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Abstract. Weighted tree automata (WTA) extend classical weighted
automata (WA) to the non-linear structure of trees. The expressive power
of WA with varying degrees of ambiguity has been extensively studied.
Unambiguous, finitely ambiguous, and polynomially ambiguous WA over
the tropical (as well as the arctic) semiring strictly increase in expres-
sive power. The recently developed pumping results of Mazowiecki and
Riveros (STACS 2018) are lifted to trees in order to achieve the same
strict hierarchy for WTA over the tropical (as well as the arctic) semiring.

1 Introduction

Trees are a fundamental data structure in computer science and are used in
many application areas like natural language processing, database theory, and
compiler construction. All the mentioned applications require effective represen-
tations of sets of trees. These requirements triggered detailed investigations of
various classes of such sets since the 1960s [11,12] and yielded an abundance
of representations [6]. The most robust class is the class of regular tree lan-
guages [7,27]. It is generated by finite-state tree automata, which are a natural
generalization of finite-state automata, which generate the regular languages [28].
Finite-state tree automata are a very effective representation and most standard
decision problems remain decidable and the problem complexity is often similar
to that of the corresponding problem for finite-state automata [6].

Quantitative extensions of finite-state automata, called weighted automata
(WA) [25], as well as finite-state tree automata, called weighted tree automata
(WTA) [8], have been proposed and thoroughly investigated. The weights are
usually taken from a semiring like the nonnegative integers N, the tropical semi-
ring T [26] or the arctic semiring A.

It is well-known that the computational properties improve dramatically for
deterministic devices. While deterministic finite-state automata are as expres-
sive as general finite-state automata, this equivalence breaks down for weighted
automata over relevant semirings [2]. Thus, less restricted devices have been
investigated as well. While general finite-state automata might allow expo-
nentially many successful runs (in the length of the input) on a given input,
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deterministic finite-state automata naturally permit at most one successful run
for each input that is additionally locally determined. We obtain polynomi-
ally ambiguous, finitely ambiguous, and unambiguous automata by requiring
that for each input the number of successful runs is restricted by a polynomial,
by a uniform bound, and by 1, respectively. The expressive power of weighted
automata and weighted tree automata of limited ambiguity is actively investi-
gated [17,18,21,22], but essential questions remain open.

Recently, it was established that unambiguous, finitely ambiguous, and poly-
nomially ambiguous WA over the tropical semiring T strictly increase in expres-
sive power [19]. This result was achieved with the help of pumping lemmas,
which were also used to derive the same result [5] for the arctic semiring A.
The inclusion is obvious, but for the strictness results, pumping lemmas for the
smaller classes are developed [19, Theorems 7, 14, and 18] and [5, Theorems
6.1 and 6.5]. These together with specific examples from the larger class that do
not obey the pumping conditions establish the strictness.

Our goal is the development of a similar hierarchy for WTA. To this end,
we utilize the same approach and develop the corresponding pumping results
for WTA over T (Theorems 3, 7, and 11) and over A (Theorems 9 and 13). The
main ingredient is a matrix representation of the behavior of a WTA along a
tree decomposition into contexts (see Section 3) since it allows us to consider
WTA as special weighted automata and apply the theorems of [5,19]. Along the
way we prove that unambiguous WTA over T and A can be expressed as WTA
over N∞ (Lemma 1). In the end, we achieve the desired results and thus prove
that finitely ambiguous WTA over T and A are strictly more expressive than
unambiguous WTA (Theorems 4 and 5) and strictly less expressive than poly-
nomially ambiguous WTA (Theorems 8 and 10). Finally, Theorems 12 and 14
illustrate that polynomially ambiguous WTA over those semirings are strictly
less expressive than general WTA.

2 Preliminaries

Basic Notation. We denote the set of nonnegative integers (including 0) by N.
For every k ∈ N we use the subset [k] = {i ∈ N | 1 ≤ i ≤ k}. For any set S the
set of all finite words over S is S∗ =

⋃
k∈N Sk, where Sk = S ×· · ·×S containing

k factors S and S0 = {ε} contains just the empty word ε. The length |w| of
a word w = s1 · · · sk ∈ S∗ with s1, . . . , sk ∈ S is |w| = k; i.e., the number
of occurrences of symbols in w. Given words v, w ∈ S∗, their concatenation is
written v.w or simply vw.

Trees. A ranked alphabet (Σ, rk) is a pair consisting of a finite set Σ and a
mapping rk: Σ → N that assigns a rank to each symbol of Σ. If there is no risk
of confusion, we denote a ranked alphabet (Σ, rk) by just Σ. We also write σ(k)

to indicate that rk(σ) = k. Moreover, for every k ∈ N we let Σ(k) = {σ ∈ Σ |
rk(σ) = k}. Given a ranked alphabet Σ and a set Z, the set TΣ(Z) of Σ” trees
indexed by Z is the smallest set T such that Z ⊆ T and σ(t1, . . . , tk) ∈ T for
every k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ T . We abbreviate TΣ(∅) simply to TΣ ,
and any subset L ⊆ TΣ is called a tree language.
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Next, we recall some notions for trees. Let t ∈ TΣ(Z) be a tree for a ranked
alphabet Σ and a set Z. The set pos(t) of positions of t is inductively defined for
all z ∈ Z by pos(z) = {ε} and for all k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(Z)
by pos(σ(t1, . . . , tk)) = {ε} ∪ {ip | i ∈ [k], p ∈ pos(ti)}. The height of t is
height(t) = maxp∈pos(t) |p|, and the size of t is size(t) = |pos(t)|. A leaf of t is
a position p ∈ pos(t) such that p1 /∈ pos(t). We denote the set of all leaves of t
by leaf(t). Given a position p ∈ pos(t), the label t(p) of t at p and the subtree t|p
of t at p are given by z(ε) = z|ε = z for all z ∈ Z and

(
σ(t1, . . . , tk)

)
(p) =

{
σ if p = ε

ti(p′) if p = ip′ with i ∈ N and p′ ∈ pos(ti)

σ(t1, . . . , tk)|p =

{
σ(t1, . . . , tk) if p = ε

ti|p′ if p = ip′ with i ∈ N and p′ ∈ pos(ti)

for all k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(Z). Finally, the replacement t[t′]p
of the subtree at position p ∈ pos(t) by a tree t′ ∈ TΣ(Z) is given by z[t′]ε = t′

for all z ∈ Z and

σ(t1, . . . , tk)[t′]ε = t′

σ(t1, . . . , tk)[t′]ip′ = σ(t1, . . . , ti−1, ti[t′]p′ , ti+1, . . . , tk)

for every k ∈ N, σ ∈ Σ(k), t1, . . . , tk ∈ TΣ(Z), i ∈ [k], and p′ ∈ pos(ti).
We reserve the use of the special symbol �. A tree t ∈ TΣ({�}) is a context,

if there exists exactly one p ∈ pos(t) with t(p) = �; i.e., there is exactly one
occurrence of � in t. The set of all such contexts is denoted by CΣ . Given a
context C ∈ CΣ and a tree t ∈ TΣ({�}), the substitution C[t] of t into C
yields the tree C[t]p, where p is the unique position p ∈ pos(C) with C(p) = �.
Note that C[C ′] ∈ CΣ for C,C ′ ∈ CΣ . Similarly, we write Ck for C[· · · C[C] · · · ]
containing k times the context C. The set of decompositions of ξ ∈ TΣ ∪ CΣ is

D(ξ) =
⋃

k≥1
C1,...,Ck−1∈CΣ

ξ′∈CΣ∪TΣ

{
(C1, . . . , Ck−1, ξ

′) | ξ = C1[· · · Ck−1[ξ′] · · · ]
}
.

Note that ξ ∈ TΣ iff ξ′ ∈ TΣ for every (C1, . . . , Ck−1, ξ
′) ∈ D(ξ). The depth

depth(C) of a context C ∈ CΣ is depth(C) = |p|, where p ∈ pos(C) is the
unique position with C(p) = �. A context c ∈ CΣ of depth 1 is elementary,
and the set of all such elementary contexts is denoted by EΣ . A decomposi-
tion (E1, . . . , Ek) ∈ D(C) of a context C ∈ CΣ is elementary if E1, . . . , Ek ∈ EΣ .
In fact, the monoid (CΣ , ·[·], �) is freely generated by EΣ [4], which proves the
existence of an elementary decomposition for each context. Finally, let t ∈ TΣ ,
C = (Dn, Cn, . . . , D1, C1, s) ∈ D(t) and D = (D′

n, C ′
n, . . . , D′

1, C
′
1, s

′) ∈ D(t) be
decompositions of the tree t. We call D a refinement of C (refining the occurrences
of Ci) if for every i ∈ [n] there exist Li, Ri ∈ CΣ such that D′

i = Ri+1[Di[Li]],
s′ = R1[s], and Ci = Li

[
C ′

i[Ri]
]
, where Rn+1 = �.
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Weighted Automata. A commutative semiring [13,15] is a tuple (S,+, ·, 0, 1)
such that both (S,+, 1) and (S, ·, 1) are commutative monoids, · distributes
over +, and 0 · s = 0 for all s ∈ S. More specifically we consider

– the Boolean semiring B = ({0, 1},∨,∧, 0, 1),
– the extended Boolean semiring B∞ = ({0, 1,∞},∨,∧, 0, 1) with ∞ ∨ n = ∞

for all n ∈ {0, 1,∞} and ∞ ∧ 0 = 0 and ∞ ∧ 1 = ∞ ∧ ∞ = ∞,
– the tropical semiring T = (N ∪ {∞},min,+,∞, 0),
– the arctic semiring A = (N ∪ {−∞},max,+,−∞, 0), and
– the extended semiring N∞ = (N ∪ {∞},+, ·, 0, 1) of nonnegative integers.

We will refer to a semiring (S,+, ·, 0, 1) by its carrier set S.
A weighted automaton (WA) [24] over S is a tuple A = (Q,A, I, (Ma)a∈A, F ),

where Q is a finite set of states, A is a finite set of symbols, Ma ∈ SQ×Q is a
transition weight matrix for every a ∈ A, and I, F ∈ SQ are initial and final
weight vectors, respectively. Given a word w = a1 · · · an with a1, . . . , an ∈ A, we
let Mw = Ma1 · . . . ·Man

with standard matrix multiplication using the semiring
operations.

Finally, the weighted language �A� : A∗ → S recognized by A is defined for
every w ∈ A∗ by �A�(w) = IT · Mw · F . A weighted language f : A∗ → S is
recognizable if there exists a WA recognizing it.

A weighted tree automaton (WTA) [10] over S is a tuple T = (Q,Σ,Δ,wt, F ),
where Q is a finite set of states, Σ is a ranked alphabet, Δ ⊆

⋃
k∈N Qk ×Σ(k)×Q

is a set of transitions, wt : Δ → S is a transition weight function, and F ∈ SQ is
a root weight vector. We generally assume that wt(τ) �= 0 for all τ ∈ Δ, and we
write σ(q1, . . . , qk) s→ q for a transition τ = (q1, . . . , qk, σ, q) ∈ Δ with wt(τ) = s.
Weighted tree automata over the Boolean semiring (i.e., for S = B) are also called
tree automata (TA) and their weight function ‘wt’ is superfluous. Given t ∈ TΣ , a
mapping r : pos(t) → Q is called run of A on t, if (r(p1), . . . , r(pk), t(p), r(p)) ∈
Δ for all p ∈ pos(t), where k = rk(t(p)). The run is accepting if Fr(ε) �= 0.
We denote the set of all accepting runs of T on t by RunT (t). Moreover, for
every q ∈ Q let Runq

T (t) = {r ∈ RunT (t) | r(ε) = q} be the set of runs with root
label q. The weight of a run r ∈ RunT (t) is

wtT (r) =
∏

p∈pos(t)
k=rk(t(p))

wt
(
r(p1), . . . , r(pk), t(p), r(p)

)
.

The weighted tree language �T � : TΣ → S recognized by T is defined for every
tree t ∈ TΣ by �T �(t) =

∑
r∈RunT (t) wtT (r) · Fr(ε). A weighted tree lan-

guage f : TΣ → S is recognizable if there exists a WTArecognizing it. The class
of recognizable weighted tree languages over S is denoted by RTL(S).
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3 Matrix Representation and Ambiguity

For our pumping arguments we first need a matrix-like representation for the
weighted tree language recognized by a WTA T = (Q,Σ,Δ,wt, F ) that is similar
to that of weighted automata. Since processing a symbol σ of rank k requires
k vectors from the subtrees, we can directly utilize Kronecker products [9] or
tensor products [23], but a simpler approach [3] using contexts, whose processing
again will only require a single vector for the subtree replacing �, actually suffices
for our purposes. Our run semantics is rather unsuitable for this purpose, so let
us recall the equivalent initial algebra semantics [1]. We immediately present the
extended variant that can handle contexts as well. For every ξ ∈ TΣ({�}) we
inductively define the weight matrix wtT (ξ) ∈ SQ×Q by

– wtT (�)q,q = 1 and wtT (�)q,q′ = 0 for all q, q′ ∈ Q with q �= q′, and
– for all k ∈ N, σ ∈ Σ(k), t1, . . . , tk ∈ TΣ({�}), and q, q′ ∈ Q

wtT
(
σ(t1, . . . , tk)

)
q,q′ =

∑

(q1,...,qk,σ,q′)∈Δ

wt(q1, . . . , qk, σ, q′) ·
k∏

i=1

wtT (ti)q,qi
.

Note that wtT (t)q1,q′ = wtT (t)q2,q′ for all q1, q2, q
′ ∈ Q and t ∈ TΣ . Hence

we identify wtT (t) with a vector of SQ and obtain �T �(t) = wtT (t)T · F for
all t ∈ TΣ by [3, Lemma 4.1.13] as well as

wtT (c[ξ]) = wtT (ξ) · wtT (c) (1)

for all contexts c ∈ CΣ and ξ ∈ TΣ ∪ CΣ by [3, Lemma 4.1.8].
Next we recall the relevant notions of ambiguity. Let T = (Q,Σ,Δ,wt, F ) be

a WTA. For a given � ∈ N, the WTA T is �-ambiguous if every tree t ∈ TΣ has at
most � accepting runs; i.e., |RunT (t)| ≤ �. It is unambiguous (or a UA-WTA) if it
is 1-ambiguous, and it is finitely ambiguous (or an FA-WTA) if there exists � ∈ N
such that T is �-ambiguous. For the notions of ‘polynomially ambiguous’ and
‘exponentially ambiguous’ we distinguish two variants: one based on the size and
another based on the height of the input tree. More precisely, T is polynomially
ambiguous in f : TΣ → N if there exists a polynomial P such that |RunT (t)| ≤
P (f(t)) for all t ∈ TΣ . We say that T is a PA-WTA (respectively, a PAH” WTA)
if it is polynomially ambiguous in ‘size’ (respectively, in ‘height’). Similarly, T is
exponentially ambiguous in f : TΣ → N if there exists an exponential e such
that |RunT (t)| ≤ e(f(t)). We say that T is an EA-WTA(respectively, an EAH-
WTA) if it is exponentially ambiguous in ‘size’ (respectively, in ‘height’). Note
that every WTA (Q,Σ,Δ,wt, F ) is an EA-WTAbecause there are naturally at
most |Q|size(t) runs for every input tree t. We use the same prefixes π in front
of RTL(S) for the class of weighted tree languages over S that are recognizable
by π-WTA. For example, PA-RTL(S) is the class of those weighted tree languages
over S that are recognizable by WTAthat are polynomially ambiguous in size.
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4 Unambiguous vs. Finitely Ambiguous

In this section we present a weighted tree language over the tropical semiring T
that is recognized by a FA-WTA but cannot be recognized by any UA-WTA,
which proves that UA-RTL(T) � FA-RTL(T). The main component of this result
is a pumping result for recognizable weighted tree languages over N∞, which is
applicable due to the folklore result UA-RTL(T) ⊆ RTL(N∞), which we recall
first. The inclusion follows from the well-known construction that is used to show
that size ∈ RTL(N∞).

Lemma 1. UA-RTL(T) ⊆ RTL(N∞).

The matrix representation allows us to apply a well-known result of idempotent
elements, which we recall next. Given a monoid (M, ·, 1) an element m ∈ M is
idempotent if m · m = m. The following well-known result for finite monoids,
which states that any sequence of sufficiently many factors contains a nonempty
subsequence of factors whose product is idempotent, is the main tool for our
first pumping result.

Lemma 2 (e.g. [14, Theorem 3.1]). Let M be a finite monoid. There exists a
constant N > 0 such that for all n ≥ N and x1, . . . , xn ∈ M there exist �, u ∈ N
with � < u ≤ n such that

∏u
i=�+1 xi is idempotent.

Theorem 3 (Pumping Lemma for RTL(N∞)). Let f ∈ RTL(N∞). There
exists N ∈ N such that for each tree t ∈ TΣ and decomposition C = (D,C, s) ∈
D(t) with depth(C) ≥ N there is a refinement (D′, B, s′) ∈ D(t) of C with B �= �
such that

– f
(
D′[Bh[s′]]

)
= f

(
D′[Bh+1[s′]]

)
for all h ≥ N or

– f
(
D′[Bh[s′]]

)
< f

(
D′[Bh+1[s′]]

)
for all h ≥ N .

Next we present a weighted tree language f ∈ FA-RTL(T) \ UA-RTL(T)
inspired by [19, Examples 2 and 8]. We explicitly show f ∈ FA-RTL(T) as well
as f /∈ RTL(N∞) using Theorem 3. The latter result yields f /∈ UA-RTL(T)
by Lemma 1. For those particular weighted tree languages in the differences we
use a ranked alphabet with a single binary symbol and a single nullary symbol.
By various encodings (e.g., first-child-next-sibling [6, Proposition 8.3.2]) these
results apply to essentially any ranked alphabet. This correspondence extends
to weighted tree languages (see [16, Lemma 4.2]).

Theorem 4. UA-RTL(T) � FA-RTL(T).

Proof. Let Σ = {σ(2)α(0)} be a ranked alphabet and T = (Q,Σ,Δ,wt, F ) a
WTA over T with Q = {q�, qr, qα}, F (q) = 0 for each q ∈ Q, and the following
transitions and weights

{
α

0→ qα σ(qα, q�)
1→ q� σ(q�, qα) 0→ q� σ(q�, q�)

0→ q� σ(qα, qα) 1→ q�

σ(qr, qα) 1→ qr σ(qα, qr)
0→ qr σ(qr, qr)

0→ qr σ(qα, qα) 1→ qr

}
.
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Clearly, T has two runs for each input tree t, in which we mark all leaves by qα

and then proceed to count either occurrences of L = σ(α, �) using q� or occur-
rences of R = σ(�, α) using qr. We thus calculate the minimum of occurrences
of L and R, and f = �T � ∈ FA-RTL(T).

Now let us apply our pumping lemma in order to prove that no WTAover N∞
can recognize f . We observe that f(Rn[Lm[α]]) = min(m,n) for all m,n ∈ N.
Assume that f ∈ RTL(N∞). Let N be the constant of Theorem 3 applied to f ,
and let t = R(N+1)2 [LN [α]] and C = (D,C, α) ∈ D(t) be a decomposition,
where D = R(N+1)2 and C = LN . Theorem 3 yields a refinement (D′, B, s′) ∈
D(t) of C; i.e., B = Ln for some 0 < n < N . However,

f
(
D′[BN [s′]]

)
= (n + 1)N − n < (n + 1)N = f

(
D′[BN+1[s′]]

)

f
(
D′[B(N+1)2 [s′]]

)
= (N + 1)2 = (N + 1)2 = f

(
D′[B2(N+1)2 [s′]]

)
,

contradicting Theorem 3. Hence f /∈ RTL(N∞). Since UA-RTL(T) ⊆ RTL(N∞)
by Lemma 1 we obtain f /∈ UA-RTL(T) as desired. �

Since clearly UA-RTL(T) = UA-RTL(A), we may replace the minimum in
the proof of Theorem 4 with a maximum and similar calculations show that this
language is not in RTL(N∞), either.

Theorem 5. UA-RTL(A) � FA-RTL(A).

5 Finitely Vs. Polynomially Ambiguous

The second pumping lemma will allow us to give a weighted tree language
over T, which can be recognized by a PA-WTA, but cannot be recognized by
any FA-WTA. The theorem itself works on point-wise minima of recognizable
weighted tree languages over N∞. We call f : TΣ → N∞ a point-wise recog-
nizable minimum if there exist k ∈ N and recognizable weighted tree lan-
guages f1, . . . , fk ∈ RTL(N∞) of type f1, . . . , fk : TΣ → N∞ such that for
all t ∈ TΣ it holds that f(t) = min{f1(t), . . . , fk(t)}. To relate this notion to
finitely ambiguous weighted tree languages over T, we recall the following result.

Theorem 6 ([20, Theorem 2]). Let � ∈ N and T = (Q,Σ,Δ,wt, F ) be an
�-ambiguous WTAover the commutative semiring S. Then there exist � unam-
biguous WTA U1, . . . ,U� over S such that �T � =

∑�
i=1�Ui�.

Let us now move on to the pumping lemma. To this end, let t ∈ TΣ be a tree
and D = (Dn, Cn, . . . , D1, C1, s) ∈ D(t) be a decomposition of t. Additionally,
let h ∈ N and ϕ = (ϕ1, . . . , ϕn) ∈ Bn be a selector. Then we let

Dh
ϕ = Dn

[
Cϕn·h

n

[
· · · D1[C

ϕ1·h
1 [s]] · · ·

]]
. (2)
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Theorem 7 (Pumping Lemma for Point-wise Minima). Let f : TΣ →
N∞ be a point-wise recognizable minimum. Then there exists N ∈ N such that
for each tree t ∈ TΣ and decomposition C = (Dn, Cn, . . . , D1, C1, s) ∈ D(t) of t
with n ≥ N and depth(Cj) ≥ N for all j ∈ [n] the following holds. There is a
refinement D = (D′

n, Bn, . . . , D′
1, B1, s

′) ∈ D(t) of C with B1, . . . , Bn �= � such
that for every subset Φ ⊆ Bn with |Φ| ≥ N

– there exists ϕ ∈ Φ such that f(Dh
ϕ) < f(Dh+1

ϕ ) for all h sufficiently large or
– there are ϕ,ψ ∈ Φ with ϕ �= ψ such that f(Dh

ϕ∨ψ) = f(Dh+1
ϕ∨ψ) for all h suffi-

ciently large.

Finally, we give a weighted tree language f ∈ PA-RTL(T) \ FA-RTL(T)
inspired by [19, Examples 3 and 15]. To this end, we show that f ∈ PA-RTL(T)
and that f is not a point-wise recognizable minimum over T using Theorem 7.
By Theorem 6 we can then conclude that f /∈ FA-RTL(T).

Theorem 8. FA-RTL(T) � PA-RTL(T).

Proof. We consider the ranked alphabet Σ = {σ(2), α(0)} and the two elementary
contexts R = σ(�, α) and L = σ(α, �). Additionally, we consider the WTA T =
(Q,Σ,Δ,wt, F ) over T with Q = {q�, qr, qα}, F (q�) = F (qα) = ∞ and F (qr) = 0,
and the following transitions and weights

{
α

0→ qα σ(qα, q�)
1→ q� σ(q�, qα) 0→ q� σ(qα, qα) 0→ q� (counting L)

σ(qr, qα) 1→ qr σ(qα, qr)
0→ qr σ(qα, qα) 0→ qr (counting R)

σ(q�, qα) 0→ qr σ(qα, q�)
1→ qr

}
. (switch)

In each run, reading the input tree bottom-up the WTA T first counts occur-
rences of L in state q�, then nondeterministically switches to qr, and finally
counts occurrences of R in state qr. Thus, T has at most height(t) runs for
each t ∈ TΣ , which proves that f = �T � ∈ PA-RTL(T). Additionally, we have

f(t) = min
i∈[n]

{
|{j ∈ [i] | Cj = R}| + |{j ∈ [n] \ [i] | Cj = L}|

}

for a tree of the form t = C1[· · · Cn[σ(α, α)] · · · ] with C1, . . . , Cn ∈ {L,R} and
n ∈ N, and f(t) = ∞ otherwise.

It remains to show that f /∈ FA-RTL(T), which we prove by showing that
f cannot be a point-wise recognizable minimum. For the sake of a contra-
diction, suppose that it is. Let N be the constant of Theorem 7 and con-
sider the decomposition C =

(
�, LN , �, RN , . . . , �, LN , �, RN , σ(α, α)

)
∈ D(t)

of t = (LN [RN ])N [σ(α, α)]. Moreover, for every j ∈ [N ], let ϕj ∈ B2N be such
that ϕj(2j −1) = ϕj(2j) = 1 and 0 otherwise. Finally, let Φ = {ϕ1, . . . , ϕN}. We
first claim that f(Dh

ϕ) = N(N − 1) for each refinement D ∈ D(t) of C, ϕ ∈ Φ,
and h > N . To see this, let j ∈ [N ] be such that ϕ = ϕj . Then Dh

ϕ only pumps
one part of the j-th block of LN [RN ] to L�1 [R�2 ] for some �1, �2 > N . Thus for
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the minimum, the WTA T should switch from q� to qr after processing the seg-
ment R�2 , which yields f(Dh

ϕ) = N(N − 1). For the second item of Theorem 7,
let ϕ,ψ ∈ Φ with ϕ �= ψ and φ = ϕ ∨ ψ. Since ϕ and ψ select different blocks,
no matter where the WTA T switches from q� to qr we will either count the
pumped occurrences of L or the pumped occurrences of R in at least one block.
Thus, f(Dh

φ) < f(Dh+1
φ ) for all h > N . Thus, f is not a point-wise recognizable

minimum, which together with Theorem 6 proves f /∈ FA-RTL(T). �
The height and size of the input trees in Theorem 8, for which accepting runs

exist, are linearly related, so we also obtain FA-RTL(T) � PAH-RTL(T).
In fact, using [5, Theorem 6.1] we are able to present similar results for the

arctic semiring A. Let C = (D1, C1, . . . , Dn, Cn, s) ∈ D(t) be a decomposition of
a tree t ∈ TΣ and f : TΣ → A be a weighted tree language. The decomposition C
is linear if for all ϕ ∈ Bn there is a constant Kϕ such that f(Ch+1

ϕ ) = Kϕ +f(Ch
ϕ)

for all sufficiently large h. Given a linear decomposition C, a selector φ ∈ Bn is
elementarily linear for C if Kφ =

∑n
j=1 φj ·K1j

, where 1j = (0, . . . , 0, 1, 0, . . . , 0)
with the 1 occurring in the j-th component.

Theorem 9 (Pumping Lemma for FA-RTL(A)). Let f ∈ FA-RTL(A). There
exists a constant N ∈ N such that for each tree t ∈ TΣ and decomposition
C = (Dn, Cn, . . . , D1, C1, s) ∈ D(t) of t with n ≥ N and depth(Cj) ≥ N for
all j ∈ [n], there exists a linear refinement D = (D′

n, Bn, . . . , D′
1, B1, s

′) ∈ D(t)
of C with B1, . . . , Bn �= � such that for every subset Φ ⊆ Bn with |Φ| ≥ N

– there exists ϕ ∈ Φ that is not elementarily linear for D or
– there exist ϕ,ψ ∈ Φ with ϕ �= ψ such that 1i ∨1j is elementarily linear for D

for all i, j ∈ [n] with ϕi = 1 and ψj = 1.

Theorem 10. FA-RTL(A) � PA-RTL(A).

Proof. We reconsider the WTA T = (Q,Σ,Δ,wt, F ) of the proof of Theorem 8
over the arctic semiring A. Clearly, f = �T � ∈ PA-RTL(A). Additionally, we
have

f(t) = max
i∈[n]

{
|{j ∈ [i] | Cj = R}| + |{j ∈ [n] \ [i] | Cj = L}|

}

for a tree of the form t = C1[· · · Cn[σ(α, α)] · · · ] with C1, . . . , Cn ∈ {L,R} and
n ∈ N, and f(t) = −∞ otherwise. For the proof of f /∈ FA-RTL(A) we use the
same technique as in the proof of Theorem 8. Since now the maximum is taken,
each ϕ ∈ Φ is elementarily linear for D. For the second condition, let ϕ,ψ ∈ Φ
with ϕ �= ψ and i, j ∈ [n] such that ϕi = 1 and ψj = 1. However, φ = 1i ∨ 1j is
not elementarily linear for D since Kφ = max(K1i

,K1j
). �

6 Polynomially Ambiguous Vs. Recognizable

Our last pumping lemma will allow us to present a recognizable weighted tree
language over T that is not recognizable by any PAH-WTA. To this end, we
introduce some additional notation. Let n ∈ N. A set Φ ⊆ Bn \ {(0, . . . , 0)} is
called a partition of [n] if

∨
Φ = (1, . . . , 1) and ϕ∧ψ = (0, . . . , 0) for all ϕ,ψ ∈ Φ

with ϕ �= ψ. We call ψ ∈ Bn a cover of Φ if
∑

j∈[n](ψ ∧ ϕ)j = 1 for every ϕ ∈ Φ.
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Theorem 11 (Pumping Lemma for PAH-RTL(T)). Let f ∈ PAH-RTL(T).
There exists N ∈ N and a mapping c : N → N such that for each tree t ∈ TΣ and
decomposition C = (Dn, Cn, . . . , D1, C1, s) ∈ D(t) of t with depth(Ci) ≥ N for
all j ∈ [n], there exists a refinement D = (D′

n, Bn, . . . , D′
1, B1, s

′) ∈ D(t) of C
such that for every partition Φ of [n] with |Φ| ≥ c(

∑
j∈[n] ϕj) for all ϕ ∈ Φ

– there exists ϕ ∈ Φ such that f(Dh
ϕ) = f(Dh+1

ϕ ) for all h sufficiently large or
– there exists a cover ψ of Φ such that f(Dh

ψ) < f(Dh+1
ψ ) for all h sufficiently

large.

Now we give a recognizable weighted tree language f /∈ PA-RTL(T). We
will actually show f /∈ PAH-RTL(T), but due to the special shape of f the
height and size are themselves polynomially related, so f /∈ PAH-RTL(T) implies
f /∈ PA-RTL(T). In contrast to the previous examples Theorem 11 operates
directly on the tropical semiring.

Theorem 12. PA-RTL(T) � RTL(T).

Proof. We consider the ranked alphabet Σ = {σ(2), τ (1), α(0)}, s = σ(α, α), and
the contexts R = σ(�, α) and L = σ(α, �) as before. Additionally, we consider
the weighted tree language f : TΣ → T such that for every t ∈ TΣ

f(t) =

⎧
⎪⎨

⎪⎩

∑k
�=1 min(i�, j�) if t = τ

(
Li1

[
Rj1

[
· · ·

[
τ(Lik [Rjk [s]])

]
· · ·

]]
)

for (i1, . . . , ik), (j1, . . . , jk) ∈ Nk

∞ otherwise.

Let T = (Q,Σ,Δ,wt, F ) be the WTAover T with Q = {q�, qr, qα}, F (q) = 0 for
each q ∈ Q, and the following transitions and weights

{
α

0→ qα σ(qα, q�)
1→ q� σ(q�, qα) 0→ q� σ(qα, qα) 0→ q� (counting L)

σ(qr, qα) 1→ qr σ(qα, qr)
0→ qr σ(qα, qα) 0→ qr (counting R)

τ(q�)
0→ q� τ(q�)

0→ qr τ(qr)
0→ q� τ(qr)

0→ qr

}
. (reset)

Clearly, T recognizes f and thus f ∈ RTL(T). Assume now f ∈ PAH-RTL,
as mentioned above by the special shape of f , this implies f ∈ PA-RTL. By
Theorem 11 there exist a constant N and a mapping c : N → N with various
properties. Let m > c(2) and consider t = (τ [LN [RN ]])m[s] with decomposition
C = (τ(�), LN , �, RN , . . . , τ(�), LN , �, RN , s). Additionally, for each j ∈ [m]
let ϕj ∈ B2N be such that ϕj(2j − 1) = ϕj(2j) = 1 and 0 otherwise. Finally,
let Φ = {ϕ1, . . . , ϕm}. Clearly, f(t) = Nm. However, for every refinement D
of C and h > N we have f(Dh

ϕ) < f(Dh+1
ϕ ) for every ϕ ∈ Φ as well as f(Dh

ψ) =
f(Dh+1

ψ ) for every cover ψ of Φ. �

As before, we collect the corresponding results for the arctic semiring A.
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Theorem 13 (Pumping Lemma for PAH-RTL(A)). Let f ∈ PAH-RTL(A).
There exists N ∈ N and a mapping c : N → N such that for each tree t ∈ TΣ and
decomposition C = (Dn, Cn, . . . , D1, C1, s) ∈ D(t) of t with depth(Ci) ≥ N for
all j ∈ [n], there exists a linear refinement D = (D′

n, Bn, . . . , D′
1, B1, s

′) ∈ D(t)
of C such that for every partition Φ of [n] with |Φ| ≥ c(

∑
j∈[n] ϕj) for all ϕ ∈ Φ

– there exists ϕ ∈ Φ that is elementarily linear for D or
– there exists a cover ψ of Φ that is not elementarily linear for D.

Theorem 14. PA-RTL(A) � RTL(A).

Proof. Reconsider the WTA T as well as the other infrastructure of the proof
of Theorem 12 over the arctic semiring A and its recognized mapping g = �T �,
which is essentially the mapping f with the minimum replaced by the maximum.
It is straightforward to see that no ϕ ∈ Φ is elementarily linear for D, but each
cover ψ of Φ is elementarily linear for D since different selectors apply to different
parts of t, separated by an occurrence of τ . �

7 Conclusion

We investigated the expressive power of weighted tree automata with vari-
ous amounts of ambiguity over the tropical semiring T as well as the arctic
semiring A. More precisely, we compared the expressive power of WTAthat
are unambiguous (UA-WTA), finitely ambiguous (FA-WTA), and polynomi-
ally ambiguous (PA-WTA) and proved the strictness of the corresponding hier-
archy UA-RTL(S) � FA-RTL(S) � PA-RTL(S) � RTL(S) for S ∈ {T,A}
using arguments corresponding to those of [5,19]. Moreover, we obtain a sim-
ilar hierarchy UA-RTL(S) � FA-RTL(S) � PAH-RTL(S) � EAH-RTL(S) for
the same ambiguity notions in the height of the input tree. Obviously it holds
that PAH-RTL(S) ⊆ PA-RTL(S) as well as EAH-RTL(S) ⊆ RTL(S). It remains
open, whether those inclusions are strict.
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