
Say No to Case Analysis: Automating
the Drudgery of Case-Based Proofs

Jeffrey Shallit(B)

School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
shallit@uwaterloo.ca

Abstract. I present an argument that long, tedious proofs requiring a
human to check many cases should be replaced by an algorithm, so a
computer can do the work instead.

Keywords: Decision procedure · Automata · Case-based proof ·
Algorithm

1 Introduction

My talk can be briefly summarized as follows: Long, tedious proofs that require
a human to check many cases should be replaced by an algorithm, so a computer
can do the work instead.

Doing so offers a number of advantages:

– An algorithm replaces valuable human time with what a computer does best:
tedious examination of a large number of cases.

– Implementing an algorithm allows one to test whether all cases have in fact
been considered, and correct any errors in the analysis.

– An algorithm is often more general than the specific problem at hand, and
can easily be modified to explore generalizations of the original problem.

– If a conjecture can be phrased in a logical language that is algorithmically
decidable, then one can use a decision procedure instead of a case-based proof.

– By combining a decision procedure with heuristics, one can algorithmically
“guess” possible solutions to a problem, and then prove the guess is correct.
So one can “guess” the correct routes to a proof, and then complete it.

Furthermore, automata and formal languages provide a framework that can
replace case analysis for a diverse set of problems.

2 Why We Need Cases: Some Things Are True for No
Good Reason

As mathematicians and theoretical computer scientists, we are conditioned to
believe that most of the true statements we are interested in have proofs. For
c© Springer Nature Switzerland AG 2021
S. Maneth (Ed.): CIAA 2021, LNCS 12803, pp. 14–24, 2021.
https://doi.org/10.1007/978-3-030-79121-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79121-6_2&domain=pdf
http://orcid.org/0000-0003-1197-3820
https://doi.org/10.1007/978-3-030-79121-6_2

Say No to Case Analysis: Automating the Drudgery of Case-Based Proofs 15

hundreds of years, nearly everyone believed that Fermat’s “Last Theorem” was
true and that a proof would be found someday. And our intuition was confirmed
when Andrew Wiles succeeded in finding a proof.

Yet we know from Gödel that, in a sufficiently powerful consistent formal
system, there are true statements that have no proof in the system. Furthermore,
some of these assertions will be very simple to state (at least conceptually), such
as “This statement has no proof in Peano arithmetic”. But there may be other,
more “natural” true statements that are simple, lack obvious self-reference, and
still have no proof. Here is a possible example:

Numbers that are exact powers of two are 2, 4, 8, 16, 32, 64, 128 and so
on. Numbers that are exact powers of five are 5, 25, 125, 625 and so on.
Given any number such as 131072 (which happens to be a power of two),
the reverse of it is 270131, with the same digits taken in the opposite order.
Now my statement is: it never happens that the reverse of a power of two
is a power of five.

– Freeman Dyson [9]

Dyson’s conjecture is plausible because of some “randomness” in the decimal
digits of powers, together with the lack of small counterexamples. But it is that
very “randomness” that makes it hard to find a route to a proof.

We are also conditioned to believe that the true statements we are interested
in not only have proofs, but also have simple proofs, if only we are clever enough
to find them. Consider, for example, the attraction of “proofs from the Book”—
an Erdős fantasy that there exists a celestial Book containing the optimal proofs
for all important theorems [1].

While it is certainly desirable to find short proofs that give insight into a
problem, we also know that in any sufficiently powerful consistent system there
are true statements that are provable, but whose shortest proof is astronomically
long in comparison to the length of the statement.1 We might say these are
statements that are true, but for no good reason.

So, a priori, we should not be at all surprised that some simple statements
like the Four-Color Conjecture (4CC) might end up having no simple proof. The
original proof of 4CC by Appel and Haken [2] involved finding an “unavoidable
set of reducible configurations”, reducing the problem to checking 1,834 indi-
vidual cases by a computer. To date there is still no really simple proof of this
theorem.

This is an automata theory conference, so let’s look at an example from
automata theory. Suppose we conjecture that all strings satisfy some property.
If this property can be represented by an NFA M = (Q,Σ, δ, q0, F), then this
conjecture becomes the universality problem: does M recognize Σ∗? Unfortu-
nately, the universality problem for NFA’s is PSPACE-complete [18], so proba-
bly there is no efficient algorithm to check universality. Even worse, we may not
1 An example is “This statement has no proof in Peano arithmetic with less than 10100

symbols.”.

16 J. Shallit

even be able to check a possible counterexample in polynomial time, since there
are O(n)-state NFA’s where the shortest string not accepted is of length ≥ 2n.
An example is provided by the language

Ln = {0, 1,#}∗ − { [0]#[1]# · · · #[2n − 1] },

where [a] is the binary representation of a, padded on the left to make it n bits
long. It is not hard to construct an NFA Mn for Ln that has O(n) states, while
the shortest (and only) string Mn does not accept is clearly of length (n+1)2n−1.

Hence short conjectures about universality, represented by NFA’s, might have
exponentially long counterexamples, and we might need to examine exponen-
tially many cases to rule them out.

3 Let a Computer Do the Work

In a classic paper of Entringer, Jackson, and Schatz [10], the authors proved
that every binary word containing no squares xx with |x| ≥ 2 is of length ≤ 18.
They do so by a case-based analysis that is displayed in a large diagram that
takes up an entire page of their paper.

But why do this? One can check each case tediously by hand, but do we get
any real insight this way? And after doing so, does the reader feel sure that every
case has been covered?

Instead, one can recognize this as a classic avoidance problem that can be
solved almost trivially with breadth-first or depth first search. Let P be a set
of patterns one wants to avoid over some alphabet Σ. Construct a (potentially)
infinite tree T , with nodes labeled by Σ∗. The root is labeled with the empty
string ε. If a node is labeled x and does not end in a pattern in P , then its
children are xa for a ∈ Σ. Otherwise the node is a leaf. Then T is finite iff the
set P cannot be avoided. Furthermore, if the node at greatest depth is xa for
a ∈ Σ, then x is a longest word avoiding P .

By reporting statistics obtained by breadth-first or depth-first search, one
can provide enough information that anyone else can easily check the results
with a simple program. For the Entringer et al. problem, one can provide the
number of leaves in the tree (478) and the leaves at greatest depth, which are

0100110001110011010, 0100110001110011011,

and their binary complements.

4 Algorithmic Case Analysis Prevents Errors

One of the advantages of automating case-based proofs is increased certainty in
the correctness of the proof. Once all the cases have been expressed algorithmi-
cally, one can then test a large number of randomly-chosen examples (or try to
exercise all paths in the case analysis) to make sure all cases have been covered.

Say No to Case Analysis: Automating the Drudgery of Case-Based Proofs 17

As an example, consider a recent theorem by Cilleruelo and Luca [5]: for
every integer base b ≥ 5, every natural number is the sum of three natural num-
bers whose base-b representations are palindromes. Their 30-page proof required
examining a very large number of cases (one case was labeled IV.5.v.b), and
would be rather challenging to verify. As it turns out, however, the initial proof
had some small, easily-repaired flaws that were only discovered when the case
analysis was programmed up in Python by Baxter [6].

5 Replacing a Large Number of Cases with a General
Argument

Returning to the sum-of-palindromes problem, Cilleruelo et al. were not able
to handle the case of bases b = 2, 3, 4 in their analysis. I wondered if a more
general approach might work to solve this problem. We want to show that every
integer can be represented as a sum of numbers with a certain easily-describable
base-b representation. If we can use some flavor of automata to check these
representations, then this becomes a universality problem for nondeterministic
machines: for every natural number N , we “guess” a representation as a sum
of palindromes, and then check it. Even though universality problems are hard
in general, we might “luck out” and get one that runs in a reasonable length of
time.

We were able to solve the sum-of-palindromes problem for the remaining
cases b = 2, 3, 4 using two different approaches:

– “guess” a representation of N as a sum of terms and use a visibly-pushdown
automaton to verify that the guessed representations are palindromes;

– “guess” only the first half of the representations of the terms to be summed
with an NFA, and then verify that the full representations sum to a “folded”
version of the representation of N .

Using these ideas, we were able to prove

Theorem 1. For base 2, every natural number is the sum of four palindromes.
For bases 3 and 4, every natural number is the sum of three palindromes.

For the details, see [21,22].
Furthermore, now that we have the idea that computational models such

as visibly-pushdown automata and NFA’s can be used this way, it suggests a
large number of related problems that are easily solved. For example, instead
of palindromes, we could consider sums of generalized palindromes: these are
numbers, like 1100, that have palindromic base-k representations if one allows
insertion of leading zeroes. We also obtained results about sums of generalized
palindromes with only minor modifications.

Or we could look at “squares” instead of palindromes: these are numbers
whose base-b representation consists of two consecutive identical blocks. For
this, see [17].

18 J. Shallit

Let’s look at another example: words avoiding various sets of palindromes.
Let x be a finite or infinite word. The set of all of its factors (that is, contiguous
blocks appearing in x) is written Fac(x), and the set of its factors that are
palindromes is written PalFac(x). In [12], we proved the following result:

Theorem 2. Let S be a finite set of palindromes over an alphabet Σ. Then the
language

CΣ(S) := {x ∈ Σ∗ : PalFac(x) ⊆ S}
is regular.

Proof. Let � be the length of the longest palindrome in S. We claim that CΣ(S) =
L, where

L =
⋃

t∈P≤�+2−S

Σ∗ t Σ∗.

CΣ(S) ⊆ L: If x ∈ CΣ(S), then x must have some palindromic factor y such
that y �∈ S. If |y| ≤ � + 2, then y ∈ P≤�+2 − S. If |y| > � + 2, we can write
y = uvuR for some palindrome v such that |v| ∈ {� + 1, � + 2}. Hence x has the
palindromic factor v and v ∈ P≤�+2 − S. In both cases x ∈ L.

L ⊆ CΣ(S): Let x ∈ L. Then x ∈ Σ∗ t Σ∗ for some t ∈ P≤�+2 − S. Hence x has
a palindromic factor outside the set S and so x �∈ CΣ(S).

Thus we have written CΣ(S) as the finite union of regular languages, and so
CΣ(S) is also regular.

Not only does this theorem show that the language of words avoiding palin-
dromes is regular, it also gives a method to actually construct a DFA recognizing
the language of all such words. With this theorem, then, we can replace much of
the case analysis in [11,23] with a calculation based on automata. As an example
of the power of the method, we just mention one result from [12]:

Theorem 3. The sequence (e2,5(n))n≥0 counting the number of binary words of
length n containing no palindromes of length > 5 satisfies the recurrence

e2,5(n) = 3e2,5(n − 6) + 2e2,5(n − 7) + 2e2,5(n − 8) + 2e2,5(n − 9) + e2,5(n − 10)

for n ≥ 20. Asymptotically e2,5(n) ∼ cαn where α
.= 1.36927381628918060784 · · ·

is the positive real zero of the equation X10 − 3X4 − 2X3 − 2X2 − 2X − 1, and
c = 9.8315779 · · · .

6 Heuristics Plus Algorithms Can Create Proofs

One of the most useful examples of these ideas is the following: use heuristics to
find possible routes to a proof, and then use an algorithm to complete the proof
itself.

Say No to Case Analysis: Automating the Drudgery of Case-Based Proofs 19

Consider the following problem: choose a finite set of unary operations on
languages, such as S = { Kleene closure, complement }. Start with a language
L, and apply the operations of S to L as many times as you like, and in any
order. (This is the orbit of L under the set S.) How many different languages
can you get?

For the particular S above, the answer is 14; this is a version of the Kura-
towski 14-theorem from topology.

We can then try different sets of operations. In 2012, we proved the following
result [4].

Theorem 4. For the set of eight operations

S = {Kleeneclosure,positiveclosure, complement,prefix, suffix,

factor, subword, andreverse }

the size of the orbit of every language is at most 5676.

The simple idea behind the proof is that certain finite sequences of composed
operations generate the same language as shorter sequences. For example, if k
denotes Kleene closure and c denotes complement, then kckckck has the same
effect as kck. By generating an extensive list of identities like kckckck ≡ kck,
we can do a breadth-first search over the tree of all sequences of operations,
demonstrating that there is a finite set of sequences that covers all possibilities.

But which identities are true? Here is where heuristics can help us. We can
model all languages with the class of regular languages. To find an identity,
we can apply one list of operations to some randomly-generated set of regular
languages and compare it to the result of some other list. If the results agree
everywhere, we have a candidate identity we can try to prove.

When implemented, our procedure generated dozens of identities, most of
which had trivial proofs. Once we had these identities, we used the breadth-first
search to prove that the size of the orbit was finite. I’d be very surprised if there
is a simple proof of Theorem 4.

7 Decision Procedures

Let us continue with the theme of the previous section. The best possible example
of what I’m talking about involves a decision procedure. If the statement you’re
trying to prove can be phrased in a logical theory that is recursively decidable
(an algorithm exists to find proofs of all true statements), you can replace a
case-based proof with running the decision procedure.

One domain where this has been very successful is the combinatorics of auto-
matic sequences. (For us, “sequence” is synonymous with “infinite word”). A
sequence (sn)n≥0 over a finite alphabet is automatic if, roughly speaking, there
is a deterministic finite automaton with output (DFAO) that, on input the rep-
resentation of the natural number n in some form, ends in a state with output
sn. A typical example of the kind of representation we are talking about is base-2

20 J. Shallit

representation. For automatic sequences, thanks to Büchi and others (see [3])
there is a decision procedure to answer questions about these sequences that are
phrased in first-order logic.

Let’s look at a specific example. The Thue-Morse sequence

t = (tn)n≥0 = 0110100110010110 · · ·

is an automatic sequence and is generated by the following very simple automa-
ton. Here the label a/b on a state means that the state is numbered a and the
output associated with the state is b.

0/0

0

1/11
1

0

A word x has period p ≥ 1 if x[i] = x[i + p] for all indices i that make sense.
Currie and Saari [7] proved that t has a factor of least period p for all integers
p ≥ 1. Their proof required 3 lemmas, 6 cases, and 3 pages.

However, their claim can be phrased in a certain logical system that is algo-
rithmically decidable, and there is a decision procedure for it. This procedure
has been implemented in the Walnut theorem prover [19] written by Hamoon
Mousavi, and so we can enter the commands

def tmperi "(p>0) & (p<=n) & Aj (j>=i & j+p<i+n) => T[j]=T[j+p]":

def tmlper "$tmperi(i,n,p) & (Aq (q>=1 & q<p) => ~$tmperi(i,n,q))":

eval currie_conj "Ap (p>=1) => Ei,n (n>=1) & $tmlper(i,n,p)":

which returns TRUE in a matter of .062 s of CPU time. Here tmperi asserts
that t[i..i + n − 1] has period p, and tmlper asserts that the least period of
t[i..i + n − 1] is p.

A factor is said to be bordered if it begins and ends with the same word in
a nontrivial way, like the English word entanglement. If it is not bordered, we
call it unbordered. Currie and Saari [7] were also interested in determining all
lengths of unbordered factors in t. They proved that t has a length-n unbordered
factor if n �≡ 1 (mod 6), but were unable to find a necessary condition. We can
do this with Walnut by writing

def tmfactoreq "At (t<n) => T[i+t]=T[j+t]":

def tmbord "(m>=1) & (m<n) & At (t<m) => $tmfactoreq(i,(i+n)-m,m)":

def tmunbordlength "Ei Am ~$tmbord(i,m,n)":

Running this in Walnut produces the following automaton, which recognizes
the base-2 representation of all n for which t has a length-n unbordered factor:

Say No to Case Analysis: Automating the Drudgery of Case-Based Proofs 21

0

0

11

2
0

3

1

0

1

0

41 50, 1

0, 1

By inspection, we get the following theorem:

Theorem 5. The Thue-Morse sequence t has an unbordered factor of lengthn if
and only if (n)2 �∈ 1(01∗0)∗10∗1.

Finally, let’s look at one more problem from additive number theory. The
upper Wythoff set U = {2, 5, 7, 10, 13, . . .} is defined to be {	α2n
 : n ≥
1}, where α = (1 +

√
5)/2 is the golden ratio. Recently Kawsumarng et al. [16]

studied the sumset U + U = {x + y : x, y ∈ U}. Using a case-based argument,
they constructed a rather complicated description of this set, noting that it “has
some kinds of fractal and palindromic patterns”.

However, it turns out that the assertionn ∈ U + U is first-order expressible in
a decidable logical theory; this allows us to give a complete description ofU+U as
the set of natural numbers whose Fibonacci representation2 is recognized by the
following automaton:

0

0

11 20 30

4

1

5
0

6
1

70

0

81

9

0

1
100

0
1

11
0

1
0

1

0

Here no explicit breakdown into cases was necessary; instead, the deci-
sion procedure “automatically” constructs the automaton from a description
of U . The fact that this automaton has so many states and a complicated struc-
ture partially explains why the set U + U is difficult to describe explicitly. See
[24].

In the next two subsections I mention some other examples of this approach
that don’t quite rise to the status of a decision procedure, but are still enormously
useful.

2 The Fibonacci representation of a natural number n is a finite binary
string a1a2 · · · at such thatn =

∑
1≤i≤t aiFt+2−i, and aiai+1 = 0 for 1 ≤ i < t.

22 J. Shallit

7.1 SAT Solvers

The boolean Pythagorean triples problem is the following: are there infinite binary
wordsa = a1a2 · · · with the property that if i2 + j2 = k2, then ai = aj = ak never
holds? This was finally resolved negatively by Heule, Kullmann, and Marek [15],
who proved that the longest such word is of length 7824. The really interest-
ing thing about their proof is how it was achieved: they coded the avoidance
conditions as a SAT instance and then applied a general-purpose tool—a SAT
solver—to check if this instance is satisfiable. Even though, as is well-known,
SAT is an NP-complete problem, modern SAT solvers can often determine if
particular instances are satisfiable or not, even if they have thousands of vari-
ables and clauses.

For another interesting application of SAT solvers, see [14].

7.2 The W-Z Method

The W-Z method (developed by Gosper [13] and Wilf, Zeilberger, and Petkovšek
[20]) is a decision procedure that allows verification of general combinatorial
identities involving polynomials, exponentials, binomial coefficients, and similar
quantities. It has been implemented in Maple, and hence automatically proving
identities like

∑

−n≤k≤n

(−1)k

(
2n

n + k

)3

=
(3n)!
n!3

is now almost trivial [25].

8 Heuristics Plus Decision Procedures Provide Proofs

Finally, we can combine the ideas of depth-first or breadth-first search over a
space with a decision procedure to (a) figure out a good candidate for a solution
and then (b) prove it is correct.

As an example, let’s return to automatic sequences. In 1965, Dean [8] stud-
ied the Dean words: squarefree words over {x, y, x−1, y−1} that are not reducible
(that is, there are no occurrences of xx−1, x−1x, yy−1, y−1y) [8]. Let us use the
coding 0 ↔ x, 1 ↔ y, 2 ↔ x−1, 3 ↔ y−1. We can use breadth-first search to find
a candidate for an infinite Dean word that is automatic.

When implemented, breadth-first search quickly converges on the sequence

0121032101230321 · · · ,

which (using the Myhill-Nerode theorem) we can guess as the fixed point of the
morphism

0 → 01, 1 → 21, 2 → 03, 3 → 23.

Now the decision procedure kicks in. We make a DFAO for this sequence and
store it under the name DE.txt in the Word Automata library of Walnut.

Say No to Case Analysis: Automating the Drudgery of Case-Based Proofs 23

Then we carry out the following commands:

eval dean1 "Ei,n (n>=1) & At (t<n) => DE[i+t]=DE[i+n+t]":
check if there’s a square
eval dean02 "Ei DE[i]=@0 & DE[i+1]=@2":
eval dean20 "Ei DE[i]=@2 & DE[i+1]=@0":
eval dean13 "Ei DE[i]=@1 & DE[i+1]=@3":
eval dean31 "Ei DE[i]=@3 & DE[i+1]=@1":
check for existence of factors 02, 20, 13, 31

All of these return FALSE, so this word is a Dean word. We have thus proved the
existence of Dean words with essentially no human intervention.

9 Objections

– You’ve replaced a case-based proof with an algorithm, but how do you know
the algorithm is correct?
Answer: Sometimes an implementation will be much simpler than the record
of the cases it examines, so it will actually be easier to verify the program
than the case-based argument.
In other cases, the algorithm can produce a certificate that another, simpler
program can easily verify.
Finally, in addition to formal correctness, there is also empirical correctness.3

With a program in hand, we can test it on a wide variety of different inputs
to look for oversights and omissions.

– Running a program provides no insight as to why a result is true.
Answer: Sometimes, as I’ve argued above, there just won’t be a simple reason
why a result is true. In situations like this, it’s better just to accept the result
and move on.

– Some of the decision procedures you’ve talked about have astronomical worst-
case running times.
Answer: Don’t pay much attention to the worst-case running time of decision
procedures! They often run in a reasonable length of time for the instances
we are interested in.

References

1. Aigner, M., Ziegler, G.M.: Proofs from THE BOOK, 5th edn. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44205-0

2. Appel, K., Haken, W.: Every Planar Map is Four-Colorable. Contemporary Math-
ematics, vol. 98. American Mathematical Society (1989)

3. Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable
sets of integers. Bull. Belg. Math. Soc. 1,191–238 (1994), corrigendum, Bull. Belg.
Math. Soc. 1 (1994), 577

3 For example, “Beware of bugs in the above code; I have only proved it correct, not
tried it.”– Donald Knuth.

https://doi.org/10.1007/978-3-662-44205-0

24 J. Shallit

4. Charlier, E., Domaratzki, M., Harju, T., Shallit, J.: Composition and orbits of
language operations: finiteness and upper bounds. Int. J. Comput. Math. 90, 1171–
1196 (2013)

5. Cilleruelo, J., Luca, F.: Every positive integer is a sum of three palindromes (2016).
preprint available at https://arxiv.org/abs/1602.06208v1

6. Cilleruelo, J., Luca, F., Baxter, L.: Every positive integer is a sum of three palin-
dromes. Math. Comp. 87, 3023–3055 (2018)

7. Currie, J.D., Saari, K.: Least periods of factors of infinite words. RAIRO Info.
Theor. Appl. 43, 165–178 (2009)

8. Dean, R.A.: A sequence without repeats on x, x−1, y, y−1. Amer. Math. Monthly
72, 383–385 (1965)

9. Dyson, F.: What do you believe is true even though you cannot prove it? (2005).
https://www.edge.org/response-detail/11675

10. Entringer, R.C., Jackson, D.E., Schatz, J.A.: On nonrepetitive sequences. J. Com-
bin. Theory Ser. A 16, 159–164 (1974)

11. Fici, G., Zamboni, L.Q.: On the least number of palindromes contained in an
infinite word. Theoret. Comput. Sci. 481, 1–8 (2013)

12. Fleischer, L., Shallit, J.: Automata, palindromes, and reversed subwords (2020).
Manuscript under submission

13. Gosper Jr., R.W.: Decision procedure for indefinite hypergeometric summation.
Proc. Natl. Acad. Sci. U.S.A. 75, 40–42 (1978)

14. Heule, M.: Schur number five. In: Thirty-Second AAAI Conference on Artificial
Intelligence (AAAI-18), pp. 6598–6606. AAAI Press (2018)

15. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
Pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2 15

16. Kawsumarng, S., Khemaratchatakumthorn, T., Noppakaew, P., Pongsriiam, P.:
Sumsets associated with Wythoff sequences and Fibonacci numbers. Period. Math.
Hung. 82(1), 98–113 (2020). https://doi.org/10.1007/s10998-020-00343-0

17. Madhusudan, P., Nowotka, D., Rajasekaran, A., Shallit, J.: Lagrange’s theorem for
binary squares. In: Potapov, I., Spirakis, P., Worrell, J. (eds.) 43rd International
Symposium on Mathematical Foundations of Computer Science (MFCS 2018), pp.
18:1–18:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2018)

18. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expres-
sions with squaring requires exponential space. In: Symposium on Switching and
Automata Theory (SWAT), pp. 125–129. IEEE Computer Society (1972)

19. Mousavi, H.: Automatic theorem proving in Walnut (2016). arxiv preprint. http://
arxiv.org/abs/1603.06017

20. Petkovšek, M., Wilf, H., Zeilberger, D.: A = B. A. K. Peters (1996)
21. Rajasekaran, A., Shallit, J., Smith, T.: Additive number theory via automata the-

ory. Theor. Comput. Syst. 64, 542–567 (2020)
22. Rajasekaran, A., Smith, T., Shallit, J.: Sums of palindromes: an approach via

automata. In: Niedermeier, R., Vallée, B. (eds.) 35th Symposium on Theoreti-
cal Aspects of Computer Science (STACS 2018), pp. 54:1–54:12. Leibniz Inter-
national Proceedings in Informatics, Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik (2018)

23. Rampersad, N., Shallit, J.: Words avoiding reversed subwords. J. Combin. Math.
Combin. Comput. 54, 157–164 (2005)

24. Shallit, J.: Sumsets of Wythoff sequences, Fibonacci representation, andbeyond
(2021). Period. Math. Hung., to appear

25. Tefera, A.: What is a Wilf-Zeilberger pair? Not. Am. Math. Soc. 57, 508–509 (2010)

https://arxiv.org/abs/1602.06208v1
https://www.edge.org/response-detail/11675
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/s10998-020-00343-0
http://arxiv.org/abs/1603.06017
http://arxiv.org/abs/1603.06017

	Say No to Case Analysis: Automating the Drudgery of Case-Based Proofs
	1 Introduction
	2 Why We Need Cases: Some Things Are True for No Good Reason
	3 Let a Computer Do the Work
	4 Algorithmic Case Analysis Prevents Errors
	5 Replacing a Large Number of Cases with a General Argument
	6 Heuristics Plus Algorithms Can Create Proofs
	7 Decision Procedures
	7.1 SAT Solvers
	7.2 The W-Z Method

	8 Heuristics Plus Decision Procedures Provide Proofs
	9 Objections
	References

