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Abstract. An empirical understanding of how DNA read features affect
read alignment quality categories is useful in designing better read map-
ping and alignment software, read trimmers, and sequence masks. Many
programs appear to use arbitrarily chosen features that are putatively
relevant to DNA alignment quality. Machine learning gives a ready way to
empirically assess a variety of features and rank them according to their
importance. Sequence complexity features such as run length distribu-
tion, DUST, and entropy, and quality measures from the DNA read data
were used to predict read alignment quality categories on Ion Torrent
and Illumina data sets using both bisulfite-treated and untreated short
DNA reads. Run length mean and variance did as well or better than the
DUST score and entropy, even though several programs use the DUST
score and entropy. Sequence compression features performed poorly. Pre-
dictive accuracy of the models had F1-scores between 0.5–0.95 indicating
that the feature set can fairly well predict alignment categories.
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1 Introduction

A DNA read sequencer produces DNA fragments called reads. A DNA read is
a string over the alphabet {A,C, T,G,N} corresponding to the nucleotide bases
and the N wildcard character. DNA sequence alignment programs map these
DNA reads to a reference genome. This process can be error prone as the DNA
fragments may not match a portion of the reference genome perfectly because
of natural variation and mutation or because of sequencing error [24,30].

DNA sequence mapping software that is used for regular untreated reads
includes Bowtie2 [9], BWA [11], and BFAST [6]. Mapping software for bisulfite-
treated reads must adjust for the bisulfite treatment, and such software includes
Bismark [8], BWA-Meth [17], and BisPin [22]. Bisulfite treatment is used to
search for covalent modification of cytosine in DNA. There are many more exam-
ples of alignment and mapping software.
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Insight into which read features are important to alignment quality cate-
gories could lead to more effective alignment software, read trimmers, masking
algorithms, and so on. I used machine learning to study which numerical fea-
tures of short DNA reads are predictive of read alignment quality categories.
These features include metrics of quality, sequence complexity, and sequence
compressibility.

2 Related Work and Motivation

I used machine learning to predict up to four read alignment categories as dis-
cussed in Sect. 3.2. Four classifiers were trained for each data set for each mapping
software.

My purpose wasn’t to use machine learning to predict alignment categories
since learning the categories can be done simply by running the alignment soft-
ware. My purpose was to explore features relevant to read alignment quality.
However, simple machine learning approaches could be used to efficiently filter
out predicted low quality reads, and so forth. This is explored in Sect. 4.4.

Assessing feature relevance allows for good decisions to be made in their use
in bioinformatics software. Trimming and masking software such as InfoTrim
and Cookiecutter use sequence complexity [21,28]. The bisulfite software Bat-
Meth has a low complexity filter using Shannon entropy [14], and BLAST uses
the DUST score for complexity masking [1,15]. The DUST score measures trinu-
cleotide frequency. The sequence complexity measures chosen for these programs
appear to be arbitrarily chosen or chosen for convenience. Compression software
has been used to determine sequence similarity [31]. A thorough evaluation of
such measures with machine learning gives an empirical rationale for the choice
of the sequence complexity measures.

Other work has used machine learning to predict DNA function from DNA
sequence identity [13] and methylation loci from DNA reads [32]. My own study
found that Shannon entropy corresponds to read alignment categories [20]. A
study found that genome complexity relates to read mapping quality [19], but
my study examines reads rather than genomes.

3 Methods

Reads were mapped using typical alignment programs, and standard machine
learning approaches were used to predict alignment categories. Custom Python
program were used for feature extraction.

3.1 Data Acquisition and Read Mapping

Six data sets of three million reads each were downloaded from the sequence read
archive (SRA) [10] at https://www.ncbi.nlm.nih.gov/sra. This data represents a
variety of bisulfite-treated and regular short DNA reads. Bisuflite- treated reads

https://www.ncbi.nlm.nih.gov/sra
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are used to search for epigenetic cytosine covalent modifications, and these reads
were included since aligning these reads can be challenging with low alignment
quality [20,29]. The data includes quality information that gives the probability
that the base was called correctly. No trimming was performed.

The data includes DNA reads generated from the Illumina platform and
the Ion Torrent platform. Ion Torrent sequencers create variable length reads
from 100–300 base pairs with greater error in homopolymer runs [23]. Illumina
technology creates reads of uniform length that can be a bit shorter than Ion
Torrent reads. Illumina technology is much more common, and it can generate
‘paired-end’ reads. Table 1 shows a summary of the data used. This data set
represents a variety of sequencing technologies and platforms, so it useful for
generalizing the results.

Table 1. Summary of the DNA read data.

SRA # Type Platform Len Species Mappers

ERR2562409 BS Illumina 90 Mouse BisPin, Bismark

SRR1104850 BS Illumina 200 Human BisPin

SRR5144899 BS Illumina 101 Human BisPin, Bismark

SRR1534392 BS Ion Torrent Varies Mouse BisPin, Tabsat

SRR2172246 Reg Illumina 76 Human BFAST, Bowtie2

ERR699568 Reg Ion Torrent Varies Mouse BFAST-Gap, TMAP

One or two read mapping and alignment programs were used to map and
align each data set to the reference genome. The GRCh38.p9 human reference
genome was used, and the GRCm38.p5 mouse reference genome was used. These
genomes can be downloaded from the NCBI (National Center for Biotechnology
Information) data store at https://www.ncbi.nlm.nih.gov/genome. Table 1 indi-
cates which read mapping programs were used with which data set. Thus, eleven
alignment files were created to do machine learning.

For bisulfite-treated Illumina reads, BisPin [22] and Bismark [8] were used
on their default settings. A primary and secondary index was used with BisPin
with rescoring turned off. Bismark is a popular read mapper for bisulfite-treated
reads, and it uses Bowtie2 [9] to do alignments. BisPin is a versatile read mapper
that has good accuracy with a variety of data [22]. Bismark did not return
any mapped reads for data set SRR1104850, so only BisPin was used there.
For Illumina regular untreated reads, BFAST (BLAT-like Fast Accurate Search
Tool) [6] and Bowtie2 [9] were used.

For bisulfite-treated Ion Torrent reads, BisPin and Tabsat were used. BisPin
was used with default settings appropriate to Ion Torrent reads as found in [22].
Tabsat [16] uses Bismark’s Perl code and the Ion Torrent read mapper TMAP
(Torrent Mapping Alignment Program https://github.com/iontorrent/TMAP).
For regular untreated Ion Torrent reads, BFAST-Gap [22] and TMAP were used.
TMAP was used with the map4 algorithm.

https://www.ncbi.nlm.nih.gov/genome
https://github.com/iontorrent/TMAP
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3.2 Feature and Class Extraction

Feature Extraction. For each DNA read, 67 numerical features were created
that comprised sequence complexity, read content, compressibility, and quality.
Reads with N ’s in them were excluded from the analysis as their presence inter-
feres with the sequence complexity measures; however, N ’s are highly relevant
to read mapper performance as an N means an ambiguous nucleotide base that
can match to any nucleotide base in the reference genome.

The sequence complexity features included run length metrics, the DUST
score, entropy, Dk(a), Rk(a), Bzip2 compressibility, and LZMA compressibility.
Compressibility is related to sequence complexity [12], and it has been used to
measure DNA sequence similarity [31].

The run length distribution was computed. A run is a substring of the DNA
string comprised of the same base. The length of the run is the number of bases
in that run. For example, “AATCCC” has a length 2 run of A’s, a length 1 run
of a T, and a length 3 run of C’s. The mean, variance, and maximum of this
distribution were used as features.

The DUST score is a sequence complexity metric based on tri-nucleotide
frequency [15]. A search of the literature did not reveal why this metric is called
DUST. Given that a is a sequence of n characters from A = {A,C, T,G}, a
triplet is a substring of length 3, and there are 64 possible triplets. The space of
triplets is R. There are n − 2 non-unique triplets in a for n > 2. If ct(a) is the
number of times triplet t occurs in a, then the DUST score is

∑
t∈R ct(a)(ct(a) − 1)/2

n − 3
.

The DUST score was normalized to be between 0 and 1 by dividing it by
(n−2)(n−3)/2

n−3 , the maximum DUST score.
Shannon entropy [26] is a sequence complexity measure common in machine

learning. If fb(a) is the frequency of character b in sequence a, then entropy is
given by

−
∑

b∈A
fb(a) log2(fb(a)).

For each b ∈ A, the base frequency fb(a) was included as a feature. This
captures sequence content related features.

The metrics Dk(a) and Rk(a) are found in [19]. The function g(x) gives the
number of times that the substring x occurs in a. Dk(a) measures the rate of
distinct substrings. Given a number k for the substring length, Dk(a) is defined
as

Dk(a) =
|{x : g(x) > 0 | |x| = k, x ∈ a}|

|a| − k + 1
.

Rk(a) measures the rate of repeats, and it is

Rk(a) =

∑
g(x)>1,|x|=k g(x)

|a| − k + 1
.
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Rk(a) and Dk(a) for k = 2, 3, 4, 5 were used. These metrics can be computed
in linear time and space using suffix arrays [19].

The Bzip2 and LZMA implementations in Python3 were used to measure
the compressibility of the DNA sequence. The number of bytes returned by the
compression algorithms was divided by the length of the uncompressed sequence
to get a compressibility metric.

Quality related features were computed from the probability measures given
with the DNA reads. This included the mean, variance, skewness, maximum,
and minimum. Since the probabilities are arranged in a sequence, the difference
between each probability was computed, and these values were averaged and
included as a feature.

The preceding features were computed for the whole read. For each third of
the DNA sequence, each of the preceding features except for Dk(a), Rk(a) and
the run length metrics, were computed and included in the feature set as well.

Label Extraction. This problem was modeled as a classification problem since
every read mapping program gives some indication of read alignment uniqueness.
For each read in an alignment file, the FLAG field of the SAM alignment record
was inspected to assign the read into one of four classes: uniquely mapped,
ambiguously mapped, unmapped, and filtered.

A read is uniquely mapped if the read mapping software reports that there is
a unique best scoring alignment for that read. A read is ambiguously mapped if
there are multiple best scoring locations. An unmapped read maps to no location,
and a filtered read has an alignment score below some program specific threshold.
Not every read mapper reports every class, so some classes were excluded for
some read mappers. One of these classes is predicted for each read.

3.3 Machine Learning Methods

Python3 with scikit-learn 0.19.1 [18] was used to do machine learning. Four
machine learning classifiers were used to assess predictive accuracy: random
assignment (Rand), random forest (RF), multi-layer perceptron neural network
(MLP), and logistic regression (LR). All features were centered and scaled using
the StandardScaler in scikit-learn for each classifier for each data set. Because
there were eleven alignment results, eleven machine learning models were created
for each classifier type and for each software for a total of 44 trained classifiers.

A random classifier (Rand) was trained. This classifier learns the proportion
of classes in the training data and simply guesses a class with probability equal to
the proportion that it learned for that class. This classifier was used to determine
if the other three classifiers were better than random guessing.

A random forest is an ensemble of decision trees. At each level in the tree, a
value for a feature is used to split the level. The leaves are labeled with classes.
An MLP is a neural network with hidden layers that linearly combine previous
layers and apply an activation function. The ReLU activation function was used.
The output of the network is a vector of probabilities for each class. Logistic
regression is a binary statistical model that uses a log-odds ratio. It was used
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with the l2 norm. A binary problem was used for each class, and the class with
the maximum probability was reported as the predicted class [5].

Bayesian optimization with scikit-optimize was used to do hyperparame-
ter tuning with three-fold cross-validation. Bayesian optimization strategically
selects a point in the hyper-parameter space based on the performance of pre-
viously selected hyperparameters [27]. The GP-hedge acquisition function was
used, and twenty-five iterations were performed.

Random forest hyperparameters max depth and max features were opti-
mized. After some experiments, a MLP architecture with four hidden layers of
size 30, 20, 15, and 10 was chosen, and the regularization parameter alpha was
optimized. Logistic regression uses a regularization parameter that was opti-
mized.

Three-fold cross validation was used to train on 2.5 million training examples.
Approximately 500,000 reads were held-out as test data to assess model predic-
tive performance. Reads with N’s were excluded from the analysis. Cohen’s kappa
metric was used for model selection since it is supposed to perform better than
accuracy with rare classes [3]. Precision, recall, and the F1-score (the harmonic
mean of precision and recall) were computed for each class for each data set.
These were used to assess predictive performance on the held-out test data.

The source code and a results spreadsheet can be found at:
https://github.com/JacobPorter/AlignmentML.

4 Results

Models’ F1-scores ranged from 0.5–0.95. The most important features were
sequence complexity features. Quality and compression features were less impor-
tant. A read filter based on trained machine learning models found improvements
in some data.

4.1 Model Accuracy

The F1-score was computed for each class, and then each class’s F1-score was
averaged to assess model predictive performance. These results are presented
in Table 2. The mapping classes are represented as letters (U = Unique, A =
Ambig, N = Unmapped, F = Filtered). All models performed better than ran-
dom guessing. Random forest models always had the highest F1-score, and logis-
tic regression was generally the worst with the slowest training time. The MLP
had the fastest training time of the three.

Predictive accuracy was generally good for uniquely mapped reads and poor
for ambiguously mapped reads. Predictive accuracy for unmapped and filtered
reads ranged from poor to fair. The number of uniquely mapped reads could be
as high as approximately 90% of the data, and other classes could only be a few
percent of the data. This makes non-unique classes rare and prediction difficult.

https://github.com/JacobPorter/AlignmentML
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Table 2. Average class F1-score for each data set.

Data Software Classes Rand RF MLP LR

ERR2562409 Bismark UAN 0.40 0.94 0.84 0.80

ERR2562409 BisPin UANF 0.41 0.95 0.85 0.81

ERR699568 BFAST-Gap UANF 0.86 0.91 0.90 0.90

ERR699568 TMAP UA 0.87 0.92 0.91 0.91

SRR1104850 BisPin UANF 0.52 0.77 0.77 0.74

SRR1534392 BisPin UANF 0.59 0.82 0.73 0.72

SRR1534392 Tabsat UAN 0.68 0.88 0.84 0.80

SRR2172246 BFAST UANF 0.34 0.53 0.51 0.49

SRR2172246 Bowite2 UA 0.84 0.92 0.90 0.90

SRR5144899 Bismark UAN 0.65 0.81 0.80 0.79

SRR5144899 BisPin UANF 0.72 0.85 0.82 0.81

An example of precision, recall, and F1-score by class is shown in Table 3.
The ‘Read amount’ column gives the number of reads in the class. Through-
out this project, precision was generally better than recall, and Ambig was
the class that was generally the hardest to predict. This may be because the
ambiguously mapped class may have sequence complexity intermediate between
uniquely mapped and unmapped reads [20] making the difference more difficult
to distinguish. Ambiguously mapped reads may be a result of repetition in the
genome [4,25] that can’t be detected from examining the read alone.

Table 3. Precision, recall, and F1-Score by class for SRR5144899 Bismark.

Class Precision Recall F1-Score Read amount

Unique 0.851 0.974 0.909 393343

Ambig 0.657 0.133 0.221 36771

Unmap 0.775 0.473 0.587 69094

4.2 Feature Importance

Random forest feature importance was used to rank the features since the ran-
dom forest models had the best predictive performance. This gives a ranking of
features from most important to least important according to the model. This
ranking was computed for each of the eleven data sets, and the distribution of
ranks for each feature was computed. Figure 1 gives a notched box plot of these
distributions for all of the features that used the entire read. Qual features are
quality features. LZMA and bz2 are compression features, and all other features
are related to sequence complexity.
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Fig. 1. Feature importances for all of the data. For each data set and each read mapper,
random forest feature rank importances were calculated, and the distribution of rank
for each feature was used to make the box plot. Dk(a) is referred to as dkg, and Rk(a)
is referred to as rkg.

Run length variance and run length mean were among the most important
and performed a bit better than entropy and the DUST score in some cases.
This is interesting since several programs use the DUST score, such as BLAST
[1,15], and entropy [14,21]. Run length metrics could be as good or better if
they replaced the DUST score and entropy. Character frequency features were
of good importance but not as important as the DUST score and entropy.

Dk(a) and Rk(a) performed more poorly; however, D2(a) was very important
for the data ERR2562409 as it was ranked the most important with an average
importance confidence 0.251, which was larger by 0.174 on average than the next
best feature, the largest difference of its kind. Perhaps Dk(a) is more useful for
some data sets.

Compressibility measures were the worst average performing sequence
complexity metrics. LZMA was the worst on average with a mean rank of 51.45.
However, the Bzip2 feature from the first third of the sequence had the highest
rank on the SRR1534392 data with BisPin, and LZMA in the second third of
the sequence had the highest rank for the SRR1534392 data with Tabsat.

Quality metrics were generally not as important as sequence complexity met-
rics. The quality mean was the most important of these, and quality skewness,
maximum, and minimum had the lowest importance of all features.

Since four of the six data sets were for bisulfite-sequencing reads, there could
be a bias favoring bisulfite read mapping. Thus, the same feature rank analysis
was performed with only the regular untreated data. The feature rank notched
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box plots for this data can be found in Fig. 2. The order of features is very
similar, but the DUST score does a little better, outperforming the run length
metrics. The quality mean is a bit lower in the rankings.

Fig. 2. Feature importances for the regular untreated data. Dk(a) is referred to as dkg,
and Rk(a) is referred to as rkg.

In Illumina data sets, features from the last third of the read generally had a
higher importance than features in the first or second thirds of the read sequence.
Features from the second third were generally more important than features from
the first third. This may be because there is often lower quality in the last third
of a read since Illumina sequencing technology can make more errors in later
cycles [2]. In Ion Torrent data, features from each third were generally more
evenly distributed in the top 15 most important features.

4.3 Feature Ranking Similarity Across Different Data

There is weak evidence that the feature importance ranking depends more on
the read mapper than the data set. This conclusion was drawn by looking at
Kendall’s tau coefficient for feature rankings across different data. Kendall’s tau
coefficient is used to measure how similar two ordered sequences are [7]. It ranges
from 1.0 to −1.0. A 1.0 means the sequences are identical, and a −1.0 means
that the sequences are the reverse of each other.

Kendall’s tau coefficient and p-value were computed using scipy. The feature
importance ranking for both read mappers for the same SRA number was used to
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calculate Kendall’s tau. Only ERR2562409 and ERR699568 had p-values below
0.1. All tau’s were positive. The highest was for ERR699568 at 0.308, and the
lowest was for SRR5144899 at 0.0276. Both data sets come from bisulfite-treated
Illumina reads.

The feature importance ranking for all data mapped with BisPin was com-
pared with SRR1104850 since it was mapped only with BisPin. In all cases, tau
was larger than in the previous analysis. This suggests that read mapper fea-
ture rankings correlate better than feature rankings based on the same data set
but mapped by different programs. This suggests that there is some program-
specific qualities of feature performance, and data set specific qualities are less
important.

4.4 Machine Learning Filter Proof-of-Concept

The random forest machine learning model was used as a read filter to test the
idea that these features could lead to more effective read trimmers, masking
algorithms, and so on. First, the average alignment score and the average edit
distance were calculated on additional 300k–500k reads after alignment. The
alignment score and edit distance are reported by the alignment program. Then,
reads that were marked as unmapped or filtered by the RF model were excluded,
and the averages were calculated. Table 4 summarizes the results. A positive
number represents an improvement while a negative number represents a loss.
The 200bp data set SRR1104850 had slightly worse alignments on average, but
the other data sets showed a bigger improvement. This validates that these
methods can be used as a low complexity filter to improve alignments.

Table 4. Differences in alignment score and edit distance for filtered reads.

Data Mapper Alignment diff Edit diff

SRR2172246 BFAST 626.47 5.06

SRR5144899 BisPin 2283.69 6.86

SRR1104850 BisPin −110.59 −2.03

5 Conclusions

My study showed that sequence complexity measures are important in predicting
the read mapping quality of short DNA reads. Read quality metrics were less
important. Run length mean and variance, the DUST score, and entropy were the
best performing sequence complexity measures. Bioinformatics programs may
consider using run length statistics because they were among the best features.

Without knowledge of the genome, and only knowledge of the DNA read,
machine learning models, especially random forests, were able to predict align-
ment quality with surprisingly good accuracy approaching F1-scores of 0.95. The
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features that work well on regular untreated reads tended to work well on bisul-
fite reads. This suggests that sequence complexity measures that work well in
one application will probably work well in other applications.

Future work could include training a regressor to predict the alignment score
rather than alignment categories; however not all programs (such as Bismark)
report such a score. A model with very few features that predicts the alignment
score could make a fast read filter. The effect of read trimming can be explored.
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