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Abstract. This paper introduces a framework for building probabilistic
models with subsequential failure transducers. We first show how various
types of subsequential transducers commonly used in natural language
processing are represented by probabilistic and conditional probabilistic
subsequential failure transducers. Afterwards we introduce efficient algo-
rithms for composition of conditional probabilistic subsequential trans-
ducers with probabilistic subsequential failure transducers and weight
pushing (canonization) of probabilistic subsequential failure transducers.
Those algorithms are applicable to many tasks for representing proba-
bilistic models with subsequential failure transducers. One such task is
the construction of the HCLG weighted transducer used in speech recog-
nition which we describe in detail. At the end, empirical results and com-
parison between the presented HCLG failure weighted transducer and
the standard HCLG weighted transducer constructions are shown.

Keywords: Weighted transducers · Failure transducers · Probabilistic
models

1 Introduction

Weighted finite-state transducers (WFST) are widely used for representing prob-
ability distributions over words such as language models, pronunciation lexicons,
and hidden Markov models in automatic speech recognition (ASR) [8], and trans-
lation transformations in statistical machine translation [5]. In [1] it is shown
that a back-off n-gram language model can be efficiently represented as a subse-
quential failure transducer. In practice however the failure transitions are often
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substituted with ε-transitions [1,8]. The benefit is that general constructions for
finite-state transducers can be applied. The drawback is twofold. First, since new
non-valid paths are introduced, the output of the transducer is not equivalent to
the original one. Second, the transducer is not deterministic anymore and there
are many paths for one input. In [1] a procedure for eliminating some of the
non-valid paths is presented. This procedure has the property that the maximal
output probability for a given input in the resulting transducer will be equal to
the output probability of this input in the original failure transducer. However,
the resulting transducer might still contain more than one successful path for
a given input and its size typically becomes 2 to 3 times the size of the input
transducer.

In this paper we explore another approach. We introduce a framework for
building probabilistic models with failure transducer constructions. Particularly,
we show how to efficiently construct the HCLG transducer [7] used in many
modern ASR systems. We perform all constructions on failure transducers but
we maintain the determinism on the input and thus obtain subsequential failure
transducers as a result. The main advantages of our approach are:

– we directly construct deterministic devices – subsequential failure transduc-
ers, thus, avoiding additional determinizations,

– the resulting transducers represent correct probabilistic models.

Related work is conducted in [3] where specialized algorithms including inter-
section, failure transition removal and shortest distance for weighted failure
automata are presented. As opposed to [3] here we focus our attention on subse-
quential failure transducers only. We present efficient, direct constructions which
preserve the sequentiality of the failure transducers.

The formal definitions and detailed proofs of the constructions presented in
this paper are provided separately in [4].

2 Preliminaries

We will use the standard notions of alphabet, word, language etc. from formal
language theory. We will call a language L over the alphabet Σ prefix-free if
(∀α, β ∈ L)((∃γ ∈ Σ∗)(αγ = β) =⇒ α = β). Throughout the paper we will
distinguish between words as elements of the free monoid and lexicon words
which occur in natural language. With R we will denote the monoid 〈R+,×, 1〉
of non-negative real numbers with multiplication as the monoid operation. In
this paper we consider only subsequential transduction devices introduced by
Schützenberger [12]. For reasons of brevity, we will deliberately omit the word
“subsequential”.

A transducer is a tuple T := 〈Σ, 〈M,⊗, 1̄〉, Q, s, F, δ, λ, ι, ρ〉, where Σ is an
alphabet, 〈M,⊗, 1̄〉 is a monoid, Q is a finite set of states, s ∈ Q is an initial
state, F ⊆ Q is a set of final states, δ : Q × Σ → Q is a partial transition
function, λ : Q × Σ → M is a partial output function, ι ∈ M is an initial
output, ρ : F → M is a total final output function, and Dom(δ) = Dom(λ).
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The generalized transition function δ∗ : Q × Σ∗ → Q and the generalized output
function λ∗ : Q × Σ∗ → M are the natural extensions of δ and λ over Q × Σ∗.

For each q ∈ Q the function Oq
T : Σ∗ → M is defined for α ∈ Σ∗ as Oq

T (α) :=
λ∗(q, α) ⊗ ρ(δ∗(q, α)) if δ∗(q, α) ∈ F and is undefined otherwise. The function
OT : Σ∗ → M , defined for α ∈ Σ∗ as OT (α) := ι ⊗ Os

T (α), is the function
represented by the transducer T . A state q ∈ Q is called co-accessible in T if
Dom(Oq

T ) �= ∅.
A failure transducer is a tuple F := 〈Σ, 〈M,⊗, 1̄〉, Q, s, F, δ, λ, ι, ρ, f, ϕ〉

where 〈Σ, 〈M,⊗, 1̄〉, Q, s, F, δ, λ, ι, ρ〉 is a transducer, f : Q → Q is a partial fail-
ure transition function, ϕ : Q → M is a partial failure output function, and
Dom(f) = Dom(ϕ). We define the completed transition function δf : Q×Σ → Q
and the completed output function λf : Q × Σ → M inductively:

δf (q, σ) :=

{
δ(q, σ) if ! δ(q, σ)
δf (f(q), σ) otherwise

λf (q, σ) :=

{
λ(q, σ) if !λ(q, σ)
ϕ(q) ⊗ λf (f(q), σ) otherwise

where with ! δ(q, σ) (resp. ! λ(q, σ)) we denote that (q, σ) ∈ Dom(δ) (resp. (q, σ) ∈
Dom(λ)).

The expanded transducer of the failure transducer F is the transducer T :=
〈Σ,M, Q, s, F, δf , λf , ι, ρ〉. For each q ∈ Q we define Oq

F := Oq
T . The function

OF := OT is called the function represented by the failure transducer F . A state
q ∈ Q is co-accessible in F if it is co-accessible in T .

Definition 1. A failure transducer is monotonic if for every q ∈ Dom(f) and
every a ∈ Σ it holds that q ∈ F =⇒ f(q) ∈ F and ! δ(q, a) =⇒ ! δ(f(q), a).

The signature of a (failure) transducer state q is the set of labels for which
q has an outgoing transition, i.e. Sig(q) := {σ ∈ Σ | !δ(q, σ)}. If the failure
transducer is monotonic then Sig(q) ⊆ Sig(f(q)). Therefore the signatures of the
states in every failure cycle are identical and thus the failure transitions in the
cycle are redundant. In what follows, we will assume that every monotonic failure
transducer that we consider has no failure cycles since they can be efficiently
removed.

3 Probabilistic Transducers

In speech recognition a widely used approach is to construct the so-called HCLG
transducer [7,8]. This transducer is constructed by composing (from right to left)
the language model transducer G with the lexicon transducer L, the context-
dependency transducer C, and the HMM transducer H. We will show that the
transducer G can be represented by a probabilistic failure transducer.

Definition 2. A transducer T over the monoid R is probabilistic if OT is
a probability distribution over Σ∗, i.e. (∀α ∈ Dom(OT ))(OT (α) ∈ [0, 1]) and∑

α∈Dom(OT ) OT (α) = 1. In order to emphasize that T represents a probability
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distribution, in what follows with PT (α) we shall denote OT (α). We will use the
expression e(q) to mean ρ(q) if q ∈ F and 0 otherwise. We call T stochastic if
(∀q ∈ Q)

(
e(q) +

∑
a∈Σ : ! δ(q,a) λ(q, a) = 1

)
.

We call a failure transducer probabilistic (stochastic) if its corresponding
expanded transducer is probabilistic (stochastic). Note that stochastic failure
transducers may have failure outputs greater than 1.

Allauzen et al. have shown [1] that a smoothed n-gram language model can be
represented by a failure transducer G. The transducer G maps a given sequence of
lexicon words w1w2 . . . wn to the smoothed n-gram probability for the sequence
P (w1w2 . . . wn). A typical back-off formulation of a smoothed n-gram language
model is represented by the probability of a lexicon word w given a history h
as follows: P (w|h) := P̂ (w|h) if hw occurs, P (w|h) := αhP (w|h′) otherwise,
where P̂ is an empirical estimate of the probability that reserves probabilities
for unseen n-grams, αh is a normalizing back-off weight and h′ is obtained by
removing the earliest lexicon word from the history h. A failure transducer that
represents the n-gram language model has states corresponding to the observed
sequences of length < n. Its proper transitions (δ transitions) represent the case
in which hw occurs and have weights equal to P̂ (w|h). The failure transitions
represent the other case and have weights αh. It is assumed that every sentence
in the corpus ends with the special lexicon word $. A state h is final if P̂ ($|h)
> 0 and ρ(h) = P̂ ($|h). Figure 1a depicts a failure transducer that represents a
small bigram language model.

We can note that the failure transducer G is monotonic because the fail-
ure transitions enter states corresponding to shorter history. Also, the nor-
malization constants αh ensure that

∑
w P (w|h) = 1, which implies that

e(h) +
∑

w λf (h,w) = 1. Therefore, G is monotonic and stochastic.

Fig. 1. The transducer G (left) and the composition L ◦ G (right).
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4 Conditional Probabilistic Transducers

We next show that the transducers L, C, and H used to construct the HCLG
transducer can be represented by conditional probabilistic transducers.

Definition 3. A conditional probabilistic transducer is a transducer T := 〈Σ,
Ω∗ ×R, Q, s, F, δ, λ, ι, ρ〉 such that for every β ∈ Proj1(Range(OT )) it holds that∑

α∈Dom(OT (•|β)) OT (α | β) = 1, where the function OT (• | β) : Σ∗ → R+ for
α ∈ Σ∗ is defined as OT (α | β) := r if OT (α) = 〈β, r〉 and is undefined oth-
erwise. Again, in order to emphasize that T represents a conditional probability
distribution, in what follows with PT (α | β) we shall denote OT (α | β).

The conditional probabilistic transducer L. The transducer L represents the
pronunciation probabilities for the lexicon words. Here we assume that the set
of lexicon words coincides with Ω. Given a sequence of lexicon words the trans-
ducer L represents the probability distribution over all phonetizations of the
given sequence. In what follows the set of phones will be denoted with Σ. If the
conditional probabilistic transducer V := 〈Σ,Ω∗ × R, Q1, s1, F1, δ1, λ1, ι1, ρ1〉
represents the phonetizations of single lexicon words then the transducer L is
equal to the iteration (Kleene-Star) of V. We have that Proj1(Range(OV)) = Ω
because V provides phonetizations for all lexicon words. Without loss of gener-
ality we can assume that Dom(OV) is prefix-free (this condition can easily be
satisfied by adding new end word symbols to Σ), there are no transitions that
enter s1, Range(ρ1) = {〈ε, 1〉} and ι1 = 〈ε, 1〉.

Under these assumptions we construct the conditional probabilistic trans-
ducer L equal to the iteration (Kleene-Star) of V as

L = V∗ := 〈Σ,Ω∗ × R, Q1 \ F1, s1, {s1}, δ3, λ1, 〈ε, 1〉, {〈s1, 〈ε, 1〉〉}〉,

where δ3 := δ1 �(Q1\F1)×Σ×(Q1\F1) ∪{〈p1, a, s1〉 | 〈p1, a, q1〉 ∈ δ1, q1 ∈ F1}.
It follows that Dom(OV∗) = Dom(OV)∗ and for every sequence of phonetiza-
tions ᾱ1, ᾱ2, . . . , ᾱn ∈ Σ∗ of lexicon words β1, β2, . . . , βn ∈ Ω it follows that
OV∗(ᾱ1ᾱ2 . . . ᾱn|β1β2 . . . βn) =

∏n
i=1 PV(ᾱi|βi). Since V is conditional proba-

bilistic, summing in the above equation over all phonetizations of β1, β2, . . . , βn

we can observe that L = V∗ is conditional probabilistic.
The conditional probabilistic transducer C. The context-dependency trans-

ducer C maps from context-dependent phones to context-independent phones.
The context-dependent phones consist of l phones to the left (left context),
central phone, and r phones to the right (right context). The states of the
conditional probabilistic transducer C represent the last l + r read context-
independent phones. The transitions have context-dependent phones as labels
and are of the form p1p2 . . . pl+r

p1p2...pl+rq−−−−−−−−→ p2p3 . . . pl+rq. The corresponding
output of the transition is 〈q, 1〉. Insufficient contexts are padded with a special
empty phone symbol. C is conditional probabilistic since for every sequence
of context-independent phones β there exists a unique sequence of context-
dependent phones α, such that OC(α) = 〈β, 1〉.
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The conditional probabilistic transducer H. The transducer H represents the
HMM set, i.e. the Kleene-Star of the union of the HMMs for individual context-
dependent phones. Each of the HMMs is a stochastic and conditional proba-
bilistic transducer. The input symbols on the transitions are unique identifiers
of the transitions in the HMM corresponding to the given context-dependent
phone. Therefore, the union of the HMMs is prefix-free. Thus its Kleene-Star is
conditional probabilistic and can be obtained using the same construction as the
V∗ transducer.

5 Composition of Conditional Probabilistic Transducers
with Probabilistic Failure Transducers

In the previous section we showed how to construct efficiently the probabilistic
failure transducer G and the conditional probabilistic transducers L, C and H.
Here we introduce a general construction method for composing a conditional
probabilistic transducer with a probabilistic failure transducer and obtaining
a probabilistic failure transducer as a result. Using this general method we can
construct the HCLG transducer by the composition H◦(C◦(L◦G)). In addition,
we also introduce a more efficient construction for composition, applicable when
certain conditions are satisfied by the conditional probabilistic transducer.

5.1 Generic Composition

In this subsection let T := 〈Σ,Ω∗ × R, Q1, s1, F1, δ1, λ1, ι1, ρ1〉 be a condi-
tional probabilistic transducer and F := 〈Ω,R, Q2, s2, F2, δ2, λ2, ι2, ρ2, f2, ϕ2〉
be a probabilistic failure transducer. As a natural extension of the composition
of transducers [8] and the intersection of weighted finite automata with failure
transitions [3] we obtain a construction for the composition of T and F .

Definition 4. The composition of T and F is the failure transducer T ◦ F :=
〈Σ,R, Q1 × Q2, s, F, δ, λ, ι, ρ, f, ϕ〉, where

s := 〈s1, δ2∗
f2

(s2,Proj1(ι1))〉,
F := {〈p1, p2〉 | p1 ∈ F1, 〈p2,Proj1(ρ1(p1)), q2〉 ∈ δ2

∗
f2

, q2 ∈ F2},

δ := {〈〈p1, p2〉, a, 〈q1, p2〉〉 | 〈p1, a, q1〉 ∈ δ1, 〈p1, a, 〈ε, o1〉〉 ∈ λ1, p2 ∈ Q2}∪
{〈〈p1, p2〉, a, 〈q1, q2〉〉 | 〈p1, a, q1〉 ∈ δ1, 〈p1, a, 〈ωα, o1〉〉 ∈ λ1, 〈p2, ω, r2〉 ∈ δ2,

〈p2, ωα, q2〉 ∈ δ2
∗
f2

},

λ := {〈〈p1, p2〉, a, o1〉 | 〈p1, a, 〈ε, o1〉〉 ∈ λ1, p2 ∈ Q2}∪
{〈〈p1, p2〉, a, o1o2〉 | 〈p1, a, 〈ωα, o1〉〉 ∈ λ1, 〈p2, ω, r2〉 ∈ δ2,

〈p2, ωα, o2〉 ∈ λ2
∗
f2

},

ι := Proj2(ι1)ι2λ2
∗
f2

(s2,Proj1(ι1)),

ρ := {〈〈p1, p2〉, o1o2o3〉 | 〈p1, p2〉 ∈ F, 〈p1, 〈α, o1〉〉 ∈ ρ1, 〈p2, α, o2〉 ∈ λ2
∗
f2

,
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〈δ2∗
f2

(p2, α), o3〉 ∈ ρ2},

f := {〈〈p1, p2〉, 〈p1, q2〉〉 | p1 ∈ Q1, 〈p2, q2〉 ∈ f2},

ϕ := {〈〈p1, p2〉, o2〉 | p1 ∈ Q1, 〈p2, o2〉 ∈ ϕ2}.

The above composition reflects the chain rule P (α, β) = P (α | β)P (β). In our
case β is uniquely identified by α, therefore PT ◦F (α) = PT (α | β)PF (β). The
following proposition formalizes this idea. The proof can be found in [4].

Proposition 1. Let Proj1(Range(OT )) ⊇ Dom(OF ). Then

1. (∀α ∈ Dom(OT ◦F ))(PT ◦F (α) = PT (α | β)PF (β)), where β = Proj1(OT (α));
2. T ◦ F is probabilistic;
3. if F is monotonic and for every p ∈ Dom(f2), α ∈ Proj1(Range(λ1)) and

β ∈ Proj1(Range(ρ1)) we have that ! δ2∗
f2

(p, α) =⇒ ! δ2∗
f2

(f2(p), α) and
δ2

∗
f2

(p, β) ∈ F2 =⇒ δ2
∗
f2

(f2(p), β) ∈ F2, then T ◦ F is monotonic.

In particular, when T = L and F = G, the third statement of Proposition
1 follows from the monotonicity of G and Proj1(Range(λ1 ∪ ρ1)) ⊆ Ω ∪ {ε}.
Also, since Proj1(Range(OL)) = Ω∗, we obtain that L ◦ G is monotonic and
probabilistic. Figure 1a depicts a monotonic stochastic failure transducer for a
simple language model. Therefore, its composition with a lexicon transducer will
be monotonic and probabilistic (see Fig. 1b). Similarly the compositions C ◦ LG
and H ◦ CLG yield monotonic and probabilistic failure transducers.

In practice the construction from Definition 4 might produce many states
that are redundant. This particularly applies when composing L with G. We
present a more efficient construction for this special case in Subsect. 5.2. This
construction is also applicable for composing H with CLG more efficiently.

5.2 Special Case Composition

Let V := 〈Σ,Ω∗ × R, Q1, s1, F1, δ1, λ1, ι1, ρ1〉 be a trim (i.e. (∀q ∈ Q1)(∃α, β ∈
Σ∗)(δ∗

1(s1, α) = q ∧ δ∗
1(q, β) ∈ F1)) conditional probabilistic transducer, which

satisfies the conditions: Proj1(Range(OV)) = Ω and Dom(OV) is prefix-free. Let
F := 〈Ω,R, Q2, s2, F2, δ2, λ2, ι2, ρ2, f2, ϕ2〉 be a monotonic probabilistic failure
transducer in which every state is co-accessible. Let us consider Definition 4
for the special case where T = V∗. We obtain V∗ by redirecting the transitions
ending in final states to the initial state. To express this we introduce the function
E : Q1 → Q1, such that E(p) := s1 if p ∈ F1 and E(p) := p otherwise. Every
successful path in V is of the form

p01
a1:ε/o1−−−−−→ . . .

ai−1:ε/oi−1−−−−−−−→ pi−1
1

ai:ω/oi−−−−−→ pi
1

ai+1:ε/oi+1−−−−−−−→ . . .
an:ε/on−−−−−→ pn

1 ,

where p01 = s1 and pn
1 ∈ F1. If we have a transition in F of the form p2 →ω:o′

q2,
then we obtain the following path in the composition:

〈p0
1, p2〉 a1:o1−−−→ . . .

ai−1:oi−1−−−−−−→ 〈pi−1
1 , p2〉 ai:oio

′
−−−−→ 〈pi

1, q2〉
ai+1:oi+1−−−−−−→ . . .

an:on−−−−→ 〈E(pn
1 ), q2〉.
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If ω �∈ Sig(p2), then according to Definition 4 the states 〈p11, p2〉, . . . , 〈pi−1
1 , p2〉

are constructed but are redundant in V∗◦F . In order to avoid constructing those
states, we will restrict the states of V, which we consider, to those on a successful
path with label from the signature of the corresponding state in F . Formally,
we define the states to the left (Ql

ω) and to the right (Qr
ω) of transitions with

output ω.

Definition 5. Let ω ∈ Ω. We define

Δω := {〈p1, a, q1〉 ∈ δ1 | Proj1(λ1(p1, a)) = ω},

Ql
ω :=

⋃
〈p1,a,q1〉∈Δω

{l1 | (∃α ∈ Σ∗)(〈l1, α, p1〉 ∈ δ∗
1)},

Qr
ω :=

⋃
〈p1,a,q1〉∈Δω

{r1 | (∃α ∈ Σ∗)(〈q1, α, r1〉 ∈ δ∗
1)}.

For the example path in V, the states p01, p
1
1, . . . , p

i−1
1 are from Ql

ω and
pi
1, p

i+1
1 , . . . , pn

1 are from Qr
ω. Clearly the sets Ql

ω and Qr
ω are disjoint and any

transition between two states in Ql
ω or two states in Qr

ω outputs ε and some
probability. If for every ω ∈ Ω we have Δω (the transitions with output ω),
the sets Ql

ω and Qr
ω can be computed in linear time with respect to their size

with a simple traversal from respectively the source states of the transitions
towards the initial state (having explicit backward transitions) and from the
target states of the transitions towards the final states. We also observe that the
failure transitions of the states with first coordinate in Qr

ω are useless.

Proposition 2. Let W := 〈Σ,R, Q, 〈s1, s2〉, {s1} × F2, δ, λ, ι2, ρ, f, ϕ〉, where

Q :=
⋃

〈p2,ω,q2〉∈δ2

Ql
ω × {p2} ∪ E(Qr

ω) × {q2},

δ :=
⋃

〈p2,ω,q2〉∈δ2

{〈〈p1, p2〉, a, 〈q1, p2〉〉 | p1, q1 ∈ Ql
ω, 〈p1, a, q1〉 ∈ δ1}∪

{〈〈p1, p2〉, a, 〈E(q1), q2〉〉 | 〈p1, a, q1〉 ∈ Δω}∪
{〈〈p1, q2〉, a, 〈E(q1), q2〉〉 | p1, q1 ∈ Qr

ω, 〈p1, a, q1〉 ∈ δ1},

λ :=
⋃

〈p2,ω,q2〉∈δ2

{〈〈p1, p2〉, a, o1〉 | p1 ∈ Ql
ω, 〈p1, a, 〈ε, o1〉〉 ∈ λ1}∪

{〈〈p1, p2〉, a, o1o2〉 | 〈p1, a, 〈ω, o1〉〉 ∈ λ1, 〈p2, ω, o2〉 ∈ λ2}∪
{〈〈p1, q2〉, a, o1〉 | p1 ∈ Qr

ω, 〈p1, a, 〈ε, o1〉〉 ∈ λ1},

ρ := {〈〈s1, p2〉, o2〉 | 〈p2, o2〉 ∈ ρ2},

f :=
⋃

〈p2,ω,q2〉∈δ2

{〈〈p1, p2〉, 〈p1, r2〉〉 | p1 ∈ Ql
ω, 〈p2, r2〉 ∈ f2},

ϕ :=
⋃

〈p2,ω,q2〉∈δ2

{〈〈p1, p2〉, o2〉 | p1 ∈ Ql
ω, 〈p2, o2〉 ∈ ϕ2}.

Then W is trim and OW = OV∗◦F .
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The construction from Proposition 2 can be implemented in linear time with
respect to the transitions of the resulting transducer. The proof of the proposition
can be found in [4].

6 Canonization

It has been shown that stochastic transducers are more effective than non-
stochastic ones for speech recognition decoding [9]. As discussed the transducer
G is stochastic. If LG is stochastic, then C ◦ LG is also stochastic because all
weights in C are equal to 1. It can be easily observed that in this case H ◦ CLG
will also be stochastic, since H is constructed from stochastic HMMs. However,
the presented constructions for composition do not ensure that LG is stochastic.

It is easily shown that the stochasticity in the monoid R is equivalent to
canonicity with respect to the semiring R+ := 〈R+,+,×, 0, 1〉.

Definition 6. The transducer T := 〈Σ, 〈K,⊗, 1̄〉, Q, s, F, δ, λ, ι, ρ〉 is canonical
with respect to the semiring K := 〈K,⊕,⊗, 0̄, 1̄〉 if for every q ∈ Q it holds that⊕

α∈Dom(Oq
T ) Oq

T (α) = 1̄.

We call a failure transducer canonical if its expanded transducer is canonical.
The standard canonization algorithm is based on modification of the weights
of a given transducer so that the transition weights of every given state sum
to 1̄. For a probabilistic (failure) transducer T and a state p with ST (q) we
denote the sum

∑
α∈Dom(Oq

T ) Oq
T (α). The weight-pushing is defined as updating

the probability r of a given transition from the state p to the state q to rST (q)
ST (p) .

Next we extend the standard canonization algorithm for the case of probabilistic
failure transducers.

Proposition 3. Let W := 〈Σ,R, Q, s, F, δ, λ, ι, ρ, f, ϕ〉 be a probabilistic failure
transducer and WC := 〈Σ,R, Q, s, F, δ, λC , ιC , ρC , f, ϕC〉, where

– λC := {〈p, a, rSW(δ(p,a))
SW(p) 〉 | 〈p, a, r〉 ∈ λ};

– ιC := ιSW(s);
– ρC := {〈p, r

SW(p) 〉 | 〈p, r〉 ∈ ρ};
– ϕC := {〈p, rSW(f(p))

SW(p) 〉 | 〈p, r〉 ∈ ϕ}.

Then OWC = OW and WC is stochastic and canonical with respect to R+.

The construction in Proposition 3 requires the computation of the sums SW(q),
which is computationally expensive. In this section we show how this can be
achieved more efficiently in case W is obtained by composing a conditional
probabilistic transducer V∗ with a monotonic and stochastic failure transducer
F , where V is acyclic. This is the case for LG. The main idea of the special-
ized construction is to avoid the expansion of failure transitions by constructing
an acyclic graph with nodes corresponding to transducer states with restricted
signatures.
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Let V and F be as in Subsect. 5.2. Also, let F be stochastic and W :=
〈Σ,R, Q, s, F, δ, λ, ι, ρ, f, ϕ〉 be the failure transducer from Proposition 2, equiv-
alent to the composition of V∗ and F . Since W is probabilistic, the sums SW(q)
exist for every q ∈ Q and Proposition 3 can be used to obtain the canonical
form of W. Since F is stochastic, it is also canonical with respect to R+, i.e. for
every state q of F , SF (q) = 1. We show that the states of W with s1 as first
coordinate also satisfy this property.

Let ω ∈ Ω and ΓV
ω be the set of all words from Σ∗ for which V produces

ω as output. i.e. ΓV
ω := {α ∈ Σ∗ | Proj1(OV(α)) = ω}. For example, in the

case of the lexicon transducer L, ΓL
ω represents the set of all phonetizations of

ω. Then for every transition 〈p, ω, q〉 ∈ δ2 in F and every α ∈ ΓV
ω , there will

be a path in W from 〈s1, p〉 to 〈s1, q〉 with input label α. Therefore, the sum
of the outputs of the paths from 〈s1, p〉 to 〈s1, q〉 in W with input labels in ΓV

ω

will be equal to the output of the transition 〈p, ω, q〉 in F . This is illustrated
in Fig. 1. The highlighted transition in Fig. 1a with input α and output 0.49
is transformed into the two highlighted paths in Fig. 1b with inputs aa and ab
(the phonetizations of α) and outputs 0.245. Using this observation and the fact
that F is stochastic, the following proposition can be proved.

Proposition 4. (∀p ∈ Q2) (SW(〈s1, p〉) = 1).

Therefore, it is sufficient to compute SW(q) only for the states q ∈ Q such
that Proj1(q) �= s1. Thus, we consider the failure transducer W̃ in which the
transitions from W that begin in such states are omitted and those states are
made final with final output 1. Let W̃ := 〈Σ,R, Q, s,Qs1 , δ̃, λ̃, ι, Qs1 ×{1}, f̃ , ϕ̃〉,
where Qs1 = {〈p, q〉 ∈ Q | p = s1}, Qs1

is Q\Qs1 , δ̃ := δ �Qs1
×Σ , λ̃ := λ �Qs1

×Σ ,

f̃ := f �Qs1
×Σ , and ϕ̃ := ϕ �Qs1

×Σ . From Proposition 4 it follows that (∀q ∈
Q)(S

˜W(q) = SW(q)).
We reduce the problem of finding S

˜W(q) to the single-source shortest distance
problem with respect to the semiring R+ [6] in a special graph corresponding
to W̃. The graph contains a node for each state in the transducer and an edge
for each δ and failure transition. If there is a δ transition from p with label
a then all δf transitions from p with a that begin with a failure transition are
invalid. In order to avoid such paths in the graph we clone the target states of the
failure transitions and allow from each cloned state only edges that correspond
to δ-transitions that are not defined in the source of the failure transition (see
Fig. 2).

We construct a labeled weighted acyclic graph, which in addition to the
states from W̃ contains the cloned states, such that only the valid paths in W̃
are represented. Let G := (V,E), where

V := Q ∪ {〈q, f̃(q)〉 | q ∈ Dom(f̃)},

E := {〈p, 〈a, λ̃(p, a)〉, q〉 | 〈p, a, q〉 ∈ δ̃} ∪ {〈p, 〈ε, ϕ̃(p)〉, 〈p, q〉〉 | 〈p, q〉 ∈ f̃}∪
{〈〈p, q〉, 〈a, λ̃(q, a)〉, r〉 | 〈p, q〉 ∈ f̃ , 〈q, a, r〉 ∈ δ̃,¬ ! δ̃(p, a)}∪
{〈〈p, q〉, 〈ε, ϕ̃(q)〉, 〈q, r〉〉 | 〈p, q〉 ∈ f̃ , 〈q, r〉 ∈ f̃}.
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Fig. 2. 〈q, p〉 in the graph (right) is a clone of p in the failure transducer (left).

It then follows that S
˜W(q) is the shortest distance from the new vertex x

to the vertex q in the graph G̃ := (V ∪ {x}, Erev ∪ {x} × {1} × Qs1), which
represents the reverse of the graph G extended with the initial vertex x. An
important property of G̃ is that it is acyclic, since V is acyclic, there are no δ
cycles because the transtions are restricted to those from Qs1

, and there are no
failure cycles. This allows the sums S

˜W(q) for q ∈ Qs1
to be computed in linear

time with respect to the size of G̃1.
Thus, the procedure to construct the canonical form of W consists of first

building the graph G̃, using G̃ to compute the values SW(q), and applying Propo-
sition 3 to push the weights of W. Formal proofs of the above propositions are
presented in [4].

7 Experimental Results and Conclusion

In our experiments we applied the presented constructions for building the
HCLG transducer for the LibriSpeech ASR language model [10] and compared
them with the corresponding Kaldi [11] implementation which uses OpenFst
[2]. All experiments are performed on a dual Intel Xeon Silver 4210 CPU at
2.20 GHz machine with 384 GB RAM running Debian Linux. The source code
for the experiments can be requested from the authors by e-mail. For obtaining
the HCLG transducer we applied the following steps:

1. The stochastic failure transducer G is constructed using the construction from
[1];

2. From the lexicon we construct L ◦ G using Subsect. 5.2, thus obtaining a
probabilistic failure transducer;

3. Using the procedure from Sect. 6, we construct a stochastic failure transducer
equivalent to L ◦ G which we additionally quasi minimize2;

4. We construct the context-dependecy transducer C and compose it with the
stochastic failure transducer LG, using Definition 4; The resulting failure
transducer CLG is trim and stochastic;

1 In comparison with the corresponding algorithm for φ-WFA presented in [3] we
empirically observed that our algorithm introduces significantly less states and tran-
sitions.

2 We use the standard automata minimization procedure considering failure transi-
tions as proper transitions with special label.
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5. From the definition of the HMMs using Proposition 2 we construct the fail-
ure transducer HCLG which is stochastic, and which we additionally quasi
minimize.

For constructing the standard WFST we used the standard Kaldi recipe . The
main differences are that in the Kaldi recipe two intermediate deteminizations
and additional optimization tricks are applied. The table below presents size and
time comparison between the Kaldi construction of the HCLG WFST and our
construction of the HCLG failure WFST.

Transducer WFST Failure WFST

States Transitions Time States Transitions Time

G 7.6M 93.5M 4m 24 s 7.6M 93.5M 1m 47 s

LG 85.1M 230.5M 17m 40 s 288.0M 717.9M 2m 45 s

min&push(LG) 72.7M 211.3M 1h 10m 30 s 254.7M 646.2M 20m 34 s

CLG 73.6M 219.3M 1h 20m 14 s 255.1M 649.5M 27m 13s

min(HCLG) 89.4M 316.7M 2h 29m 14 s 536.9M 1 213.1M 1h 22m 34 s

The experiments show that the size of the failure WFST gets approximately
3–4 times bigger than the corresponding WFST but the construction time is
around two times shorter. The main benefit of the presented approach is that
the resulting failure WFST is deterministic, has no invalid paths, and represents
a correct probability distribution.
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