
FloWare: An Approach for IoT Support
and Application Development

Flavio Corradini , Arianna Fedeli , Fabrizio Fornari(B) , Andrea Polini ,
and Barbara Re

Computer Science Division, University of Camerino, Camerino, Italy
{flavio.corradini,arianna.fedeli,fabrizio.fornari,

andrea.polini,barbara.re}@unicam.it

Abstract. With the advancement of computing technology, we are wit-
nessing the dawn of a new era of the Internet of Things (IoT) paradigm
in which objects equipped with sensors, actuators and processing capa-
bilities communicate with each other to serve a given goal. The IoT’s
intrinsic nature, which uses heterogeneous devices, resources and dif-
ferent communication protocols, complicates IoT applications’ design,
development, and validation. Reducing the complexity of building IoT
applications is one of the current challenges in this area.

To address this challenge, we focus on a model-driven approach to
support IoT systems’ management and the development of IoT applica-
tions. In particular, we propose the FloWare approach and its toolchain,
which combine Software Product Line and Flow-Based Programming
paradigms to manage the complexity in the various stages of the IoT
application development process. An automatic transformation proce-
dure generates the final IoT application, an executable Node-RED flow,
starting from a configuration of the designed Feature Models.

Keywords: IoT · Model-driven · Feature model · Flow-based
programming · Node-RED

1 Introduction

The Internet of Things (IoT) is a paradigm that gained ground in the scenario
of modern wireless telecommunications [3]. The basic idea of this concept is
the pervasive presence, all around us, of a variety of things or objects – such as
Radio-Frequency IDentification (RFID) tags, sensors, actuators – which, through
unique addressing schemes, can interact with each other and cooperate with
their neighbours to reach common goals. The development of IoT applications is
complex and demanding activities that require the investment of resources and
carry a significant risk of failure [14].

One of the main issue recognised in the state of the art [18] is the lack
of a software engineering methodology to support the entire IoT applications
development life-cycle. This gap results in difficulties in design and develop-
ing applications that can be addressed through a Model-Driven Engineering
c© Springer Nature Switzerland AG 2021
A. Augusto et al. (Eds.): BPMDS 2021/EMMSAD 2021, LNBIP 421, pp. 350–365, 2021.
https://doi.org/10.1007/978-3-030-79186-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79186-5_23&domain=pdf
http://orcid.org/0000-0001-6767-2184
http://orcid.org/0000-0003-4376-1697
http://orcid.org/0000-0002-3620-1723
http://orcid.org/0000-0002-2840-7561
http://orcid.org/0000-0001-5374-2364
https://doi.org/10.1007/978-3-030-79186-5_23


FloWare: An Approach for IoT Support and Application Development 351

(MDE) approach [26]. The MDE methodology allows to automatically gener-
ate easily maintainable and better-quality software based on modelled system
requirements. This methodology can foster software productivity in IoT scenarios
supporting better solutions, reducing development time and costs, and increas-
ing its quality [18]. In MDE methodology, different models can be designed to
describe IoT system requirements and functionalities. Models gaining attention
in IoT scenarios have been consolidated in the academy and industry under the
Software Product Line (SPL) paradigm. The SPL paradigm refers to software
engineering methods for creating a collection of similar software systems from
a common model [20]. One of the most applied SPL models in IoT scenarios is
the Feature Model [10], which is used to model all possible points of variabil-
ity and commonality of IoT domains [5]. Feature Models can be used to derive
documents, other models, or chunks of code that the developer can arrange for
defining a software application.

Referring to the code and programming of IoT applications, the increasing
complexity of application development in the IoT domain is well handled by
applying the Flow-Based Programming (FBP) paradigm [27]. The FBP is a
type of data-flow programming mainly focused on data and their manipulation,
differing from other techniques such as workflow-based in which the focus is on
representing activities and their execution order [15]. The FBP suits well in the
context of the IoT, where the pillar is the reception, manipulation and sending
of data as it sees the application as a set of “black-box” software processes;
each process has a specific behaviour and exchange data through predefined
connections. Thanks to visual tools based on this programming paradigm, it
is possible to easily connect different processes to form different applications
without changing their internal content [23].

To reduce the complexity and facilitate all the various stages of IoT appli-
cations development, we propose FloWare, an MDE approach that combines
Software Product Line and Flow-Based Programming paradigms. Our approach
supports the IoT applications development from the design to software develop-
ment, including different phases, actors, steps, and artefacts that allow realising
model-to-code transformation. We also propose a toolchain and an open-source
core component, named FloWare Core1, to support the approach. Finally we
describe how FloWare can be applied to a realistic scenario concerning the man-
agement of IoT devices and the development of IoT applications in a Smart
Campus.

The paper is organised as follows. Section 2 gives an insight on related works
concerning the modelling and development of IoT applications based on Soft-
ware Product Line and Flow-Based Programming paradigms. Section 3 describes
the FloWare approach for modelling and developing IoT applications. Section 4
presents an introduction to our supporting toolchain. Section 5 reports on the
application of FloWare in practice. Section 6 concludes the paper by touching
upon directions for future work.

1 FloWare Core: http://pros.unicam.it/floware/.

http://pros.unicam.it/floware/


352 F. Corradini et al.

2 Related Work

Nowadays, the combination of Flow-Based Programming and Software Product
Line paradigms is not a consolidated trend concerning IoT applications’ devel-
opment, but it presents a great potential [22].

For what concerns the use of FBP in different IoT domains, examples from
[6,7,11,21,24] shows its adaptability in small-medium cases like Smart City,
Smart Home, Smart Building, Smart Laboratory. In [12,13,25] are presented
applications on large scenarios like Smart Logistic, Smart Hospitals and Smart
Military Environments. The literature mentioned above highlights the use of
FBP to facilitate the interconnection between heterogeneous devices using dif-
ferent technologies. In particular, we found a common usage of Node-RED2, an
FBP tool that gained research and industry attention over the last years. Node-
RED allows the interconnection of devices and services to develop IoT appli-
cations. Thanks to the availability of a visual editor, Node-RED enables the
easy creation of IoT applications through the interconnection of asynchronous
components isolated from the application context.

Although many research works focus on IoT application development, accord-
ing to the literature [23] emerges a strong need for standardisation. Currently,
no standard approach describes the process of developing IoT applications based
on this paradigm. The developer does not have a guiding model to follow dur-
ing IoT applications; this slows the entire application development process and
exposes the developer to introduce errors. Furthermore, the developer must deal
with the functional specifications of the devices (e.g., the way the device com-
municates, the application protocol they use, the port numbers) to correctly
manage the devices communications and produced data. It directs away from
the developer attention from the actual development of the application. Possible
support to help a developer designing and developing an IoT application can
come from using a Model-Driven Engineering (MDE) methodology. The use of
MDE methodology in the software development process is gaining more atten-
tion thanks to a high level of abstraction using models as a base for creating the
software [9].

The use of Feature Models of the Software Product Line paradigm presents
positive evidence for the adaptation in the context of IoT [10]. In [29] and [17],
Feature Models are used to model complete heterogeneous systems like Wireless
Sensor Networks and Body Area Networks. In [2,19], different authors design
the same Smart Home scenario using different levels of abstraction and focusing
on different functional requirements. In [16] and [1], Feature Models represent
the design configuration of a single IoT device or a set of devices and their
communication protocols without linking them to a specific IoT application
domain. In [8], the scope is to manage the evolution of a family of middleware
for smart environments using cardinality-based Feature Models to express the
structural variability of all the involved devices, applications, network protocols.
In [28], Feature Models are used to support the representation of a Body-Area

2 Node-RED: https://nodered.org/.

https://nodered.org/


FloWare: An Approach for IoT Support and Application Development 353

Network application to analyse functional and non-functional requirements in
IoT-oriented healthcare applications. In [4], the authors propose a model-based
reconfiguration engine, that uses Feature Models, for dynamically reconfiguring
IoT system architectures. The paper presents a Smart Home example scenario
to demonstrate how an autonomic reconfiguration can be achieved using Feature
Models at run-time.

Although previous works focus on the use of Feature Models for the IoT,
most of them apply the models mainly to describe the reference domain of their
IoT system. In our approach, we use Feature Models to design the IoT domain
and support and guide the developers/users in the software development, using
the IoT system configurations derived from the models to produce code that
automatically allows the devices’ interconnection and data visualisation.

It is for filling the gaps that emerged from the literature that we present in
the following sections our FloWare approach, which combines Feature Models
and Flow-Based Programming to provide an MDE methodology for facilitating
the development of IoT applications starting from the modelling of IoT systems
and devices.

3 The FloWare Approach

In this section, we present our FloWare approach, which supports the modelling
and development of IoT applications. We describe the various phases, actors,
steps and artefacts that characterise our approach, as depicted in Fig. 1.

Fig. 1. FloWare approach

Phases. The approach is divided into two main phases: the Modelling and
the Development phases. The modelling phase involves the design and configu-
ration of Feature Models to represent the entire IoT domain. The development
phase involves the automatic transformation of models into code to develop the
actual IoT application.



354 F. Corradini et al.

Actors. As described in [18], IoT application development is a multidis-
ciplinary process that intersects heterogeneous knowledge from the different
involved actors. These actors have different roles in the development process.
In our approach, in the modelling phase, we require the involvement of human
actors such as a Modelling Expert (ME ), an expert capable of designing and
representing specific domains using modelling languages and tools, and an IoT
Expert (IoTE ), an expert of the Internet of Things domain responsible for the
management of IoT devices deployed (or to deploy) in the IoT system. Instead,
the development phase requires an IoT application developer to exploit the
potential provided by the approach to develop IoT applications.

In the following, the various steps and artefacts (respectively indicated in
bold and italic) involved in the approach are described in details.

IoT System Feature Model Design. The ME and the IoTE are in charge
of defining two Feature Models to represent the entire scenario (Step 1 of Fig. 1):
the IoT System Feature Model and the IoT Device Feature Model. The required
Feature Models are designed based on the ME and IoTE expertise, or they can
use already deployed models saved in a common repository. The IoT system
Feature Model provides an overview of an IoT system’s generic domain and all
functionalities it could present; the second provides an overview of IoT devices’
characteristics. Figure 2 reports examples of the two models that can be defined
to represent a simple IoT system and device. The experts can start the modelling
activities from a model presenting a similar skeleton and then modify features
and relations according to the modelled IoT system and devices’ needs.

Fig. 2. (a): IoT system feature model; (b): IoT device feature model

For the IoT system Feature Model, presented in Fig. 2(a), the tree’s root,
named IoT System, will be substituted with a more appropriate term to represent
the scenario to be specified (e.g., Smart University). Then, different features
linked to the root can be represented to describe the various functionalities that



FloWare: An Approach for IoT Support and Application Development 355

the considered IoT System can have. Some of these functionalities are linked by
a mandatory link, so they must be selected in the configuration phase; others
are optional and can be inserted into the configuration according to appropriate
needs. For each functionality inserted, it is necessary to represent all the devices
involved in the scenario, dividing them between sensors and actuators. For the
IoT devices Feature Model shown in Fig. 2(b), one of the primary information
to be inserted regards the communication protocols used to interact with the
devices. Other information necessary to allow the correct manipulation of the
devices’ data refers to the data types that the device can handle. Regarding
the data that the device sends or receives, it is mandatory to define if they are
numeric values, Boolean, etc., to allow the system to process them correctly.

IoT System Configuration Specification. The designed Feature Models
will be used as a starting point to specify the IoT System configuration in a
scenario. The configurations based on the Feature Models can be related to
deployed IoT systems or under-deployment systems. IoT configurations represent
different instances of the same model and are usually different based on several
factors depending on how the IoT system is deployed. For example, referring
to Fig. 2(a), the temperature management functionality could be realised in one
location using temperature sensors and an air conditioning system, while in
another site through the use of radiators. Concurrently, other IoT systems may
need to implement features such as presence monitoring rather than illumination
management to meet the use cases needs. This differentiation produces different
configurations starting from the same model.

An example of a valid IoT System configuration is the one reported in
Fig. 3(a), where the IoT System is composed of two functionalities, one related
to the temperature management, as a mandatory functionality to represent the
configuration, and the presence monitoring, with their corresponding devices.

Fig. 3. (a): IoT system configuration; (b): different IoT devices configurations

The features chosen in the IoT system configuration include the use of devices
divided between sensors and actuators, which need to be configured. Follow-
ing the two models in Fig. 3(b), we can see how the two devices use the same



356 F. Corradini et al.

protocols to communicate but provide different types of data to be processed.
In particular, if the device is an actuator, it also includes the input data type
that specifies the data type to receive as input.

In addition, the ME and the IoTE can specify where IoT devices are deployed
(building name, room name, geolocation, etc.) together with other specific infor-
mation according to each device’s chosen protocol. Devices related information
can include: an identifier, stored together with its location (e.g., GPS coordi-
nates and a known nomenclature for defining room names), an MQTT broker
address, and a topic (UTF-8 string) used to access the device data. The defined
IoT System Configuration with all specified information will then be made avail-
able to the IoT Application developer that desires to develop an IoT application
for one or more IoT systems.

IoT System Configuration Selection. It allows an IoT Application
Developer to choose which IoT system configuration to interact with. Starting
from a configuration like the one reported in Fig. 3(a), the IoT application devel-
oper can choose which functionality of the deployed system to access together
with the respective IoT devices. This choice will be guided by the developer
requirements for the specific application and the information stored, which allows
distinguishing between devices of the same type (e.g., the position or the type of
device could be a selection factor). For example, referring to the configuration in
Fig. 3(a), an IoT developer can build an application using only the Temperature
Management functionalities and access the available thermometers’ information
and command the air conditioner instead of selecting the entire configuration.
The IoT System selected configuration obtained will be used to generate an IoT
application.

IoT Application Development. After the IoT developer specified which
functionality of an IoT system and which devices to interact with, the environ-
ment for developing the IoT application is configured accordingly. For instance,
if the developer specified the need to interact with a temperature sensor that
uses an MQTT protocol to communicate, the environment is automatically con-
figured to include the MQTT functionality. In addition, an IoT application is
automatically generated in the form of a process flow that communicates with
the device and shows the obtained values through a dashboard.

4 The Supporting Toolchain

To support the usage of our FloWare approach, we defined a toolchain and
developed an open-source component named FloWare Core. The FloWare Core
component is an open-source JavaScript software that can be installed both
on the cloud and on less powerful machines such as gateways (for example,
raspberry etc.). Thanks to a graphical and intuitive interface, it is possible to
easily configure all the IoT systems and devices and to develop IoT applications
based on them. Specific information regarding FloWare Core, how to access its
source code and set it up, is reported on http://pros.unicam.it/floware/. In the
following, we provide a technical description of the toolchain components and
we also describe how to use them.

http://pros.unicam.it/floware/


FloWare: An Approach for IoT Support and Application Development 357

Fig. 4. FloWare approach with the supporting toolchain

As explained in Sect. 3, initially, the IoTE and ME will design the two models.
The first model represents the reference IoT system, and the other represents
all the IoT devices’ functionalities (communication protocol, type of data to be
processed, etc.). For the design of the Feature Models, as shown in Step 1 of
Fig. 4, we suggest using Eclipse FeatureIDE3, which allows to generate a Feature
Model and verify its validity. Once the Feature Models have been designed, they
will be saved in a Feature Model repository as XML files, as shown in Fig. 4.
These models will be used as input for FloWare Core to support the following
phases of the approach.

As reported in Fig. 5, the FloWare Core’s architecture is formed by sev-
eral components; each performs a specific task to support the configuration and
the automatic generation of the IoT application. In the following, we provide a
detailed description of each component.

Fig. 5. The FloWare Core architecture. The left side reports components and actors
involved in the first phase of the approach. The right side reports components and
actors involved in the second phase.

The Import Component manages the import of the XML files representing
the designed Feature Models. These models serve as a basis to support the con-
figuration of the IoT system and the devices involved. FloWare Core comes with

3 FeatureIDE: http://www.featureide.com/.

http://www.featureide.com/


358 F. Corradini et al.

some Feature Model templates that can be used as a starting point for modelling
the IoT system and the IoT devices avoiding the complete redesign phase. Once
the XML Feature Models are imported, the Configuration Component provides
a graphical interface to help the experts in the system configuration and the
addition of information regarding the devices involved.

A prototype of the Configuration Component, represented in Fig. 6, reports
an extract of an IoT system’s possible configuration. From this configuration
section, the experts can select all the functionalities and devices that will be
deployed on the IoT system. Then, for each chosen device, they are requested to
fill a form concerning the specific information of each device involved. A user’s
configuration is valid if it ensures compliance with the Feature Model designed
during the first step of the approach and elaborated by the tool. Once the systems
and devices’ configurations are completed, they will be saved in the repository,
while the devices information will be saved in a device database. Both entities
communicate to keep track of the systems and related devices involved in the
scenario. In particular, for what concerns the devices, all the information are
saved following the WoT Standard4.

Once terminated the devices and systems’ modelling phase, the IoT Appli-
cation developer can use the FloWare Core to support IoT applications’
development.

Fig. 6. Prototype of a configuration of an IoT system and a device configuration pro-
totypes using FloWare Core

In the Selection Component, the developer selects one of the previously con-
figured systems and specifies which functionalities of the system want to repre-
sent in the application. From all the devices involved in the selected scenario,
the developer chooses the ones to include in the IoT application. In this way, we
leave the developer free to realise the IoT application according to specific needs.
For example, the developer may need to represent only a particular room in a
building; thus, he/she have the possibility to freely select only the appropriate
devices from the entire configuration to represent the desired scenario.

4 WoT Standard: https://www.w3.org/TR/wot-thing-description.

https://www.w3.org/TR/wot-thing-description


FloWare: An Approach for IoT Support and Application Development 359

Then, the Translation Component take as input the functionalities and
devices selected in XML format and automatically encode them in a JSON file
that represents the IoT application. The JSON file is generated to be processable
by Node-RED, a development tool incorporated into FloWare Core, to provide a
single working and processing solution. Node-RED allows the composition of IoT
applications using components; each performs a specific operation and retrieves
a result. It also offers the possibility to use some dashboard components to visu-
alise the data obtained from the devices in real-time. In our approach, an IoT
application is represented as a Node-RED process flow written in the JSON file.
In the generated file, each JSON field represents a different Node-RED compo-
nent that performs a specific function.

Fig. 7. Automatic translation from an XML device configuration to JSON component

Figure 7 shows the correspondence between the information collected in the
XML configuration and the translation into a JSON field. The conversion in
example allows filling each field of the JSON file with the information necessary
to start the MQTT communication with the device. There are also generated
specific JSON fields able to process the data types received, such as the Numeric
type in the example, and send them to other fields that show them in a graphical
form. The JSON file also reports the connections between each field, intending
to generate a process flow that brings the information from the beginning com-
ponent (e.g., the component of the receiving device) to the final one (e.g., the
data display component).



360 F. Corradini et al.

Fig. 8. Temperature monitoring application with dashboard

For each involved device, we obtain a process flow generated automatically by
the FloWare Core component, like the one reported in Fig. 8. The generated flow
is automatically imported by the Application Component into Node-RED, giving
the user the possibility to add other functionalities to the application or immedi-
ately execute it to inspect the device’s data in real-time in a dashboard. In this
way, we obtain an IoT application with all the device specifications automati-
cally imported from the previously defined XML configurations. The developer
is not obliged to know and insert specific information regarding each device, but
the FloWare Core automatically retrieve them from the Feature Model repos-
itory and the device database. Then, the developer can expand the generated
application by inserting additional Node-RED components.

5 Case Study

In this section, we present a realistic case study to show how our FloWare app-
roach can support the management of IoT systems in a Smart Campus, from
the models’ domain design to the development of a temperature management
IoT application.

A university would like to standardise the different IoT systems deployed over
the years through the various departments to have a clear vision of the practices
adopted. At the same time, the university wants to reason about improvements
in terms of new IoT systems that could be deployed in other departments and the
development of IoT applications that could take advantage of all the sensors and
actuators that have been deployed. Applying FloWare in such a scenario, could
provide support in the construction of IoT systems and the decoupling of IoT
system configuration from IoT application development for the developers that
manage these systems. In this way, aim at reducing complexity for the developer,
who can work with already configured systems and devices. We can assume that
all the university departments are equipped with IoT devices to achieve basic
intelligent systems (i.e., temperature and illumination control systems). At the
same time, they may include different IoT systems based on the department’s
specific necessity. In the following, we report some examples of what specific
departments need.



FloWare: An Approach for IoT Support and Application Development 361

Fig. 9. Feature Model representing the entire Smart Campus functionalities

Inside the Chemistry department, for safety reasons, it is mandatory to have
a system for air-quality monitoring that can immediately report the levels of CO,
CO2, SO2 and NO2 that may derive from experiments conducted in the laborato-
ries. In the Biology department, there is the necessity of monitoring experiments
involving plants. In particular, there is the necessity to have a system able to
control and act on the soil’s humidity level and optimally manage the various
plants’ level of light and temperature. In the Computer Science department,
on the other hand, there is the need to control accesses to the different server
rooms located in it. These rooms can only be opened by authorised staff who can
use various access systems, including fingerprint or retina scanner, identification
badges.

Using our approach, it is possible to model the entire IoT Smart Campus
scenario, as reported in Fig. 9. In particular, are highlighted all the different
functionalities and devices that may be made available in the departments. It is
important to note that temperature and illumination management are manda-
tory fields in each configuration as defined at the beginning of the case study;
the others are optional. In the same way, IoT devices have to be modelled. The
experts can design a model like the one previously reported in Fig. 2(b) or use
the FloWare Core’s templates.

After designing the Feature Models, the experts use the graphical interface
provided by our FloWare Core component to configure all the various devices to
use in each department. We defined, using our FloWare Core component, some
configurations to represent specific departments’ needs in a Feature Models form,
as shown in Fig. 10.



362 F. Corradini et al.

Fig. 10. Departments configuration starting from the IoT system Feature Model

At this point, all the departments’ configurations are saved in an Feature
Model repository. Starting from these final configurations, we decided to develop
an IoT application to test our FloWare approach and the FloWare Core compo-
nent. Our component was installed in a Raspberry Pi to be used as a gateway;
thus, it collects the data it receives from the devices and shows them in real-time.
Using the FloWare Core’s graphical interface, we selected which department, sys-
tems, and devices to use in the development of the IoT application, as shown in
Fig. 11.

We limited our application to the temperature functionality present in the
Chemistry Department’ configuration. Then, we selected the devices that we
want to automatically include in the application development for that depart-
ment. In this way, we did not necessarily have to be aware of every device’s
specifications from which to get information. We only needed to know the func-
tionalities of a device exposed (e.g. temperature measurement) and its location
(e.g. place description or GPS coordinates) to identify and choose it uniquely.

Fig. 11. A prototype of departments and respective devices selection using FloWare
Core component

According to the selection, for each chosen device, the FloWare Core com-
ponent generated an application like the one reported in Fig. 8. In this way,



FloWare: An Approach for IoT Support and Application Development 363

the application can automatically read and show the devices’ data incoming in
real-time and, if needed, send data to interact with them.

In addition, as shown in Fig. 12, we manually expanded the application to
automatise temperature management functionality by adding other components
presents in the Node-RED palette, such as a switch conditioner state to automa-
tise the activation of an air-conditioner based on the department’s actual tem-
perature. Furthermore, we added an HTTP node to perform an HTTP request to
send the data obtained from the devices to a third-party application for external
uses.

Fig. 12. A complete temperature management IoT application on Node-RED

6 Conclusion

To resolve the complexity of developing IoT applications, we presented the
FloWare approach, which combines and exploits the potential of the Software
Product Lines paradigm, in the form of Feature Models, with the Flow-Based
Programming paradigm of the Node-RED tool. Our approach provides a way
to facilitate IoT applications development, providing an approach that covers
the IoT system’s modelling up to its implementation. In particular, we argued
that moving the focus on modelling and configuring different IoT systems from
experts can help the IoT developers build IoT applications. With our solution,
the developers remain unaware of each device’s technical specifications because
it will inherit them from the experts’ previous configurations.

We also presented a supporting toolchain for the FloWare approach, focusing
on our FloWare Core component. We illustrated its application to a sample case
study; the case study involved a Smart Campus. From our studies and tests, the
conjunction between the two paradigms seems a suitable choice which requires
further studies to consolidate and extend the approach.

As future works, we want to involve other IoT and modelling experts to design
and develop heterogeneous IoT systems in practice to validate and test the entire
approach on a complete real scenario. Referring to the FloWare Core component,
we intend to expand the set of templates including more complex ones to simplify
and speed up the development of IoT applications. Those templates may support
the developer in setting up interactions with external services for data storage
and data analytic.



364 F. Corradini et al.

References

1. Abbas, A., Siddiqui, I.F., Lee, S.U.J., Bashir, A.K.: Binary pattern for nested
cardinality constraints for software product line of IoT-based feature models. IEEE
Access 5, 3971–3980 (2017)

2. Alférez, M., Moreira, A., Amaral, V., Araújo, J.: Model-driven requirements speci-
fication for software product lines. In: Model-Driven Domain Analysis and Software
Development: Architectures and Functions, pp. 369–386. IGI Global (2011)

3. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput.
Networks 54(15), 2787–2805 (2010)

4. Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autonomic computing through reuse
of variability models at runtime: the case of smart homes. Computer 42(10), 37–43
(2009)

5. Cognini, R., Corradini, F., Gnesi, S., Polini, A., Re, B.: Business process flexibility
- a systematic literature review with a software systems perspective. Inf. Syst.
Front. 20(2), 343–371 (2016). https://doi.org/10.1007/s10796-016-9678-2

6. Cognini, R., Corradini, F., Polini, A., Re, B.: Extending feature models to express
variability in business process models. In: Persson, A., Stirna, J. (eds.) CAiSE
2015. LNBIP, vol. 215, pp. 245–256. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-19243-7 24

7. Cognini, R., Corradini, F., Polini, A., Re, B.: Business process feature model:
an approach to deal with variability of business processes. In: Domain-Specific
Conceptual Modeling, pp. 171–194. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-39417-6 8

8. Gámez, N., Fuentes, L.: Architectural evolution of FamiWare using cardinality-
based feature models. Inf. Softw. Technol. 55(3), 563–580 (2013)

9. Gascueña, J.M., Navarro, E., Fernández-Caballero, A.: Model-driven engineering
techniques for the development of multi-agent systems. Eng. Appl. Artif. Intell.
25(1), 159–173 (2012)

10. Geraldi, R.T., Reinehr, S.S., Malucelli, A.: Software product line applied to the
Internet of Things: a systematic literature review. Inf. Softw. Technol. 124, 106293
(2020)

11. Havard, N., McGrath, S., Flanagan, C., MacNamee, C.: Smart building based on
Internet of Things technology. In: International Conference on Sensing Technology,
pp. 278–281 (2018)

12. Jain, R., Tata, S.: Cloud to edge: distributed deployment of process-aware IoT
applications. In: International Conference on Edge Computing, pp. 182–189. IEEE
Computer Society (2017)

13. Jalaian, B., Gregory, T., Suri, N., Russell, S., Sadler, L., Lee, M.: Evaluating
LoRaWAN-based IoT devices for the tactical military environment. In: World
Forum on Internet of Things, pp. 124–128. IEEE (2018)

14. Lee, I., Lee, K.: The Internet of Things (IoT): applications, investments, and chal-
lenges for enterprises. Bus. Horiz. 58, 431–440 (2015)

15. Morrison, J.P.: Flow-Based Programming: A New Approach to Application Devel-
opment, 2nd edn. CreateSpace, Scotts Valley (2010)

16. do Nascimento, N.M., Alencar, P.S.C., Lucena, C., Cowan, D.D.: An IoT ana-
lytics embodied agent model based on context-aware machine learning. In: IEEE
International Conference on Big Data, pp. 5170–5175. IEEE (2018)

17. Ortiz, Ó., Garćıa, A.B., Capilla, R., Bosch, J., Hinchey, M.: Runtime variability
for dynamic reconfiguration in wireless sensor network product lines. Int. Softw.
Prod. Line Conf. 2, 143–150 (2012)

https://doi.org/10.1007/s10796-016-9678-2
https://doi.org/10.1007/978-3-319-19243-7_24
https://doi.org/10.1007/978-3-319-19243-7_24
https://doi.org/10.1007/978-3-319-39417-6_8
https://doi.org/10.1007/978-3-319-39417-6_8


FloWare: An Approach for IoT Support and Application Development 365

18. Patel, P., Cassou, D.: Enabling high-level application development for the Internet
of Things. J. Syst. Softw. 103, 62–84 (2015)

19. Pereira, J.A., Maciel, L., Noronha, T.F., Figueiredo, E.: Heuristic and exact algo-
rithms for product configuration in software product lines. In: International Sys-
tems and Software Product Line Conference, p. 247. ACM (2018)

20. Pohl, K., Bockle, G.V.D.L.F.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, Heidelberg (2005). https://doi.org/10.1007/
3-540-28901-1

21. Poongothai, M., Subramanian, P.M., Rajeswari, A.: Design and implementation of
IoT based smart laboratory. In: International Conference on Industrial Engineering
and Applications, pp. 169–173. IEEE (2018)

22. Prehofer, C., Chiarabini, L.: From Internet of Things mashups to model-based
development. In: 39th Annual Computer Software and Applications Conference,
pp. 499–504. IEEE Computer Society (2015)

23. Ray, P.P.: A survey on visual programming languages in Internet of Things. Sci.
Program. 2017, 1231430:1–1231430:6 (2017)

24. Sicari, S., Rizzardi, A., Coen-Porisini, A.: How to evaluate an internet of things
system: models, case studies, and real developments. Softw. Pract. Exp. 49(11),
1663–1685 (2019)

25. Sicari, S., Rizzardi, A., Coen-Porisini, A.: Smart transport and logistics: a node-red
implementation. Internet Technol. Lett. 2(2), 34 (2019)

26. Sosa-Reyna, C.M., Tello-Leal, E., Alabazares, D.L.: Methodology for the model-
driven development of service oriented IoT applications. J. Syst. Archit. 90, 15–22
(2018)

27. Szydlo, T., Brzoza-Woch, R., Sendorek, J., Windak, M., Gniady, C.: Flow-based
programming for IoT leveraging fog computing. In: International Conference on
Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 74–79.
IEEE Computer Society (2017)

28. Venckauskas, A., Stuikys, V., Jusas, N., Burbaite, R.: Model-driven approach for
body area network application development. Sensors 16(5), 670 (2016)

29. Venckauskas, A., Stuikys, V., Toldinas, J., Jusas, N.: A model-driven framework
to develop personalized health monitoring. Symmetry 8, 65 (2016)

https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1

	FloWare: An Approach for IoT Support and Application Development
	1 Introduction
	2 Related Work
	3 The FloWare Approach
	4 The Supporting Toolchain
	5 Case Study
	6 Conclusion
	References




