4. The comparison of the results of finite
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Fig. 13.7 The time dependence of the contact force obtained numerically (curve 1) and by finite
element method (curve 2); the values of the parameters are given in Table13.1

Table 13.4 Parameter of the system

Colliding
body, material

Parameter Denotation Unit Model value Test value

Rod Length l m 0.500 0.301

Cross-
sectional
area

S m2 5.0 · 10−5 3.14 · 10−6

Impactor Mass M kg 0.5 0.13–8.46

Radius of
impact surface

R m 0.01 1.58–6.36

Initial velocity V0 m/s 1.0 0.3225

Steel Young’s
modulus

E N/m2 2.1 · 1011 7.342 · 1010

Poisson’s ratio μ – 0.30 0.34

Mass density ρ kg/m3 7800.0 2696.6

element modeling and numerical simulation with the data of field experiments is
observed in Table13.5.
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Table 13.5 Comparison of test results with the data obtained by calculation

Parameters of impact Time of contact interaction, μs Error, %

Diameter, m Mass, g Test FEM Simulation FEM Simulation

3.16 0.13 36.42 31.20 15.32 14.33 57.93

4.75 0.44 46.83 60.75 23.63 29.72 49.54

5.56 0.71 52.26 78.09 27.90 49.42 46.61

6.34 1.04 60.05 81.61 31.71 35.90 47.19

9.51 3.51 84.96 106.21 47.94 25.01 43.57

12.73 8.46 111.10 121.71 64.82 9.54 41.66

13.8 Conclusions

• The dynamic buckling of a thin rod subjected to a continuously acting longitudinal
load at the initial stage of the movement is studied. If the applied static load
significantly exceeds the critical Euler force, one of the higher buckling modes
has the maximum rate of amplitude growth at the initial stage of the motion. This
result is obtained in the framework of a linear statement of the problem.

• Weestablished a possibility of the appearance of buckling due to a suddenly applied
longitudinal load which is smaller than the Euler critical force. This buckling can
occur only for the rod length from a certain range and is caused by the parametric
resonance. In the linear approximation, the amplitude increases unboundedlywhile
a small resistance leads to a significant increase in the amplitude. Introduction
of nonlinear terms into consideration results in beats with an energy exchange
between longitudinal and transverse vibrations. Account for damping leads to
decaying beats.

• The behavior of the rod subjected to a suddenly applied constant longitudinal stress
at the initial stage of motion which is limited to the time of run of the longitudinal
wave along the rod is investigated. In the framework of the suggested formulation
of the problem (elastic deformation and the left end is fixed in the transverse
direction), the buckling results in bending deflection that does not exceed the initial
perturbations at the beginning of motion, i.e., consideration of this particular stage
of motion is not of practical importance.

• Axial impact on the rod by an impactor is considered since the accurate repro-
duction of the jump force in the experiment is not possible. Two approaches are
applied for the determination of the contact force: (i) the Sears method and finite
element analysis. They demonstrate that time histories of the contact force are
close for these approaches. The numerical simulations were confirmed by test
results in regard to the impact time.
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Chapter 14
A Numerical Study on the Response of
the Oscillation Roller-Soil Interaction
System

Ivan Paulmichl, Christoph Adam, and Dietmar Adam

Abstract In this contribution, the influence of the operating speed of a specific oscil-
lation roller on the achieved soil compaction and the resulting response behavior of
the roller is examined. The main objective is the further validation of an experimen-
tally found Continuous Compaction Control (CCC) parameter for dynamic rollers
with an oscillatory drum. The study is based on a recently developed two-dimensional
numerical model of the oscillation roller-granular soil interaction system, in which
the intergranular strain enhanced hypoplastic constitutive model is implemented to
simulate the compaction process. The effect of one roller pass at standard excitation
frequency on an initially very loose soil is investigated for six roller speeds in terms
of the reduction of the void ratio. Moreover, the influence of the resulting predicted
soil compaction on the drum response is analyzed in the time and frequency domain.
A relationship between the computed compaction indicator and roller speed is estab-
lished. It is shown that the roller speed has a significant effect on the achieved soil
compaction both in terms of the compaction degree and the depth of influence. The
results confirm that the CCC indicator under consideration qualitatively reflects the
soil stiffness characterized by the predicted void ratio distribution.

14.1 Introduction

An oscillation roller, as shown in Fig. 14.1, is a heavy equipment for near-surface
compaction of soil and asphalt. The main component is the oscillation drum, which
is dynamically decoupled from the remaining unit by rubber buffers. The oscillation
drum is equipped with two opposite offset eccentric masses, which rotate during
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Fig. 14.1 Components of an oscillation roller compactor and detail of the unbalance configuration
in the drum (schematic), modified from [17]

operation synchronously in the same direction (see Fig. 14.1) resulting in an alter-
nating high-frequency forward-backward motion of the drum [17]. This oscillatory
motion of the drum, superposed by the translational roller motion, leads to com-
paction due to the dynamic shear forces exerted on the subsoil. An oscillation roller
can, therefore, also be referred to as “shear force roller”. During compaction, a set-
tlement trough forms below the drum and a bow wave in front of the drum in the
direction of movement. In contrast to a vibratory roller, the triggered vibrations are
smaller, but at the price of a lower compaction effect and compaction depth. The
oscillation roller is therefore particularly suitable for use in densely built-up areas.

During roller compaction, an instant and continuous control of the actual degree
of soil compaction is performed on the basis of the dynamic response of the roller-
soil interaction system recorded during roller operation. This so-called Continuous
Compaction Control (CCC) [1, 11] has become the standard technology for the
work-integrated evaluation of soil compaction with vibratory rollers. However, until
recently there was no mature CCC system available for the oscillation roller consid-
ered in this paper.

Dynamic soil compaction and its work-integrated control by means of vibratory
rollers has been studied extensively; see, e.g., [3, 9, 21, 25] (compaction process), and
[2, 4, 10] (CCC application). However, the detailed dynamic behavior of the oscil-
lating roller-soil interaction system has so far been investigated relatively rarely. For
example, Erdmann [3] used the hypoplastic constitutive law with intergranular strain
to simulate soil compaction by means of vibratory and oscillation rollers equipped
with different exciters. Pistrol [22] derived a CCC indicator for oscillation rollers
from the drum response recorded in field tests by plotting the vertical against the
horizontal drum center acceleration component as shown in Fig. 14.2. Based on this
response representation, he found that the area enclosed in the resultant “curved,
recumbent eight figure” becomes larger with increasing soil stiffness, and therefore,
proposed it as a characteristic quantity for the compaction degree of non-cohesive,
granular soils [22]. In the meantime, this empirically determined relationship has
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Fig. 14.2 Response of the drum center in form of a “recumbent eight” (schematic) representing
the stiffness of a granular earth-moist soil, based on the lumped parameter model of [17], modified
from [19]

also been proven theoretically based on a three degrees-of-freedom (3DOF) lumped
parameter model (LPM) [17].

Recently, Paulmichl et al. [20] developed a plane-strain Finite Element model
of the highly nonlinear oscillation roller-soil interaction system to predict for the
first time simultaneously the compaction of granular, dry (or earth-moist) soils and
the dynamic roller response based on the intergranular strain enhanced hypoplastic
constitutive model as described in, e.g., [15]. The outcomes of the investigations
based on a HD+ 90 VO tandem roller [6] show all fundamental response charac-
teristics observed in field tests [22] as well as in a recent parametric study based
on a 3DOF LPM [19]. The sensitivity of the predicted soil compaction to various
parameter variations, the parameter dependency of the drum response, and conse-
quently of the CCC indicator proposed in [22] was recently evaluated by Paulmichl
et al. [18]. In particular, the influence of soil properties such as the initial void ratio,
the coefficient of friction between drum and soil surface, the static axle load, and
the number of subsequent roller passes on both compaction effect and compaction
control performance was examined. In addition, first studies were carried out into
the influence of the operating speed of the roller. As these preliminary investigations
mainly focused on the compaction effect achieved, the influence of the roller speed
on both the compaction effect and especially in the compaction control performance
will be analyzed in more detail in the present contribution.

14.2 Numerical Model

The present investigations are based on a two-dimensional (2D) Finite Element (FE)
model recently developed by Paulmichl et al. [20], which allows both analyzing
the dynamic response of the oscillation roller-soil interaction system (see Fig. 14.1)
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Fig. 14.3 Finite Element model (overview) and drum-suspension model (detail), schematic (with-
out mesh), modified from [20]

during the compaction of granular, dry or earth-moist soils and predicting the com-
paction effect achieved. The “sufficient accuracy” of this numerical model created
in ABAQUS/CAE was verified in [20] by comparing computed (predicted) results
and corresponding recorded data (field tests, as described in [22]). It consists of
three subsystems, i.e., the soil, the oscillation drum, and the spring-damper elements
between drum and roller frame as shown in Fig. 14.3.

The finite soil domain of dimension 16m × 5.5m (subsequently referred to as
“subsoil”) is discretized by four-node bilinear plane-strain quadrilateral elements
(CPE4 [23]), which is embedded in infinite elements (CINPE4 [23]) with a length
of 5.5m representing the semi-infinite soil domain (“halfspace” in Fig. 14.3). The
dimension of the elements varies between 0.02m × 0.02m (contact and compaction
zone) and 0.1m × 0.1m (transition zone finite to infinite soil domain). The mesh
comprises 37569 elements including the infinite elements. To the “subsoil” domain,
the hypoplastic constitutive law with the extension for intergranular strain, as pro-
posed in [15], is assigned. This constitutive model allows a realistic description of
the compaction of non-cohesive, granular, dry or earth-moist soils by introducing
the void ratio e as a state variable with stress-dependent physical limits to model
barotropy and pycnotropy. As in the study by Paulmichl et al. [20] and based on
[7, 16], in the present simulations for the soil the so-called Hochstetten sand [24]
is assumed. The respective values of the required thirteen constitutive parameters
are as follows: ϕc = 33◦, hs = 1.5 × 109 Nm−2, n = 0.28, ed0 = 0.55, ec0 = 0.95,
ei0 = 1.05, α = 0.25, β = 1.50, R = 1 × 10−4, mR = 5, mT = 2, βr = 0.5, and
χ = 6 [8, 14, 15, 24]. Note, the initial value of the solution-dependent state variable
e, i.e., the initial void ratio e0, can be chosen between ed0 (void ratio for the densest
packing for zero mean pressure) and ei0 (void ratio for the loosest packing for zero
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mean pressure). In the present contribution, e0 is set to 0.90 to simulate an initially
very loose soil. The intergranular strain enhanced extended hypoplastic constitu-
tive model was implemented in ABAQUS/Standard via a user-defined subroutine
(UMAT), as described in [5, 13]; see also [15, 24].

To the “halfspace” domain, i.e., to the infinite elements, the following linear
elastic isotropic constitutive parameters are assigned based on [16]: density ρ =
2200kgm−3, Young’s modulus E = 250 × 106 Nm−2, and Poisson’s ratio ν = 0.3.

In accordance with [20], the parameters of a HD+ 90 VO tandem roller [6] are
employed. Since a deeply tuned suspension (i.e., the “rubber buffers” in Fig. 14.1)
decouples dynamically the drum and the front frame, the entire roller can be
reduced to the stiff oscillation drum, which is connected to the quasi-static frame
via three lumped parameter spring-dashpot elements (Kelvin-Voigt bodies) as shown
in Fig. 14.3. The frame moves horizontally at the constant speed v0. To the spring-
damper elements, which represent the viscoelastic properties of the rubber buffers,
the following values are assigned: kd = 4 × 106 Nm−1 (stiffness coefficient) and
cd = 3 × 102 Nsm−1 (damping coefficient) [20]. The drum modeled as an elastic
circular steel ring with the outer radius equal to the drum radius r = 0.60m and the
thickness of 0.02m is discretized also by CPE4 elements, which are radially uni-
formly distributed and have a size of approximately 0.01m × 0.02m. To achieve the
drum properties specified by the manufacturer, i.e., the mass m = 1851kg and the
mass moment of inertia I = 412kgm2 [6], a lumped mass and rotary inertia is added
to the reference point at the drum center “M” (“RPM” in Fig. 14.3).

Inside the oscillation drum, two eccentric and (relative to the drum center) point-
symmetrical unbalanced shafts rotate synchronously in the same direction at a con-
stant angular velocity ν̄ (see Fig. 14.1). Since these unbalances are shifted relative
to each other by 180◦, the unbalance forces cancel each other out. The remaining
spinning couple of forces leads to a torsional moment around the drum axis, which
changes its sign during the rotation of the eccentric masses and moves the drum
rapidly in an alternating forward-backward motion [17]. The resulting sinusoidal
oscillation moment MMu(t) = M (0)

Mu sin ν̄t (with M (0)
Mu = 2mueuewν̄2) [17] applied

to the drum center captures this effect. ν̄ is 2π times the excitation frequency f̄ , mu

represents the eccentric lumped masses per shaft with distance eu from the center of
rotation, and ew denotes the distance of the unbalanced shafts from the drum cen-
ter as shown in Fig. 14.1. For the HD+ 90 VO roller under consideration, operating
at the standard oscillation frequency f̄ = 39Hz, the resulting amplitude M (0)

Mu of
the sinusoidal excitation moment is 54947Nm [17]. In addition, the static axle load
P0 = 44130N [20] is applied in the center of the drum, which is made up of the
dead weight of the front frame and the weight of the drum. The interaction between
the outer surface of the drum and the subsoil surface in the “contact zone” (i.e.,
−3m ≤ x ≤ 3m) is modeled with the classical isotropic Coulomb friction model
[23] assuming a constant coefficient of friction μ = 0.5.

The “motion zone” of the drum bounded by −2.5m ≤ x ≤ 2.5m represents the
potential “compaction zone” for the soil below. Themotion of the drumwith constant
velocity v0 is modeled by defining boundary conditions in the form of velocity at
the reference nodes RPf l , RPf r , RPf t , which represent the quasi-static frame (see
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Fig. 14.3) and the frictional contact between drum and soil mentioned above. Due to
the alternating high-frequency forward-backwardmotion of the drum,which is super-
imposed on the translational roller motion at constant speed v0, the soil is exposed
to about 35 oscillations per meter traveled (at standard speed v0 = 1.11ms−1). The
numerical analysis consisting of five steps was performed with the FE software
ABAQUS/Standard (version R2016x) on the basis of a maximum time increment of
2 × 10−4s. For details, see [20].

The hypoplastic constitutive model used can only process small tensile stresses
depending on the “apparent cohesion” pt , which is assigned to the subsoil [5]. Since
granular, non-cohesive soils are considered in the present contribution, an “addi-
tional measure” must be applied to the stress-free surface to ensure better numerical
stability. As proposed in Paulmichl et al. [20], the free soil surface is “sealed” by
an elastic “protective foil” to prevent individual nodes from lifting so much that the
analysis is aborted; as shown in Fig. 14.3. To model this “protective foil”, a linear
elastic isotropic constitutive law with a Young’s modulus E of 50 × 106 Nm−2 is
assigned to the elements of the first row of the subsoil mesh. An additionally applied
apparent cohesion of 5kNm−2 proved to be the lowest possible value of pt to allow
a stable numerical simulation for a wide range of input variables (e.g., initial void
ratio e0, roller speed v0) [16, 20].

14.3 Results

To illustrate the influence of the roller speed v0 on the effect of the oscillation drum,
in addition to the default value v0 = 1.11ms−1, five further speeds are considered,
i.e., two below (0.55 and 0.75ms−1) and three above (1.39, 2.22, and 3.33ms−1)
the default value. Considering the standard operating frequency f̄ = 39Hz the soil
is thus exposed to about 12–70 oscillation cycles per meter driven, depending on
v0. In the following, the response of the described dynamic interaction model after
one pass with the considered oscillation roller, which operates at different speeds v0,
is presented and evaluated under the assumption of an initially very loose soil, i.e.,
e0 = 0.90.

14.3.1 Predicted Soil Compaction

First, the effect of the roller speed v0 on the predicted soil compaction is investigated
with regard to the reduction of the void ratio e. The soil section considered is the
potential “compaction zone” up to 1m depth and in the horizontal range −0.5m ≤
x ≤ 0.5m, also referred to as “observation zone” in Fig. 14.3.

Figures14.4a to f show the predicted distribution of the normalized void ratio
e/e0 in the observation zone for six selected values of v0. The areas highlighted
in red correspond to non-compacted or weakly compacted areas, i.e., e is equal or
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Fig. 14.4 Normalized void ratio after one pass with a HD+ 90 VO roller ( f̄ = 39Hz) for six
selected roller speeds v0, based on [16]

slightly smaller than its initial value e0, while in blue areas a high reduction of e is
achieved. Dark gray areas indicate most compacted soil zones. At a first glance, it can
be seen that the roller speed has a considerable influence on the compaction effect
of the oscillation drum. Both the maximum predicted void ratio reduction and the
soil zone with uniformly high compaction become larger the lower the roller speed
v0 is. Moreover, the depth to which the soil is affected by the oscillation drum (i.e.,
e < e0), represented by the depth at the transition from orange to red marked area
(“depth effect”), increases with decreasing v0 to more than one meter at the lowest
speed.

For better readability, Fig. 14.5 shows the change e0 − e of the void ratio related
to the maximum possible change e0 − ed (“compaction effect”) in relation to the
soil depth for four selected speeds v0. Each profile represents the mean of (e0 −
e)/(e0 − ed) in the soil region −0.5m ≤ x ≤ 0.5m (observation zone) analyzed in
steps of 0.05m. Note that the lower limit of the void ratio ed is assumed to be 0.54
depending on the actual stress state [20]. In the case of the lowest value of v0, about
90–95% of the maximum possible void ratio reduction is achieved after only one
roller pass up to almost 0.35m depth. Since at this speed, due to about 70 oscillations
per meter driven, the maximum possible compaction is almost reached after one pass
close to the surface, compaction continuous further into depth. At a depth of about
1.3m the influence of the oscillation roller vanishes. In contrast to this, the predicted
compaction effect is much smaller for a roller pass at the highest speed considered,
both in terms of the degree of compaction (about 40–45%) and the corresponding
depth (up to 0.1m). The depth effect is ≈ 0.8m and thus also considerably smaller.
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Fig. 14.5 Normalized void
ratio change after one pass
with a HD+ 90 VO roller
( f̄ = 39Hz) for four selected
roller speeds v0, based on
Figs. 14.4a, c, e, and f

14.3.2 Predicted Drum Response

Next, the dynamic response of the drum during oscillation compaction is investigated
on the basis of the numerically predicted acceleration components ẍM (horizontal)
and ÿM (vertical) of the drumcenterM . Parameters based on the drumcenter response
are also evaluated because they form the basis of theCCCmethodology for oscillation
rollers [22], as described in the introduction.

Figure14.6 shows the (a) horizontal (ẍM ) and (c) vertical (ÿM ) acceleration com-
ponent for three selected roller speeds (v0 = 0.55, 1.11, 2.22ms−1) in a time frame
of one second during the first roller pass. It is readily seen that the roller speed
v0 strongly affects both ẍM and ÿM . The amplitudes of ÿM increase with decreas-
ing speed v0 from about −1 ÷ 1.5ms−2 (v0 = 2.22ms−1) to about −4 ÷ 4ms−2

(v0 = 0.55ms−1). The amplitudes of the horizontal response ẍM also become larger
with decreasing roller speed v0. At the largest considered value of v0, the predicted
amplitudes of ẍM are in the range of about −8 ÷ 7ms−2, while the accelerations in
the drum center of a roller operating at the lowest considered speed vary between
−15 and 12ms−1. Thus, the amplitudes of ÿM are between three and eight times
smaller than the amplitudes of ẍM , depending on the roller speed.

Figures14.6b and d show the drum acceleration components (ẍM and ÿM ) of a
time frame of one second, as discussed above, in the frequency domain (|ẌM( f )| and
|ŸM( f )|). It can be observed that the excitation frequency f̄ dominates |ẌM( f )| and
|ŸM( f )| for all three roller speeds v0. The amplitudes at the excitation frequency f̄
of both the horizontal (|ẌM( f̄ )|) and the vertical (|ŸM( f̄ )|) drum response become
larger with decreasing v0. The additional harmonics in the spectra of the horizontal
response |ẌM | at f/ f̄ = 2, 3, 4, . . ., with amplitudes much smaller than those at
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Fig. 14.6 a, c Time histories and b, d respective frequency spectra of the a, b horizontal and c, d
vertical acceleration in the drum center after one oscillation roller pass on initially very loose soil
for three selected roller speeds v0 [16]

f/ f̄ = 1, can be traced back to the “peak cut” due to slip phases of the drum motion
resulting from a larger soil stiffness, as discussed in detail in [18]. For instance, the
amplitude ratio |ẌM(3 f̄ )|/|ẌM( f̄ )| increases from about 0.03 (v0 = 1.11ms−1) to
almost 0.07 (v0 = 0.55ms−1), i.e., the ratio more than doubles if the standard operat-
ing speed is halved and the oscillation cycles per meter traveled are doubled, respec-
tively. Thus, the normalized amplitude at the third harmonic (|ẌM(3 f̄ )|/|ẌM( f̄ )|)
can be taken as a slip indicator, as proposed by Pistrol [22]. The second harmonic
|ŸM(2 f̄ )| in the vertical response spectra reflects the up and downmotion of the drum
in its “settlement trough”, while the additional harmonics at f/ f̄ = 3, 4, 5, . . ., are
a result of the slip phases of the drum [17]. The ratio |ŸM(2 f̄ )|/|ŸM( f̄ )| shows an
increase from about 0.2 at the lowest speed to about 0.7 at the largest considered
value of v0. The amplitudes of the third (|ŸM(3 f̄ )|) and fourth (|ŸM(4 f̄ )|) harmonics
start to vanish when the speed becomes larger than the default value of 1.11ms−1.

Plotting the vertical component ÿM (Fig. 14.6c) against the horizontal counterpart
ẍM (Fig. 14.6a) results in Fig. 14.7a. This response representation is fundamental
to the CCC methodology described in [22]. For all considered values of v0 a figure
similar to a so-calledLissajous curve [12] is formedwith one node and an asymmetric
pattern. The larger v0 is, the more the resulting shape resembles a “recumbent eight”.
In addition, the area in the ÿM -ẍM plot becomes smaller as the roller speed increases,
reflecting the lower soil compaction achieved by fewer oscillation cycles per meter
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Fig. 14.7 Plot vertical against horizontal acceleration in the drum center for two representative
oscillation cycles; a predicted “recumbent eight” figures based on Figs. 14.6a, c, and b computed
versus recorded drum response

driven, as presented in Sect. 14.3.1. In Fig. 14.7b, the predicted response for the
default value of v0 (solid black line) is compared with the corresponding response
representation based on drum accelerations recorded in a field test (dotted blue line
based on [22]). It can be seen that the numerically derived drum response in terms
of drum center accelerations qualitatively reproduces the drum response observed
in the field. The computed amplitude of the horizontal acceleration component is
about the same as that of the measured one. The vertical accelerations, however,
are underestimated by the numerical analysis, which may be due to different soil
parameters or boundary conditions in the field test [18]. The evaluation of the area
in the ÿM -ẍM figure successively (in time) for five subsequent excitation periods
for each considered roller speed and plotting its mean value against v0 results in
Fig. 14.8. It can be observed that the aforementioned decrease of the “area”, i.e., the
compaction indicator,with increasing roller speed v0 is almost linear, especially in the
speed range v0 = 0.75 ÷ 1.67ms−1, as the red dotted line in Fig. 14.8 shows. These
results essentially show that the CCC parameter proposed by Pistrol [22] decreases
with decreasing number of oscillations per meter driven, as a lower resulting soil
compaction is achieved.

14.4 Summary and Conclusions

The sensitivity of the soil compaction achieved by an oscillation roller, as well as of
the drum response to the variation of the operating roller speed, was investigated on
the basis of a recently developed plane-strain Finite Element model of the dynamic
oscillation roller-soil interaction system. Soil compaction was simulated with the
intergranular strain enhanced extended hypoplastic constitutive model and the void
ratio reduction was evaluated. The presented results clearly show that the predicted
compaction effect, both in terms of the compaction degree and depth of influence,
increases with decreasing roller speed. In addition, the conducted sensitivity study
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Fig. 14.8 Mean compaction
indicator during the first
roller pass as a function of
the roller speed v0, modified
from [18]

revealed that the shape of the plot vertical against horizontal drum center accel-
eration and its area depend on the subsoil stiffness, which is characterized by the
predicted void ratio distribution. These outcomes confirm that the quantities derived
from the presented drum response representation are appropriate indicators for work-
integrated compaction control with oscillation rollers.
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Chapter 15
Locking Free High-Order Mixed
Elements for Ferroelectric Polarization

Astrid S. Pechstein, Martin Meindlhumer, Alexander Humer,
and Michael Krommer

Abstract In this contribution, a finite element discretization for a thermodynami-
cally consistent macroscopic model of the ferroelectric polarization process is intro-
duced. Usually, finite elements are based on an incremental optimization problem
for the electric enthalpy, and displacement and electric potential are the degrees of
freedom of choice. Less common, energy-based models involving displacement and
dielectric displacement have beenproposed. In thiswork, themodel is reformulated in
terms of the mechanic enthalpy, leading to stress and dielectric displacement as inde-
pendent unknowns. Choosing stable pairs of mixed finite elements for the mechanic
and the electric quantities, a locking-free finite element method of arbitrary order is
designed. Numerical results show the robustness of the method.

15.1 Introduction

The piezoelectric effect allows to convert electric loads intomechanical deformations
and vice versa. Modern piezoceramics provide high precision actuation and sensing
at moderate cost. In order to exhibit the piezoelectric effect, these ceramics have
to be polarized initially by a high electric field. In most applications, it is assumed
that the consequent remanent polarization state is unidirectional and constant, which
leads essentially to Voigt’s theory of linear piezoelasticity [22]. However, the rema-
nent polarization state can change under different—sufficiently high—mechanical
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or electrical loadings. On the other hand, for involved geometries as occurring in
macro-fiber composites (MFCs), the applied poling electric field does not lead to a
unidirectional polarization state. For these reasons, the numerical simulation of the
polarization process and of mechanic and electric depolarization is an active field of
research.

In this work, a phenomenological description of the macroscopic material behav-
ior is adopted. The remanent polarization state is considered as an internal variable,
similar to the plastic strain in elastoplasticity. The proposed model is thermodynami-
cally consistent. The first to suggest such thermodynamically consistent models were
the group aroundMaugin [1–4]. McMeeking and Landis [9], as well as Schröder and
Romanowski [19] provided models including a remanent polarization strain depend-
ing directly on the remanent polarization. However, these models are still capable of
mechanical depolarization. Independent polarization strains were considered, e.g.,
by Landis [7] or Klinkel [6].

An extensive introduction on variational frameworks for these models is provided
by Miehe et al. [12]. In their work, energy and electric enthalpy-based models are
considered. These different models require different sets of free unknowns. Most
classical finite element methods are electric enthalpy based, where displacement
(or strain) and electric potential (or electric field) are the primary unknowns. Few
methods are energy-based with displacement and dielectric displacement as inde-
pendent unknowns. We cite a vector potential model by Semenov et al. [20] and a
one-dimensional model by Sands and Guz [18]. An energy-based method involving
mixed finite elements was suggested by Pechstein et al. [16, 17].

The present work deals with a model based on the mechanic enthalpy. Stress
and dielectric displacement are the primary unknowns of this model. For both the
mechanical and the electrical quantities, stable pairs ofmixed elements are employed.
The major benefit of this approach is the fact that the mixed mechanic elements are
locking free with respect to shear locking for flat elements.We choose tangential dis-
placement normal-normal stress (TDNNS) elements, which were used in the context
of simulation of linear piezoelectric materials by Pechstein et al. [15] and Meindl-
humer et al. [10, 11]. Thus, these elements are well designed for the discretization of
flat piezoelectric patches or thin integrated structures. The electric mixed elements
were designed by Lehrenfeld and Schöberl [8] such that Gauss’ law of zero charges
is satisfied exactly.

15.2 Thermodynamic Model

Let � ⊂ R
3 denote the domain of interest. We introduce the quantities of interest

in our electromechanically coupled model. First, u : � → R
3 shall denote the dis-

placement field.We assume to stay in small-strain regime, where the linearized strain
tensor S = 1

2 (∇u + (∇u)T ) is used. Its work conjugate is the symmetric total stress
tensor T. For the electric quantities, we introduce the electric potential ϕ : � → R

and the electric field as its negative derivative, E = −∇ϕ. Its work conjugate is the
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dielectric displacement vector denoted by D. In the following, we will refer to dis-
placement u and electric potential ϕ as well as strain S and electric field E as primal
quantities, whereas the stress tensor T and dielectric displacement D are referred to
as dual quantities. Ferroelectric polarization is described by a further macroscopic
field, the remanent polarization Pi . In this contribution, we assume that the remanent
polarization Pi directly accounts for the polarization strain Si = Si (Pi ) due to the
smaller computational complexity of such a formulation.

The conjugate, dual quantities T and D both satisfy balance equations

− divT = f and − divD = 0, (15.1)

where f denotes the given volume loads. Additionally, boundary conditions have to
be satisfied. For the mechanic quantities, we assume the body is fixed on some part
�fix and free on the remaining part �free = ∂�\�fix. Moreover, we assume that the
electric potential is prescribed on some part of the boundary �pot, whereas the body
is insulated elsewhere on �ins = ∂�\�pot,

u = 0 on �fix and T · n = 0 on �free, (15.2)

ϕ = V0 on �pot and D · n = 0 on �ins. (15.3)

Primal and dual quantities are related to each other via the material law. We
assume a thermodynamically consistent material model, which is described by a
thermodynamic potential. For a detailed introduction, we refer toMiehe et al. [12], in
the following, we provide a short presentation of enthalpy-based material modeling.

Usually, a potential representing the electric enthalpy of the system is given,where
the primal unknowns and the remanent polarization are the free variables,

�e =
∫

�

ψe(S,E,Pi ) dx . (15.4)

Above, we used the convention that the lower-case expressionψe denotes the density
of the upper-case potential �e. Then, stress and dielectric displacement are defined
as (negative) derivatives of the potential density with respect to strain and electric
field

T = ∂ψe

∂S
, D = −∂ψe

∂E
. (15.5)

While �e corresponds to the energy stored in the system, the dissipated energy is
represented by the dissipation function �. The dissipation function depends only on
the rate of the irreversible polarization, and is again defined via a density function

�(Ṗ
i
) =

∫
�

φ(Ṗ
i
) dx . (15.6)
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We assume that the dissipation function is positively homogeneous, which corre-
sponds to rate-independent behavior (see also [12])

φ(αṖ
i
) = αφ(Ṗ

i
) for all α ≥ 0. (15.7)

With the above ingredients, for any time interval [t0, t1], the following incremental
optimization problem has to be satisfied

�(t1) − �(t0) +
∫ t1

t0

�(Ṗ
i
) dt +

∫ t1

t0

Pext dt → min
S(u)

max
E=−∇ϕ

min
Pi

(15.8)

Above, the work of external forces f is included in the external power by defining

Pext =
∫

�

f · u̇ dx . (15.9)

So far, only well-known contributions from the literature have been reviewed. In
the following, we propose to use the mechanic enthalpy �m of the system instead
of the electric enthalpy �e. Then, the dual quantites T and D are free variables. The
mechanic enthalpy is related to the electric enthalpy via a Legendre transformation
in the following way; see e.g. [21]

�m(T,D,Pi ) = min
S(u)

max
E=−∇ϕ

�e(S,E,Pi ) −
∫

�

T : S dx +
∫

�

D · E dx . (15.10)

In the simple case of potentials quadratic in strain and electric field, this transfor-
mation can be computed in the standard way: assume the electric enthalpy density
ψe is of the standard form

ψe = 1

2
(S − Si (Pi )) : CE : (S − Si (Pi ))

+ (S − Si (Pi )) : e · E
− 1

2
E · εS · E − Pi · E + ψi (Pi )

(15.11)

where all material moduli CE , e and εS may depend on the remanent polarization
state Pi , and where ψi (Pi ) denotes an additional hardening term. Then the mechanic
enthalpy is given by the relation

ψm = − 1

2
T : SD : T − T : g · (D − Pi )

+ 1

2
(D − Pi ) · βT · (D − Pi )

− Si (Pi ) : T + ψi (Pi ).

(15.12)



15 Locking Free High-Order Mixed Elements for Ferroelectric Polarization 177

The material moduli are connected to each other via

CE = (SE )−1,

SD = SE − dT · βT · d,

βT = (εT )−1,

εS = εT − d : CE : dT ,

e = d : CE ,

g = βT · d. (15.13)

An optimization problem equivalent to (15.8) can be posed

�m(t1) − �m(t0) +
∫ t1

t0

�(Ṗ
i
) dt → max

− divT=f
min

− divD=0
min
Pi

. (15.14)

Note that, in comparison to (15.8), the work of external forces f is now not included
in Pext , but

− divT = f (15.15)

is posed as constraint. Lagrangian multipliers may be introduced enforcing these
constraints. We define the Lagrangian L

L(T,D,Pi ,u, ϕ) = �m(T,D,Pi ) −
∫

�

u · (divT + f) dx −
∫

�

ϕ divD dx .

(15.16)

The corresponding optimization problem for the Lagrangian L reads

L(t1) − L(t0) +
∫ t1

t0

�(Ṗ
i
) dt → max

T
min
D

min
u

max
ϕ

min
Pi

. (15.17)

Above, u and ϕ have been introduced as Lagrangian multipliers. It shows that indeed
they resemble the primal kinematic quantities displacement and electric potential.

15.3 Discretization

15.3.1 Semidiscretization in Time

We consider a discretization of the time interval [0, T ] into (not necessarily equal-
sized) time steps {ti }i=0...N , such that t0 = 0 and tN = T . We propose a time step-
ping scheme, where we assume at some time tn−1 all quantities known. We use
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un−1 = u(tn−1) etc. as an abbreviation. Lett = tn − tn−1 denote the time step size.

Approximating the remanent polarization rate by the quotient Ṗ
i � (Pi

n − Pi
n−1)/t ,

we observe for positively homogeneous dissipation functions � that

∫ tn

tn−1

�(Ṗ
i
) dt = �(Pi

n − Pi
n−1). (15.18)

The optimization problem corresponding to (15.17) for this time step transforms into
the problem of finding Tn,un and Dn, ϕn,Pi

n such that

L(Tn,Dn,Pi
n,un, ϕn) − L(Tn−1,Dn−1,Pi

n−1,un−1, ϕn−1) + �(Pi
n − Pi

n−1)

→ max
Tn

min
Dn

min
un

max
ϕn

min
Pi
n

.

(15.19)

Together with a suitable choice of finite element bases, the variation of the above
optimization problem leads to a system of nonlinear variational equations, that can
be solved by a Newton-Raphson iteration.

15.3.2 Spatial Finite Element Discretization

The finite element discretization of the optimization problem for the Lagrangian
(15.19) has to be done with care. Stable families of finite elements have to be chosen
for the electric quantities D and ϕ as well as the mechanic quantities T and u. Both
pairs have to satisfy an inf-sup condition for the respective divergence operators,
which will be discussed in the following.

Below, we assume that T = {T } is a regular finite element mesh of the domain�.
The mesh T may contain tetrahedral, prismatic and hexahedral elements, but must
be free from hanging nodes. Due to the choice of discretization, flat prismatic or
hexahedral elements suitable for the discretization of plates or shells are admissible
without additional mechanical locking effects.

15.3.2.1 Discretization of the Electrical Quantities

When analyzing the different terms of the optimization problem (15.19), one notes
that different differentiabilities for D and ϕ are required as compared to standard
problems. The divergence of the dielectric displacement, divD, has to be computed,
while no derivatives of the electric potential ϕ are evaluated. This is a standard feature
of mixed methods. In choosing finite elements for D and ϕ, two requirements have
to be met:
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• the dielectric displacement D has to be divergence conforming, i.e., Dn = D · n
has to be continuous across element boundaries, and

• dielectric displacement D and electric potential ϕ have to satisfy an inf-sup con-
dition, i.e., there exists some constant c independent of the mesh size such that

inf
ϕ
sup
D

∫
�

ϕ divD dx

‖D‖H(div)‖ϕ‖L2
≥ c. (15.20)

We will not dwell any longer on these issues. The interested reader is referred to
the exhaustive monograph by Boffi, Brezzi, and Fortin [5] for theoretical background
on mixed problems. As a first choice, one could use standard mixed finite elements
for the electrical quantities

D ∈ VD := {D : D|T ∈ [Pk(T )]3, Dn continuous}, (15.21)

ϕ ∈ Vϕ := {ϕ : ϕ|T ∈ Pk(T )}. (15.22)

Using the notation of [5], this is the Brezzi-Douglas-Marini space BDMk for the
dielectric displacement, as well as a discontinuous polynomial space for the electric
potential. In [17], we discussed that the number of degrees of freedom can be reduced
significantly if one considers that divD = 0. Although this condition is non-local,
Lehrenfeld and Schöberl [8] showed that it is possible to eliminate at least the high-
order contributions locally on the element level. They designed a reduced set of basis
functions, such that the divD is at most constant per element. For this reduced set
of basis functions, a smaller number of Lagrangian multipliers (i.e. electric potential
ϕ basis functions) is necessary to enforce divD = 0. The finite element spaces are
reduced to

D ∈ VD,red := {D : D|T ∈ [Pk(T )]3, divD|T ∈ P0(T ), Dn continuous}, (15.23)

ϕ ∈ Vϕ,red := {ϕ : ϕ|T ∈ P0(T )}. (15.24)

15.3.2.2 Discretization of the Mechanical Quantities

In a mixed method comparable to Sect. 15.3.2.1, one would expect stress elements
with continuous stress vectorTn = T · n at element interfaces, whereas the displace-
ment vector is allowed to be discontinuous. Such methods are difficult to design, but
usually free from shear locking. For an overview on the mathematical properties of
mixed methods in elasticity; see [5].

In the current contribution, we use the mixed finite element method introduced by
Pechstein and Schöberl in [13]. There, only the normal component of the stress vector
Tnn = n · T · n is continuous, which makes it easier to design conforming symmetric
finite element basis functions. Complementarily, the tangential component of the
displacement vector ut = u − (u · n)n is continuous, and gaps between elements
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may open up only in normal direction. For straight simplicial elements, the finite
element spaces are

T ∈ VT := {T : T|T ∈ [Pk(T )]3×3
sym , Tnn continuous}, (15.25)

u ∈ Vu := {u : u|T ∈ [Pk(T )]3,ut continuous}. (15.26)

For prismatic, hexahedral or curved elements, the definition of the spaces is more
complex and addressed in [10, 14].

As such, the stress tensor is not divergence conforming. In other words, the work
pair

∫
�

divT · u dx (15.27)

cannot be evaluated as an integral, but has to be understood in distributional
sense. It contains volume terms on each element, and additionally element bound-
ary terms including the jumping tangential component of the stress vector Tnt =
T · n − (n · T · n)n. For a thorough discussion, we refer to the earlier works [13,
15]. For completeness, we provide the definition of the distributional divergence
operator for the tangential continuous finite element function u and normal-normal
continuous T by

〈divT,u〉� :=
∑
T∈T

(∫
T
divT · u dx −

∫
∂T

Tnt · ut ds

)
(15.28)

= −
∑
T∈T

(∫
T
S(u) : T dx −

∫
∂T

Tnn un ds

)
= −〈S(u),T〉�. (15.29)

Note that, also in this distributional sense, divergence and strain operator are dual.
In both (15.28) and (15.29), on the element interfaces, the continuous finite element
function (ut or Tnn , respectively) acts as a Lagrangianmultiplier enforcing continuity
of their discontinuous counterpart (Tnt or un , respectively).

15.3.2.3 Discretization of the Remanent Polarization

The remanent polarization can be discretized in a completely independent way. It
does not need to satisfy any continuity assumptions, as no derivatives of Pi occur
in the variational equations. To be of consistent order, we propose to use piecewise
polynomial elements for Pi that are of the same order as the dielectric elements,

Pi ∈ VP := {Pi : Pi |T ∈ [Pk(T )]3}. (15.30)
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15.4 Numerical Results

We present a benchmark example taken from Semenov et al. [20]. A quadratic plate
of size l = 20mm × 20mm and thickness h = 6mm has a circular hole of diameter
d = 4mm through its center. Choosing the xy plane as the in-plane direction, it is
electroded at x = 0 and x = l. By applying a potential of ±ϕ0 = ±15000V to the
electrodes an electric field is induced in in-plane x direction. Singularities evolve
around the circular hole. Due to symmetry, only one eigth of the plate is modeled by
finite elements.

The plate is made from PZT-5H, which is modeled in the following way using the
parameters from Table15.1: the mechanic enthalpy is chosen as in (15.12). Electric
permittivity at constant stress βT = 1/εT I is assumed isotropic constant. The piezo-
electric tensor d depends on the remanent polarization as in [7], such that it reflects
the d31 and d33 effect. The flexibility at constant dielectric displacement is chosen as

SD = S(YE , ν) − 0.6dT · βT · d, (15.31)

as for this choice

SE = SD + dT · βT · d (15.32)

is close to the anisotropic tensor found inmaterial databases. There, S(YE , ν) denotes
the standard isotropic flexibility tensor for given Young’s modulus YE and Poisson
ratio ν. Concerning ferroelectric hardening and saturation, the additive energy ψi in
(15.12) is chosen such that its derivative is

ψ ′
i (P

i ) = ψ̃ ′
i (|Pi |) Pi

|Pi |
with ψ̃ ′

i (r) = h0Pm
0

2(m − 1)

(
(P0 − r)1−m− (P0 + r)1−m

)
(15.33)

The remanent polarization strain, that depends fully on the remanent polarization, is
given as proposed by McMeeking and Landis [9]

S(Pi ) = 3

2

S0
P2
0

(
PiPi − 1

3
(Pi · Pi )I

)
. (15.34)

Finally, the dissipation function contains the coercive electric field, and describes the
onset of switching. Its density is defined as

φ(Ṗ
i
) = E0|Ṗi |. (15.35)

This choice is motivated in detail in [16]. As discussed in [17], the additive energy
ψi and the dissipation function are regularized by a small parameter ε = 10−4P0.
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Table 15.1 Material parameters for PZT-5H, see also [20]

Young’s modulus YE 61 × 109Nm−2

Poisson ratio ν 0.31

el. permittivity εT 2.77 × 10−8Fm−1

Piezoelectric d31 2.74 × 10−10mV−1

Piezoelectric d33 5.93 × 10−10mV−1

Coercive electric field E0 820 × 103Vm−1

Hardening parameter h0 714 × 103mF−1

Saturation polarization P0 0.24Cm−2

Saturation strain S0 9.3 × 10−3

Shape parameter m 1.4

The additive energy is modified such that its second derivative of ψi stays bounded
as |Pi | approaches saturation, whereas the dissipation function is approximated by a
differentiable function. We use

ψ ′
i,ε(P

i ) =
{

ψ ′
i (P

i ) if |Pi | ≤ P0 − ε,

(ψ̃ ′
i (P0 − ε) + ψ̃ ′′

i (P0 − ε)(|Pi | − ε + P0))
Pi

|Pi | if |Pi | > P0 − ε
,

(15.36)

φε = E0

√
|Pi |2 + ε2. (15.37)

In the original reference [20], the voltage was raised from zero to 15000V in
several load steps. For our formulation, we found that we could use as little as four
load steps and still observe convergence of a Newton iteration with linesearch. Note
that such a lownumber of load stepsmay impede accuracy in case of non-proportional
loading. However, in the present benchmark the focus lies on iteration numbers and
maximum loadstep size. In Table15.2, we present the iteration counts for different
finite element orders, using prismatic meshes.

For the first three results, there was no refinement of the prismatic mesh in thick-
ness z-direction, resulting in an overall count of 95 elements. For the latter three
results, we used three elements over thickness, see e.g. Fig. 15.1 for the two different
discretzations. We compare our values to the counts given by [20], where one layer
of hexahedral elements was used.

To highlight the accuracy of the method, we compare the results for the lowest
resolution (one layer of finite elements of order k = 1) to the highest resolution (three
layers of order k = 3). In the former case, the mesh consisted of 95 elements, 10184
overall degrees of freedom were obtained, of which 2864 were coupling, while in
the latter case we had 179631 degrees of freedom of which 35931 were coupling.
Figure15.1 shows the remanent polarization |Pi | at V = 15000V, and Fig. 15.2
shows the corresponding electric field.
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Table 15.2 Iteration counts for the plate with hole

5000V 8000V 10000V 15000V

Semenov [20] 5 6 27 (5 incr) 29 (6 incr)

One layer

k = 1 8 11 29 27

k = 2 10 12 39 28

k = 3 14 14 48 31

Three layers

k = 1 9 13 32 26

k = 2 10 16 34 29

k = 3 14 14 47 44 (2 incr)

Fig. 15.1 Remanent polarization |Pi | (unit MC/m2) for the coarsest discretization (one layer of
prismatic elements of order k = 1) and the finest discretization (three layers of elements of order
k = 3)

Fig. 15.2 Electric field |E| (unit MV/m) for the coarsest discretization (one layer of prismatic
elements of order k = 1) and the finest discretization (three layers of elements of order k = 3)

In Figs. 15.3 and 15.4, the longitudinal stress component Txx aswell as the in-plane
shear stress component Txy are depicted.Note that in all plots, no stress reconstruction
or smoothing was done, the fields are displayed directly as they were computed. The
absolute value of the electric field over the central line x = 0, y ∈ [2, 10mm], z = 0
is displayed in Fig. 15.5.
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Fig. 15.3 Longitudinal stress component Txx (unit N/(µm)2) for the coarsest discretization (one
layer of prismatic elements of order k = 1) and the finest discretization (three layers of elements of
order k = 3)

Fig. 15.4 In-plane shear stress component Txy (unit N/(µm)2) for the coarsest discretization (one
layer of prismatic elements of order k = 1) and the finest discretization (three layers of elements of
order k = 3)

Fig. 15.5 Absolute value of
the electric field |E| over the
central line x = 0, y ∈
[2, 10mm], z = 0 for the
two different discretizations
with k = 1 and k = 3
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15.5 Conclusion

A finite element method for a mechanic enthalpy-based model of the ferroelectric
polarization process has been presented. In such a model, dielectric displacement
and stress are the primary unknowns. Two stable pairs of mixed finite elements were
chosen to discretize the model. For the electric quantities, divergence-conforming
dielectric elements are proposed, such that Gauss’ law of zero charges is satisfied
exactly. Taking this law into account, the total number of degrees of freedom could
even be reduced, choosing only basis functions with at most constant divergence. For
the mechanic quantities, mixed TDNNS elements are used, as they have been shown
to be free from shear locking when using flat elements in thin layers of piezoelectric
structures. By way of a numerical benchmark example, robustness of the method
with respect to large load increments is shown.
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Chapter 16
Theory of Critical Distances as a Method
of Failure Prediction Under Dynamic
Loading

Oleg A. Plekhov, Alena I. Vedernikova, and Anastasiia A. Kostina

Abstract The linear-elastic Theory of Critical Distances (TCD) is reformulated
to make it suitable for estimating the strength of notched components subjected
to dynamic loading. The theory modification in case of elasto-plastic stress–strain
behavior to enhance accuracy of strength assessment is presented. The efficiency of
the proposed methodologies is demonstrated for the experimental data on notched
Grade 2 specimens that were subjected to uniaxial tensile loads within the rate range
of 10−3–104 s−1. The obtained results showed that themodification of the TCDbased
on elasto-plastic analysis gives estimates that fall within an error interval of±5–10%,
more accurate predictions than the linear-elastic solution. The physical meaning of
the critical distance theory, in particular, the values of the critical distances L and
inherent material strength σ0, on the base of the original statistical thermo-dynamical
model of evolution of an ensemble of defects in metals developed by Naimark (2003)
in ICMM UB RAS is proposed. It has been observed that the critical distance value
can be considered as a fundamental length scale of dissipative structure developing
in a blow-up regime.

16.1 Introduction

The Theory of Critical Distances (TCD) is an effective tool developed by Taylor
[12], allowing the strength of components with geometrical discontinuities (cracks,
notches, holes) to be estimated accurately by directly post-processing the entire
linear-elastic stress fields in the vicinity of the stress concentrators. According to
the Theory of Critical Distances, failure occurs when an equivalent stress calculated
either at a certain distance from the notch tip, either averaged at the some distance or
area, becomes larger than the inherentmaterial strengthσ0. These are the central ideas
of TCD that are an extension of the approaches developed byNeuber [4], Novozhilov
[5], Peterson [6], Whitney and Nuismer [14], and Pluvinage [7] to estimate the
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strength of notched metallic materials. Recently, it was also proven that the TCD is
successful in estimating the static [10, 11], fatigue [1, 9, 13], and dynamic strength
[15, 16] of both ductile and brittle notched components.

The first part of this work is devoted to the verification TCD reformulation for
notched Grade 2 specimens at the strain rates of 10−3–104 s−1 [16]. The dynamic
TCD based on the simple power laws expression for the inherent strength and critical
distancewith regard to the strain rate and uses the post-process the linear-elastic stress
fields near the assumed crack initiation locations.

The second part ofwork is aimed tomodification of theTheory ofCriticalDistance
in case of elasto-plastic material behavior to enhance the accuracy of the fracture
assessment of notched components.

The second part ofwork is aimed tomodification of theTheory ofCriticalDistance
in case of elasto-plastic material behavior to enhance the accuracy of the fracture
assessment of notched components.

The final part of the work is devoted to the physical interpretation of the effective
length and inherent strength parameters, which is still an issue of fracture mechanics
and generally found empirically.

16.2 Extending TCD to Dynamic Loading

16.2.1 Critical Distance Concept for the Dynamic Loading

The TCD postulates that the notched component under Mode I static loading being
designed does not fail as long as the following condition is assured [12]

σe f f ≤ σ0, (16.1)

where σe f f is the effective stress determined according to one of the methods of
the theory of critical distances, σ0 is the inherent material strength. If the TCD is
used to perform the assessment of brittle notched materials, σ0 can be taken equal to
the material ultimate tensile strength σUT S [12], as far as for ductile materials, σ0 is
determined by testing of specimens with different notch sharpness [10].

Much experimental evidence [15] suggests that the dependence of the dynamic
strength of metal alloys on the strain rate can be summarized by adopting simple
power laws. The reformulation of theTheory ofCriticalDistances to dynamic loading
is based on the following hypothesis: since both the dynamic failure stress σ f and
dynamic fracture toughness KId vary as applied strain rate ε̇ increases, we assume
that in the same way the also the inherent material stress σ0 depends on the strain
rate, and hence the value of the critical distance L . Mathematically, the hypothesis
is formulated as follows:
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{
σ f = fσ f (ε̇) = a f ε̇

b f

K Id = fK Id (ε̇) = αε̇β
⇒

⎧⎨
⎩

σ0 = fσ0 (ε̇) = a0ε̇
b0

L = fL (ε̇) = 1
π

[
KId
σ0

]
= 1

π

[
αε̇β

a0 ε̇
b0

]
= M ε̇N

, (16.2)

where ε̇ is strain rate,a f ,b f ,α,β,a0,b0,M , N arematerial constants to bedetermined
by running appropriate experiments.

According to the Theory of Critical Distances, the dynamic effective stress σe f f to
perform the dynamic assessment has to be determined according to the Point method
(PM), the Line method (LM) or the Area method (AM) [16]

σe f f = σy

(
θ = 0, r = L

2

)
, (16.3)

σe f f = 1

2L

∫ 2L

0
σy(θ = 0, r)dr, (16.4)

σe f f = 2

πL2

∫ π/2

−π/2

∫ L

0
σ1(θ, r)rdrdθ, (16.5)

where σy is stress parallel to axis y, σ1 is maximum principal stress, L is critical
distance, (θ, r ) are polar coordinates.

16.2.1.1 Experimental Details

The accuracy and reliability of the proposed reformulation of the TCD was checked
against a set of experimental results generated by testing, under different strain rates,
specimens of titaniumalloyGrade 2 containing notches of different sharpness.Quasi-
static tensile tests were carried out with an electromechanical testing machine Shi-
madzu AG-X Plus (300 kN). A Hopkinson-Kolsky Split Bar was used to study the
high strain-ratematerial properties. The tensile testswere carried out in the strain-rate
range of 10−3–104s−1. Measurement of strain during materials testing was carried
out using video extensometer TRViewX240S f12.5. Three types of cylindrical spec-
imens with different stress concentrators such as semi-circular edge notches with
radius 1 and 2mm, V-shaped notches (notch root radius 0.1mm), and un-notched
(plain) specimens were used.

16.2.1.2 Validation by Experimental Data

The linear-elastic stress fields in the vicinity of the notches being investigated
were determined numerically by using commercial Finite Element (FE) software
ABAQUS.
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Fig. 16.1 Local linear-elastic stress fields under 0.0078/s (a) and 1.43/s (b) for notched Grade 2

Fig. 16.2 Accuracy of the TCD reformulation in the strength predicting for notched Grade 2

Since the tested titanium alloyGrade 2 specimenwere characterized by amechan-
ical behavior that was predominantly brittle, the hypothesis was formed that inherent
material strength could be taken equal to the ultimate tensile stress. After that, the
σ0 versus ε̇nom relationship was expressed by adopting a simple power law

σ0 = 538.968ε̇0.0214nom [MPa], (16.6)

Figure16.1a shows the linear-elastic stress-distance curves plotted under quasi-
static loading for Grade 2 specimens. This diagram fully confirms that, for this
material, the inherent material strength σ0 could be taken as equal to σUT S with little
loss of accuracy. Figure16.1b resulted a critical distance value for Grade 2 at a higher
strain rate. The function L = fL(ε̇) was derived

L = 2.592ε̇0.0869nom [mm], (16.7)



16 Theory of Critical Distances as a Method … 191

Bymaking use of power laws (16.6), (16.7), the effective stress σe f f was evaluated
according to the Eqs. 16.3–16.5. The results are summarized in the Fig. 16.2, where
error was calculated as

δ = σe f f − σ0

σ0
[%], (16.8)

This validation exercise has demonstrated that the proposed reformulation of the
TCD is capable of accurately assessing the static and dynamic strength of notched
specimens from titanium alloy Grade 2, with the estimates falling within an error
interval of ±20%.

16.3 Theory of Critical Distances Based on Elasto-plastic
Analysis

16.3.1 The Simplified Johnson-Cook Model

In this part of work, a simplified Johnson-Cook law in a form of (16.9) is used to
model the material response, taking into consideration the changes in the strain rate.
To determine the value of the critical distance, elasto-plastic stress fields will be used.
The adoption of these measures is conditioned by the fact that the material behavior
being, by nature, highly nonlinear and cannot be described in the framework of the
linear theory of elasticity.

σ = (A + Bεn)

(
1 + Cln

ε̇

ε̇0

)
, (16.9)

where A, B, n, and C are material constants, ε̇0 is reference strain rate. In the
Johnson-Cook constitutivemodel, the combined twokeymaterial responses are strain
hardening and strain-rate effects. The adiabatic heating effect is considered negligible
for the tension tests, as the material necks down at relatively low strains before any
significant adiabatic heating. All the materials constants could be obtained from the
fitting equations (16.9) with experimental data obtained under different strain rates.
The material parameters for titanium alloy Grade 2: A = 363.1 MPa, B = 389.89
MPa, n = 0.435, and C = 0.0176.
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16.3.2 Using the TCD by Post-processing the Elasto-plastic
Stress Fields

The strength estimation algorithm remained similar to the previous case.Mises stress
field distributions at the cross section away from the notch tip at the time requiring to
calculation of the value of the critical distance and the effective stress according to the
TCD were determined. The cylindrical un-notched specimens and specimens with
sharp stress concentrators under different strain rates were used for determining the
values of the critical distance. The value of the critical distance for different strain
rates is constant, which is equal to 0.24mm (Fig. 16.3), while with linear-elastic
analysis, the critical distance is a function of the strain rate.

Using value of critical distance equal to 0.24mm, the effective stress for notched
specimens under different strain rates according to the Point and Line Methods of
the Theory of Critical Distances were calculated. The results of this analysis are
summarized in Fig. 16.4.

The results showed that the use of modification of the TCD based on elasto-
plastic analysis gives us estimates falling within an error band of±5–10%, that more
accurate predictions than the linear-elastic TCD solution. The use of an improved

Fig. 16.3 Local elasto-plastic stress fields under different strain rates
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Fig. 16.4 Accuracy of the TCD based on elasto-plastic analysis in predicting the strength

description of the stress–strain state at the notch tip allows introducing the critical
distances as a material parameter.

16.4 Physical Explanation of the Critical Distance Theory

16.4.1 Mathematical Model of Damage to Fracture
Transition

Accounting of plastic deformation, which allows one to switch from the function
of the critical distance of the strain rate to the material constant, makes it possi-
ble to introduce the hypothesis about critical distance as the fundamental length of
the dissipative structure in the ensemble of defects, which develops in the blow-up
regime. The description of the evolution of the ensemble of defects near the stress
concentrator based on original statistical thermo-dynamical model of evolution of
an ensemble of defects in metals, developed at ICMM UB RAS [3].

The constitutive equation for structural strain (deformation caused by the appear-
ance of defects) has the form

ṗ = 	p

(
σ − ρ

δF

δp

)
+ 	pσ σ , (16.10)

where	p,	pσ are kinetic coefficients, F is specificHelmholtz free energy,p is defect
density tensor (structural-sensitive parameter), σ is stress tensor, and ρ is volumetric
mass.

The approximation of function σ − ρ δF
δp , which determines equilibrium state of

material with defects in the one-dimensional case [2]
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Z − δ�

δp
= σ

σmax
− ap + qpβ + ∇̄ · (

kps
(∇̄ p

))
, (16.11)

where σmax is maximum value of the stress tensor component near the concentrator,
β, s are degree of polynomials that determines the character of generation and the rate
of diffusion of defects, q, k, a—material parameters, Z , �—dimensionless stress
and free energy corresponding.

The self-similar solution of Eq. (16.10) in the one-dimensional case with approx-
imation (16.11) for constant stress values and parameters β = s + 1 can be written
as [8]

p(x, t) = (q(t − tc))
− 1

s

(
2(s + 1)

s(s + 2)
sin2

[
πx

Lc

]) 1
s

, (16.12)

where tc—the critical time of and Lc—the fundamental length scale.
The time of structure localization is estimated according to the relation

tc = 2(s + 1)

s(s + 2)

1

psq
, (16.13)

The fundamental length scale is defined by the following expression:

Lc = 2
π

s

√
s + 1

√
k

q
. (16.14)

Equations (16.10)–(16.14) used for the explanation of the fracture mechanisms
near stress concentrators of the titanium alloy Grade 2 under tensile loading.

16.4.2 Application of the Proposed Model
in One-Dimensional Case

For the explanation of the fracture mechanisms near stress concentrators, consider
an analytical solution for stress at round-tip notch. In case of infinite plate with
semi-circular notch (notch root radius rn) under tensile, the stress components can
be evaluated as [17]

σy(x, 0) = Ktσ∞
3

(
1 + 1

2

(
x

rn
+ 1

)−2

+ 3

2

(
x

rn
+ 1

)−4
)

, (16.15)

where Kt—stress concentration factor, σ∞—nominal stress.
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Fig. 16.5 Relations between analytically estimated fundamental length of dissipative structures Lc
and spatial scale lcσ (line 1), numerically estimated fundamental length LT N and spatial scale lcσ

The Eqs. (16.11), (16.15) with initial condition py(x, t) |t=0= 0 and boundary

conditions py(x, t) |x=0= 0, δpyy(x,t)
δx |x→+∞ were solved numerically for different

value of nominal stress (model material).
The analysis of numerical simulation allows to conclude that the failure process

(initiation of dissipative structure) requests a simultaneous fulfillment of two condi-
tions: the stress should be bigger than critical value σ0 (inherent material strength)
in some area near the stress concentrator and the length of this area should be bigger
than some critical spatial scale lcσ ((∃l ≥ lcσ )) : (∀x ∈ [0, 1]), σy(x) > σ0.

Figure16.5 presents a relations between the analytical estimation of spatial scale
of dissipative structure by Eq. (16.14) (Lc) and scale lcσ , numerically obtained value
of fundamental length (LT N ) and scale lcσ . The points represent simulation results
for set of parameters β and s. Analysis of the data presented in Fig. 16.5 allow to
conclude that the analytical assessment gives an overestimation of the localization
scale. The estimation of the fundamental length scale by the results of numerical
simulation gives the exact ratio corresponding to the result of the Theory of Critical
Distances: the critical stress must be achieved at the half of the fundamental length
of the dissipative structure

lcσ = 1

2
LT N (16.16)
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16.4.3 Application of the Proposed Model in
Three-Dimensional Case

Consider the link between the critical distance and fundamental length scale of dis-
sipative structure using quasi-static tension of the U-notched specimen of titanium
alloy Grade 2 (notch root radius 1mm) as an example.

Figures16.6 and 16.7 show the values of the defect density tensor at the notch tip
for two cases: σy < σ0 and σy > σ0, 1 < LT N/2, respectively. In both cases, there is
a stable situation with an equilibrium concentration of defects in the notched area.

Figure16.8 shows numerical results of the defect density along the line charac-
terizing distance to the notch in the plane with the maximum normal stress. It can be
seen that when σy > σ0 and 1 = LT N/2 there is no equilibrium defect concentration
and the dissipative structure is localized on the spatial scale that is equal to the half
of the critical distance obtained for Grade 2 specimen under quasi-static loading.

Fig. 16.6 a Values of py versus distance from the notch (σy < σ0). b Spatial distribution of py
component in the cross-sectional area perpendicular to the loading direction at the end-point to
evolution

Fig. 16.7 a Values of py versus distance from the notch (σy > σ0, lcσ < LT N /2). b Spatial dis-
tribution of py component in the cross-sectional area perpendicular to the loading direction at the
end-point to evolution
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Fig. 16.8 a Values of py versus distance from the notch (σy > σ0, lcσ = LT N /2). b Spatial dis-
tribution of component in the cross-sectional area perpendicular to the loading direction at the
end-point to evolution

To get this scale equal to the 0.85mm, we have used the material parameters
included in Eq. (16.11): q = 50.9, k = 2 · 10−6, a = 5.1. Initial uniform distribution
of pyy is replaced by the heterogeneous pyy with the localization zones where we
can observe sharp increase in the defect density (Fig. 16.8b).

16.5 Conclusion

The aim of this work is to verify a reformulation of the linear-elastic TCDproposed in
[15, 16] for notched specimens from titanium alloy Grade 2 under dynamic loading.
It was shown that the TCD is capable of accurately assessing the static and dynamic
strength of notched specimens within an error interval of ±20%.

The modification of the TCD in cases of elasto-plastic material behavior for
dynamic loading was proposed. The use of an improved description of the stress–
strain state at the notch tip allows estimating the fall within an error up to 10% and
introducing the critical distances as a material parameter.

Last part of the work presents one of the possible physical explanation of the
critical distance theory based on the statistical theory of defect evolution. As a result,
it was shown that localization of the defect ensemble can be observed when two
requirements are fulfilled: existenceof the areawhere stresses are higher than inherent
material strength and the spatial size of this area should be equal to the half of the
critical distance. The critical distancemainly depends on themicrostructural material
morphology and can be considered as a fundamental length scale of dissipative
structure developing in a blow-up regime.
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Chapter 17
Tuning Sliding Mode Controllers
for String Stability

Markus Reichhartinger, Astrid Leitner, and Martin Horn

Abstract Due to their outstanding robustness properties, feedback loops based on
the ideas of sliding mode control are well suited for the application in platooning
scenarios. In this chapter, homogenous platoonswithout any communication between
the vehicles in the platoon are investigated. It is demonstrated that neglecting actuator
dynamics during the design phase of sliding mode controllers leads to chattering
which becomes evident as stable self-sustained oscillations (limit cycles) within
the control loop. In this contribution, the characteristics of these limit cycles are
exploited to adjust the velocity-dependent inter-vehicle distances such that a string
stable platoon can be achieved although the actuator dynamics are neglected in the
design phase of the controllers. Twowell-known slidingmode algorithms, a classical
first-order concept and the super twisting algorithm, are investigated and simulation
results are presented.

17.1 Introduction

Truck platooning on highways offers a number of advantages such as reduced fuel
consumption and emissions, increased road capacity, improved road safety and com-
fort. Apart from these benefits the platooning scenario also is interesting from a sys-
tem theoretic point of view. As it is addressed in a number of publications [5, 6, 12,
13, 21], it is not straightforward to ensure a satisfying dynamic behavior of a string
of moving vehicles. Especially, the attenuation of disturbances along the platoon is
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of major interest. In this context, an established notion is the so-called string stabil-
ity [7, 8, 15, 24]. A common strategy to achieve string stability is the introduction of
speed-dependent inter-vehicle distances. In the present contribution, this is realized
by a so-called constant time-headway spacing [10, 23]. It is assumed that the position
of each vehicle within the platoon is controlled bymeans of a slidingmode controller.
This control methodology which is known to render feedback loops immune with
respect to certain classes of disturbances also proved to be a suitable approach in
platooning applications [9, 18]. For the tuning of the controller parameters, the actu-
ator dynamics is neglected. However, as it is shown in the present publication, the
choice of an appropriate constant time-headway significantly depends on dynamic
actuator properties.

This chapter is organized as follows: In Sect. 17.2, a detailed problem statement
is given. Sliding mode controllers and the tuning procedure for the time-headway
are presented in Sect. 17.3. Section17.4 illustrates the performance of the proposed
concept via numerical simulation results and Sect. 17.5 concludes this chapter.

17.2 Problem Statement

We consider a platoon of consecutively driving vehicles (so-called agents) consisting
of a leader (first vehicle, agent 0) and N followers (agnet 1, . . . , N ). The desired
formation of the platoon is characterized by prescribed inter-vehicle distances. We
assume that each vehicle has access to its position and velocity and, furthermore, to
the distance to its predecessor. Hence, by measuring the inter-vehicle distances, no
communication along the platoon is required. The platoon is homogeneous, i.e., all
vehicles have identical dynamics

dxi
dt

= vi ,
dvi
dt

= ai , i = 0, . . . , N . (17.1)

Note that xi , vi and ai denote position, velocity, and acceleration of vehicle i , where
i = 0 corresponds to the leader. The acceleration ai represents the input of this double
integrator dynamics and is assumed to be the output of a BIBO-stable actuator with
bounded input ui and transfer function W (s), i.e.,1

āi (s) = W (s)ūi (s). (17.2)

Position errors e j between two consecutive agents are introduced as

e j = x j−1 − x j − (
� j + thv j

)
, j = 1, . . . , N , (17.3)

1 Laplace transforms are denoted by bars.
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where � j + thv j represents the desired velocity dependent inter-vehicle distance. It
consists of a constant component � j and a velocity proportional component thv j .
Therein, the strictly positive constant th denotes the so-called time-headway.

The overall goal is to choose the actuating signals u j such that the vehicles of the
platoon form up as desired despite the leader’s behavior due to u0, which, as already
mentioned above, is not communicated to the followers.

17.3 Controller Design and Tuning

Typically, in a first step (see Sect. 17.3.1), the agent controllers are designed for the
idealized case characterized by W (s) = 1, i.e., the actuator dynamics are neglected.
As the relative degree of the position errors e j with respect to u j is one, see equa-
tion (17.3), we propose a classical first-order sliding mode controller (see, e.g., [22])
or the super twisting controller which belongs to the family of second-order sliding
mode algorithms [20]. The gains of these controllers are adjusted such that external
disturbances due to the non-existent communication are dominated.

In the second step (see Sect. 17.3.2), the time-headway th is adjusted in order
to eventually achieve the desired dynamics of the non-ideal platoon characterized
by W (s) �= 1. The proposed tuning procedure for th relies on a well-known string
stability condition.

17.3.1 Agent Control

For W (s) = 1 Eqs. (17.1), (17.2) and (17.3) lead to the error dynamics

de j
dt

= v j−1 − v j − thu j , j = 1, . . . , N , (17.4)

where v j−1 − v j is regarded as an unknown external disturbance. This motivates the
choice of the control signal

u j = 1

th
wj , j = 1, . . . , N . (17.5)

Therein, wj is generated by nonlinear sliding mode control algorithms.
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17.3.1.1 First-Order Sliding Mode Controller

Using the classical first-order sliding mode controller the algorithm reads as

wj = ksign
(
e j

)
, j = 1, . . . , N , (17.6)

where k is a positive tuning parameter. Obviously wj and consequently the control
signal u j is discontinuous. It is well known that feedback loops based on sliding
mode control suffer from the so-called chattering effect [2, 4]. This phenomenon
produces undesired self-sustained oscillations in the resulting feedback loops and,
for instance, is a result of neglected actuator dynamics.

17.3.1.2 Second-Order Sliding Mode Controller

In the case of the second-order sliding mode controller, the super twisting algorithm
as discussed in [11, 19] is given by

dz j
dt

= 1.5
√
k sign

(
e j

)
, (17.7)

wj = 1.1k
√∣∣e j

∣∣ sign
(
e j

) + z j j = 1, . . . , N , (17.8)

with the constant positive parameter k. This algorithm can be regarded as a nonlinear
version of the well-known PI control law [1]. Frequently this control law replaces the
classical first-order controller in order to avoid discontinuities in the control signal.
It should be noted that this does not imply an elimination of the above mentioned
chattering phenomenon [16].

17.3.2 Time-Headway Tuning

According to [15] in a string stable platoon disturbances are attenuated as they
propagate along the string.Anecessary frequencydomain condition for linear platoon
dynamics reads as

‖T ( jω)‖∞ = max
ω

|T ( jω)| ≤ 1, (17.9)

where T (s) is the transfer function relating the positions of two subsequent agents.
In Fig. 17.1, the feedback loop structure for agent j is depicted. Note that the input
to this feedback loop consists of the constant component � j and the time-varying
component x j−1. However, we are only interested in the propagation of dynamic
signal components along the string. Therefore, for the evaluation of condition (17.9),
the transfer function T (s) can be computed as
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Fig. 17.1 Feedback loop of agent j . The input� j represents the constant component of the desired
spacing. The signals x j and x j−1 denote the positions of the respective agents

T (s) = x̄ j (s)

x̄ j−1(s)

∣∣∣∣
� j=0

. (17.10)

In the present case, the control laws are nonlinear and consequently this technique
cannot be applied directly. As shown in [17], the describing function method permits
to exploit condition (17.9) even in the nonlinear case. The basic idea of this approach
is to replace the nonlinearity by its so-called describing function, a complex gain
N (A, ω), which approximates the nonlinear behavior in the case of limit cycles
e j ≈ A sin (ωt). In the present platooning application, the nonlinearity is introduced
by the above-mentioned control laws. Limit cycles occur due to the presence of the
previously neglected actuator dynamics. Using thewell-known equation of harmonic
balance, i.e.,

N (A, ω)P( jω)Q( jω) = −1 (17.11)

amplitude A and frequency ω can be determined. According to Eqs. (17.1), (17.2),
and (17.3), the transfer functions P(s) and Q(s) are given by

P(s) = W (s)
1

s2
Q(s) = 1 + sth. (17.12)

Once A and ω are known, the so-called equivalent gain keq, which replicates the
mean value of the nonlinear system’s response to slowly time-varying input signals,
can be computed [2–4]. Finally, the nonlinear controller formally is substituted by
the static gain keq. Hence, the nonlinear feedback loop is approximated by

T (s) = keqP(s)

1 + keqP(s)Q(s)
. (17.13)

Note that the equivalent gain is a function of the time-headway, i.e., keq = keq(th).
The idea of the proposed tuning procedure is to adjust th such that condition (17.9)
holds. An algorithm which aims at minimizing inter-vehicle distances is presented
in [17]. According to Eq. (17.3), this is equivalent to the minimization of the time-
headway th.
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17.4 Numerical Example

In this section, results of numerical simulations of a platoon consisting of N = 6
agents (one leader and five followers) are presented. All simulations are carried out
with a fixed step solver using a step size of 0.001. The actuator dynamics is given
by

W (s) = 1

(1 + sτ)2
. (17.14)

As an excitation of the platoon dynamics the leader vehicle input signal

u0 =
{
2 sin(t + π) otherwise

−4 for t ∈ [29, 31]
(17.15)

is chosen. The resulting time-evolution of the leader’s position x0(t) and velocity
v0(t) are plotted in Fig. 17.2. Therein the initial position x0(0) = 130 and the initial
velocity v0(0) = 29 of the leader as well as the considered braking scenario initiated
at t = 29 become evident.
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Fig. 17.2 Position x0 and velocity v0 of the leader vehicle due to a control signal u0 given in
Eq. (17.15)
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17.4.1 First-Order Sliding Mode Controller

For the classical first-order slidingmode controller given in Eq. (17.6), the describing
function

N (A) = 4k

π A
(17.16)

can be found, e.g., in [2]. Solving the equation of harmonic balance (17.11) yields
the amplitude

A = 2kt2h τ

π (th − 2τ)
(17.17)

of the limit cycle which allows to compute the equivalent gain

keq = 2k

π A
= 2

th − 2τ

t2h τ
, (17.18)

see, e.g., [2]. In order to assess string stability of the platoon using the first-order
slidingmode controller, the abovedetermined equivalent gain is used to computeT (s)
as given in Eq. (17.10). For a controller gain k = 2.5 and an actuator time constant
τ = 0.1, the minimum value of th satisfying condition (17.9) can be computed via
the algorithm presented in [17]. The obtained minimal time-headway is found to
be th ≈ 0.65. This is confirmed by Fig. 17.3 where the magnitude plot of T ( jω) is
depicted for different values of the time-headway th.

Figure17.4 shows simulation results of the above-mentioned scenario using
� j = 5. It is illustrated that the setting th = 0.9 yields a string stable platoon behav-
ior, whereas the setting th = 0.46 results in a string unstable dynamic platoon behav-
ior. In order to illustrate these characteristics, the inter-vehicle distances are plotted
in Fig. 17.4. By comparing the amplitudes of the oscillations of these distances, it
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Fig. 17.3 Magnitude plot of the transfer function T (s) used to assess string stability. Choosing the
time-headway such that |T ( jω)| < 0dB for all frequencies is necessary to generate a string stable
platoon
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Fig. 17.4 Simulation results of the platoon using the discussed first-order sliding mode controller.
String stability of the platoon is confirmed by this simulation with a time-headway of th = 0.9,
whereas an unstable behavior can be observed for th = 0.46

becomes evident that they decrease along the string in the string stable case and that
they increase in the string unstable case. Hence, the time-headway th introduces a
kind of damping into the platoon dynamics, see, e.g., [14].

17.4.2 Second-Order Sliding Mode Controller

Thefirst-order controller is replacedby the super twisting algorithm (17.7) and (17.8).
As discussed in [16], the achievable control performance strongly depends on the
actuator dynamics. This fact is confirmed by the results shown in Fig.17.5 obtained
by the same parameter settings as used in Sect. 17.4.1, i.e., k = 2.5, τ = 0.1 and
� j = 5. It can clearly be observed that the first-order controller achieves a smoother
transition during the breaking scenario. Using the super twisting algorithm leads to
large amplitudes of the inter-vehicle distances at the very end of the platoon especially
at the end of the braking phase. However, the platoon is string stable, too. The second
simulation experiment was carried out with a faster actuator (τ = 0.07) which leads
to similar results as achieved with the first-order controller.
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Fig. 17.5 This simulation results illustrate that the super twisting algorithm is also able to achieve
a string stable platoon. However, the achieved performance heavily depends on the characteristics
of the actuator. Here, results with an actuator with τ = 0.1 (lower plot) and with τ = 0.07 (upper
plot) are shown

17.5 Conclusion

The presented approach, in principle, relies on the idea to approximate a nonlinear
feedback loop by a linear one. Even though the resulting linear loop description is
by far not exact, it proves to be a convenient tool for the string stability analysis of
sliding mode controlled platoons. Apart from that, the present application confirms
that replacing a first-order sliding mode controller by a super twisting algorithm does
not necessarily lead to improved control performance.
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Chapter 18
Steady Motion of a Belt in Frictional
Contact with a Rotating Pulley

Jakob Scheidl and Yury Vetyukov

Abstract The steady-state motion of belt drives is studied extensively in the liter-
ature. While traditional models rely on the theory of an extensible string, we aim
to take bending effects into account. In this regard, it is well known that concen-
trated contact forces at the points of first and last contact with a pulley arise if shear
deformations are restricted. To circumvent this issue, we utilise a shear deformable,
Cosserat theory of rods. In particular, we study the contour motion of a belt that is
transported over a single, rigid pulley with zones of stick, sliding friction and no
contact. The Coulomb friction law governs the contact between the belt and the pul-
ley. We present a novel finite element model that allows to obtain the steady-state
solution directly. Furthermore, we deduce the corresponding closed boundary value
problem and integrate it numerically. Results obtained for a particular parameter set
demonstrate correspondence of the two approaches.

18.1 Problem Statement

We seek the steady-statemotion of the belt segment depicted in Fig. 18.1. The domain
of interest is enclosed by the two clamping positions, one on either side. The belt is
transported from left to right, entering and leaving the interval x ∈ [−Lx/2, Lx/2]
with a constant mass transport rate c = 1.1

A circular, rigid pulley with radius R = 0.7 is placed symmetrically in between
the borders and its centre is shifted by H = −0.575 in vertical direction j . The
material length in the control volume Ls equals the distance between the clamping
positions Lx = Ls = 1. The belt is made of linear elastic material with modulus
E = 5 × 107 and Poisson ratio ν = 0.45. It has a rectangular cross section with
thickness h = 0.05 and width w = 0.1. We assume Coulomb friction between belt

1The SI-system of units is used throughout the paper.

J. Scheidl (B) · Y. Vetyukov
Institute of Mechanics and Mechatronics, TU Wien, Getreidemarkt 9/E325, 1060 Wien, Austria
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Fig. 18.1 One-pulley belt drive at contour motion; geometry and global coordinates

and pulleywith the coefficientμ = 0.2. In this respect, the belt’s thickness is assumed
to be small enough, such that we consider the contact reaction forces being applied
at the middle line of the belt. Consequently, any distributed moments that would
arise due to tractions acting on the lower fibre are disregarded. Inertia effects are
ignored as well. Assuming that a solution with only one sticking and one sliding
region exists, the latter succeeding the former in direction of travel, we explicitly
set the position of the point where switching from stick to slip happens by means of
xtrans. Admittedly, it would have been more natural to specify the angular velocity
ω instead. However, in this academic example provision of xtrans is equally feasible
and even proves beneficial with reasons to be given at the end of Sect. 18.4. The belt
is modelled as a Cosserat elastic rod with bending stiffness a, extensional stiffness
b1 and shear stiffness b2:

a = E h3 w

12
, b1 = E h w , b2 = E

2 (1 + ν)
h w . (18.1)

Incorporating shear deformability is essential to avoid concentrated contact inter-
actions at the run-up- and the run-off-point, which are marked with xup and xoff in
Fig. 18.1, see [4].

In the usual Lagrangian kinematic setting, the actual configuration is described
by the position vector r as a function of the material arc coordinate r = r (s). The
tangential unit vector t and the corresponding normal vector n are parametrised with
an angle ϕ, which is measured against i ,

t = ∂sr/ |∂sr | = i cosϕ + j sin ϕ , n = −i sin ϕ + j cosϕ , (18.2)

where we have used the acronym ∂s(. . .) = ∂(. . .)/∂s to denote the material deriva-
tive. It is natural to describe the contact forces in this vector basis. The second system

e1 = i cos θ + j sin θ , e2 = −i sin θ + j cos θ , (18.3)
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grasps the rotation of a material point by an angle θ , again measured against i . In
the sense of a Timoshenko like theory, the vector e1 points in normal direction of the
deformed cross section. Thus, the shear deformation angle follows as

ψ = θ − ϕ . (18.4)

The undeformed state is assumed to be a straight line (r0 = x i) and we refer to [1]
for an example of a looped belt with a circular reference configuration.

The generalised force resultants M and Q are related to the deformations through
the constitutive law, again see [1],

M = a κ , Q = Q1 e1 + Q2 e2 = b1 ε e1 + b2 
 e2 , (18.5)

where κ is the bending strain measure; ε and 
 are the conjugate strain measures of
the force components Q1 and Q2. The strains are related to the deformations through

κ = ∂sθ , ε = (D cosψ − 1) , 
 = − (D sinψ) , D = |∂sr | , (18.6)

and in absence of shear deformation (ψ = 0) the axial strain ε corresponds to the
stretch D.

We use a dot to designate time derivatives and utilise the stationary material
transport rate c to introduce an appropriate coordinate transformation:

s = s (σ, t) = σ − c t , ∂sσ = 1 , σ̇ = c , (18.7)

where the last equation holds due to ṡ = 0. Rewriting the governing equations in
the new coordinate σ by simply replacing ∂s with ∂σ effectively eliminates the time
dependence of field variables.

18.2 Finite Element Formulation

One way to obtain the contour motion of the belt is to seek stationary points of the
total potential energy �:

δ� = δU + δV = 0 , (18.8)

where we have introduced the elastic strain energy U and the potential of contact
forces V . These energy contributions may be written as line integrals over σ :

U =
∫
Ls

(
1

2
a κ2 + 1

2
b1 ε2 + 1

2
b2 
2

)
dσ , (18.9)

V =
∫
Ls

(
1

2
Pp γ 2 + λp γ

)
dσ +

∫
Ls

(−λf t · r) dσ . (18.10)
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The strain energy is a simple quadratic form featuring couples of stiffness coeffi-
cients and squared strain components. The contact potential is more complicated
and deserves an in-depth discussion: It is divided into two separate integrals, the first
one dealing with the contributions attributed to the normal contact pressure p and the
second one with those related to the frictional force f . The strategy to compute the
contact forces in the finite element framework is known as augmented Lagrangian
method [3]. It features a penalty regularisation with penalty factors such as Pp and
combines it with an iterative update of Lagrangian multiplier estimates such as λp

and λf . Upon convergence of the iteration process, the penalty contributions vanish
and only the Lagrangian multipliers persist.

Concerning the normal contact, the main kinematic condition to enforce is that
the belt must not penetrate the pulley surface. We release this rigidity constraint and
aim to fulfil it approximately by penalising any penetration γ , defined as

γ = max (0, R − |r − H j |) ≥ 0 . (18.11)

The first quadratic term in (18.10) is further augmented with the actual Lagrangian
multiplier estimate λp, which is updated iteratively:

λp ← λp + Pp γ . (18.12)

Basically, the penalty contribution of the previous step is simply transferred to the
Lagrange multiplier, improving the estimate and thereby reducing the penetration γ

in the upcoming step.
The key condition for the frictional contact is that one must prevent any relative

motion in the sticking part of the contact region. The velocity of a material point
follows as the time derivative of the position vector:

v = ṙ = ∂σ r σ̇ = c ∂σ r = c D t . (18.13)

The absolute value of a point’s relative sliding velocity is

vrel = c D − R ω . (18.14)

Sinceω is considered unknown, we cannot fulfil vrel = 0 directly, but have to demand
∂σ vrel = 0 instead, which translates to

∂σ D = 0 ⇒ D = D̄ = const . (18.15)

The stretch in the sticking region D̄ is constant. The original condition vrel = 0 now
serves as an equation to calculate the corresponding value of ω. As the transition
position xtrans is provided explicitly, the zones of stick and slip are known in advance
and the frictional tractions can be assigned directly:

x < xtrans : λf ← Pf ∂σ D + λf , x ≥ xtrans : λf ← −μλp , (18.16)
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with Pf denoting the penalty factor for sticking contact. The negative sign in front
of μ indicates forward sliding of the belt.

The finite element formulation itself is based on a discretisation of the position
vector r as well as the angle of particle rotation θ . Cubic shape functions are used to
approximate the fields and their first derivatives in the local coordinate ξ ∈ [−1, 1]
of a single, two-node element. The integrals (18.9)–(18.10) are transformed to a
sum of finite element contributions in the usual manner and evaluated by means of
Gaussian quadrature rules with three integration points.

A pure Newton–Raphson algorithm is used to solve the non-linear system of
equations. In order to obtain results more reliably, the solution process is split into
two phases: Firstly, a frictionless solution with relaxed penalty for normal contact is
sought, which counteracts the ill-conditioning induced through the penalty terms and
simply disregards the second integral of (18.10). Secondly, the full penalty is applied
and frictional forces are taken into account. A number of steps is performed in order
to reach convergence of the Lagrange multiplier estimates. We resolve the contact
state discretely at individual integration points and call the update routines (18.12)
and (18.16) once after each successful Newton step. The size of the contact zone is
determined by the first and last integration point for which contact is recognised.

18.3 Analytic Model

Just like in the finite element model, we assume the solution to decompose into four
sequential segments: the left free span, the sticking region, the sliding region and the
right free span. In an effort to deduce the system of differential equations we will
address a single free span and the two contact segments individually, each time being
mindful of the particularities:

• No external forces act in any of the two free span regions.
• In the sticking region the belt adheres to the pulley surface.
• In the sliding region the friction forces must obey the friction law.

The model is an extension of the idealised one presented in [2]. We have already
provided the constitutive relations (18.5) and also given the definition of strains in
(18.6), but we have yet to present the balance equations of the non-linear theory:

∂s Q + q = 0 , ∂sM + D (Q1 sinψ + Q2 cosψ) = 0 . (18.17)

The vector of external forces vanishes in the free spans and otherwise equals the
contact forces, q = f t + p n.

Once again, we make use of the coordinate transformation (18.7) to get rid of the
time dependence of field variables and replace every single instance of ∂s with ∂σ in
the governing system. Beyond that, it is convenient to introduce spatial coordinates
like x or ϕ for each solution region with the main consequence that σ becomes an
additional unknown:
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free span regions: σ = σ(x) , ∂σ = ∂x/∂xσ , r = x i + y(x) j , (18.18)

contact regions: σ = σ(ϕ) , ∂σ = ∂ϕ/∂ϕσ , r = H j + R n(ϕ) . (18.19)

Owing to the absence of external forces, the derivation of a system of ODEs in the
free span region is quite simple. We obtain equations for σ and y through evaluation
of ∂σ r = D t with the above transformation rule (18.18) and projection onto the
Cartesian basis vectors. The constitutive relation (18.5) for M serves as an equation
for θ and the ones for the force components are used for substitution in the balance
of moments, which yields an ODE for M . Lastly, based on the balance of linear
momentum, we derive equations for the stretch D and the shear angle ψ :

∂xσ = (D cosϕ)−1 , ∂x y = tan ϕ , ∂xθ = ∂xσ M/a ,

∂x M = ∂xσ

(
D2 sin(2ψ)

b2 − b1
2

+ D b1 sinψ

)
,

∂x D = ∂xθ

(
D sin(2ψ)

b21 − b22
2 b1 b2

− b1
b2

sinψ

)
,

∂xψ = ∂xθ

(
cos(2ψ)

b21 − b22
2 b1 b2

+ b21 + b22
2 b1 b2

− b1
b2 D

cosψ

)
. (18.20)

Treating the sticking region is more concise, because only three ODEs for
{σ, θ, M} suffice. They resemble the ones given above, with the main differences
that the unknown constant stretch D̄ enters the equations and that ϕ is used for
parametrisation instead of x :

∂ϕσ = −R/D̄ , ∂ϕθ = ∂ϕσ M/a ,

∂ϕM = ∂ϕσ

(
D̄2 sin(2ψ)

b2 − b1
2

+ D̄ b1 sinψ

)
. (18.21)

The above three equations also apply to the sliding region, once the constant D̄ is
replaced with the variable D = D(ϕ). Consequently, another equation for the stretch
is needed, whose deduction is more tedious as it requires substitution of the friction
criterion f = −μ p in the balance of forces:

∂ϕD = D
(
2 ∂ϕθ − 1

)
(b1 − b2) (μ cos(2ψ) + sin(2ψ))

(b1 − b2) (cos(2ψ) − μ sin(2ψ)) + b1 + b2

+ μ D (b1 + b2) − 2 ∂ϕθ b1 (μ cosψ + sinψ)

(b1 − b2) (cos(2ψ) − μ sin(2ψ)) + b1 + b2
. (18.22)

This concludes the system with a total of nineteen ODEs: two times six for the
free spans, three for the sticking region and four for the sliding region. Boundary
conditions at x = ±Lx/2 demand continuity of σ , the vertical deflection and the
particle rotation (σ = ±Lx/2, y = 0, θ = 0). In general, the shear deformation ψ

will not vanish at these points and the beam axis will thus experience a slight kink.
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Matching conditions have to be employed at the run-up- and the run-off-point (xup
and xoff in Fig. 18.1). There, we demand continuity of all six unknowns that appear
in the system (18.20). Lastly, at the transition point xtrans, we require continuity of
{σ, θ, M, D}. These are a total of 22 boundary conditions for 19 first order ODEs
and three unknown constants, namely: The points xup and xoff as well as the constant
stretch in the sticking region D̄. Before passing the system to theMatlab collocation
solver bvp4c, we further transform the equations to a normalised coordinate ξ ∈
[0, 1], see [1, 4], and introduce dimensionless constants to reduce the number of
parameters.

18.4 Results

Let us take a look at the contact forces in Fig. 18.2 and at the strains in Fig. 18.3.
Plots are drawn for the results obtained through integration of the boundary value
problem (BVP, dotted) as well as for a finite element simulation with 100 equally
sized elements (FEM, dashed). Though both approaches converge rapidly, the FEM
simulation requires a higher computational effort owing to the two-stage iterative
solution strategy and the number of elements needed to reach accurate results. The
transition point is set to xtrans = 0 and the contact zone borders xup and xoff aremarked
with additional vertical grid lines.

In Fig. 18.2, the normal contact pressure p shows distinct peaks at the points
xup and xoff. Contrary to unshearable rod theories though, the function does not
tend to infinity. The frictional tractions experience corresponding peaks as well as
a jump at the transition point xtrans = 0 in obedience to the friction law. The coarse
discretisation does not suffice to capture the high gradients at the two bordering
positions, which is most evident at xup in the right picture of Fig. 18.2. This issue can
be easily resolved by using more elements or an appropriately refined mesh.

Figure18.3 depicts the distribution of the two force strain measures. The results
obtainedwith 100 elements conformverywell to the semi-analytic reference solution.
The axial strains ε are constant in the sticking region, as demanded by (18.15), and
gradually increase in the sliding zone. The peaks of the shear strain distribution on

Fig. 18.2 Distributions of normal (left) and tangential contact forces (right)
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Fig. 18.3 Distributions of strain measures ε (left) and 
 (right)

the right are obviously related to the establishment and loss of contact and, aside
from the bordering regions, no significant shear deformation arises in the contact
domain. Different results are to be expected, once distributed contact moments come
into play, which are absent here.

Demanding vrel = 0 in (18.14) for xtrans = 0 yields an angular velocity of ω =
1.4807 (the relative error between themodels is less than 1 × 10−4). Now, to estimate
the range of meaningful values forω, we can simply shift xtrans towards the bordering
points xoff and xup to find limiting solutions of a pure sticking and a pure sliding
belt, respectively. The corresponding interval turns out to be extremely tight: ω ∈
[1.4779, 1.4825], which clearly demonstrates the advantage of providing xtrans as
part of the system parameters instead of ω.

18.5 Conclusion

Wehave developed a finite element procedure to compute the stationarymotion of the
considered one-pulley belt drive example. The scheme relies on the theory of shear
deformable rods, and the simulation results are compared to analytic results obtained
through numerical integration of the corresponding boundary value problem.

To this end, only a single pulley has been considered and the closed loop, two-
pulley belt drive problem is left for future research. Again, shear deformable rod
theory should be used when tackling this more complex problem with the proposed
solution strategies. For completeness, stationary dynamics should be considered as
well. A difficulty that arises in the looped problem is that the constant material
transport velocity c becomes an additional unknown.
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Chapter 19
Modeling, Simulation, and Experimental
Analysis of Liquid Sloshing Dynamics

Johannes Schröck, Johannes Wenninger, Erwin Karer,
and Andreas Eitzlmayr

Abstract For the simulation of liquid sloshing, particle simulation methods allow a
detailed investigation of the acting dynamics. Since these methods usually go along
with considerable computational loads the application of alternative, simplifiedmod-
els is a usual proceeding. However, the parameters of the simplified model can not be
directly computed from physical quantities in the general case, such that parameter
identification based onmeasurements is required. In applicationswhere experimental
investigation is expensive, the use of particle simulation results for parameter identi-
fication can be a promising alternative. This contribution considers the identification
of the parameters of a simplified model for different container geometries and fill-
ing levels based on smoothed particle hydrodynamics (SPH) simulation results. The
comparison with experimental data verifies the accuracy and sensitivity of both the
used particle model as well as the simplified model.

19.1 Introduction

Newmechatronic conveyor concepts like the long stator linear motor (LLM) actuator
give additional degrees of freedom for the transportation of objects compared to con-
ventional conveyor systems. The conveyed objects get moved by separate shuttles
individually controlled based on their position along the LLM actuator. This pro-
vides completely new options for object transportation, processing, and throughput
optimization. The transport speed can be adapted to the radius of curvature along the
transport track. The motion of the objects can be synchronized to each individual
processing cell along the track. The flow of objects can be efficiently split to different
tracks and several flows are easily brought together to a common track. Using indi-
vidual controllable transportation shuttles instead of a common conveyor belt may
be a key-enabler component for agile production.
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A specific application is the fast transport of open containers filled with liquid.
Depending on acceleration and track geometry, the dynamics can cause the liquid
spilling over the container opening.Up to now, sloshing is prevented by a conservative
setup of the transportation system. Using individually controlled transport shuttles
instead of a common conveyor belt allows to accordingly adapt velocity profiles for
the movement, which limit the sloshing angle to a predefined value. Hence, each
segment of the track can be safely passed through by simultaneously maximizing the
throughput. In order to determine the optimal shuttle trajectory along an arbitrary
predefined track, a model-based approach is required. In this context, it is sufficient
to consider the dominant sloshing characteristics.

The simplest model representing a sloshing liquid is a pendulum model with
properly defined parameter values for the pendulum mass, pendulum length, and
damping coefficient. For containers with circular or square cross sections at least
mass and length parameters can be derived from analytical considerations of con-
tainer geometry, filling level and liquid density, see, e.g., [1]. In the general case,
where a more complex container geometry is used, the correct parameters have to be
determined by parameter identification methods based onmeasurements from exper-
imental investigations. Clearly, experimental investigations are often expensive and
time-consuming. Therefore, this paper proposes to use SPH simulation results for
identification of the parameters of the pendulum model. As a first step for a general
approach, this procedure is validated by considering a simple container geometry.
The comparison with measurements from experimental investigations illustrates the
reliability of this approach.

The paper is structured as followed: Sect. 19.2 describes the experimental test-bed.
Section19.3 presents the mathematical model of the considered pendulum model.
Identification and validation of the model parameters is reported in Sect. 19.4 based
on measurement results. Section19.5 shows the simulation results based on SPH,
which are used for parameter identification of the pendulum model in Sect. 19.6.

19.2 Experimental Test-Bed

The test-bed consists of two linear axeswith ball screw drives fromHIWIN (HM060S
and HM040S) which enable a range of motion of 0.5 × 0.3 m in the (x, y)-plane,
see Fig. 19.1. Each linear axis is driven by a B&R synchronous motor of the 8LS
series, that is controlled by an ACOPOS servo drive (8V1010). The control task is
implemented on a B&R Power Panel C70 PLC with a cycle time of 2 ms using PID
position control. The liquid container to be transported is mounted to the y-axis via
a high accuracy 3-axis-force sensor (K3D60a) from ME-Messsysteme GmbH with
nominal measuring force of ±50 N and accuracy class 0.05%.DEWETRON DAQP-
STG measurement amplifiers are used to connect the force signals to the PLC via
an analog input X20 module. The measurement accuracy of the container position
results from the motor encoder (104 increments per revolution) and the ball screw
pitch of 10 mm. Data acquisition of force, position and velocity is realized by means
of the PLC with a sample time of 2 ms.
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Fig. 19.1 Testbed with liquid filled container mounted on two linear axes

The test-bed is used to move containers filled with different amounts of water
along certain trajectories in order to investigate the dynamics of the sloshing water
by means of the force measurements. It will be shown, that the behavior of the liquid
can be accurately reproduced by means of both proper defined particle simulations
and a simplified model, suitable for real-time simulations and model-based control
applications.

19.3 Simple Model for Sloshing

In this contribution, the focused application of transporting liquid-filled container
results in a smooth sloshing behavior, i.e., there appears no splashing and no sep-
aration of the liquid volume in different entities. The container is considered to be
open at the top, and a continuous free liquid surface is assumed. In this case, linear
sloshing can be supposed, which means the sloshing can be represented by its natural
frequencies [1]. Since the main contribution concerning sloshing forces and sloshing
angle corresponds to the first sloshing mode, the pendulum model is a satisfactory
choice.

In the following investigations, it turns out that only a certain amount of the
liquid mass contributes to the sloshing dynamics. For this reason, the liquid mass
Mliq is separated into two parts, Mliq = Mliq,r + m, with m responsible for the
sloshing and Mliq,r representing the remaining liquid mass. Hence, the pendulum
model can be defined by the two masses M and m and the pendulum length l as
shown in the scheme in Fig. 19.2a with M = Mliq,r + Mt = Mliq − m + Mt , where
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Fig. 19.2 Scheme of the pendulum model (a) and linear momentum in x-direction (b)

Mt represents the mass of the empty container. The masses have two degree of
freedom {xM(t), yM(t)} and {xm(t), ym(t)}. The governing equations of motion can
be derived by means of the Euler-Lagrange approach, i.e.,

d

dt

(
∂T

∂q̇

)T

−
(

∂T

∂q

)T

+
(

∂V

∂q

)T

= Q, (19.1)

where q(t) = [xm(t), ym(t)]T represents the generalized coordinates T = 1
2mvT

mv
the kinetic, and V = −mgT rm the potential energy with the displacement vector
rm(t) and the velocity vector vm(t) of the point mass m given by

rm(t) =
⎡
⎣ xM(t) + xm(t)

yM(t) + ym(t)√
l2 − xm(t)2 − ym(t)2

⎤
⎦ , vm(t) =

⎡
⎢⎢⎣

ẋM(t) + ẋm(t)
ẏM(t) + ẏm(t)

−xm(t)ẋm(t) − ym(t)ẏm(t)√
l2 − xm(t)2 − ym(t)2

⎤
⎥⎥⎦ .

(19.2)

The generalized forces Q(t) result from additionally introduced viscous damping

Q(t) =
(

∂ rm(t)

∂q

)T

Fr (t), Fr (t) =
⎡
⎣−dpx ẋm(t)

−dpy ẏm(t)
0

⎤
⎦ , (19.3)

with Fr (t) being the damping forces based on individual damping parameters dpx

and dpy in x- and y-direction. Finally, the governing equations of motion can be
given in the form
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M q̈(t) + G(q, u, t) = Q(t), (19.4)

with themassmatrixM, the vector of non-linear termsG(q, u, t), and the acceleration
of the mass M as the inputs u(t) = [ẍM(t), ÿM(t)]T . For the parameter identification
and validation of the model, the forces experienced by the high accuracy 3-axis-force
sensor have to be considered. These forces are given by

Fx = (m + M) ẍM + m ẍm + dpx ẋm, (19.5)

Fy = (m + M) ÿM + m ÿm + dpy ẏm, (19.6)

which can be derived based on the linear momentum in x- and y-direction also, see
Fig. 19.2b.

19.4 Parameter Identification and Validation
with Measurements

The test-bed described in Sect. 19.2 is used to execute experiments with two different
container geometries (circular and square cross section) and each of them with two
different filling levels of water (1 l and 0.33 l). Three different trajectories for the
movements are used, two open trajectories similar to semicircles with different radii
(Fig. 19.3a), and a closed eight-shaped trajectory (Fig. 19.3c). In the following, the
trajectories are called semicircular-shaped and eight-shaped. The deviations from
a precise semicircle as well as the initial variation of the eight-shaped trajectory
result from the applied PID position controller. However, since we are focusing on
the sloshing behavior and successive experiments with the same settings that provide
precisely the same results, these deviations represent no restrictions for the following
investigations.

The parameter identification for the pendulum model is done via minimization of
the error between measured and simulated forces Eq. (19.5) by adopting the values
of the parameter set {m, l, dpx , dpy}.1 For that, measurements with an duration of
�t = 10 s from experiments based on the semicircular-shaped trajectory with radius
80mm are used, see Fig. 19.3a solid lines. The resulting parameter values are given
in Table19.1, where they are compared to values from analytical models from the
literature [1]. These analytical models consider the container geometry with circular
and square cross section but do not include damping. The parameters m and l are in
excellent correspondence for all four container configurations.

Figure19.4 confirms that with these parameters a very accurate agreement
between measurements and simulation results can be achieved for all configurations.
In order to illustrate the effect of the sloshing, Fig. 19.5b compares the arising forces
for the investigated configurations relative to a rigid mass movement along the same

1 The corresponding optimization was performed by means of the open source software SyMSpace
[2].
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Fig. 19.3 Trajectories: a semicircular-shaped with radius ∈ {80, 130}mm and c eight-shaped; b,
d corresponding acceleration signals ax (t) and ay(t) in x- and y-direction

trajectory, i.e., the sloshing forces are computed as the difference between measured
forces and computed forces of a rigid mass. Obviously, there are minor differences
in the evolution of the sloshing forces for square cross sections compared to circular
cross sections. The amplitudes of the sloshing forces are not directly dependent on
the filling level of the containers.

In order to validate the sensitivity of the identified parameter of the pendulum
model, measurement and simulation results are compared for trajectories different
from that used during the identification procedure. Figure19.6a shows the evolution
of the forces for a container with circular cross section and filling level 0.33 l moved
along the semicircular-shaped trajectory with radius 130mm, cf. Fig. 19.3a dashed
lines. Obviously, this trajectory results in significantly lower sloshing compared the
trajectorywith radius 80mm.Specifically, the sloshing represented by the force Fy(t)
is strongly reduced.While even for small amplitudes in Fx (t) the agreement between
measured and simulated results is highly accurate in Fig. 19.4, the deviations are
higherwith the trajectory of 130mm.Nevertheless, the agreement betweenmeasured
and simulated results is excellent, in particular during the motion of the liquid-filled
container.
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Fig. 19.4 Comparison of measurements and simulations results of the forces based on the
semicircular-shaped trajectory with radius 80mm for different container configurations

Fig. 19.5 Forces of the semicircular-shaped trajectory with radius 80mm a absolute forces and b
computed sloshing forces relative to a rigid mass movement
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Fig. 19.6 Validation of the forces for the container with circular cross section and 0.33 l filling
level for a the semicircular-shaped trajectory with radius 130mm and b the eight-shaped trajectory

In addition, Fig. 19.6b shows the results for the same container configuration
but for the eight-shaped trajectory. In contrast to all other experiments, here the
liquid-filled container is in continuous motion. Also in this case, excellent agreement
between measurement and simulation results can be observed. This leads to the
conclusion that the pendulum model with identified parameters is sufficient accurate
and robust for the representation of sloshing in moving liquid-filled containers.

19.5 Smoothed Particle Hydrodynamics Simulations

In addition to the experimental measurements, sloshing in moving containers is
numerically investigated using the SPHmethod, which employs discrete Lagrangian
mass elements (so-called fluid particles) instead of a mesh-based spatial discretiza-
tion. For free-surface flow phenomena, this meshless nature is of specific advan-
tage, since the Lagrangian fluid particles inherently allow the representation of the
dynamic liquid surface, without any additional modeling complications, such as typ-
ically required for mesh-based methods.

The simulations are conducted using the particle simulation software LIGGGHTS
[3], coupled to the mechatronic systems simulation package HOTINT [4, 5]. This
coupling facilitates SPH simulations in the context of fluid structure interaction (FSI)
problems [6]. The SPH model included in LIGGGHTS is based on the classical,
weakly compressible formulation as originally introduced by Monaghan [7], and
additionally the following specific variants or modifications are used:

• Morris model for viscous forces [8],
• discretized continuity equation for the density [7],
• first-order consistent density filtering by moving least squares (MLS) [9],
• equation of state for liquids according to [7],
• Wendland smoothing kernel [10] and
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• explicit time integration by a 2nd order Verlet scheme, see, e.g., [11].

The solidwall boundary conditions are imposed by using the particle-wall interaction
model according to [12]. Moreover, another correction is employed to the density
field in order to avoid the accumulation of errors due to the numerical time integration
of the continuity equation, which may lead to inconsistencies between mass, density,
and volume. More details about this correction and the used SPHmodel are provided
in previous work [13].

In the SPH simulations, the spatial resolution is varied by using values of 2 and
4mm for the initial particle spacing, yielding a total particle number of 125000 and
15625 for 1 l of water, respectively. The smoothing length is set to the 1.25-fold of the
initial particle spacing in each case, as previous studies [13] revealed to be reasonable.
The speed of sound is chosen to be 10m

s , which is sufficient to keep the numerical
compressibility negligible under the investigated conditions. With that, a time step
of 1e−5 s is sufficient for numerical stability in most cases, except for the cases with
125000 particles, here the time step is 5e−6 s. The MLS filter is periodically applied
every 10 time steps.

Simulations are conducted for the same scenarios as in Sect. 19.4. The resulting
forces in the x- and y-direction over time are shown in Fig. 19.7 compared to the
corresponding measurement data. For the semicircular-shaped trajectory, excellent
agreement of the forces is achievedduring themovement (until approx. 1.4 s). In some
cases the post-excitation sloshing agreeswell too, specifically Fx (t) for the caseswith
0.33 l. Generally, Fy(t) shows less agreement than the Fx(t) and the cases with 0.33 l
showbetter agreement than the caseswith 1 l.However, the sloshing frequency agrees
well in all cases, and the damping rate is similar between measurements and SPH
results with 2mm particle spacing. The 4mm SPH results show significantly higher
damping, therefore, the post-excitation sloshing is distinctly better reproduced by
the 2mm SPH resolution. Clearly, the computational expense is usually about the
10-fold with 2mm compared to 4mm SPH resolution, and if only the excitation
period is of interest, the 4mm resolution is sufficient (as often the case in automation
and control applications).

For the eight-shaped trajectory, the comparison is similar, see Fig. 19.7e. In thefirst
second of the movement, the agreement of the forces obtained from SPH simulations
and measurements is excellent. In contrast to the semicircular-shaped trajectory,
there is no post-excitation period, since the container is continuously moved along
the closed eight-shaped trajectory. Instead of that, there are higher sloshing modes
superposed, whose amplitudes decrease slowly over time. Interestingly, this is more
pronounced in the x-direction, whereas for the semicircular-shaped cases discussed
above the post-excitation sloshing amplitude is higher in the y-direction.

In summary, the comparison of the forces from SPH simulations and measure-
ments shows excellent agreement, specifically during the movements. Some dif-
ferences appear in the post-excitation sloshing. These could be related to the finite
stiffness of the experimental setup, which introduces additional dynamics depending
on direction and filling level, as well as numerical dissipation in the SPH simulations,
which causes additional damping depending on the numerical resolution. Analogous
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Fig. 19.7 Comparison of forces obtained from SPH simulations and measurements

to the measurements, the SPH results can be used for the parameter identification of
the simplified model, which will be discussed in the following section.
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Fig. 19.8 Comparison of SPH and pendulum model simulation results for the semicircular-shaped
trajectory with radius 80mm, filling level 0.33 l, and containers of a circular and b square cross
section

19.6 Parameter Identification Based on the SPH
Simulations

Similar to Sect. 19.4, the parameter identification for the pendulummodel is repeated
based on the SPH simulation results presented in the previous section. In contrast to
Sect. 19.5, here only the moving phase of the container is considered for the identi-
fication, due to the above-discussed differences during the post-excitation evolution.
However, this represents no restriction here, since the focus of this contribution is
on the sloshing behavior during the movement in order to address, e.g., optimal tra-
jectory planning of a transportation shuttle, where the evolution of post-excitation
effects are of minor interest.

As shown in Fig. 19.8, simulation results of the identified pendulum model for
containers with circular and square cross sections and filling level 0.33 l are in excel-
lent agreement with the SPH simulations. Table19.1 shows a comparison of the
parameters identified from SPH results, with the parameters identified from mea-
surement data. Obviously, the pendulum length l agrees well in all cases, while
the sloshing mass m shows some deviations, specifically for the container with the
square-shaped cross section (18.2%). The damping parameters identified from SPH
results differ strongly, which results from the exclusion of the post-excitation phase in
that case.
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Table 19.1 Comparison of the values for the identified pendulum parameters with values from the
literature [1]

Circular Circular Square Square

0.33 l 1 l 0.33 l 1 l

lit meas SPH lit meas SPH lit meas SPH lit meas SPH

m 0.163 0.1630 0.1490 0.178 0.1730 0.1580 0.201 0.1980 0.1630 0.256 0.2480 0.2030

l 0.030 0.0309 0.0305 0.027 0.0280 0.0279 0.041 0.0415 0.0407 0.032 0.0338 0.0342

dpx 0.097 0.110 0.062 0.200 0.088 0.019 0.156 0.091

dpy 0.016 0.000 0.020 0.000 0.025 0.000 0.037 0.000

19.7 Conclusion

Liquid sloshing in containers of different geometries that are transported along dif-
ferent trajectories is investigated by considering the forces acting on the container.
Comparisons with measurements show that the system dynamics can be accurately
reproduced by a pendulum model. Simulations based on smoothed particle hydro-
dynamics (SPH) provide results in excellent agreement to the measurements too.
However, special attention must be paid to the damping behavior. These investiga-
tions justify the approach of identifying the pendulum model parameters based on
SPH simulation results.

As a final result, it can be shown that this approach yields reliable values for
the main model parameters, such that it is reasonable to replace experiments with
simulations in this context in order to reduce costs and time. Future activities will take
advantage of the simple pendulummodel for trajectory planning and optimization for
fast container transport to prevent the liquid from spilling over the container opening
by assuring limits of the maximum sloshing angle.
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Chapter 20
Test and Verification of Applying Neutral
Equilibrium Mechanisms as Multiple
Virtual Piers

Ming-Hsiang Shih and Wen-Pei Sung

Abstract The control logic of Neutral Equilibrium Mechanism, NEM, enables all
the functions and advantages of the active controlmethod,with little additional energy
supply required, and provides reliable and effective control effects. In this study, a
reduced-scale bridgewith twovirtual piers is constructed and themathematicalmodel
of active control for this proposed NEM is proposed. Then, the control stability is
discussed with dynamic test verification. Test results show that vertical displacement
control at the installation position of NEM is more than 95% and closes to zero
displacement; Arduino can accurately detect the displacement of the bridge and
create a control signal; the PID controller precisely controls the cantilever rotation
to the appropriate angle and provides the appropriate lift-balanced force based on
bridge displacement changes. This experiment verifies that the NEM adjusts the
rotation position of each control mechanism during the dynamic process so that it is
synchronized with the structural deformation of the bridge, and achieves the research
purpose of controlling the deformation of the bridge. The feasibility and practicality
of this technology can be verified by this research and deserves continuous research
and development.

20.1 Introduction

Taiwan has many rivers and steep mountains, and all districts rely on bridge systems.
Presently, reinforced concrete construction, including pre-stressed construction, is
mainly used for bridge construction in various countries.
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Especially, Taiwan is in the earthquake zone; frequent earthquakes and typhoons
frequently threaten this area to cause various natural disasters and destruct bridges.
After the natural disaster, the construction of these bridges takes time, and it is
difficult to repair the traffic in a short time. Otherwise, the bridge is one of the vital
living pipelines for disaster relief to shipping goods and materials. Therefore, how
to build temporary bridges quickly to facilitate access and transport supplies is the
most important issue for disaster relief units.

Presently, most of the military units are requested to set up a “Bailey Bridge”
in response to the need for passage in the event of a related disaster in Taiwan.
Sometimes, riverbed footpaths, culvert slings, steel bridges, and container-type steel
bridges are built in different topographical conditions. But, the length of the net span
of the installation of a disaster relief bridge must vary depending on the location
according to the long section of the river or the water impact section. If the bridge
length is increased, it will inevitably cause the following disadvantages: (1) struc-
tural components become larger in size, increase construction costs; (2) The relevant
assembly material parts cannot be standardized. If the span is too long, it is necessary
to install multi-bridge piers to meet the design requirement of the bridge. Therefore,
the purpose of this study is to expect that the Neutral EquilibriumMechanism can be
developed for multi-virtual piers of the bridge. The research achievements [10–12,
14] show that this NEM can be developed into a single virtual pier of bridge, espe-
cially, the dynamic experimental verification that this NEM can provide the upper
lift balance force to balance the moving load. The cantilever arm can rotate to the
appropriate angle according to the measured displacement of the bridge. Therefore,
to achieve the rapid construction of bridges and emergency relief, Neutral Equilib-
rium Mechanism, NEM, is expanded to form as multiple virtual piers of the bridge
in this study. The operating mechanism of multi-virtual piers of the bridge must
simultaneously detect the displacement of the bridge, and the cantilever mechanisms
of NEMs need to consider the mutual behavior in this bridge with multiple NEMs
to achieve the control purpose of this study.

The control logic concept and control mechanism of Neutral Equilibrium Mech-
anism enable this mechanism with all the functions and advantages of the active
control method, and provide reliable and effective control effect with little additional
energy supply. This NEM ismainly the application of the Newtonianmotion theorem
and is based on the principle of conservation of energy. This technology properly
applied the principles of machinery to generate useful active control force; it can
be designed as a force-saving tool. This study is related to the development of new
technology-structural control theory of structural shock absorption, and structural
control [4, 13, 16] can be generally divided into passive control (isolation, shock
absorption, and energy dissipation [2, 5, 7, 9], active control [1, 6, 17], and semi-
active control [3, 8, 15]. This study briefly explains the concept and control theory of
NEM used in the virtual pier of the bridge. Then, the reduced-scale bridge with two
virtual piers is constructed with experimental design parameters and control param-
eters of this study is introduced. The dynamic test is to verify the control stability
of the bridge with this NEM. This test also demonstrates that the rotation position
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Fig. 20.1 The change of the cantilever arm and pre-stressed anchor of steel tendon

of each NEM is adjusted in the dynamic process by the experimental method, so as
to synchronize with the deformation of the bridge structure and achieve the research
purpose of controlling the deformation of the bridge.

20.2 Methodology

20.2.1 The Concept of Virtual Pier

The reduced-scale bridge with dynamic test [11] verified that this NEM can be
applied to form a single virtual pier of the bridge. This NEM can perform the desired
effect of precisely controlling the vertical deformation of the bridge. This NEM
must detect the static and dynamic load of the bridge in the course of operation. The
cantilever arm of NEM must timely operate to the appropriate angle to produce the
control force to balance the dead and dynamic load of the bridge and achieve the
purpose of precision deformation control and practical application. Two high-tension
steel tendons of NEM are anchored at the two ends of the bridge, supported at the
midpoint of the bridge with a pair of cantilever arms with adjustable angle rotating
to form a three-force balance state with an angled angle, as shown in Fig. 20.1a.
The hinge of the rotary cantilever arm is parallel to the vertical axis of the bridge
and coincides online with the anchor point of the steel tendon at both ends of the
bridge. When the rotary cantilever arm changes the corner of the arm, it can change
the combined vertical force of the steel tendons at the midpoint of the bridge on the
left and right sides—control force, as shown in Fig. 20.1b. Thus, the deformation
of the bridge can be changed to offset the dead and moving load on the bridge and
reduce displacement. Figure20.2 shows the rotation of the cantilever arm changing
the position of the corner of the spin arm. The change of this rotation angle must be
based on the static and moving load caused by the displacement change timely to
produce the control force of NEM, to avoid the deformation of the bridge. However,
the strength of pre-stressed tendon and the rotation of the cantilever arm to change
the turn of the rotating arm must reach the required. It cannot exceed the expected
value to achieve the control requirements and avoid the upper arch force causing
upward deformation.
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Fig. 20.2 The change of the rotation angle of the cantilever arm of NEM

However, if NEMs are applied to form as multi-virtual piers of the bridge, the
displacement changes of each unit positionwithNEMmust be considered. To achieve
the purpose of automatic control of the displacement at each installation position
of NEM to be zero, the controller must continuously monitor the changes of the
displacement of the bridge at each installation position of the NEM. Then, PID
controllers are applied to calculate the target value of the control force in the next
step. The target value is then sent to the servo controller to complete the control
adjustment action. This control process is executed cycle by cycle, with the working
steps for each cycle as follows:

1. Detection of the dynamic responses at each installation location of NEM. The
displacement responses of the bridge due to the moving load is �xik , where i
represents the number of the i-th NEM (same as below); k represents the k-th
step (same as below).

2. The PID controller determines the rotation angle change of the cantilever arm for
each NEM to the target position of the next step θ i

k , as follows:

θ i
k = GP,i�xik + GI,i

k∑

j=k−n

�xij + GD,i (�xik − �xik−1) (20.1)

where the �xik represents the displacement of k step at the position of i-th NEM.
GP,i , GI,i , and GD,i are proportional, integral, and differential gain factors,
respectively. n is the number of integral steps; take at least 2 steps.

3. Transfer the target position of each NEM to the micro-actuator at each positioned
mechanism, so that it completes the corresponding rotary cantilever arm to change
the rotation angle of NEM. Control flowchart is shown in Fig. 20.3. Each NEM
detects the deformation of the bridge at the position of the device to change the
rotation angle of the cantilever arm of NEM. The control technology is similar to
the concept of active control method; Feedforward and Feedback control diagram
of active control is shown in Fig. 20.4.
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Fig. 20.3 The flowchart of the rotation angle changes of multiple virtual piers of bridge at each
NEM

Fig. 20.4 The control diagram of active control for multiple virtual piers of bridge

20.2.2 Test Set-Up

In order to judge the control benefits of this NEM to form as multi-virtual piers of the
bridge, dynamic experiments are conducted, as shown in Fig. 20.5, to obtain relevant
data. This data contains the gain coefficients in the operation of PID controllers and
the setting of the high-tension values of steel tendons as well as the rotation angle
change of cantilever arm of NEMs. Then, the change of the vertical displacements
at each NEM installed position is detected by the digital image correlation method.
Figure20.5 is the setup of experimental device for multi-virtual piers of bridge, and
Table20.1 is the relevant parameter set for this dynamic test.
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Fig. 20.5 The test setup for multiple virtual piers of bridge

The sensor part of this experiment: (1) displacement meter is set up at the one-
third and two-thirds of the bridge model to measure the displacement responses of
the bridge; (2) microcontroller units, MCUs, are applied to measure the displace-
ment and speed responses of the bridge, calculated by the detected displacements
and time interval of the sensor data of MCU. The operating principle is to receive
the displacement change of the one-third and two-thirds of the bridge from the dis-
placement meters and calculate their instantaneous velocity, respectively. Then, the
required control forces are separately calculated to predict the rotation angles of
these two positions by Eq. (20.1) of RC servos to turn the RC servo to their suitable
angles to provide the appropriate control forces. The main power of RC servo, used
in the remote-control model with very little output power, is applied to explore the
displacement response of the bridge with two NEMs. In this study, a PID controller
with one control gain under the action of moving load is used to compare the control
effect with the bridge without control. The test parameters of this experiment are
listed in Table20.1.

This test is equipped with a single-chip microcomputer controller (Arduino) and
modified digital image correlation method, DIC, to detect vertical displacement
responses and the rotation angle change of the rotating cantilever arm of the NEMs
to explore the change of control forces, moving load, and displacement variations
of the bridge with and without control. The displacement responses, caused by the
moving load at the installation position of NEMs of the bridge, are discussed accord-
ing to the relevant response of the cantilever mechanism, servo machine, and steel
tendon. Then, the control signal is provided to the RC servo. The RC servo controls
the rotation angle of the cantilever arm, which in turn controls the change of angle
between the combined force and the horizontal plane supplied by the steel tendon
on the lever arm to verify the suitability and correctness of this control mechanism.
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Table 20.1 The materials and specification of reduced-scale and test parameters of this test

20.3 Test Results and Discussions

The time history of vertical displacements for the bridge with and without NEM
control is shown in Fig. 20.6, where the blue and red circles are located at the position
of the NEMs, at 1/3 and 2/3 net span of the bridge. When the moving load moves
from right to left, the blue and red dotted lines are uncontrolled for the bridge, with
the displacement time running at 1/3 and 2/3 net span of the bridge. The blue and red
solid lines are at 1/3 and 2/3 net span of the bridge when under NEM control. At the
right of the figure is the image during the experiment and the rotation response of the



240 M.-H. Shih and W.-P. Sung

Fig. 20.6 Test results of bridge under control of multiple NEMs and without control

NEM cantilever when it is controlled by the PID controller. The following five stages
describe the control status and effect of the NEM controller in this experiment.

1. Stage One: When the vehicle moves from the right-hand side to left-hand side,
the NEMs just bear the dead load of the bridge. Therefore, the cantilever arms
of the control mechanism at the location of 1/3 and 2/3 of the bridge maintain a
horizontal orientation, as shown in Fig. 20.7a. These NEMs do not provide the
control force to balance the moving load, and the vertical displacements of 1/3
and 2/3 of the bridge are zero.

2. Stage Two: When the moving load is located between the right end and 1/3 point
of the bridge, the vertical displacements without the NEMs at the 1/3 and 2/3
of the bridge are 1.5mm and 0.8mm, respectively. However, the rotation angle
of the RC servo at 1/3 position of bridge turns bigger degrees than that at 2/3
position of the bridge under NEMs control, as shown in Fig. 20.7b. The vertical
displacements are only 0.02 and 0.03mmat 1/3 and 2/3 of the bridge, respectively.

3. Stage Three: When the moving load is located at the midpoint of the bridge, the
vertical displacements without the NEMs are 2.3mm and 2.1mm at 1/3 and 2/3
of the bridge, respectively. Moreover, both rotation angles of the servos increase
and almost turn at the same degree, as shown in Fig. 20.7c. Otherwise, the vertical
displacements under NEMs controlled are only 0.03 and 0.02mm at 1/3 and 2/3
of the bridge, respectively.

4. Stage Four: When the moving load is located at the 2/3 point and the right end of
the bridge, the vertical displacements without the NEM are 1.0mm and 1.5mm at
1/3 and 2/3 of the bridge, respectively. However, the rotation angle of the RC servo
at 1/3 position turns less degrees than that at the 2/3 position of the bridge under
NEMs controlled, as shown in Fig. 20.7d. Moreover, the vertical displacements
are only 0.03 and 0.02mm at 1/3 and 2/3 of the bridge, respectively.
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(a) Stage one (b) Stage two

(c) Stage three (d) Stage four

(e) Stage five

Fig. 20.7 Five stages of photos for the dynamic test of bridge with two virtual piers

5. Stage Five: The bridge bears only the dead load of the bridge. The rotation angles
of the cantilever arms return to the horizontal direction, as shown in Fig. 20.7e,
and the vertical displacement is zero.

20.4 Conclusions

In this study, the concept of the bridge with two NEMS to form as two virtual
piers and the active control method to control the dynamic deformation, and then
a reduced-scale bridge with two virtual piers and Arduino devices to detect the
dynamic deformation of the bridge are proposed. The angle change of the cantilever
arm of NEM is calculated and predicted by the proposed mathematical model, and
transmitted to the PID controller to control the cantilever rotation to the appropriate
angle to provide the lifting force in order to balance the moving load. After the
dynamic experiment, some conclusions are obtained as follows:

1. The vertical displacement control of the bridge under control of NEM at the
position with NEM is more than 95%, and it closes at zero;

2. From the test photos displayed, the PID controller can precisely control the can-
tilever rotation to the appropriate angle and provide the appropriate lift-balancing
load based on the vertical displacement change.
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3. This experiment confirms that NEM can be expanded to multi-virtual piers of a
bridge, and the interaction behavior betweenmultiple NEMs can be controlled for
precise control purposes. The feasibility and practicality of this technology can
be certified by this research and deserves continuous research and development.
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Chapter 21
Optimal Control for a Space Rendezvous

Alois Steindl, Alexander Schirrer, and Stefan Jakubek

Abstract We consider the transfer of a chaser vehicle to a space station using impul-
sive controlwithminimal fuel consumption. It is assumed that the space stationmoves
on a circular Keplerian orbit in a rotational symmetric gravitational field and that the
chaser vehicle has already reached the station’s orbital plane. The vehicle is steered
by impulsive burns of the rockets. The problem is solved numerically using Pontrya-
gin’s maximum principle for impulsive controls by a multiple shooting method and
a continuation procedure to study the variation of the optimal control strategy for
varying time constraints. The problem is studied using a local linearized system and
the fully nonlinear system using local Cartesian and polar coordinates.

21.1 Introduction

We investigate the energy-optimal impulsive control of a chaser vehicle (C) to a
space station (S), which moves on a circular Keplerian orbit (Fig. 21.1). The chaser
is steered by impulsive burns of its rockets. Finding the control strategy, which uses
the least amount of propellant, is one of the most important tasks in manoeuvre
planning.

The transfer problem between different Keplerian orbits has already been solved
by Hohmann [1]. He suggested applying two thrusts in a tangential direction, which
yields the optimal solution, as long as the orbits are not too far apart.

In this article we investigate the control problem using Pontryagin’s Maximum
principle, which is discussed in depth in [2]. In this reference also the problem with
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Fig. 21.1 A chaser vehicle
(C) should be transferred to
the vicinity of the space
station by impulsive thrusts
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impulsive control thrusts is considered and the proof relies on a previous article by
Blaquiere [3].

While most applications of Optimal Control Theory assume quadratic control
costs, we are interested in the more relevant L1-norm of the cost, the actually burned
fuel. This choice leads to a complication, because from the Maximum Principle
we cannot directly derive the optimal control depending on the state and costate
variables, as is the case for quadratic control costs.

A further topic in this article is the comparison between different sets of coordinate
systems: While localized coordinates around the space station lead to the frequently
used linear Clohessy-Wiltshire equations, we are also interested in the results for the
full nonlinear equations using either a local co-rotating Cartesian frame or localized
polar coordinates. While the Cartesian coordinates reflect the view from the space
station, the polar coordinates better reflect the orbital dynamics of the system. The
computed results demonstrate that one has to be careful in stating the initial con-
ditions, otherwise one obtains significant differences in the solutions. Although the
considered distances are very small compared to the orbital radius, the small differ-
ences in the different coordinate descriptions cause quite large effects in the optimal
solution.

The article is organized as follows: First, we introduce the used coordinate systems
and the equations of motion for the chaser vehicle in these coordinates. Then we
derive the difference equations for the considered impulsive control and state the
necessary optimality conditions following from Pontryagin’s Maximum Principle
for systems with impulsive controls, as given in [2]. Finally, we apply the method to
the chasing problem in the different coordinate systems.
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21.2 Equations of Motion

During free flight, the chaser vehicle’s motion is governed by the equations of a
body in the earth’s gravitational field. In planar Cartesian coordinates, the equations
of motion read

ẍ = − kx
|x|3 , (21.1)

with k = GmE , where G is the gravitational constant and mE is the mass of the
earth. The space station rotates on a circular part of radius rS with angular velocity
ω, where k = r3Sω

2.

xS = B(t)

(
rS
0

)
, where B(t) =

(
cosωt − sinωt
sinωt cosωt

)
. (21.2)

Introducing a relative rotating reference frame (see Fig. 21.2), in which the space
station S rests at the origin,

x = xS + B(t)X (21.3)

and rescaling the time by τ = ωt , we obtain the near-field dynamics

Ẍ = 2Ẏ + rS + X − r3S(rS + X)(
(rS + X)2 + Y 2

)3/2 , (21.4a)

Ÿ = −2Ẋ + Y − r3SY(
(rS + X)2 + Y 2

)3/2 , (21.4b)

where the dots now denote derivatives with respect to orbital time τ . For |X| �
rS , Eq. (21.4) can be approximated by the linear system, well known as Clohessy-
Wiltshire equations [4],

Ẍ = 2Ẏ + 3X, (21.5a)

Ÿ = −2Ẋ . (21.5b)

A second possible choice of coordinates are polar coordinates: x = r(cosϕ, sin ϕ)T .
In these coordinates, the equations of motion are given by

Fig. 21.2 Local Cartesian
(X, Y ) and polar coordinate
(XP , YP ) systems

0
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r̈ − r ϕ̇2 = − k

r2
, (21.6a)

d

dt
r2ϕ̇ = r2ϕ̈ + 2rṙ ϕ̇ = 0. (21.6b)

Now we again introduce local variables XP = r − rS and YP = rS(ϕ − ωt) (see
Fig. 21.2), which agree with the Cartesian coordinates at first order. The positions in
the polar and Cartesian coordinate systems are related by

X = (rS + XP) cos(YP/rS) − rS, (21.7a)

Y = (rS + XP) sin(YP/rS). (21.7b)

We obtain the rescaled equations

Ẍ P − (rS + XP)

(
1 + ẎP

rS

)2

= − r3S
(rS + XP)2

, (21.8a)

2Ẋ P

(
1 + ẎP

rS

)
+ (rS + XP)

ŸP

rS
= 0. (21.8b)

As expected, at leading order we again obtain the linear system (21.5).

21.2.1 Impulsive Control Actions

In order to steer the chaser to its target position, a series of impulsive controls is
applied by firing the engine for infinitely short intervals.We assume, that the direction
andmagnitude of these impulses can be chosen arbitrarily. During firing, the position
of the vehicle remains unaltered, but the velocity changes instantaneously. If the
scaled impulsive control at time τi is denoted by vi , the change in the velocities is
given by

�Ẋ(τi ) = Ẋ(τ+
i ) − Ẋ(τ−

i ) = vi,1, (21.9a)

�Ẏ (τi ) = Ẏ (τ+
i ) − Ẏ (τ−

i ) = vi,2, (21.9b)

where Ẋ(τ+
i ) and Ẋ(τ−

i ) denote the values of Ẋ immediately before and after the
impulsive control action, respectively.

In polar coordinates, the impulse control leads to

�ṙ(τi ) = vi,r , with vi,r = vi,1 cosϕ + vi,2 sin ϕ, (21.10a)

�(r2ϕ̇)(τi ) = rvi,ϕ, vi,ϕ = −vi,1 sin ϕ + vi,2 cosϕ, . (21.10b)

Since r is unaffected by the impulse, (21.10b) becomes
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�ϕ̇(τi ) = vi,ϕ/r. (21.10c)

In local variables, (21.10) becomes

�Ẋ P(τi ) = vi,r , (21.11a)

�ẎP(τi ) = rSvi,ϕ/(rS + XP). (21.11b)

In these coordinates, the jump in ẎP also depends on the state variable XP ; since
|XP | � rS , this dependency vanishes in the linearized equations, but has to be taken
into consideration in the treatment of the nonlinear system. We further note that
|(vi,r , vi,ϕ)| = |(vi,1, vi,2)| holds.

21.2.2 Optimal Control Problem

In space missions, the propellant consumption is one of the most important topics,
therefore we search for a control strategy, which steers the chaser vehicle to its target
position and uses the least amount of fuel. Under some circumstances, it might be
necessary to reach the target in a shorter time at the cost of higher energy expenditure.
In this case, we prescribe the time interval for the manoeuvre, otherwise the final
time is left to be determined by optimizing fuel consumption alone.

We search for an optimal sequence of impulsive controls, which minimizes the
cost

C =
k∑

i=1

|vi |, (21.12)

where the number k of impulses, the time instances τi , the impulse vectors vi , and
possibly the time interval T have to be chosen optimally.

Let us stress here that we search the minimum propellant usage in the L1-norm,
which corresponds to the real costs. Quadratic cost functions are usually easier to
handle, but do not properly describe the minimal cost.

The necessary conditions for optimal control problems with impulsive controls
were already stated in [2, 3] and apply to the general optimal control problem with
continuous controls ui (t), impulsive controls vi , utility functions F(q(t), u(t), t),
and G(q(τ−

i ), vi , τi ) for the continuous and discrete controls, respectively, and a
terminal value S(q(T+)):

max
u,k,τi ,vi

{J =
∫ T

0
F(q(t), u(t), t)dt +

k∑
i=1

G(q(τ−
i ), vi , τi ) + S(q(T+))}, (21.13)

such that
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q̇(t) = f (q(t), u(t), t), q(0−) = q0, (21.14)

q(τ+
i ) − q(τ−

i ) = g(q(τ−
i ), vi , τi ). (21.15)

Similarly to the Maximum Principle by Pontryagin, one defines two Hamilton func-
tions, one for the continuous part, and one for the discontinuities

H(q, p, u, t) = F(q(t), u(t), t) + pT f (q(t), u(t), t), (21.16)

H(q, p, v, t) = G(q(t), v, t) + pT g(q(t), v, t). (21.17)

As usual, the (piecewise) optimal continuous control u� is obtained from the Maxi-
mum Principle for the Hamiltonian H , and the differential equations for the costate
variables are also determined by H . The optimal impulse controls v�

i are given by
maximizing H :

u� = argmax
u

H(q�(t), p(t), u, t), (21.18)

ṗ = −∂H(q�(t), p(t), u�, t)/∂q, (21.19)

v�
i = argmax

vi
H(q�(τ ∗−

i ), p(τ ∗+
i ), vi , τ �

i ), (21.20)

p(τ ∗+
i ) − p(τ ∗−

i ) = −∂H(q�(τ ∗−
i ), p(τ ∗+

i ), v�
i , τ

�
i )/∂q, (21.21)

H(q�(τ ∗+
i ), p(τ ∗+

i ), u�(τ ∗+
i ), τ �

i ) − H(q�(τ ∗−
i ), p(τ ∗−

i ), u�(τ ∗−
i ), τ �

i )⎧⎨
⎩

>

=
<

⎫⎬
⎭

∂H(q�(τ ∗−
i ), p(τ ∗+

i ), v�
i , τ

�
i )

∂τ
for τ �

i

⎧⎪⎨
⎪⎩

= 0

∈ (0, T ),

= T .

(21.22)

Here starred quantities denote optimal values for the controls, states, and firing times.
From (21.21), it follows that the adjoint variables become discontinuous, if the

jump conditions depend on the state variables, which is the case in our system for
the polar coordinates.

Finally,we see from (21.22),which ensures the optimality of the impulse instances
τi , that the Hamiltonian H is continuous at interior impulse times τi , if H doesn’t
depend on τ explicitly.

Since our model is autonomous, the optimal final time T � is obtained by the
boundary condition

H(q�(T �), p�(T �), u�) = 0. (21.23)

No continuous controls ui are present and the considered cost depends on the
impulsive controls vi , therefore the utility function F doesn’t show up in the Hamil-
tonian, and the Maximum condition (21.18) doesn’t apply.
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21.3 Optimal Control Problem for the Linearized System

Since during the considered phase of the chasing manoeuvre the chaser is already
quite close to the space station, the approximation (21.5) together with the jump
conditions (21.9) provides a good approximation for the dynamics. Rewriting (21.5)
as a first- order system, one obtains the Hamiltonian H and the adjoint differential
equations

q̇1 = q2, (21.24a)

q̇2 = −q1 + 2q4, (21.24b)

q̇3 = −2q1 + q4, (21.24c)

q̇4 = 0, (21.24d)

H(q, p) = p1q2 + p2(−q1 + 2q4) + p3(−2q1 + q4), (21.24e)

ṗ1 = p2 + 2p3, (21.24f)

ṗ2 = −p1, (21.24g)

ṗ3 = 0, (21.24h)

ṗ4 = −2p2 − p3, (21.24i)

where the state variables qi are given by q1 = X , q2 = Ẋ , q3 = Y , and q4 = Ẏ + 2X .
The choice of these variables is motivated by the rotational symmetry of the system,
by which the angular momentum d = r2ϕ̇ is a first integral. In the linearized system,
the variable q4 = Ẏ + 2X is constant, as can be seen from (21.5b).

In these state variables, the jump conditions (21.9) read

q(τ+
i ) − q(τ−

i ) = g(q(τ−
i ), vi ) = (0, vi,1, 0, vi,2)

T. (21.25)

With G = −C the Hamiltonian for the impulsive controls is therefore given by

H(q(τi ), p(τi ), vi , τi ) = −
√
v2i,1 + v2i,2 + p2vi,1 + p4vi,2. (21.26)

Now we find from (21.20)

vi,1√
v2i,1 + v2i,2

= p2,
vi,2√

v2i,1 + v2i,2

= p4, (21.27)

from which it follows that

vi ‖ (p2, p4) and
√
p22 + p24 = 1. (21.28)
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So we know only the direction of the impulsive controls; their magnitude has to be
obtained by solving the boundary value problem. We also know that at the instances
τi , the adjoint variables must satisfy |(p2, p4)| = 1.

Since H doesn’t depend on the state variables qi and on τi , the costate variables
p are continuous at τi by (21.21), and also the Hamilton function H is continuous
by (21.22). By (21.25), the continuity condition for H becomes

�H = p1vi,1 + (2p2 + p3)vi,2 = 0, (21.29)

which is equivalent to the condition d(p22 + p24)/dτ = 0 by (21.28).
The boundary conditions state that the chaser should be steered from a starting

position to a target point at the station’s orbit:

q1(0) = X0, q1(T ) = 0, (21.30a)

q2(0) = Ẋ0, q2(T ) = 0, (21.30b)

q3(0) = Y0, q3(T ) = 0, (21.30c)

q4(0) = Ẏ0 + 2X0, q4(T ) = 0. (21.30d)

Since the final position is an equilibrium, the Hamiltonian H(q(T ), p(T )) vanishes
for all choices of T . Therefore, the condition (21.23) for the optimal planning period
T has to be stated immediately before the last impulse.

We note that since q4 can only reach its final value by impulses in the horizontal
direction, the difference |q4(T ) − q4(0)| provides a lower bound for fuel consump-
tion. TheHohmann transfer [1]with two horizontal burns provides an energy-optimal
solution.

The boundary value problem (BVP) (21.24) and (21.30) is solved numerically
by the Multiple Shooting Method Boundsco [5], which is especially designed for
Optimal control problems with discontinuous state variables.

The following results are calculated for the initial conditions:

X (0) = −5 km, Ẋ(0) = 0, (21.31a)

Y (0) = −50 km, Ẏ (0) = 50 km/rev
∧≈ 9m/s, . (21.31b)

and orbit radius rS = 6778 km.
In the first step, a Hohmann transfer for the energy-optimal trajectory with two

horizontal burns is calculated. The first impulse occurs when the chaser reaches the
proper elliptical orbit, the second one occurs when it reaches its target position at
t = T ≈ 1.492T0.

Starting with this solution, a continuation method [6] is employed to decrease
the time interval from the value needed for an energetically optimal manoeuvre. By

monitoring the switching function S(τ ) =
√
p22 + p24 (see Fig. 21.3), we observe that

close to T = 1.465 T0, where T0 = 2π/ω denotes the revolution period, it crosses
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Fig. 21.3 Variation of the
switching function

S =
√
p22 + p24 for different

time intervals
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Fig. 21.4 Trajectories and
directions of impulsive
thrusts for different planning
intervals
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the line S = 1 at t ≈ 0.2T , where a new firing event should occur. The trajectories
for T = 1.492 T0, and T = 1.465 T0 are displayed in Fig. 21.4. Although the thrusts
have different directions, the trajectories are almost the same.

Reducing T further, the new firing time decreases down to t = 0, as can be seen in
Fig. 21.5. The firing time τ2 also decreases and vanishes at T ≈ 0.65 T0: The impulse
magnitude |v2| shrinks to zero and the switching function S(τ ) separates from the
line S = 1. For shorter time horizons, only firings at the start and at the end of the
manoeuvre are executed.

The cost C depending on the permitted manoeuvre duration T is displayed in
Fig. 21.7; for quick transfers the fuel consumption increases strongly. The labels in
Fig. 21.7 denote the firing instances: “S” at the start, “I” in the interior, and “E” at
the end of the transfer.
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Fig. 21.5 Impulse times for
the linear system (21.5) and
for the system written in
local polar coordinates
(21.8). The firing instances
τi are sorted chronologically
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Fig. 21.6 Impulse times for
the nonlinear system (21.4)
in local Cartesian
coordinates
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21.4 Optimal Control Problem for the Nonlinear System

For validation of the linear approximation (21.5) also, the optimal control for the
nonlinear systems (21.4) and (21.8) was computed.

21.4.1 Optimal Control Problem for the Local Cartesian
Frame

Using the local Cartesian system (21.4), the equations of motion become nonlinear,
but the cost function C and the equations for the impulsive control (21.9) remain
the same as in the linear system (21.5). Since the jumps in (21.9) do not depend on
the state variables and time τ , the costate variables pi and the Hamiltonian remain
continuous at the firing instances τi .
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Fig. 21.7 Dependence of
fuel cost on the permitted
manoeuvre duration T for
systems (21.5) and (21.8)
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Fig. 21.8 Dependence of
fuel cost on the permitted
transfer duration T for
systems (21.4)
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As initial values, we choose the same ones as in the linear system and obtain the
results shown in Fig. 21.8, which differ significantly from the results obtained with
the linear system (21.5) and for the polar coordinates (21.8). Also the sequence of
impulse instances τi differs between these calculations, as can be seen fromFigs. 21.5
and 21.6. The optimal time T � for the least propellant consuming solution increases
from approximately 1.5 revolutions to 1.85 revolutions.

21.4.2 Optimal Control Problem for the Polar Coordinate
Frame

When using the local polar coordinate system (21.8), the jump conditions (21.11)
lead to the maximum condition
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Fig. 21.9 Comparison of the
energy-optimal trajectories
for the different choices of
coordinate systems. The
arrows indicate the direction
and magnitude of the
impulsive controls
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v�
i = argmax

vi

(
−

√
v2i,r + v2i,ϕ + p2vi,r + p4

rSvi,ϕ
rS + XP

)
, (21.32)

giving
vi,r√

v2i,r + v2i,ϕ

= p2,
vi,ϕ√

v2i,r + v2i,ϕ

= rS p4
rS + XP

.

The switching function S(τ ) which governs the impulse time instances becomes

S =
√
p22 + r2S p

2
4

(rS + XP)2
.

Since (21.11) is time-independent, due to (21.22) the Hamiltonian H is continuous at
the firing times. The occurrence of the state variable q1 = XP in the jump condition
(21.11) leads to the jump

p1(τ
∗+
i ) − p1(τ

∗−
i ) = rS p4

(rS + XP)2

∣∣∣∣
τ=τ �

i

(21.33)

in the costate variable p1, according to (21.21).
As initial values, we choose

XP(0) = −5 km, Ẋ P(0) = 0, (21.34a)

YP(0) = −50 km, ẎP(0) = 50 km/rev (21.34b)

and obtain the results shown in Figs. 21.5 and 21.7, which agree very well with the
results for the linear system.
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Fig. 21.10 Dependence of
the required time T for the
energy-optimal solution on
the initial height XP (0)
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Now it remains to explain the significant difference between the results for the two
nonlinear variants: One might think that the difference between the initial positions
is negligible, since 50 km is much smaller than the earth circumference. Indeed the
positions given by (X,Y ) = (−5 km,−50 km) and (XP ,YP) = (−5 km,−50 km)

differ only by approximately 200m. In Fig. 21.9, the energy-optimal trajectories for
the different initial conditions are displayed. The initial values for solution A are
again given by (21.31), and those for solution B in (21.34), corresponding to

X (0) ≈ −5.184 km, Ẋ(0) ≈ 0.369 km/rev,

Y (0) ≈ −49.962 km, Ẏ (0) ≈ 49.962 km/rev.

Using the same initial conditions in both systems gives of course the same solu-
tions.

In order to study the dependence of the required time T of the energy-optimal
solution on the initial height, a continuationwith varying values of XP(0)was carried
out, with the remaining initial conditions kept fixed. The obtained curve is displayed
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in Fig. 21.10: It shows an increase of T/T0 from 1.488 to 1.936, when XP(0) varies
from −5 km to −4.8 km. Close to XP(0) = −4.55 km, a series of turning points can
be seen along the curve, leading to a series of different energy-optimal solutions for
the same initial conditions. In Fig. 21.11, three different trajectories are displayed
starting at the same initial position XP(0) = −4.6 km, corresponding to the points
in Fig. 21.10. After reaching the final orbit height, the system performs an increasing
number of oscillations, until it ends up in its target position.

21.5 Conclusions

The energy-optimal chasing strategy for a space rendezvous using the L1-norm for
the fuel consumption has been investigated for different sets of coordinate systems.
Using a homotopy strategy to reduce the time duration of the manoeuvre shows a
quite complicated variation of the applied impulsive control. In the considered range
of initial conditions, the control strategy and the optimal path depend sensitively on
the initial height X (0). When comparing the results calculated in different coordi-
nate systems, the seemingly small differences must therefore not be neglected. The
linear system governing the near-field dynamics, which approximates the equations
in the polar and the Cartesian frame, agrees better with the nonlinear system in polar
coordinates.

References

1. Hohmann, W.: Die Erreichbarkeit der Himmelskörper - Untersuchungen über das Raumfahrt-
problem. Oldenbourg, München (1925)

2. Feichtinger,G.,Hartl, R.:OptimaleKontrolle ökonomischer Prozesse:Anwendungen desMax-
imumprinzips in den Wirtschaftswiss. De Gruyter, New York (1986)

3. Blaquière, A.: Impulsive control with finite or infinite time horizon. JOTA 46, 431–439 (1985)
4. Lovell, T.A., Spencer, D.A.: Relative orbital elements formulation based upon the Clohessy-

Wiltshire equations. J. Astronaut. Sci. 61, 341–366 (2014)
5. Oberle, H.J., Grimm, W., Berger, E.: BNDSCO, Rechenprogramm zur Lösung beschränkter

optimaler Steuerungsprobleme. Benutzeranleitung M 8509, Techn. Univ. München (1985)
6. Seydel, R.: A continuation algorithm with step control. In: Numerical Methods for Bifurcation

Problems, vol. 70. ISNM. Birkhäuser (1984)



Chapter 22
Scanning Bridge Frequencies by Wheel
Size Embedded Two-Mass Vehicle Model

Judy P. Yang and Cheng-Yi Cao

Abstract This work proposes a novel vehicle model for effectively scanning bridge
frequencies, in which wheel size and unsprung mass are incorporated. With the
advanced two-mass vehicle model, it is recognized that the moving path of the wheel
is the envelope of road surface roughness. Furthermore, it is shown that the proposed
vehicle model is able to scan bridge frequencies up to the fifth frequency with the
desired accuracy even under high class of road surface roughness in the presence
of vehicle damping, whereas the traditional two-mass vehicle model can identify no
more than the first two bridge frequencies in the absence of vehicle damping.

22.1 Introduction

The terminology vehicle-bridge interaction (VBI) came out in the 1990swhen people
were trying to figure out the dynamic responses of bridges and high-speed trains [12,
16]. The interaction between the bridge and vehicle occurs naturally as the moving
vehicle excites the vibration to the bridge, and the bridge turns back the vibration
to the vehicle at the same time. Such an interaction loop makes the VBI system
possible for practical applications, including healthmonitoring of structures, damage
detection of bridges, design of bridges and mobile sensors, etc. Nowadays, VBI has
become one prosperous research direction in the world. For readers interested in a
detailed review of VBI topics, recent publications are referred to the state-of-the-art
review [14] and the book [15],Vehicle ScanningMethod, byYang andhis co-workers.

In a VBI system, it is known that the key components are the bridge and vehicle
although there are factors affecting the interaction between the bridge and vehicle
[3, 8, 9, 11]. In the literature [7, 10, 13], the vehicle is mostly treated as a moving
load. Particularly, a single-degree-of-freedom (SDOF) sprungmass is adopted due to
its simplicity. Nevertheless, by carefully examining the SDOF vehicle model, there
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is room for improvement of the vehicle model in order to effectively obtain bridge
frequencies. For instance, a two-mass vehicle model was proposed to consider both
sprung mass and unsprung mass [6]. As the test vehicle is assumed to be in contact
with the road via its wheels, the dynamic responses of both vehicle and bridge can be
better reflected when the unsprung mass is included. Nevertheless, the assumption
of direct contact of the wheel at a particular point in the presence of road surface
roughness is still not realistic since the wheels are of finite size in general. Therefore,
a massless disk model was proposed by including the influence of wheel size [4]. In
this work, a comparison of the disk model and the SDOF vehicle model was made.
It was shown that the moving paths obtained by these two models are different under
road surface roughness, and the moving path of the disk model is the envelope of
that of the point model. In view of the aforementioned models, the present work
further proposes a wheel size embedded two-mass vehicle model. By combining the
wheel size and unsprung mass, a wider application is easily seen in the future. The
interested readers are referred to the authors’ recent publication [5] for complete
description of the VBI model.

The structure of this work is arranged in the following: theVBI formulation for the
proposed vehicle model is briefly introduced in Sect. 22.2. In Sect. 22.3, the proposed
vehicle model is first verified by comparing it with an analytical solution. Then, a
numerical investigation is given. Section22.4 concludes this work.

22.2 VBI Formulation

The schematic diagram of the proposed VBI system, wheel size embedded two-mass
vehicle model, is depicted in Fig. 22.1. The symbols are introduced as follows: mv is
the sprungmass representing the vehicle body;mu is the unsprungmass representing
the axle mass; R is the wheel radius; the two masses are connected by a spring of
stiffness kv and a dashpot of damping coefficient cv. For the VBI system in consid-
eration, the vehicle is assumed to move with a constant velocity v on the road with
surface roughness denoted by r(x). A simply supported beam of length L is adopted
for the bridge.

The corresponding equations of motion for the vehicle and beam element are
given as follows:

[
mv 0
0 mu

]{
q̈v
q̈u

}
+

[
cv −cv

−cv cv

] {
q̇v
q̇u

}
+

[
kv −kv

−kv kv

] {
qv
qu

}
=

{
0

mvq̈v + muq̈u

}

(22.1)

[mb] {q̈b} + [cb] {q̇b} + [kb] {qb} = − fc {N (x̄c)} − Mc
{
N ′ (x̄c)

}
(22.2)
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Fig. 22.1 Schematic
diagram of the VBI system

In Eq. (22.1), qv and qu represent the displacements of the vehicle body and unsprung
mass, respectively; g is the gravitational constant. In Eq. (22.2), [mb], [cb], and [kb]
are the mass, damping, and stiffness matrices of the beam element, with {qb} the
corresponding displacement vector. {N } and {N ′} denote the vector composed of the
cubic Hermitian interpolation functions and the first-order derivative of the vector.
x̄c is the location of contact point. The expressions for fc and Mc are

fc = (mv + mu)g + mvq̈v + muq̈u (22.3)

and

Mc = fc �x (22.4)

The following displacement relation is adopted:

qu = {N (x̄c)}T {qb} + r̄ (xc) (22.5)

where r̄(xc) represents the lift of the entire wheel, and xc represents the location of
wheel center.

Substituting Eqs. (22.3)–(22.5) into Eqs. (22.1) and (22.2) leads to the following
matrix form of the equations of VBI system:

M
{
q̈v
{q̈b}

}
+ C

{
q̇v
{q̇b}

}
+ K

{
qv
{qb}

}
= F (22.6)

To reach the above equation, the detailed derivation is given in the authors’ recent
publication [5]. In Eq. (22.6), the boldface denotes the matrix form, and the corre-
sponding components in the matrices are given as follows:
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M =
[
mv 0
Mvu Muu

]
,

Mvu = mv
({N (x̄c)} + {

N ′ (x̄c)
}
�x

)
,

Muu = [mb] + {N (x̄c)} {N (x̄c)}Tmu + {
N ′ (x̄c)

} {N (x̄c)}Tmu�x (22.7)

C =
[
cv −cv{N (x̄c)}T
0 [cb] + 2vmu

(
{N (x̄c)}

{
N ′ (x̄c)

}T + {
N ′ (x̄c)

} {
N ′ (x̄c)

}T
�x

)
]

(22.8)

K =
[
kv −cvv

{
N ′ (x̄c)

}T − kv{N (x̄c)}T
0 [kb] + v2mu

(
{N (x̄c)}

{
N ′′ (x̄c)

}T + {
N ′ (x̄c)

} {
N ′′ (x̄c)

}T
�x

)
]

(22.9)

F =
{

fv
{ fb}

}

=
{

cvvr̄ ′ (xc) + kvr̄ (xc)
− [

(mv + mu) g+muv2r̄ ′′ (xc)
] ({N (x̄c)} + {

N ′ (x̄c)
}
�x

)}
(22.10)

In Eqs. (22.7)–(22.10), the parameters including x̄c, xc, and r̄(xc) are unknowns to
be determined numerically. Therefore, the procedure for finding these parameters is
crucial in this work. Due to limited space, it is referred to the work given in [5].

22.3 Numerical Results

22.3.1 Verification

The following parameters and material properties are adopted for verifying the pro-
posed vehicle model [5]. For the bridge, m̄ = 1000 kg/m, L = 30 m, E = 27.5 GPa,
and I = 0.175 m4; for the vehicle, mv = 1500 kg, mu = 150 kg, kv = 170 kN/m,
R = 0.3 m, and v = 5 m/s. In the finite element simulation, 40 beam elements are
adopted. The dynamic equations are solved by using a time interval �t = 0.001 s.
The damping effect is ignored for both bridge and vehicle.

As depicted in Figs. 22.2 and 22.3, the dynamic responses including deflection
and acceleration of both bridge and vehicle obtained by the present vehicle model
agree well with the analytical solutions derived by Biggs [2].

22.3.2 Identification of Bridge Frequencies

In this study, the same information about bridge and vehicle given in Sect. 22.3.1
is adopted again while the damping ratio 0.2 is considered in the test vehicle. In
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Fig. 22.2 Dynamic responses of the bridge: a deflection; b acceleration

Fig. 22.3 Dynamic responses of the vehicle: a deflection; b acceleration

addition, a high level of road irregularity is adopted. The numerical generation of
road irregularity is referred to ISO 8608 [1]. Figure22.4 shows themoving path of the
wheel together with the road irregularity. Obviously, the moving path of the wheel
encloses the periphery of the profile of road irregularity, which indicates the effect
of wheel size.

Next, the ability of the proposed vehicle model to identify bridge frequencies is
investigated. As shown in Fig. 22.5a, the overview of vehicle’s spectrum is presented.
By zooming in this figure, as shown in Fig. 22.5b, the marked high peaks in the
spectrum are corresponding to bridge frequencies. In particular, it is observed that
the first four bridge frequencies can be identified clearly even under a high level of
road irregularity. By examining the maximal relative error of the identified bridge
frequencies, it is found that the proposed vehicle model can extract at least the first
five bridge frequencies with maximal relative error less than 5%.
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Fig. 22.4 Moving path of the wheel corresponding to road irregularity

Fig. 22.5 Vehicle’s spectra: a overview of the spectrum; b enlargement of the spectrum

22.4 Conclusion

In this work, an advanced vehicle model is proposed for the identification of bridge
frequencies. Aiming at effectively and efficiently scanning bridge frequencies, the
wheel size is embedded in the two-mass vehiclemodel. Fromnumerical investigation,
it is easily seen that the major contribution of this work is the ability to scan high
bridge frequencies even under a high level of road irregularity. In particular, no
additional technique such as empirical mode decomposition (EMD) is involved to
process the vehicle’s spectra, thereby making the proposed VBI model practical.
Through the spectral analysis of dynamic responses recorded by the vehicle, both
the vehicle and bridge frequencies can be identified directly. The efficacy of the
proposed VBI model is therefore demonstrated.
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Chapter 23
Wave Attenuation in a Pre-tensioned
String with Periodic Spring Supports

Y.-B. Yang, J. D. Yau, and S. Urushadze

Abstract The overhead catenary system is a crucial conductor for delivering steady
electric power to the trains running on modern electrified railways. The propagation
of vibration waves in the catenary system is of interest to railway engineers due
to the pantograph-catenary interaction. To explore the wave transmission via the
contact wires of a catenary system supported by hanging devices offered by the
bracket structures, a simplifiedmodel composedof a pre-tensioned string periodically
suspended by hanging springs is adopted. For a periodic structure with wider band
gaps, also known as stop bands, awider cluster of frequencies ofwaves propagating in
the periodic structure can be attenuated (or filtered out). This will be beneficial to the
maintenance of the catenary system. To take advantage of such a feature, a resonator
is usually equipped on each of the hanging spring supports so as to widen band gaps
for better attenuation of the waves transmitted in the pre-tensioned string. In this
study, a unit cell conceived as a spring-resonator-string unit is adopted to formulate
the closed-form dispersion equation, from which the key condition for widening the
band gaps is derived. From the exemplar study, it was shown that the installation of
adjustable resonators on a catenary system can increase the band gap width, serving
as a wave filter for attenuating the pantograph-induced wave transmission in the
contact wires of the pantograph-catenary system.
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23.1 Introduction

High-speed railways have become one of the most efficient ground transportation
tools for passengers traveling between major cities in many countries. For high-
speed or traditional railways, the overhead catenary system contains contact wires
for transmitting the electrical current to the pantographs equipped on each train,
thereby supplying the power to the electrical engines of the locomotives of the train.
In the past decades, many studies were conducted on the dynamic behaviors of the
pantograph and catenary, considering their interaction. Sophisticated models have
been developed to carry out the response analysis of the pantograph-catenary system,
by which the effect of the locomotive motion was taken into account [6]. However,
few research has been conducted to explore the problem of wave attenuation via the
contact wires of a catenary system.

For the theoretical formulation aimed at obtaining a closed-form solution, the
overhead catenary system is simplified as a pre-tensioned string supported period-
ically by hanging springs in this study. Using the Floquet-Bloch theory [1, 5] to
account for the periodicity of a periodic structure, the dispersion relation between
thewavenumber and frequency of the pre-tensioned stringwill be derived.Moreover,
a resonator is installed on each of the hanging spring supports to widen the band gaps
(stop bands) of the pre-tensioned string for better attenuation of the wave compo-
nents transmitted via the string. Then, the key condition for determining the critical
resonator is identified from the closed-form dispersion equation of the pre-tensioned
string with resonators.

23.2 Problem Formulation of Overhead Catenary System

For the present purposes, the catenary system is simplified as a pre-tensioned string
supported by periodic hanging springswith identical interval L , as shown in Fig. 23.1.

To derive the closed-form solution for the dispersion equation of the pre-tensioned
string, the following assumptions are adopted:

1. The main contact wire of the catenary system is modeled as a horizontal pre-
tensioned string supported by periodic hanging springs of uniform interval L
[6];

2. The tensioned force T in the string is assumed to be constant during vibration.

Fig. 23.1 Schematic of a pre-tensioned string suspended by equal-distance hanging springs
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With the above tensioned stringmodel, the dispersion relation between thewavenum-
ber and frequency of the periodically supported tensile string will be derived and
presented in closed form.

23.2.1 Dynamic Stiffness Matrix of a Tensioned String

As shown in Fig. 23.1, the governing equation for the transversemotion of a tensioned
string can be written as follows [3]:

ms
∂2u(x, t)

∂t2
− T

∂2u(x, t)

∂x2
= 0 (23.1)

wherems is themass of the string per unit length and u(x, t) the vertical displacement
of the string. By letting a2 = msω

2/T , with ω denoting the frequency, and solving
Eq. (23.1), one can obtain the following solution:

u(x, t) = [C1 sin(ax) + C2 sin(a(L − x))] eiωt . (23.2)

By introducing the dynamic equilibrium conditions at the two ends of a string of
length L , thewell-knowndynamic stiffnessmatrix of the pre-tensioned string element
with length L can be written as [4]

D(aL)string = aT

sin(aL)

[
cos(aL) −1

−1/ cos(aL)

]
. (23.3)

With the dynamic stiffness matrix given in Eq. (23.3), one can conceive a unit cell
of the periodic spring-supported string as in Fig. 23.2, and derive from this the closed-
form expression for the dispersion relation of the wavenumber and the frequency, as
in the section to follow.

23.2.2 Dispersion Equation of a Tensioned String
with Periodical Spring Supports

With the dynamic stiffness matrix given in Eq. (23.3), the dynamic stiffness equation
of the unit cell in Fig. 23.2 for the pre-tensioned string with periodic spring supports
can be expressed as

[
dLL dLR
dLR dRR

] {
uL

uR

}
=

{
fL
fR

}
(23.4)
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Fig. 23.2 A spring-string
unit cell

where { f } and {u} are the element forces and displacements, respectively, and

dLR = dRL = −aT csc(aL/2)

2
(
cos(aL/2) + Kd

2aT sin(aL/2)
) , (23.5)

dLL = dRR = aT cot(aL/2) + dLR . (23.6)

By adopting the periodic boundary conditions of (uR = e−iκLuL , fR + e−iκL fL =
0) of the Floquet-Bloch theory [2] for the string element, the following dispersion
equation can be obtained [1, 5]:

cos(κL) = cos(aL) + KdL

2aL × T
sin(aL). (23.7)

For the pass-band condition of | cos(κL)| ≤ 1 in Eq. (23.7), the bounding frequen-
cies are defined by | cos(κL)| = ±1. Clearly, the condition of bounding frequencies
listed in Table23.1 depends on the stiffness parameter (KdL/T ), which is related to
the tensile force T in the string, spring stiffness Kd , and uniform interval L of the
hanging supports offered by the bracket structures. In real electrified railways, the
span interval L of the bracket structures and the pre-tensioned force T in a catenary
system are determined by the regulations or provisions suggested by railway codes.
Consequently, a change in the hanging spring stiffness Kd may lead to a spectral
band gap that allows certain frequency components to be attenuated (or filtered out)
during the wave transmission in the periodically spring-supported string. To further
this consideration, a resonator will be equipped in the hanging spring support for the
purpose of widening the band gaps for attenuating certain frequency components in
the pre-tensioned string.

Table 23.1 Bounding frequencies of the unit cell

Modes Bounding frequencies (aL)

Symmetrical Mode (uR = uL , cos(κL) = 1)

u(x, t) = sin
( aL

2

)
cos

( aL
2

(
1 − 2x

L

)) aL
2 tan

( aL
2

) = 1
2
Kd L
2T

Anti-symmetrical Mode
(uR = −uL , cos(κL) = −1)

u(x, t) = cos
( aL

2

)
sin

( aL
2

(
1 − 2x

L

)) aL
2 cot

( aL
2

) + 1
2
Kd L
2T = 0
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23.3 Dispersion Equation of the Unit Cell with Resonator

For a periodic structurewithwider band gaps,more frequencies ofwaves propagating
in the periodic structure can be attenuated (or filtered out). Tomake use of this feature,
a resonator is equipped on each of the hanging spring supports (Fig. 23.3) so that a
widened band gap (stop band) can be achieved, so as to attenuate a wider range of
frequencies of waves transmitted via the pre-tensioned string. By using the element
assemblage procedure, the spectral equation of the unit cell with two string elements
each of length L/2 and an intermediate resonator at the mid-node (see Fig. 23.3) can
be expressed as follows:

⎡
⎢⎢⎣

aT cot(aL/2) −aT csc(aL/2) 0 0
−aT csc(aL/2) 2aT cot(aL/2) + Kd + kr −kr −aT csc(aL/2)

0 −kr kr − mrω
2 0

0 −aT csc(aL/2) 0 aT cot(aL/2)

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

uL
um
ur
uR

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

fL
0
0
fR

⎫⎪⎪⎬
⎪⎪⎭

.

(23.8)

Here,mr is the lumped mass and kr the spring constant of the resonator, and (um, ur )
denote the vertical displacements of the mid-node of the string and the lumped mass.
By the matrix condensation method, one can condense the slaved displacements
(um, ur ) into the corresponding master displacements (uL , uR) of the unit cell, as
shown in Fig. 23.3. Then the condensed stiffness equation becomes

[
d̄LL d̄LR
d̄LR d̄RR

] {
uL

uR

}
=

{
fL
fR

}
(23.9)

where

d̄L R = d̄RL = −aT csc(aL/2)

2
(
cos (aL/2) + K̄d L

2aL×T sin(aL/2)
) , (23.10)

d̄LL = d̄RR = aT cot(aL/2) + d̄L R, (23.11)

K̄d = Kd

(
1 + kr

Kd

(ω/ωr )
2

(ω/ωr )2 − 1

)
(23.12)

with ωr = √
kr/mr denoting the frequency of the resonator. Clearly, the effect of the

resonator was taken into account in the expression for the condensed spring stiffness

Fig. 23.3 A spring-resonator-string unit cell
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in Eq. (23.12). For the special case when the spring constant kr of the resonator is
zero, the condensed stiffness equation of Eq. (23.9) reduces to Eq. (23.4) as expected.
By introducing the periodic boundary conditions mentioned above to Eq. (23.9), the
following dispersion equation can be derived

cos(κL) = cos(aL) + K̄d L

2aL × T
sin(aL). (23.13)

The second termon the right side of the preceding characteristic equationdescribes
the dispersive feature of a resonator to attenuate the wave components transmitting
from one span to the next one of the periodic pre-tensioned string. For the calculation
to follow, the frequency ratio ω/ωr is introduced:

(
ω

ωr

)2

= μT

kr L
(aL)2 (23.14)

where μ is the mass ratio defined as μ = mr/msL . Then the second term in
Eq. (23.13) can be rewritten as

K̄d L

2aL × T
sin(aL) = KdL

2aL × T
sin(aL) + μ

2

aL × sin(aL)

(aL)2μT/kr L − 1
. (23.15)

Let us consider the critical condition by letting aL → Nπ |N=1,2,3... and ω → ωr

(or (aL)2μT/kr L → 1) in Eq. (23.15), that is,

lim
aL→Nπ,ω→ωr

K̄d L

2aL × T
sin(aL) = (−1)N

μ

2
Nπ. (23.16)

With this, the dispersion relation in Eq. (23.13) reduces to

cos(κL) = (−1)N
(
1 + μ

(
Nπ

2

)2
)

(23.17)

or

| cos(κL)| = 1 + μ

(
Nπ

2

)2

> 1. (23.18)

As can be seen from Eq. (23.18), the resonator provides a widening mechanism
to increase the band gap of wave transmission in a pre-tensioned string supported by
the hanging springs. Concerning the band gap for attenuating the wave transmission
with specific frequencies in the string, some numerical analyses will be carried out
in the following section.
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23.4 Illustrative Example

Let us consider the simplified catenary system shown in Fig. 23.1. Using the empir-
ical data given by Ref. [6], the pre-tensioned force in the contact wire is set to be
T = 15 kN, the mass per unit length of the contact wire is ms = 0.925 kg/m, the
suspension stiffness of the registration arm assembly is Kd = 130 N/m, and the span
length of bracket structures is L = 65 m. See Table23.2 for a list of the properties

Table 23.2 Properties of the pre-tensioned string

L (m) ms (kg/m) T (N) Kd (N/m) vc =√
T/ms (m/s)

65 0.925 15000 130 127a

aCritical velocity of the pre-tensioned string

Fig. 23.4 Dispersion curves of the string with critical resonators with a kr,cr = π2μT/L; b kr,cr =
4π2μT/L
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adopted in the analysis. Correspondingly, the stiffness parameter (KdL/T ) is equal
to 0.564. Let us adopt a resonator with the mass of mr = 0.1 kg, msL = 6 kg. If the
nondimensional frequency aL is selected as aL = π for attenuating the frequencies,
then the critical spring stiffness (kr,cr = π2μT/L) of the resonator can be designed
as 228 N/m.

With these data, the dispersion curves of the pre-tensioned string derived have
been plotted in Fig. 23.4a, in which the black lines represent the dispersion curve of
the string without resonator and the lines with red dots the curve with resonators.

As indicated, the band gap (stop band) at aL = π is significantlywidened once the
critical resonator is taken into account. Similarly, if the nondimensional frequency is
set at aL = 2π , the critical spring stiffness is kr,cr = 911 N/m. Figure23.4b shows
the corresponding dispersion curves of the pre-tensioned string, in which the band
gaps (stop bands) at aL = 2π and aL = 3π have been significantly widened.

23.5 Concluding Remarks

In this study, a simplified model composed of pre-tensioned string suspended peri-
odically by equal-distance springs is used to simulate the pantograph-catenary
interaction encountered in railway engineering. With this, the dispersion relation
between the wavenumber and frequency of the pre-tensioned string hung by peri-
odical spring supports is derived in closed form. For wave attenuation, a resonator
was attached to each hanging spring support, for which the closed-form solution
was also derived from the corresponding dispersion relation. The numerical results
indicate that the installation of resonators can widen the band gaps (or stop bands)
of the dispersion curves of the pre-tensioned string. With this conclusion, a fur-
ther pantograph/catenary interaction model will be carried out to study the overall
pantograph-catenary interaction dynamics.
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