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Brain-Computer Interface Research:
A State-of-the-Art Summary 10

Christoph Guger, Brendan Z. Allison, and Aysegul Gunduz

Abstract Brain-computer interfaces (BCIs) enable users to send messages or
commands directly through brain activity, without anymovement.Most BCI systems
aim to help persons with seriousmovement disabilities, but BCIs for consumer appli-
cations are increasingly prevalent. Each year since 2010, teams submitted their BCI
projects to the BCI Research Awards, where a jury decides the best projects of the
year. We invite the nominees and winners of these awards to contribute chapters to
our annual book series, and this book covers the 2020 BCI Research Awards—the
tenth year of this award series, and the tenth book about the awards. Most of this
book consists of chapters in which the authors summarize these BCI projects or
contribute interviews about their work. In this chapter, we introduce BCIs, describe
the procedures and people involved in the awards and books, and present the twelve
projects that the jury nominated for an award.

Keywords Brain-computer interface · EEG · ECoG · BCI research awards · BCI
foundation

1 Introduction

Brain-computer interface (BCI) systems are gaining attention, with new applications
to benefit patients and even healthy users. We started the Annual BCI Research
Award in 2010, and have organized this award since then. These awards have had
many beneficial outcomes, including: (1) identifying and rewarding the best BCI
projects each year; (2) providing positive publicity for top projects and the overall
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field; (3) creating an annual book series with summaries of the top BCI projects and
discussions of BCI trends; and (4) helping to “raise the bar” for high-quality BCI
projects.

This year marks the tenth anniversary of the BCI Research Award and its corre-
sponding books. This book, like earlier books in this series, presents articles from
people behind this year’s top BCI projects.Most of the chapters were written by these
BCI experts and present details about their BCI projects, including: the current state-
of-the art; why their work is important; hardware, software, procedures, algorithms,
and other methods; results, usually based on real-world testing with patients or other
target users; and discussion, often with future directions and other commentary. This
introductory chapter introduces BCIs, the annual awards and books, and the twelve
projects nominated for a BCI Research Award in 2020.

2 What Is a BCI?

The most widely cited review of BCIs states: “A BCI is a communication system in
which messages or commands that an individual sends to the external world do not
pass through the brain’s normal output pathways of peripheral nerves and muscles.
For example, in an EEG based BCI the messages are encoded in EEG activity. A
BCI provides its user with an alternative method for acting on the world [7].” While
different authors use different terms, most people agree with this general definition.

Most BCIs help people with severe movement disability by replacing or restoring
lost movements [8]. The “replace” function includes BCIs for control of prosthetic
limbs or spelling systems [1, 2]. Thus, people who can no longer perform abilities
like grasping, typing, or speaking can replace lost functions by directly controlling a
device with brain activity. Other BCIs help restore lost movements, such as helping
people regain upper-limb control after a stroke [3, 4, 6]. In addition to improving
voluntary movement control, many patients who participate in stroke rehabilitation
therapy using BCIs report reductions in spasms and pain.

The “restore” and “replace” applications require using the BCI at different times.
A BCI system to replace lost functions should be available on-demand, even in
the middle of the night, without a medical expert or technician. BCIs to restore
functions are instead typically used through therapy sessionswith a licensed therapist.
A common schedule would be 25 sessions with 2–3 sessions per week, typically
during regular business hours.While both “replace” and “restore” BCIsmust provide
real-time feedback to the user, as required by all BCIs, the immediate feedback is
the main goal of a “replace” BCI. In a “restore” BCI, the goal is instead to produce
long-lasting change.

BCIs are also becomingmore prominent as consumer products rather than tools for
patients. Facebook, ElonMusk, and others have announced high-profile BCI projects
that primarily aim toward consumer devices. Many new companies have emerged
that now sell BCIs meant for consumers. These new directions could accelerate BCI
research and development, but need to be presented to the public accurately and fairly.
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The BCI Research Awards have been informing readers about BCIs for a decade.
We hope the awards and books have also encouraged high-quality BCI projects and
publications.

3 The Annual BCI Research Award

The BCI Award Foundation organizes the Annual BCI Research Award. Drs.
Christoph Guger and Dean Krusienski are both presidents of the BCI Award Foun-
dation, which was founded in 2017. Figure 1 shows the two presidents and the five
other Board Members of the BCI Award Foundation.

The BCI Research Award is open to researchers or teams (excluding members of
the jury) around the world. Different projects have involved various combinations
of hardware, software, algorithms, methods, and other components. The prizes were
provided by theAustrian company g.tecmedical engineering (authorCG is theCEO),
IEEE Brain, the BCI Society and by the German company CorTec.

The awards procedure this year followed a procedure like prior years:

1. The BCI Award Foundation selects a Chairperson of the Jury from a top BCI
research institute.

Fig. 1 The BCI Award Foundation has seven board members. All of the board members have been
active in BCI research for at least ten years
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Fig. 2 The jury for the 2020 BCI Research Award

2. The Chairperson selects a jury of international BCI experts to evaluate all
projects submitted for the Award.

3. TheAwardwebsite1 announces instructions, scoring criteria, and the submission
deadline for projects.

4. After the deadline, the jury members judge each submitted project.
5. The jury chooses the nominees and the first, second, and third place winners.
6. The Award website announces the nominees, and we invite them to that year’s

Awards Ceremony within a major BCI conference.
7. At the Awards Ceremony, we announce the winners, provide prizes, and thank

the jury and the conference organizers.

Initially, the projects that the jury received by the submission deadline were two-
page project descriptions. In 2018, we began requiring a supplemental two-minute
video about the project. Thus, the jury has had more information to consider when
deciding the award, but more work as well (Fig. 2).

The head of the jury in 2020 was Professor Aysegul Gunduz from University of
Florida. The 2020 jury included SergeyD. Stavisky, whowon the 2019BCI Research
Award. Aysegul Gunduz says: “The 2020 jury also had a good mix of people with
backgrounds in invasive and non-invasive BCIs who work in different areas active
in BCIs. This prior experience and breadth are both important in juries, who need to
evaluate a wide range of BCI projects each year”. The 2020 jury was:

1 https://www.bci-award.com/Home.

https://www.bci-award.com/Home
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The scoring criteria that the jury used to select the nominees and winners were
the same as all previous BCI Research Awards:

• Does the project include a novel application of the BCI?
• Is there any new methodological approach used compared to earlier projects?
• Is there any new benefit for potential users of a BCI?
• Is there any improvement in terms of speed of the system (e.g. bit/min)?
• Is there any improvement in terms of accuracy of the system?
• Does the project include any results obtained from real patients or other potential

users?
• Is the used approach working online/in real-time?
• Is there any improvement in terms of usability?
• Does the project include any novel hardware or software developments?

After all of the jury members have scored all of the projects, the twelve projects
with the highest scores are nominated for an award. These nominations are announced
through the BCI Award website and other means, and we invite the nominees to the
Awards Ceremony. Last year, the 2019 Awards Ceremony was part of the bi-annual
BCI Conference in Graz, which also hosted the awards in 2011, 2014, and 2017.
For the 2020 Awards, we couldn’t schedule an in-person Awards Ceremony due to
COVID. So, we scheduled the first online Awards Ceremony. Nominees were invited
to participate virtually, including an oral presentation for the Awards Ceremony.

The 2020 Award Ceremony occurred online as part of the virtual IEEE Systems,
Man, and Cybernetics conference2 organized through Toronto from October 11–
14, 2020. This conference had a lot of other BCI-related activity, including several
BMI sessions and a BR4IN.IO hackathon. The Award Ceremony occurred during
the lunch break on October 13, keeping with the tradition of hosting our award
ceremonies in a casual atmosphere with food and drinks. The Ceremony included a
friendly introduction by Dr. Guger, announcement of the nominees and winner, and
videos or statements from some nominees (including brief interviews).

So, although we are still new to hosting the BCI Awards Ceremonies online, we
kept other traditions that we’ve established for these ceremonies. The 2020 Awards
Ceremony was successful, and the 2021 Awards Ceremony will be online as well.

The awards for winning projects were also consistent with the ceremonies from
the last few years. The jury was asked to choose winners for first, second, and third
place. We announced that these winners would receive $3000, $2000, and $1000,
respectively, in addition to a certificate and other prizes. The authors of the winning
project were also asked to contribute to this book by writing a chapter, and/or joining
us for an interview, about their project and related work.

2 http://smc2020.org/.

http://smc2020.org/
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4 The BCI Research Award Book Series

The preceding section included the timeline for the annual award that ended with
the announcement of the winners at the Awards Ceremony. That’s when the work on
these books begins:

1. We tell the nominees what we need in each chapter, which may be a project
summary and/or interview. We encourage images, reports about their newest
research future directions, and discussion in addition to project details.

2. Interview some nominees and develop each interview into a chapter.
3. Read the project summary chapters when the authors submit them to us.
4. Edit both types of chapters as needed. Aside from fixing mistakes, we want

chapters to be informative and clear.
5. Correspond with the authors to ask for clarification or new text, check on

changes, get new references or figures, check copyright issues, and other
details.

6. Develop the introduction and conclusion chapters.
7. Submit all chapters to the publisher. (This is where we are as of this writing in

April 2021).
8. The publisher then reviews the chapters and sends them to a typesetter.
9. A few months later, the typesetter sends us the proofs, which we share with

the chapter authors.
10. Submit any corrections to the proofs and ask the publisher to finalize the book.

The book is always edited by three people: Drs. Guger and Allison from the BCI
Award Foundation, and the chair of the jury from that year. This year, our jury chair
and co-author is Prof. Aysegul Gunduz from the University of Florida. These three
people are also responsible for the introduction and discussion chapters. In practice,
Dr. Allison writes most of these two chapters and is primarily responsible for editing
the other chapters. Dr. Guger has so far conducted all of the interviews, which Dr.
Allison edited into chapters.

We review the chapters and do have the option of rejecting any chapters. However,
chapter rejections are rare in the BCI Research Award book series, like other edited
books of this nature. The underlying projects already succeeded in a very chal-
lenging peer-review process through the jury selection procedure. Thus, the authors
are capable of producing high-quality material describing a good BCI project that
they usually want to publicize.

This is only the second book that includes interview chapters. This year, we have
seven project summaries and four interviews from the nominees, who are in the next
section. In our book for the 2018 Awards, we included the interviews within the
discussion chapter [5]. In 2019, we tried expanding the interviews with more ques-
tions and supporting components such as an introduction, images, and references.
These interviews led to good chapters that were easier to read than project summary
chapters. We aim to make interview chapters easier to read than project summary
chapters to provide different levels of difficulty for different readers.
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5 Projects Nominated for the BCI Award 2020

The twelve submissionswith the highest scoreswere nominated for theBCIResearch
Award 2020. These twelve projects, followed by authors and affiliations, were:

Enhancing Gesture Decoding Performance Using Signals from Human Poste-
rior Parietal Cortex

Guangye Li1, MengWang1, Shize Jiang2, Jie Hu2, Liang Chen2, Dingguo Zhang3

1 Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong
University, Shanghai, China
2 Neurosurgery Department of Huashan Hospital, Fudan University, Shanghai,
China
3Department of Electronic and Electrical Engineering, University of Bath, Bath,
UK

Machine Translation of Cortical Activity to Text

Joseph G. Makin, David A. Moses, Edward F. Chang

Center for IntegrativeNeuroscience/Department ofNeurological Surgery,Univer-
sity of California, San Francisco

Towards Practical MEG-BCI with Optically Pumped Magnetometers

Benjamin Wittevrongel1,3, Niall Holmes2, Elena Boto2, Ryan Hill2, Molly Rea2,
Ben Hunt2, Arno Libert1, Elvira Khachatryan1, Marc Van Hulle1,3, Richard
Bowtell2, Matthew Brookes2

1 Laboratory for Neuro- and Psychophysiology, KU Leuven, Belgium
2 Department of Physics and Astronomy, University of Nottingham, UK
3 KU Leuven institute for Artificial Intelligence (Leuven.AI), Belgium

EEG Decoding of Pain Perception for a Real-Time Reflex System in Prostheses

Zied Tayeb1, Rohit Bose2,3, Andrei Dragomir2,4, Luke E. Osborn5,6, Nitish V.
Thakor5,7, Gordon Cheng1

1 Institute for Cognitive Systems, Technical University of Munich, Germany
2 Institute for Health, National University of Singapore, Singapore
3 Department of Bioengineering, University of Pittsburgh, USA
4 Department of Biomedical Engineering, University of Houston, USA
5 Department of Biomedical Engineering, Johns Hopkins School of Medicine,
USA
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6 Research Exploratory Development, Johns Hopkins University Applied Physics
Laboratory, USA
7 Department of Biomedical Engineering, National University of Singapore,
Singapore

A Computer-Brain Interface that Restores Lost Extremities Touch and
Movement Sensations

Giacomo Valle, Francesco Maria Petrini Pavle Mijovic, Bogdan Mijovic, Stanisa
Raspopovic

Institute for Robotics and Intelligent Systems, ETH Zürich

Restoring the Sense of Touch Using a Sensorimotor Demultiplexing Neural
Interface

Patrick D. Ganzer, Samuel C. Colachis, Michael A. Schwemmer, David A.
Friedenberg, Collin F. Dunlap, Carly E. Swiftney, Adam F. Jacobowitz, Doug
J. Weber, Marcia A. Bockbrader, Gaurav Sharma

Battelle Memorial Institute, USA

A Brain–Spine Interface Complements Deep-Brain Stimulation to Both Alle-
viate Gait and Balance Deficits and Increase Alertness in a Primate Model of
Parkinson’s Disease

Tomislav Milekovic1,2,3,4, Flavio Raschellà1,2,3,5, Matthew G. Perich2,
Eduardo Martin Moraud1,2,3,6, Shiqi Sun1,2,3,7, Giuseppe Schiavone8, Yang
Jianzhong9,10, Andrea Galvez1,2,3,4, Christopher Hitz1, Alessio Salomon1, Jimmy
Ravier1,2,3, David Borton1,11, Jean Laurens1,12, Isabelle Vollenweider1, Simon
Borgognon1,2,3, Jean-BaptisteMignardot1,WaiKinDKo9,10, ChengYunLong9,10,
Li Hao9,10, Peng Hao9,10, Laurent Petit13,14, Qin Li9,10, Marco Capogrosso1, Tim
Denison15, Stéphanie P. Lacour8, Silvestro Micera5,16, Chuan Qin10, Jocelyne
Bloch1,2,3,6, Erwan Bezard9,10,13,14, Grégoire Courtine1,2,3,6

1 Center for Neuroprosthetics (CNP) and Brain Mind Institute, School of Life
Sciences, Swiss Federal Institute of Technology (EPFL), Switzerland
2 Department of Clinical Neuroscience, Lausanne University Hospital (CHUV)
and University of Lausanne (UNIL), Switzerland
3 Defitech Center for Interventional Neurotherapies (NeuroRestore),
CHUV/UNIL/EPFL, Switzerland
4 Department of Fundamental Neuroscience, Faculty of Medicine, University of
Geneva, Switzerland
5CNPand Institute of Bioengineering, School of Engineering, EPFL, Switzerland
6 Department of Neurosurgery, CHUV, Switzerland
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7 Beijing Engineering Research Center for Intelligent Rehabilitation, College of
Engineering, Peking University, People’s Republic of China
8 CNP, Institute of Microengineering and Institute of Bioengineering, School of
Engineering, EPFL, Switzerland
9Motac Neuroscience, UK
10 Institute of Laboratory Animal Sciences, China Academy of Medical Sciences,
People’s Republic of China
11 Carney Institute for Brain Science, School of Engineering, Brown University,
USA
12 Department of Neuroscience, Baylor College of Medicine, USA
13 Université de Bordeaux, Institut des Maladies Neurodégénératives (IMN),
UMR 5293, France
14 CNRS, IMN, UMR 5293, France
15 Oxford University, UK
16 The BioRobotics Institute, Scuola Superiore Sant’Anna, Italy

Speaker-Independent Auditory Attention Decoding Without Access to Clean
Speech Sources

Cong Han1,2, James O’Sullivan1,2, Yi Luo1,2, Jose Herrero3, Ashesh D. Mehta3,
Nima Mesgarani1,2

1 Department of Electrical Engineering, Columbia University, New York, NY,
USA
2 Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY,
USA
3 Department of Neurosurgery, Hofstra-Northwell School of Medicine and
Feinstein Institute for Medical Research, Manhasset, New York, NY, USA

A High-Performance Handwriting BCI

Francis R.Willett1,2, Donald T. Avansino1, Leigh Hochberg3, Jaimie Henderson1,
Krishna V. Shenoy1,2

1 Stanford University, USA
2 Howard Hughes Medical Institute, USA
3 Brown University, Harvard Medical School, Massachusetts General Hospital,
USA

A Neuromorphic Brain Computer Interface for Real-Time Detection of a New
Biomarker for Epilepsy Surgery

Karla Burelo1,2, Mohammadali Sharifhazileh1,2, Johannes Sarnthein2, and
Giacomo Indiveri1
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1University of Zurich andETHZurich, Institute of Neuroinformatics, Switzerland
2 University Hospital and University of Zurich, Switzerland

“Sono-Optogenetics”: An Ultrasound-Mediated Non-invasive Optogenetic
Brain-Computer Interface

Xiang Wu, Paul Chong, Huiliang Wang, Guosong Hong

Department of Materials Science and Engineering, Wu Tsai Neurosciences
Institute, Stanford University, USA

High-Dimensional (8D) Control of Complex Effectors Such as an Exoskeleton
by a Tetraplegic Subject Using Chronic ECoG Recordings Using Stable and
Robust Over Time Adaptive Direct Neural Decoder

Alexandre Moly1, Thomas Costecalde1, Félix Martel1, Antoine Lassauce1, Serpil
Karakas1, Gael Reganha1, Alexandre Verney2, Benoit Milville2, Guillaume
Charvet1, Stéphan Chabardes3, Alim Louis Benabid1, Tetiana Aksenova1

1 CEA, LETI, CLINATEC, University Grenoble Alpes, MINATEC, France
2 CEA, LIST, DIASI, SRI, Gif-sur-Yvette, France
3 Centre Hospitalier Universitaire Grenoble Alpes, France

This year, for the first time, we posted videos from half of the nominated projects
on the BCIAwardwebsite.3 Each videowas developed by the team behind the project
submission. Aside from learning more about the projects, you can also see and hear
some of the people behind each project and get a sense of what different BCI research
labs look like. Most videos last about two minutes and include:

• Clips of the BCI system in operation;
• Graphics, animations, and text to illustrate system components, procedures, and

project results;
• Commentary from patients and project developers;
• Logos from the institutes where projects were executed; and/or
• Supporting references.

6 Summary

This book is about the TenthAnnual BCI ResearchAwards. The next several chapters
feature project descriptions and interviews based on the projects that were nominated
for a BCIResearchAward this year. Each chapter addresses how the systemmeasures
information from the brain, including different types of implanted and non-implanted
approaches, such as EEG, ECoG, or MEG. Each project also describes the signal

3 https://www.bci-award.com/2020.

https://www.bci-award.com/2020
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translation and outputs, such as a speller on amonitor, prosthetic limb, or exoskeleton.
Most chapters report BCIs for patient applications, including BCI systems that could
restore touch, movement, communication, or freedom from epilepsy.

The concluding chapter presents the winners of the 2020 BCI Research Awards,
shares some information about next year’s awards, and features some discussion.
Next year’s awards will feature some changes in sponsors and other minor details,
along with the new jury. However, we will not change the submission procedure,
award criteria, or number of nominees and winners in the Eleventh BCI Research
Award.
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Stereoelectroencephalography (SEEG)
Signals

Guangye Li, Meng Wang, Shize Jiang, Jie Hu, Liang Chen,
and Dingguo Zhang

Abstract Previous intracranial electroencephalography (iEEG)-based brain-
machine interfaces (BMIs) towards gesture decoding mostly used neural signals
from the primary sensorimotor cortex while largely ignoring the hand movement
related signals from posterior parietal cortex (PPC). In this work, we investigated
the role of human PPC during a three-class hand gesture task using stereoelectroen-
cephalography (SEEG) recordings from 25 subjects. Using the high gamma power
(55–150 Hz) of SEEG signal recorded within three ROIs [PPC, postcentral cortex
(POC) and precentral cortex (PRC)], we computed four indices for each of ROI,
including: (1) activation strength; (2) gesture selectivity; (3) first activation time;
(4) decoding accuracy. We find that a majority (L: 60%, R: 40%) of electrodes in
all three ROIs present significant activation during the task. The activation of PPC,
from a large temporal scale, is earlier than the sensorimotor cortex (PRC and POC).
Among the activated electrodes, 15% (PRC), 26% (POC) and 4% (left PPC) of elec-
trodes are significantly selective to gestures. Finally, decoding accuracy obtained by
combining the selective electrodes fromPPCwith the sensorimotor cortex together is
5% higher than that from sensorimotor cortex only. Above all, our results suggest that
PPC could be a rich neural source for iEEG-based BMI. The early activation of PPC
may provide additional implications for further scientific research and high-level
BMI applications.
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1 Introduction

Human intracranial electroencephalography (iEEG) recordings [e.g., electrocor-
ticography (ECoG) and stereoelectroencephalography (SEEG)] hold the advan-
tage of stably recording rich neural information across multiple brain regions, and
iEEG-based brain-machine interfaces (BMIs) have made significant achievements
in decoding frequently-used functional gestures [1–4]. Nevertheless, most of these
iEEG studies mainly focus neural signals from primary sensorimotor cortex (i.e.,
precentral and postcentral cortex, abbr. as PRC and POC respectively) to decode
gestures, which works well but may not be optimal.

Beyond primary sensorimotor cortex, posterior parietal cortex (PPC) has been
reported to be related with multiple hand movements like grasp, intransitive postures
and even pantomime and imagination of those movements; moreover, they may
contribute to the formation of early motor intention [5, 6]. PPC lesions cause severe
deficits of controlling hand shape appropriate for objects [7]. Intracortical electrical
stimulation to the lateral region of monkey’s area 5 within PPC elicits finger and
wrist movements [8]. Functional magnetic resonance imaging (fMRI) studies reveal
that grip type (power vs. precision grasp) is encoded in several subareas of PPC [9,
10]. A human electrophysiological study on a tetraplegic patient by Klaes et al. has
also shown that the imagination of scissor-rock-paper hand gestures can be decoded
by spiking activity in PPC [11]. Taken together, all these works support the notion
that the PPC has distinct relevance to hand movement control.

However, although electrophysiological studies have demonstrated that spiking
activity from PPC is involved in hand shape encoding, whether iEEG recordings
from human PPC could also benefit gesture decoding is still unclear. In this work,
we conducted research using human SEEG recordings to address this question.

2 Methods

Signals, Electrodes, Subjects and Experiments: SEEG signals from 25 epilepsy
subjects were recorded in hospital using a clinical recording system (EEG-1200C,
Nihon Kohden, Irvine, CA) sampled at 500–2000 Hz. The 25 subjects had a total
of 3501 contacts implanted (each contact: 2.0 mm long, 0.8 mm diameter, center-
center distance 3.5 mm). We then localized the position of each contact using
post-implantation CT images with pre-implantation MRI images with the help of
iEEGview toolbox [12]. The anatomical label of each electrode contact was identi-
fied by cortical parcellation and subcortical segmentation results under the Desikan-
Killiany atlas [13, 14]. Finally, each electrode was mapped from the individual brain
to a standard MNI (Montreal Neurological Institute) brain template for the purpose
of group analysis. Since we were interested in the neural response in PRC, POC and
PPC, only electrodes within these regions of interest (ROIs) were included in this
study. As a result, 221, 114 and 524 SEEG contacts were identified in PRC, POC
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and PPC across all subjects (Fig. 1b). The subjects repeatedly performed the hand
movement task using the hand contralateral to the hemisphere with the majority of
the implanted SEEG electrodes. Figure 1a shows the experimental protocol of this
study and the experiment details. During the recording, two surface EMG signals
taken from the extensor carpi radialis muscle were recorded simultaneously using
the same equipment with SEEG. The study was approved by the Ethics Committee
of Huashan Hospital (Shanghai, China).

Data Processing: For each subject, the raw signals were first resampled to 1000 Hz
using the built-in Matlab function (resample) to facilitate consistent computation
across subjects. Second, the channels with line noise power at 50 Hz larger than a
significance level were removed from further analysis. The significance level was
defined as the summation of median line noise power across all electrodes and 10
times of theirmedian absolute deviation. Third, the 50Hz line noise and its harmonics
were removed using a comb notch filter. Fourth, the signals were re-referenced using
a Laplacian scheme to further improve the signal quality [15]. Finally, we extracted
the high gamma power at 55–150 Hz using the Hilbert transform. The derived high
gamma power was then divided into 100-ms time bins for subsequent analysis. Addi-
tionally, we also identified the movement onset by finding the time point when the
absolute amplitude of EMG first time exceeded an adaptive threshold using the

Fig. 1 Task protocol and the distribution of SEEG contacts from three ROIs. a The protocol started
from a 1-s warning phase to alert the subject in each trial. Next, a gesture picture appeared for
5 s (Cue phase) to instruct the subject to repeatedly perform the corresponding gesture. Following
that was a 4-s rest phase during which the subject relaxed without any movement. The task used
three hand gestures (scissor, rock and thumb). One of three gestures was randomly selected and
displayed in each trial, and each subject performed 20 trials for each gesture. b Front/top/left/right
views of the locations of SEEG contacts in a standard MNI (Montreal Neurological Institute) brain
template. All contacts within ROIs from 25 subjects are shown. Each colored dot represents one
SEEG contact in a specific ROI
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methods described in [16]. To be concise, the movement onset was denoted asMove
and the time when the Cue (Fig. 1a) appeared was denoted as Cue throughout this
article.

Performance Index: Using high gamma power activity, we evaluated the character-
istics of neural responses and possible functions from these ROIs (PRC, POC and
PPC) in relation to the hand movement through four performance indices:

1. Activation Strength, which measures the degree of activation during task
compared to rest and reflects the general involvement in the task. The acti-
vation strength was computed with the coefficient of determination r2 in Eq. (1)
using the movement state (c = 2, i.e., task/rest).

r2 =
∑c

i=1 m
(
Xi − X

)2

∑c
i=1

∑m
j=1

(
Xi, j − X

)2 (1)

where Xi = ∑m
j=1 Xi, j and X =

c∑

i=1

∑m
j=1 Xi, j . Xi, j indicates the high gamma

power from ith class and jth trial; c: number of classes, m: number of trials.
After obtaining the observed r2, we then implemented a permutation test [15]
with 3000 repeats to determine the significance of activation where the class
(i.e., rest and task) was randomly permuted across trials and r2 was recomputed,
generating a distribution of surrogate r2 and revealing p values of the observed
r2. The above calculation was performed at each electrode and window. Any
electrode was called an activated electrode if its q value obtained after FDR
correction was smaller than 0.001 at any time window within [−0.5, 0.5] s
around Move.

2. Gesture Selectivity, which gauges the difference of the response to three
gestures. The computation process was similar to (1), but instead of using the
movement state (c = 2, i.e., task/rest) as classes, here three different gestures
(c = 3, i.e., scissor, rock and thumb, Fig. 1a) were used as classes in Eq. (1).
Similar to (1), a random permutation test (3000 times) was conducted to identify
the significantly selective electrodes for each subject. Any electrode was called
a selective electrode if its q value obtained after FDR correction was smaller
than 0.05 at any time window within [−0.5, 0.5] s around Move.

3. FirstActivationTime, indicating the first time pointwhen an electrode presented
significant activation strength in the task. In detail, the first activation time of
an electrode was defined as the first time when r2 (activation strength) during
[−0.5, 0.5] s around Move presented significance (p < 0.001).

4. Decoding Accuracy, which evaluates the gesture decoding performance. The
electrodes that present gesture selectivity within each ROI were used for the
calculation of decoding accuracy. Due to the limited samples in current study,
forward optimal feature selection (fOFS) was applied first to reduce the feature
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dimension and thus avoid overfitting. Specifically, starting from emptiness, the
optimal feature vector successively added the best feature that could maximize
the decoding accuracy (DA) when included into the current optimal feature
vector, until DA stopped increasing with further additions. The DA was the
average over five accuracy values that were obtained by linear support vector
machine (SVM) with fivefold cross validation. To avoid bias of the finally
selected optimal feature set, we repeated the above-mentioned whole fOFS
procedure 100 times with 100 different partitions, which yielded 100 noniden-
tical optimal feature sets and thus 100 DAs. The average of these DAs was used
as the final DA for each subject.

3 Results

Among all the SEEG contacts from these three ROIs, 67% (n = 147, L = 93, R
= 54), 60% (n = 68, L = 49, R = 19) and 51% (n = 265, L = 200, R = 65) got
activated during tasks in PRC, POC and PPC respectively, indicating a majority of
electrodes within all three ROIs were involved in the task (Fig. 2a). Moreover, among
the activated contacts, 15% (PRC, bilateral average), 26% (POC, bilateral average)
and 4% (PPC, left) presented significant selectivity for gestures. This activation
result indicated that a relatively small group of electrodes were selective among the
activated electrodes for PRC and POC, while a minority were selective for PPC
(Fig. 2b). The selective electrodes within each ROI at either hemisphere came from
12% (n = 3 (rounded average), L = 4, R = 1) subjects on average.

Within these ROIs, the median first activation time was about 310 ms for PPC,
400ms for PRCand 510ms for POC respectively the stimulus onset. The activation of
ROIswas significantly (one sideWilcoxonRanksum test with Bonferroni correction)

Fig. 2 Distribution of task-related information from three ROIs. a, b The spatial distribution of
activation information from recorded PRC, POC and PPC electrodes. The maximum r2 value over
time is used to generate the map (See the section titled “Performance Index”). For visualization
purposes, results were rendered on the left hemisphere only
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Fig. 3 First activation time results and the effect of PPC in decoding performance. a First activation
time. Inside each box, the black solid line denotes the median first activation time (q2). The lower
and upper boundary of the box denotes the 25% (q1) and 75% (q3) percentile. The width of each
box is scaled to the number of samples. The whisker of each box extends to q3 + 1.5 * (q3 − q1).
Move indicates the average EMG onset (0 s). ***, p < 0.001 (one side Wilcoxon rank sum test after
Bonferroni correction), p = 0.06 for PRC and POC. b Decoding performance. Blue: The average
decoding accuracy using gesture selective electrodes located at PRC and POC only.Orange: Similar
to Blue, but PPC is also included.Gray: Similar toOrange, but the temporal sequence of the features
from PCC is randomized across trials. The error bar indicates the standard error. The computation
shows results from three subjects. Mean values are computed across these three subjects. The time
shown at the top of the figure indicates the time period used for the calculation. Time 0 is the same
with a

sequential along time course, where PPC activated first, PRC second and POC last
(Fig. 3a). Importantly, combining spatial features from PPC improved the decoding
accuracy (DA) by 5% on average compared to using only primary sensorimotor
cortex (Fig. 3b). As a comparison, when randomizing the PPC features across trials
and repeating the decoding process (Fig. 3b,With RandomPPC), no improvement on
the DA was seen, indicating that the PPC contained useful visuomotor information
that can assist the gesture decoding.

In summary, our results suggest that human PPC encodes specific information
about fine hand movements that is complementary to that of primary sensorimotor
cortex, potentially providing a new signal source that will benefit further iEEG-based
BCI applications.
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4 Discussion

In current study, we evaluated whether human PPC encoded neural information
related with hand gestures; moreover, we investigated whether PPC together with
primary sensorimotor cortex (PRC and POC) could enhance the hand gesture
decoding using SEEG recordings from 25 human subjects participating in a hand
gesture experiment. We proposed four performance indices and aimed to answer
a series of relevant critical questions: (1) to what extent PPC is involved to the
task; (2) whether a temporal activation sequence exists between PPC and primary
sensorimotor cortex during the visuomotor task; (3) whether iEEG recordings from
PPC contain information about fine gestures and can subsequently improve decoding
performance.

Incorporating LFP recordings across multiple subjects, we have found that a
majority of electrodes located in PPC, PRC and POC are activated with a temporal
sequence in terms of HGP, where PPC activates first, PRC second and POC last
(Figs. 2a and 3a). Two other human iEEG studies present similar results [17, 18].
These two studies did not directly address the same question as this work, but also
used HGP and conducted similar behavior tasks. Figure 2 of [17] shows that three
ECoG electrodes located at PPC, PRC and POC are sequentially activated around
250 ms, 400 ms and 590 ms after Cue with an EMG onset at 576 ms, similar to
310 ms, 400 ms, 510 ms after Cue with EMG onset at 564 ms in current study.
The results in this work may indicate that, in a large scale, each ROI has a relative
temporal sequence during the task information processing.

The LFP results in this work show that human PPC is selective to hand gestures
(Fig. 2b), verifying our hypothesis that human PPC iEEG recordings contain
gesture related information, which is consistent with previous monkey LFP studies
and human spike studies [11, 19]. The small group of PPC selective electrodes
can still provide effective information for classification and such information is
complementary to the primary sensorimotor area (Fig. 3b).

Notably, this work did not answer the question of which role the PPC is played in
the visuomotor task. Early reports show that PPC contains visual-dominant, motor-
dominant and visuomotor neurons [20–22]. However, whether PPC is more related
to the visual shape of objects or the hand shape is still in debate. Therefore, further
studies should be conducted to investigate this question.
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Speech Decoding as Machine Translation

Joseph G. Makin, David A. Moses, and Edward F. Chang

Abstract We aimed to improve the state of the art in decoding speech from neural
activity, with the ultimate goal of developing a useful brain-machine interface (BMI)
for individuals who have lost the ability to speak—from ALS, a stroke, or other
traumatic brain injury. In our recent study (Makin et al. in Nat Neurosci 23:575–582,
2020), each of four participants undergoing clinical monitoring for epilepsy read
aloud, making repeated passes through a set of some 30–50 sentences, while her
electrocorticogramwas simultaneously recorded. Our algorithm, which was inspired
by recent ideas in machine translation, brought word error rates down from the
previous state of the art, about 60, to 3%. In this chapter, we discuss those results,
their limitations, and their implications for the general problem of speech decoding.

Keywords Brain-machine interface · ECoG · Speech decoding · Encoder-decoder
networks

1 Introduction

The field of speech decoding began in 2009 with the successful synthesis of vowel
formants from the firing rates of a small number of neurons, recorded with a micro-
electrode implanted into speech-motor cortex of a locked-in patient [3]. Isolated
phonemes andmonosyllables have subsequently been classified,withmoderate accu-
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Fig. 1 Strategies for speech decoding

racies, from recordings made by penetrating electrodes [18] or from the electrocor-
ticogram (ECoG) [3, 4, 14, 16]. Even setting aside their modest accuracies, these
results are of interest mostly as proof of concept, because the phonemes produced in
continuous speech are highly influenced by their neighbors (“coarticulation”); and
(taking the other horn of the dilemma) a speech BMI that required its users to produce
phonemes in isolation would forego the principal merits of decoding speech rather
than handwriting or typing: speed and naturalness.

Several studies have attempted to decode continuously spoken speech [1, 2,
9, 11–13]. These can be divided on the basis of what modality they attempt to
decode: audio (“speech synthesis”) or text (see Fig. 1). Neural speech synthesis has
markedly improved since the foundational work of Brumberg and colleagues [3],
producing nearly intelligible output. In arguably the most successful of these studies
[2], volunteers were subsequently recruited to transcribe the speech that had been
synthesized from patients’ ECoG data, in order to quantify the results. When limited
to a vocabulary of just 50 words, transcribers achieved word error rates1 (WERs) of
about 50%. (On the other hand, the primary advantage of speech synthesis is that it
is not, in principle, limited to a fixed vocabulary.)

When the aim is, alternatively, to output text, there remains the question of granu-
larity. At one extreme, phonemes can be classified, and subsequently assembled into
words and sentences with a language model. Operating with ECoG and a vocabulary
of 100 words, such an approach has yielded word error rates of about 60% [9]. At
the opposite extreme, Moses and colleagues classified entire sentences from their
corresponding ECoG signatures [13], trading coverage of English for distinguisha-
bility of the tokens to be decoded. This model achieved WERs of 33% on a set of 50
sentences [11].

An alternative to classifying (and subsequently assembling into larger units)
phonemes, words, or sentences is to decode variable-length sequences of words.
That is, the decoder consumes a long sequence of neural data, contemporaneous

1 Errors are computed as the minimum number of word insertions, deletions, and substitutions
required to transform the predicted into the true word sequence. Dividing by the number of words
in the true sequence yields a word error rate. Intuitively, any sensible decoder should achieve error
rates between 0 and 1.0, since the WER for a “decoder” that just predicts an empty sequence for
every “input” is precisely 1.0. But in practice poor decoders can make errors at rates greater than 1.
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with (for example) a single spoken sentence, and then begins emitting words, one at
a time, until it decides to stop. The potential advantage of such an approach is that
it does not impose assumptions about which parts of the ECoG signal correspond
to which words or word parts. This allows for: phoneme classification and assem-
bly into words to be solved jointly rather than sequentially; automatic handling of
coarticulation; the assimilation of temporally dispersed (e.g., semantic) information;
dispensing with a phoneme transcription, which would in any case be difficult to
obtain from non-speaking persons; and the production of any sentence composed
from the fixed vocabulary of words. The entire pipeline can be implemented as an
artificial neural network, and trained end-to-end, from neural data to sentences. And
indeed, such “encoder-decoder” networks have in the last five years become the stan-
dard for machine translation, where the input is a variable-length sequence, not of
neural data, but of words in another language [7, 8, 19, 21].

Using ECoG as input to an encoder-decoder neural network, we achieved WERs
as low as 3%, operating with a vocabulary of about 250 words and a set of 50 unique
sentences [11]. Below we reprise those results and discuss their limitations.

2 Methods

We briefly describe the fundamental aspects of the study’s methods. More details
can be found in the original publication [11].

Participants. Drug-resistant epilepsy can sometimes be treated with brain surgery,
in which case seizures are first localized with a neurological recording device. One
common procedure is to perform a craniotomy and then place a grid of electrodes
on the surface of the brain and monitor the electrocorticogram over the course of
(typically) one or two weeks. During this period, patients are not anaesthetized and
are able (inter alia) to read aloud without difficulty. The participants in the study
reviewed herewere epilepsy patients at theUCSFMedical Center. Prior to surgery, all
participants (four female; all right-handed and left-hemisphere language-dominant;
aged 47 [participant a], 31 [participant b], 29 [participant c], and 49 [participant d]
years) gave written consent to take part in the study, which was carried out according
to protocol approved by the UCSF Committee on Human Research.

Data. The electrocorticogram was recorded with high-density (4-mm pitch) arrays
from the peri-Sylvian cortices of participants while they read aloud from one of two
sets of sentences (see below). The ECoG on all channels and the microphone signal
were then pre-processed offline according to the pipelines in Fig. 2a, b, respectively.
Finally, the spoken sentences were transcribed. Participants occasionally misread or
otherwise misproduced the prompts, so the transcriptions did not always precisely
match them. However, the rare (less than one percent of the total) productions that
did not correspond to any word in the relevant sentence set (see below) were all
transcribed as a single out-of-vocabulary token.
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Fig. 2 Data preprocessing

Altogether, these provided a set of data “triplets,” each of which consisted of

1. a matrix of ECoG data, with size (number of channels × number of samples);
2. a matrix of audio data (13 MFCCs × number of samples); and
3. the sequence of words in the corresponding sentence.

It was this set of triplets that was used to train and test the encoder-decoder neural
network (see below). Note that the number of samples varied across triplets, being
determined by how long it took the participant to speak the sentence. The number of
channels varied across participants, depending on the number of electrodes implanted
(256 [participants a, b, d] or 128 [c]) or too noisy to be used.

Two sets of sentences were used:

• MOCHA-TIMIT [22]: 460 sentences, ∼ 1800 unique words, participants a, b, d;
• picture descriptions: 30 sentences, ∼ 125 unique words, participants c, d.

For both sets, each sentence was presented briefly on a computer screen for recital,
followed by a few seconds of rest (blank display). However, to avoid fatiguing par-
ticipants, no more than 50 sentences were presented in a single session or “block.”
Thus, MOCHA-TIMIT could not be administered in a single block. To achieve con-
sistency across participants, then, it was first divided into nine subsets, MOCHA-1,
MOCHA-2, etc., of 50 sentences apiece (and 60 inMOCHA-9), each of which could
be completed within one block, and within which sentence presentations were ran-
domized. This resulted in better coverage of

• MOCHA-1: 50 sentences, ∼ 250 unique words, participants a, b, d

than the other subsets, and consequently we focus on decoding from it and the 30
picture descriptions in the main results below.

The encoder-decoder network. The architecture was inspired by recent artificial
neural networks for machine translation [19], albeit with significant modifications.
Abstractly, the encoder module first “consumes” an entire sequence of ECoG data
(corresponding to one sentence), which it summarizes in a high-dimensional vector
of fixed length, i.e. independent of the number of samples in the input sequence. The
encoder then passes this summary to the decoder module, which unpacks it one word
at a time.

We now describe our architecture in more detail, following Fig. 3 throughout:
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Fig. 3 Network architecture. The network consists of a pair of coupled RNNs, shown here
“unrolled” in sequence steps. The encoder consumes ECoG and predicts audio (MFCCs); the
decoder is initialized at the final encoder state and predicts words until it emits an end-of-sequence
token (〈EOS〉)

1. Temporal convolution: The ECoG “signature” of a particular phoneme or word
will not depend on the absolute time at which it was produced: it is time-invariant.
Neural networks can efficiently exploit this invariance if they are required to apply
the same filters at regular temporal intervals (“strides”) along the entire length of
the input sequence (“temporal convolution”). Furthermore, our filters “strode” by
12 samples, thereby downsampling their inputs from 200 to about 16 Hz. This
helps because recurrent neural networks struggle with long sequences [6]. We
used 100 filters (each spanning all of the input channels), so the output of the
temporal convolutions is a sequence of length-100 vectors.

2. Encoder recurrent neural network (RNN): The vectors in this sequence are con-
sumed one at a time (a) in forward order and (b) in backward order by a pair of
RNNs, each with 400 units of long short-term memory (LSTM). Then, at every
time point, the hidden states of these RNNs are concatenated together, creating a
sequence of length-800 vectors. These are the input to a second pair of LSTM-
based RNNs, which in turn produces inputs for a third pair.
The hidden states of the second-layer RNNs are also used to predict the sequence
of MFCCs, i.e. the speech audio. The hidden state of the deepest (third) RNNs at
the time step of the final sequence element is interpreted to be a high-dimensional,
length-independent summary of the entire input sequence, and is passed to the
decoder RNN.

3. Decoder RNN : A single-layer, unidirectional, 800-unit, LSTMRNN is initialized
at this high-dimensional summary. At each time step it emits a probability dis-
tribution over all the words in the vocabulary; and consumes either the previous
word in the sequence (during training) or the previous most probable word (dur-
ing testing). Notice that words, which are encoded as one-hot vectors, are first
“embedded” into a dense, 150-dimensional space before entering the decoder
RNN.
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We make a few technical notes:

• Time reversal. Presumably, the first elements of the ECoG data are most related
to the first word or words of the sentence. To reduce the number of computation
steps separating these, the sequences of ECoG data were temporally reversed
before entering the network, following Sutskever and colleagues [19].

• MFCC sequences. The sequences ofMFCCs therefore also need to be temporally
reversed. But they also need to be downsampled, to match the downsampling
effect of the strided temporal convolution (see above). We simply decimated the
sequences, selecting every twelfth vector (without botheringfirst to low-passfilter).
The purpose of targetting speech audio is simply to guide training onto the right
track [5, 20]; during testing, the predicted MFCCs are not used.

• Training and testing. The entire network was trained to map ECoG to audio
(MFCCs) and text (word sequences) with stochastic gradient descent via back-
propagation (with AdaMoptimization [10]). Dropout [17] was applied to all layers
except the recurrent connections. The remaining details of the training and testing
procedure, including hyperparameter optimization, cross-validation, and transfer
learning can be found in the original report [11].

3 Results

Decoder performance. Encoder-decoder performance on data from all four partici-
pants is shown in the first “violin” of each of the violin plots in Fig. 4. Subfigure labels
correspond to participant IDs. Note that participants a and b read the 50 sentences
from MOCHA-1, whereas participants c and d read the 30 picture descriptions (see
Methods). The most impressive results are for participant b, for whom the encoder-
decoder usually achievedWERs close to 0—perfect decoding. Only for participant a,
who provided only two repeats of each sentence, were WERs outside the acceptable
range of speech transcription (25% [15]). For two participants WERs were close
to or below 5%, the performance of professional transcribers for spoken speech
[23]—albeit with much larger vocabularies.

To understand better the high performance of the encoder-decoder, we trained new
sets of networks with certain critical aspects of the architecture or the data removed
(Fig. 4):

• Grid density (“low density”): Data from a lower-density grid can be simulated
by dropping every other electrode from the data. This pseudo-grid will have 8-
mm (rather than 4-mm) inter-electrode spacing and one quarter the number of
electrodes. Moving to such a grid typically increases (median) WER by about 20
percentage points.

• Speech audio (“no MFCCs”): It will be impossible to acquire speech audio from
non-speaking subjects—the ultimate target population for a speech prothesis.
Training a network without requiring the encoder to predict MFCCs typically
increases WER by 15–30 percentage points.
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Fig. 4 Decoder performance. For all four participants (a–d) and for encoder-decoders aswell as var-
ious “competitors,” text output was evaluated in terms of word error rate (WER), with the sentences
actually spoken serving as ground truth. For any single participant and decoder type, the distribu-
tion of WERs is across 30 instances of that decoder trained de novo and evaluated on randomly
selected held-out blocks. For every participant, the distribution ofWERs under the encoder-decoder
is significantly better than any competitor (p < 0.0005 under a one-sided Wilcoxon signed-rank
test, Holm-Bonferroni corrected for five comparisons). In addition to its standard implementation,
the encoder-decoder was evaluated under a simulated lower-density grid (“low density”), without
audio data during training (“no MFCCs”), without temporal convolution (“no conv.”), and with
input sequences of pure noise but of the correct length (“length info. only”)

• Temporal convolution (“no conv.”): Using a fully connected input layer amounts
to dropping (a) the assumption of time-invariance of the ECoG data, as well as (b)
the downsampling. It increased WERs by 20–40 percentage points.

Is the encoder-decoder really just a sentence classifier? For word-based decoding
to stand any chance of succeeding, it is necessary to guarantee that the words read
during a block used for testing have also been read at least once across the blocks
used for training. Given our time constraints, we therefore decided to use, for each
participant, a single set of sentences across all training and testing blocks. But this
raises the possibility that the encoder RNN is merely classifying its inputs—say, with
a label from the integers 1–50, which it then hands off to the decoder RNN. The latter
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could in turn learn how to unpack the 50 labels into their corresponding sentences.
This would render the results in Fig. 4 much less general and (therefore) interesting.

The short answer is that the encoder-decoder is not merely acting as a sentence
classifier. We return to this point in the Discussion. Here we show that it performs
better thanother sentence classifiers, and thatperformance improveswhen it is trained
on sentences outside the test set.

• Sequence-length information (“length-info only”): Recall that the ECoG
sequences were manually extracted at the sentence boundaries (Fig. 2a). There-
fore, if time of production varied more across than within sentence types, it would
theoretically be possible for the network to classify input sentences based only on
their length. We tested this by replacing each ECoG sequence with a sequence of
pure noise—but still of the true length—and then re-training and testing networks.
This resulted in WERs near 100% for all participant (Fig. 4).

• Sentence classification (“phoneme-based HMM”): We compared against a state-
of-the-art, HMM-based sentence classifier for neural data [13]. It attempts to
decode phonemes from ECoG data and then checks which of the sentences in
a closed set (in our case, either MOCHA-1 or the picture descriptions) is most
consistent with this phoneme sequence. Using this decoder increased WERs by
30–70 percentage points.

• Training on non-test-sentences. For some participants, we were able to collect
blocks with sentences outside the test set, in particular MOCHA-2–MOCHA-
9. Adding these blocks to a training set originally consisting of two blocks of
MOCHA-1 (“+task TL”) improved decoding performance on MOCHA-1 by as

Fig. 5 Performance of the encoder-decoder under transfer learning. For the three participants
(color code as in Fig. 4) with sufficient coverage of MOCHA-1, 30 encoder-decoders were tested on
a randomly held-out block of MOCHA-1. They were trained on 2 blocks of MOCHA-1 (“encoder-
decoder”), or on those two blocks plus: one block of each of MOCHA-2–MOCHA-9 (“+task
TL”); another participant’s MOCHA-1 blocks (“+subject TL”); or two participants’ MOCHA-1–
MOCHA–9 blocks. Significance, indicated by stars (*: p < 0.05, **: p < 0.005, ***: p < 0.0005,
n.s.: not significant), was computed with a one-sided Wilcoxon signed-rank test, and Holm-
Bonferroni corrected for 14 comparisons: the 12 shown here plus cross-subject transfer learning on
the picture descriptions, which did not yield significant improvements
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much as 15 percentage points (Fig. 5). This would be impossible if the encoder-
decoder were merely classifying sentences of MOCHA-1.

Cross-participant transfer learning. In addition to demonstrating that the encoder-
decoder is not acting as a sentence classifier, “cross-task” transfer learning shows how
to augment our training data, which is of interest given how limited data-collection
time is with epilepsy patients. Still, the total is upper bounded by the amount of a time
a participant spends in the hospital. This bound could be breached, however, if we
could exploit data from other participants. It turns out that we can, by pre-training the
encoder-decoder on one participant before training it on another, target participant.
On the MOCHA-1 sentences, this cross-participant transfer learning shows signifi-
cant, albeit modest, reduction inWER for all participants (Fig. 5, “+subject TL”). The
two forms of transfer learning can also be combined to yield further improvements
(Fig. 5, “+dual TL”).

4 Discussion

Wedecoded speech fromECoGdata with error rates near zero, but only in the context
of some 50 sentences comprising 250 unique words. The rigidity of the trained
network can be seen in some of its errors, when it substitutes a whole sentence of
MOCHA-1 for another. On the other hand, we showed that the encoder-decoder is
not merely classifying input sentences, since training on non-MOCHA-1 sentences
improves performance.

It also turns out that if the encoder is trained on ECoG sequences corresponding to
single words (rather than single sentences), the correct word can be identified from
its final hidden state with accuracies of up to 80% (for participant b; unpublished
data), at least on the 250 words of MOCHA-1. The result is not fully general because
of coarticulation: a word that appears in MOCHA-1 only after some other word
may be produced differently in other contexts. But it very strongly suggests that the
architecture can generalize to arbitrary sentences composed from a vocabulary of at
least 250 words—given the appropriate training corpus.

The larger remaining questions have to do with clinical translation into patients
who have lost the ability to speak. There are at least two problems:

1. It will no longer be possible to train the encoder-decoder to predict speech audio,
which will hurt performance (see Results).

2. Cortical plasticity post-injury (for example) may obscure or eliminate the relevant
neural signals.

In fact, the MFCCs can be replaced with phoneme sequences, sometimes with no
drop in performance, and it may be possible (although not easy) to estimate these—
or, for that matter, the MFCCs—by controlling the timing of the task. And it may
be possible to learn much of the decoder from healthy patients via transfer learning
(see Results), although it remains to be seen how effectively models transfer to
non-speaking patients.
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Abstract Brain-computer interfaces (BCIs) analyse neural signatures to decode the
user’s intention and control an external device. In support of a wide applicability, a
reliable non-invasive tool for capturingneural signalswith high information content is
needed. Currently, themost prominent non-invasive technique is scalp-recorded elec-
troencephalography (scalp-EEG). However, despite being cost-effective and deliv-
ering promising results, its limited spatial resolution hampers access to more sophis-
ticated BCI applications.Magnetoencephalography (MEG)might be a better alterna-
tive, but is currently vastly underrepresented in the literature as costly and confining
acquisition hardware hampers its adoption. Recently, a new generation MEG sensor
based on optically pumpedmagnetometers (OPMs) has been introduced and shown to
overcomemany of the practical limitations of traditionalMEGhardware. However, it
is currently unclear whether the OPM-recorded signals are sufficiently stable when
used in a BCI context. In this work, we report on a real-time OPM-MEG-based
‘mind-spelling’ BCI, with which three participants were able to spell words with
an average accuracy of 97.7%. This demonstration confirms that single-trial neural
responses can be reliably decoded from OPM-MEG and demonstrates its potential
for the development of practical MEG-based BCI applications.
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1 Introduction

While impressive BCI demonstrations have been reported with invasive neural
implants (e.g. electrocorticography [31], depth probes [15], microelectrode arrays
[25] or flexible electrode threads [24]), the required surgical intervention cannot be
justified forBCI applications that serve a short-term clinical use, such asBCI-assisted
neurorehabilitation [28] or cognitive therapies [21], or for those that are aimed at a
wider audience, such as neuromarketing [37] or cognitive biometrics for authentica-
tion [2, 27]. For these applications, a tool for reliable non-invasive neural recording
is preferred.

The vast majority of non-invasive BCI work has focused on scalp-recorded elec-
troencephalography (EEG) [19], using electrodes that are attached to the scalp.While
this is a cost-effective and practical recordingmodality, the spatial precision of scalp-
EEG is not optimal, as poor conductivity of skull disperses cortical potentials over a
large scalp area where they are mixed with potentials originating from other cortical
sources. Magnetoencephalography (MEG) is complementary to scalp-EEG in the
sense that it relies on minute variations in the magnetic field induced by electrical
neural potentials. MEG does not suffer from spatial blurring and allows researchers
to obtain neural signals with a higher spatial precision [6]. However, the adoption of
MEG for the development ofBCI applications is currently hampered by the expensive
and impractical recording hardware based on superconducting quantum interference
devices (SQUIDs). SQUID-based MEG requires constant cryogenic cooling and
severely confines the participant’s movements as the recordings are highly suscep-
tible to movement artefacts [22]. Furthermore, as the MEG helmet is optimised for
adults, the recruitment of children for MEG-studies is not trivial.

In this study, we examine a promising novel technique for MEG-BCI based on
optically pumped magnetometers (OPMs) [30]. Unlike SQUID sensors, OPMs are
small and lightweight sensors, and as they do not require any external thermal regu-
lation [4], the sensors can be placed in contact with the scalp [13] at any location,
which is beneficial for the signal-to-noise ratio and the spatial resolution [3]. Previous
studies have shown that these sensors can record reliable neural signals frommoving
individuals [5] and across all age ranges [8].

Despite the promising reports, the OPM technology has not yet been tested in the
context ofBCI, and it is unclearwhether it permits stable single-trial neural responses,
as is typically required by more advanced BCI applications. To investigate this, we
developed a real-time ‘mind-spelling’ application based on OPM-MEG which our
participants used to spell words by successively gazing at individual characters. We
show that single-trial neural responses are robustly captured by OPM-MEG and that
this new technology is a viable tool for the development of practical MEG-based
BCI applications.
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2 Methods

2.1 OPM-MEG System

The experiment was performed using a whole-head multi-channel OPM-MEG
system containing 48 second-generation, zero-field magnetometers manufactured
by QuSpin Inc. (Colorado, USA). Each sensor is a self-contained unit, of dimen-
sions 12.4 × 16.6 × 24.4 mm3, containing a Rb-87 gas vapour within a heated glass
cell, a laser for optical pumping, and on-board electromagnetic coils for controlling
the local magnetic field within the cell. Precisely how this device measures magnetic
field has been dealt with in previous reports [30] and this information will not be
repeated here. The OPMs were mounted on the participant’s head using a rigid, 3D-
printed helmet [9] and each sensor was connected via a 60 cm lightweight (3.3 g/m)
flex cable to a backpack. Thicker cables were then taken from the backpack to the
control electronics. Analogue output signals were fed from the OPM electronics to a
National Instruments digital acquisition system (DAQ).AlthoughOPMs canmeasure
two orthogonal components of the magnetic field, we only measured the component
of the magnetic field that was normal to the scalp surface in the experiment reported
here. Importantly, prior to the start of the experiment, all OPMswere calibrated using
a manufacturer established procedure. In brief, on-board-sensor coils were energised
to produce a known field within the cell, the output of the sensor was then measured
and calibrated to ensure a response of 2.7 V/T.

The system was operated within a magnetically-shielded room (MSR) designed
and built specifically forOPMoperation (MuRoom,Magnetic Shields Limited, Kent,
UK) at the university of Nottingham. This MSR, which comprises two mu-metal
layers and a single copper layer, was equipped with degaussing coils [1], effectively
reducing the background static magnetic field to ~ 1.5 nT, with field gradients of less
than 2 nT/m. The operational dynamic range of theQuSpin zero-fieldmagnetometers
(which we define here as the maximum change in field before gain errors become >
5%) is ~ 1.5 nT [5]. In an MSR with a background field of 30 nT, this would mean a
head rotation of around 3º is enough to generate a 1.5 nT field change, which would,
in turn, cause a significant (> 5%) change in gain of the OPM. In our MSR, an OPM
can be rotated through 360° about any axis and still maintain gain error within 5%.
Even though OPMs remain operational in the low background field inside our MSR,
head movement within this field still generates artefactual signals which can distort
measured brain activity. For this reason, the background field and gradients were
further controlled using a set of bi-planar coils placed on either side of the participant
[11, 12]. These coils, which are wound on two 1.6 m square planes separated by a
1.5 m gap in which the participant is placed, generate three orthogonal magnetic
fields and four of the five independent linear gradients within a (hypothetical) 40 cm
cube inside which the participant’s head is positioned. A reference array, placed
behind the participant, then measures the background field/gradient and currents are
applied to the bi-planar coils to cancel this remnant field. This takes the background
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Fig. 1 a Schematic diagram of the full OPM setup. Note that during the real-time spelling experi-
ment, the stimulus and acquisition computer were the same device. b View inside the magnetically
shielded room. c Example of the rigid helmet with OPM sensors at different scalp locations

field from 1.5 to ~ 0.5 nT, which enables a three-fold improvement in suppression
of movement artefacts.

A schematic diagram of the system is shown in Fig. 1. The participants sat on
a non-magnetic chair placed in the centre of the MSR between the bi-planar coils.
Note that all control electronics are kept outside the MSR in order to minimise the
effect of magnetic interference on the MEG measurements.

2.2 Experimental Paradigm

Subjects Three subjects (1 female, aged 40, 22 and 26 years old, all right-handed)
with normal visual acuity participated in the experiment. Subjects were seated in the
magnetically shielded room at approximately 80 cm from the projection screen. 48
OPMs were placed in a specially designed helmet [9] and were uniformly distributed
across the scalp. The active nulling was dynamic and adapted to small changes in the
magnetic field experienced by the OPMs throughout the entire experimental session
by using the sensitive outputs of three of the four reference magnetometers (one
measurement for each Cartesian component of the magnetic field) as inputs to a
high-speed proportional integral controller [12].

All participants provided written informed consent for all experiments. All exper-
iments were approved by the University of Nottingham Medical School Ethics
Committee.

Interface The experimental interface consisted of nine squares in a 3 × 3 matrix
design displayed on a projection screen using an GT1080 Darbee projector (Optoma,
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Fig. 2 Visual rendition of one trial in the training session. Note that the frequency-phase combi-
nations shown in the first panel are for exposition purposes and were not shown during the actual
experiment

UK) operating at a refresh rate of 60 Hz. Each square spanned a visual angle of
4.3° in the horizontal and vertical dimensions. The inter-square distance was 2.7°,
horizontally and 1.7° vertically. Each of the nine squares was assigned a unique
frequency-phase combination, as shown in Fig. 2.

Training session Prior to the real-time spelling session, the participants first
completed a training session aimed at collecting data for training the classifier.During
this session, each squarewas overlaidwith a fixation cross that spanned a visual angle
of 0.86°. A training trial started with a visual cue during which one of the nine fixa-
tion crosses adopted a red color, and the subject was asked to redirect his/her gaze to
this target. After a jittered interval of 1.0 ± 0.25 s, the cue was removed and the nine
targets started flickering at their assigned frequency-phase combinations, achieved
by adopting a sinusoidal luminosity profile [20]. After 4 s, the flickering stopped
and the trial ended. Each target was cued 8 times in pseudorandom order (block
design), leading to a total of 72 four-second trials. The total training session lasted
approximately 8 min. Data was collected continuously throughout the duration of
the training session at a sample rate of 1200 Hz.

Data processing The raw OPM data collected during the training sessions was
filtered between 4 and 40 Hz using a fourth-order zero-phase Butterworth filter, cut
into four-second epochs locked to the onset of each trial, downsampled to 150 Hz,
and labeled with the frequency-phase combination of the corresponding gazed target.

Decoder From the preprocessed data, a classification pipeline based on spatiotem-
poral beamforming was trained. For each of the nine unique frequency-phase combi-
nations, a spatiotemporal beamformer [33, 35] was constructed that estimates the
contribution of the corresponding frequency-phase combination into the current
segment of data. The beamformer for target i (i ∈ [1 . . . 9]) was calculated by
obtaining an activation pattern ai ∈ R

1×mn and a regularised covariance matrix
�i ∈ R

mn×mn , where m is the number of channels and n the number of samples in
two periods of the corresponding frequency. First, all epochs during which target i
was cued were cut into (50%) overlapping segments with length equal to two periods
of the stimulation frequency fi of target i. The activation pattern was then obtained
as the average segment Ai ∈ R

m×n and vectorised to obtain ai ∈ R
1×mn . The covari-

ance matrix �i was estimated from all available epochs by extracting segments
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using the procedure mentioned above. Note that epochs not corresponding to the
stimulation frequency under consideration are cut into segments of length n. A regu-
larisation constant of 0.95 was adopted in the calculation of the covariance matrix:
� = α� + (1 − α)I , where I is the identity matrix. Using the constraint aiwi = 1,
the linearly-constrained minimum-variance (LCMV) beamformer for target i can
then be calculated as follows [32]:

wi = ai�
−1
i

ai�
−1
i aTi

,

where �−1
i is the pseudo-inverse of �i .

Given an epoch, a prediction was made by iteratively extracting the average
segment for each target and applying the corresponding beamformer. The winning
frequency-phase combination corresponded to the beamformerwithmaximal output.
For a more detailed description of the classification scheme, please see [34–36].

Channel selection To reduce the dimensionality of the decoding model, a greedy
forward channel selection strategy was adopted. Starting with an empty set, every
iteration defines candidate sets as the currently selected channels extended with each
of the non-selected channels. The channel that increases the decoding performance
themost is added to the final set. Candidate channel sets were scored using a four-fold
cross-validation on the training epochs. Of the 48 OPM channels recorded during
the entire experiment, we only considered the 24 OPM sensors and 45 gradiome-
ters located over the parieto-occipital scalp area to speed up the channel selection
procedure. In total, the channel selection procedure lasted about two minutes, during
which the subject was asked to relax while waiting for the spelling session to start.

Real-time spelling Following the training session, channel selection and classifier
training, the real-time spelling session was initiated. Subjects were asked to spell five
predefined words. A block began with the presentation of the word-to-spell listed at
the top of the display. The fixation crosses were replaced by the characters that are
required to spell the displayed word, distributed in a random fashion, one of which
was a backspace icon the subject could use to undo previous selections. In case
the word only required six or less different characters, the remaining fixation crosses
were replacedwith other randomly chosen characters. All characters spanned a visual
angle similar to the fixation crosses (Fig. 3). Following a 20-s habituation period, the
spelling procedure started.A two-secondflickering stimulationwas presented and the
corresponding brain responseswere obtained in real-time from theOPMsensors. The
recorded data were then filtered as before and submitted to the classification pipeline.
For each of the nine beamformers, the two-second epoch was cut into segments of
the corresponding frequency, and the segments corresponding to the initial 150 ms
were removed. The remaining segments were averaged and applied to the trained
beamformer to obtain an estimate (i.e., score) of the presence of the corresponding
frequency-phase combination. The beamformer with the highest score was taken as
winner and the corresponding character highlighted in yellow. The progression of the
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Fig. 3 The interface for the spelling session showed the word to be spelled, as well as the current
set of letters that had been sequentially selected by the subject in their attempt to spell out the word.
Eight of the crosses have been replaced with the characters required to spell the word, and one cross
was replaced with a backspace icon that could be used to undo a previous selection. No cues are
given and the stimulation length was reduced to 2 s

character-by-character selection was also displayed at the top of the display, under
the word to be spelled. This procedure was repeated until the spelled word contained
as many characters as the target word.

Post-hoc analysis While the real-time session was performed using a two-second
stimulation, in a post-hoc simulation also shorter stimulation lengthswere considered
to assess decoding accuracy. To this end, all epochs from the spelling session were
shortened by retaining the initial t seconds and presented to the classifier trained on
the training set. The predictions were then compared to the actual gazed characters
and reported in Fig. 4. This procedure was repeated for increasing signal lengths t
from 250 ms to 2 s in steps of 250 ms.

3 Results

Figure 4 shows a typical neural steady-state response to the flickering stimulation.
As expected, the SSVEP response is most prominent over the occipital cortex, and
unlike a typical scalp-EEG SSVEP in which the response is spatially blurred over a
larger scalp area, a more localised response is found withMEG. Additionally, a clear
bipolar spatial response profile is obtained as a result of the magnetic properties of
a neural dipole.
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Fig. 4 (top panel) A typical neural steady-state response to flickering stimulation. The full line
indicates the average response over a few segments of the same gazed frequency-phase combination
and the shaded area the 95% confidence interval. The inset shows the spatial distribution of the
response when the amplitude reaches is maximal value. (bottom panel) Real-time spelling results
and post-hoc simulation of the decoding accuracies with shorter stimulation lengths. The table
shows the performance of the subjects during the real-time mind-spelling session

All three subjects were able to accurately control the spelling application and
complete the five words. Using the training data, the greedy channel selection proce-
dure selected nine, seven and four channels. Not unsurprisingly, as our stimuli rely
on visual processing, all selected channels were located over the occipital scalp
area. The decoder accurately identified the gazed character for all participants with
spelling accuracies of 93.02% for the first subject and 100% for the other two subjects
(Fig. 4). The three misclassifications that occurred for subject 1 were all success-
fully corrected by the participant by gazing at the backspace icon, after which the
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correct character was selected. Accounting for these successful corrections, all three
participants correctly spelled all five words.

To investigate the effect of a reduced stimulation length on the decoding accuracy,
we ran an offline post-hoc analysis in which we only used the first t (t in [0.250,
2.00] s in steps of 250 ms) seconds of each online trial. The analysis shows that the
decoding accuracy is minimally affected by a reduction of the stimulation length
until about 750 ms. A stimulation length of 0.25 and 0.5 s elicit a considerable drop
in accuracy, similar to what has been described with scalp-EEG [36].

4 Discussion

Non-invasive brain-computer interfacing is mostly accomplished using scalp-
recorded EEG, despite its poor spatial resolution due to the inhomogeneous conduc-
tivity profile of the head (i.e., cerebrospinal fluid, skull and skin layers). The comple-
mentary magnetic field changes are less distorted and allow for neural activity
recordedwith higher signal-to-noise ratios, butwere previously only obtainable using
expensive and impractical recording hardware based on SQUIDs, which hampers
the development of MEG-based BCIs. Indeed, the number of reports on MEG-based
BCIs pales in comparison to their scalp-EEG counterparts, and the majority of these
studies target the decoding of (imagined) limb movement [10, 16, 18, 23, 26] or
mental tasks [29] as these paradigms allow the participant’s head to remain motion-
less within the MEG helmet. Many other BCI paradigms that are routinely adopted
with scalp-EEG have no counterpart in the MEG literature.

In this work, we showed that a new generation of MEG sensor based on OPMs
can effectively be deployed for BCI purposes. Our proof-of-concept demonstration
shows accurate control of our ‘mind-spelling’ application and further offline simu-
lations reveal decoding accuracies highly similar to those reported in invasive- and
scalp-EEG studies [36]. However, unlike scalp-EEG, which typically requires the
application of conductive gel to reduce impedance levels and ensure good quality
signals, OPM-MEG does not require the application of additional substances. The
helmet containing the OPM sensors can readily be placed on the participant’s head
without any preparation.OPM-MEGfurthermore allows for faster turn-around times:
the de-Gaussing and nulling procedure can be completed within minutes and the
post-recording cleanup is considerably less labour-intensive given the absence of
conductive gel.

Unlike traditional SQUID-based MEG, movement artefacts are less pronounced
with OPMs and previous reports have shown reliable OPM-MEG recordings during
which the participants were moving [5]. This opens up MEG for new initiatives
for BCI-assisted neurorehabilitation programs [14, 17] even beyond hand or arm
motions [7] and BCI applications for patients that suffer from involuntary muscular
activity, such as in spastic cerebral palsy. Given the high similarity in practical use
of OPM-MEG and scalp-EEG, many of the paradigms that are routinely adopted in
the latter can readily be adopted using OPM-MEG.
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It is worth noting that the goal of the current study was to demonstrate the feasi-
bility of adopting OPM-MEG for BCI research. In this work, we used an SSVEP
decoder thatwas previously developed for decoding scalp-EEG signals [35]. It is very
likely that the results presented in this manuscript can be improved by developing
algorithms that take advantage of the unique signal properties of theMEG signal. For
example, the higher spatial resolution might make is beneficial to consider activa-
tions in source space (i.e. source localisation) rather that sensor space. Furthermore,
as the OPM technology is still under active development, further improvements to
the signal quality and capabilities can be expected.
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EEG Decoding of Pain Perception
for a Real-Time Reflex System
in Prostheses

Zied Tayeb, Rohit Bose, Andrei Dragomir, Luke E. Osborn,
Nitish V. Thakor, and Gordon Cheng

Abstract Rationale In recent times, we have witnessed a push towards restoring
sensory perception to upper-limb amputees, which includes thewhole spectrum from
gentle touch to noxious stimuli. These are essential components for body protection
as well as for restoring the sense of embodiment. Despite the considerable advances
that have been made in designing suitable sensors and restoring tactile perceptions,
pain perception dynamics and how to decode them using effective bio-markers are
still not fully understood. Methods Here, we used electroencephalography (EEG)
recordings to identify and validate a spatio-temporal signature of brain activity
during innocuous, moderatelymore intense, and noxious stimulation of an amputee’s
phantom limb using transcutaneous nerve stimulation (TENS). Results Based on the
spatio-temporal EEG features, we developed a system for detecting pain perception
and reaction in the brain, which successfully classified three different stimulation
conditions with a test accuracy of 94.66%, and we investigated the cortical activity in
response to sensory stimuli in these conditions. Our findings suggest that the noxious
stimulation activates the pre-motor cortex with the highest activation shown in the
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central cortex (Cz electrode) between 450 and 750 ms post-stimulation, whereas the
highest activation for themoderately intense stimulationwas found in theparietal lobe
(P2, P4, and P6 electrodes). Further, we localized the cortical sources and observed
early strong activation of the anterior cingulate cortex (ACC) corresponding to the
noxious stimulus condition. Moreover, activation of the posterior cingulate cortex
(PCC) was observed during the noxious sensation. Conclusion Overall, although
this is a single case study, this work presents a novel approach and a first attempt to
analyze and classify neural activity when restoring sensory perception to amputees,
which could chart a route ahead for designing a real-time pain reaction system in
upper-limb prostheses.

Keywords Brain computer interface (BCI) · Electroencephalography (EEG) ·
Noxious stimulation · Spatio-temporal signatures · Reflex system in prostheses

1 Introduction

Nociception is commonly known as the sense of pain [1]. Specialized receptors called
nociceptors that cover the skin and organs react to harmful chemical, mechanical and
thermal stimuli [2]. Some of these microscopic pain receptors react to all kinds of
noxious stimuli, while others only react to specific pain like burning or pricking
your finger on something sharp. Jolts of sudden pain activate the A-type fibers to
send an electrical signal up to the spinal cord [3]. Pain signals then activate the
thalamus, which relays the signal to the different brain regions [4]. Subsequently, the
signal activates the somatosensory cortex, which is responsible for physical sensa-
tions. The signals are then relayed to the frontal cortex, where higher-order cognitive
processing occurs, and finally to the limbic system, which is linked to emotions
[5]. This pain processing network, along with pain reflex pathways in the spinal
cord [3], are considered of the utmost importance for protecting the body from
damaging stimuli [6]. These insights into brain networks have therefore spurred
research on unraveling the processes within the body that lead to the unpleasant
sensation of pain [7] and on understanding the pain perception mechanism in the
brain [8]. Authors in [9] investigated perceptual, motor, and autonomic responses
to short noxious heat stimuli using electroencephalography (EEG) and confirmed
that pain perception is subserved by a distinct pattern of EEG responses in healthy
subjects. Functional magnetic resonance imaging (fMRI) was used in [10] to demon-
strate pain-related activation of the anterior cingulate cortex (ACC) and the posterior
cingulate cortex (PCC) during transcutaneous electrical nerve stimulation (TENS)
in healthy participants. A template of nociceptive brain activity that is sensitive to
analgesic administration and suitable for clinical trials and research investigations
was identified and validated in [11]. Furthermore, different somatosensory evoked
potential (SEP) components and latency differences after stimulation of proximal
and distal sites of the median nerves were studied and identified in eight healthy
right-handed males [12]. Similarly, other previous studies showed that primary and
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secondary somatosensory cortices, insular cortex, anterior cingulate cortex (ACC),
prefrontal cortex (PFC), and thalamus are activated during experimental pain stimuli
[13]. Authors in [14] showed the important role of the parietal lobe in pain percep-
tion and understanding. Notwithstanding the enormous number of studies on pain
perception and brain responses to different painful stimuli using EEG and fMRI,
most of these studies focused on studying brain responses in healthy subjects and
have not investigated brain responses when perceiving the sense of pain in amputees
nor in human–robot interaction settings [6]. It has, therefore, become imperative to
study amputees’ brain activity when integrating the sense of touch and pain in their
arm prostheses [6]. The core novelty and the main contribution of this paper reside
in the use of non-invasive EEG activity to analyze somatosensory evoked responses
recorded when receiving three different types of stimulations. These stimulations
were chosen to convey different sensation profiles, ranging from pleasant to uncom-
fortable sensation. For that, we identified a brain activity template during innocuous
(INNO), moderately intense (MOD) and noxious (NOX) stimulation of an amputee’s
phantom hand delivered through a transcutaneous nerve stimulation system (TENS)
[15]. Based on the identified spatio-temporal brain activity patterns, we developed
an offline system for detecting pain reaction in the brain which can recognize the
three stimulation conditions from recorded EEG responses by using effective spatio-
temporal bio-markers to identify the different brain regions involved in noxious
stimuli processing as well as latency responses for each stimulation condition. The
overall goal of this study was to extend upon the work performed by Osborn et.al [6],
where the reflex system was implemented in the arm prosthesis and the amputee was
not involved in the withdrawing reaction. This is thought to be of the utmost impor-
tance when designing a better bidirectional-control system between the human and
the prosthesis, and hence increase the amputee’s sense of embodiment and the sense
of ownership [16]. Additionally, detecting this perceived pain sensation and reaction
would have an important role in protecting the prosthesis from being damaged by
external stimuli [17]. To the best of our knowledge, even though the presented results
are from a case study, this work is among the very few to investigate brain responses
to different types of NOX and INNO stimuli and the first study to investigate and
characterize spatio-temporal brain activities in amputees during a range of noxious
and innocuous sensory feedback to the phantom hand, en route to designing a real-
time withdrawal system in upper-limb prostheses. Extending upon the findings of the
aforementioned studies, we also investigate attention and perceptual brain circuitry
involved in the withdrawal reaction. An overview of the real-time withdrawal system
in upper-limb prostheses is shown in Fig. 1. This research was published recently in
Nature Scientific Reports journal [18].
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Fig. 1 System implementation overview of a prosthetic arm that can restore the sense of touch and
pain

2 Methods

2.1 Patient Recruitment and Sensory Stimulation

An amputee participant (29 years old) with a bilateral amputation more than five-
years prior to the current experiments, (due to tissue necrosis from septicemia),
was recruited at Johns Hopkins University in Baltimore to perform a series of an
embodied prosthesis control aswell as sensory feedback experiments. The participant
has a transhumeral amputation of the left arm and a transradial amputation of the
right arm. All sensory feedback and prosthesis experiments were performed on the
participant’s left arm. EEG data were collected in one session over a period of two
hours. For the sensory stimulation, we performed sensory mapping of the amputee’s
phantom hand through transcutaneous electrical nerve stimulation (TENS) using a
1-mm beryllium copper (BeCu) probe connected to an isolated current stimulator
(DS3, Digitimer Ltd., Hertfordshire, UK). An amplitude of 0.8 mA and frequency
of 2 to 4 Hz were used while mapping the phantom hand. The amputee identified
areas of phantom activation during sensory mapping and the stimulation sites were
noted using anatomical and ink markers. For the stimulation experiment, we used
5-mm disposable Ag–Ag/Cl electrodes on the residual limb sites that mapped to the
thumb/pointer, pinky/ulnar, and wrist of the phantom hand. The stimulation sites
were the same as those used in [6]. It should be noted that sensory mapping was only
performed on the left (transhumeral) residual limb because the amputee participant
only wears a prosthesis on his left (transhumeral) side and not his right (transradial)
side. This study was carried out in accordance with the Declaration of Helsinki. All
experiments were approved by the Johns Hopkins Medicine Institutional Review
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Boards. The participant was asked to sign a written informed consent and he agreed
to take part in all our experiments.

2.2 EEG Data Recording and Experiment

Brain activity correlates of transcutaneous electrical nerve stimulations were inves-
tigated by recording 64-channel EEG data from the amputee participant. Different
locations on the participant’s left residual limb were identified so that, when stimu-
lated, they activate different regions of the participant’s phantom hand. In this EEG
experiment, the subject was seated comfortably and was looking at a black cross on
a white wall. EEG recordings during various stimulations of the subject’s periph-
eral nerve sites corresponding to the thumb/pointer finger, pinky/ulnar side of the
hand, and the wrist of his phantom hand. We stimulated the subject’s residual limb
in regions that activated his phantom hand using transcutaneous electrical nerve
stimulation (TENS). The stimulation included three different conditions for the
thumb/pointer and two conditions for the other sites. All values of stimulation were
based on previous mapping and psychophysics with this subject [6]. All three condi-
tions (INNO, MOD, NOX) were applied to the thumb/pointer stimulation site and
the INNO andMOD conditions were applied to the pinky/ulnar and wrist stimulation
sites. Blocks of each stimulation condition were randomly presented as five consec-
utive stimulation pulse trains lasting for 2 s with a delay of 4 s. Stimulation condition
blocks were presented 4 times, yielding a total of 60 trials for the three conditions.
A break of 2 min was given between stimulation blocks, and a break of 10 min was
given between the different stimulation sites. Condition 3 (NOX) was only presented
to the thumb/pointer stimulation site, whereas Conditions 1 and 2 (INNO andMOD)
were presented to all stimulation locations (thumb/pointer, pinky/ulnar, and wrist).
Condition 3 was only presented to the thumb/pointer location to reduce the total
time the subject experienced noxious sensations. EEG data were collected using a 64
channel EEG device (Neuroscan system) with a 500 Hz sampling rate. The montage
used the 5% 10/20 system. Electrode impedance was kept below 10 kOhm in at
least 95% of derivations throughout the experiment. The amplitude of the transcu-
taneous electrical nerve stimulation was 1.6 mA for all sites of stimulation and the
subject rated each condition’s discomfort level using a comfort scale. To ensure that
the subject did not substitute or anticipate the stimuli by sight, the EEG data were
recorded without the subject wearing the prosthesis.

2.3 EEG Signal Processing and Classification

EEG data were recorded at 500 Hz. The reference electrode was chosen on the vertex
and the ground electrode was located on the forehead. Data were processed with
specially designed Jupyter notebooks in Python using both gumpy [19] and MNE
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[20] toolboxes. For data analysis, 60 trials in total for the three stimulation condi-
tions were used. EEG signals were band-pass–filtered between 0.5 and 70 Hz using
a fourth-order Butterworth filter and notch filtered thereafter at 60 Hz. Muscle arti-
facts were rejected by the Automatic Artifact Rejection (AAR) [21] and independent
component analysis (ICA) was used to remove eye movement artifacts [22]. EEG
data collected over several trials of the same experiment were averaged together. All
EEG scalp topographies were plotted using the MNE toolbox, by matching channel
location with its value given the defined latency. Topographies are color encoded,
where the green or yellow present null values, the blue color presents negative values,
and the red encodes positive values. The color intensity correlates with the channel
value. Chosen time latencies in the topographic maps were chosen based on an algo-
rithm [20] that computes and finds the highest peaks at each time point from all
electrodes. For feature extraction and classifying the three conditions from EEG,
we implemented and tested a wide range of classical machine learning approaches
which are based on hand-crafted features. Five different classifiers from the gumpy.
Classification module [22] were used and evaluated: K-Nearest Neighbor (KNN),
Support vector machine (SVM), Naive Bayes (NB), Linear Discrimination Analysis
(LDA), andQuadraticLinearDiscriminationAnalysis (QLDA).Twodifferent feature
extractionmethodswere used, namely, themaximumamplitude value computed from
each channel for a fixed 100 ms time-window, yielding a total number of 64 features
(number of electrodes) as well as common spatial patterns (CSP) [23]. The CSP
method yielded slightly lower results (a mean accuracy of 85%) than the maximum
amplitude value and was therefore discarded in our further analysis. Two different
post-processing methods were investigated and tested. First, a principal component
analysis (PCA) method with only two components was used for dimensionality
reduction, and the two components were fed thereafter to the different classifiers.
Second, we further investigated keeping all the extracted 64 features and we used a
feature selection algorithm [24] to select the most discriminating subset of features
(channels). Data were divided into 80% for training and 20% for testing. Overall,
tenfold cross-validationwas performed on training data to validate themodel (valida-
tion accuracy) and the remaining 20%were using for the test phase. For all analyses,
balanced accuracy (bACC)was chosen as an evaluationmetric for the trainedmodels.
bACC is calculated as the average of the proportion corrects of each class individu-
ally, where the same number of examples in each class was used. Overall, we wish
to mention that the first feature extraction method (max amplitude value) combined
with PCA using SVM clearly outperformed the other investigated methods, yielding
a validation accuracy of more than 95% and test accuracy of more than 94%. A grid
search was performed to select the best hyperparameters of the SVM classifier for a
given tenfold cross-validation.
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2.4 Source Localization

TheMNE toolbox [20] combinedwith gumpy [19] Python toolboxwas used for EEG
processing and for source localization. First, we performed cortical surface recon-
struction using FreeSurfer [25]. Second, the forward solution and the forward model
were computed using the boundary-element model (BEM) [26]. Thereafter, the regu-
larized noise-covariance matrix, which gives information about potential patterns
describing uninteresting noise source, was computed and estimated. Afterward, we
computed the singular value decomposition (SVD) of the matrix composed of both
estimated noise-covariance and the source covariancematrix. Finally, dynamic statis-
tical parametricmaps (dSPM) [27]was computed andused for source localization and
reconstruction. For dSPM, an anatomical linear estimation approach is applied. This
assumes the sources are distributed in the cerebral cortex [27]. A linear collocation
single-layer boundary-element method (BEM) [26] is used to compute the forward
solution which models the generated signal pattern at each location of the cortical
surface. A noise-normalized minimum norm estimate is estimated at each cortical
location resulting in anF-distributed estimation of the cortical current.Overall, dSPM
identifies the locations of statistically increased current-dipolar strength relative to
the noise level.

3 Results

3.1 All Stimulation Conditions Activate the Parietal Lobe.
Noxious Stimulation Activates the Central Motor Cortex

Sensory feedback of the three conditions (NOX,MOD, and INNO) tactile stimuliwas
delivered to the phantom hand using TENS on the transhumeral amputee’s residual
limb. Our analysis shows that all stimulation conditions elicit early activation of the
parietal lobe (around 54 ms) that persists over time for all types of sensation. Inter-
estingly, the MOD stimulation elicits higher activation of the parietal lobe compared
to the INNO and the NOX stimulations. In contrast to both INNO andMOD stimula-
tions, only the NOX stimulation activates the central cortex. Based on our findings,
we postulate that the NOX stimulation started in the parietal (54 ms) and centro-
parietal lobe and rapidly activated the perceptual mechanism in the subject’s brain,
but then moved towards the pre-motor and central cortex, which could explain that
the NOX stimulation activated the pain perception and reaction mechanism in the
brain.
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3.2 Spatio-Temporal Biomarkers for Noxious-Evoked Activity

We then extended this analysis by seeking to identify a spatio-temporal template to
distinguish between the three conditions and find the exact brain response time and
spatial location. For the NOX stimulation, the highest activation was found at the
central cortex (Cz) in the post-stimulation time window from 450 to 750 ms when
comparing it to the INNO stimulation, and the EEG background activity. In contrast
with the NOX stimulation that shows high activation of the central cortex, the MOD
stimulation was found to be high at the P2, P4, and P6 electrodes for the whole
second of analysis (Fig. 2).

3.3 Successful Classification of the Three Different
Stimulation Conditions

Using specific spatio-temporal biomarkers for the classification of the three different
stimulation conditions, a classification accuracy of more than 94% was achieved in
the test phase (Fig. 3).

3.4 Noxious-Related Activation Within the Medial Wall
of the Cerebral Cortex

By analyzing the EEG activity at the source level, we found using that NOX sensation
elicits activation of the centro-parietal lobe, activation of the anterior cingulate cortex
(ACC), the somatosensory motor cortex, and the posterior cingulate cortex (PCC).
Overall, the activation of the ACC presents direct evidence that it plays a role in
activating the attention circuitry in the brain as well as an important role in external
sensory stimuli perception. Moreover, our study reveals that the NOX stimulation
activates the PCC (Fig. 4).



EEG Decoding of Pain Perception for a Real-Time Reflex … 55

Fig. 2 EEG activity for the parietal and central cortex electrodes. Panels A, B, and C represent
EEG activity in Cz, P2, P4, and P6 during the pre-stimulus phase during the INNO,MOD, and NOX
stimulation, respectively. Panels D, E, and F represent EEG activity in four different electrodes:
Cz (middle cortex) and P2, P4, and P6 electrodes in the parietal lobe during the INNO, MOD, and
NOX stimulation, respectively. When comparing panel D to E, a parietal enhancement (red color)
and a central depression (blue color) are observable. When comparing panel D and E to F, a central
enhancement is observable (red color). Panel G shows the sites used in this study based on the
10–20 system, with the Cz, P2, P4, and P6 electrode’s positions highlighted in blue
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Fig. 3 Classification results of the three stimulation conditions. PanelA is the validation accuracy in
different time-windows between 50 and 1000ms after stimulation represented in a boxplot, showing
that the highest validation accuracywasobtained in the time-window650–750ms.Thegreen triangle
represents the mean accuracy value for each time window, whereas the black line represents the
median value for the same time window. Panel B shows the 2D feature space after performing
PCA, highlighting a clear separation between the three conditions. PC1 and PC2 represent the first
two components after performing PCA. Panel C reflects the confusion matrix in the time-window
with the highest accuracy (650–750 ms, shown in Panel A) when classifying the three stimulation
conditions in the test phase
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Fig. 4 EEG analysis at the source level for the noxiously evoked activity in the first 200 ms. The
dynamic statistical parametric maps (dSPM) [27] was used to compute the reconstructed sources.
The scale represents the EEG amplitude activity in uV. Panel A presents high EEG activity in the
centro-parietal lobe after 54 ms of stimulation. Panel B shows high EEG activity in the central
cortex after 92 ms. Panel C reflects activation of the PCC after 120 ms. Panel shows activation
shows activation of the ACC and the parietal lobe after 164 ms
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High-Dimensional (8D) Control
of Complex Effectors Such
as an Exoskeleton

Alexandre Moly

Abstract In this chapter, we interview Dr. Alexandre Moly about their work with
a brain-computer interface (BCI) to control an exoskeleton. Dr. Moly describes how
their team attained eight-dimensional control, which is a significant improvement
over typical BCIs. High-dimensional control is important for complex tasks such
as grasping, which could not only provide a replacement for lost functions but
also support rehabilitation. The interview ends with future directions and advice
for newcomers to BCI research.

Keywords Brain Computer interface · BCI · ECoG · Clinical trial · Asynchrone ·
Adaptive · Closed-loop · Online · Brain signal processing · Tetraplegia

1 Introduction

Patients with tetraplegia have paralysis in all four limbs. Many types of exoskeletons
could help these patients, but are difficult to control with BCIs or other interfaces.
Natural control over limb movements is extremely complicated, and most interfaces
allow much less detailed and precise control than the healthy nervous system. BCIs
that used ECoG have advanced greatly over the last several years, but we are still
a long way from being able to restore control of even one limb that is comparable
to natural control, let alone four. As the following quote from Dr. Moly indicates,
systems that provide limb control can make a huge difference in some patients’ lives.
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Many submissions to theBCIResearchAward (and several nominees andwinners)
have involved ECoG-based contol of exoskeletons. This was the topic of the submis-
sion that was one of the second place winners this year. This project entailed a large
group of researchers from three French institutions:

High-Dimensional (8D) Control of Complex Effectors Such as an Exoskeleton
by a Tetraplegic Subject Using Chronic ECoG Recordings Using Stable and
Robust Over Time Adaptive Direct Neural Decoder

Alexandre Moly1, Thomas Costecalde1, Félix Martel1, Antoine Lassauce1,
Serpil Karakas1, Gael Reganha1, Alexandre Verney2, Benoit Milville2,
Guillaume Charvet1, Stéphan Chabardes3, Alim Louis Benabid1, Tetiana
Aksenova1Alexandre Moly1, Thomas Costecalde1, Félix Martel1, Antoine
Lassauce1, Serpil Karakas1, Gael Reganha1, AlexandreVerney2, BenoitMilville2,
Guillaume Charvet1, Stéphan Chabardes3, Alim Louis Benabid1, Tetiana
Aksenova1

1 CEA, LETI, CLINATEC, University Grenoble Alpes, MINATEC, France
2 CEA, LIST, DIASI, SRI, Gif-sur-Yvette, France
3 Centre Hospitalier Universitaire Grenoble Alpes, France

This is the first time the BCI Research Awards had a tie for second place. The
other project that won second place also involved implanted BCI to help people with
movement disabilities (specifically, Parkinson’s Disease). To learn more about that
project, please see the interview with Tomislav Mikelovic in this book. Here, we
present an interview with Dr. Moly about his team’s work. You can see more of this
project through the video they submitted to the jury.1 We also wish to congratulate
Dr. Moly, who earned his Ph.D. after the 2020 awards while we were developing this
book.

1 https://www.youtube.com/watch?v=itCKP8yi1Us.

https://www.youtube.com/watch%3Fv%3DitCKP8yi1Us
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2 Interview

Hi Alexandre, you submitted your BCI research project titled “High-
dimensional (8D) Control of Complex Effectors such as an Exoskeleton by a
Tetraplegic Subject Using Chronic ECoG Recordings Using an Adaptive Direct
Neural Decoder that is Stable and Robust Over Time” to the BCI Award 2020
and won Second place. Could you briefly describe what this project was about?

Alexandre: Numerous accidents or diseases lead to partial or completemotor disabil-
ities. In France alone, 10,000 spinal cord injuries leading to paraplegia or tetraplegia
are registered each year. The “BCI and Tetraplegia” project of CLINATEC (a
biomedical research Center including CEA-Grenoble and University Hospital CHU
Grenoble-Alpes teams) is a clinical trial in which an online BCI system based on
semi-invasive recording allows tetraplegic patients to control complex effectors. We
demonstrated that a tetraplegic patient implanted with epidural electrocorticographic
(ECoG) implants (WIMAGINE®) could control several limbs from an exoskeleton
over a long time without requiring daily recalibration.

What was your goal?

Alexandre: Our primary goalwas to provide proof of concept that tetraplegic patients
can control complex effectors, such as a 4-limb exoskeleton, thanks to ECoG brain
activity monitoring and neural decoding. After the ECoG recording implant surgery,
the patient was already able to perform simple task. After 3 years of training,
the patient could walk and control both arms of the exoskeleton in real-time. We
also showed that the decoding algorithms used for decoding the patient’s neural
signal provided good and stable decoding performance when updated during several
sessions using online incremental closed-loop decoder adaptation procedure. Our
next goal is to increase the experiment complexity with tasks such as object grasping
to get closer to daily life applications.

What technologies did you use?

Alexandre: This project relied on three innovative key elements: the exoskeleton, the
epidural ECoG implant called WIMAGINE®, and the online decoding algorithms
used to decode the patient’s brain signals.

1. The Enhancing MobilitY (EMY) exoskeleton is a wearable fully motorized
four-limb robotic neuroprosthesis weighting 65 kg designed to be driven by the
decoded ECoG brain signals.

2. For chronic processing of brain signals, CLINATEC designed an innovative
wireless epidural ECoG recording system named Wireless Implantable Multi-
channel Acquisition system for Generic Interface with NEurons (WIMAGINE).
This fully implantable device records the neural signal at the surface of the cortex
above the dura matter before wirelessly sending the signals to the decoding
system, which translates the neural signals into commands to the exoskeleton.
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Fig. 1 Clinatec’s “BCI and Tetraplegia” clinical trial BCI platform

3. Finally, the decoding algorithms designed for the clinical trial are based on a
Mixture of Experts algorithm structure. One regressionmodel is associated with
each type of movement of the exoskeleton (such as 3-Dimensional continuous
translation of the left hand, 1-Dimensional rotation of the right wrist, etc.).
Finally, a HiddenMarkovmodel is calibrated to activate or inhibit the prediction
of the regression models to avoid non-zero velocity movements from the non-
controlled limb. Each the models are updated in real-time during the online
closed-loop experiments in an incremental manner to integrate the patient’s
visual feedback into the calibration process and therefore allow the model to
learn from the patient and the patient from the model (Fig. 1).

What kinds of people could benefit from your research?

Alexandre: Tetraplegic patients may benefit a lot from our research. A motor BCI
system like this may restore somemobility and autonomy to highly disabled patients,
which is a major concern for social life and professional reintegration. Moreover, the
proposed BCI system should also be considered for rehabilitation applications and
as a control mechanism for paraplegic patients.

Do you think your work has future potential for clinical use?

Alexandre: Indeed, the results are promising and motivate us for future clinical
applications. To our knowledge, this is the first time that an exoskeleton is used by
a tetraplegic patient to perform alternative bimanual tasks during long term experi-
ments with a fixed model during more than 6 months. Model stability across time is a
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major challenge of the BCI field. The proposed solution, which is based on an online
incremental closed-loop adaptive decoder, already highlighted numerous benefits to
improve the decoding performance and robustness. Our team will achieve further
investigation on the patient and model training to improve BCI systems.

How did it feel to win second place in the BCI Award 2020?

Alexandre: CLINATEC is a relatively young laboratory. So, it’s really important
to us that the BCI community acknowledged our work, especially considering all
the tremendous research results that were presented by the other teams. In a more
personal point of view, I could not hope for a better way to end my Ph.D.

How can students and researchers get involved in your research?

Alexandre: As previously mentioned, the “BCI and Tetraplegia” clinical trial
is based on multiple innovative blocks requiring knowledge from several fields,
including: robotics and mechatronics for the exoskeleton; hardware and firmware
electronic development for the implant improvement; appliedmathematics and signal
processing for the neural signal decoding; and neuroscience and medical skills for
patients training. Every year, CLINATEC welcomes students to work on the BCI
project and many other exciting research topics.



A Computer-Brain Interface
that Restores Lost Extremities’ Touch
and Movement Sensations
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Abstract Rationale Sensory feedback from the lower limbs is essential for correct
balance and symmetry during walking. Lower limb amputees suffer from complete
lack of sensory feedback from currently available prostheses that exclude the central
nervous system from correct sensory-motor integration, causing serious problems.
These problems include falls due to unexpected perturbations, asymmetric walking
and balance inducing bone pathologies and higher power consumption, and feeling
that the prosthesis is a foreign body, with consequent abandonment and phantom
limb pain occurrence. Although considerable efforts have focused on developing
and controlling sophisticated lower limb prostheses (LLP), few trials have been
conducted to restore sensory feedback. Methods Three transfemoral amputees have
received four intraneural microelectrode arrays in the distal portion of the residual
sciatic nerve to electrically stimulate sensations from theirmissing lower leg and foot.
A commercial prosthetic leg (RHEO XC) was equipped with an encoder embedded
in the knee and with a custom-made sensorized sole, providing pressure informa-
tion from 7 locations under the foot sole. The readouts of these sensors and encoder
were used to wirelessly drive the stimulation of 4 active sites, eliciting natural touch
referred under the foot sole and calf contraction, intuitively interpreted by the subject
as knee flexion. We assessed the participants’ mobility, confidence, cognitive load,
pain level andmetabolic cost.We then compared neuroprosthetic control of the bionic
legwith that of a commercial-like use of the legwithout feedback.ResultsWedemon-
strated that the natural sensory feedback can be restored in transfemoral amputees.
We further showed that these patients can use this feedback to improve their use of the
leg prosthesis during different ambulation tasks and promote its integration in their
body schema. We designed a neuroprosthetic framework to restore sensory feedback
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referred on the phantom lower limb of transfemoral amputees and triggered from
the bionic leg by stimulating the residual tibial branch of the sciatic nerve through
implantedneural interfaces.ConclusionThis is thefirst studyof implanted intraneural
neuroprostheses for restoring dynamic sensations from themissing leg to people with
chronic amputation. It represents a major advance, with a clear translational path, for
clinically viable neuroprostheses for restoration of mobility, confidence, metabolic
consumption and reduced pain after amputation. These results show that natural
invasive sensory feedback restored by means of intraneural electrodes successfully
addresses current limitations of prosthetic devices, opening the way for a dramatic
improvement of amputees’ lives.

Keywords Brain computer interface · BCI · Neuroprosthesis · Neural interfaces ·
Sensory feedback · Neuromodulation · Intraneural stimulation · Amputees · EEG ·
Somatosensory

1 Introduction

Lower-limb amputees use commercial prosthetic devices that do not provide proper
sensory information to the brain regarding the interaction of the device with the
ground or its movement [1]. People with amputation must rely on very limited and
uncomfortable haptic information from the stump-socket interaction, and thus face
grave impairments. The risk of falls [2], decreased mobility, the perception of the
prosthesis as an extraneous body (low embodiment [3, 4]) and the increased cognitive
burden during walking with consequent psychological distress and device abandon-
ments [5–7] are some of the most important issues. Costs wasted on an unused pros-
thetic limb along with a sedentary lifestyle are associated with long-term medical
problems (e.g. obesity, diabetes, cardiovascular diseases [7]) and lifelong medical
expenses [8].

Even though several research groups have focused on the development and control
of sophisticated lower limb prostheses (LLPs) [9, 10], few trials have been dedicated
to the restoration of the sensory feedback [11, 12]. In particular, surgical techniques
[13] and non-invasive technologies, based on continuous or time-discrete vibrotac-
tile and electro-cutaneous stimulation [14–16], have been adopted to provide the
amputees with sensory feedback. The studies mostly reported use in transtibial
amputees. These non-invasive sensory feedback devices have demonstrated only
limited benefits, such as improved symmetry between prosthetic and healthy legs
during walking on even surfaces and postural stability on a movable force platform
[14]. Non-invasive technologies have the drawback of not being homologous (the
sensation is not perceived as natural and correct one while using the prosthesis) or
selective (they evoke defined and spatially-matching sensations) [17]. These draw-
backs force the amputees to invest time in training, which only partially overcomes
these limitations.Moreover, transtibial amputation is a much less disabling condition
than transfemoral amputation. Indeed, transfemoral amputees have less mobility and
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Fig. 1 a Somatosensory Neuroprosthesis: the neural implants in the tibial nerve allowed users
to interact with the nervous system fibers, providing the patients with artificial sensations. The
sensations were linked to the wearable sensor outputs equipping the leg prosthesis. b This novel
technology was tested in three transfemoral amputees inside and outside the lab

gait symmetry, together with higher energy expenditure than transtibial ones [18,
19]. A novel surgical procedure (agonist–antagonist myoneural interface (AMI) [13,
20]) to restore proprioception in transtibial amputees has been developed. Notably,
performance characterization of this approach in daily life activities was not shown
yet, and this procedure might be difficult to transfer to higher-level amputations.

After an amputation, the neural pathways between the remaining periphery and
the brain are still functional. Thanks to the use of implantable neural interfaces,
peripheral nerve stimulation (PNS) of the sensory fibers proximal to limb amputa-
tion can restore sensations from the missing extremity in the brain [21–24]. Indeed,
a human–machine system based on intraneural electrodes for restoring limb sensa-
tions in LLA was successfully developed recently [25–28] (Fig. 1). In this tech-
nology, the prosthetic sensors’ provide data that are translated into the language of
the nervous system of three amputees, achieving significant health, cognitive and
functional benefits, as demonstrated during clinical validation. Natural sensory feed-
back has been restored in transfemoral amputees, which they can use to improve
the use of the leg prosthesis during different ambulation tasks and to promote its
integration in their body schema. In particular, we designed a neuroprosthetic frame-
work to restore sensory feedback referred on the phantom lower limb of transfemoral
amputees and triggered from the bionic leg by stimulating the residual tibial branch
of the sciatic nerve through implanted neural interfaces (purposely-designed using
advanced computational models [29–31]).
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2 Methods

The neuroprosthesis (Fig. 1a) contains a microprocessor-based lower limb prosthesis
equipped with sensors under the foot sole and in the knee, a controlling microcom-
puter, and a stimulating system. The sensors’ readouts are acquired and recorded by
the wearable insole and then transmitted to microcomputer, which transduces them
into instructions for the neural stimulator [32]. The signals from the insole and pros-
thetic knee sensors are translated in impulses of current, the language of the human
nervous system, which are delivered to the residual peripheral nerve through elec-
trodes, implanted transversally into the nerve itself. This is performed in a real-time
configuration, with a delay less than 50ms,which is so brief that users do not perceive
it. Then, nature does the rest: the signals from the residual nerves are conveyed to the
user’s brain, which can perceive what happens at the prosthesis and adjusts walking
accordingly [27]. The machine and the body are finally re-connected.

Sensations of touch, pressure, vibration were elicited from more than 20 posi-
tions of the phantom foot sole, and of contraction or solicitation from the muscles of
the missing leg. Indeed, when the volunteers were blindfolded and asked to recog-
nize touch under the prosthetic foot or the flexion/extension of the prosthetic knee–
or the two conditions simultaneously–they achieved an average of more than 80%
successful responses.

3 Results

The neural feedback was exploited in active motor tasks, which proved that our
approach improved users’ mobility (Fig. 2). Thanks to the neuroprosthesis, all of the
volunteers could walk over obstacles without the burden of looking at their artificial
limb as they walked. Restoring the awareness of the prosthesis allowed the subjects
to feel trampled obstacles and to avoid falls. They climbed/descended stairs around
30% faster with sensations restored than without them. Their agility (e.g. tandem
walking) was also increased by the restoration of the connection between the brain
and the prosthesis [27].

Then, thanks to the full portability and real-time operation of our novel hardware
and software system, amputees stepped out from the laboratory to the ecological envi-
ronment. The subjects’ speed also increased during walking over uneven terrain (i.e.
sand), which enhanced the device’s usability. Our results demonstrate that induced
sensory feedback can be integrated at supraspinal levels to restore the missing leg’s
functional abilities.

Moreover, we found that walking speed and self-reported confidence in the pros-
thesis increased while mental and physical fatigue decreased for participants during
neural sensory feedback compared to the no-stimulation trials. This is an essential
result, since the amputees’ risk of a heart attack is more than doubled compared to
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Fig. 2 a Obstacle avoidance task. b Stairs Task. c. Walking on a straight line. In all these motor
tasks, using the neuroprosthetic device restoring artificial sensations to the user guaranteed better
mobility relative to using a commercially-available prosthetic leg without sensory feedback. P+ T
= Proprioceptive + tactile feedback, T = tactile feedback only, P = Proprioceptive feedback only,
NF = No Feedback

other people. With continuous use of this system, we assume that this risk will be
diminished [25].

Along with the functional and health outcomes, we assessed the cognitive (brain)
integration of the device into the body schema of the subjects by measuring the pros-
thesis embodiment and cognitive effort while using the artificial leg. We also showed
increased embodiment of the lower limb prosthesis, through phantom leg displace-
ment perception andquestionnaires, and ease of the cognitive effort during a dual-task
paradigm (Fig. 3), through electroencephalographic (EEG) recordings. During this
task, the subjects had to walk while listening to tones and paying attention to higher
ones. Meanwhile, ERP components of the EEG were measured to explore whether
walking required more attention with or without sensory feedback. With feedback,
users had substantial attention available for other tasks, such as when counting the
tones while sitting. However, without feedback, they had limited resources avail-
able for other tasks. Therefore, feedback helps amputees walk freely while thinking
about activities other than controlling the device. Brain activity measurements and
psychophysical tests revealed that the neuroprosthesis is perceived as an extension
of the body, like a real limb [27].

Furthermore, participants exhibited reduced phantom limb pain with neural
sensory feedback. Indeed, our technology might target both peripheral and central
components of pain by using neuromodulation (direct nerve stimulation) and
boosting prosthesis cognitive integration (reducing sensorimotor conflicts and
distorted phantom limb representations in the brain) [25].
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Fig. 3 Dual-task paradigm. The computer-brain interface allowed the prosthetic users to havemore
mental resources available to perform a cognitive task duringwalking compared towhen the sensory
feedback was not provided

Finally, leg amputees are often not satisfied with their prosthesis, even though
sophisticated prostheses are becoming available.One important reason for this dissat-
isfaction is that they perceive the weight of the prosthesis as too high, despite the fact
that prosthetic legs are usually less than half the weight of a natural limb. This
somatosensory neuroprosthesis connecting the prostheses to the nervous system
helped amputees to perceive the prosthesis as lighter, which is beneficial for their
acceptance [26].
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4 Discussion

The technology behind prosthetic limbs has been advancing rapidly in recent years.
Different types of controllable prostheses convert electrical signals from the brain or
body into device movements [33–35].

The results from these proof-of-concept cases provide the rationale for larger
population studies investigating the clinical utility of neuroprostheses that restore
sensory feedback. These works pave the way for further investigations about how
the brain interprets different artificial feedback strategies and for the development
of fully implantable sensory-enhanced leg neuroprostheses, which could drastically
ameliorate quality of life in many people with disabilities.

Notably, we need longer investigations with in-home assessments and a greater
number of volunteers to provide more robust data that we can use to draw more
significant conclusions. For the time-limited clinical study, signals from the pros-
thesis were sent along cables through the skin to the electrodes in the thigh. This
meant that the volunteers had to undergo regular medical examinations. To eliminate
this need, we plan to develop a fully implantable system for the next step. We need
to develop a fully-wireless neurostimulation device that can be fully implanted into
the patient (like a pacemaker) and bring it to the market [36].

The bionic leg integratedwith the residual peripheral nervous system of amputees,
namely a computer-brain interface, enables the brain to accept the bionic leg as the
continuation of the natural leg. This acceptance is essential for higher confidence of
the users, and for future widespread use of these technologies.
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Abstract Rationale Paralyzed muscles can be reanimated following spinal cord
injury (SCI) using a brain-computer interface (BCI) to enhancemotor function alone.
Importantly, the sense of touch is a key component of motor function. Simultane-
ously restoring the sense of touch and movement would meet functional needs for
BCI users that seek to enhance upper limb function following SCI. Methods The
study met institutional requirements for the conduct of human subjects and is regis-
tered on the http://www.ClinicalTrials.gov website (identifier: NCT01997125). The
participant was a 27-year-old male with stable, non-spastic C5 quadriplegia resulting
from a cervical SCI. The participant underwent implantation of a 96 channel Utah
microelectrode recording array (Blackrock Microsystems, Inc.; Salt Lake, Utah) in
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his left primary motor cortex. The hand area of motor cortex was identified preop-
eratively by fusing functional magnetic resonance imaging (fMRI) activation maps
obtainedwhile the participant attemptedmovements co-registered to the preoperative
planning MRI. During experiments, the participant was either completely blinded
to the experimental conditions or given brief instructions to complete the neces-
sary actions. Cue and trial parameters were randomized as needed. Results Results
are adapted from (Ganzer PD, Colachis 4th SC, Schwemmer MA, Friedenberg DA,
Dunlap CF, Swiftney CE, Sharma G in Restoring the sense of touch using a senso-
rimotor demultiplexing neural interface. Cell 2020). We demonstrate that a human
participant with a clinically complete SCI can use a BCI to simultaneously reani-
mate both motor function and the sense of touch, leveraging residual touch signaling
from their own hand. In primary motor cortex (M1), residual subperceptual hand
touch signals are simultaneously demultiplexed from ongoing efferent motor inten-
tion, enabling intracortically controlled closed-loop sensory feedback. Using the
closed-loop demultiplexing BCI almost fully restored the ability to detect object
touch, and significantly improved several sensorimotor functions. Conclusion These
results demonstrate that subperceptual neural signals can be decoded from human
cortex and transformed into conscious perception, significantly augmenting function.

Keywords Spinal cord injury · Upper limb · Touch · Brain-computer interface ·
Cortex ·Machine learning · Decoding · Demultiplex · Sensory feedback

1 Introduction

Spinal cord injury (SCI) damages sensorimotor circuits leading to paralysis, an
impaired sense of agency, and sensory dysfunction. Clinical studies are now iden-
tifying a new class of SCI—‘sensory discomplete’—where tactile stimuli that the
patient cannot feel still evoke changes in cortical activity [2–5]. These clinical assess-
ments uncover a set of critical findings. The existence of spared somatosensory fibers,
and therefore residual somatosensory information, can potentially be leveraged for
functional benefit in patients living with a severe SCI.

We assessed the hypothesis that a BCI could leverage sensory discompleteness,
enhance subperceptual touch events, and simultaneously restore both the sense of
touch and motor function in a participant with a clinically complete SCI. The study’s
participant is chronically paralyzed from a clinically complete AIS-AC5 SCI (Amer-
ican Spinal Injury Association Impairment Scale, grade A), and has an intracortical
recording array implanted in primary motor cortex (M1) for BCI recordings. During
BCI operation, the participant uses his own hand, addressing a major need of patients
with SCI [6–8].

Several BCI studies have targeted M1 to decode motor intention alone [9–24,
27]. Motor intention decoded from M1 is then used to enhance motor control via a
robotic limb, assistive device, or the participant’s own hand via functional electrical
stimulation (FES). Sensory discompleteness may allow for touch-related sensory
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information transmission to the BCI recording site in M1. If so, this residual touch-
related sensory information could be used for restoring the sense of touch. Sensory
function can potentially be augmented using a BCI that can decipher residual sensory
neural activity from the impaired hand and dynamically translate this into closed-loop
sensory feedback that the user can perceive.

1.1 Methods

Please refer to [1] for detailedmethods and statistical tests related to the study. Below,
we provide a brief methods overview.

2 Brief Methods Overview

2.1 Study Participant

Approval for this study was obtained from the US Food and Drug Administration
(Investigational Device Exemption) and The Ohio State University Medical Center
Institutional Review Board (Columbus, Ohio). The study met institutional require-
ments for the conduct of human subjects and was registered on the http://www.Clinic
alTrials.gov website (identifier: NCT01997125). The participant referenced in this
work completed an informed consent process before commencement of the study.
The participant was either completely blinded to the experimental conditions or given
brief instructions to complete the necessary actions. Cue and trial parameters were
randomized as needed, detailed below.

The study participant was a 27-year-old male with stable, non-spastic C5
quadriplegia resulting from a cervical SCI. The participant underwent implanta-
tion of a 96 channel Utah microelectrode recording array (Blackrock Microsystems,
Inc.; Salt Lake, Utah) in his left primary motor cortex (Fig. 1a). The hand area of
motor cortex was identified preoperatively by fusing functional magnetic resonance
imaging (fMRI) activation maps obtained while the patient attempted movements
co-registered to the preoperative planningMRI. Full details of the fMRI and surgical
procedures can be found in Bouton et al. [17]. Neural data were acquired using a
Utah microelectrode recording array (Blackrock Microsystems, Inc.; Salt Lake City,
Utah) and the Neuroport neural data acquisition system. Recorded data from all 96
recording array channels were sampled at 30 kHz and band pass filtered online from
0.3 to 7.5 kHz using a third order Butterworth analog hardware filter. The neural data
was then digitized and sent to a PC for saving or further on-line processing using a
custom interface in MATLAB 2014a (The MathWorks; Natick, MA).

http://www.ClinicalTrials.gov
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Fig. 1 Skin Stimulation on the Arm and Hand Evokes Robust Neural Responses in Contralateral
Primary Motor Cortex (M1) Following Clinically Complete Cervical Spinal Cord Injury (SCI).
a Reconstruction of the participant’s cerebrum and location of BCI implant (red box, inset) in left
M1. bMagnitude of sensory evoked multiunit activity inM1 following stimulation to 4 skin sites on
the right arm and hand. Data presented are mean ± S.E.M. *** = p < 0.001, * = p < 0.05. c Color
coded responses across 96 channel Utah array at the 4 different skin stimulation locations. d SVM
based decoding of stimulation location (or rest) from evoked neural activity. * = above chance at
p < 0.001

2.2 Brief Methods for Fig. 1

The participant’s right hand is largely insensate due to the AIS-A C5 SCI (clin-
ical sensory assessment: Fig. S1, [1]). Passive electrical stimulation occurred on 4
different skin locations (right side: forearm, thumb, index finger, and middle finger)
that are either partially intact or completely insensate, while neural activity was
recorded from the array implanted in left M1. The participant was blindfolded during
the recordings. We used the peristimulus time histogram (PSTH) method to quantify
evoked neural activity, similar to previous studies [25, 26]. We report the average
responsemagnitude across all 96 channels of the array during the 4different recording
conditions in Fig. 1b (color coded neural activity across all 96 array channels, Fig. 1c).
The location of skin stimulation was decoded using a non-linear support vector
machine (SVM; results in Fig. 1d).We used an SVMapproach similar to our previous
studies [17, 21, 22, 27]. The SVM decoded 5 states/classes [rest, forearm stimula-
tion (‘Forearm’), thumb stimulation (‘Thumb’), index finger stimulation (‘Index’),
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or middle finger stimulation (‘Forearm’)]. We present a confusion matrix outlining
the SVM’s performance.

2.3 Brief Methods for Fig. 2

We created a touch decoder using subperceptual residual neural activity during active
object touch (during touch of the ‘can object’, a part of the standard clinical grasp and
release test battery, 5.4 × 9.1 cm; [21, 22, 29]). Active touch cues consisted of a 6 s
period. For each touch cue period, the participant first moved his hand down onto and
around the canobject for 3 s, followedby a scripted object grip period for an additional
3 s, where FES triggered a more forceful grip. A touch decoder SVMwas trained and
tested on 4 cue types and rest periods to assessmodel performance during ‘touch’ and

Fig. 2 Active Object Touch Can Be Decoded fromM1 to Control Closed-Loop Sensory Feedback
and Enhance Hand Sensory Function. a Touch decoders were first assessed using ‘Touch’ or ‘No
Touch’ periods. Touch decoders had significantly higher responsiveness during object touch events
(red), compared to control cues lacking object touch (black). Touch decoder false positive rates
during cues (data not shown): Object Touch and FES= 12.2%; Object Touch Alone= 13.7%; FES
Alone = 3.7%; Movement Alone = 3.3%. b Touch decoders next controlled closed-loop sensory
feedback via a vibrotactile array interfaced with the sensate skin over the ipsilateral bicep (red band
in the cartoon schematic). Closed-loop sensory feedback triggered by residual sensory information
in M1more than doubled object touch detection during object grip (c, up to ~ 93%) (**= p < 0.01).
d Representative color-coded mean wavelet power (MWP) input (top) and touch decoder outputs
(bottom) during the object touch detection assessment (object placed on cue numbers 2, 4, and 6,
# symbol added; cue periods = gray lines; device activation threshold = horizontal dashed line).
These results demonstrate that residual subperceptual sensory information can be decoded fromM1
to trigger closed-loop tactile feedback and significantly improve sensory function. Data presented
are mean ± S.E.M
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‘no touch’ events. The participant separately completed the following cued events:
(1) 3 s of natural touch of the object followed by 3 s of FESmediated touch (‘Touch’),
(2) 6 s of natural object touch (‘Touch’), (3) 6 s of identical movement without the
object present (‘No Touch’), (4) 6 s of FES without the object present (‘No Touch’).
We report model responsiveness during the 4 cue types and rest (Fig. 2a), defined as
the percentage of time the touch decoder output was above the activation threshold
during the given period. This touch decoder was then used to trigger the closed-loop
sensory feedback interface (interface schematic, Fig. 2b) during the experiments
described in Figs. 2c, d, and 3.

Fig. 3 Sensory andMotor Events inM1 Can Be Simultaneously Decoded to Enable ‘Sensorimotor
Demultiplexing’ BCI Control and Enhancement of Sensorimotor Function. a Schematic of the
participant performing a modified GRT task with the ‘sensorimotor demultiplexing’ BCI. b We
first challenged the touch decoder with a competing simultaneous motor decoder. As expected,
touch decoders were activated before motor decoders on all object transfers (time 0 = touch cue,
followed by participant-initiated motor intention; shaded bands = ± 95% confidence interval of
decoder output). Closed-loop sensory feedback triggered by demultiplexed sensory neural activity
significantly improved the participant’s sense of agency (c), motor decoder latency (d, left), and
object transfer time (d, right) (average number of objects transferred per GRT assessment block:
control = 9, demultiplexing with sensory feedback = 9.75). These results demonstrate the ability
to decode afferent and efferent information from M1 and activate multiple assistive devices for
augmenting sensorimotor function, constituting a ‘sensorimotor demultiplexing’ BCI (* = p <
0.05; ** = p < 0·01). Data presented are mean ± S.E.M
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2.4 Brief Methods for Fig. 3

‘Sensorimotor demultiplexing’ BCI control was next implemented for multidevice
control (i.e., FES and closed-loop haptic feedback) and assessment of upper limb
function (Fig. 3a). In a subset of experiments, the participant was cued to first touch
the ‘can object’, and approximately 1 s later think of movement (representative
averaged SVM decoder outputs are shown in Fig. 3b, demonstrating simultaneous
decoding of residual touch and movement related neural activity). Related to Fig. 3c,
the participant was cued to repeatedly grasp, move, and release the can object during
shuffled series of ‘Demultiplexing With Sensory Feedback’ or ‘Control’ condition
trials. After each GRT trial, the participant reported his sense of agency (SoA) (i.e.,
“How in control did you feel of the movement and grip?”). The SoA score ranged
from 0 to 100, similar to previous studies [28, 30] (0= poor sense of control; 100=
perfect sense of control). Related to Fig. 3d, the participant engaged in a modified
GRTusing the can object. The participantwas instructed to repeatedly grasp, transfer,
and release the can object onto an elevated platform as fast as possible during shuffled
series of ‘DemultiplexingWith Sensory Feedback’ or ‘Control’ condition trials. Each
GRT assessment period consisted of two 60 s object transfer periods separated by
a 20 s rest period. All GRT trials were recorded with high-speed video for offline
analysis. We quantified the number of objects successfully transferred and the object
transfer times, similar to our previous studies [21, 22]. A successful transfer started
the moment the object was initially contacted by the hand and ended when the object
was fully released onto the platform (no objects were dropped). We also assessed
the interval between the touch decoder and motor decoder activations to examine
the neurophysiological substrates of GRT performance with and without sensory
feedback (high-speed video was also used in addition to decoder times to confirm
touch and motor event start times). The touch decoder or motor decoder start times
were calculated across GRT trials using the time each decoder crossed the device
activation threshold (device activation threshold = 0.5). We report the interval (s)
between the touch and motor decoder activations across testing conditions.

3 Results

The study participant uses his hand during limb reanimation. Unfortunately, his
hand is almost completely insensate due to the severe AIS-A C5 SCI (only residual
abnormal sensation remaining on the thumb; see [1]: Fig. S1). We first assessed
whether any residual sensory information could significantlymodulate neural activity
at the M1 BCI site (Fig. 1a) following skin stimulation. Sensory stimuli on the arm
and hand that the participant can and cannot feel significantly modulatedM1 activity
(Fig. 1b, c; four skin locations above, at, or below the AIS-A C5 SCI; F[3,380]= 9.8,
p < 0.001). Furthermore, the location of sensory stimulation could be decoded using
a non-linear support vector machine (SVM; Fig. 1d). These results demonstrate the
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ability to both evoke and decode residual sensory neural activity from M1 that is
below conscious perception, from functionally relevant hand dermatomes. Overall,
this intracortical electrophysiological evidence of sensory discompleteness extends
previous studies using noninvasive imaging of evoked activity [2–5].

Wenext used these residual hand sensory signals inM1 to control real-time closed-
loop sensory feedback (Fig. 2). Active touch decoders were constructed from M1
neural activity to detect object touch with high responseiveness (Fig. 2a; F[4,85] =
777, p < 0.001; task training cartoon: Fig. 2b, red hand dermatome touching the can
object during a standardized clinical assessment). While blindfolded, the participant
was unable to decipher object touch above chance (Fig. 2c, white bar). Closed-
loop sensory feedback triggered by residual hand touch signals (Fig. 2d, via haptic
feedback on sensate skin) almost fully restored the ability to detect object touch
(Fig. 2c, gray bar, t(30)= 3.5, p= 0.001; representative decoder inputs and outputs:
Fig. 2d). These results demonstrate that subperceptual sensory neural activity during
active touch can be decoded from M1 and enhanced into conscious perception for
functional benefit.

Our final set of experiments assessed the hypothesis that afferent and efferent
activity in M1 can be demultiplexed to simultaneously control devices for sensory
feedback and FES, constituting a ‘sensorimotor demultiplexing’ BCI (Fig. 3a). The
touch decoder controls closed-loop vibrotactile sensory feedback for enhancing
subperceptual hand touch events (red band on bicep, Fig. 3a). The motor decoder
simultaneously controls FES of the arm to produce the desired hand movement
(blue bands on forearm, Fig. 3a). Real-time ‘sensorimotor demultiplexing’ was
demonstrated during a modified grasp and release test (GRT; [29]).

Residual touch (Fig. 3b, red) and motor intention signals (Fig. 3b, blue) were
reliably demultiplexed in real-time (during cued events, while the participant inter-
acted with the standarized ‘can object’). This result demonstrates that the touch
decoder is not significantly impacted by neural activity from simultaneous move-
ment intention events. ‘Sensorimotor demultiplexing’ BCI control was next enabled
using the simultaneous decoding of touch and motor intention events during a set
of upper limb assessments. This closed-loop ‘sensorimotor demultiplexing’ BCI
system enabled significant improvements in sense of agency (Fig. 3c), BCI system
speed (Fig. 3d, left), and object transfer time (Fig. 3d, right) compared to a motor-
only BCI control. Therefore, rapid closed-loop sensory feedback not only augments
sensory function, but also augments motor function. These findings demonstrate a
BCI system that simultaneously demultiplexes afferent and efferent activity from
cortex for controlling multiple assistive devices and enhancing function.

4 Brief Discussion

Severe AIS-A SCI should essentially eliminate sensory information transmission
to the brain that originates from skin innervated from below the lesion. Recent
studies demonstrate that residual subperceptual sensory information from below



Restoring the Sense of Touch Using a Sensorimotor … 83

the lesion is transmitted to sensory areas of the brain, even following severe clin-
ically complete SCI (‘sensory discompleteness’: [2–5]). We extend these results,
and show that sensory discompleteness can be leveraged by a BCI for improve-
ment in function. The sensorimotor demultiplexing capability can impact how BCI
electrode array implant locations are determined for interfaces seeking to decode
multiplexed information classes relevant for BCI control. For future BCIs, it will be
critical to perform multimodal pre-surgical brain mapping to localize these relevant
neural representations and further inform electrode array implant location. Overall,
our results support the hypothesis that subperceptual residual neural information can
be reliably decoded from the human brain, and used to augment function.

Funding Financial support for this study came from Battelle Memorial Institute and The Ohio
State University Center for Neuromodulation.
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A Brain-Spine Interface Complements
Deep-Brain Stimulation

Tomislav Milekovic

Abstract This chapter presents an interview with Tomislav Milekovic, who led
a large multinational team that developed a brain-spine interface to help patients
with Parkinson’s disease (PD). This team submitted their work to the BCI Research
Awards in 2020 and won second place. Their interface worked in synergy with deep
brain stimulation (DBS) and could potentially help patients who have difficulty with
gait and balance, which are major problems in PD. This interview presents results
fromaprimatemodel, and their group is nowworking toward clinical trials in humans.

1 Introduction

More than 90% of people with Parkinson’s disease (PD) suffer from gait and balance
deficits that reduce quality of life. These deficits are associated with disrupted
communication between the brain and spinal cord resulting from the depletion of
dopaminergic and cholinergic circuits in PD. In late-stage PD, commonly available
therapies such as sensory cuing, dopamine replacement strategies and deep brain
stimulation (DBS) typically cannot overcome these and other deficits. A brain-spine
interface could complement other therapies to help patients with PD.

T. Milekovic (B)
School of Life Sciences, Center for Neuroprosthetics (CNP) and Brain Mind Institute, Swiss
Federal Institute of Technology (EPFL), Lausanne, Switzerland
e-mail: tomislav.milekovic@epfl.ch

Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and, University of
Lausanne (UNIL), Lausanne, Switzerland

Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL,
Lausanne, Switzerland

Department of Fundamental Neuroscience, Faculty of Medicine, University of Geneva, Geneva,
Switzerland

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
C. Guger et al. (eds.), Brain-Computer Interface Research,
SpringerBriefs in Electrical and Computer Engineering,
https://doi.org/10.1007/978-3-030-79287-9_9

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79287-9_9&domain=pdf
mailto:tomislav.milekovic@epfl.ch
https://doi.org/10.1007/978-3-030-79287-9_9


88 T. Milekovic

Their project entailed over two dozen authors from sixteen institutes in the US,
China, and different areas of the EU. This was the largest project among all nominees
for the 2020 BCI Research Awards in terms of the number of authors and affiliations.
The full title, authors, and affiliations were:

A Brain–Spine Interface Complements Deep-Brain Stimulation
to both Alleviate Gait and Balance deficits and Increase Alertness in a Primate
Model of Parkinson’s Disease
Tomislav Milekovic1,2,3,4, Flavio Raschellà1,2,3,5, Matthew G. Perich2, Eduardo
Martin Moraud1,2,3,6, Shiqi Sun1,2,3,7, Giuseppe Schiavone8, Yang Jianzhong9,10,
Andrea Galvez1,2,3,4, Christopher Hitz1, Alessio Salomon1, Jimmy Ravier1,2,3,
David Borton1,11, Jean Laurens1,12, Isabelle Vollenweider1, Simon Borgognon1,2,3,
Jean-Baptiste Mignardot1, Wai Kin D Ko9,10, Cheng YunLong9,10, Li Hao9,10,
Peng Hao9,10, Laurent Petit13,14, Qin Li9,10, Marco Capogrosso1, Tim Denison15,
Stéphanie P. Lacour8, SilvestroMicera5,16, ChuanQin10, JocelyneBloch1,2,3,6, Erwan
Bezard9,10,13,14, Grégoire Courtine1,2,3,6

1Center for Neuroprosthetics (CNP) and Brain Mind Institute, School of Life
Sciences, Swiss Federal Institute of Technology (EPFL), Switzerland

2Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and
University of Lausanne (UNIL), Switzerland

3Defitech Center for Interventional Neurotherapies (NeuroRestore),
CHUV/UNIL/EPFL, Switzerland

4Department of Fundamental Neuroscience, Faculty of Medicine, University of
Geneva, Switzerland

5CNP and Institute of Bioengineering, School of Engineering, EPFL, Switzerland

6Department of Neurosurgery, CHUV, Switzerland
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7Beijing Engineering Research Center for Intelligent Rehabilitation, College of
Engineering, Peking University, People’s Republic of China

8CNP, Institute of Microengineering and Institute of Bioengineering, School of
Engineering, EPFL, Switzerland

9Motac Neuroscience, UK

10Institute of Laboratory Animal Sciences, China Academy of Medical Sciences,
People’s Republic of China

11Carney Institute for Brain Science, School of Engineering, Brown University, USA

12Department of Neuroscience, Baylor College of Medicine, USA

13Université de Bordeaux, Institut des Maladies Neurodégénératives (IMN), UMR
5293, France

14CNRS, IMN, UMR 5293, France

15Oxford University, UK

16The BioRobotics Institute, Scuola Superiore Sant’Anna, Italy
This project won second place in the 2020 BCI Research Awards in our first tie

for second place. This book includes a chapter with an interview with the first author
of the other second-place winning project, Dr. Moly. That project also involved a
BCI system to help people who have difficulty moving, although their system was
different in many other ways.

2 Interview

Hi Tomislav, you submitted your BCI research “A Brain-Spine Interface
Complements Deep-Brain Stimulation to Both Alleviate Gait and Balance
Deficits and Increase Alertness in a Primate Model of Parkinson’s Disease”
to the BCI Award 2020 and won 2nd place. Could you briefly describe what this
project was about?

Tomislav: We previously developed a brain–spine interface—a neuroprosthesis that
infers movement intentions from cortical activity and then modulates spinal cord
stimulation to elicit or reinforce those movements. We used this brain-spine inter-
face to restore walking of non-human primates after paralyzing spinal cord injury.
Somewhat similar to spinal cord injury, Parkinson’s disease also disrupts the commu-
nication between the brain and spinal cord. As a result, the Parkinson’s disease
patients can experience pronounced gait and balance deficits. A cure or effective
palliative treatment for these patients is still missing. In this study, we redesigned the
brain-spine interface for the application in Parkinson’s disease.We demonstrated that
this neuroprosthesis substantially alleviated Parkinsonian gait and balance deficits
in a non-human primate model of the disease. Furthermore, we showed that the
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Fig. 1 Prof. Gregoire Courtine, who co-directs the NeuroRestore center together with Prof. Joce-
lyne Bloch and is the lead senior author of the study, displays the main components of the brain-
spine interface—a neuroprosthetic system that directly links the brain with the spinal cord to alle-
viate neurological motor deficits. All devices needed for the clinical brain-spine interface are FDA
approved for medical use, or have an FDA IDE approval and are currently being used in human
clinical trials. Preparations for a clinical trial to demonstrate safety and efficacy of the brain-spine
interface in people with Parkinson’s are underway

brain-spine interface synergizes with the deep brain stimulation, which is a standard
clinical therapy for late-stage Parkinson’s disease patients (Fig. 1).

What was your goal?
Tomislav: Our goal was to develop and demonstrate a therapy that can alleviate gait
and balance deficits of Parkinson’s disease patients, a condition that currently has no
effective treatments (Fig. 2).

What technologies did you use?
Tomislav: We assembled a brain-computer interface system that comprised:

1. Blackrock microelectrode arrays implanted into the left and right leg motor
cortex to record action potentials of motor cortical neurons.

2. A skull mounted pedestal and a wireless data transmission module used to send
the neural signals to an external receiver to allow unimpeded behavior of the
subjects.

3. Blackrock Neural Signal Processor to acquire the wirelessly received neural
signals.
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Fig. 2 Illustration of the brain-spine interface validated in a non-human primate model of
Parkinson’s disease. This neuroprosthesis infers movement attempts from the brain activity wire-
lessly acquired by a neurosensor. The neuroprosthesis then send wireless stimulation commands to
the spinal implant. The spinal implant stimulates the spinal cord to reinforce attempted movements
and, therefore, alleviate gait and balance deficits of Parkinson’s disease

4. A control computer that ran a software application developed in our lab. This
application acquired the neural signals, processed them, inferred the intended
movements and then sent out commands to the spinal cord stimulation system
to stimulate the spinal cord in a way that reinforces intended movements.

5. A Medtronic software application that ran on the control computer that
wirelessly relayed the stimulation commands towards the subject.

6. A Medtronic Patient Programmer that received the wireless stimulation
commands and passed them on to through the skin.

7. AMedtronic Activa RC implanted pulse generator that received the stimulation
commands and elicited the stimulation.

8. Two in-lab designed and fabricated 8-electrode spinal leads implanted over the
dura of the lumbosacral spinal cord that delivered the stimulation.

Apart from the spinal lead, which had to be designed specifically for non-human
primates in order to fit within the much smaller spinal canal when compared to
humans, all other devices are FDA approved for medical use, or have an FDA IDE
approval and are currently being used in human clinical trials.We intentionally relied
on medical grade devices to provide a rapid path towards clinical use of our system
(Fig. 3).
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Fig. 3 The critical components of the brain-spine interface. Right hand: a 96-channel microelec-
trode Blackrock array is implanted into the phantom of the brain in the area corresponding to the
leg motor cortex. These arrays are used to record action potentials of cortical neurons that represent
movement attempts. The brain-spine interface acquires these brain signals to infer leg movement
attempts. Left hand: a Medtronic implantable pulse generator connects to a multielectrode lead
to form a spinal implant. Brain-spine interface uses inferred movement attempts to wirelessly
control the spinal implant in real time. The spinal implant stimulates the spinal cord to reinforce
the attempted movements, and therefore alleviate gait and balance deficits of Parkinson’s disease

What kinds of people could benefit from your research?
Tomislav: People with Parkinson’s disease that develop gait and balance deficits.
These deficits are common at the late stage of the disease and are one of the lead
causes of injury for Parkinson’s disease patients. Both the deficits and the injuries
that result from them severely impact the quality of life for these patients.

Do you think your work as future potential for clinical use?
Tomislav: Our brain-spine interface relied on medical grade devices. This gives us
a clear path towards clinical trials and subsequent use of the technology around the
world.We are currently preparing applications for regulatory approval to conduct the
first-in-human clinical trials with a therapy system that was derived from the brain-
spine interface described in our project. We are looking forward to demonstrating
the efficacy of this system in patients with Parkinson’s disease in the near future.

What was it like to win the second place in the BCI Award 2020?
Tomislav: Exhilarating. I’ve spent my whole research career (10+ years) in the BCI
field and was elated to receive this recognition of my work from the BCI research
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community. Equally important, it was great to meet with the BCI community, espe-
cially since this year’s BCI social at the SFN conference could not be held. I do hope
to see everyone again in the coming years.

How can students and other researchers get involved in your research?
Tomislav: My host institution, the Defitech Center for Interventional Neurother-
apies—NeuroRestore—is engaged in several cutting-edge BCI clinical trials. The
center is nested in Lausanne, Switzerland, which features beautiful views over the
Lake Geneva and has amongst the highest academic salaries worldwide. We have
several open positions and are very much open for collaborations. They can find
more details at www.neurorestore.swiss.

http://www.neurorestore.swiss
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Abstract People with hearing impairment have difficulty hearing a speaker’s voice
amidst competing sound sources. While traditional hearing aids can suppress back-
ground noise, they cannot help a user listen to a single conversation among many
without knowing which speaker the user is attending to. In this work, we design a
brain-controlled hearing aid that can automatically determine the speaker that the
user is focusing on and amplify that speaker. We propose a novel speech separa-
tion algorithm to automatically separate speakers in mixed audio without any need
for prior training on the speakers. The separated speakers are compared to evoked
neural responses in the auditory cortex of the listener to determine and amplify the
attended speaker. We demonstrate that the proposed brain-controlled hearing aid
significantly improves speech perception of the attended speaker. By combining
the latest advances in speech processing technologies and brain-computer inter-
faces, the brain-controlled hearing aid can assist individuals with hearing impair-
ments and reduce the listening effort for normal hearing subjects in adverse acoustic
environments.

Keywords Speech separation · Auditory attention decoding · Deep learning ·
Hearing aid · Brain-computer interface (BCI)
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1 Introduction

Speech communication in acoustic environments with more than one speaker can be
extremely challenging for hearing impaired listeners [1]. Assistive hearing devices
have seen significant progress in suppressing background noises that are acousti-
cally different from speech [2, 3], but they cannot enhance a target speaker without
knowing which speaker the listener is conversing with [4]. Recent discoveries of
the properties of speech representation in the human auditory cortex have shown an
enhanced representation of the attended speaker relative to unattended sources [5].
These findings have motivated the prospect of a brain-controlled assistive hearing
device to constantly monitor the brainwaves of a listener and compare them with
sound sources in the environment to determine the most likely talker that a subject is
attending to [6]. Then, this device can amplify the attended speaker relative to others
to facilitate hearing that speaker in a crowd. This process is termed auditory attention
decoding (AAD), a research area that has seen considerable growth in recent years.

Because the attentional focus of the subject is determined by comparing the brain-
waves of the listener with each sound source, a practical AAD system needs to
automatically separate the sound sources in the environment to detect the attended
source and subsequently amplify it. One of the difficulties is speaker-independent
speech separation [7], meaning the processing must be generalized to new, unseen
speakers when the subject converses with a new person. In recent years, several deep
neural network-based methods have been proposed to address this problem [8, 9,
10]. However, they were proposed for non-causal speech separation which required
an entire utterance to perform the separation, which limited real-time applications,
such as in a hearing device. To alleviate this limitation, we propose a causal, speaker-
independent automatic speech separation algorithm, online deep attractor network
(ODAN),which can separate unseen speakerswith low latency.By combiningODAN
and AAD, we introduce a speaker-independent AAD system without clean sources,
as shown in Fig. 1. Because this system can generalize to new speakers, it overcomes
a major limitation of the previous AAD approach that required training on the target
speakers [9]. The proposed AAD framework enhances the subjective and objective
quality of perceiving the attended speaker in a multi-talker mixture.

By combining recent advances in automatic speech processing and brain-
computer interfaces, this study represents a major advancement toward solving one
of the most difficult barriers in actualizing AAD. This solution can help people with
hearing impairment communicate more easily.
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Fig. 1 Schematic of the proposed brain-controlled assistive hearing device. A brain-controlled
assistive hearing device can automatically amplify one speaker amongmany. A deep neural network
automatically separates each of the speakers from the mixture and compares each speaker with the
neural data from the user’s brain to accomplish this goal. Then, the speaker that best matches the
neural data is amplified to assist the user

2 Methods

2.1 Speaker-Independent Speech Separation

The problem of speech separation is formulated as estimating C sources,
s1(t), . . . , sc(t) ∈ R1×T from the mixture waveform x(t) ∈ R1×T :

x(t) =
C∑

i=1

si (t) (1)

Taking the short-time Fourier transform (STFT) of both sides formulates the
source separation problem in the time–frequency (T-F) domain, where the complex
mixture spectrogram is the sum of the complex source spectrograms:

X( f, t) =
C∑

i=1

Si ( f, t) (2)

where X( f, t) and Si ( f, t) ∈ CF×T . One common approach for recovering the
individual sources, Si , is to estimate a real-valued time–frequency mask for each
source, Mi ∈ RF×T such that

∣∣∣Ŝi ( f, t)
∣∣∣ = |X( f, t)| Mi ( f, t) (3)
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The waveforms of the separated sources are then approximated using the inverse

STFT of
∣∣∣Ŝi ( f, t)

∣∣∣ using the phase of the mixture audio:

ŝi (t) = I FFT
(∣∣∣Ŝi ( f, t)

∣∣∣∠ X( f, t)
)

(4)

We design online deep attractor network (ODAN) to estimate the mask for each
source from the mixture. In ODAN framework, source separation is performed by
first projecting the mixture spectrogram onto a high-dimensional space where T-
F bins belonging to the same source are placed closer together to facilitate their
assignment to the corresponding sources. This procedure is performed in multiple
steps. First, themixturemagnitude spectrogram, |X( f, t)|., is projected onto a tensor,
V ( f, t, k), where each time–frequency bin is represented by a vector of length K .We
refer to this representation as the embedding space. The neural network that embeds
the spectrogram consists of a four-layer long short-term memory (LSTM) network
followed by a fully connected layer. To assign each embedded T-F bin to one of the
speakers in the mixture, we track the centroid of the sakers in the embedding space
along time. We refer to the centroids of the source i and at time step τ as the attractor
points, Aτ,i (k), because they pull together and attract all the embedded T-F bins that
belong to the same source. Therefore, the distance (defined as the dot product [11])
between the embedded T-F bins to each of the attractor points determines the source
assignment for that T-F bin, which is then used to construct a mask to recover that
source.

Mτ,i ( f ) = Sof tmax

(
∑

k

Aτ,i (k) Vτ ( f, k)

)
(5)

where the Sof tmax function is defined as:

Sof tmax(xi ) = exi
∑C

i=1 e
xi

The masks subsequently multiply by the mixture magnitude spectrogram to esti-
mate themagnitude spectrograms of each source (Eq. 3). Figure 2 shows the flowchart
of the complete operation of the ODAN system.

2.2 Behavioral AAD Experiment and Neural Measurements
Neural Recordings

To test the feasibility of using the ODAN speech separation network in a cognitively
controlled hearing device, we used invasive electrophysiology to measure neural
activity from three neurosurgical patients undergoing treatment for epilepsy. Two
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Fig. 2 The architecture of ODANet. In the first frame, attractors are estimated with the help of
anchor points. In subsequent frames, the attractor points are updated by dynamically merging the
previous and current attractors estimates

subjects (subjects 1 and 2) were implanted with high-density subdural electrocor-
ticography (ECoG) arrays over their language dominant temporal lobe, providing
coverage of the superior temporal gyrus (STG), which selectively represents attended
speech [5]. The third subject was implanted with bilateral stereotactic EEG (sEEG)
with depth electrodes in Heschl’s gyrus (HG; containing primary auditory cortex)
and STG. This implantation resulted in varying amounts of coverage over the left and
right auditory cortices of each subject. All subjects had self-reported normal hearing
and consented to participate in the experiment.

Each subject participated in the following experiments for this study: single-
talker (S-T) and multi-talker (M-T) experiments. In the S-T experiment, each subject
listened to four continuous speech stories (each story was 3 min long) for a total of
12 min of speech material. The stories were uttered once by a female and once by
a male speaker (hereafter referred to as Spk1 and Spk2, respectively). For the M-T
experiment, subjects were presented with a mixture of the same speech stories as
those in the S-T experiment where both speakers were combined at a 0 dB target-
to-masker ratio. The M-T experiment was divided into 4 behavioral blocks, each
containing a mixture of 2 different stories spoken by Spk1 and Spk2. Before each
experimental block, subjects were instructed to focus their attention on one speaker
and to ignore the other. All subjects began the experiment by attending to the male
speaker and switched their attention to the alternate speaker on each subsequent
block. To ensure that subjects were engaged in the task, we intermittently paused the
stories and asked subjects to repeat the last sentence of the attended speaker before
the pause. All subjects performed the task with high behavioral accuracy and were
able to report the sentence before the pause with an average accuracy of 90.5% (S1:
94%, S2: 87%, S3: 90%). Speech sounds were presented using a single loudspeaker
placed in front of the subject at a comfortable hearing level, with no spatial separation
between the competing speakers.
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2.3 Decoding the Listener’s Attentional Focus

The reconstructed spectrogram from the auditory cortical responses of a listener
in a multi-talker speech perception task is more similar to the spectrogram of the
attended speaker than that of the unattended speaker [5]. Therefore, we used a
simple classification scheme in which we computed the correlation between the
reconstructed spectrograms with both clean attended and unattended speaker spec-
trograms over a specified duration. Next, the attended speaker is determined as the
speaker with a higher correlation value. We used a linear reconstruction method
[12] to convert neural responses back to the spectrogram of the sound. This method
calculates a linear mapping between the response of a population of neurons to the
time–frequency representation of the stimulus [12]. This mapping is performed by
assigning a spatiotemporal filter to the set of electrodes, which is estimated by mini-
mizing the MSE between the original and reconstructed spectrograms. We estimated
the reconstruction filters using only the neural responses to speech in the S-T exper-
iment. Then, we fixed the filters and used them to reconstruct the spectrogram in the
M-T experiments under different attention focuses.

2.4 Psychoacoustic Experiment

To test if the difficulty of attending to the target speaker is reduced using the ODAN-
AAD system, we performed a psychoacoustic experiment comparing the original
mixture and sounds in which the decoded target speaker was amplified by 12 dB.
This particular amplification level has been shown to significantly increase the intel-
ligibility of the attended speaker, while keeping the unattended speakers audible
enough to enable attention switching [13]. Subjects were asked to rate the difficulty
of attending to the target speaker in three conditions when listening to the following:
(1) the raw mixture, (2) enhanced target speech using the output of ODAN-AAD,
and (3) enhanced target speech using the output of the Clean-AAD system. Twenty
listeners with normal hearing participated in the psychoacoustic experiment where
they each heard 20 sentences in each of the three experimental conditions in random
order. Subjects were instructed to attend to one of the speakers and report the diffi-
culty of focusing on that speaker. Subjects were asked to rate the difficulty on a scale
from 1 to 5 using the mean opinion score (MOS [14]).
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3 Results

3.1 Accuracy of Attention Decoding

The duration of the signal used for the calculation of the correlation is an impor-
tant parameter and affects both the decoding accuracy and speed. Longer durations
increase the reliability of the correlation values, hence improving the decoding accu-
racy. We examined the decoding accuracy with varying duration of the temporal
window. The accuracy was calculated for the following cases: when using ODAN
spectrograms and when using the actual clean spectrograms. We found no signifi-
cant difference in decoding accuracy with ODAN or the clean spectrograms when
different time windows were used (Wilcoxon rank sum test, P = 0.9). This finding
confirms that sources that the ODAN algorithm automatically separates result in the
same attention decoding accuracy as obtained with the actual clean spectrograms. As
expected, increasing the correlation window resulted in improved decoding accuracy
for both ODAN and actual clean sources (Fig. 3a).

Next, we simulated a dynamic switching of attention where the neural responses
were concatenated from different attention experiment blocks such that the neural
data alternated between attending to the two speakers. We compared the correlation

Fig. 3 Evaluating the accuracy of speech separation and attention decoding methods. a Attention
decoding: The percentage of segments in which the attended speaker was correctly identified for
a varying number of correlation window lengths when using ODAN and the actual clean spectro-
grams. There was no significant difference between using the clean and the ODAN spectrograms
(Wilcoxon rank sum test, P = 0.9). bDynamic switching of attention was simulated by segmenting
and concatenating the neural data into alternating 60-s bins. The dashed line indicates switching
attention. The average correlation values from one subject are shown using a 4-s window size for
bothODANand the actual clean spectrograms. The shaded regions denote SE. c Subjective listening
test to determine the ease of attending to the target speaker. Twenty healthy subjects were asked
to rate the difficulty of attending to the target speaker when listening to (i) the raw mixture, (ii)
the ODAN-AAD amplified target speaker, and (iii) the clean-AAD amplified target speaker. The
detected target speakers in (ii) and (iii) were amplified by 12 dB relative to the interfering speakers.
The bar plots show the median MOS ± SE for each condition. The enhancement of the target
speaker for the ODAN-AAD and clean-AAD systems was 100 and 118%, respectively (P < 0.001)
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values between the reconstructed spectrograms with both ODAN and the actual
clean spectrograms using a sliding window of 4 s. Then, we averaged the correlation
values over the segments by aligning them according to the time of the attention
switch. Figure 3b shows the average correlation for one example subject over all the
segments where the subject was attending to Spk1 in the first 60 s and switched to
Spk2 afterward. The overlap between the correlation plots calculated from ODAN
and the actual clean spectrograms shows that the temporal properties of attention
decoding are the same in both cases; hence, ODAN outputs can replace the clean
spectrograms without any significant decrease in decoding speed.

3.2 Increased Subjective Quality of the Attended Speaker

The bar plots in Fig. 3c show the median MOS ± standard error (SE) for each
of the three conditions. The average subjective score for the ODAN-AAD shows
a significant improvement over the mixture (56% improvement; paired t test, P <
0.001), demonstrating that the listeners had a stronger preference for the modified
audio than for the original mixture. Figure 3c also shows a small but significant
difference between the average MOS score with the actual clean sources and that
with ODAN separated sources (78% vs. 56% improvement over the mixture). The
MOS values using the clean sources show the upper bound of AAD improvement if
the speaker separation algorithm was perfect. Therefore, this analysis illustrates the
maximum extra gain that can be achieved by improving the accuracy of the speech
separation algorithm (14% over the current system).

4 Discussion

We present a framework for AAD that addresses the lack of access to clean speech
sources in real-world applications. Our method uses a novel, real-time speaker-
independent speech separation algorithm that uses deep-learning methods to sepa-
rate the speakers from a single channel of audio. Then, the separated sources are
compared to the reconstructed spectrogram from the auditory cortical responses of
the listener to determine and amplify the attended source. The integration of speaker-
independent speech separation in the AAD framework is also a novel contribution.
We tested a system on two unseen speakers and showed improved subjective and
objective perception of the attended speaker when using the ODAN-AAD frame-
work. A major advantage of our system over previous work [15] is the ability to
generalize to unseen speakers, which enables a user to communicate more easily
with new people. Because ECoG electrodes reflect the summed activity of thousands
of neurons in the proximity of the electrodes [16], the spectral tuning resolution of
the electrodes is relatively low [17]. As a result, the reconstruction filters that map



Automatic Speech Separation Enables Brain-Controlled … 103

the neural responses to the stimulus spectrogram do not have to be trained on specific
speakers and can generalize to novel speakers, as we have shown previously [5, 18].

In summary, our proposed speaker-independent AAD system represents a feasible
solution for a major obstacle in creating a brain-controlled hearing device, therefore
bringing this technology a step closer to reality. Such a device can help hearing
impaired listeners more easily communicate in crowded environments and reduce
the listening effort for normal hearing subjects, therefore reducing listening fatigue.

Our ongoing research on this problem focuses on: improving the robustness of
the system to various noisy, reverberant acoustic conditions; designing the models
that require lower computation and power resources for wearable devices; and using
noninvasive neural recordings, including scalp EEGwith the same or different gender
mixtures [6], around the ear EEG electrodes [19], and in-ear EEG recordings [20].
These EEG electrode approaches can further increase the fidelity of the neural
recording to improve both the accuracy and speed of attention decoding.

Acknowledgements This work was funded by a grant from the National Institutes of Health,
NIDCD-DC014279, National Institute of Mental Health, R21MH114166, and the Pew Charitable
Trusts, Pew Biomedical Scholars Program.
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A High-Performance Handwriting BCI

Francis R. Willett

Abstract One of the main goals of brain-computer interface (BCI) research is to
restore communication to people with people with little or no control of their move-
ments. In this chapter, we interviewed Frank Willett about his work with a BCI to
decode handwriting movements. This BCI won first place in the 2020 BCI Research
Awards. This interview presents some information about how their BCI system
helped a person with paralysis. Their system attained 18 words per minute with
very high accuracy. Dr. Willett also talked about challenges for clinical translation
and how students and others could get involved.

Keywords Handwriting · Paralysis ·Microelectrode arrays · Brain-computer
interface (BCI)

1 Introduction

Francis R. Willett, Donald T. Avansino, Leigh Hochberg, Jaimie Henderson and
Krishna V. Shenoy submitted their work to the BCI Award 2020 and won 1st place!
The team joined forces from Stanford University, the Howard Hughes Medical Insti-
tute, Brown University, Harvard Medical School and the Massachusetts General
Hospital to decode handwriting with a BCI. We had the chance to talk with Frank
about his work. His team also submitted a video with additional information about
their 2020 project.1

1 https://www.youtube.com/watch?v=wyFj3yl3Aik.
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This team is not new to the BCI Research Awards. Some people from the same
group won first place last year and the preceding year, at the 2018 and 2019 BCI
Research Awards. Dr. Willett was nominated in 2014. Dr. Hochberg, a key member
of Dr. Willett’s team, was an author of a project that was nominated in 2012, and
Dr. Hochberg was on the 2012 jury. Like the project they submitted to the 2020 BCI
Research Awards, their earlier work that was nominated involved different types of
implanted BCIs to help persons with severe difficulty moving. This year’s first-place
project was:

A High-Performance Handwriting BCI
Francis R. Willett1,2, Donald T. Avansino1, Leigh Hochberg3, Jaimie Henderson1,
Krishna V. Shenoy1,2

1Stanford University, USA

2Howard Hughes Medical Institute, USA

3Brown University, Harvard Medical School, Massachusetts General Hospital, USA

2 Interview

Hi Frank, you won 1st place at the International BCI Research Award 2020
competition. Could you briefly describe what this project was about?

Frank: Our project was about building an intracortical BCI to decode handwriting
movements in a person with paralysis. This approach can enable someone who is
locked-in to type text on a computer by attempting to handwrite it. We demonstrated
our BCI in real-time in a person whose hand was paralyzed, and showed that it
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effectively doubled the prior record for BCI communication rate while achieving
high accuracies.

What was your goal?
Frank: Our goal was to demonstrate the feasibility of decoding dexterous behav-
iors from a person with paralysis, with enough accuracy and speed to significantly
improve upon the state of the art in communication BCIs. First, we had to assess
whether dexterous handwriting movements could even be decoded at all in someone
who has been paralyzed for many years, since to our knowledge no one has done
this before. To our surprise, we found that when we asked our participant to attempt
to handwrite single letters, they evoked strong and repeatable patterns of neural
activity that encoded the pen movement. Our next goal was to see if we could decode
complete handwritten sentences, thus allowing someone to communicate a message
by attempting to handwrite it.

What technologies did you use?
Frank: We used intracortical microelectrode arrays combined with a variety of
computational techniques to achieve high decoding accuracies on this challenging
problem. Themajor challenge we faced was training decoders on data where no overt
behavior was available, since our participant’s hand was paralyzed. We borrowed
techniques from the automatic speech recognition field to solve this problem, using
hidden Markov models to infer when our participant wrote each letter in the training
data. After completing this inference step, we then used machine learning tech-
niques to train recurrent neural networks to convert the neural activity into the
probability of each letter being written at the current time. Finally, we used large-
vocabulary, general-purpose languagemodels to autocorrect for occasional decoding
errors (Fig. 1).

What kinds of people could benefit from your research?
Frank: The people that would benefit most from this kind of research are those with
severe paralysis or who are ‘locked-in’ and have no other means of rapid commu-
nication. One promising thing about this work is that it significantly increases the
speed of BCI communication (to approximately 18 words per minute), making it
more likely that someone could benefit from this technology even if they have some
rudimentary, retained motion.

Do you think your work has future potential for clinical use?
Frank: Yes, we think that the high speed and accuracy that our BCI achieved on
general-purpose sentence writing is promising for clinical viability. To our knowl-
edge, this is the fastest communication BCI that is also accurate and general enough
to enable the user to write any sentence. It is also entirely self-paced and leaves the
eyes free to look anywhere. One remaining challenge, however, is the need to retrain
the decoder each day to account for changes in the neural recordings that occur over
time. We are currently working on methods to retrain the decoder in an unsupervised
way in the background, so that the user does not have to be interrupted for retraining.
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Fig. 1 Frank Willett presents his first-place award certificate

This is still an outstanding challenge for BCIs in general, but it is encouraging that
many groups are beginning to tackle this problem. I think it’s likely that a combina-
tion of algorithmic innovation on this front, combined with improvements to device
stability, will continue to improve the robustness of intracortical BCIs.

What was it like to win the BCI Award 2020?
Frank: It’s great to be recognized as doing useful and interesting research, and I’m
thankful that the field has the BCI awards as a place to highlight and be inspired by
the latest BCI developments.

How can students and other researchers get involved in such research?
Frank: Our work is highly interdisciplinary, intersecting with hardware and device
design, computational techniques from computer science and machine learning, and
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basic neuroscience. Students and researchers can contribute by working on the next
generation of electrode technology, designing new algorithms for decoding neural
activity, and expanding our knowledge of the brain circuits that underly the control
of movement. In the intracortical BCI field, more labs are now getting involved in
clinical trials, as we have done here. In addition, new companies are joining the field
(e.g. Neuralink, Paradromics). The future looks bright for BCIs!



A Neuromorphic Brain-Computer
Interface for Real-Time Detection
of a New Biomarker for Epilepsy Surgery

Karla Burelo

Abstract The annual BCI Research Awards highlight each year’s best projects
involving BCIs. This year, one of the submissions that was nominated for an award
introduced a new approach to help surgeons identify areas that cause seizures. This
new work could make epilepsy surgeries more effective while helping us understand
what causes epilepsy and why medications to help people with epilepsy are not
always effective. Future work could help other types of patients and even identify
patterns outside of the brain. This chapter presents an interview with Karla Burelo,
the lead author of this project.

Keywords Epilepsy · EEG · ECoG · High-frequency oscillations (HFOs) ·
Brain-computer interface (BCI)

1 Introduction

Some patients with epilepsy can use medications to reduce their seizures. However,
about a quarter of these patients have drug-resistant epilepsy or DRE [1–2]. For them,
surgery may be the best option to reduce or eliminate seizures by removing the brain
areas that trigger seizures. Karla Burelo and her team were nominated for a BCI
Research Award for their project, which was:

Karla Burelo1,2, Mohammadali Sharifshazileh1,2, Johannes Sarnthein2, and
Giacomo Indiveri1

A neuromorphic brain computer interface for real-time detection of a new
biomarker for epilepsy surgery

1University ofZurich andETHZurich, Institute ofNeuroinformatics, Switzerland
2 University Hospital and University of Zurich, Switzerland
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Fig. 1 The members of the HFO group: Ece Boran, Mohammadali Sharifshazileh, Tommaso
Fedele, Karla Burelo, Giacomo Indiveri and Johannes Sarnthein. The HFO group is a synergy
between the Institute of Neuroinformatics, UZH and ETH, and the Clinic for Neurosurgery, USZ

We interviewed the lead author, Karla Burelo, to learn more about how she devel-
oped a new approach to improve epilepsy surgery based on High Frequency Oscil-
lations (HFOs) with her team. The interview shows how the team had to consider
hardware, software, and algorithms. They also addressed both invasive (ECoG) and
non-invasive (EEG) ways to measure brain activity, because surgeons often use EEG
to identify regions of interest and then use ECoG for more precise detail. Figure 1
shows Karla and her team, who also contributed a video about their project.1

2 Interview

You submitted your project about a neuromorphic brain-computer interface for
real-time detection of a new biomarker for epilepsy surgery to the BCI Award

1 https://www.youtube.com/watch?v=Pw83Mrza_rg.

https://www.youtube.com/watch%3Fv%3DPw83Mrza_rg
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2020, and you were nominated with this great project. Can you describe what
this project is about?

Karla: Sure. Our project tried to combine neuromorphic engineering [3, 4, 5, 6, 7,
8] and a new way to record the signals that provides a better signal to noise ratio.
We want to provide a new device that can be used for long term monitoring or
during surgery. That is the big scope of the project. Here, we focus on explaining all
the hardware engineering we’ve been doing to provide the device, and the software
techniques that we use for a neural network that can solve the task of finding the
biomarkers.

How did you distribute the work in your team?

Karla: Mohammad is mostly in charge of designing all the hardware. He designed
the filters and amplifiers that are connected with the neuromorphic chip. He didn’t
design the chip—a group in our lab designed it—but Mohammad designed all the
front end, including the amplifiers, filters, and signal-to-spike conversion, which is
very important [9]. Onmy side, I looked at how to build a spiking neural network that
can solve the task of finding these patterns, but also can be mapped into the hardware
we have [10]. We were not going to have them both at the same time, so these tasks
were in parallel. I was working on the spiking network trying to constrain to what
the hardware would do (Fig. 2). The idea to come up with this project was from
Giacomo and Johannes. Johannes does the intracranial recordings together with the
doctors and Giacomo has developed the ideas for neuromorphic engineering.

However, a lot of people are involved in the current state of the project and I would
like to acknowledge the Neuromorphic Cognitive Group for developing the software
to use the chip, developing the circuits and building blocks in the rest of the chip, for
discussing together, and for the general support.

Maybe you can explain the different tools that you used for this project?

Karla: For the hardware design, we used Cadence®. We also used Python™ for the
low-level software framework. We collaborated with a company called SynSense in
Switzerland. They also have the rights to the chip with the spiking neural network.
There’s a collaboration to have the software tools to interface with the hardware,
which is called SAMNA. This is the software that you can use to talk to the chip
if you want to send some spikes or just test the spiking neural network. For the
software, we used Python.We also used Brian2 [11], which is a simulator for spiking
neural networks. It’s used to solve differential equations for a spiking neural network.
There’s another toolbox that was designed here at the Institute of Neuroinformatics
that is called Teili [12]. This is a toolbox on top of Brian2 to solve some minor issues
with the connections of the neurons. It also wraps around the equations that we have
that describe the hardware. It’s a library to use exactly the equations that we have in
hardware and thus have a better simulation of our chips.



114 K. Burelo

Let’s take one step backwards. Can you provide a high-level description of your
project?

Karla: Yes, we focus on people with severe epilepsy. Some people cannot benefit
from drugs, so they need surgery to be cured of epilepsy. In some of these people,
it may be an option that a surgeon removes the area of the brain that causes the
seizures. But finding the epileptogenic area (that is, the area that causes the seizures)
is challenging. There are many studies to try to find these areas. Once the surgeon
has removed what he thought was the epileptogenic zone, one continues to check
after six, twelve, or 24 months whether the patients have seizure nevertheless [13,
14]. The success rate of this surgery is only about 60%—meaning that the patient
never has another seizure. That’s why we would like to find something to increase
this success rate.

It has been proposed that high-frequency oscillations or HFOs are good
biomarkers for the epileptogenic zone that need to be removed [15].Nowadays,HFOs
are not widely used. Rather, there are MRIs and sometimes recordings with EEG
electrodes implanted inside the brain. To further analyze and find these HFOs and
indicate epileptogenic areas, we use these intracranial EEG signals. These signals are
recorded while the patient is in a hospital for several days and/or during surgery [16,
17–18, 15].When the patient is in surgery, surgeons can place electrodes on the brain
to see which areas are important that should not be removed. Since that is already
part of surgical procedure, we want a device that can directly interact with these
electrodes. We could then detect these HFOs in real-time and detect areas with most
of these patterns, and then guide the surgery [9, 19].

If you want to introduce such a device into the surgery room, you have to consider
some constraints. For example, you need something compact, because you don’t
want more bulky devices. It also has to be battery powered, since we are trying to
detect very small signals, and we don’t want to create noise from other electronics
that could affect the classification task.

These HFOs are tricky and tiny. Are you able to pick them up with scalp EEG?

Karla: That is actually a new thing. Several researchers have found meaningful
HFOs in the scalp EEG, often in children, also in Zurich [20, 21]. With a long-term
recording over weeks or months we might be able to tell the severity of the epilepsy,
whether some treatment actually helped, or whether the patient can even be relieved
from the anti-epileptic drugs that have many side-effects. We analyzed some scalp
EEG recordings and found similar HFOs like standard HFO detectors do. But these
detectors need a lot of computer power and a battery would have to be recharged
very often. So long-term recordings is certainly where we want to go in the future,
because there the extremely low power consumption of our neuromorphic device is
a real advantage.
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Fig. 2 A neuromorphic system that combines a headstage, band-pass filtering stages, a signal-to-
spike conversion circuit and a multi-core SNN architecture for recording, processing, and detecting
clinically relevant HFO in iEEG from TLE (temporal lobe epilepsy) patients

What kind of people could benefit from your research? Is it just for people with
epilepsy?

Karla: Yes, we are currently focused on people with epilepsy who are going into
surgery. That’s the approachwehave at the beginning of this effort, especially because
the signal to noise ratio is most favorable when we record directly from inside the
brain. But there are also other options. The spiking neural network that I designed
is programmable. The analog head-stage works for anything; you just analyze the
data with any spiking neural network that you want. Ideally, I could design a spiking
neural network to detect patterns in the heart or any muscle. So, we could really
expand this neuromorphic analysis technique to other types of data recorded from
patients with other diseases. As soon as we have a signal that we could interface
with a device, it’s a matter of finding a spiking neural network that can accomplish
a specific task to help that patient.

What’s it like to work at ETH and the University of Zurich?

Karla: It’s very nice. I really like it. I especially like that the institute is very interdisci-
plinary. We have people from disciplines such as psychology, biology, mathematics,
and electrical engineering. I’m personally a chemical engineer. It’s a very nice envi-
ronment. The university hospital is also excellent. I have been able to go to surgery,
just watching from the corner. I could observe how everything is done, how many
machines are involved, and how everything is very precise. It’s a nice combination
to have this interdisciplinary environment, including close contact with patients in
the hospital.
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How could students get involved in your research?

Karla: We have a student who is helping with the testing of the chip. Mohammad
designed a chip, and a lot of tests have to be done. This gives Mohammad time to
design more chips. There are some projects with designing other blocks using other
technologies. We have a girl doing chip design, and we have a guy who is testing
the resulting chips. On the software side, we have a student who will try to analyze
how neurons in the chips work, in terms of how they work as filters and how we
can combine them to increase accuracy. It’s really nice that we have these Teili and
Brian2 tools to simulate what the hardware does. So, there are plenty of possibilities
to do a small project or masters’ thesis.

What was it like to be nominated for the BCI Award?

Karla: We were very excited. We were very happy. We have a colleague who really
likes to record video, and it was fun to develop the video that we submitted for the
award, even if we weren’t nominated. We enjoyed making the video because we
sat down and tried to sketch everything we did to decide how to present it within
a two-minute video. That brought us a lot of joy. Sometimes, you don’t look back,
you just produce and work. But we could look back and say: “This is what we have
done.” When we got nominated, we said: “Wow, we won something!”.
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Recent Advances in Brain-Computer
Interface Research: A Summary
of the 2020 BCI Award

Christoph Guger, Brendan Z. Allison, and Aysegul Gunduz

Abstract We began this book with an introductory chapter so readers could under-
stand more about BCIs and the annual procedures we follow to develop the awards
and these books. The subsequent chapters of this book each presented a BCI project
that was nominated for a BCI Research Award, with seven project summaries and
four interviews. In the concluding chapters of the previous several books in this
series, we have presented the first, second, and third place winners. This year, we
still present the three winners—but we had no third-place winner. For the first time,
we had a tie for second place this year. We also hosted our first Awards Ceremony
online due to COVID. This chapter also discusses our plans for next year’s BCI
Research Award and future directions.

Keywords Brain-computer interface · EEG · ECoG · BCI Research Awards · BCI
Foundation

1 The 2020 Awards Ceremony

The Awards Ceremony was part of the virtual IEEE Systems, Man, and Cybernetics
conference inOctober 2020. Aswith prior years, the nominees were told that the first,
second, and third place winning teams would earn $3000, $2000, and $1000, respec-
tively—in addition to the prestige of winning. The prizes were generously donated
by the BCI Society, IEEE Brain, Cortec GmbH and the main sponsor g.tec medical
engineering GmbH. The BCI Society is a non-profit organization that organizes the
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BCIMeeting series (bcisociety.org). The mission of IEEE Brain is to facilitate cross-
disciplinary collaboration and coordination to advance research, standardization and
development of technologies in neuroscience to help improve the human condi-
tion (brain.ieee.org). Cortec GmbH is a company from Germany that manufactures
high-quality ECoG technology and implants. g.tec medical engineering designs and
manufactures high-quality equipment and software for BCIs and other applications.
The BCI Award Foundation organized the 2020 BCI Research Award.

2 The 2020 Winners

The winners of the BCI Award 2020 were announced in October 2020 at the IEEE
SMC conference1 during the Award ceremony. The head of the jury was Aysegul
Gunduz. The other jury members were Sergey D. Stavisky (winner 2019), Adriane
Randolph, SteveMeng, JörnRickert, FabienLotte andYannickRoy.The jury selected
twelve nominees and three winners, which were:

First Place Winner:

A High-Performance Handwriting BCI

Francis R. Willett1,2, Donald T. Avansino1, Leigh Hochberg3, Jaimie Henderson1,
Krishna V. Shenoy1,2

1 Stanford University, USA

2 Howard Hughes Medical Institute, USA

3 BrownUniversity, HarvardMedical School, Massachusetts General Hospital, USA

Second Place Winner:

High-dimensional (8D) Control of Complex Effectors such as an Exoskeleton
by a Tetraplegic Subject Using Chronic ECoG Recordings Using Stable and
Robust Over Time Adaptive Direct Neural Decoder

Alexandre Moly1, Thomas Costecalde1, Félix Martel1, Antoine Lassauce1, Serpil
Karakas1,GaelReganha1,AlexandreVerney2,BenoitMilville2,GuillaumeCharvet1,
Stéphan Chabardes3, Alim Louis Benabid1, Tetiana Aksenova1

1 CEA, LETI, CLINATEC, University Grenoble Alpes, MINATEC, France

2 CEA, LIST, DIASI, SRI, Gif-sur-Yvette, France

3 Centre Hospitalier Universitaire Grenoble Alpes, France

Second Second Place Winner:

1 http://smc2020.org/.

http://smc2020.org/
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A Brain-Spine Interface Complements Deep-Brain Stimulation to Both Alle-
viate Gait and Balance Deficits and Increase Alertness in a Primate Model of
Parkinson’s Disease

Tomislav Milekovic1,2,3,4, Flavio Raschellà1,2,3,5, Matthew G. Perich2, Eduardo
Martin Moraud1,2,3,6, Shiqi Sun1,2,3,7, Giuseppe Schiavone8, Yang Jianzhong9,10,
Andrea Galvez1,2,3,4, Christopher Hitz1, Alessio Salomon1, Jimmy Ravier1,2,3,
David Borton1,11, Jean Laurens1,12, Isabelle Vollenweider1, Simon Borgognon1,2,3,
Jean-Baptiste Mignardot1, Wai Kin D Ko9,10, Cheng YunLong9,10, Li Hao9,10,
Peng Hao9,10, Laurent Petit13,14, Qin Li9,10, Marco Capogrosso1, Tim Denison15,
Stéphanie P. Lacour8, SilvestroMicera5,16, ChuanQin10, JocelyneBloch1,2,3,6, Erwan
Bezard9,10, 13,14, Grégoire Courtine1,2,3,6

1 Center for Neuroprosthetics (CNP) and Brain Mind Institute, School of Life
Sciences, Swiss Federal Institute of Technology (EPFL), Switzerland

2 Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and
University of Lausanne (UNIL), Switzerland

3 Defitech Center for Interventional Neurotherapies (NeuroRestore),
CHUV/UNIL/EPFL, Switzerland

4 Department of Fundamental Neuroscience, Faculty of Medicine, University of
Geneva, Switzerland

5 CNP and Institute of Bioengineering, School of Engineering, EPFL, Switzerland

6 Department of Neurosurgery, CHUV, Switzerland

7 Beijing Engineering Research Center for Intelligent Rehabilitation, College of
Engineering, Peking University, People’s Republic of China

8 CNP, Institute of Microengineering and Institute of Bioengineering, School of
Engineering, EPFL, Switzerland

9 Motac Neuroscience, UK

10 Institute of Laboratory Animal Sciences, China Academy of Medical Sciences,
People’s Republic of China

11 Carney Institute for Brain Science, School of Engineering, BrownUniversity, USA

12 Department of Neuroscience, Baylor College of Medicine, USA

13 Université de Bordeaux, Institut des Maladies Neurodégénératives (IMN), UMR
5293, France

14 CNRS, IMN, UMR 5293, France

15 Oxford University, UK

16 The BioRobotics Institute, Scuola Superiore Sant’Anna, Italy
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Aysegul Gunduz: “The three winners are doing cutting edge research and are
showing the whole complexity that is involved in BCI development”.

This year, we had a second place winner—our first tie for second place! Congrat-
ulations to all three of the winning teams, and thanks to them (and other nominees)
for their chapters in this book. We also thank the sponsors, jury, and everyone who
submitted their BCI project for an award.

The three winning projects gave a key-note talk at the g.tec BCI & Neurotech-
nology Spring School 2021 in front of 4025 people and answered many questions
from the attendees.

3 Conclusion with Past and Future Directions

This is the ten-year anniversary of the BCI Research Awards, and the tenth book
devoted to these awards. Hence, this section briefly reviews the ten years of the
awards and the books, and concludes with future directions for these awards. The
first book based on the BCI Research Awards was published through InTech Open,
and introduced the 2010 BCI Research Awards [1]. The introductory chapter from
that book is available for free online.2 We then began this series of books titled “A
State-of-the-Art Summary”with the review of the secondBCIResearchAwards from
2011 [2]. So, every book about these awards except the first book was part of the
same series with Springer Publishing. The book for the 2021 BCI Research Awards
will be with the same publisher.

The first BCI Research Award occurred in 2010. The first Gala Awards Ceremony
was held at the Fifth International BCI Meeting at Asilomar, California—the same
location where three later BCI Awards ceremonies were held (in 2012, 2015, and
2018). Some components of the award have changed, including:

• We had only one winner each year for the first awards through 2013. In 2014, we
introducted the format we use today with first, second, and third place winners.

• Each annual award had 10 nominees until 2016. Since the 2016 awards, we chose
twelve nominees each year.

• The cash prizes increased over the years, and some of the other prizes have
changed. For example, a few years ago, we began awarding a Pfurtscheller bread
knife.

• In 2017, we started the non-profit BCI Award Foundation to manage the BCI
Research Awards. The first several BCI Research Awards were administered by
g.tec medical engineering GmbH.

• We added interviews in the book that presents the 2018 awards as part of the
discussion chapter [3]. Last year and this year, we developed interviews into
chapters.

2 https://www.intechopen.com/books/recent-advances-in-brain-computer-interface-systems/state-
of-the-art-in-bci-research-bci-award-2010.

https://www.intechopen.com/books/recent-advances-in-brain-computer-interface-systems/state-of-the-art-in-bci-research-bci-award-2010
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• The first several books included discussion of trends from the concluding chapter.
We decided to instead present more commentary in the concluding chapters.

• The sponsors changed over the years.
• We had our first Awards Ceremony online to present the 2020 BCI Research

Awards.

However, many central components of the BCI Research Award have not changed
much since the awards began ten years ago.Key elements have not changed, including
the submission rules, judging criteria, jury selection procedure, Awards Ceremony to
announce the winners, and publication of an annual book reviewing the Awards. Drs.
Guger andAllison have emceed all of the in-person Awards Ceremonies, announcing
over 100 nominees and a dozen winners over the ten years of the Awards.

Most importantly, the BCI Research Awards and books have never changed their
altruistic goals. We wanted to identify and publicly recognize the best annual BCI
projects, inform readers about a research field that we love, draw attention to BCI
research and development, and encourage the best future BCI projects. We wanted
to select nominees and winners from anywhere in the world, without regard for the
type of equipment used, using a jury with the best BCI experts worldwide. The juries
have always had 5–8 people and included a range of experts who can judge different
aspects of BCI projects and understand medical, scientific, and technical facets of
BCI projects.

As of this writing (April 2021), we have selected the jury for the 2021 BCI
Research Awards. Figure 1 shows that the 2021 jury has seven BCI practitioners,

Fig. 1 The jury for the 2021 BCI Research Awards
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Fig. 2 Sponsors for the 2021 BCI Research Awards

most of whom are experienced with BCI Research Awards. Like most years, our jury
includes a member of the team that won first place the preceding year. This time,
that team member is Dr. Francis R. Willett, who has a chapter in this book with an
interview about his first-place project in 2020. The chair, Prof. Tomasz “Tomek” M.
Rutkowski,wonfirst place in the 2014BCIResearchAward for an airborne ultrasonic
“display.” Prof. Maryam Shanechi and her team won third place in the 2019 BCI
ResearchAwards, and she led projects that were nominated for BCIResearchAwards
in 2013 and 2014.

Prof. Ljiljana Trakjovic organized a “BMIWorkshop” with Dr. Guger at the 2020
IEEE SMC conference where we held the 2020 BCI Research Awards Ceremony,
and Prof. Grace Rigdon was a juror of a BR4IN.IO hackathon. Overall, the jury
for 2021 (like the 2020 jury and nominees) reflects a good mix of people who are
experienced with the BCI Research Awards and new people.

We also announced the key dates for the 2021 awards:
Submission deadline: August 1
Announcement of nominees: September 5
Oral presentations from nominees: October 18
The BCI Award Ceremony: October 19.
TheBCIAwardCeremonywill occur at an online IEEESystems,Man, andCyber-

netics conference, like the 2020 Award Ceremony. This year, this conference3 will
be hosted virtually from Melbourne, Australia from October 17–20. The conference
will also feature the 11th BMI Workshop and numerous other activities involving
BCI/BMI.

Figure 2 shows that the 2021 awards will have more sponsors than ever before.
Like the 2020 awards, the sponsors include g.tec medical engineering, CorTec, and
IEEE Brain. We have four new sponsors. Two of them are companies (Intheon and
AIP).Riken is a famous brain research institute in Japan, andNeurotechX is a network
of organizations at universities and research centers devoted to furthering research
in neurotechnology.

This increase in sponsors reflects growth of the BCI Research Awards, but is
catalyzed by the broader growth in overall BCI R&D. New groups of patients are

3 http://ieeesmc2021.org.

http://ieeesmc2021.org
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benefiting from BCIs, and consumer BCIs are steadily becoming more common.
These awards and books have helped hundreds of thousands of readers to learn more
about BCIs. Many people who read these books have gone on to study BCIs, teach
classes, develop BCIs, and even earn a nomination or win in a BCI Research Award.
BCI research needs people from many disciplines and backgrounds, and our readers
might enjoy and contribute to BCIs in different ways. We hope you liked this chapter
and the rest of our book, and look forward to more of them.
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