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Abstract. We investigate the state complexity of languages resulting
from the cascade product of two minimal deterministic finite automata
with n and m states, respectively. More precisely we study the magic
number problem of the cascade product operation and show what range
of complexities can be produced in case the left automaton is unary, that
is, has only a singleton letter alphabet. Here we distinguish the cases
when the involved automata are reset automata, permutation automata,
permutation-reset automata, or do not have any restriction on their
structure. It turns out that the picture on the obtained state complexi-
ties of the cascade product is diverse, and for all cases, except where the
left automaton is a unary permutation(-reset) or a deterministic finite
automaton without structural restrictions, and the right one is a reset
automaton or a deterministic finite automaton without structural restric-
tions, we are able to identify state sizes that cannot be reached—these
numbers are called “magic.”

1 Introduction

Originally, the magic number problem for finite automata [8] asks whether there
exists a minimal n-state nondeterministic finite automaton whose equivalent
minimal deterministic finite automaton (DFA) has α states for all n and α with
n ≤ α ≤ 2n. A number α not satisfying this condition is called a magic number
for n. The problem was solved in [9], showing that for ternary languages no
magic numbers exist contrary to the unary case [3]. It is worth noting that for
binary languages the original problem from [8] is still open.

Observe that the idea behind the magic number problem is not limited to
the determinization of nondeterministic finite automata. In fact, shortly after
the introduction of the magic number problem several papers studied regularity
preserving operations from a magic number perspective. In [7] it was shown
that for the intersection of DFAs no number in the interval [1, nm] is magic—
this already holds for binary automata. Besides intersection also other formal
language operations such as, e.g., union [7], concatenation [9], square [2], star [1],
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reversal, and the cut operation [6] were investigated on the quest for magic
numbers. It turned out that magic numbers are quite rare. For instance, for the
star of unary languages there are linearly many magic numbers [1]. On the other
hand, star of binary languages has no magic numbers. For the cut operation on
unary automata the interval 2m up to n − 1 turns out to be magic. Thus, these
complexities cannot be reached by the cut operation on m- and n-state DFAs,
if 2m ≤ n − 1.

We contribute to the list of magic number problems for operations on
automata by studying the cascade product, which is the main ingredient to
the celebrated Krohn-Rhodes Theorem [10] that states that any finite automa-
ton can be decomposed into (several) simple “automata prime factors.” Here we
are not interested in the classification of regular languages by automata prime
factors. Instead, we investigate the descriptional complexity of the cascade oper-
ation on two finite automata A and B, only. We further limit our study to the
case where the left automaton A is unary. For a better fine grain investigation of
the subject in question we use minimal DFAs only from the following automata
classes as operands to the cascade product operation: reset automata (RFA), per-
mutation automata (PFA), permutation-reset automata (PRFA), and automata
with no structural restrictions (DFA)—for unary automata every permutation-
reset automaton is in fact either a reset or a permutation automaton. We list
our findings in Table 1. A careful inspection of the table reveals that the right
automaton B in the cascade product is more important for the number of reach-
able states in the product than the left one. Moreover, the picture turns out to
be quite diverse. For instance, in case the left automaton is a unary RFA all com-
binations for the cascade product lead to magic numbers, which is not the case
for the remaining products where a RFA is the right automaton in the product.
The most complex situation appears whenever PFAs or PRFAs are involved. In
these cases the set structure of the reachable number of states is mostly deter-
mined by the size n of the left automaton and the non-trivial divisors t of n.
These cases lead to a significant amount of magic numbers. In fact, for all cases
where magic numbers exist, except for the case where both devices are RFAs,
the number nm− 1 turns out to be always magic. For the cascade product of an
n-state unary PFA or a DFA with an m-state finite automaton in general the
whole range {1, 2, . . . , nm} can be obtained, and thus no magic numbers exist
in these cases. This is not too surprising since the cascade product can simulate
the intersection of two automata—compare with [7]. The obtained results are in
sharp contrast to the general case, when we do not restrict to unary automata
as left operands in the cascade product. In [5] it was shown that for the gen-
eral case, magic numbers only exist for the cascade product of two permutation
automata. In all other cases the cascade products do not have magic numbers
at all.

2 Preliminaries

We recall some definitions on finite automata as contained in [4]. A deterministic
finite automaton (DFA) is a quintuple A = (Q,Σ, · , q0, F ), where Q is the finite
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Table 1. The range of state complexities for the cascade product of a minimal unary
n-state automaton A and a minimal m-state finite state device B of the mentioned
types. The parameter t used in the set descriptions is a non-trivial divisor of n or k,
depending on the case we are in. Moreover, the operation ⊕ on sets of numbers S1

and S2 is defined as S1 ⊕ S2 = {x + y | x ∈ S1 and y ∈ S2 }. In all cases where magic
numbers exist, except for the cascade product of two RFAs, the number nm − 1 turns
out to be magic.

Automata State complexities of minimal DFAs for L(A ◦ B) Magic number(s)

A B

RFA RFA {1, 2, 3} Yes Theorem 5

PFA {1, 2, . . . , m + 1} Yes Theorem 6

PRFA

DFA

PFA RFA {1, 2, . . . , 2n} No Theorem 7

PFA {1} ∪ { nx | 1 ≤ x ≤ m } ∪ { tx | 1 ≤ x < m } Yes Theorem 9

PRFA {1, 2, . . . , 2n} ∪ { nx | 1 ≤ x ≤ m } ∪ { tx | 1 ≤ x < m } Yes Theorem 17

DFA {1, 2, . . . , nm} No Theorem 18

DFA RFA {1, 2, . . . , 2n} No Theorem 7

PFA
⋃n

k=1(Mk ⊕ [0, n − k]), where Yes Theorems 19 and 20

PRFA Mk = {1} ∪ { kx | 1 ≤ x ≤ m } ∪ { tx | 1 ≤ x < m }
DFA {1, 2, . . . , nm} No Theorem 18

set of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state,
F ⊆ Q is the set of accepting states, and the transition function · maps Q × Σ
to Q. The language accepted by the DFA A is defined as

L(A) = {w ∈ Σ∗ | q0 · w ∈ F },

where the transition function is recursively extended to a mapping Q×Σ∗ → Q in
the usual way. Obviously, every letter a ∈ Σ induces a mapping on the state set Q
to Q by q �→ δ(q, a), for every q ∈ Q. A DFA is unary, if the input alphabet Σ is
a singleton set, that is, Σ = {a}, for some input symbol a. Moreover, a DFA is
said to be a permutation-reset automaton (PRFA), if every input letter induces
either a permutation or a constant mapping on the state set. If every letter of the
automaton induces only permutations on the state set, then we simply speak of
a permutation automaton (PFA). Finally, a DFA is said to be a reset automaton
(RFA), if every letter induces either the identity or a constant mapping on the
state set. The class of reset, permutation, permutation-reset, and deterministic
automata in general are referred to as RFA, PFA, PRFA, and FA, respectively.
It is obvious that the following chain of inclusions XFA ⊆ PRFA ⊆ FA, where
X ∈ {P,R}, holds. Moreover, it is not hard to see that the classes RFA and PFA
are incomparable.

In [10] the cascade product of two DFAs A = (QA, Σ, ·A , q0,A, FA) and
B = (QB , QA × Σ, ·B , q0,B , FB), denoted by A ◦ B, is defined as the automaton

A ◦ B = (QA × QB , Σ, · , (q0,A, q0,B), FA × FB),
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where the transition function is given by

(p, q) · a = (p ·A a, q ·B (p, a)),

for p ∈ QA, q ∈ QB , and a ∈ Σ. We say that A is the left automaton and B
the right automaton in the cascade product A ◦ B. It is obvious that the cascade
product of two DFAs contains their direct product. In order to explain our
notation we give a small example.

Example 1. Consider the PFA A = ({q0, q1, q2, q3}, {a}, ·A , q0, {q0, q1, q2}),
where the transitions are given by qi ·A a = qi+1 mod 4, for 0 ≤ i ≤ 3. More-
over, let

B = ({p0, p1}, {q0, q1, q2, q3} × {a}, ·B , p0, {p0})

be the PFA, where for all states and letters the transition function ·B acts like the
identity, except for the letters (q0, a) and (q1, a). In this case, let p0 ·B (q0, a) = p1
and p1 ·B (q0, a) = p0. Moreover, let p0 ·B (q1, a) = p1 and p1 ·B (q1, a) = p0. The
automata A and B are depicted in Fig. 1 on the top and lower right, respectively.
It is easy to see that both automata are minimal.

By construction the cascade product of A and B is given by

A ◦ B = ({q0, q1, q2, q3} × {p0, p1}, Σ, · , (q0, p0), {q0, q1, q2} × {p0}),

where the transition function can be deduced from Fig. 1 on the lower left.
Observe, that A ◦ B is also a PFA and that not all states are initially reach-
able. From the initially reachable part of A ◦ B the states (q0, p0) and (q2, p0)
(states (q1, p1) and (q3, p0), respectively) are equivalent. Because these states
are the only initially reachable ones and only two of the four are accepting, the
minimal DFA which accepts the language L(A ◦ B) has exactly two states.

The following result is immediate by the lower bound results on the opera-
tional complexity of the intersection operation on finite automata [7].

Theorem 2. Let A be an n-state and B an m-state DFA. Then nm states are
sufficient and necessary in the worst case for any DFA accepting L(A ◦ B). The
lower bound even holds for automata with binary input alphabet.

When considering the descriptional complexity of the cascade product, we
limit ourselves to the case where the involved automata are non-trivial, i.e., they
have more than one state. This is due to the fact that if the right automaton in
the operation under consideration is a singleton device, then the cascade product
accepts either the empty set or the same language as the involved other device. If
the left automaton is a singleton device, then the cascade product accepts either
the empty language or the language L that is the image of the language that the
right automaton accepts under the bijective mapping (q, a) �→ a for the letters a
of the left automaton, where q is the state of the left automaton. Therefore,
only 1- or m-state automata, for m ≥ 1, appear as results of a cascade product
with a trivial automaton. Thus, in the forthcoming we only consider non-trivial
automata.
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Fig. 1. The example automata A and B on the top and lower right, respectively. For
a better visibility not all transitions of an automaton are shown. In particular, this is
the case for automaton B, where self-loops are only depicted by dotted loops without
letters. The cascade product A ◦B is depicted on the lower left.

3 Results on the Cascade Product

This section is fourfold. In the first subsection we investigate the magic number
problem for the cascade product, where at least one automaton is a reset device,
while in the second subsection we study the magic number problem when both
automata are PFAs. Afterwards we study the case, where the left automaton is
a PFA and the right automaton is a PRFA. Finally we investigate the magic
number problem for the cascade product, where at least one automaton is an
arbitrary DFA. Before we start our studies we present a lemma on the minimality
of PFAs that is used very often in the subsections to come without further notice.
It is helpful and provides important information about the properties of PFAs.

Lemma 3. Let A be a PFA with a sole accepting state with all states reachable
from the initial state. Then A is minimal. Minimality is preserved even if the
initial state is changed to any other state.

Now we are ready for the first subsection considering the cascade product,
where at least one automaton is a reset device.

3.1 At Least One Automaton is a Reset Automaton

Before we start our investigation on the cascade product where at least one
automaton is a RFA, we take a closer look on minimal reset devices. It is easy
to see that one cannot distinguish more than two non-accepting states, because
the word that proves both of these states distinguishable must contain at least
one letter that acts as a reset and therefore after reading this letter both states
are mapped to the same state and thus cannot be shown inequivalent anymore.
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A similar reasoning applies to accepting states. Hence, every minimal RFA has
at most one accepting and one non-accepting state. Thus, we have shown the
following result, where the single state case is trivial.

Lemma 4. Every minimal reset automaton has at most two states. 	

Although minimal RFAs form a very restricted class of automata their cas-

cade product is worth to be considered in detail. We find the following situation—
recall, that we only deal with non-trivial automata:

Theorem 5. Let A and B be two minimal non-trivial RFAs, that is, both devices
are 2-state automata. (i) If A is a unary automaton, then the minimal DFA
accepting the language L(A ◦ B) has α states with 1 ≤ α ≤ 3 and (ii) if A has
an input alphabet of at least two letters, then the minimal DFA accepting the
language L(A ◦ B) has α states with 1 ≤ α ≤ 4.

One can try to generalize the results of the previous theorem to other
automata classes such as permutation automata for the right automaton in the
product. In fact, one can show that for a non-trivial minimal unary RFA A and
a minimal m-state PFA B, any DFA accepting the language A ◦ B has at most
m + 1 states. Next we show that the whole interval [1,m + 1] can be reached, if
the left automaton is a minimal non-trivial unary RFA.

Theorem 6. Let m ≥ 1. Then for every α with 1 ≤ α ≤ m + 1, there exists a
minimal non-trivial unary RFA A and a minimal m-state PFA B such that the
minimal DFA for the language L(A ◦ B) has α states.

This completes the case where the right automaton of the cascade product
is a PFA. Now the question arises what happens if the PFA appears as the left
automaton in the cascade product with a RFA. Compared to the previous case
already for minimal unary PFAs and non-trivial RFAs the whole interval [1, 2n],
where n is the number of states of the PFA, can be reached. Observe that in the
unary case the next theorem is in stark contrast to Theorem 6.

Theorem 7. Let n ≥ 1. Then for every α with 1 ≤ α ≤ 2n, there exists a
minimal unary n-state PFA A and a minimal non-trivial RFA B such that the
minimal DFA accepting the language L(A ◦ B) has exactly α states. The result
holds true even in the case if A is has an input alphabet of arbitrary size. 	


Since PFA ⊆ PRFA ⊆ FA holds the results from this subsection, where PFAs
are involved, immediately generalize to permutation-reset and finite automata
in general.

3.2 Two Permutation Automata

Before we start with the descriptional complexity analysis of the cascade product
of two permutation automata we prove a useful result that is helpful to determine
which deterministic state complexities are reachable and which ones are not.
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Lemma 8. The cascade product A ◦ B of two permutation automata A and B
is a permutation automaton, too.

Now we are ready to give an overview of all possible deterministic state
complexities that can arise. We call a divisor t of a number n non-trivial if t is
neither equal to 1 or n.

Theorem 9. Let n,m ≥ 2 and t be a non-trivial divisor of n. Then for every α
in {1} ∪ {nx | 1 ≤ x ≤ m } ∪ { tx | 1 ≤ x < m }, and only for those, there exists
a minimal unary n-state PFA A and a minimal m-state PFA B such that the
minimal DFA for the language L(A ◦ B) has α states.

In a series of lemmata we first show how to reach each of the above specified
values. Afterwards we show that only these values can be obtained. We start
with the values of the form nx, for 1 ≤ x ≤ m.

Lemma 10. Let n,m ≥ 2 and x with 1 ≤ x ≤ m. Then for every α that is
equal to nx, there exists a minimal unary n-state PFA A and a minimal m-state
PFA B such that the minimal DFA for the language L(A ◦ B) has α states.

With additional effort we can also show that every divisor of n is also reach-
able. This obviously includes the cases 1 and t of Theorem 9.

Lemma 11. Let n,m ≥ 2. Then for every α that is equal to one or to a non-
trivial divisor of n, there exists a minimal unary n-state PFA A and a minimal
m-state PFA B such that the minimal DFA for the language L(A ◦ B) has α
states.

We can extend the statement from the above lemma to the multiples of the
divisors of n with some side conditions.

Lemma 12. Let n,m ≥ 2. Moreover, assume that x satisfies 2 ≤ x ≤ m−1 and
that t is a non-trivial divisor of n. Then for every α that is equal to tx, there
exists a minimal unary n-state PFA A and a minimal m-state PFA B such that
the minimal DFA for the language L(A ◦ B) has α states.

The Lemmata 10, 11, and 12 thus show the reachability of the number of
states in the cascade product of a unary PFA with a PFA as claimed in Theo-
rem 9. Hence, it remains to prove that these are the only numbers that can be
obtained. To this end we first prove two structural properties of cascade products
of PFAs.

Lemma 13. Let A and B be minimal n- and m-state PFAs, respectively. Then
there is an x with 1 ≤ x ≤ m such that for every state q in A the number of
initially reachable states in A ◦ B that have q as their first component is exactly x.
As a direct consequence the initially reachable part of A ◦ B has exactly nx states.

The next lemma provides information about the equivalence classes of the
cascade product of permutation automata.
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Lemma 14. Let A ◦ B be the cascade product of two minimal PFAs A and B.
Then the minimal deterministic finite automata that accepts L(A ◦ B) has α
states, where α is a divisor of the quantity of initially reachable states of A ◦ B.
Furthermore, every state of A ◦ B has the same number of equivalent states,
if A ◦ B is strongly connected.

The last two lemmata obviously imply that only the numbers in

{ tx | t is a divisor of n and 1 ≤ x ≤ m }

can be reached in the cascade product of two PFAs. This set differently written
is equal to

{1, 2, . . . ,m} ∪ {nx | 1 ≤ x ≤ m }
∪ { tx | t is a non-trivial divisor of n and 1 ≤ x < m}

∪ { tm | t is a non-trivial divisor of n },

where the unions are eventually not disjoint. In order to prove Theorem 9 it
remains to exclude those numbers α that do not have a representation as given
there. Because we showed already that α = 1 is reachable we assume that α ≥ 2.
Due to the Lemma 13 we know that the number of initially reachable states
in A ◦ B is nx, for an integer 1 ≤ x ≤ m. Moreover, by Lemma 14 we know
that α is a divisor of nx. Now we distinguish two cases depending on the greatest
common divisor t of n and α.

1. Case t = 1. Recall that α is the number of states of the minimal automaton
accepting L(A ◦ B). First observe that the word aα is the shortest word that
only permutes equivalent states of A ◦ B and on the other hand the word an

is the shortest word which induces the identity mapping on the states of A.
Because α and n are coprime the smallest word which fulfills both conditions
is anα. This in turn implies that every mapping ajα, for 1 ≤ j ≤ n, has a
different image in A for a given state. Because α ≥ 2, there is at least one
accepting and one non-accepting state that is initially reachable in A ◦ B.
We pick an arbitrary initially reachable accepting state (q, p) in A ◦ B. Then
by applying the mappings ajα, for 1 ≤ j ≤ n, to (q, p) one observes that
every of the obtained images has a different first component. Because (q, p) is
accepting we obtain that n different states of A have to be accepting, which
is a contradiction to the minimality of A.

2. Case t > 1. Then we distinguish two subcases:
(a) Assume α/t �= m. Trivially, α equals t · α/t, where t is a divisor of n

and α/t is a divisor of x. Because t > 1 we obtain the reachability of α
by the Lemmata 10 and 12.

(b) In this case we observe that α = tα/t = tm and because there is no other
common divisor of n and α it follows that n/t and m are coprime. We
will show in the following theorem that α is not reachable in this case.
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Theorem 15. Let n,m ≥ 2 and t be a non-trivial divisor of n. Then for every α
that is equal to tm, there does not exist a minimal unary n-state PFA A and a
minimal m-state PFA B such that the minimal DFA for the language L(A ◦ B)
has α states, if the numbers m and n

t are relatively prime.

This completes our investigation on the cascade product of two permutation
automata and eventually proves Theorem 9. Finally we want to point out that
for example the numbers nm−1 are magic numbers for every non-trivial minimal
n-state PFA A and minimal m-state PFA B. This can be easily seen because
for n,m ≥ 2 we have (i) 1 < 3 ≤ nm − 1, (ii) n(m − 1) < nm − 1 < nm, and
(iii) tx ≤ t(m−1) < nm−1, for every non-trivial divisor t of n and 1 ≤ x ≤ m−1.
Therefore the reachability of nm − 1 is excluded by Theorem 9.

3.3 Permutation Automata with Permutation-Reset Automata

The next case that we consider for the cascade product is that of a unary per-
mutation automaton with a permutation-reset device. We will see that a few
further numbers on the state complexity are added to the case considered in the
previous subsection. We start with the following lemma.

Lemma 16. Let n,m ≥ 2. Then for every α with 1 ≤ α ≤ 2n, there exists a
minimal unary n-state PFA A and a minimal non-trivial PRFA B such that the
minimal DFA accepting the language L(A ◦ B) has exactly α states.

Since permutation-reset automata subsume permutation and reset automata
we may safely conclude that at least all state sizes that appear in the cascade
product A ◦ B of a permutation automaton A with an automaton B of the above
types can be reached. Thus, by Theorems 7, 9, and Lemma 16 this results in the
set {1, 2, . . . , 2n} ∪ {nx | 1 ≤ x ≤ m } ∪ { tx | 1 ≤ x < m } of reachable state
numbers. In the following theorem we show that these are indeed the only cases
that can be reached for the cascade product of a unary PFA with a PRFA.

Theorem 17. Let n,m ≥ 2 and t be a non-trivial divisor of n. Then for every α
in {1, 2, . . . , 2n} ∪ {nx | 1 ≤ x ≤ m } ∪ { tx | 1 ≤ x < m }, and only for those,
there exists a minimal unary n-state PFA A and a minimal m-state PRFA B
such that the minimal DFA for the language L(A ◦ B) has α states.

Clearly for m = 2 there are no magic numbers for the cascade product of
a minimal n-state PFA and a minimal m-state PRFA. But for m > 2 we have
that 2n < nm − 1, and therefore nm − 1 is a magic number for every pair n,m
with n ≥ 2 and m ≥ 3.

3.4 Deterministic Finite Automata Without Restrictions

In order to complete our study on the cascade product for unary automata it
remains to consider the cases, where in particular the right automaton is allowed
to be a DFA in general. We will show that in this case there do not exist magic
numbers, i.e., we obtain the whole interval [1, nm].
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Theorem 18. Let n,m ≥ 2. Then for every α in the interval [1, nm] there exists
a minimal unary n-state PFA A and a minimal m-state DFA B such that the
minimal DFA for the language L(A ◦ B) has α states.

By Theorem 18 we know that there are no magic numbers in the integer
interval [1, nm], if we allow the right automaton to be an arbitrary DFA. Because
PFA ⊂ PRFA ⊂ FA we can transfer this result one-to-one to the case where both
automata are DFAs.

It remains to consider the case where the left automaton is a DFA and the
right one is a PFA or a PRFA. We need some notation for the next theorem: for
two sets S1 and S2 of numbers let S1 ⊕ S2 := {x + y | x ∈ S1 and y ∈ S2 }. Now
we are ready for the statement, where the right automaton is a PFA.

Theorem 19. Let n,m ≥ 2. For k with 1 ≤ k ≤ n we define

Mk = {1} ∪ { kx | 1 ≤ x ≤ m }
∪ { tx | t is a non-trivial divisor of k and 1 ≤ x < m }.

Observe that M1 = {x | 1 ≤ x ≤ m }, because 1 does not have any non-trivial
divisors. Then for every α in

⋃n
k=1(Mk ⊕ [0, n − k]), and only for those, there

exists a minimal unary n-state DFA A and a minimal m-state PFA B such that
the minimal DFA for the language L(A ◦ B) has α states.

Finally, we show that there is no improvement on the reachable numbers if
we use a PRFA B instead of a PFA as right operand in the cascade product with
a DFA as left operand.

Theorem 20. Let n,m ≥ 2. Let Mk, for 1 ≤ k ≤ n, be defined as in the
previous theorem. Then for every α in

⋃n
k=1(Mk ⊕ [0, n−k]), and only for those,

there exists a minimal unary n-state DFA A and a minimal m-state PRFA B
such that the minimal DFA for the language L(A ◦ B) has α states.

One may ask whether all numbers in the integer interval [1, nm] are reach-
able by Theorems 19 and 20. This is in fact not the case. For instance, if n = 3
and m = 4 then the reader may verify that we can only reach the values
{1, 2, 3, 4, 5, 6, 7, 8, 9, 12}, because

M1 ⊕ [0, n − 1] = ({1, 2, 3, 4} ⊕ [0, 2]) = {1, 2, 3, 4, 5, 6},

M2 ⊕ [0, n − 2] = ({1, 2, 4, 6, 8} ⊕ [0, 1]) = {1, 2, 3, 4, 5, 6, 7, 8, 9},

and
M3 ⊕ [0, n − 3] = ({1, 3, 6, 9, 12} ⊕ [0]) = {1, 3, 6, 9, 12}.

A list of all magic numbers, for n and m with 2 ≤ n,m ≤ 6 is given in Table 2.
The interested reader may have noticed that the number nm − 1 appears in all
non-empty sets in the presented table. This holds in general and can be seen as
follows: (i) the largest number describable by an addition of n−k to the elements
of Mk, for k < n − 1, is less or equal to (n − 1)m + 1, (ii) the largest number
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in Mn−1 is (n − 1)m, which gives the number (n − 1)m + 1, that for m > 2, is
strictly less than (n−1)m+m−1 = nm−1, (iii) the second largest number in the
set Mn is n(m−1), which is strictly less than nm−1, and (iv) the largest number
in Mn is nm, which is strictly greater than nm − 1. This shows that nm − 1 is
not a member of

⋃n
k=1(Mk ⊕ [0, n − k]) and thus is a magic number.

Table 2. The sets of magic numbers for the cascade product of a minimal unary n-state
DFA A and a minimal m-state PFA B, for 2 ≤ n,m ≤ 6, w.r.t. the interval [1, nm].

DFA A PFA or PRFA B with m states

n-states 2 3 4 5 6

2 ∅ {5} {7} {7, 9} {9, 11}
3 ∅ {8} {10, 11} {13, 14} {14, 16, 17}
4 ∅ {11} {11, 14, 15} {14, 17, 18, 19} {17, 21, 22, 23}
5 ∅ {14} {18, 19} {18, 19, 22, 23, 24} {22, 23, 26, 27, 28, 29}
6 ∅ {17} {19, 22, 23} {19, 23, 27, 28, 29} {23, 27, 28, 29, 32, 33, 34, 35}

4 Conclusions

The Krohn-Rhodes Theorem [10] states that for every DFA A there exists a
cascade product of PRFAs that is equivalent to A. The descriptional complexity
version of this statement [11,12] gives exponential upper and lower bounds on the
size of the cascade product of A. To our knowledge the descriptional complexity
of the cascade product for two automata was not investigated so far. We close
this gap in this paper, by studying the problem in question for unary automata as
left operands in the cascade product. In this way we are able to draw a complete
picture for the studied cases and identify magic numbers, that is, size values that
cannot be obtained by a cascade product of two minimal automata. See Table 1
for the obtained results in detail. The general problem, i.e., the descriptional
complexity of the cascade product for non-unary left operands is studied in [5].
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