
Efficient Enumeration of Regular
Expressions for Faster Regular Expression

Synthesis

Su-Hyeon Kim, Hyeonseung Im, and Sang-Ki Ko(B)

Department of Computer Science and Engineering, Kangwon National University,
1, Gangwondaehak-gil, Chuncheon-si, Gangwon-do, South Korea

{tngus98207,hsim,sangkiko}@kangwon.ac.kr

Abstract. We study the problem of synthesizing regular expressions
from a set of positive and negative strings. The previous synthesis algo-
rithm proposed by Lee et al. [12] relies on the best-first enumeration of
regular expressions. To improve the performance of the enumeration pro-
cess, we define a new normal form of regular expressions called the con-
cise normal form which allows us to significantly reduce the search space
by pruning those not in the normal form while still capturing the whole
class of regular languages. We conduct experiments with two benchmark
datasets and demonstrate that our synthesis algorithm based on the
proposed normal form outperforms the previous algorithm in terms of
runtime complexity and scalability.

Keywords: Regular expression · Program synthesis · Normal form ·
Enumerative search

1 Introduction

Regular expressions (REs) are widely used for the pattern matching problem
to effectively and efficiently describe strings of interest. Due to their compact
representations and various advantages, REs are supported in many practical
applications such as search engines, text processing, programming languages, and
compilers. However, writing a minimal and correct RE for a given set of strings
is error-prone and sometimes difficult even for experts. With recent advances
in the program synthesis technology [8], to help novice users, many researchers
have investigated various methods that automatically generate REs from a set
of positive and negative examples [12,17], natural language descriptions [10,14],
or both [3,19].

In order to synthesize a RE satisfying the provided examples, it is often
inevitable to enumerate REs in some order and check if each RE satisfies the
synthesis constraints. Lee et al. [12] proposed a best-first enumeration algo-
rithm called AlphaRegex which synthesizes a RE from a set of positive and
negative strings. They also suggested various pruning algorithms that identify
c© Springer Nature Switzerland AG 2021
S. Maneth (Ed.): CIAA 2021, LNCS 12803, pp. 65–76, 2021.
https://doi.org/10.1007/978-3-030-79121-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79121-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-79121-6_6

66 S.-H. Kim et al.

semantically equivalent (language-equivalent) expressions and prune out hope-
less intermediate expressions determined by given positive and negative examples
to reduce the search space. Indeed, their pruning algorithms drastically improved
the näıve enumerative search algorithm, yet still far from being scalable for more
complex examples.

Meanwhile, there has been much interest in the descriptional complexity of
REs including several heuristics for simplifying them [2,5–7]. Brüggemann-Klein
introduced the star normal form (snf) to improve the time complexity of con-
structing the position automata from REs from cubic to quadratic time. While
Brüggemann-Klein considered REs recursively defined with union, concatena-
tion, and Kleene-star, Gruber and Gulan [7] extended the definition of the snf
with the question operator R?

1 defined as L(R?
1) = {ε} ∪ L(R1) and called

their extension the strong star normal form (ssnf). A RE R is in ssnf if for any
subexpression of the form R∗

1 or R?
1, the language represented by R1 does not

include the empty string ε. They also showed that the ssnf is more concise than
the previous snf and still computable in linear time as snf is. Lee and Shal-
lit [11] discussed enumeration of REs and corresponding regular languages using
unambiguous grammars generating REs and their commutative images. They
also provided exact numbers of regular languages representable by REs of given
length. Broda et al. [1] studied the average behavior of REs in ssnf by computing
the asymptotic estimates for the number of REs in ssnf and conducted several
experiments for corroborating the estimates.

In this paper, we revisit the problem of synthesizing a RE from a given set of
positive and negative examples. In particular, we aim to improve the performance
of previous studies by introducing a new normal form called the concise normal
form (cnf) of REs for an efficient enumeration during the best-first search. We
introduce several rules where the equivalence of REs is identifiable in polyno-
mial time and incorporate the rules to define the cnf. We show that the cnf is
considerably more concise than the ssnf by actually enumerating all expressions
in each normal form up to a given length. Finally, we demonstrate that our
RE synthesis algorithm based on the cnf improves the previous state-of-the-art
algorithm AlphaRegex.

The rest of the paper is organized as follows. Section 2 gives some defini-
tions and notations. We introduce our normal form definition in Sect. 3 and
the synthesis algorithm in Sect. 4. Finally, the experimental results are provided
in Sect. 5.

2 Preliminaries

This section briefly recalls the basic definitions used throughout the paper. For
complete background knowledge in automata theory, the reader may refer to
textbooks [9,18].

Let Σ be a finite alphabet and Σ∗ be the set of all strings over the alphabet
Σ. A regular expression (RE) over Σ is a ∈ Σ, or is obtained by applying the
following rules finitely many times. For REs R1 and R2, the union R1 + R2,

Efficient Enumeration of Regular Expressions 67

the concatenation R1 · R2, the star R∗
1, and the question R?

1 are also REs. Note
that L(R?

1) is defined as L(R1) ∪ {ε}. Two REs R1 and R2 are equivalent if
L(R1) = L(R2). When R1 and R2 are equivalent, we write R1 ≡ R2 instead of
L(R1) = L(R2) for notational convenience.

The reverse Polish notation (RPN) length of R is denoted by rpn(R) and
defined as rpn(R) = |R|Σ + |R|+ + |R|· + |R|∗ + |R|?. For instance, rpn(ab?)
is 4 since we also count the question operator and the (hidden) concatenation
operator between a and b?. In other words, rpn(R) is the number of nodes in the
corresponding syntax tree of R. As we deal with REs in the form of parse trees
internally, rpn(R) can be considered as more accurate measure for representing
the complexity of the REs.

Let S be a set of REs and ck ∈ N for 1 ≤ k ≤ 5 be a natural number implying
the cost of a regular operator or a symbol. We define the cost of REs using the
cost function C : S → N which associates a cost with each expression as follows:

C(a) = c1

C(R1 + R2) = C(R1) + C(R2) + c2

C(R1 · R2) = C(R1) + C(R2) + c3

C(R∗) = C(R) + c4

C(R?) = C(R) + c5

Let � be a relation on S, and �∗ a transitive closure of �. A rewriting
system (S,�) is said to be terminating if there is no infinite descending chain
R0 � R1 � R2 � · · · , where Rk ∈ S for k ∈ N. In a terminating rewriting
system (S,�), every element in S has at least one normal form.

Here we introduce the concept of ‘similar’ REs which is a weaker notion of
the equivalence between two regular languages represented by REs. Owens et
al. [13] formally define the concept of being ‘similar’ to approximate the least
equivalence relation on REs as follows:

Definition 1. Let ≈ denote the equivalence relation on REs including the fol-
lowing equations:

R + R ≈ R

R1 + R2 ≈ R2 + R1

(R1 + R2) + R3 ≈ R1 + (R2 + R3)
(R1 · R2) · R3 ≈ R1 · (R2 · R3)

(R∗)∗ ≈ R∗

(R?)? ≈ R?

(R∗)? ≈ R∗

(R?)∗ ≈ R∗

Two REs R1 and R2 are similar if R1 ≈ R2 and dissimilar otherwise.

It is trivial that the following statement holds from simple algebraic conse-
quences of the inductive definition of REs.

Corollary 1. If R1 ≈ R2, then R1 ≡ R2.

68 S.-H. Kim et al.

Given a set of positive and negative strings, we consider the problem of
synthesizing a concise RE that is consistent with the given strings. The examples
are given by a pair (P,N) of two sets of strings, where P ⊆ Σ∗ is a set of positive
strings and N ⊆ Σ∗ is a set of negative strings.

Then, our goal is to find a RE R that accepts all positive strings in P while
rejecting all negative strings in N . Formally, R satisfies the following condition:

P ⊆ L(R) and L(R) ∩ N = ∅.

Since there are infinitely many REs satisfying the condition, we aim at finding
the most concise RE among all such expressions. We utilize the cost function C
to quantify the conciseness of REs.

3 Concise Normal Form for REs

Now we define the relation � of REs to define a terminating RE rewriting system
(S,�) that produces a more concise RE in terms of RPN (or at least a RE
with the same RPN). Let R and Rk be REs for any natural number k. First,
we consider the case when a RE has a subexpression that is formed by the
concatenation of similar REs.

Lemma 1 (Redundant Concatenation (RC) Rule 1). For a RE R, the
following equivalences hold:

(i) R?R � RR?

(ii) R∗R � RR∗

(iii) R∗R? � R?R∗ � R∗

Using the lemma above, we consider all REs with subexpressions in the form
of R?R, R∗R, R∗R?, or R?R∗ as redundant, as we can always rewrite those
subexpressions as RR?, RR∗, or R∗ without changing the language represented
by the resulting RE. We can further consider the following type of redundant
concatenation even when two concatenated subexpressions do not share exactly
the same expression.

Lemma 2 (RC Rule 2). If ε ∈ L(R1) and L(R1) ⊆ L(R∗
2), then R1R

∗
2 � R∗

2

and R∗
2R1 � R∗

2.

Lemma 3 (Kleene-Concatenation-Kleene (KCK) Rule).
If L(R1) ∪ L(R3) ⊆ L(R∗

2), then (R1R
∗
2R3)∗ � (R1R

∗
2R3)?.

Lemma 4 (Kleene-Concatenation-Question (KCQ) Rule).
If L(R1) ∪ L(R3) ⊆ L(R∗

2) and ε ∈ L(R1) ∩ L(R3), then (R1R2R3)∗ � R∗
2.

When the question operator is used for the concatenation of two REs, we
find the following rule.

Lemma 5 (Question-Concatenation (QC) Rule).
(RR∗)? � R∗ and (RR?)? � R?R? hold.

Efficient Enumeration of Regular Expressions 69

When the union operator is used for multiple subexpressions, we find the
following four equivalence cases.

Lemma 6 (Union-Question (UQ) rule). R1 + R?
2 � (R1 + R2)? holds.

Lemma 7 (Inclusive Union (IU) Rule). If L(R1)⊆ L(R2), then R1 +
R2�R2.

We also use a rule named the factoring rule, which trivially holds by a simple
algebraic law (distributive law), to factor the common prefix or suffix of REs
within a union operator until there is no such subexpression.

Corollary 2 (Factoring Rule).
R1R2 + R1R3 � R1(R2 + R3) and R2R1 + R3R1 � (R2 + R3)R1 hold.

Finally, we use the following observation when a Kleene-star operator is used
for an expression that represents each symbol in the alphabet, as the resulting
expression is equivalent to Σ∗ (Sigma-star), which represents all possible strings
over the alphabet Σ.

Corollary 3 (Sigma-star Rule). If Σ ⊆ L(R), then R∗ � Σ∗.

Corollary 4. If R1 � R2, then rpn(R1) ≥ rpn(R2) and R1 ≡ R2 hold.

Now we are ready to introduce our new normal form for REs called the con-
cise normal form (cnf). Simply speaking, a RE is in cnf if its every subexpression
does not fall into a case introduced thus far. We formally define the cnf as follows:

Definition 2. We define a RE R to be in cnf if R does not contain a subexpres-
sion in any of the following forms:

1. R∗ or R? where ε ∈ L(R) (ssnf)
2. R?R, R∗R, R∗R? or R?R∗ (RC Rule 1)
3. R1R

∗
2 or R∗

2R1 where ε ∈ L(R1) and L(R1) ⊆ L(R∗
2) (RC Rule 2)

4. (R1R
∗
2R3)∗ where L(R1) ∪ L(R3) ⊆ L(R∗

2) (KCK Rule)
5. (R1R2R3)∗ where L(R1) ∪ L(R3) ⊆ L(R∗

2), ε ∈ L(R1) ∩ L(R3) (KCQ Rule)
6. (RR∗)? or (RR?)? (QC Rule)
7. R1 + R?

2 (UQ Rule)
8. R1 + R2 where L(R1) ⊆ L(R2) (IU Rule)
9. R1R2 + R1R3 or R2R1 + R3R1 (Factoring Rule)

10. R∗ where R = a1 + a2 + · · · + an and Σ ⊆ L(R) (Sigma-star Rule)

In order to prove that there always exists a RE in cnf for any given RE, we
prove the following result:

Lemma 8. The rewriting system (S,�) is terminating.

Proof. For the sake of contradiction, suppose that (S,�) is not terminating and
there is an infinite chain R0 � R1 � R2 � · · · . Since Corollary 4 guarantees
that the RPN length of REs does not increase by (S,�), it is easy to verify that
there exists a RE R which is repeated infinitely many times in the chain.

Therefore, it suffices to consider the following cases where the rewriting sys-
tem results in the same RPN length:

70 S.-H. Kim et al.

(i) R?R � RR? (By Lemma 1)
(ii) (R1R

∗
2R3)∗ � (R1R

∗
2R3)? (By Lemma 3)

(iii) (RR?)? � R?R? (By Lemma 5)
(iv) R1 + R?

2 � (R1 + R2)? (By Lemma 6)

In the following, we demonstrate that no rule can initiate an infinite chain
of REs with proof by cases.

Case (i): Assume that the infinite chain is formed by the first rewriting rela-
tion R?R � RR?. This implies that there exists a derivation in the form of
R1RR?R2 �∗ R1R

?RR2 for any R1, R2 ∈ S. Since there is no relation that
rewrites the concatenation of two expressions other than R?R � RR?, we should
consider derivations of the following form:

R1RR?R2 � R′
1R

′′
1RR?R′

2R
′′
2 �∗ R1RR?R2,

where R1 = R′
1R

′′
1 and R2 = R′

2R
′′
2 .

In this case, R′′
1R should be converted into R′′′

1 R? where (R′′′
1)? = R′′

1 by
the case (i) since there is no other possibility to convert R? into R. Hence,
we have the intermediate expression R′

1R
′′′
1 R?R?R′

2R
′′
2 . Now, we can see that

rpn(R′
1R

′′′
1) < rpn(R1) and therefore there is no possibility to reach R1RR?R2

by the rewriting system.

Case (ii): Let us consider the second case (R1R
∗
2R3)∗ � (R1R

∗
2R3)?. It is easy

to see that the rule cannot be used to form the infinite chain of REs as the
rule replaces a Kleene-star operator with a question operator. Since there is no
relation that places the removed question operator back, it is simply impossible
to use the rule in the infinite chain.

Case (iii): The third case (RR?)? � R?R? can be applied when concatenation
is used inside the question operator. In order to move back to the form before
the rule is applied, we need a relation that places a question operator enclosing
an expression which is a concatenation of two expressions. However, there is no
such rule in the rewriting system.

Case (iv): The fourth case R1 +R?
2 � (R1 +R2)? can be applied when union is

used inside the question operator. In order to move back to the form before the
rule is applied, we need a relation that places a question operator enclosing an
expression which is a union of two expressions. However, there is no such rule in
the rewriting system.

Since we have shown that an infinite chain of REs by the rewriting system
(S,�) cannot exist, the proof is completed. ��

As a corollary of Lemma 8, we observe the following result:

Corollary 5. Given a RE R, there always exists a RE R′ in cnf such that
R ≡ R′.

Unfortunately, it is well-known that the problem of testing inclusion between
two REs is PSPACE-complete [16]. Hence, we can easily deduce that the problem
of testing whether a given RE is in cnf is also PSPACE-complete as follows:

Efficient Enumeration of Regular Expressions 71

Lemma 9. Given a RE R, the problem of determining whether or not R is in
cnf is PSPACE-complete.

Proof. Without loss of generality, we assume that two REs R1 and R2 do not
share the common prefix or suffix as we can easily factor out them. We also
assume that R1 and R2 do not contain a question operator.

Note that testing L(R1) ⊆ L(R2) is PSPACE-complete. Now a RE R1 +
R2 can be converted into a cnf expression R2 if and only if L(R1) ⊆ L(R2).
Therefore, it is easily seen that the problem of determining whether a given RE
is in cnf is also PSPACE-complete. ��

Since the cnf testing is PSPACE-complete, we instead introduce a relaxed
concept of the cnf called the soft concise normal form (scnf) by relaxing the
language inclusion restrictions in the cnf such as L(R1) ⊆ L(R2).

We first introduce a weaker notion of the language inclusion relation as follows
which can be determined in linear time:

Definition 3. Given two REs R1 and R2 over Σ = {a1, a2, . . . , an}, we define
R1 � R2 if R1 and R2 satisfy one of the following conditions:

(i) R1 ≈ R2

(ii) R2 = R∗ for any R ∈ S such that Σ ⊆ L(R)
(iii) R2 = R∗

1

(iv) R2 = R?
1

(v) R2 = R∗ and R1 = R? for any R ∈ S
(vi) R2 = (R1 + R)∗ for any R ∈ S

Note that the following relation trivially holds:

Corollary 6. If R1 � R2, then L(R1) ⊆ L(R2).

Now we formally define the scnf as follows:

Definition 4. We define a RE r to be in scnf if r does not contain a subexpres-
sion in Definition 2 where every restriction in the form of L(R1) ⊆ L(R2) is
replaced by R1 � R2.

Actually, it turns out that it is possible to determine whether or not a given
RE is in scnf in polynomial time.

Lemma 10. Given a RE R, we can determine whether or not R is in scnf in
polynomial time.

4 RE Synthesis Algorithm

We synthesize REs by relying on the best-first search while only considering REs
in scnf as REs not in scnf have more concise expressions representing the same
regular languages. Hence, we can prune out numerous REs by simply checking
if the expressions are in the scnf regardless of the given examples.

72 S.-H. Kim et al.

4.1 Best-First Search Algorithm

As in the AlphaRegex [12], we utilize the best-first search to find the most concise
RE consistent with the given examples. Starting from the simplest form of REs,
we examine more complicated expressions until finding the solution.

We introduce a hole (�) that is to be replaced with some concrete RE. We
call REs with holes the templates. In order to perform the best-first search, we
rely on a priority queue to determine the next candidate. After pushing the
initial template � into the priority queue, we retrieve each template with the
minimal cost determined by the cost function C from the priority queue. For
each retrieved template, we generate more complicated templates or concrete
expressions by replacing holes with each symbol in Σ, ε, ∅, �+�, � ·�, �∗, and
�? and push them into the priority queue to continue the best-first search. The
search algorithm terminates when we find a solution which is consistent with the
given examples and not redundant.

We also use the additional pruning rule considered in AlphaRegex. Given a
template R, we define ̂R (˜R, resp.) to be a concrete RE obtained by replacing
every hole in R with Σ∗ (∅, resp.). Informally, ̂R is an over-approximation of R

as Σ∗ is the most general RE and ˜R is an under-approximation of R as ∅ is an
expression for the smallest set of strings among all REs. During the search, we
prune a template R if either P ⊆ L(̂R) or L(˜R) ∩ N = ∅ holds as it is already
impossible for R to reach any concrete expression consistent with (P,N).

4.2 Finding Redundancy Using Positive Examples

Meanwhile, we can further prune out the search space by relying on the set of
positive strings that the resulting RE should accept. In AlphaRegex [12], the
authors define a RE to be redundant if the RE contains an operator that can be
omitted while still accepting the positive strings.

We first explain the functions introduced in the AlphaRegex here to be self-
contained as follows:

un(a) = a (a ∈ Σ)
un(R1+R2) = un(R1)+un(R2)
un(R1 · R2) = un(R1) · un(R2)

un(R∗) = R · R · R∗

un(�) = �

sp(a) = {a} (a ∈ Σ)
sp(R1 + R2) = sp(R1) ∪ sp(R2)
sp(R1 · R2) = {R′

1 · R2, R1 · R′
2 | R′

i ∈ sp(Ri)}
sp(R∗) = {R∗}
sp(�) = {�}

Lee et al. introduced the un and sp functions to check the redundancy of star
and union operators used in REs, respectively. Given a RE R (possibly with
holes) and a set P of positive examples, they define R to be redundant if there
exists a regular expression R′ ∈ sp(un(R)) such that L(̂R′)∩P = ∅. For instance,
consider a set P = {0, 01, 011, 0111} and two templates: 1∗ · � and 0∗ · �. Then,
1∗ ·� is redundant since sp(un(1∗ ·�)) = {111∗ ·�} and apparently L(111∗ ·Σ∗)
does not contain any string in P . Analogously, 0∗ · � is also redundant.

Efficient Enumeration of Regular Expressions 73

Algorithm 1: Our Synthesis Algorithm
Input : Positive and negative strings (P,N)
Output: A RE R consistent with (P,N)
Initialize a priority queue Q;
Push the initial template � into Q;
repeat

Pop a minimal cost template R from Q;
if R is a complete RE then

if R is consistent with (P,N) then
return R

else
foreach R′ ∈ next(R) do

if P ⊆ L(̂R′) or L(˜R′) ∩ N = ∅ then
if R′ is in scnf then

if R′ not redundant for P then
Push R′ into Q;

until Q �= ∅;

4.3 Our Synthesis Algorithm

Algorithm 1 shows the final synthesis algorithm. We first initialize a priority
queue Q that internally sorts templates according to their costs calculated by
the cost function C in increasing order. We first push the simplest template �
into Q and repeat the following procedure.

1. We retrieve a minimal cost template R from Q and check whether or not R
is a complete RE and consistent with the given examples (P,N). If so, we
return R as a synthesized RE. Otherwise, we proceed to the next step.

2. If R is a template with holes, then we generate templates by replacing a hole
with one of Σ, ε, ∅, � + �, � · �, �∗, or �? (defined as the set next(R)). For
each generated template R′, we test whether or not R′ has a possibility of
evolving into a RE satisfying the given examples. If so, we also test whether
R′ is in scnf and not redundant for positive examples P . If R′ qualifies the
tests, then we push R′ into Q.

5 Experimental Results

We conduct several experiments to verify that the proposed normal form of REs
significantly reduces the number of REs when enumerating all possible regular
languages. By doing so, we first show that the new normal form is more efficient
to enumerate distinct regular languages that are given in the form of REs by
pruning out numerous REs not in the new normal form. Second, we demonstrate
that the proposed normal form is useful when synthesizing a RE from a set of
positive and negative strings by enumerating all possible candidates by pruning
a vast amount of the search space during the enumeration process.

74 S.-H. Kim et al.

Table 1. The number of REs in a given RPN length.

rpn(R) Exact Enum. [11] Base ssnf [7] scnf Pruning Ratio

1 2 2 2 2 0.00

2 4 4 4 4 0.00

3 7 7 7 5 28.57

4 13 38 38 24 36.84

5 32 106 90 42 60.38

6 90 364 312 146 59.89

7 189 1,444 1,236 481 66.69

8 580 5,170 3,650 1,278 75.28

9 1,347 19,741 14,849 4,636 76.52

10 3,978 77,838 52,388 14,675 81.15

11 - 302,908 188,820 46,978 84.49

12 - 1,206,042 741,108 165,818 86.25

13 - 4,853,655 2,690,537 537,446 88.93

5.1 Exact Enumeration of REs in Normal Form

First, we count the number of REs in a given RPN length and compare it with
the number of REs in scnf in Table 1. Recall that Lee et al. [11] attempted to
obtain the asymptotic estimates on the number of regular languages specified by
REs of given size n by the aid of the Chomsky-Schützenberger theorem [4] and
singularity analysis of the algebraic formal power series. Note that the upper
bound and lower bound obtained in [11] are O(3.9870n) and Ω(2.2140n).

In order to estimate the expected growth rate of the numbers given
in Table 1, we fit exponential curves to enumeration results using SciPy’s
scipy.optimize.curve fit function which implements a non-linear least-square fit.
As a result, we obtain the following estimates for the number of all valid REs
and the number of all REs in the proposed normal form of a given RPN length
as follows:

0.067 × 4.022n + 882.444 and 0.108 × 3.275n − 303.477.

As the numbers are growing exponentially, our synthesis algorithm is
expected to run exponentially faster than simple enumeration-based algorithm
and scale much better for more complicated examples.

5.2 Performance of RE Synthesis

For experiments of RE synthesis, we utilize two benchmark datasets: the
AlphaRegex dataset and random dataset. The AlphaRegex dataset consists of
25 REs from famous textbooks [9,15] on automata and formal language theory.
The authors of AlphaRegex created a set of positive and negative examples for

Efficient Enumeration of Regular Expressions 75

Table 2. Comparisons of performance of AlphaRegex and our synthesis algorithm.

Benchmark Method Avg. Count Avg. Time Success Ratio

Random AlphaRegex 7,445 9.36 s 83.3%

AlphaRegex +
Redundancy Check

4,432 6.84 s 87.4%

Ours 3,478 4.39 s 87.9%

Ours + Redundancy
Check

1,813 2.68 s 91.9%

AlphaRegex AlphaRegex 7,038 8.71 s 76.0%

AlphaRegex +
Redundancy Check

5,190 7.38 s 88.0%

Ours 3,814 4.66 s 88.0%

Ours + Redundancy
Check

2,202 3.11 s 96.0%

each RE in the dataset1. Note that both datasets only consist of REs over binary
alphabet {0, 1}.

The random dataset contains 1,000 distinct randomly generated REs. We first
start from an initial template ‘�’ and randomly replace a hole in the template
by one of a ∈ Σ, ε, ∅, �+�, �·�, �∗, or �?. We repeat the process 10 times and
complete the template by randomly replacing every hole with one of the symbols
in Σ. If it is impossible to generate 10 positive examples from the random RE
as it can only describe a finite number of strings or its length is shorter than 7,
we re-generate a RE. We generate a set of 10 positive examples and 10 negative
examples for each random RE. In order to generate positive examples, we utilize
a Python library called the Xeger2. For generating negative examples, we first
randomly choose a number n between 1 and 15 and generate a random string of
length n. We repeat the process until we have 10 distinct strings that cannot be
described by the RE.

The experimental results are shown in Table 2. We compare our algorithm
implemented in Python 3 with our implementation of AlphaRegex on the two
benchmark datasets with or without the redundancy checking algorithm intro-
duced in AlphaRegex. Note that we use our implementation of AlphaRegex instead
of the original OCaml implementation of AlphaRegex for a fair comparison. We
set the limit on the number of visited templates to be 100,000 and consider the
examples synthesized before reaching the successful limit. The average numbers
(e.g., count and time) are calculated only for the successful examples. The exper-
imental results show that our synthesis algorithm is faster than AlphaRegex in
terms of both the average number of visited templates (including complete REs)
to find the solution and the actual runtime of our Python implementation.

1 The OCaml implementation of AlphaRegex and dataset are publicly available at
https://github.com/kupl/AlphaRegexPublic.

2 https://pypi.org/project/xeger/.

https://github.com/kupl/AlphaRegexPublic
https://pypi.org/project/xeger/

76 S.-H. Kim et al.

Acknowledgements. This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korean government (MIST) (No.
2020R1A4A3079947).

References

1. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On average behaviour of regular
expressions in strong star normal form. Int. J. Found. Comput. Sci. 30(6–7), 899–
920 (2019)

2. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoret. Com-
put. Sci. 120(2), 197–213 (1993)

3. Chen, Q., Wang, X., Ye, X., Durrett, G., Dillig, I.: Multi-modal synthesis of regular
expressions. In: PLDI 2020, pp. 487–502 (2020)

4. Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages.
In: Computer Programming and Formal Systems. Studies in Logic and the Foun-
dations of Mathematics, vol. 35, pp. 118–161. Elsevier (1963)

5. Ellul, K., Krawetz, B., Shallit, J.O., Wang, M.: Regular expressions: new results
and open problems. J. Autom. Lang. Comb. 10(4), 407–437 (2005)

6. Frishert, M., Watson, B.W.: Combining regular expressions with (near-)optimal
Brzozowski automata. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.)
CIAA 2004. LNCS, vol. 3317, pp. 319–320. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30500-2 34

7. Gruber, H., Gulan, S.: Simplifying regular expressions. In: Dediu, A.-H., Fernau,
H., Mart́ın-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 285–296. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13089-2 24

8. Gulwani, S.: Dimensions in program synthesis. In: PPDP 2010, pp. 13–24 (2010)
9. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-

putation, 2nd edn. Addison-Wesley, Reading (1979)
10. Kushman, N., Barzilay, R.: Using semantic unification to generate regular expres-

sions from natural language. In: NAACL-HLT 2013, pp. 826–836 (2013)
11. Lee, J., Shallit, J.: Enumerating regular expressions and their languages. In:

Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol.
3317, pp. 2–22. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30500-2 2

12. Lee, M., So, S., Oh, H.: Synthesizing regular expressions from examples for intro-
ductory automata assignments. In: GPCE 2016, pp. 70–80 (2016)

13. Owens, S., Reppy, J.H., Turon, A.: Regular-expression derivatives re-examined. J.
Funct. Program. 19(2), 173–190 (2009)

14. Park, J., Ko, S., Cognetta, M., Han, Y.: Softregex: Generating regex from natural
language descriptions using softened regex equivalence. In: EMNLP-IJCNLP 2019,
pp. 6424–6430 (2019)

15. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning (2012)
16. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: prelim-

inary report. In: STOC 1973, pp. 1–9 (1973)
17. Wang, X., Gulwani, S., Singh, R.: FIDEX: filtering spreadsheet data using exam-

ples. In: OOPSLA 2016, pp. 195–213 (2016)
18. Wood, D.: Theory of Computation. Harper & Row (1987)
19. Ye, X., Chen, Q., Wang, X., Dillig, I., Durrett, G.: Sketch-driven regular expression

generation from natural language and examples. Trans. Assoc. Comput. Linguist.
8, 679–694 (2020)

https://doi.org/10.1007/978-3-540-30500-2_34
https://doi.org/10.1007/978-3-540-30500-2_34
https://doi.org/10.1007/978-3-642-13089-2_24
https://doi.org/10.1007/978-3-540-30500-2_2
https://doi.org/10.1007/978-3-540-30500-2_2

	Efficient Enumeration of Regular Expressions for Faster Regular Expression Synthesis
	1 Introduction
	2 Preliminaries
	3 Concise Normal Form for REs
	4 RE Synthesis Algorithm
	4.1 Best-First Search Algorithm
	4.2 Finding Redundancy Using Positive Examples
	4.3 Our Synthesis Algorithm

	5 Experimental Results
	5.1 Exact Enumeration of REs in Normal Form
	5.2 Performance of RE Synthesis

	References

