
Searching for Class Models

Maxim Bragilovski(B), Yifat Makias, Moran Shamshila, Roni Stern,
and Arnon Sturm

Ben-Gurion University of the Negev, Beer Sheva, Israel
maximbr@post.bgu.ac.il, {sternron,sturm}@bgu.ac.il

Abstract. Models in model-based development play a major role and
serve as the main design artifacts, in particular class models. As there
are difficulties in developing high-quality models, different repositories
of models are established to address that challenge, so developers would
have a reference model. Following the existence of such repositories,
there is a need for tools that can retrieve similar high-quality models.
To search for models in these repositories, we propose a greedy algo-
rithm that matches the developer’s intention by considering semantic
similarity, structure similarity, and type similarity. The initial evalua-
tion indicates that the algorithm achieved high performance in finding
the relevant class model fragments. Though additional examination is
required, the sought algorithm can be easily adapted to other modeling
languages for searching models and their encapsulated knowledge.

Keywords: Model driven development · Model repository · Model
search

1 Introduction

Model-Based Development is continuously evolving [1]. In such a development,
models play a major role and serve as the main design artifacts that developers
aim at achieving. Due to the difficulties in developing high quality models devel-
opers aim at starting from an established point in which an existing model can be
used for the planned application/system [2]. To facilitate that approach, repos-
itories of models start emerging including for example [8,21]. There are many
challenges in establishing such repositories [7]. These include technical issues
in terms of model representation, scalability, and heterogeneity and semantic
issues of how to analyze and query such repositories. In this paper, we aim at
addressing the challenge of querying model repositories, and in particular class
models. Indeed, existing repositories provide searching capabilities, yet, these
mainly refer to meta data (e.g., size and type) or to textual and keyword simi-
larity. However, similarity between model artifacts requires consideration of both
or at least semantic similarity and structural similarity [26]. In recent work the
graph structure is also taken into account when searching model repositories [11].
Nevertheless, the capability provided neglect the semantic similarity. One of the

c© Springer Nature Switzerland AG 2021
A. Augusto et al. (Eds.): BPMDS 2021/EMMSAD 2021, LNBIP 421, pp. 277–292, 2021.
https://doi.org/10.1007/978-3-030-79186-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79186-5_18&domain=pdf
https://doi.org/10.1007/978-3-030-79186-5_18

278 M. Bragilovski et al.

main benefits of measuring semantics similarity between software artifacts (e.g.,
code, State Chart, Class Diagram...) is the ability to reuse them so to save
time during the software development process [10,14]. In this paper, we aim at
addressing this gap by proposing an algorithm that searches for class models
that match the developers intention. The algorithm is based on a greedy search
approach where in each iteration the algorithm tries to find the most similar
class to the next class of the query using similarity function that considers type
similarity, structure similarity and label similarity. We also evaluated the perfor-
mance of the algorithm by various information retrieval metrics and found the
result promising.

The paper is organized as follows. Section 2 analyze related studies for search-
ing and measuring similarities between models. Section 3 introduces the sought
algorithm and Sect. 4 presents its evaluation. Finally, Sect. 5 concludes and sets
plans for future research.

2 Related Work

Several approaches have addressed the challenge we introduced. In this section
we review related studies with respect to the following:

– Type of similarity refers to the way similarity is being calculated.
– Query form refers to the considered query form (e.g., text, model, type).
– Experimental settings and datasets refer to the way the suggested solu-

tions were evaluated.
– Examined metrics refers to the way similarity and related algorithms are

being considered.
– Performance refers to the values of the mentioned metrics.

Robles et al. suggest a new approach for representing knowledge of UML
Class Diagrams (UCD) based on Information Retrieval (IR) techniques and cal-
culating their semantic similarity using ontology [22] graphs. The type of simi-
larity is calculated by a formula that considers semantic similarity between the
concepts of the diagrams and the topological similarity between the types of
elements in the diagrams. The queries are represented as UCD. To evaluate the
proposed method, they used fifteen queries of different levels of complexity and
performed the search on a corpus that contains sixty-five UCDs. To demonstrate
the importance of using ontology similarity they performed their experiment
twice, with and without ontology that is similar to the Boolean model in the
IR area. The F-score indicated that using ontology leads to significantly better
results of 0.83 compared to 0.36 on average.

Similar to [22], Al-Rhman et al. suggest different type of similarity equations,
for example: lexical name similarity, attribute similarity, and operation similar-
ity [4]. Al-Rhman et al. show how weighing each of the elements in the equation
affects the total similarity between UCDs. They further suggest a greedy-based
matching algorithm that finds the similarity of classes of two models in poly-
nomial time [3]. They proposed several different metrics to measure similarity

Searching for Class Models 279

between UCDs. They examined which metric is the most accurate for UCDs
in the same domain or from different domains. The first case contains five dia-
grams grouped up into ten pairs in the same domain. The results indicate that
the lexical name similarity that measures the semantic similarity between classes
gave the best results in terms of precision, recall, and accuracy. The second case
contains four UCD formed into six pairs. In this case, the neighboring similar-
ity that measures the similarity of two classes is superior in terms of precision,
recall, and accuracy. Nikpforova et al. [16] suggest an algorithm that converts
each class diagram to a vector and then refers to the similarity between them
based on distance calculation. The experiment consists of three small similar
UCDs.

Even though these methods show promising results, they rely on the fact
that similar UCDs have to be in the same context. To overcome this problem,
several works have been proposed to incorporate structural similarity. For UML
Sequence Diagram, for example, Salami et al. [24] proposed a genetic algorithm
that compares two sequence diagrams based on adjacency matrices. They cal-
culate the Mean Average Precision (MAP) of 10 queries to determine how well
their method performs for retrieving similar UML Sequence diagrams. The MAP
was approximately 0.75 in all ten different repositories that they searched in.

Yuan et al. [26] categorized UML Class Diagrams into two aspects: intra-
structure and inter-structure. Intra-structure represents the inner structure of
classes like attributes and operations, whereas inter-structure represents the
relationships between classes like association and composition. Based on this
categorization, they converted UCDs into UML Class Graphs (UCG) and mea-
sured the similarity of the inter and intra-structure of the graphs. The results
were promising based on the fact that the similarity of pairs of graphs was sim-
ilar to the expert’s results. Despite that, they only applied the approach to two
domains.

López et al. [11] propose a search engine called MAR for retrieving any EMF
model [25] focusing on converting a structure of models into an inverted index [5].
The queries take the form of a model that describes the desired results. They
convert each model and query to a bag of paths and use the Okapi BM25 mea-
sure [20] for ranking the most relevant models. The similarity function considers
the number of times a path appears in both query and model graph and whether
those paths are unique.

Another option to consider is the similarity flooding algorithm [13] that aims
at finding pairs of elements that are similar in two data schemes or two data
instances. Yet, in this work we are interested in paths considering also the labels
of the vertices and edges. Nevertheless, such algorithm, can be used as another
node similarity function.

In Table 1 we summarized the analysis of the methods we mentioned, along
the facets we specified before. The methods measure the similarity between
queries and models and assume that similar UCDs have much in common.
This assumption may lead to poor performance in cases where users are not
fully knowledgeable in the domain that they search for. In this study, we aim

280 M. Bragilovski et al.

at addressing this problem by searching for similar sub-diagrams in UCD and
measure the similarity between queries and sub-diagrams of the diagrams. We
consider the semantic similarity between labels and attributes of the classes, the
type similarity of classes and relationships (for example ‘Class’ and ‘Interface’),
and consider the structural path between UCDs while other approaches consider
only parts of these similarities.

Table 1. Related work summary

Work Query form Models Type of similarity Evaluation data Search method

[22] UCD UCD Semantic + type 65 UCDs + 15 queries Inverted index

[4] UCD UCD Semantic + type 9 UCDs Different metrics

[3] UCD UCD Semantic + type 9 UCDs Greedy-based matching

algorithm

[16] UCD UCD Semantic + type 3 UCDs Similarity function

[24] USD USD Type + structural 60 USD + 10 queries Genetic algorithm

[26] UCD UCD Structural 60 UCDs + 10 queries Similarity function

[11] Any Correlated to

the model

Structural 17975 Ecore meta modelsa Inverted index

ahttp://mar-search.org/experiments/models20

USD=UML Sequence Diagram; UCD=UML Class Diagram;

3 Greedy Search in UCD

The problem we are aiming to address is the search for relevant UCD fragments
within UCDs given a specific query in the form of class diagram. For that purpose
we devised a greedy search algorithm in UCDs that addresses the concerns of
semantics. The algorithm adopts the similarity considerations appears in [18]
and refers to label matching (exact match among labels), structure matching (in
terms of links), semantic matching (in terms of labels semantic similarity and
links’ semantics), and type matching. In the following we first set the ground for
the algorithm and then elaborate on its design and execution.

3.1 Settings

Definition 1. A UML Class Diagram (UCD) is a diagram (D) that consists
of classes (C), attributes (A), and relationships (R). D = (C, A, R).

– C is a set of classes.
– A is set of attributes A = {A1, A2, ..., Ak} where Ai is a set of attributes of

class ci. Each ci has a Ai = {a1, a2, ..., aj}.
– R is a set of relationships. Each D has a R = {r1, r2, ..., rk}. Where

ri = {(ci, l, cj)|ci, cj ∈ C, l ∈ ET}. ET = {Association,Composite,
Generalization,Aggregation, and InterfaceRealization}.

Definition 2. simw refers to the similarity of two words. This can be calculated
using for example WordNet [15], Sematch [27], or google w2v [17].

http://mar-search.org/experiments/models20

Searching for Class Models 281

Definition 3. siml refers the similarity of two classes labels.

siml(list1, list2) =
Σw1εlist1(arg maxw2εlist2

(simw(w1, w2)))
arg max(length(list1), length(list2))

(1)

the lists are ordered set of words (of the labels of the classes).

Definition 4. simatt refers to the similarity of two sets of attributes.

simatt(att1, att2) =
∑

list1εatt1

arg maxlist2∈att2(siml(list1, list2))
arg max(length(att1), length(att2))

(2)

Definition 5. simt refers to a predefined similarity among classes types. Table 2
presents the similarity among UCD class types. The similarity matrix shown in
Table 2 is based on similarities suggested in [22].

Table 2. Class type similarity.

Class Abstract Interface Association class

Class 1 0.75 0.4 0.8

Abstract 0.75 1 0.75 0.7

Interface 0.4 0.7 1 0.2

Association class 0.6 0.7 0.0 1

Definition 6. simc refers to the similarity of two classes.

simc(c1, c2) =
siml(c1, c2) ∗ 0.75 + simatt(attc1 , attc2) ∗ 0.25 + simt(c1, c2)

2
(3)

The search process should consider both the semantic similarity of the elements
as well as their types. Thus, we weight these equally. For the semantic similarity
of classes we consider the class label of higher importance with respect to its
attributes as these are of secondary relevance and besides they may contain
“noise” like generic attributes (e.g., id and status). Therefore we weighted siml

higher then simatt.

Definition 7. simr refers to a predefined similarity among relationship types.
Table 3 presents the similarity among UCD relationships. The similarity matrix
shown in Table 3 is based on similarities suggested in [22].

282 M. Bragilovski et al.

Table 3. Relationship type similarity

ASS CO AG GE INR

ASS 1 0.89 0.89 0.55 0.2

CO 0.89 1 0.89 0.55 0.23

AG 0.89 0.89 1 0.55 0.23

GE 0.51 0.51 0.51 1 0.4

INR 0 0 0 0.21 1

ASS = Association; CO = Com-
posite; AG = Aggregation; GE =
Generalization; INR = Interface
Realization

Definition 8. class-relationship similarity is calculated as follow:

simne(c1, r1, c2, r2) =
2 ∗ simc(c1, c2) + simr(r1, r2)

3
(4)

This definition captures the similarity of a class along with it incoming relation-
ship.

Definition 9. A query Q is represented as a UCD. Single path query has a
single path of classes and relationships (see Fig. 1a). Multi paths query has
multiple paths (see Fig. 1b) without cycles.

(a) Single path
(b) Multi paths

Fig. 1. Single path and Multi paths queries

Definition 10. Similarity of paths of the query with those of the diagram is
calculated as follow (classRelationshipSim is a set of simne):

Path − Sim
(
D1,D2, classRelationshipSim

)
=

simc

(
cD1

1 , cD2

1

)
+

|classRelationshipSim|∑

i=1

classRelationshipSimi

Searching for Class Models 283

In the following we elaborate the algorithm for single path and multi-path
queries. We differentiate between two types of class similarity. The first relies
solely on the class information, we call this class-based similarity. The second
also refers to the relationship connecting the class from the previous one, we call
this class-relationship based similarity.

– The function of class-based similarity returns the most similar class in the
UCD to a class within the query as calculated by Definition 6.
Input: D = (C,A,R), query diagram, similarity function. The similarity func-
tion is the one appears in Definition 2.
Output: a class from D.

– The function of class-relationship based similarity is responsible for
retrieving up to K most similar neighbors’ classes that exceed a predefined
threshold as determined by Definition 8. If there is no single class that its sim-
ilarity exceed the threshold, the function returns all the neighbor’s classes.
Input: D = (C,A,R), query class, parent class, similarity function, threshold,
K.
Output: list of classes and their similarities from D.

3.2 The Greedy Search Algorithm

To start the execution of the Greedy Search (GS) algorithm, the number of
classes (K) the algorithm handles in each round (that refers to the next step
of the query) and the threshold for the similarity need to be determined. The
algorithm uses the class-relationship based similarity function to find the appro-
priate list of classes for its execution in each iteration. We also have to determine
the UCD(s) in which the search should take place and similarClasses where the
search should start (this task can be achieved by the class-based similarity func-
tion). For the query, we have the queryDiagram that need to be found in the
set of UCDs. Additional required parameters include the queryID that refers to
the id of the class in a queryDiagram and is initialized with ‘−1’ that represents
the first class of the query where we want to start search from. isV isited is a
list that contains all the classes that GS algorithm already iterates over in the
UCD to allow GS algorithm handles diagrams with cycles. The output of the
algorithm is a set of sub-diagrams from the UCD that are the most similar to
the queryDiagram. Algorithm 1 describes the entire procedure.

The GS algorithm steps are as following: (line 1) Initialize results with an
empty set; (lines 2–4) Stop GS if there are no classes in the similarClasses or
there are no classes with a given ID in the queryDiagram; (line 5) iterate over
all neighbors of the current class; (lines 6–8) skip already visited classes; (line
9) For each class in similarClasses we add it to isV isited list; (line 10) Get
up to K most similarClasses by the class-relationship based function described
above; (lines 11–12) If there are no classes in similarClasses or the similarity
of the classes in the similarClasses is below the threshold the algorithm will
run recursively for the selected similarClasses and queryID, without moving
on the next class; (lines 12–14) If there are classes in similarClasses and the

284 M. Bragilovski et al.

similarity of the classes in the similarClasses are above the threshold - the
algorithm will run recursively for the selected similarClasses (up to K classes)
and queryID, each time moving on to the next class – in other words, in order to
allow the return of results that are transitive, the class in the query is promoted
only when the similarity obtained for the class is higher than the threshold;
(line 15) Merge the results that the algorithm retrieved with the results within
the function arguments. The algorithm continues until it passes all the classes
and relationships of the query. At the end of the algorithm, sub diagrams from
the UCD that answer the query will be obtained. The sub diagrams will be
sorted by their similarity ranking, as determined by Definition 10 normalized
by the number of classes. The ranking follows the weighted similarity of the
relationships and classes and is represented by a number between 0 and 1.

Algorithm 1 GS in UCD
Input similarClasses, UCD(s), queryDiagram, K, threshold,
queryID, isV isited
Output Set of sub diagrams with their similarities

1: results ← {θ}
2: if similarClasses ≡ {θ} || vqueryID /∈ VqueryDiagram then
3: return results
4: end if
5: for class in similarClasses do
6: if class ∈ isV isited then
7: continue
8: end if
9: isV isited ← isV isited ∪ class

10:
similarClasses ← class − relationship based function(

UCD(s), queryDiagram[queryID], class, K, threshold)
11: if similarClasses ≡ {θ} || arg maxsim∈similarClasses(sim) ≤ threshold then

results
′ ← GS(similarClasses, UCD(s), queryDiagram, K,

th, queryID, isV isited)
12: else
13: results

′ ← GS(similarClasses, UCD(s), queryDiagram, K,
threshold, queryID + +, isV isited)

14: end if
15: results ← results

′ ∪ results
16: end for
17: return results

3.3 GS Execution Example

In the following we demonstrate the execution of GS algorithm on a UCD of a
machine architecture shown in Fig. 2 with the query shown in Fig. 3a. We set
the threshold to 0.65 and the number of lookup classes (K) to 2.

Searching for Class Models 285

Fig. 2. The machine architecture UCD

(a) Query diagram

(b) Expected output

Fig. 3. Query and expected output

1. In the first stage, the class-based similarity function for finding the most
similar class in the UCD is used to find the first class of the query diagram.
The following result demonstrates the output for the class “Machine” in the
query diagram:

[-4]: [’Cache’] :: [’Computer’]

similarity: 0.624

[-5]: [’RAM’] :: [’Computer’]

similarity: 0.634

[-6]: [’Machine’] :: [’Computer’]

similarity: 0.809

(for all other classes, the similarity was below 0.3)
2. Following the highest similarity of 0.809, the GS algorithm starts from the

class “Machine”. In this stage, the algorithm keeps trying to find the K (K =
2 in our case) most similar adjacent classes to the selected class in the UCD
to the next class of the query diagram, that is, “Sounds”. The results are the
following:

286 M. Bragilovski et al.

Start finding 2 most similar classes in the UCD to the class of

a query:[’Sounds’]

The neighbors of vertex: -6 are: [-9, -2, -11]

[-9]: [’Memory’] :: [’Sounds’]

similarity: 0.541

[-2]: [’Processor’] :: [’Sounds’]

similarity: 0.583

[-11]: [’Card’] :: [’Sounds’]

similarity: 0.624

Here, as no class exceed the threshold we continue with all

classes: [(0.541, -9), (0.583, -2), (0.624, -11)]

3. This stage splits into three paths of which the algorithm iterates over neighbors of
the relevant classes [‘−2’], [‘−9’] and [‘−11’]. Here, we only show the results after
iterating over class [‘−11’]:

Start finding 2 most similar classes in the UCD to the class of

a query: [’Sounds’]

The neighbors of vertex: -11 are: [-10, -18]

[-18]: [’Extension’, ’Board’] :: [’Sounds’]

similarity: 0.574

[-10]: [’Device’, ’Card’] :: [’Sounds’]

similarity: 0.497

[-18]: [’Extension’, ’Board’] :: [’Sounds’]

similarity: 0.574

The most similar node is: [(0.497, -10), (0.574, -18)]

Here again, since all the classes simne value (Definition 8) is below the threshold,
all the classes advance recursively to the next step without advancing to the next
query class.

4. The GS algorithm terminates only when one of the following scenarios occur:
(a) The GS algorithm finished iterating over the classes in the

queryDiagram therefore, GS algorithm found one sub-diagram among all the
potential sub-diagrams:
Start finding 2 most similar classes in the UCD to the class of

a query: [’Sounds’]

The neighbors of vertex: -10 are: [-11, -12]

[-11]: [’Card’] :: [’Sounds’]

similarity: 0.497

[-12]: [’Sound’] :: [’Sounds’]

similarity: 0.670

The most similar node is: [(0.670, -12)]
(b) There are no more classes to iterate over in the UCD. This happens due two

reasons: (1) There are no neighbors; (2) The neighbors already visited by the
algorithm. Therefore, all the sub-diagrams that end with class ‘−18’ are not
relevant answers:
Start finding 2 most similar classes in the UCD to the class of

a query: [’Sounds’]

The neighbors of vertex: -18 are: []

The most similar node is: []

Searching for Class Models 287

5. Finally, the results paths are calculated for their similarity based on Definition 10
and are sorted accordingly.

[(’->Machine->Memory->Cache->RAM’, 0.606),

(’->Machine->Card->Device Card->Sound’, 0.650),

(’->Machine->Memory->Processor->Program’, 0.666)]

Indeed, the expected outcome that appears in Fig. 3b is included within the result
set of the GS algorithm. The final similarity of the expected path is calculated by
Definition 10 as follow: 0.809+0.624+0.497+0.670

4
= 0.650.

4 Evaluation

To evaluate the GS algorithm, we conducted an experiment to check the algo-
rithm performance in various settings.

4.1 Settings

We considered nine domains from which we had UCDs: (1) Bank Management;
(2) Library; (3) Machine; (4) Pizza store; (5) Restaurant (6) University; (7)
Climate; (8) Tank; and (9) Store. Diagrams (1)–(6) were adjusted from Gen-
MyModel1, (7) and (8) were adjusted from [19], (9) was adjusted from [12].
The domains were chosen in order to check whether the algorithm can distin-
guish between domains that have similar semantic like Pizza store (5) and Store
(9), and similar structure like Pizza store (5) and Library (3). Each UCD con-
tains in average 9.44 classes and 9.55 relationships. Each class has in average
1.37 attributes and 2.04 neighbors. The label that might be a class name or an
attributes name has 1.12 words in average.

We were also interested in exploring how the query complexity affects the
algorithm performance. For that reason we defined three complexity categories
based on two parameters:

1. Path: the number of paths from the first class.
2. N-hop: supporting hop relationship in the map according to the expected

result. That is, the number of skips on the diagram relationships required to
get the desired result.

The categories were the following:

1. Simple the query has one path and n-hop equals to 0
2. Medium the query has one path and n-hop is more then 0
3. Complex the query has more then 1 path

1 https://www.genmymodel.com/.

https://www.genmymodel.com/

288 M. Bragilovski et al.

We set 20 queries that were classified into three categories of complexity:
simple - 7 queries, medium - 7 queries, and complex - 6 queries.

Examples of a simple, medium, and complex queries are shown in Fig. 4. The
names of the classes of the queries are matched to the class names in Fig. 2
to simplify the demonstration of how the parameters influence the difficulty
of the categories. Figure 4a is a simple query because the expected result is
Machine−>Memory therefore, the Path and N-hope results in zero. Figure 4b is
a medium query because the expected output is Machine−>Processor−>CPU
and as a result N-hope’s value is 1 and Path’s value remains 0. Finally Fig. 4c is
a complex query due to the number of Paths in the expected output resulting
in two, Machine−>Memory and Machine−>Processor−>CPU .

(a) Simple (b) Medium (c) Complex

Fig. 4. Three complexity query level

The experiment material and results can be found in an online appendix [6].
To evaluate the performance of the GS algorithm we used the following metrics:

– Domain Mean Reciprocal rank (Domain MRR) indicates whether the
right model was retrieved:

MRR =
1

|Q|
|Q|∑

i=1

1
ranki

(5)

where Q is the set of the queries, and ranki is the rank position of the first
relevant domain result to the i-th query.

– Diagram Similarity (D-sim) that measures the similarity between a query
diagram and a sub-diagram from the set of UCDs as defined in Definition 10.
The D-sim takes into account the highest D-sim score of each query and
ignores cases in which no answer was found.

– Recall@k that determines whether the expected result appears within the
top k results.

– The number of failures in which the search did not succeed.

We executed the GS algorithm with K = 2 and searched for a threshold that
maximized the Domain MRR. Figure 5 shows how the Domain MRR metric
is affected by the threshold. Following the examination, it seems that a value
of 0.65 leads to the best results. Therefore, we set the threshold to 0.65 and
measured the metrics for each complexity category.

Searching for Class Models 289

4.2 Results

Table 4 presents the results of the experiment. The numbers in each cell indicate
the average result after running each of the relevant set of queries. Examining the
Recall@1, Recall@3, Recall@5, Domain MRR and similarity metrics. The results
indicate that the algorithm’s performance decreases as the query complexity
increases.

Table 4. Results

Complexity Recall@1 Recall@3 Recall@5 Domain

MRR

D-sim Search

failure

TOT.

Answers

Easy 0.571 0.857 0.857 0.801 0.783 1 7

Medium 0.571 0.714 0.714 0.785 0.675 2 7

Complex 0.333 0.333 0.416 0.509 0.813 7 12

Mean 0.490 0.634 0.662 0.698 0.757 3.33 –

Std 0.113 0.221 0.183 0.134 0.059 2.62 –

Fig. 5. ‘th’ influencing on Domain MRR

4.3 Discussion

In this section, we discuss the results with respect to the parameters of the GS
algorithm and the input characteristics.

In the experiment we set the number of neighbours (K) to 2. It might be
beneficial to increase K in correlation with the actual neighbours of each class
(In our case, it was 2.04 in average). This might increase the accuracy of the
search and allow the exploration of additional paths.

The threshold parameter also affects the results as it determines the relevant
classes from which the algorithm moves forward. It might be that the threshold
should be changed based on the domain and the simw function. The semantic
of two classes (siml) depends on two parameters: similarity between two words
(simw) and the length of a class’s label in terms of how many words the label
contains. For siml and simatt we noticed that it is affected by the number of
words. In the case of long labels the similarity decreases.

290 M. Bragilovski et al.

4.4 Threats to Validity

The initial evaluation we performed should be taken with caution and should
consider the following threats to validity:

– Small UCD: The diagrams in the experiment are of limited size (9.44 classes
and 9.55 relationships in average). We should explore the algorithm with much
larger diagrams.

– Self authoring: We as the authors of the paper, developed the queries,
so some biases might exist. Nevertheless, our aim in this evaluation was to
challenge the algorithm, so the queries we devised aimed to accomplish that.

– Simple queries: Both the domains and the queries are quite small. There is
a need to incorporate more complex domains and queries.

– Lack of tuning: Based on informal experience, we set the algorithm param-
eters as constants. Yet, there is a need to perform sensitivity analysis to learn
about the impact of these parameters.

– Comparing to other works: Indeed, the results should be compared to
other alternatives. Yet, such alternatives need to be adjusted for our UCDs
repository. For example, converting UCDs into corresponding ontology graph
and then run an ontology matching algorithm.

5 Summary

In this paper, we propose a greedy algorithm for searching UCDs. The algorithm
takes into structure, semantic, and type similarity compering to other works
shown in Table 1. The initial evaluation we preformed shows a promising results
in terms of accuracy.

Nevertheless, in the future, we intend to improve the siml function using
text mining techniques like RNN [23] and LSTM [9] for sentence similarity task.
Moreover, we want to test how well the algorithm performs with other domains
and examine alternatives for calculating the similarity of the classes and rela-
tionships. This includes the tuning of the algorithm’s parameters, either a-priory
or during its execution.

Although we evaluate the algorithm on UCDs, we believe it can be used for
searching other models. Thus, we also plan to test our conjecture regarding this
matter.

References

1. Abrahão, S., et al.: User experience for model-driven engineering: challenges and
future directions. In: 2017 ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems (MODELS), pp. 229–236 (2017)

2. Agt-Rickauer, H., Kutsche, R.-D., Sack, H.: DoMoRe? A recommender system for
domain modeling. In: The 6th International Conference on Model-Driven Engi-
neering and Software Development, pp. 71–82 (2018)

Searching for Class Models 291

3. Al-Khiaty, M.A.-R., Ahmed, M.: Similarity assessment of UML class diagrams
using a greedy algorithm. In: 2014 International Computer Science and Engineering
Conference (ICSEC), pp. 228–233. IEEE (2014)

4. Al-Khiaty, M.A.-R., Ahmed, M.: UML class diagrams: similarity aspects and
matching. Lect. Notes Softw. Eng. 4(1), 41 (2016)

5. Arasu, A., Cho, J., Garcia-Molina, H., Paepcke, A., Raghavan, S.: Searching the
web. ACM Trans. Internet Technol. (TOIT) 1(1), 2–43 (2001)

6. Bargilovski, M., Makias, Y., Shamshila, M., Stern, R., Sturm, A.: Searching Mod-
els, March 2021. https://doi.org/10.17632/6685g76r9y.1

7. Basciani, F., Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Model repos-
itories: will they become reality? In: The 3rd International Workshop on Model-
Driven Engineering, pp. 37–42 (2015)

8. Hebig, R., Quang, T.H., Chaudron, M.R.V., Robles, G., Fernandez, M.A.: The
quest for open source projects that use UML: Mining GitHub. In: The ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Sys-
tems, MODELS 2016, pp. 173–183 (2016)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

10. Lau, C.: Reusing code in object-oriented program development. US Patent
6,182,274, 30 January 2001

11. López, J.A.H., Cuadrado, J.S.: MAR: a structure-based search engine for models.
In: The 23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, pp. 57–67 (2020)

12. Mart́ınez, F.J.L., Álvarez, A.T.: A precise approach for the analysis of the UML
models consistency. In: Akoka, J., et al. (eds.) ER 2005. LNCS, vol. 3770, pp.
74–84. Springer, Heidelberg (2005). https://doi.org/10.1007/11568346 9

13. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph
matching algorithm and its application to schema matching. In: Proceedings of
the 18th International Conference on Data Engineering, pp. 117–128. IEEE (2002)

14. Mili, H., Mili, F., Mili, A.: Reusing software: issues and research directions. IEEE
Trans. Softw. Eng. 21(6), 528–562 (1995)

15. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11),
39–41 (1995)

16. Nikiforova, O., Gusarovs, K., Kozacenko, L., Ahilcenoka, D., Ungurs, D.: An app-
roach to compare UML class diagrams based on semantical features of their ele-
ments. In: The Tenth International Conference on Software Engineering Advances,
pp. 147–152 (2015)

17. Řeh̊uřek, R., Sojka, P.: Software framework for topic modelling with large corpora.
In: The LREC 2010 Workshop on New Challenges for NLP Frameworks, Valletta,
Malta, pp. 45–50. ELRA, May 2010

18. Reinhartz-Berger, I.: Towards automatization of domain modeling. Data Knowl.
Eng. 69(5), 491–515 (2010)

19. Reinhartz-Berger, I., Sturm, A.: Utilizing domain models for application design
and validation. Inf. Softw. Technol. 51(8), 1275–1289 (2009)

20. Robertson, S., Zaragoza, H.: The Probabilistic Relevance Framework: BM25 and
Beyond. Now Publishers Inc., Hanover (2009)

21. Robles, G., Ho-Quang, T., Hebig, R., Chaudron, M.R.V., Fernandez, M.A.: An
extensive dataset of UML models in GitHub. In: Proceedings of the 14th Interna-
tional Conference on Mining Software Repositories, MSR 2017, pp. 519–522. IEEE
Press (2017)

https://doi.org/10.17632/6685g76r9y.1
https://doi.org/10.1007/11568346_9

292 M. Bragilovski et al.

22. Robles, K., Fraga, A., Morato, J., Llorens, J.: Towards an ontology-based retrieval
of UML class diagrams. Inf. Softw. Technol. 54(1), 72–86 (2012)

23. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations
by error propagation. Technical report, California University San Diego La Jolla
Inst for Cognitive Science (1985)

24. Salami, H.O., Ahmed, M.: Retrieving sequence diagrams using genetic algorithm.
In: 2014 11th International Joint Conference on Computer Science and Software
Engineering (JCSSE), pp. 324–330. IEEE (2014)

25. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework. Pearson Education, London (2008)

26. Yuan, Z., Yan, L., Ma, Z.: Structural similarity measure between UML class dia-
grams based on UCG. Requirements Eng. 25, 213–229 (2020). https://doi.org/10.
1007/s00766-019-00317-w

27. Zhu, G., Iglesias, C.A.: Sematch: Semantic similarity framework for knowledge
graphs. Knowl.-Based Syst. 130, 30–32 (2017)

https://doi.org/10.1007/s00766-019-00317-w
https://doi.org/10.1007/s00766-019-00317-w

	Searching for Class Models
	1 Introduction
	2 Related Work
	3 Greedy Search in UCD
	3.1 Settings
	3.2 The Greedy Search Algorithm
	3.3 GS Execution Example

	4 Evaluation
	4.1 Settings
	4.2 Results
	4.3 Discussion
	4.4 Threats to Validity

	5 Summary
	References

