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Abstract We aimed to improve the state of the art in decoding speech from neural
activity, with the ultimate goal of developing a useful brain-machine interface (BMI)
for individuals who have lost the ability to speak—from ALS, a stroke, or other
traumatic brain injury. In our recent study (Makin et al. in Nat Neurosci 23:575–582,
2020), each of four participants undergoing clinical monitoring for epilepsy read
aloud, making repeated passes through a set of some 30–50 sentences, while her
electrocorticogramwas simultaneously recorded. Our algorithm, which was inspired
by recent ideas in machine translation, brought word error rates down from the
previous state of the art, about 60, to 3%. In this chapter, we discuss those results,
their limitations, and their implications for the general problem of speech decoding.

Keywords Brain-machine interface · ECoG · Speech decoding · Encoder-decoder
networks

1 Introduction

The field of speech decoding began in 2009 with the successful synthesis of vowel
formants from the firing rates of a small number of neurons, recorded with a micro-
electrode implanted into speech-motor cortex of a locked-in patient [3]. Isolated
phonemes andmonosyllables have subsequently been classified,withmoderate accu-
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Fig. 1 Strategies for speech decoding

racies, from recordings made by penetrating electrodes [18] or from the electrocor-
ticogram (ECoG) [3, 4, 14, 16]. Even setting aside their modest accuracies, these
results are of interest mostly as proof of concept, because the phonemes produced in
continuous speech are highly influenced by their neighbors (“coarticulation”); and
(taking the other horn of the dilemma) a speech BMI that required its users to produce
phonemes in isolation would forego the principal merits of decoding speech rather
than handwriting or typing: speed and naturalness.

Several studies have attempted to decode continuously spoken speech [1, 2,
9, 11–13]. These can be divided on the basis of what modality they attempt to
decode: audio (“speech synthesis”) or text (see Fig. 1). Neural speech synthesis has
markedly improved since the foundational work of Brumberg and colleagues [3],
producing nearly intelligible output. In arguably the most successful of these studies
[2], volunteers were subsequently recruited to transcribe the speech that had been
synthesized from patients’ ECoG data, in order to quantify the results. When limited
to a vocabulary of just 50 words, transcribers achieved word error rates1 (WERs) of
about 50%. (On the other hand, the primary advantage of speech synthesis is that it
is not, in principle, limited to a fixed vocabulary.)

When the aim is, alternatively, to output text, there remains the question of granu-
larity. At one extreme, phonemes can be classified, and subsequently assembled into
words and sentences with a language model. Operating with ECoG and a vocabulary
of 100 words, such an approach has yielded word error rates of about 60% [9]. At
the opposite extreme, Moses and colleagues classified entire sentences from their
corresponding ECoG signatures [13], trading coverage of English for distinguisha-
bility of the tokens to be decoded. This model achieved WERs of 33% on a set of 50
sentences [11].

An alternative to classifying (and subsequently assembling into larger units)
phonemes, words, or sentences is to decode variable-length sequences of words.
That is, the decoder consumes a long sequence of neural data, contemporaneous

1 Errors are computed as the minimum number of word insertions, deletions, and substitutions
required to transform the predicted into the true word sequence. Dividing by the number of words
in the true sequence yields a word error rate. Intuitively, any sensible decoder should achieve error
rates between 0 and 1.0, since the WER for a “decoder” that just predicts an empty sequence for
every “input” is precisely 1.0. But in practice poor decoders can make errors at rates greater than 1.



Speech Decoding as Machine Translation 25

with (for example) a single spoken sentence, and then begins emitting words, one at
a time, until it decides to stop. The potential advantage of such an approach is that
it does not impose assumptions about which parts of the ECoG signal correspond
to which words or word parts. This allows for: phoneme classification and assem-
bly into words to be solved jointly rather than sequentially; automatic handling of
coarticulation; the assimilation of temporally dispersed (e.g., semantic) information;
dispensing with a phoneme transcription, which would in any case be difficult to
obtain from non-speaking persons; and the production of any sentence composed
from the fixed vocabulary of words. The entire pipeline can be implemented as an
artificial neural network, and trained end-to-end, from neural data to sentences. And
indeed, such “encoder-decoder” networks have in the last five years become the stan-
dard for machine translation, where the input is a variable-length sequence, not of
neural data, but of words in another language [7, 8, 19, 21].

Using ECoG as input to an encoder-decoder neural network, we achieved WERs
as low as 3%, operating with a vocabulary of about 250 words and a set of 50 unique
sentences [11]. Below we reprise those results and discuss their limitations.

2 Methods

We briefly describe the fundamental aspects of the study’s methods. More details
can be found in the original publication [11].

Participants. Drug-resistant epilepsy can sometimes be treated with brain surgery,
in which case seizures are first localized with a neurological recording device. One
common procedure is to perform a craniotomy and then place a grid of electrodes
on the surface of the brain and monitor the electrocorticogram over the course of
(typically) one or two weeks. During this period, patients are not anaesthetized and
are able (inter alia) to read aloud without difficulty. The participants in the study
reviewed herewere epilepsy patients at theUCSFMedical Center. Prior to surgery, all
participants (four female; all right-handed and left-hemisphere language-dominant;
aged 47 [participant a], 31 [participant b], 29 [participant c], and 49 [participant d]
years) gave written consent to take part in the study, which was carried out according
to protocol approved by the UCSF Committee on Human Research.

Data. The electrocorticogram was recorded with high-density (4-mm pitch) arrays
from the peri-Sylvian cortices of participants while they read aloud from one of two
sets of sentences (see below). The ECoG on all channels and the microphone signal
were then pre-processed offline according to the pipelines in Fig. 2a, b, respectively.
Finally, the spoken sentences were transcribed. Participants occasionally misread or
otherwise misproduced the prompts, so the transcriptions did not always precisely
match them. However, the rare (less than one percent of the total) productions that
did not correspond to any word in the relevant sentence set (see below) were all
transcribed as a single out-of-vocabulary token.
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Fig. 2 Data preprocessing

Altogether, these provided a set of data “triplets,” each of which consisted of

1. a matrix of ECoG data, with size (number of channels × number of samples);
2. a matrix of audio data (13 MFCCs × number of samples); and
3. the sequence of words in the corresponding sentence.

It was this set of triplets that was used to train and test the encoder-decoder neural
network (see below). Note that the number of samples varied across triplets, being
determined by how long it took the participant to speak the sentence. The number of
channels varied across participants, depending on the number of electrodes implanted
(256 [participants a, b, d] or 128 [c]) or too noisy to be used.

Two sets of sentences were used:

• MOCHA-TIMIT [22]: 460 sentences, ∼ 1800 unique words, participants a, b, d;
• picture descriptions: 30 sentences, ∼ 125 unique words, participants c, d.

For both sets, each sentence was presented briefly on a computer screen for recital,
followed by a few seconds of rest (blank display). However, to avoid fatiguing par-
ticipants, no more than 50 sentences were presented in a single session or “block.”
Thus, MOCHA-TIMIT could not be administered in a single block. To achieve con-
sistency across participants, then, it was first divided into nine subsets, MOCHA-1,
MOCHA-2, etc., of 50 sentences apiece (and 60 inMOCHA-9), each of which could
be completed within one block, and within which sentence presentations were ran-
domized. This resulted in better coverage of

• MOCHA-1: 50 sentences, ∼ 250 unique words, participants a, b, d

than the other subsets, and consequently we focus on decoding from it and the 30
picture descriptions in the main results below.

The encoder-decoder network. The architecture was inspired by recent artificial
neural networks for machine translation [19], albeit with significant modifications.
Abstractly, the encoder module first “consumes” an entire sequence of ECoG data
(corresponding to one sentence), which it summarizes in a high-dimensional vector
of fixed length, i.e. independent of the number of samples in the input sequence. The
encoder then passes this summary to the decoder module, which unpacks it one word
at a time.

We now describe our architecture in more detail, following Fig. 3 throughout:
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Fig. 3 Network architecture. The network consists of a pair of coupled RNNs, shown here
“unrolled” in sequence steps. The encoder consumes ECoG and predicts audio (MFCCs); the
decoder is initialized at the final encoder state and predicts words until it emits an end-of-sequence
token (〈EOS〉)

1. Temporal convolution: The ECoG “signature” of a particular phoneme or word
will not depend on the absolute time at which it was produced: it is time-invariant.
Neural networks can efficiently exploit this invariance if they are required to apply
the same filters at regular temporal intervals (“strides”) along the entire length of
the input sequence (“temporal convolution”). Furthermore, our filters “strode” by
12 samples, thereby downsampling their inputs from 200 to about 16 Hz. This
helps because recurrent neural networks struggle with long sequences [6]. We
used 100 filters (each spanning all of the input channels), so the output of the
temporal convolutions is a sequence of length-100 vectors.

2. Encoder recurrent neural network (RNN): The vectors in this sequence are con-
sumed one at a time (a) in forward order and (b) in backward order by a pair of
RNNs, each with 400 units of long short-term memory (LSTM). Then, at every
time point, the hidden states of these RNNs are concatenated together, creating a
sequence of length-800 vectors. These are the input to a second pair of LSTM-
based RNNs, which in turn produces inputs for a third pair.
The hidden states of the second-layer RNNs are also used to predict the sequence
of MFCCs, i.e. the speech audio. The hidden state of the deepest (third) RNNs at
the time step of the final sequence element is interpreted to be a high-dimensional,
length-independent summary of the entire input sequence, and is passed to the
decoder RNN.

3. Decoder RNN : A single-layer, unidirectional, 800-unit, LSTMRNN is initialized
at this high-dimensional summary. At each time step it emits a probability dis-
tribution over all the words in the vocabulary; and consumes either the previous
word in the sequence (during training) or the previous most probable word (dur-
ing testing). Notice that words, which are encoded as one-hot vectors, are first
“embedded” into a dense, 150-dimensional space before entering the decoder
RNN.
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We make a few technical notes:

• Time reversal. Presumably, the first elements of the ECoG data are most related
to the first word or words of the sentence. To reduce the number of computation
steps separating these, the sequences of ECoG data were temporally reversed
before entering the network, following Sutskever and colleagues [19].

• MFCC sequences. The sequences ofMFCCs therefore also need to be temporally
reversed. But they also need to be downsampled, to match the downsampling
effect of the strided temporal convolution (see above). We simply decimated the
sequences, selecting every twelfth vector (without botheringfirst to low-passfilter).
The purpose of targetting speech audio is simply to guide training onto the right
track [5, 20]; during testing, the predicted MFCCs are not used.

• Training and testing. The entire network was trained to map ECoG to audio
(MFCCs) and text (word sequences) with stochastic gradient descent via back-
propagation (with AdaMoptimization [10]). Dropout [17] was applied to all layers
except the recurrent connections. The remaining details of the training and testing
procedure, including hyperparameter optimization, cross-validation, and transfer
learning can be found in the original report [11].

3 Results

Decoder performance. Encoder-decoder performance on data from all four partici-
pants is shown in the first “violin” of each of the violin plots in Fig. 4. Subfigure labels
correspond to participant IDs. Note that participants a and b read the 50 sentences
from MOCHA-1, whereas participants c and d read the 30 picture descriptions (see
Methods). The most impressive results are for participant b, for whom the encoder-
decoder usually achievedWERs close to 0—perfect decoding. Only for participant a,
who provided only two repeats of each sentence, were WERs outside the acceptable
range of speech transcription (25% [15]). For two participants WERs were close
to or below 5%, the performance of professional transcribers for spoken speech
[23]—albeit with much larger vocabularies.

To understand better the high performance of the encoder-decoder, we trained new
sets of networks with certain critical aspects of the architecture or the data removed
(Fig. 4):

• Grid density (“low density”): Data from a lower-density grid can be simulated
by dropping every other electrode from the data. This pseudo-grid will have 8-
mm (rather than 4-mm) inter-electrode spacing and one quarter the number of
electrodes. Moving to such a grid typically increases (median) WER by about 20
percentage points.

• Speech audio (“no MFCCs”): It will be impossible to acquire speech audio from
non-speaking subjects—the ultimate target population for a speech prothesis.
Training a network without requiring the encoder to predict MFCCs typically
increases WER by 15–30 percentage points.
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Fig. 4 Decoder performance. For all four participants (a–d) and for encoder-decoders aswell as var-
ious “competitors,” text output was evaluated in terms of word error rate (WER), with the sentences
actually spoken serving as ground truth. For any single participant and decoder type, the distribu-
tion of WERs is across 30 instances of that decoder trained de novo and evaluated on randomly
selected held-out blocks. For every participant, the distribution ofWERs under the encoder-decoder
is significantly better than any competitor (p < 0.0005 under a one-sided Wilcoxon signed-rank
test, Holm-Bonferroni corrected for five comparisons). In addition to its standard implementation,
the encoder-decoder was evaluated under a simulated lower-density grid (“low density”), without
audio data during training (“no MFCCs”), without temporal convolution (“no conv.”), and with
input sequences of pure noise but of the correct length (“length info. only”)

• Temporal convolution (“no conv.”): Using a fully connected input layer amounts
to dropping (a) the assumption of time-invariance of the ECoG data, as well as (b)
the downsampling. It increased WERs by 20–40 percentage points.

Is the encoder-decoder really just a sentence classifier? For word-based decoding
to stand any chance of succeeding, it is necessary to guarantee that the words read
during a block used for testing have also been read at least once across the blocks
used for training. Given our time constraints, we therefore decided to use, for each
participant, a single set of sentences across all training and testing blocks. But this
raises the possibility that the encoder RNN is merely classifying its inputs—say, with
a label from the integers 1–50, which it then hands off to the decoder RNN. The latter
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could in turn learn how to unpack the 50 labels into their corresponding sentences.
This would render the results in Fig. 4 much less general and (therefore) interesting.

The short answer is that the encoder-decoder is not merely acting as a sentence
classifier. We return to this point in the Discussion. Here we show that it performs
better thanother sentence classifiers, and thatperformance improveswhen it is trained
on sentences outside the test set.

• Sequence-length information (“length-info only”): Recall that the ECoG
sequences were manually extracted at the sentence boundaries (Fig. 2a). There-
fore, if time of production varied more across than within sentence types, it would
theoretically be possible for the network to classify input sentences based only on
their length. We tested this by replacing each ECoG sequence with a sequence of
pure noise—but still of the true length—and then re-training and testing networks.
This resulted in WERs near 100% for all participant (Fig. 4).

• Sentence classification (“phoneme-based HMM”): We compared against a state-
of-the-art, HMM-based sentence classifier for neural data [13]. It attempts to
decode phonemes from ECoG data and then checks which of the sentences in
a closed set (in our case, either MOCHA-1 or the picture descriptions) is most
consistent with this phoneme sequence. Using this decoder increased WERs by
30–70 percentage points.

• Training on non-test-sentences. For some participants, we were able to collect
blocks with sentences outside the test set, in particular MOCHA-2–MOCHA-
9. Adding these blocks to a training set originally consisting of two blocks of
MOCHA-1 (“+task TL”) improved decoding performance on MOCHA-1 by as

Fig. 5 Performance of the encoder-decoder under transfer learning. For the three participants
(color code as in Fig. 4) with sufficient coverage of MOCHA-1, 30 encoder-decoders were tested on
a randomly held-out block of MOCHA-1. They were trained on 2 blocks of MOCHA-1 (“encoder-
decoder”), or on those two blocks plus: one block of each of MOCHA-2–MOCHA-9 (“+task
TL”); another participant’s MOCHA-1 blocks (“+subject TL”); or two participants’ MOCHA-1–
MOCHA–9 blocks. Significance, indicated by stars (*: p < 0.05, **: p < 0.005, ***: p < 0.0005,
n.s.: not significant), was computed with a one-sided Wilcoxon signed-rank test, and Holm-
Bonferroni corrected for 14 comparisons: the 12 shown here plus cross-subject transfer learning on
the picture descriptions, which did not yield significant improvements
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much as 15 percentage points (Fig. 5). This would be impossible if the encoder-
decoder were merely classifying sentences of MOCHA-1.

Cross-participant transfer learning. In addition to demonstrating that the encoder-
decoder is not acting as a sentence classifier, “cross-task” transfer learning shows how
to augment our training data, which is of interest given how limited data-collection
time is with epilepsy patients. Still, the total is upper bounded by the amount of a time
a participant spends in the hospital. This bound could be breached, however, if we
could exploit data from other participants. It turns out that we can, by pre-training the
encoder-decoder on one participant before training it on another, target participant.
On the MOCHA-1 sentences, this cross-participant transfer learning shows signifi-
cant, albeit modest, reduction inWER for all participants (Fig. 5, “+subject TL”). The
two forms of transfer learning can also be combined to yield further improvements
(Fig. 5, “+dual TL”).

4 Discussion

Wedecoded speech fromECoGdata with error rates near zero, but only in the context
of some 50 sentences comprising 250 unique words. The rigidity of the trained
network can be seen in some of its errors, when it substitutes a whole sentence of
MOCHA-1 for another. On the other hand, we showed that the encoder-decoder is
not merely classifying input sentences, since training on non-MOCHA-1 sentences
improves performance.

It also turns out that if the encoder is trained on ECoG sequences corresponding to
single words (rather than single sentences), the correct word can be identified from
its final hidden state with accuracies of up to 80% (for participant b; unpublished
data), at least on the 250 words of MOCHA-1. The result is not fully general because
of coarticulation: a word that appears in MOCHA-1 only after some other word
may be produced differently in other contexts. But it very strongly suggests that the
architecture can generalize to arbitrary sentences composed from a vocabulary of at
least 250 words—given the appropriate training corpus.

The larger remaining questions have to do with clinical translation into patients
who have lost the ability to speak. There are at least two problems:

1. It will no longer be possible to train the encoder-decoder to predict speech audio,
which will hurt performance (see Results).

2. Cortical plasticity post-injury (for example) may obscure or eliminate the relevant
neural signals.

In fact, the MFCCs can be replaced with phoneme sequences, sometimes with no
drop in performance, and it may be possible (although not easy) to estimate these—
or, for that matter, the MFCCs—by controlling the timing of the task. And it may
be possible to learn much of the decoder from healthy patients via transfer learning
(see Results), although it remains to be seen how effectively models transfer to
non-speaking patients.
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