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Abstract. While the closure of a language family L under certain lan-
guage operations is the least family of languages which contains all mem-
bers of L and is closed under all of the operations, a kernel of L is a max-
imal family of languages which is a sub-family of L and is closed under
all of the operations. Here we investigate properties of the Boolean ker-
nels of the family of context-free languages. Additionally, languages that
are mandatory for each Boolean kernel and languages that are optional
for Boolean kernels are studied. That is, we consider the intersection of
all Boolean kernels as well as their union. The expressive capacities of
these families are addressed leading to a hierarchical structure. Further
closure properties are considered. Furthermore, we study descriptional
complexity aspects of these families, where languages are represented by
context-free grammars with proofs attached. It turns out that the size
trade-offs between all families in question and deterministic context-free
languages are non-recursive. That is, one can choose an arbitrarily large
recursive function f , but the gain in economy of description eventually
exceeds f when changing from the latter system to the former.

1 Introduction

Classical and well-developed concepts to represent (formal) languages are, for
example, grammars, language equations, or accepting automata. Similarly, fam-
ilies of languages can be represented in several ways. For example, a language
family can be defined to be the set of all languages represented by a certain
type of grammar, automaton model, language equation, or by applying appro-
priate operations on other language families. From a practical point of view,
there is often a considerable interest in language families that are robust with
respect to language operations, that is, the families are preferably closed under
the operations, and/or in language families that admit efficient recognizers. A
good example are context-free languages, that are one of the most important and
most developed area of formal language theory. However, the family is not closed
under the two Boolean operations complementation and intersection. Moreover,
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the known upper bound on the time complexity for context-free language recog-
nition still exceeds O(n2). As an approach to characterize language families hav-
ing strong closure properties and efficient recognizers but decrease the expressive
capacity only slightly, closures of sub-classes of the context-free languages have
been investigated. The Boolean closure of the linear context-free languages offers
a significant increase in expressive capacity compared with the linear context-
free languages itself. In addition, it preserves the attractively efficient recognition
algorithm [10] taking O(n2) time and O(n) space. The systematic investigation
of the Boolean closures of arbitrary and deterministic context-free languages
started in [12–14]. The closure of deterministic languages under the regular
operations is studied in [1], while the regular closure of the linear context-free
languages is considered in [9].

Here we are interested in language families with strong closure properties
obtained as sub-families of a given family instead of closing and, thus, extending
the family. To this end, we study Boolean kernels of the family of context-free
languages. Basically, such a kernel is a maximal sub-family of the context-free
languages that is closed under the Boolean operations.

The paper is organized as follows. After presenting the basic definitions and
notions in the next section, Sect. 3 deals with the expressive capacities of Boolean
kernels of context-free languages as well as with languages that are mandatory
for each Boolean kernel and languages that are optional for Boolean kernels. For
the latter, the intersection and union of all Boolean kernels is considered. The
hierarchical structure of these families is depicted in Fig. 1. Section 4 is devoted
to additional closure properties. In particular, the operations reversal, concate-
nation, and inverse homomorphism are studied. The results are summarized in
Table 1. Descriptional complexity aspects are dealt with in Sect. 5. The size of
a language is given by the size of its representation. Since, in most cases, no
automata or grammar characterizations are known for kernels, here we use rep-
resentations by context-free grammars which come with a corresponding proof
attached. The proofs certify that the grammar generates a language belonging
to the desired sub-family. The length of the proof is then added to the size of
the grammar. It turns out that the size trade-offs between all families in ques-
tion and deterministic context-free languages are non-recursive. That is, one
can choose an arbitrarily large recursive function f , but the gain in economy of
description eventually exceeds f when changing from the latter system to the
former. Finally, we discuss some interesting untouched problems and questions
for further research in Sect. 6.

2 Preliminaries

We write Σ∗ for the set of all words over a finite alphabet Σ. The empty word
is denoted by λ, and we set Σ+ = Σ∗ \{λ}. The reversal of a word w is denoted
by wR, and for the length of w we write |w|. For the number of occurrences of a
symbol a in w we use the notation |w|a. Set inclusion is denoted by ⊆ and strict
set inclusion by ⊂.
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A subset of Σ∗ is called a (formal) language over Σ. A language operation
is an operation whose finite number of parameters are languages, and whose
result is a language. For example, the complement of a language is defined with
respect to the underlying alphabet Σ. That is, the complement of L ⊆ Σ∗

is L = {w ∈ Σ∗ | w /∈ L }. For all k ≥ 1, a k-ary language operation ◦ is
said to be idempotent if ◦(L,L, . . . , L) = L, for all L in the domain of ◦. For
easier writing, here we call even a unary language operation ◦ with the property
◦(L) = L idempotent (so we do not require ◦(◦(L)) = ◦(L)).

Let Ω be an infinite enumerable set of letters. The set L is a family of
languages over Ω if for each L ∈ L there is a finite subset Σ ⊂ Ω such that
L ⊆ Σ∗. In the sequel we tacitly omit Ω when it is understood.

Let L be a family of languages and op1, op2, . . . , opk, k ≥ 1, be a finite
number of operations defined on L .

1. By Γop1,op2,...,opk
(L ) we denote the (op1, op2, . . . , opk) closure of L . That is,

the least family of languages which contains all members of L and is closed
under op1, op2, . . . , opk. In other words, there exists no language family L ′

that is closed under op1, op2, . . . , opk such that L ⊆ L ′ ⊂ Γop1,op2,...,opk
(L ).

2. By γop1,op2,...,opk
(L ) we denote the set of (op1, op2, . . . , opk) kernels of L .

That is, the set of maximal families of languages which are sub-families of
L and are closed under op1, op2, . . . , opk. In other words, for all kernels κ ∈
γop1,op2,...,opk

(L ) there exists no language family L ′ that is closed under
op1, op2, . . . , opk such that κ ⊂ L ′ ⊆ L .

In particular, we consider the operations complementation ( ), union (∪),
and intersection (∩), which are called Boolean operations. Accordingly, we write
ΓBOOL for Γ ,∪,∩ and γBOOL for γ ,∪,∩.

Since special attention is paid to sub-classes of context-free languages, we
refer to the literature, for example to [3], for detailed definitions of context-free
grammars and of the characterizing automata models. In particular, an automa-
ton model for the recognition of context-free languages is the nondeterministic
pushdown automaton. Its deterministic variant characterizes the deterministic
context-free languages (DCFL).

It is known from [8] that the sets γBOOL(CFL) as well as γBOOL(DCFL)
include infinitely many kernels, while the complementation kernel of the context-
free languages is unique. Moreover, not all context-free languages belong to some
Boolean kernel, while any deterministic context-free language belongs to some
kernel κ ∈ γBOOL(DCFL).

3 Expressive Capability

In connection with the question of whether any language of a family belongs to
some kernel based on given operations, or whether there are languages that do
not belong to any of such kernels, the union of all kernels has been considered.
Similarly, the question which languages belong to all kernels based on given
operations raised the definition of the intersection of all of these kernels.
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The union of all Boolean kernels of the context-free languages is denoted
by U , that is, U = {L | L ∈ κ for some κ ∈ γBOOL(CFL) }.

Similarly, the intersection of all Boolean kernels of the context-free languages
is denoted by I , that is, I = {L | L ∈ κ for all κ ∈ γBOOL(CFL) }.

It turns out that the union of all Boolean kernels of the context-free languages
characterizes an interesting language family. Theorem 1 shows that it coincides
with the unique complementation kernel in γ (CFL). That is interesting in itself
but beyond that, the unique complementation kernel is also known as the family
of strongly context-free languages [7]. A machine characterization of that family
in terms of self-verifying pushdown automata is obtained in [2].

Theorem 1. The family U coincides with the unique complementation kernel
in γ (CFL).

Proof. Let L be a language in U ⊆ CFL. Then there is a κ ∈ γBOOL(CFL) with
L ∈ κ. Since κ is closed under complementation, the complement L of L belongs
to κ as well. We conclude that L belongs to U and, thus, to CFL. In particular,
since L and L are context free, they belong to the unique kernel in γ (CFL).

For the converse, let L be some language over the alphabet Σ such that L
and, thus, L belong to the unique kernel in γ (CFL). We consider the set
ν = {L,L,Σ∗, ∅} which is clearly closed under complementation, union, and
intersection. Since L and L are context free, either ν is itself a Boolean kernel of
CFL, or there exists a kernel in γBOOL(CFL) having ν, and thus {L}, as subset.
So, L belongs to U . 
�

Since the family of context-free languages is not closed under comple-
mentation but by Theorem 1 the family U is, the inclusion U ⊂ CFL is
strict. Moreover, since there are infinitely many different Boolean kernels in
γBOOL(CFL), the maximality of kernels implies that any κ ∈ γBOOL(CFL) is
strictly included in U . For example, consider the two context-free languages
L1 = { anbnam | m,n ≥ 1 } and L2 = { ambnan | m,n ≥ 1 }. Their com-
plements are context free as well and, thus, both belong to the unique kernel
in γ (CFL) which coincides with U . Therefore, by Theorem 1 both belong to
some Boolean kernel from γBOOL(CFL). However, languages L1 and L2 cannot
belong to the same Boolean kernel from γBOOL(CFL), since their intersection is
the non-context-free language { anbnan | n ≥ 1 }.

In order to continue with the exploration of the hierarchical structure of
Boolean kernels, we turn to consider the family I which is the intersection of
all Boolean kernels of the context-free languages.

Proposition 2. The family I is strictly included in any Boolean kernel κ ∈
γBOOL(CFL).

It is shown in [8] that all Boolean kernels of the context-free languages include
the regular languages and some non-regular languages. So far, we have the hier-
archy REG ⊂ I ⊂ κ ⊂ U ⊂ CFL, for all kernels κ ∈ γBOOL(CFL), (see Fig. 1).
Finally, we turn to compare the family of deterministic context-free languages
with the hierarchical structure of Boolean kernels.
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Fig. 1. Hierarchical structure of language classes. The class
⋃

κ ∈ γBOOL(CFL)
denotes the union of all Boolean kernels of CFL. It coincides with the unique com-
plementation kernel of CFL. By κ ∈ γBOOL(CFL) we denote an arbitrary Boolean
kernel of CFL, and by

⋂
κ ∈ γBOOL(CFL) the intersection of all Boolean kernels of

CFL.

First we deduce that the family DCFL is strictly included in the family U .

Corollary 3. The family DCFL is strictly included in the family U .

Proof. By Theorem 1, any context-free language whose complement is also con-
text free belongs to U . Since the family DCFL is closed under complementation
and a subset of CFL, we obtain the inclusion DCFL ⊆ U . Its strictness is wit-
nessed, for example, by the context-free language {w ∈ {a, b}∗ | w = wR } not
belonging to DCFL whose complement is also context free (cf. [2]). So, it belongs
to U but is not deterministic context free. 
�

Concerning an arbitrary Boolean kernel κ ∈ γBOOL(CFL) and the family I
we obtain incomparability with DCFL.

Theorem 4. For any κ ∈ γBOOL(CFL), the family DCFL is incomparable with
κ and with the family I .

Proof. Both languages { anbnam | m,n ≥ 1 } and { ambnan | m,n ≥ 1 } are
deterministic context free. Assume that they do belong to κ. Since κ is closed
under intersection, the non-context-free language { anbnan | n ≥ 1 } must belong
to κ as well, a contradiction. So, there is a language in DCFL \ κ and, trivially,
in DCFL \ I .

Conversely, it is known that the languages L1 = { anbn | n ≥ 1 } and
L2 = { anb2n | n ≥ 1 } are included in any Boolean kernel of the context-
free languages [8]. So, they belong to the family I and, trivially, to κ. We
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consider the union L1 ∪ L2. Since L1 and L2 belong to any Boolean kernel of
the context-free languages which, in turn are closed under union, also L1 ∪ L2

must belong to any Boolean kernel of the context-free languages. In other words,
L1 ∪ L2 = { anbm | m = n or m = 2n,m, n ≥ 1 } belongs to I and, trivially,
to κ. But L1 ∪ L2 is not deterministic context free. So, there is a language in
κ \ DCFL and, trivially, in I \ DCFL. 
�

So far we have derived the comparisons of DCFL with the other families in
question. However, as shown in Fig. 1, its position in the hierarchical structure
needs a finer adjustment. The first question is whether the union of some kernel κ
and DCFL already characterizes the family U . Proposition 5 gives a negative
answer.

Proposition 5. For any κ ∈ γBOOL(CFL), there is a language in U \ (κ ∪
DCFL).

To continue with the finer adjustment let us next ask whether the union of
DCFL and I already captures the kernels κ. Again, the answer is negative.

Proposition 6. There exists a κ ∈ γBOOL(CFL) such that there is a language
in κ \ (I ∪ DCFL).

Proof. A language we are looking for has been considered in the proof of Propo-
sition 5. There, it is shown that the complement of the context-free language
L1 = { anbnam | m,n ≥ 1 } ∪ { anb2nam | m,n ≥ 1 } is context free as well,
and, thus, that L1 belongs to U . This implies that L1 belongs to some kernel
κ ∈ γBOOL(CFL).

Similarly, it is shown that L2 = { ambnan | m,n ≥ 1 }∪{ ambna2n | m,n ≥ 1 }
belongs to some kernel from γBOOL(CFL), but L1 and L2 cannot belong to the
same kernel.

So, we conclude that at least one of L1 and L2 does not belong to I . Both
languages are not deterministic context free. So, the assertion follows. 
�

The last two areas to be considered in Fig. 1 are the intersection of DCFL
and κ without I , and the intersection of DCFL and I without REG. For the
latter, we can utilize once more the non-regular but deterministic context-free
language { anbn | n ≥ 1 } that is included in any Boolean kernel of the context-
free languages [8].

Corollary 7. There is a language in (DCFL ∩ I ) \ REG.

For the former, we have the following result.

Proposition 8. There exists a κ ∈ γBOOL(CFL) such that there is a language
in (DCFL ∩ κ) \ I .
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4 (Non-)Closure Properties

The closure properties of the kernels from γBOOL(CFL) under the Boolean oper-
ations are trivial by definition. By Theorem 1, the properties of U can be derived
from the results on strongly context-free languages obtained in [7]. In particular,
it is closed under complementation but is not closed under union and intersection
(see Table 1). For the family I and Boolean operations we have the following
situation.

Proposition 9. The family I is closed under complementation, union, and
intersection.

Since all κ ∈ γBOOL(CFL) include the regular languages and are closed
under intersection, they are closed under intersection with regular sets. The
same argument applies to the family I .

We call a language that witnesses the non-inclusion of another language
in some family by violating closure properties toxic. More precisely, let L be
some family of languages not closed under an operation ◦, and L be a language
belonging to L . Then a language L′ ∈ L is said to be L -◦-toxic for L if and
only if L ◦ L′ /∈ L .

Lemma 10. Let L be a family of languages that includes ∅ and Σ∗, for all
alphabets Σ, and κ ∈ γBOOL(L ). A language L ∈ L does not belong to κ if
and only if either L /∈ L or there is a language L′ ∈ κ that is L -∩-toxic or
L -∪-toxic for L.

Proof. Let L ∈ L be a language not belonging to κ. Assume that L ∈ L and all
languages L′ ∈ κ are neither L -∩-toxic nor L -∪-toxic for L. Then we consider
ΓBOOL(κ ∪ {L,L}). In particular, we have that L as well as L belong to L ,
L ∩ L′ and L ∪ L′ do belong to L for all L′ ∈ κ. Moreover, L ∩ L = ∅ ∈ κ and
L∪L = Σ∗ ∈ κ. Therefore, ΓBOOL(κ∪{L,L}) is included in L . This contradicts
the maximality of κ.

If L ∈ κ then L ∈ κ ⊆ L , since κ is closed under complementation. Moreover,
since κ is closed under union and intersection, for all languages L′ ∈ κ, we have
L ∪ L′ ∈ κ ⊆ L and L ∩ L′ ∈ κ ⊆ L . We conclude that L′ is neither L -∪-toxic
nor L -∩-toxic for L. 
�

Reversal. The family U is closed under reversal. Before we turn to the closure
of the family I , we show that the closure may get lost for fixed kernels κ ∈
γBOOL(CFL).

Proposition 11. There is a kernel κ ∈ γBOOL(CFL) that is not closed under
reversal.

Theorem 12. The family I is closed under reversal.
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Proof. Assume in contrast to the assertion that there is an L ∈ I such that
LR /∈ I . Then there is a κ ∈ γBOOL(CFL) with LR /∈ κ.

Consider the complement LR. Since complementation commutes with rever-
sal we have LR = L

R
. Since L ∈ κ we derive L ∈ κ and, since CFL is closed

under reversal also L
R

= LR ∈ CFL. Knowing this we apply Lemma 10 and
conclude that there is a language L′ ∈ κ that is CFL-∩-toxic or CFL-∪-toxic
for LR. Since CFL is closed under union, L′ must be CFL-∩-toxic for LR.

So, LR ∩ L′ does not belong to CFL. Since the family CFL is closed under
reversal, we conclude (LR ∩L′)R /∈ CFL and, thus, (LR)R ∩ (L′)R = L∩ (L′)R /∈
CFL. Since L belongs to all Boolean kernels of CFL, we derive that all Boolean
kernels do not include (L′)R. Now Theorem 1 implies that either (L′)R or (L′)R

is not context free. Again, since complementation commutes with reversal we
obtain that either (L′)R or L′R is not context free. However, L′ ∈ κ implies L′ ∈
κ. By the closure of CFL under reversal we obtain the contradiction (L′)R ∈ CFL
and L′R ∈ CFL. 
�

Concatenation and Inverse Homomorphism. In order to prove the non-
closure of the family I and all kernels κ ∈ γBOOL(CFL) under concatenation
and inverse homomorphism, we consider semilinear languages that are subsets
of a∗b∗, where the number of b’s depends linearly on the number of a’s. The
dependency is given by linear functions ϕ : N → N with ϕ(n) = c1 · n + c0, for
some c0, c1 ≥ 0. For such functions, we define Lϕ = { anbϕ(n) | n ≥ 0 }. In [8]
it has been shown that all regular languages as well as all languages Lϕ belong
to all Boolean kernels of CFL. A generalization of the proofs reveals that this is
true also for all reversals of the languages Lϕ, that is, all languages LR

ϕ belong
to all Boolean kernels of CFL.

Theorem 13. The family I and all kernels κ ∈ γBOOL(CFL) are not closed
under concatenation, not even with concatenation of unary regular sets.

Theorem 14. The family I and all kernels κ ∈ γBOOL(CFL) are not closed
under inverse homomorphisms, not even under length-preserving inverse homo-
morphisms.

Proof. Let ϕ : N → N be the linear function ϕ(n) = 2n. We know that the
languages Lϕ = { anb2n | n ≥ 0 } and LR

ϕ belong to all kernels κ ∈ γBOOL(CFL).
Furthermore, let h : {a, b, c}∗ → {a, b}∗ be the homomorphism h(a) = a, h(b) =
h(c) = b and ĥ : {a, b, c}∗ → {a, b}∗ be the homomorphism ĥ(a) = ĥ(b) = b,
ĥ(c) = a. Then we have

h−1(Lϕ) ∩ a∗b∗c∗ = { anbmck | n ≥ 0,m + k = 2n } and

ĥ−1(LR
ϕ ) ∩ a∗b∗c∗ = { akbmcn | n ≥ 0,m + k = 2n }.

Assume that the family I or some kernel κ ∈ γBOOL(CFL) is closed under
inverse homomorphism. Since they include the regular languages and are closed
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under intersection, we derive that they include the language

h−1(Lϕ) ∩ ĥ−1(LR
ϕ ) ∩ a∗b∗c∗ = { anbncn | n ≥ 0 }

as well, a contradiction. 
�

Table 1. Closure properties of the language families discussed. Symbol • denotes
concatenation and κ stands for an arbitrary but fixed kernel from γBOOL(CFL). The
properties shown for κ hold for all κ ∈ γBOOL(CFL) with the exception of reversal.
For reversal, it has been shown that some kernels are not closed. It is currently open
if there exists some κ ∈ γBOOL(CFL) that is closed under reversal. The non-closure
under inverse homomorphism holds even for length-preserving homomorphisms.

∪ ∩R ∩ REV • h−1

CFL ✗ ✓ ✓ ✗ ✓ ✓ ✓

U ✓ ✗ ✓ ✗ ✓ ✗ ✓

κ ✓ ✓ ✓ ✓ ✗ ✗ ✗

I ✓ ✓ ✓ ✓ ✓ ✗ ✗

DCFL ✓ ✗ ✓ ✗ ✗ ✗ ✓

REG ✓ ✓ ✓ ✓ ✓ ✓ ✓

5 Descriptional Complexity

One topic in the field of descriptional complexity is to study the relative suc-
cinctness of different representations of languages by automata, grammars, and
descriptional systems from a more abstract perspective. For languages that have
more than one representation, the size trade-offs when changing the representa-
tion may be bounded by a recursive function or not. In the latter case we are
faced with the phenomenon of so-called non-recursive trade-offs. In particular,
whenever the trade-off from one descriptional system to another is non-recursive,
one can choose an arbitrarily large recursive function f but the gain in economy
of description eventually exceeds f when changing from the latter system to the
former. See [6] for more details on descriptional complexity.

In order to deal with such questions for kernels, a descriptional system for
languages from the kernel is necessary whose size can be measured. Since, in
general, no automata or grammar characterizations are known for kernels, we
take up an idea of Hartmanis [4] who raised the question whether the trade-off
between two descriptional systems is caused by the fact that in one system it
can be proved what is accepted, but that no such proofs are possible in the
other system. For example, consider descriptional systems for the deterministic
context-free languages. It is easy to verify whether a given pushdown automaton
is deterministic, but there is no uniform way to verify that a nondeterministic
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pushdown automaton accepts a deterministic context-free language. So, one may
ask whether the trade-off is affected if descriptional systems are considered which
come with a corresponding proof attached whose length is added to the size of
the system.

So, in the following we consider the representation of context-free languages
by nondeterministic pushdown automata (NPDA) to which a proof is attached
that the accepted language belongs to U , κ ∈ γBOOL(CFL), or I . We denote
these automata as U -NPDA, κ-NPDA, or I -NPDA. The size of such an
automaton is the length of the description of the automaton plus the length
of the proof, say in binary. Then it is clear that, for any c ≥ 1, there are only
finitely many U -NPDA, κ-NPDA, or I -NPDA whose size is at most c.

It will turn out that the trade-offs between any of these three descriptional
systems and deterministic pushdown automata (DPDA) are non-recursive. The
proof is by reduction of the halting problem for Turing machines on empty tape.
To this end, histories of Turing machine computations are encoded into strings.
It suffices to consider deterministic Turing machines with one single tape and
one single read-write head. Without loss of generality and for technical reasons,
we safely may assume that the Turing machines cannot print blanks, can halt
only after an odd number of moves, and accepts by halting. The size of a Turing
machine is again measured as the length of its description. As for the NPDA,
there are only finitely many Turing machines of the same size.

Let Q be the state set of some Turing machine M , where q0 is the initial
state, T ∩ Q = ∅ is the tape alphabet containing the blank symbol, and Σ ⊂ T
is the input alphabet. Then a configuration of M can be written as a word of
the form T ∗QT ∗ such that t1t2 · · · tiqti+1 · · · tn is used to express that M is in
state q, scanning tape symbol ti+1, and t1, t2 to tn is the support of the tape
inscription.

Dependent on M we define the language of valid computations. Let $ /∈ T ∪Q,
n ≥ 0, and wi ∈ T ∗QT ∗, 0 ≤ i ≤ 2n+1, be configurations of M . Then VALC(M)
is defined to be the language of all words of the form

$w0$w
R
1 $w2$w

R
3 $ · · · $w2n$w

R
2n+1$,

where w0 is an initial configuration of the form q0, w2n+1 is a halting config-
uration, and wi is the successor configuration of wi−1, 1 ≤ i ≤ 2n + 1. The
language of invalid computations INVALC(M), is the complement of VALC(M)
with respect to the alphabet {$} ∪ T ∪ Q.

Corollary 15. For any deterministic Turing machine M , the language
INVALC(M) is a linear context-free language, such that its nondeterministic
one-turn pushdown automaton can effectively be constructed from M .

We denote the size of some system X by |X|.
Theorem 16. The trade-offs between U -NPDA and DPDA, κ-NPDA and
DPDA, as well as between I -NPDA and DPDA are non-recursive.
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Proof. Assume in contrast to the assertion that one of the trade-offs is recursive.
We turn to show that in this case the halting problem for Turing machines on
empty tape would be decidable, a contradiction.

So, let M be some given Turing machine of size c ≥ 1. Then a Turing
machine Mc with unary input alphabet {a} is uniformly constructed as follows.
On input ax, first Mc enumerates all the finitely many Turing machines whose
size is c. Then it simulates all these finitely many Turing machines on empty
tape by dovetailing for exactly x steps (or up to halting if a machine halts before
x steps). Machine Mc accepts its input ax by halting if at least one of the simu-
lations halts exactly after step x. If not, Mc does not halt. We conclude that the
language L(Mc) accepted by Mc is finite. Moreover, the length of the longest
word in L(Mc) gives the latest time step at which a Turing machine of size c
halts on empty tape.

The finiteness of L(Mc) is easily proved by a proof Π1. The length of Π1 can
be bounded from above by 	1(c), where 	1 is a recursive function.

Next, from Mc an NPDA N accepting INVALC(Mc) is constructed by Corol-
lary 15. The corollary can be proved by a proof Π2 whose length can be bounded
from above by 	2(c), where 	2 is a recursive function.

Since Mc accepts a finite language, INVALC(Mc) is a co-finite and, thus,
regular language. This fact is easily proved by a proof Π3 whose length can be
bounded from above by 	3(c), where 	3 is a recursive function.

Since all regular languages belong to all Boolean kernels κ ∈ γBOOL(CFL),
the proofs Π1, Π2, and Π3 reveal that N is a U -NPDA, a κ-NPDA, as well as
an I -NPDA. The total length of this proof, which is attached to N , can be
bounded from above by 	(c), where 	 is a recursive function.

Recall that we assume in contrast to the assertion that the trade-off between
the size of N (including the attached proof) and the size of some equivalent
DPDA D is given by a recursive function f , that is |D| ≤ f(|N |). Then f(|N |)
can be computed from N , and all DPDAs whose size is at most f(|N |) can
be enumerated. Since the family of deterministic context-free languages is effec-
tively closed under complementation, each DPDA P in the list can be replaced
by a DPDA accepting the complement of L(P ). Since finiteness of determin-
istic context-free languages is decidable, each DPDA that accepts an infinite
language can be removed from the new list. The decision of finiteness of deter-
ministic context-free languages includes the computation of an upper bound for
the length of the longest word in the language. So, an upper bound for the
length of the longest word accepted by any of the remaining DPDAs in the list
can be computed. Moreover, among the remaining DPDAs there must be one
that accepts the finite complement of L(D). The finite complement of L(D) is
the language VALC(Mc). Clearly, the longest word in VALC(Mc) is longer than
the longest word in L(Mc). As before, an upper bound of the length of this
longest word can be computed from D. But recall that the length of the longest
word in L(Mc) gives the latest time step at which a Turing machine of size c
halts on empty tape.
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Finally, it suffices to simulate the given Turing machine M for this number
of steps in order to decide whether it halts on empty tape or not. 
�

6 Untouched and Open Questions

We have started to study the properties of Boolean kernels of the family of
context-free languages. Since little is known about kernels, many questions and
problems remain open or untouched. Exemplarily, we mention some of them:
(1) Is there a Boolean kernel κ ∈ γBOOL(CFL) that is closed under reversal or
are all these kernels non-closed under reversal? (2) Further non-trivial closure
properties of kernels are of natural interest. (3) A machine characterization of the
complementation kernel of the context-free languages in terms of self-verifying
pushdown automata is known [2]. Basically, the characterization is given by
a machine for the underlying language family, where the acceptance condition
is modified. Are there machine characterizations of other kernels? (4) In [5]
an improved version of Earley’s algorithm is adapted to context-free grammars
which are extended by complement and intersection operators retaining cubic
behavior. More generally, in [11] so-called conjunctive and Boolean grammars are
studied. Can these techniques be applied to sub-families of context-free languages
in order to find characterizations of kernels? (5) Alternative characterizations of
kernels could be generators, where a generator is some smallest set of languages
whose closure under certain operations is the kernel. Based on a generator, the
languages in the kernel could be represented as expressions.
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