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Preface

The 25th International Conference on Implementation and Application of Automata
(CIAA 2021) was organized by the Database Group of the Faculty of Mathematics and
Informatics of the University of Bremen. The conference took place during July 19–22,
2021, and was held online, due to the COVID-19 pandemic.

This volume of Lecture Notes in Computer Science contains the scientific papers
presented at CIAA 2021. The volume also includes extended abstracts of the three
invited talks presented by Mikołaj Bojańczyk on “Polyregular Functions”, by Javier
Esparza on “Back to the Future: A Fresh Look at Linear Temporal Logic”, and by
Jeffrey Shallit on “Say No to Case Analysis: Automating the Drudgery of Case-Based
Proofs”.

The 13 regular papers were selected from 20 submissions covering various fields in
the application, implementation, and theory of automata and related structures. Each
paper was reviewed by at least three Program Committee members, with the assistance
of external referees. Papers were submitted by authors from the following countries:
Bulgaria, Canada, France, Germany, Israel, Italy, Japan, Portugal, Russia, South
Africa, and South Korea.

I wish to thank everybody who contributed to the success of this conference: the
authors for submitting their carefully prepared manuscripts, the Program Committee
members and external referees for their valuable judgment of the submitted manu-
scripts, and the invited speakers for their excellent presentations of topics related to the
theme of the conference. Last but not least, I would like to express my sincere thanks to
the local organizers Peter Leupold, Kathryn Lorenz, and Martin Vu, to the University
of Bremen for sponsoring the event, and to the editors of Lecture Notes in Computer
Science, in particular to Anna Kramer, for their help in publishing this volume in a
timely manner.

July 2021 Sebastian Maneth
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Polyregular Functions

Mikołaj Bojańczyk

University of Warsaw, Poland

The class of polyregular functions is a class of string-to-string transducers, which
extends the class of regular string-to-string transducers. The difference is that regular
functions have linear size outputs, while polyregular functions have polynomial size
outputs.
Regular functions. The class of regular string-to-string functions is currently one of the
main topics of transducer theory. The allure of the class is that it has many equivalent
definitions:

1. two-way deterministic automata with output [11]
2. monadic second-order string-to-string transductions [7];
3. streaming string transducers [1];
4. regular expressions for transducers [2, 6];
5. a combinatory functional programming language [4]

Also, the class is shares many similarities with the regular languages of words,
explaining its name, in particular: (a) it is decidable if a given word belongs to the
range of a regular function, more generally the class of regular word languages is
effectively closed under taking inverse images of regular functions; and (b) it is
decidable if two regular functions (represented by any of the formalisms described
above) are actually the same string-to-string function [8].
Polyregular functions. The output of a regular function is at most linear in the input
size. This is easily seen if we think of regular functions as deterministic two-way
automata with output: if such an automaton has k states, then it can visit each position
at most k times (otherwise it will enter a loop), and therefore the length of the output
word is at most k times the length of the input word. The idea behind polyregular
functions is to find a class of functions that has the good theoretical properties of
regular functions, and yet allows outputs of polynomial, but not necessarily linear, size.
For example, consider the squaring function which inputs a word w, and outputs jwj
copies of w, as in the following example:

1234 7! 1234123412341234:

If the length of the input word is n, then the length of the output is n2, and therefore the
squaring function is not a regular function. It is, however, polyregular, as we will see
below.

Supported by ERC Consolidator grant LIPA 683080.

https://orcid.org/0000-0002-7758-1072


The study of polyregular functions was proposed in [3], building on deterministic
k-pebble transducers with stack discipline [10]. If an input word has length n, then k
pebbles can be placed in at most nk ways on its positions, and therefore the length of a
run of a k-pebble transducer (and also the length of the output) are going to be at most
polynomial in the length of the input word. The degree of the polynomial is the number
of pebbles, which is fixed for each transducer. For example, the squaring function is
computed by a 2-pebble transducer, which runs the first pebble through all positions in
the input word, and for each position uses the second pebble (which can be viewed as
the head of the transducer) to copy the entire input word to the output. When the
number of pebbles is equal to k ¼ 1, then pebble transducers are the same thing as
two-way automata with output, thus corresponding to the regular functions.

It turns out that the functions computed by pebble transducers can be described in
many different ways, just like the regular functions:

1. pebble transducers;
2. a restricted variant of pebble transducers, called for programs, where each pebble

has an assigned direction (left-to-right, or right-to-left), and therefore pebbles
cannot move both ways;

3. a higher-order functional programming language, which is built on basic list
operations such as “reverse” or “head”, using basic mechanisms of functional
programming such as k-abstraction;

4. the smallest class of string-to-string functions that is closed under function com-
position, contains all regular functions, plus one extra function, which extends
squaring with an “underline” as explained in the following example:

1234 7! 1234123412341234:

5. an extension of monadic second-order transductions, where each output position is
represented not by a single input position, but by a k-tuple of input positions.

The models in items 2, 3 and 4 were introduced in [3]; the same paper also proved
that they are equivalent to each other and to pebble transducers. The model in item 5
was shown to be equivalent to the previous ones in [5].

If we think of the regular functions as a fragment of the polyregular functions, then
this fragment is very clean: a function is regular if and only if it is polyregular and it has
linear size outputs [9]. Furthermore, since having linear size outputs is a decidable
property of polyregular functions, it follows that one can decide if a polyregular
function is already regular.

Like regular functions, polyregular functions effectively preserve regularity when
taking inverse images. An important outstanding open problem about polyregular
functions is decidability of equivalence: is there an algorithm which decides if two
polyregular functions, represented using any one of the many equivalent formalisms,
are actually the same string-to-string function?

xii M. Bojańczyk
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Back to the Future: A Fresh Look
at Linear Temporal Logic

Javier Esparza(B)

Technical University of Munich, Munich, Germany
esparza@in.tum.de

Abstract. This note tells the story of how I came to understand that
my work with Křet́ınský and Sickert on translating LTL into ω-automata
was deeply connected to a normal form for LTL, obtained 35 years ago
by Lichtenstein, Pnueli and Zuck.

Keywords: Linear Temporal Logic · ω-Automata · Formal verification

In the last 10 years, Jan Křet́ınský, Salomon Sickert, and myself have investi-
gated novel algorithms for translating formulas of Linear Temporal Logic (LTL)
into ω-automata (i.e., automata on infinite words) that are either deterministic
or only exhibit a limited form of non-determinism. I have only recently under-
stood that our work is deeply connected to a normal form for LTL, obtained
35 years ago by Lichtenstein, Pnueli and Zuck in [18]. THis normal form plays
a central role in Manna and Pnueli’s books on specification and verification of
reactive systems using temporal logic [23,24]. The complexity of normalizing
a given LTL formula remains an open but forgotten problem, to which Sick-
ert and myself have recently made a contribution in [33] using results from [7].
Since space constraints on regular conference papers usually prevent one from
exposing the history behind one’s research in any detail, I am using the kind
invitation of the PC Chairs of CIAA 2021 to explain the problem, why I think
it became forgotten, why it should not have, and why our solution is relevant
for probabilistic verification and reactive synthesis.

1 Manna and Pnueli’s Safety-Progress Hierarchy

In the late 1970s, Amir Pnueli introduced Linear Temporal Logic (LTL) into
computer science as a framework for specifying and formally verifying concurrent

The work surveyed in this note was partially supported by the DFG projects 183790222
“Computer-Aided Verification of Automata Constructions for Model Checking” and
317422601 “Verified Model Checkers”, and by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 787367 “Parameterized Verification and Synthesis” (PaVeS). This
paper was written while the author was participating in a program at the Simons
Institute for the Theory of Computing.

c© Springer Nature Switzerland AG 2021
S. Maneth (Ed.): CIAA 2021, LNCS 12803, pp. 3–13, 2021.
https://doi.org/10.1007/978-3-030-79121-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79121-6_1&domain=pdf
http://orcid.org/0000-0001-9862-4919
https://doi.org/10.1007/978-3-030-79121-6_1


4 J. Esparza

programs [28,29], a contribution that earned him the 1996 Turing Award. LTL
extends propositional logic with temporal operators like the unary next operator
X, where Xϕ means that ϕ holds at the next point in time (i.e., that ϕ “holds
tomorrow”), and the binary until operator U, where ϕ U ψ means that ψ holds
at some point in the future and ϕ holds until ψ holds, i.e., at every point before
ψ holds for the first time.

During the 1980s and the early 1990s, in collaboration with other researchers,
Pnueli proceeded to study the properties expressible in LTL. In 1985, Lichten-
stein, Pnueli and Zuck introduced a classification of LTL properties, later refined
and described in detail by Manna and Pnueli in [21,22], who also gave it its cur-
rent name, the safety-progress hierarchy. These works deal with an extended
version of LTL including past operators, called Past LTL, and introduce a hier-
archy of six classes: a safety class of formulas expressing requirements that must
hold at all times, and five progress classes, called guarantee, obligation, response,
persistence, and reactivity, whose formulas specify that some requirement should
eventually be fulfilled. The inclusions between these classes are shown in Fig. 1a.
The progress classes differ in the conditions and frequency at which the require-
ment is to be fulfilled. The papers prove that each class corresponds to a syn-
tactically defined set of LTL formulas. In particular, the reactivity class, which
contains all others, corresponds to the formulas of the form

n∧

i=1

(GFϕi ∨ FGψi)

where Fϕ and Gϕ mean that ϕ holds at some and at every point in the future,
respectively, and ϕ1, . . . , ϕn, ψ1, . . . , ψn are formulas containing only past oper-
ators.

In 1992, Chang, Manna, and Pnueli presented a different and very elegant
characterization of the hierarchy in terms of standard LTL formulas without
past operators [1] (see also [27]). The characterization uses the until operator
and the weak until operator ϕ W ψ, meaning that either ϕ U ψ holds, or
ϕ holds at every point in the future. Every formula is equivalent to another
one in negation normal form (i.e., with negations only in front of propositional
variables) containing only X, W, and X. In particular, we have Fϕ ≡ true U ϕ
and Gϕ ≡ ϕ W false. Chang, Manna, and Pnueli show that every reactivity
formula is equivalent to a Boolean combination of formulas exhibiting at most
one alternation of these two operators. More precisely, consider the following
classes of LTL formulas:

– The class Σ0 = Π0 = Δ0 is the closure under conjunction and disjunction of
the atomic propositions and their negations.

– The class Σi+1 is the closure of Πi under conjunction, disjunction, and the
X, and U operators.

– The class Πi+1 is the closure Σi under conjunction, disjunction, and the X,
and W operators.

– The class Δi+1 is the closure of Σi+1 and Πi+1 under conjunction and dis-
junction.
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The inclusions between these classes are shown in Fig. 1b. It is shown in [1] that
this alternation hierarchy coincides with the safety-progress hierarchy of Fig. 1a.

Fig. 1. Two hierarchies of LTL properties

In the first half of the 90s, Manna and Pnueli condensed their work into two
books [23,24]. They should have been followed by a third one, which unfortu-
nately was never completed; a little part of it can be found in [25]. The tril-
ogy is structured around the safety-progress hierarchy; the first volume intro-
duces it, and the second volume describes proof techniques for properties in
the safety class, plus a model-checking algorithm for arbitrary properties. The
incomplete third volume should have described proof techniques for properties
in the progress classes.

The safety-progress hierarchy hinges on a fundamental Normalization The-
orem stating that every LTL formula is equivalent to a reactivity formula, its
largest class, and so that the hierarchy indeed covers all properties expressible
in LTL. In terms of the characterization of [1], the theorem states that every
LTL formula is equivalent to a Δ2-formula, i.e., to a formula in which every
path through the syntax tree contains at most one alternation of the U and W
operators. Despite its relevannce, is not very easy to find a proof in the litera-
ture. The Normalization Theorem is announced in passing in [18], as a corollary
of another theorem, and the proof of this theorem is said to be based on many
previous results, including papers by Büchi; McNaughton and Papert; Choueka;
Thomas; and Gabbay, Pnueli, Shelah, and Stavi, which “when combined, yield
the theorem almost immediately”. Although the theorem features prominently
in [21–24], all of them declare its proof out of the scope of the publication.
Finally, [1] does not provide a proof either, since it only shows the equivalence
between the safety-progress and the U-W alternation hierarchies, but not the
completeness of the Δ2 class. To the best of my knowledge, a complete proof can
only be found in Zuck’s PhD Thesis [38]. The proof starts in Sect. 4, where Zuck,
relying on previous results by other authors, shows how to translate a Past LTL
formula into a counter-free semi-automaton. In a second step, Zuck invokes the
Krohn-Rhodes cascade decomposition theorem to translate this semi-automaton
into a star-free regular expression. Finally, in Sect. 5 she presents a procedure to
translate this regular expression into a reactivity formula, and remarks that the
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complete translation may cause a non-elementary blow-up in the length of the
formula.

The Normalization Theorem is a cornerstone of Manna and Pnueli’s books,
one of the most remarkable achievements of theoretical computer science dur-
ing the 1980s, to wit: one year after the publication of the second book, Pnueli
received the Turing Award for introducing temporal logic into computer sci-
ence. It is remarkable that, despite this prominence, no subsequent work tried to
improve Zuck’s non-elementary normalization procedure, even though no lower
bound was known. To the best of my knowledge, the only exception is a paper on
the Krohn-Rhodes theorem, published twenty years later in a volume of essays in
memory of Pnueli, in which Maler, based on former work with Pnueli, sketches a
triple exponential construction [20]. In a discipline that routinely devotes papers
to the investigation of much smaller complexity gaps, why was there no subse-
quent work on this question? I don’t know, but my conjecture is that it had to
do with the rise of the automata-theoretic approach to LTL verification, which
brings us to the next section.

2 The Automata-Theoretic Approach to LTL Verification

Manna and Pnueli’s books present a methodology to specify requirements of
concurrent and reactive program in temporal logic, and to prove that a given
program satisfies them. Their approach was geared towards actually producing a
correctness proof, and for this purpose they produced axiom systems, and sound
and complete proof rules. Their work can be seen as an extension to the realm
of reactive and concurrent programs of well-know proof systems like Hoare logic,
Dijkstra’s weakest preconditions, or the Owicki-Gries system.

Constructing a proof of a program required a lot of human intervention in the
1980s (and still does), which made the techniques only applicable to very small
programs. Since the beginning of the 1980s, a new approach, pioneered by Clarke,
Emerson, and Sifakis, proposed to substitute proofs by computation [2]. Under
the name model checking, it dispensed with axioms and proof rules, and directly
verified that the program satisfies its LTL specification by exhaustively exploring
its set of reachable states, which only required to know the syntax and semantics
of LTL. A few years later Vardi and Wolper formulated the automata-theoretic
approach to model checking [36,37]. They showed that LTL formulas could be
translated into equivalent non-deterministic automata on infinite words, or ω-
automata, thus reducing the LTL verification problem to an automata-theoretic
question.

Model Checking gave an enormous impulse to formal verification, and its
success earned Vardi and Wolper the 2000 Gödel Prize, and Clarke, Emerson,
and Sifakis the 2007 Turing Award. In particular, the automata-theoretic app-
roach was implemented by Holzmann in Spin, a verification tool that has passed
the test of time [9]. However, the success of model checking also decreased the
interest of the formal verification community in logical proof techniques. Trans-
lating LTL formulas into non-deterministic automata did not depend on axiom
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systems, proof rules, or on formulas belonging to particular classes, and it is
telling that Manna and Pnueli included it as a final chapter of their second
book, emphasizing that it provided a universal verification algorithm, valid for
any formula. By the 1990s most researchers were using LTL as little more than a
more human-readable syntax for ω-automata. I think this shift in interest is the
most likely explanation for the “fall into oblivion” of the open questions around
the Normalization Theorem. But the new approach also brought with it a new
challenge.

3 A New Challenge

In 1988, Safra famously showed that ω-automata could be determinized in single
exponential time [31]. This led to two new applications of the automata-theoretic
approach, which have become two of the most intensely studied areas in formal
verification: Probabilistic model checking [35], and reactive synthesis (also pio-
neered by Pnueli [30]). Instead of “does every run of the program satisfy the
property?”, probabilistic model checking investigates the questions “is the prob-
ability of the runs of the program satisfying the property equal to 1?” (qualitative
model checking) or “does the probability of the runs of the program exceed a
given bound?” (quantitative model checking).

Reactive synthesis goes beyond verification, by investigating how to auto-
matically construct systems that are correct by construction. More precisely,
the reactive synthesis problem consist of synthesizing a reactive system that pro-
duces an output for every given input in such a way that every infinite sequence
of alternating inputs and outputs satisfies a given LTL property. The automata-
theoretic approach reduces the synthesis problem to finding a winning strategy
in an infinite two-player game. The players, which correspond to the inputs and
outputs, take turns in moving a pebble along the edges of a given graph, and the
output player wins if the infinite path followed by the pebble satisfies a given
LTL property.

Probabilistic model checking and reactive synthesis can be solved by translat-
ing the LTL property into a deterministic ω-automaton. This stands in contrast
to non-probabilistic model checking, for which a non-deterministic ω-automaton
suffices (see Chapter 3 of [16] for a nice explanation of why this is the case). By
concatenating a translation from LTL into a nondeterministic automaton with
Safra’s construction, the automata-theoretic approach could be applied to the
new problems. Safra’s construction was implemented in tools like ltl2dstar
[10], and used in the PRISM probabilistic model checker [17].

While Safra’s construction was a breakthrough, it also raised an important
challenge. First, the translation of LTL to deterministic ω-automata induces
a double exponential blow-up (one exponential for the translation of LTL to
non-deterministic ω-automata, and a second exponential for determinization),
which is asymptotically optimal. Moreover, Safra’s construction is “monolithic”,
meaning that it directly defines the states and transitions of the deterministic
automaton. A state of Safra’s automaton consists of a tree of sets of states of
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the original automaton, each of them with an additional bit “flagging” it or
not, satisfying certain conditions. Naive algorithms for the construction of the
automaton can be easily affected by combinatorial explosion, and produce many
redundant or useless states (but see [10,11] for techniques to palliate this prob-
lem). About 10 years ago, Jan Křet́ınský, at the time a PhD student bothered
by the very large automata the tools produced for very small formulas, initiated
a research program based on two observations:

– It is well known that ω-automata are more expressive than LTL. They rec-
ognize all ω-regular languages, which correspond to the languages express-
ible in S1S, the monadic second-order theory of one successor, while LTL
only expresses the languages expressible in the first-order fragment of the
theory. Traditionally, this has been seen as an additional point in favor of
the automata-theoretic approach: One gets extra expressive power “for free”.
However, perhaps it is not for free when the target is a deterministic automa-
ton? Since there is ample evidence that LTL is a sufficiently expressive spec-
ification language for many applications, can direct translations from LTL
to deterministic ω-automata prove more efficient than indirect translations
whose starting point is an arbitrary nondeterministic ω-automaton?

– LTL formulas are by their very nature defined compositionally, larger formulas
are obtained by applying Boolean or temporal operators to smaller ones. Is
it possible to use this information to obtain a compositional translation, in
which the final deterministic ω-automaton is the result of combining smaller
automata?

4 Closing the Circle

Křet́ınský’s first paper (in which I played a small part) studied the fragment of
LTL containing only the F and G operators [12]. We showed how to directly
construct deterministic ω-automata whose states were Boolean combinations of
subformulas of the original formula. This made the construction very suitable
for applying reductions based on logical equivalences; indeed, many states did
not need to be constructed because their associated formulas were equivalent to
the ones of previously constructed states. While the experimental results were
good, even the inclusion of the next operator X seemed challenging at that
time. In [8,13] the construction was extended to larger fragments containing X
and restricted appearances of the until operator U, but a general translation
remained elusive.

We obtained a first breakthrough in [4], where we presented a novel app-
roach in which the deterministic automaton was obtained as the intersection
of a primary automaton and an array of secondary automata, one for each
Gψ-subformula of the original formula, in charge of recognizing whether FGψ.
However, the paper contained two mistakes. First, it wrongly claimed that the
construction could be extended to the alternation-free linear-time μ-calculus;
this was a classical error of the form “it is easy to see that . . . ”. The second
error was a very subtle mistake in an induction proof. The error was found by
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Salomon Sickert in the course of his Master’s Thesis, whose topic was checking
the correctness of the proof of [4] in the Isabelle theorem prover. Sickert got
stuck proving a technical lemma by structural induction. An inspection of the
failed proof showed that the smallest formula for which the construction would
have produced a wrong result is G(Xa ∨ GXb), which would have probably sur-
vived a large amount of experimental testing. Fortunately, the error could be
corrected, and the repaired construction, now mechanically checked in Isabelle,
was published in [5].

The construction of [4], once corrected, also led to a new development, which
has proved to be particularly relevant in practice. While deterministic automata
are sufficient for probabilistic model checking, one can ask whether they are nec-
essary. The answer was known to be negative. Already in the 1990s, Courcoubetis
and Yannakakis showed that qualitative probabilistic model checking of Markov
Decision Processes (MDPs) could be carried out using limit-deterministic ω-
automata, which only need to behave deterministically after reaching an accept-
ing state for the first time [3] (see also [31,35] for similar results). In particular,
they showed that every nondeterministic ω-automaton could be translated into
an equivalent limit-deterministic one. We observed that our construction pro-
vided a simpler direct translation from LTL into limit-deterministic ω-automata,
again without any detour through non-deterministic automata. Moreover, our
automata could be applied not only to qualitative model checking, but also to
quantitative problems. Sickert and Křet́ınský presented in [34] an extension of
PRISM for LTL model checking based on this construction.

At this point the experimental results were already very satisfactory, and
one could have declared the research program concluded. However, our direct
translation was still unsatisfactory from a theoretical point of view. While the
translation from LTL to deterministic ω automata that takes the detour through
Safra’s construction had a worst-case double exponential blow-up, ours had a
triple exponential one. This was not relevant in practice, but it made us continue.

In 2018 we obtained our second breakthrough. We were able to design a
unified translation of LTL formulas into deterministic Rabin automata, limit-
deterministic Büchi automata, and nondeterministic Büchi automata [6,7] (see
also Sickert’s PhD thesis [32]). All translations yielded automata of asymptoti-
cally optimal size (double or single exponential, respectively). Moreover, all three
translations were derived from one single Master Theorem, which decomposes
the language of the sequences satisfying an LTL formula into a positive boolean
combination of languages, each of which can be translated into ω-automata by
elementary means [7]. As in the first paper of the series [12], the states of these
automata are boolean combinations of subformulas of the original formula. The
constructions were implemented in Rabinizer 4.0 [15] and in the OWL library
[14]. They were also integrated in the Strix tool for LTL synthesis [19,26], which
won the LTL category of the SYNTCOMP competition in 2018, 2019, and 2020.

We were finally done. Or were we? The Master Theorem stated that an
ω-word w satisfies an LTL formula ϕ iff there exists two sets M and N of
subformulas of ϕ satisfying three conditions. The last two, put together, state
that w must satisfy a formula of the form
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∧

ψ∈M

GFψN ∧
∧

ψ∈N

FGψM ,

where the formulas ψM and ψN are obtained from ϕ, M , and N by means of a
purely syntactic procedure. This formula was oddly similar to the original normal
form of Lichtenstein, Pnueli and Zuck. However, the analogy did not extend to
the first of the three conditions, which had a different shape. It did not require
that w satisfies a formula, but that some suffix w′ of w satisfies a formula ψM,w′ ,
dependent not only of M but also of the suffix w′. From a practical point of view
this did not constitute a problem, because it was easy to construct an automaton
recognizing the words satisfying the condition. However, this immediately raised
the question whether the first condition could be replaced by another one of the
same kind as the last two. I kept asking this question to Salomon Sickert, my
PhD student at the time, until he found a solution that leads to a new normal
form for LTL [33]. It states that for every formula ϕ of LTL:

ϕ ≡
∨

N,M

⎛

⎝ϕM ∧
∧

ψ∈M

GFψN ∧
∧

ψ∈N

GFψM

⎞

⎠

where the disjunction is over all sets M,N of U and W-subformulas of ϕ, respec-
tively, the ϕM are formulas of Δ2, the ψN do not contain any occurrence of W,
and the ψM do not contain any occurrence of U. The formulas ψN and ψM

depend on N and M , respectively, but can be easily constructed from the cor-
responding ψ by a simple and purely syntactic procedure1.

Taking into account Fϕ ≡ true U ϕ and Gϕ ≡ ϕ W false, this shows that
every formula is equivalent to a Δ2-formula. Moreover, if ϕ has length n, then
ϕM , ψN , ψM have length 2O(n), O(n), and O(n), respectively. Since there are
2O(n) choices for M and N , the total length of the equivalent formula is also
2O(n), improving on the non-elementary bound of [38] and on the (likely) triple
exponential bound of [20].

Thanks to this result I think I finally understand the goal of our nearly 10
years of work on LTL and ω-automata: Develop translations that (1) put the
formula into Δ2 form; (2) translate these formulas into automata of the desired
type, exploiting the fact that they exhibit only one alternation; and (3) combine
these automata into an automaton for the full formula.

5 Conclusions: Back to the Future

Ironically, in our ten year investigation of translations of LTL into ω-automata
all developments seem to have occurred in the wrong temporal order. If Chang,
Manna, and Pnueli (or other researchers) would have tried to improve on the

1 For readers familiar with LTL, the result of [33] can also be used to normalize
into formulas containing also the operators R and M. This has relevance, because
the normal form with these operators can be exponentially more compact than the
normal form with only the U and W operators.
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non-elementary upper bound of the translation, by perhaps 1995 it would have
already been shown that the Δ2 normal form only incurs in at most a single expo-
nential blow-up, and that normalization is efficient in practice. This would have
led to an interest into efficiently translating normalized formulas into automata,
and such translations would have probably already been in place by the early
2000s. This was the time at which the first tools for probabilistic model checking
appeared, followed a few years later by the first tools for reactive synthesis of
arbitrary LTL specifications. Sometimes I wish I could travel back in time to
1992, like Marty McFly in the movie “Back to the Future”, to suggest Amir
Pnueli to work on the complexity of normalization, and return to the present
to see how much better our probabilistic model checkers and tools for reactive
synthesis have become.

Acknowledgment. I thank Jan Křet́ınský and Salomon Sickert for sharing their
insights with me in countless conversations, for all our joint work, and for their com-
ments on a draft of this note.
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1 Introduction

My talk can be briefly summarized as follows: Long, tedious proofs that require
a human to check many cases should be replaced by an algorithm, so a computer
can do the work instead.

Doing so offers a number of advantages:

– An algorithm replaces valuable human time with what a computer does best:
tedious examination of a large number of cases.

– Implementing an algorithm allows one to test whether all cases have in fact
been considered, and correct any errors in the analysis.

– An algorithm is often more general than the specific problem at hand, and
can easily be modified to explore generalizations of the original problem.

– If a conjecture can be phrased in a logical language that is algorithmically
decidable, then one can use a decision procedure instead of a case-based proof.

– By combining a decision procedure with heuristics, one can algorithmically
“guess” possible solutions to a problem, and then prove the guess is correct.
So one can “guess” the correct routes to a proof, and then complete it.

Furthermore, automata and formal languages provide a framework that can
replace case analysis for a diverse set of problems.

2 Why We Need Cases: Some Things Are True for No
Good Reason

As mathematicians and theoretical computer scientists, we are conditioned to
believe that most of the true statements we are interested in have proofs. For
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hundreds of years, nearly everyone believed that Fermat’s “Last Theorem” was
true and that a proof would be found someday. And our intuition was confirmed
when Andrew Wiles succeeded in finding a proof.

Yet we know from Gödel that, in a sufficiently powerful consistent formal
system, there are true statements that have no proof in the system. Furthermore,
some of these assertions will be very simple to state (at least conceptually), such
as “This statement has no proof in Peano arithmetic”. But there may be other,
more “natural” true statements that are simple, lack obvious self-reference, and
still have no proof. Here is a possible example:

Numbers that are exact powers of two are 2, 4, 8, 16, 32, 64, 128 and so
on. Numbers that are exact powers of five are 5, 25, 125, 625 and so on.
Given any number such as 131072 (which happens to be a power of two),
the reverse of it is 270131, with the same digits taken in the opposite order.
Now my statement is: it never happens that the reverse of a power of two
is a power of five.

– Freeman Dyson [9]

Dyson’s conjecture is plausible because of some “randomness” in the decimal
digits of powers, together with the lack of small counterexamples. But it is that
very “randomness” that makes it hard to find a route to a proof.

We are also conditioned to believe that the true statements we are interested
in not only have proofs, but also have simple proofs, if only we are clever enough
to find them. Consider, for example, the attraction of “proofs from the Book”—
an Erdős fantasy that there exists a celestial Book containing the optimal proofs
for all important theorems [1].

While it is certainly desirable to find short proofs that give insight into a
problem, we also know that in any sufficiently powerful consistent system there
are true statements that are provable, but whose shortest proof is astronomically
long in comparison to the length of the statement.1 We might say these are
statements that are true, but for no good reason.

So, a priori, we should not be at all surprised that some simple statements
like the Four-Color Conjecture (4CC) might end up having no simple proof. The
original proof of 4CC by Appel and Haken [2] involved finding an “unavoidable
set of reducible configurations”, reducing the problem to checking 1,834 indi-
vidual cases by a computer. To date there is still no really simple proof of this
theorem.

This is an automata theory conference, so let’s look at an example from
automata theory. Suppose we conjecture that all strings satisfy some property.
If this property can be represented by an NFA M = (Q,Σ, δ, q0, F ), then this
conjecture becomes the universality problem: does M recognize Σ∗? Unfortu-
nately, the universality problem for NFA’s is PSPACE-complete [18], so proba-
bly there is no efficient algorithm to check universality. Even worse, we may not
1 An example is “This statement has no proof in Peano arithmetic with less than 10100

symbols.”.
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even be able to check a possible counterexample in polynomial time, since there
are O(n)-state NFA’s where the shortest string not accepted is of length ≥ 2n.
An example is provided by the language

Ln = {0, 1,#}∗ − { [0]#[1]# · · · #[2n − 1] },

where [a] is the binary representation of a, padded on the left to make it n bits
long. It is not hard to construct an NFA Mn for Ln that has O(n) states, while
the shortest (and only) string Mn does not accept is clearly of length (n+1)2n−1.

Hence short conjectures about universality, represented by NFA’s, might have
exponentially long counterexamples, and we might need to examine exponen-
tially many cases to rule them out.

3 Let a Computer Do the Work

In a classic paper of Entringer, Jackson, and Schatz [10], the authors proved
that every binary word containing no squares xx with |x| ≥ 2 is of length ≤ 18.
They do so by a case-based analysis that is displayed in a large diagram that
takes up an entire page of their paper.

But why do this? One can check each case tediously by hand, but do we get
any real insight this way? And after doing so, does the reader feel sure that every
case has been covered?

Instead, one can recognize this as a classic avoidance problem that can be
solved almost trivially with breadth-first or depth first search. Let P be a set
of patterns one wants to avoid over some alphabet Σ. Construct a (potentially)
infinite tree T , with nodes labeled by Σ∗. The root is labeled with the empty
string ε. If a node is labeled x and does not end in a pattern in P , then its
children are xa for a ∈ Σ. Otherwise the node is a leaf. Then T is finite iff the
set P cannot be avoided. Furthermore, if the node at greatest depth is xa for
a ∈ Σ, then x is a longest word avoiding P .

By reporting statistics obtained by breadth-first or depth-first search, one
can provide enough information that anyone else can easily check the results
with a simple program. For the Entringer et al. problem, one can provide the
number of leaves in the tree (478) and the leaves at greatest depth, which are

0100110001110011010, 0100110001110011011,

and their binary complements.

4 Algorithmic Case Analysis Prevents Errors

One of the advantages of automating case-based proofs is increased certainty in
the correctness of the proof. Once all the cases have been expressed algorithmi-
cally, one can then test a large number of randomly-chosen examples (or try to
exercise all paths in the case analysis) to make sure all cases have been covered.
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As an example, consider a recent theorem by Cilleruelo and Luca [5]: for
every integer base b ≥ 5, every natural number is the sum of three natural num-
bers whose base-b representations are palindromes. Their 30-page proof required
examining a very large number of cases (one case was labeled IV.5.v.b), and
would be rather challenging to verify. As it turns out, however, the initial proof
had some small, easily-repaired flaws that were only discovered when the case
analysis was programmed up in Python by Baxter [6].

5 Replacing a Large Number of Cases with a General
Argument

Returning to the sum-of-palindromes problem, Cilleruelo et al. were not able
to handle the case of bases b = 2, 3, 4 in their analysis. I wondered if a more
general approach might work to solve this problem. We want to show that every
integer can be represented as a sum of numbers with a certain easily-describable
base-b representation. If we can use some flavor of automata to check these
representations, then this becomes a universality problem for nondeterministic
machines: for every natural number N , we “guess” a representation as a sum
of palindromes, and then check it. Even though universality problems are hard
in general, we might “luck out” and get one that runs in a reasonable length of
time.

We were able to solve the sum-of-palindromes problem for the remaining
cases b = 2, 3, 4 using two different approaches:

– “guess” a representation of N as a sum of terms and use a visibly-pushdown
automaton to verify that the guessed representations are palindromes;

– “guess” only the first half of the representations of the terms to be summed
with an NFA, and then verify that the full representations sum to a “folded”
version of the representation of N .

Using these ideas, we were able to prove

Theorem 1. For base 2, every natural number is the sum of four palindromes.
For bases 3 and 4, every natural number is the sum of three palindromes.

For the details, see [21,22].
Furthermore, now that we have the idea that computational models such

as visibly-pushdown automata and NFA’s can be used this way, it suggests a
large number of related problems that are easily solved. For example, instead
of palindromes, we could consider sums of generalized palindromes: these are
numbers, like 1100, that have palindromic base-k representations if one allows
insertion of leading zeroes. We also obtained results about sums of generalized
palindromes with only minor modifications.

Or we could look at “squares” instead of palindromes: these are numbers
whose base-b representation consists of two consecutive identical blocks. For
this, see [17].
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Let’s look at another example: words avoiding various sets of palindromes.
Let x be a finite or infinite word. The set of all of its factors (that is, contiguous
blocks appearing in x) is written Fac(x), and the set of its factors that are
palindromes is written PalFac(x). In [12], we proved the following result:

Theorem 2. Let S be a finite set of palindromes over an alphabet Σ. Then the
language

CΣ(S) := {x ∈ Σ∗ : PalFac(x) ⊆ S}
is regular.

Proof. Let � be the length of the longest palindrome in S. We claim that CΣ(S) =
L, where

L =
⋃

t∈P≤�+2−S

Σ∗ t Σ∗.

CΣ(S) ⊆ L: If x ∈ CΣ(S), then x must have some palindromic factor y such
that y �∈ S. If |y| ≤ � + 2, then y ∈ P≤�+2 − S. If |y| > � + 2, we can write
y = uvuR for some palindrome v such that |v| ∈ {� + 1, � + 2}. Hence x has the
palindromic factor v and v ∈ P≤�+2 − S. In both cases x ∈ L.

L ⊆ CΣ(S): Let x ∈ L. Then x ∈ Σ∗ t Σ∗ for some t ∈ P≤�+2 − S. Hence x has
a palindromic factor outside the set S and so x �∈ CΣ(S).

Thus we have written CΣ(S) as the finite union of regular languages, and so
CΣ(S) is also regular.

Not only does this theorem show that the language of words avoiding palin-
dromes is regular, it also gives a method to actually construct a DFA recognizing
the language of all such words. With this theorem, then, we can replace much of
the case analysis in [11,23] with a calculation based on automata. As an example
of the power of the method, we just mention one result from [12]:

Theorem 3. The sequence (e2,5(n))n≥0 counting the number of binary words of
length n containing no palindromes of length > 5 satisfies the recurrence

e2,5(n) = 3e2,5(n − 6) + 2e2,5(n − 7) + 2e2,5(n − 8) + 2e2,5(n − 9) + e2,5(n − 10)

for n ≥ 20. Asymptotically e2,5(n) ∼ cαn where α
.= 1.36927381628918060784 · · ·

is the positive real zero of the equation X10 − 3X4 − 2X3 − 2X2 − 2X − 1, and
c = 9.8315779 · · · .

6 Heuristics Plus Algorithms Can Create Proofs

One of the most useful examples of these ideas is the following: use heuristics to
find possible routes to a proof, and then use an algorithm to complete the proof
itself.



Say No to Case Analysis: Automating the Drudgery of Case-Based Proofs 19

Consider the following problem: choose a finite set of unary operations on
languages, such as S = { Kleene closure, complement }. Start with a language
L, and apply the operations of S to L as many times as you like, and in any
order. (This is the orbit of L under the set S.) How many different languages
can you get?

For the particular S above, the answer is 14; this is a version of the Kura-
towski 14-theorem from topology.

We can then try different sets of operations. In 2012, we proved the following
result [4].

Theorem 4. For the set of eight operations

S = {Kleeneclosure,positiveclosure, complement,prefix, suffix,

factor, subword, andreverse }

the size of the orbit of every language is at most 5676.

The simple idea behind the proof is that certain finite sequences of composed
operations generate the same language as shorter sequences. For example, if k
denotes Kleene closure and c denotes complement, then kckckck has the same
effect as kck. By generating an extensive list of identities like kckckck ≡ kck,
we can do a breadth-first search over the tree of all sequences of operations,
demonstrating that there is a finite set of sequences that covers all possibilities.

But which identities are true? Here is where heuristics can help us. We can
model all languages with the class of regular languages. To find an identity,
we can apply one list of operations to some randomly-generated set of regular
languages and compare it to the result of some other list. If the results agree
everywhere, we have a candidate identity we can try to prove.

When implemented, our procedure generated dozens of identities, most of
which had trivial proofs. Once we had these identities, we used the breadth-first
search to prove that the size of the orbit was finite. I’d be very surprised if there
is a simple proof of Theorem 4.

7 Decision Procedures

Let us continue with the theme of the previous section. The best possible example
of what I’m talking about involves a decision procedure. If the statement you’re
trying to prove can be phrased in a logical theory that is recursively decidable
(an algorithm exists to find proofs of all true statements), you can replace a
case-based proof with running the decision procedure.

One domain where this has been very successful is the combinatorics of auto-
matic sequences. (For us, “sequence” is synonymous with “infinite word”). A
sequence (sn)n≥0 over a finite alphabet is automatic if, roughly speaking, there
is a deterministic finite automaton with output (DFAO) that, on input the rep-
resentation of the natural number n in some form, ends in a state with output
sn. A typical example of the kind of representation we are talking about is base-2
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representation. For automatic sequences, thanks to Büchi and others (see [3])
there is a decision procedure to answer questions about these sequences that are
phrased in first-order logic.

Let’s look at a specific example. The Thue-Morse sequence

t = (tn)n≥0 = 0110100110010110 · · ·

is an automatic sequence and is generated by the following very simple automa-
ton. Here the label a/b on a state means that the state is numbered a and the
output associated with the state is b.

0/0

0

1/11
1

0

A word x has period p ≥ 1 if x[i] = x[i + p] for all indices i that make sense.
Currie and Saari [7] proved that t has a factor of least period p for all integers
p ≥ 1. Their proof required 3 lemmas, 6 cases, and 3 pages.

However, their claim can be phrased in a certain logical system that is algo-
rithmically decidable, and there is a decision procedure for it. This procedure
has been implemented in the Walnut theorem prover [19] written by Hamoon
Mousavi, and so we can enter the commands

def tmperi "(p>0) & (p<=n) & Aj (j>=i & j+p<i+n) => T[j]=T[j+p]":

def tmlper "$tmperi(i,n,p) & (Aq (q>=1 & q<p) => ~$tmperi(i,n,q))":

eval currie_conj "Ap (p>=1) => Ei,n (n>=1) & $tmlper(i,n,p)":

which returns TRUE in a matter of .062 s of CPU time. Here tmperi asserts
that t[i..i + n − 1] has period p, and tmlper asserts that the least period of
t[i..i + n − 1] is p.

A factor is said to be bordered if it begins and ends with the same word in
a nontrivial way, like the English word entanglement. If it is not bordered, we
call it unbordered. Currie and Saari [7] were also interested in determining all
lengths of unbordered factors in t. They proved that t has a length-n unbordered
factor if n �≡ 1 (mod 6), but were unable to find a necessary condition. We can
do this with Walnut by writing

def tmfactoreq "At (t<n) => T[i+t]=T[j+t]":

def tmbord "(m>=1) & (m<n) & At (t<m) => $tmfactoreq(i,(i+n)-m,m)":

def tmunbordlength "Ei Am ~$tmbord(i,m,n)":

Running this in Walnut produces the following automaton, which recognizes
the base-2 representation of all n for which t has a length-n unbordered factor:
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0

0

11

2
0

3

1

0

1

0

41 50, 1

0, 1

By inspection, we get the following theorem:

Theorem 5. The Thue-Morse sequence t has an unbordered factor of lengthn if
and only if (n)2 �∈ 1(01∗0)∗10∗1.

Finally, let’s look at one more problem from additive number theory. The
upper Wythoff set U = {2, 5, 7, 10, 13, . . .} is defined to be {	α2n
 : n ≥
1}, whereα = (1 +

√
5)/2 is the golden ratio. Recently Kawsumarng et al. [16]

studied the sumsetU + U = {x + y : x, y ∈ U}. Using a case-based argument,
they constructed a rather complicated description of this set, noting that it “has
some kinds of fractal and palindromic patterns”.

However, it turns out that the assertionn ∈ U + U is first-order expressible in
a decidable logical theory; this allows us to give a complete description ofU+U as
the set of natural numbers whose Fibonacci representation2 is recognized by the
following automaton:

0

0

11 20 30

4

1

5
0

6
1

70

0

81

9

0

1
100

0
1

11
0

1
0

1

0

Here no explicit breakdown into cases was necessary; instead, the deci-
sion procedure “automatically” constructs the automaton from a description
ofU . The fact that this automaton has so many states and a complicated struc-
ture partially explains why the set U + U is difficult to describe explicitly. See
[24].

In the next two subsections I mention some other examples of this approach
that don’t quite rise to the status of a decision procedure, but are still enormously
useful.

2 The Fibonacci representation of a natural number n is a finite binary
string a1a2 · · · at such thatn =

∑
1≤i≤t aiFt+2−i, and aiai+1 = 0 for 1 ≤ i < t.
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7.1 SAT Solvers

The boolean Pythagorean triples problem is the following: are there infinite binary
wordsa = a1a2 · · · with the property that if i2 + j2 = k2, then ai = aj = ak never
holds? This was finally resolved negatively by Heule, Kullmann, and Marek [15],
who proved that the longest such word is of length 7824. The really interest-
ing thing about their proof is how it was achieved: they coded the avoidance
conditions as a SAT instance and then applied a general-purpose tool—a SAT
solver—to check if this instance is satisfiable. Even though, as is well-known,
SAT is an NP-complete problem, modern SAT solvers can often determine if
particular instances are satisfiable or not, even if they have thousands of vari-
ables and clauses.

For another interesting application of SAT solvers, see [14].

7.2 The W-Z Method

The W-Z method (developed by Gosper [13] and Wilf, Zeilberger, and Petkovšek
[20]) is a decision procedure that allows verification of general combinatorial
identities involving polynomials, exponentials, binomial coefficients, and similar
quantities. It has been implemented in Maple, and hence automatically proving
identities like

∑

−n≤k≤n

(−1)k

(
2n

n + k

)3

=
(3n)!
n!3

is now almost trivial [25].

8 Heuristics Plus Decision Procedures Provide Proofs

Finally, we can combine the ideas of depth-first or breadth-first search over a
space with a decision procedure to (a) figure out a good candidate for a solution
and then (b) prove it is correct.

As an example, let’s return to automatic sequences. In 1965, Dean [8] stud-
ied the Dean words: squarefree words over {x, y, x−1, y−1} that are not reducible
(that is, there are no occurrences ofxx−1, x−1x, yy−1, y−1y) [8]. Let us use the
coding 0 ↔ x, 1 ↔ y, 2 ↔ x−1, 3 ↔ y−1. We can use breadth-first search to find
a candidate for an infinite Dean word that is automatic.

When implemented, breadth-first search quickly converges on the sequence

0121032101230321 · · · ,

which (using the Myhill-Nerode theorem) we can guess as the fixed point of the
morphism

0 → 01, 1 → 21, 2 → 03, 3 → 23.

Now the decision procedure kicks in. We make a DFAO for this sequence and
store it under the name DE.txt in the Word Automata library of Walnut.
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Then we carry out the following commands:

eval dean1 "Ei,n (n>=1) & At (t<n) => DE[i+t]=DE[i+n+t]":
# check if there’s a square
eval dean02 "Ei DE[i]=@0 & DE[i+1]=@2":
eval dean20 "Ei DE[i]=@2 & DE[i+1]=@0":
eval dean13 "Ei DE[i]=@1 & DE[i+1]=@3":
eval dean31 "Ei DE[i]=@3 & DE[i+1]=@1":
# check for existence of factors 02, 20, 13, 31

All of these return FALSE, so this word is a Dean word. We have thus proved the
existence of Dean words with essentially no human intervention.

9 Objections

– You’ve replaced a case-based proof with an algorithm, but how do you know
the algorithm is correct?
Answer: Sometimes an implementation will be much simpler than the record
of the cases it examines, so it will actually be easier to verify the program
than the case-based argument.
In other cases, the algorithm can produce a certificate that another, simpler
program can easily verify.
Finally, in addition to formal correctness, there is also empirical correctness.3

With a program in hand, we can test it on a wide variety of different inputs
to look for oversights and omissions.

– Running a program provides no insight as to why a result is true.
Answer: Sometimes, as I’ve argued above, there just won’t be a simple reason
why a result is true. In situations like this, it’s better just to accept the result
and move on.

– Some of the decision procedures you’ve talked about have astronomical worst-
case running times.
Answer: Don’t pay much attention to the worst-case running time of decision
procedures! They often run in a reasonable length of time for the instances
we are interested in.
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Abstract. We identify a subclass of the regular commutative languages
that is closed under the iterated shuffle, or shuffle closure. In particu-
lar, it is regularity-preserving on this subclass. This subclass contains
the commutative group languages and, for every alphabet Σ, the class
Com`(Σ∗) given by the ordered variety Com`. Then, we state a simple
characterization when the iterated shuffle on finite commutative lan-
guages gives a regular language again and state partial results for ape-
riodic commutative languages. We also show that the aperiodic, or star-
free, commutative languages and the commutative group languages are
closed under projection.

Keywords: Finite automata · Commutative languages · Closure
properties · Iterated shuffle · Shuffle closure · Regularity-preserving
operations

1 Introduction

The shuffle and iterated shuffle have been introduced and studied to understand,
or specify, the semantics of parallel programs. This was undertaken, as it appears
to be, independently by Campbell and Habermann [3], by Mazurkiewicz [15]
and by Shaw [26]. They introduced flow expressions, which allow for sequential
operators (catenation and iterated catenation) as well as for parallel operators
(shuffle and iterated shuffle) to specify sequential and parallel execution traces.

For illustration, let us reproduce the following very simple Reader-Writer
Problem from [26], as an example involving the iterated shuffle. In this problem,
a set of cyclic processes may be in read-mode, but only one process at a time
is allowed to be in write-mode, and read and write operations may not proceed
concurrently. Additionally, we impose that the processes have to come to an end,
in [26] they are allowed to run indefinitely. This constraint could be specified,
using our notation, by

((StartRead · Read · EndRead)�,∗ Y Write)∗,

where “�, ∗” denotes the iterated shuffle and “∗” the Kleene star.
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Let us note that in [26] additional lock and signal instructions were allowed.
Also in [23] similar expressions for process modeling were investigated, allowing
the binary shuffle operation, but without inclusion of the iterated shuffle.

The shuffle operation as a binary operation, but not the iterated shuffle,
is regularity-preserving on all regular languages. However, already the iterated
shuffle of very simple languages can give non-regular languages. Hence, it is
interesting to know, and to identify, quite rich classes for which this operation is
regularity-preserving. Here, we give such a class which includes the commutative
group languages and the languages described by the positive variety Com`.
Additionally, we give a characterization for the regularity of the iterated shuffle
when applied to finite commutative languages and state some partial results for
aperiodic (or star-free) commutative languages.

We mention that subregular language classes closed under the binary shuffle
operation were investigated previously [1,2,4,9,18,22].

We also show that the commutative star-free languages and the commutative
group languages are closed under projections. For further connections on regu-
larity conditions and closure properties, in particular for the star-free languages,
see the recent survey [21].

2 Preliminaries and Definitions

2.1 General Notions

Let Σ be a finite set of symbols called an alphabet. The set Σ∗ denotes the set
of all finite sequences, i.e., of all words. The finite sequence of length zero, or the
empty word, is denoted by ε. For a given word we denote by |w| its length, and
for a P Σ by |w|a the number of occurrences of the symbol a in w. A language
is a subset of Σ∗. If L Ď Σ∗ and u P Σ∗, then the quotients are the languages
u´1L “ {v P Σ∗ | uv P L} and Lu´1 “ {v P Σ∗ | vu P L}.

We assume the reader to have some basic knowledge in formal language the-
ory, as contained, e.g., in [12,14]. For instance, we make use of regular expressions
to describe languages.

Let Γ Ď Σ. Then, we define projection homomorphisms πΓ : Σ∗ → Γ ∗ onto
Γ ∗ by πΓ (x) “ x for x P Γ and πΓ (x) “ ε for x /P Γ .

By N0 “ {0, 1, 2, . . .}, we denote the set of natural numbers, including zero.
We will also consider the ordered set N0 Y {8} with N0 having the usual order
and setting n ă 8 for any n P N0.

A quintuple A “ (Σ,Q, δ, q0, F ) is a finite (incomplete) deterministic
automaton, where δ : Q × Σ → S is a partial transition function, Q a finite
set of states, q0 P S the start state and F Ď Q the set of final states. The
automaton A is said to be complete if δ is a total function. The transition
function δ : Q × Σ → S could be extended to a transition function on words
δ∗ : Q × Σ∗ → S by setting δ∗(q, ε) “ q and δ∗(q, wa) :“ δ(δ∗(q, w), a) for
q P Q, a P Σ and w P Σ∗. In the remainder, we drop the distinction between
both functions and will also denote this extension by δ. The language recognized
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by an automaton A “ (Σ,Q, δ, q0, F ) is L(A) “ {w P Σ∗ | δ(q0, w) P F}. A
language L Ď Σ∗ is called regular if L “ L(A) for some finite automaton A.

The following classic result will also be needed later.

Theorem 1 (Generalized Chinese Remainder Theorem [24]). The sys-
tem of linear congruences

x ” ri (mod mi) (i “ 1, 2, . . . , k)

has integral solutions x if and only if gcd(mi,mj) divides (ri ´ rj) for all pairs
i �“ j and all solutions are congruent modulo lcm(m1, . . . ,mk).

2.2 Commutative Languages and the Shuffle Operation

For a given word w P Σ∗, we define perm(w) :“ {u P Σ∗ | ∀a P Σ : |u|a “
|w|a}. If L Ď Σ∗, then we set perm(L) :“ ⋃

wPL perm(w). A language is called
commutative, if perm(L) “ L. Let Σ “ {a1, . . . , ak}. The Parikh mapping is
ψ : Σ∗ → N

k
0 given by ψ(u) “ (|u|a1 , . . . , |u|ak

) for u P Σ∗. We have perm(L) “
ψ´1(ψ(L)).

The shuffle operation, denoted by �, is defined by

u� v “ {w P Σ∗ | w “ x1y1x2y2 · · · xnyn for some words
x1, . . . , xn, y1, . . . , yn P Σ∗ such that u “ x1x2 · · · xn and v “ y1y2 · · · yn},

for u, v P Σ∗ and L1 � L2 :“ ⋃
xPL1,yPL2

(x� y) for L1, L2 Ď Σ∗.
In writing formulas without brackets, we suppose that the shuffle operation

binds stronger than the set operations, and the concatenation operator has the
strongest binding.

If L1, . . . , Ln Ď Σ∗, we set�n

i“1Li “ L1� . . .�Ln. The iterated shuffle of
L Ď Σ∗ is L�,∗ “ ⋃

n≥0�
n
i“1L. We also set L�,` “ ⋃

n≥1�
n
i“1L.

Theorem 2 (Fernau et al. [6]). Let U, V,W Ď Σ∗. Then,

1. U � V “ V � U (commutative law);
2. (U � V )�W “ U � (V �W ) (associative law);
3. U � (V Y W ) “ (U � V ) Y (U �W ) (distributive over union);
4. (U�,∗)�,∗ “ U�,∗;
5. (U Y V )�,∗ “ U�,∗

� V �,∗;
6. (U � V �,∗)�,∗ “ (U � (U Y V )�,∗) Y {ε}.

The next result is taken from [6] and gives equations like perm(UV ) “
perm(U) � perm(V ) or perm(U∗) “ perm(U)�,∗ for U, V Ď Σ∗. A semiring
is an algebraic structure (S, `, ·, 0, 1) such that (S, `, 0) forms a commutative
monoid, (S, ·, 1) is a monoid and we have a·(b`c) “ a·b`a·c, (b`c)·a “ b·a`c·a
and 0 · a “ a · 0 “ 0.

Theorem 3 (Fernau et al. [6]). perm : P(Σ∗) → P(Σ∗) is a semiring mor-
phism from the semiring (P(Σ∗), Y, ·, H, {ε}), that also respects the iterated cate-
nation resp. iterated shuffle operation, to the semiring (P(Σ∗), Y,�, H, {ε}).
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The class of commutative languages obeys the following closure properties.

Theorem 4 ([10,11,19,20]). The class of commutative languages is closed
under union, intersection, complement, projections, the shuffle operation and
the iterated shuffle.

2.3 Aperiodic and Group Languages

The class of aperiodic languages was introduced in [17] and admits a wealth of
other characterizations.

Definition 5. An automaton A “ (Σ,Q, δ, q0, F ) is aperiodic, if there exists
n ≥ 0 such that, for all states q P Q and any word w P Σ∗, we have δ(q, wn) “
δ(q, wn`1).

We define the class of aperiodic languages.

Definition 6. A regular language is called aperiodic if there exists an aperiodic
automaton recognizing it.

The class of star-free regular languages is the smallest class containing {ε}, Σ∗

and {a} for any a P Σ and closed under the boolean operations and concatena-
tion. Let us state the following, due to [25].

Theorem 7 (Schützenberger [17,25]). The class of star-free languages equals
the class of aperiodic languages.

Next, we introduce the group languages.

Definition 8 (McNaughton [16]). A (pure-)group language1 is a language
recognized by an automaton A “ (Σ,Q, δ, q0, F ) where every letter acts as a
permutation on the state set2, i.e., if a P Σ, then the map δa : Q → Q given by
δa(q) “ δ(a, q) for q P Q is total and a permutation of Q. Such an automaton is
called a permutation automaton.

Observe that a permutation automaton, as defined here, is always complete3.

Remark 1. Note some ambiguity here in the sense that if Σ “ {a, b}, then (aa)∗

is not a group language over this alphabet, but it is over the unary alphabet {a}.
Hence we mean the existence of an alphabet such that the language is recognized
by a permutation automaton over this alphabet. By definition, {ε} is considered
to be a group language4. Also, group languages are closed under the boolean
operations if viewed over a common alphabet, but not over different alphabets.
For instance, L “ (aa)∗ Y (bbb)∗ is not a group language.
1 These were introduced in [16] under the name of pure-group events.
2 Such automata are also called permutation automata, and the name stems from the

fact that the transformation monoid of such an automaton forms a group.
3 Another way would be, to allow incomplete automata, to insist that every letter

either gives a permutation or labels no transition.
4 It is not possible to give such an automaton for |Σ| ≥ 1, but allowing Σ “ H the

single-state automaton will do, or similarly as Σ∗ “ {ε} in this case.
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2.4 Commutative Aperiodic and Group Languages

The next definitions and results are taken from [19,20]. For a P Σ and n, r ≥ 0
set

F (a, r, n) “ {u P Σ∗ | |u|a ” r (mod n)},

and, for a P Σ and t ≥ 0,

F (a, t) “ {u P Σ` | |u|a ≥ t}.

Note that these sets are defined relative to an alphabet Σ.

Example 1. Let Σ be a non-empty alphabet, a P Σ and Γ Ď Σ.

1. F (a, 0, 1) “ Σ∗.
2. F (a, 0, 2) X F (a, 3, 4) “ H.
3. F (a, 1) “ Σ∗aΣ∗.
4. Γ ∗ “ Σ∗ \

(⋃
bPΣ\Γ F (b, 1)

)
.

Theorem 9 ([19,20]). Let Σ be an non-empty5 alphabet.

1. The class of commutative group languages over Σ is the boolean algebra gen-
erated by the languages of the form F (a, r, n), where a P Σ and 0 ≤ r ă n.

2. The class of commutative aperiodic languages over Σ is the boolean algebra
generated by the languages of the form F (a, t), where a P Σ and t ≥ 0.

3. The class of all commutative regular languages over Σ is the boolean algebra
generated by the languages of the form F (a, t) or F (a, r, n), where t ≥ 0,
0 ≤ r ă n and a P Σ.

A positive boolean algebra is a class of sets closed under union and inter-
section. In [20], the positive variety Com` was introduced. A positive vari-
ety [19,20] V of languages maps any alphabet Σ to a subclass V(Σ∗) of languages
over this alphabet that is closed under union, intersection, quotients and inverse
homomorphisms. I only mention in passing that there is a rich theory between
positive varieties of languages and so called pseudovarieties of finite ordered
semigroups [19]. Originally, Com` was defined in terms of certain ordered semi-
groups, but here, as we do not introduce these notions, we introduce it with an
equivalent characterization from [20].

Definition 10 ([20]). For every alphabet Σ, the class Com`(Σ∗) is the positive
boolean algebra generated by the languages of the form F (a, t) and F (a, r, n),
where a P Σ and t ≥ 0, 0 ≤ r ă n.

Lemma 11. Let Σ be a non-empty set6 and Γ Ď Σ be a proper subset. Then,
{Γ ∗, Γ `} X Com`(Σ∗) “ H.

Note that the previous lemma, by choosing Γ “ H, implies for Σ �“ H
that {ε} /P Com`(Σ∗). The sets F (a, t) were defined as subsets of Σ` [20],
not Σ∗. However, this makes no difference as Σ` “ F (a, 0) “ ⋃

bPΣ F (a, 1) and
F (a, 0, 1) “ Σ∗ and so {Σ`, Σ∗} Ď Com`(Σ∗).
5 For Σ “ H, we set all these classes to equal {H, {ε}}.
6 For Σ “ H, we set Com`(Σ∗) “ {H, {ε}}.
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3 Commutative Aperiodic and Group Languages Under
Projection

First, we strengthen Theorem 9 for commutative group languages.

Theorem 12. A commutative language L Ď Σ∗ is a group language if and only
if it could be written as a finite union of languages of the form

m⋂

i“1

F (ai, ki, ni),

where ai P Σ and 0 ≤ ki ă ni for i P {1, . . . , m} with m ≥ 0.

A similar statement holds for the star-free languages. But we cannot use the
languages F (a, t) introduced earlier. Set, for a P Σ and k1, k2 P N0 Y {8},

I(a, k1, k2) “ {u P Σ∗ | k1 ≤ |u|a ă k2}.

Theorem 13. A commutative language L Ď Σ∗ is aperiodic if and only if it
could be written as a finite union of sets of the form

n⋂

i“1

I(ai, ri, si),

where 0 ≤ ri ă si and ai P Σ for i P {1, . . . , n} with n ≥ 0.

Next, we state how these languages behave under projection.

Lemma 14. Let Γ Ď Σ, n ≥ 0, ai P Σ and 0 ≤ ri ă si for i P {1, . . . , n}.
Then,

πΓ

(
n⋂

i“1

I(ai, ri, si)

)

“

⎛

⎜
⎜
⎝

⋂

iP{1,...,n}
aiPΓ

I(ai, ri, si)

⎞

⎟
⎟
⎠ X Γ ∗.

With Lemma 14, we can prove that the star-free commutative languages are
closed under projections.

Proposition 15. Let L Ď Σ∗ be commutative and star-free. Then, for any Γ Ď
Σ, the language πΓ (L) is commutative star-free.

In general, for homomorphic mappings, this is not true, as a∗ could be
mapped homomorphically onto (aa)∗, and (aa)∗ is not star-free [17]. Also, more
specifically, there exist non-commutative star-free languages with a non-star-free
projection language. For example, the language L “ (aba)∗ is star-free, as

L “ {ε} Y (abaΣ∗ X Σ∗aba) \ (Σ∗ · {aaa, bba, bab, abb} · Σ∗),

but π{a}(L) “ (aa)∗. Similarly, with Theorem 12, we can show the next result.
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Proposition 16. Let L Ď Σ∗ be a commutative group language. Then, for any
Γ Ď Σ, the language πΓ (L) is a commutative group language.

However, also here, this is false for general group languages. The language
(aa)∗ could be mapped homomorphically onto L “ (abab)∗, which is not a
group language. Also, for projections, consider the group language given by the
permutation automaton A “ ({a, b}, {0, 1, 2}, δ, 0, {2}) with δ(0, a) “ 1, δ(1, a) “
0, δ(2, a) “ 2 and δ(0, b) “ 1, δ(1, b) “ 2, δ(2, b) “ 0. Then, π{b}(L(A)) “ bb∗,
which is not a group language. For example, b is the projection of ab P L(A), or
bbb the projection of abbab P L(A).

4 A Class of Regular Languages Closed Under Iterated
Shuffle

Here, we introduce a subclass of commutative regular languages, which contains
the commutative group languages, that is closed under iterated shuffle. In Defi-
nition 17, we introduce the diagonal periodic languages, and first establish that
the iterated shuffle of such a language gives a language that is a union of diagonal
periodic languages. We then use this result to show closure under this operation
of our subclass, which either could be described as the positive boolean algebra
generated by languages of the form F (a, n, k), F (a, k), Γ ∗ and Γ ` for Γ Ď Σ,
a P Σ, 0 ≤ k ă n, or as finite unions of diagonal periodic languages.

Note that, for already very simple languages, the iterated shuffle can give
non-regular languages, for example (a � b)�,∗ “ {ab, ba}�,∗ “ {u P {a, b}∗ |
|u|a “ |u|b}, or (a� {b, bb})�,∗ “ {u P {a, b}∗ | |u|b ≤ |u|a ≤ 2|u|b}.

Definition 17. A diagonal periodic language over Γ Ď Σ is a language of the
form

�aPΓ aka(apa)∗,

where ka ≥ 0 and pa > 0 for a P Γ when Γ �“ H, or the language {ε}.
Remark 2. Let Σ “ {a1, . . . , ak} In [5] a sequence of vectors ρ “ v0, v1, . . . , vk

from N
k
0 was called a base if vi(j) “ 0 for7 i, j P {1, . . . , k} such that i �“ j. The ρ-

set was defined as Θ(ρ) “ {v P N
k : v “ v0` l1v1` . . .` lkvk for some l1, . . . , lk P

N0}. Then, in [5], a language L Ď Σ∗ was called periodic if, for some fixed order
Σ “ {a1, . . . , ak}, there exists a base ρ such that L “ ψ´1(Θ(ρ)). With this
geometric view, the diagonal periodic languages are those periodic languages
such that, for i, j P {1, . . . , k}, either

vi(j) �“ 0 or vi(j) “ v0(j) “ 0.

Intuitively, and very roughly, the vector
∑

aiPΓ vi points diagonally in the sub-
space corresponding to the letters in Γ , or more precisely, the dimension of
the subspace spanned by v1, . . . , vk is precisely |Γ |. Hence, the name diagonal
periodic.
7 Note that the entries of v P N

k
0 are numbered by 1 to k, i.e., v “ (v(1), . . . , v(k)).
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As the languages aka(apa)∗, a P Γ , are regular and the binary shuffle opera-
tion is regularity-preserving [13], we get the next result. But it was also estab-
lished in [5,10,11] for the more general class of periodic languages.

Proposition 18. The diagonal periodic languages are regular and commutative.

Remark 3. Suppose, for each a P Σ, we have a unary language La Ď a∗ and Γ Ď
Σ. Then, πΓ (�aPΣLa) “�aPΓ La and π´1

Σ (�aPΓ La) “�aPΓ La�(Σ\Γ )∗.
This could be worked out to give a different proofs for the results from Subsect. 3.

Remark 4. The reason a subalphabet Γ Ď Σ is included in Definition 17, and
later in the statements, is due to Lemma 11, i.e., to have a larger class as given
by Com`.

Next, we investigate what languages we get if we apply the iterated shuffle
to diagonal periodic languages.

Proposition 19. The iterated shuffle of a diagonal periodic language L Ď Σ∗

over Γ Ď Σ∗ is a finite union of diagonal periodic languages. In particular, it is
regular.

The next lemma is the link between the languages F (a, t), t ≥ 0, and
F (a, r, n), 0 ≤ r ă n, and the diagonal periodic languages.

Lemma 20. Let Σ1, Σ2 Ď Σ. Suppose we have numbers ta for a P Σ1 and
0 ≤ ra ă na for a P Σ2. Then,

⋂

aPΣ1

F (a, ta) X
⋂

aPΣ2

F (a, ra, na) “�aPΣaka(apa)∗,

where8

ka “

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ta ` (na ´ ((ta ´ ra) mod na)) if a P Σ1 X Σ2, ta > ra;
ra if a P Σ1 X Σ2, ta ≤ ra;
ra if a P Σ2\Σ1;
ta if a P Σ1\Σ2;
0 if a /P Σ1 Y Σ2.

and pa “
{

na if a P Σ2;
1 if a /P Σ2.

Now, we have everything together to prove our main theorem of this subsec-
tion.

Theorem 21. Let L Ď Σ∗ be in the positive boolean algebra generated by lan-
guages of the form F (a, k), F (a, k, n), Γ ` and Γ ∗ for Γ Ď Σ. Then, the iterated
shuffle of L is contained in this positive boolean algebra. In particular, the iterated
shuffle is regular.
8 For x, n P N, by x mod n we denote the unique number r P {0, . . . , n ´ 1} such that

r ” x (mod n).
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Proof (sketch). As intersection distributes over union, L could be written as an
intersection over the generating languages. Now,

F (a, k1) X F (a, k2) “ F (a,max{k1, k2})

and, by the generalized Chinese Remainder Theorem, Theorem 1, every intersec-
tion

⋂m
i“1 F (a, ri, ni) is either the empty set, or also a set of the form F (a, r, n).

So, every such intersection could be written in the form
(

⋂

aPΣ1

F (a, ta)

)

X
(

⋂

aPΣ2

F (a, ra, na)

)

X L

where L P {Γ `, Γ ∗} for some Γ Ď Σ and Σ1, Σ2 Ď Σ. By Lemma 20, these
language are diagonal periodic over Γ . By Theorem 2, the iterated shuffle of L is
a finite shuffle product of iterated shuffles of these languages, which are regular
by Proposition 19. Hence, they are a finite shuffle product of regular languages
and as the binary shuffle product is a regularity-preserving operation [13], the
language L is regular. More precisely, as the iterated shuffles are finite unions
of diagonal periodic languages, the result could be written as a finite union of
diagonal periodic languages, which, by Lemma 20, are contained in this class. �	

The method of proof of Theorem 21 also gives the next result.

Proposition 22. The positive boolean algebra generated by languages of the
form F (a, k), F (a, k, n), 0 ≤ k ă n, Γ ` and Γ ∗, Γ Ď Σ, is precisely the language
class of finite unions of the diagonal periodic languages.

Corollary 23. The iterated shuffle of a commutative group language is regular.

Proof. By Theorem 12, the class introduced in Theorem 21 contains the group
languages. �	
Corollary 24. The variety Com` is closed under iterated shuffle.

Proof. By Definition 10, the class introduced in Theorem 21 contains Com`(Σ∗)
for any alphabet Σ. Furthermore, by the method of proof of Theorem 21 and
as the iterated shuffle does not introduce new letters, and does not remove old
letters, we do not leave the class Com`(Σ∗). �	

Also, as, for Ua, Va Ď {a}∗, a P Σ, we have (�aPΣUa) � (�aPΣVa) “
(�aPΣ(Ua · Va)), and with Theorem 2, we can deduce, by Proposition 22, the
next result. This extends an old result by J.F. Perrot [18] stating that the star-
free commutative language are closed under binary shuffle.

Proposition 25. The positive boolean algebra generated by the languages
F (a, k), F (a, k, n), 0 ≤ k ă n, Γ ` and Γ ∗ for Γ Ď Σ is closed under binary
shuffle.
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5 Characterizing Regularity of the Iterated Shuffle

First, in Subsect. 5.1, we will give a necessary and sufficient condition when the
iterated shuffle of a commutative finite language is regular. Then, in Subsect.
2.3, we will present partial results for aperiodic commutative language. Lastly,
in Subsect. 5.3, we discuss decision procedures related to regularity, the commu-
tative closure and the iterated shuffle.

5.1 Finite Commutative Languages

Here, we investigate finite commutative languages.

Theorem 26. Let L Ď Σ∗ be a finite language. Then, perm(L)�,∗ is regular if
and only if for any a P Σ with Σ∗aΣ∗ X L �“ H we have a` X L �“ H.

By the next corollary, we find that we can characterize regularity of expres-
sions, for instance, of the form

perm(u`
1 )� . . .� perm(u`

n) “ perm(u1 · · · un)� perm(u∗
1)� perm(u∗

n)
“ perm(u1 · · · un)� perm({u1, . . . , un})�,∗

with Theorem 26, where the above equalities are implied by Theorem 2 and
Theorem 3.

Corollary 27. Let u P Σ and L Ď Σ∗ be a finite language. Then, perm(u)�
perm(L)�,∗ is regular if and only if for any a P Σ with Σ∗aΣ∗ X L �“ H, we
have a` X L �“ H.

5.2 Aperiodic Commutative Languages

Here, we investigate aperiodic commutative languages.

Proposition 28. Every aperiodic commutative language could be written as a
finite union of languages of the form perm(u)� Γ ∗ for u P Σ∗ and Γ Ď Σ.

Remark 5. By a result from [13, Page 9], it follows that a letter which permutes
with every other letter has to permute the states of every strongly connected
component. This could be used to prove that the minimal automaton of an
aperiodic commutative language cannot have non-trivial loops, i.e., every loop
must be a self-loop, which could also be used to give a proof of Proposition 28.

With Theorem 26 we get the next result.

Proposition 29. Let u P Σ∗ and Γ Ď Σ. The iterated shuffle of perm(u)� Γ ∗

is regular if and only if there exists a P Σ such that u Ď a` or when u P Γ ∗.

Next, we give a simple sufficient criterion of regularity for a binary alphabet.

Lemma 30. Let Σ “ {a, b} and L Ď Σ∗ be regular. Then, if there exists u P Σ∗

such that perm(u)�Σ∗ Ď perm(L), then perm(L) is regular.
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Lastly, a few examples of aperiodic commutative languages, some of them
yielding non-regular languages and some of them regular languages when apply-
ing the iterated shuffle.

Example 2. Let Σ “ {a, b, c}.

1. The iterated shuffle of {ab, ba} Y {c}� {a, b}∗ is not regular.
2. The iterated shuffle of {ab, ba}� {c}∗ Y {ac}� {a, b}∗ is not regular.
3. The iterated shuffle of {ab, ba}Y{c}�{a, b}∗ Yperm(abb)�{a, b}∗ is regular.
4. The iterated shuffle of {ab, ba} Y {c}� {a, b}∗ Y perm(abb)� {a}∗ Y {bb} is

regular.

5.3 Decision Procedures

In [7,8] it was shown that for regular L Ď Σ∗, it is decidable if perm(L) is reg-
ular. As perm(L)�,∗ “ perm(L∗), also the regularity of the iterated shuffle on
commutative regular languages is decidable. This result was also shown directly,
without citing [7,8], in [13]. However, the precise computational complexity was
not clear, and by a statement given in [6, Theorem 45] it follows that for a regular
language given by a regular expression it is NP-hard to decide if the commuta-
tive closure is regular. On the contrary, the conditions stated in Theorem 26
could be tested in polynomial time for a finite commutative language given by a
deterministic, a non-deterministic or a regular expression as input. This follows
as non-emptiness of intersection with the fixed languages Σ∗aΣ∗ and a`, a P Σ,
could be done in polynomial time by the product automaton construction.

6 Conclusion

A general criterion as given for finite (commutative) languages in Theorem 26,
which gives a polynomial time decision procedure, for general commutative reg-
ular languages is an open problem. For the subclass closed under iterated shuffle
identified in Subsect. 4, a sharp bound for the size of a recognizing automaton
of the iterated shuffle is unknown.

Acknowledgement. I thank the anonymous reviewers for careful reading, pointing
out typos and unclear formulations and providing additional references.
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Abstract. We extend non-deterministic finite automata (NFAs) and
regular expressions (regexes) by adding memoization to these formalisms.
These extensions are aimed at improving the matching time of backtrack-
ing regex matchers. Additionally, we discuss how to extend the concept
of ambiguity in order to be applicable to memoized extensions of regexes
and NFAs. These more general notions of ambiguity can be used to ana-
lyze the matching time of backtracking regex matchers enhanced with
memoization.

Keywords: Ambiguity ⋅ Regular expression matching ⋅ Memoization

1 Introduction

Regular expressions (regexes) provide a convenient way to describe the class
of regular languages and are frequently used as textual pattern descriptors in
practical string-matching tasks. The backtracking algorithm used by many regex
matchers can however become very slow under conditions identifiable by ambi-
guity considerations. This exposes a vulnerability in applications making use of
backtracking regex matchers which can be exploited in a denial of service attack,
known as a regular expression denial of service (ReDoS) attack [1]. A ReDoS
attack occurs when a malicious user provides input that will cause the back-
tracking algorithm to take superlinear time when performing an input-directed
depth-first search required to match the input with a given regex, or determine
that no such match is possible. It has been established empirically that soft-
ware engineers often use ReDoS-vulnerable regexes and thus thousands of web
services are exploitable [2].

As pointed out by Davis in his PhD dissertation [2], the proportion of
regexes that exhibit exponential or non-linear polynomial worst-case matching
time varies widely by language. According to Davis, regex engines can be cat-
egorized into the following categories, based on worst-case matching time: (i)
Slow (JavaScript, Java, Python, Ruby), (ii) Medium (PHP, Perl), and (iii) Fast
(Go, Rust). A Thompson-style regex engine, employing an on-the-fly subset con-
struction, is used by Go and Rust, but these matching engines do not support,
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amongst others, lookahead assertions. The six remaining languages employ a
Spencer-style backtracking regex engine [3], performing an input-directed depth-
first search on a Thompson (or similar) constructed NFA. In PHP and Perl, run-
time caps short circuit long-running evaluations. Davis et al. considered in [1],
mostly from an empirical point of view, the effectiveness of memoization to curb
the occurrence of worst-case superlinear matching time. It is easy to reason (as
done by Davis) that when keeping track of the combination of an NFA state
and input string position from where matching is not possible, that the resulting
backtracking regex engine (without backreferences) will have a worst case linear
matching time in the length of input strings. This form of memoization comes
at the cost of a significant increase in space usage. Davis therefore also proposes
two more memoization schemes to reduce space usage, and refer to these schemes
as being selective, since they memoize only some (and often significantly fewer)
of the Thompson NFA states.

A form of memoization has been added to the Java 14 regex matcher, as
can be established when inspecting the source code. In Java 14 we observed the
following behaviour on a few sample regexes that could potentially have bad
matching time, based on ambiguity considerations as discussed in [4]. We used
input strings of the form “a. . . ab”, which are rejected by all three regexes dis-
cussed next. As expected, ^(a|a){0,100}$ and ^(((a+)+)+)$ takes an excessive
amount of time to reject the input, but ^(a|a)*$ does not trigger catastrophic
backtracking (whereas it does in Java 8). By analysing the source code of the
Java matcher, we concluded that ReDoS protection was added to the Java regex
matcher that protects the matcher in some situations, but not others. Theˆand
$ anchors in the regex examples above, indicate that the matcher should start
matching from the start and match all the way to the end of the input string if
possible, instead of doing substring matching. Since we only consider full match-
ing in this paper, we do not indicate the anchorsˆand $, and assume that they
are always implicitly present. An overview of regex notation is given in the next
section.

It should be pointed out that memoization is not the only way to address
excessive backtracking in regex matchers, but atomic operators, designed specif-
ically to reduce backtracking, may also change the language accepted in difficult
to determine ways [5].

It was shown in [4] that algorithms identifying infinite or exponential ambigu-
ity in NFAs, are well-suited to identify regexes with bad matching time. Our con-
tribution is to show how to extend these ambiguity concepts to regexes and NFAs
enhanced with memoization. This can then be used again to analyse matching
time when using backtracking regex matchers enhanced with memoization.

The outline of this paper is as follows. We start by giving the required defini-
tions. This is followed by a section in which we generalize some ambiguity results
from [6,7] to memoized NFAs. Next we investigate the hardness of determining
the minimal number of NFA states required to memoize in order to achieve finite
ambiguity. Then we discuss selective memoization schemes that can be used to
turn regexes and NFAs into memoized regexes and NFAs having much lower
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ambiguity. Some of these schemes guarantee finite ambiguity and thus ensure
linear matching time in the length of input strings. Finally, we list future work.

2 Notation and Definitions

We extend the standard definition of strong ambiguity on regexes in this section.
Strong ambiguity is studied and compared to weak ambiguity in [8], and we refer
to our extended version simply as ambiguity. We first introduce some required
preliminary notation and concepts, we then consider ambiguity concepts for
NFAs, before finally considering regexes.

By N we denote the natural numbers including 0. For a finite alphabet Σ,
we denote the set of all strings or finite sequences over Σ, by Σ∗, with Σ∗

containing the empty string ε. To avoid confusion, it is assumed that ε /∈ Σ, and
Σε = Σ ∪ {ε}. We denote by Σ+ the set of strings Σ∗ ∖ {ε}. Similar notation
is used in regexes, for example E∗ (and E+), defined shortly, and by Σ∗ (and
Σ+) we in fact denote the language defined by the regexes F ∗ (and F +), with F
being constructed using the union operator over all subexpressions representing
each of the individual symbols in the set Σ.

For Σ′ ⊆ Σ and w = a1 . . . an ∈ Σ∗ (or w = ε), with ai ∈ Σ, we let πΣ′(w)
be the word b1 . . . bn over Σ′, with bi = ai if ai ∈ Σ′, and bi = ε otherwise (and
πΣ′(ε) = ε). Also, by ∣w∣ we denote the number of symbols (from Σ) in w. The
cardinality of a set A is denoted by ∣A∣ (always finite in our setting), and P(A)
denotes the powerset of A.

2.1 Memoized NFA

Next we define memoized non-deterministic finite automata, where a subset of
the states are distinguished as memoized. The choice of memoized states never
changes the language accepted by the automaton.

Definition 1 (see [1]). A memoized non-deterministic finite automaton
(mNFA) is a tuple A = (M,Q,Σ, δ, q0, F ) where: (i) Q is a non-empty finite
set of states; (ii)M⊆ Q is a set of memoized states; (iii) Σ is the input alpha-
bet; (iii) the function δ ∶ Q ×Σε → P(Q) is the transition function; (iv) q0 ∈ Q
is the initial state; and (v) F ⊆ Q is the set of final states.

Also, ∣A∣δ ∶= ∑q∈Q,a∈Σε
∣δ(q, a)∣ is the transition size of A.

When M = ∅, the mNFA is an NFA. Next we define (accepting) runs of an
mNFA.

Definition 2. For an mNFA A = (M,Q,Σ, δ, q0, F ) and w ∈ Σ∗, a run on w
is a string r = s0α1s1⋯sn−1αnsn, with s0 = q0, si ∈ Q and αi ∈ Σε such that
si+1 ∈ δ(si, αi+1), πΣ(r) = w, and r is not allowed to contain a substring from
Q∗ with more than one instance of any specific qq′ ∈ Q2, i.e. no ε-transition is
allowed to be repeated without reading an intermediate symbol from Σ. A run is
accepting if sn ∈ F . The set of accepting runs on w and all accepting runs are
denoted by RA(w) and RA respectively. The language accepted by A, denoted by
L(A), is {πΣ(r) ∣ r ∈ RA} ⊆ Σ∗.
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Although a restriction of not allowing runs to contain a substring from Q∗

with more than one instance of any specific state, seems more natural to ensure
that RA(w) is finite, this does not correspond to how regex matchers handle
ε-loops in NFAs (more on this later in Example 2).

For brevity, for a run r = s0α1s1⋯sn−1αnsn, let ri = s0α1s1⋯si−1αisi, when
i ≤ n. The set M in an mNFA A plays no role in the definition of L(A), but
influences ambiguity. We assume that all states p in an mNFA are useful, i.e.
each p ∈ Q is on an accepting run of some string w.

Definition 3. For an mNFA A = (M,Q,Σ, δ, q0, F ) and string w, we define the
ambiguity of w in A as the maximum cardinality of a set RA(w) ⊆ RA(w), with
the following property: If r = s0α1s1⋯sn−1αnsn and r′ = s′0α

′

1s
′

1⋯s′n′−1α
′

n′s
′

n′ are
in RA(w), then if si = s′i′ ∈M and πΣ(ri) = πΣ(r

′

i′), we have ri = r′i′ . We denote
the ambiguity of w in A by a′A(w) and let aA(n) =max

∣w∣≤n a′A(w).
If aA(n) ≤ 1 for all n ∈ N, A is unambiguous. Let d ∈ N be minimal such

that aA(n) ≤ h(n) (if aA(n) is polynomial bounded), with h a polynomial of
degree d. If such an exponent d exists, A has ambiguity of degree d. If d = 0, A
has finite ambiguity. If aA(n) is not polynomial bounded, the ambiguity of A is
exponential.

In [6], terminology such as infinite degree of ambiguity and degree of growth
of ambiguity is used. We will, in our more general setting, simply refer to these
as infinite ambiguity and degree of ambiguity respectively. Note that memoizing
more states will keep ambiguity the same or reduce it.

We let Aall be the mNFA obtained from the mNFA A by making all states
in A accepting. We refer to aAall(n) as the prefix ambiguity of A, and use ter-
minology prefix unambiguous, prefix ambiguity of degree d and exponential prefix
ambiguity for A, when Aall is unambiguous, has ambiguity of degree d, or has
exponential ambiguity respectively. If A has a single final state that is also mem-
oized, then A is unambiguous, but this does not imply that Aall is unambiguous,
i.e. A may in fact have exponential prefix ambiguity. This is important in prac-
tice, as it implies that matching a string w with A using depth-first search may
still explore a large number of non-accepting (prefixes of) runs before finding an
accepting run, or ultimately rejecting, even though the ambiguity of A might be
small.

For q ∈ Q, we denote by Aq the mNFA obtained by setting the final states
of A equal to {q}. We refer to the ambiguity of Aq as the ambiguity of A at
state q, and say A is unambiguous at q or has finite ambiguity at q, etc., when
these statements hold true for Aq. In particular, it will be of interest when
A is unambiguous at all states or has finite ambiguity at all states, i.e. these
statements are true about Aq, for all q ∈ Q. Certainly, aA(n) ≤ ∑q∈F aAq(n) and
aAall(n) ≤ ∑q∈Q aAq(n), thus if A is unambiguous at all states, then aAall(n) ≤
∣Q∣ for all n, and A has finite prefix ambiguity if and only if Aq has finite
ambiguity for all q ∈ Q.
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2.2 Memoized Regular Expressions

Next we add memoization to regexes, an extension not considered before as
far as we know. A memoized regular expression (m-regex), over an alphabet
Σ, where we assume Σ ∩ { ∣ , ⋅ , ∗ , ↦,↤, ε,∅} = ∅ to avoid confusion, is defined
inductively as follows. Elements from Σ ∪ {ε,∅} are m-regexes, and if E and
F are m-regexes, then so are the expressions (E ∣ F ), (E ⋅ F ), (E∗), (↦E) or
(E↤). Regular expressions (regexes) are those m-regexes without the memoiza-
tion operators ↦ and ↤. Some parentheses may be dropped from m-regexes,
using that operators are ordered according to precedence from high to low as
follows: ↦ (left memoization), ↤ (right memoization), ∗ (Kleene closure or star),
⋅ (concatenation), and finally ∣ (union). Furthermore, outermost parentheses may
be dropped, and E ⋅E′ written as EE′. We use E+ as shorthand for E ⋅E∗, and
E{m,n}, with m ≤ n, m,n ∈ N, as shorthand for (Em∣Em+1∣⋯∣En), where Ei

denotes the concatenation of i copies of E with itself, and E0 denoting ε. We
denote by r(E) the regex obtained by removing all memoization operators from
E. The language of an m-regex E, denoted L(E), is obtained by evaluating r(E)
as usual. When we say that E matches a string w, we mean that w ∈ L(E), as
opposed to vwv′ ∈ L(E), for v, v′ ∈ Σ∗. We exclude m-regexes containing ∅ in
the remainder of our discussion, i.e. for all m-regexes E we have L(E) /= ∅.

Now that we have defined regexes, we point out, via an example, the distinc-
tion between what is referred to as weak and strong ambiguity in [8], in particular
since we generalize strong ambiguity, which we refer to simply as ambiguity. Let
E = (a∗∣ b∗)∗, then E is weakly unambiguous (i.e. have no weak ambiguity),
since no symbol from Σ is present in E more than once. Thus, each symbol in
an input string matched by E can be uniquely identified with a symbol from Σ
in E that was used during the match, in contrast to F = (a ∣a)∗. The regex E
is, however, not strongly unambiguous, since the string aa can be matched in
multiple ways using E, by using the outer Kleene closure a different number of
times when matching an empty substring of aa either with the subexpression a∗

or b∗ in different places in aa.
We denote by N

′ the set N ∪ {i ∣ i ∈ N}. Let E be an m-regex over Σ with
Σ ∩ N′ = ∅. For F = r(E), we obtain F0 from F inductively as follows. We
replace ε by 0 ⋅ ε ⋅ 0, a ∈ Σ by 0 ⋅ a ⋅ 0, and (H ∣ I), (H ⋅ I), (H∗) by 0 ⋅ (H0 ∣ I0) ⋅ 0,
H0 ⋅ I0 and 0 ⋅ (H0)

∗ ⋅ 0 respectively. Next, relabel all symbols equal to 0 in F0

uniquely using symbols in N, starting from the left in F0, in increasing order
from 0, with each of the finitely many elements used from N regarded as a single
symbol, to obtain a regex G over Σ ∪N. We relabel i ∈ N as i in G if the corre-
sponding subexpression in E, immediately following i in G, was left memoized
in E, and similarly if the subexpression immediately preceding i in G was right
memoized. Left memoizing a subexpression that is already left memoized has
no effect, and similarly for right memoization. We denote the regex over Σ ∪N′

obtained in this way from E by E. Although L(E) depends on if we use left or
right associativity for union in E, the choice we make in terms of associativity
will not influence our further work. To avoid any confusion, we make the arbi-
trary choice of selecting left associativity.
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Example 1. If E = (a∗)∗, then E = 0(1(2a3)∗4)∗5, and ↦(a∣a)∗ =
0(1(2a3∣4a5)6)∗7 (using that we assume that ↦ binds tighter than Kleene star).

Definition 4. For an m-regex E and string w, we define an accepting run for w
over E as a string r in L(E) with πΣ(r) = w and with r not having any substring
r′ ∈ (N′)∗, where r′ contains a specific nn′ ∈ (N′)2 more than once. We denote
the set of accepting runs for w over E by RE(w) and let RE = ∪w∈Σ∗RE(w).

Prefix runs of w of length k, denoted by Rpre
E (w,k), are defined to be prefixes

r′ of runs r ∈ RE, with πΣ(r
′) a prefix of w, ∣πΣ(r

′)∣ = k and with r′ ending
on an element from N

′. We let all prefix runs of w be ∪0≤k≤∣w∣R
pre
E (w,k) and

denote this set by Rpre
E (w). Also, R

pre
E indicates the set of all prefix runs, i.e.

∪w∈Σ∗R
pre
E (w).

Example 2. For E = (a∗)∗, RE(ε) = {05,0145} and RE(a) = {012a345,
012a34145}, since E = 0(1(2a3)∗4)∗5. The sets RE(ε) and RE(a) are finite,
because of the restriction that runs r should not have any substring r′ ∈ (N′)∗,
where r′ contains a specific nn′ ∈ (N′)2 more than once. If we replace this restric-
tion with the more natural seeming restriction of not allowing any specific n ∈ N′

to be repeated, then 012a34145 falls away from RE(a), which will then dis-
agree with for example the Java and Python regex matchers preferring the run
012a34145 over 012a345, and reporting an empty (last) capture/match with the
subexpression a∗ when matching a with (a∗)∗.

For the m-regex F given by ↦(a∣a)∗, we have that 012a3614a567 is one of
the four possible accepting runs of aa, since F = 0(1(2a3∣4a5)6)∗7.

Definition 5. For an m-regex E, let AE(w) be the maximum cardinality of a
subset RE(w) of RE(w) with the following property: If v1, v2 ∈ RE(w), where
r1i, r2i, with i ∈ N, are prefixes of v1 and v2 respectively with πΣ(r1) = πΣ(r2),
then r1 = r2. We let aE(n) = maxw∈Σ∗, ∣w∣≤n AE(w) ∈ N. The function aE is
referred to as the ambiguity of E.

We get apre
E by replacing RE(w) with R

pre
E (w) to obtain a set R

pre

E (w) of
maximum cardinality Apre(w). Next let apre

E (n) =maxw∈Σ∗, k≤n Apre
E (w,k), with

Apre
E (w,k) = ∣R

pre

E (w)∩R
pre
E (w,k)∣. We refer to apre

E as the prefix ambiguity of
E.

Similarly to how we used aA in Definition 3 to define when A is unambiguous,
has finite ambiguity, ambiguity of degree d or exponential ambiguity, we use aE

to define the same notions for E. We define E to be prefix unambiguous, or has
prefix ambiguity of degree d, or exponential prefix ambiguity analogously as in
the case of mNFAs, but using apre

E .

Example 3. For E1 = a∗a∗, E1 = 0(1a2)∗34(5a6)∗7, and RE1 =
{0(1a2)n034(5a6)n17 ∣ n0, n1 ≥ 0}. Note πΣ(0(1a2)n034(5a6)n17) = an0+n1 ,
which implies aE1(n) = n + 1 and therefore E1 has ambiguity of degree 1. For
E2 = a∗(↦a∗), E2 = 0(1a2)∗34(5a6)∗7, and ∣RE2(a

n)∣ = 2 for n ≥ 1, and thus E2

is finitely ambiguous but not unambiguous.
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For an m-regex E, denote by T (E) the NFA constructed from r(E) using
the Thompson construction [9]. Since the Thompson construction mirrors our
construction of how we obtain E from E, we identify the runs in RE(w) with
those on w in T (E). We turn T (E) into an mNFA, by memoizing the states in
T (E) corresponding to how and which subexpressions are memoized in E, with
↦ memoizing an initial state corresponding to a subexpression and ↤ a final
state. In the remainder of this paper, the notation T (E) is used to indicate the
memoized version of the NFA constructed from the m-regex E. We thus regard
the Thompson construction as a way of constructing mNFAs from m-regexes,
and not simply a way of constructing NFAs from regexes. It should be noted that
each memoization operator memoize precisely one state in T (E) (except for the
case where we apply a left memoization operator more than once to the same
subexpression, and similarly for right memoization). We denote by T all(E) the
mNFA obtained by making all states in T (E) accepting, similar to the notation
Aall used for an mNFA A.

From the respective definitions it follows that (prefix) ambiguity agrees on
E and T (E).

Proposition 1. If E is an m-regex, aE(n) = a
T (E)(n) and apre

E (n) =
a
T

all
(E)(n) for all n ∈ N.

Proof. This follows from the observation that accepting runs in E and T (E) can
be uniquely identified with each other, and similarly for prefix runs in E and
accepting runs in T all(E). ⊓⊔

It can be seen that aE (and apre) can be bounded by an exponential function
by considering accepting runs in T (E) (or T all(E)), and using Proposition 1.
Note that it is straightforward to reason that the number of (accepting) runs of
w in T (E) (or T all(E)) is bounded by a function exponential in ∣w∣.

Next, we discuss briefly why the product of the prefix ambiguity of an m-
regex E and n, and equivalently, the product of the ambiguity of T all(E) (i.e.
the prefix ambiguity of T (E)) and n, is an upper bound for the worst-case
matching time of a backtracking matcher respecting memoization information,
when matching strings up to length n using T (E). When given an input string
w, with ∣w∣ ≤ n, a backtracking matcher performs an input-directed depth-first
search on T (E). For an input string w, we consider an ordered tree btrE(w),
referred to as the backtracking tree of w, with a prefix traversal of btrE(w)
producing the nodes in the order they are visited by the matcher. The nodes
in the rightmost path in btr(w) are the states in an accepting run of w, if
w ∈ L(E), and thus once the matcher determines that a match is possible,
the further exploration of prefix runs of w are terminated. The matcher uses
the memoization information by not revisiting a memoized state after having
read the same prefix of w as before, and having determined that no match
is possible from this state using the remaining suffix of w. To improve the
time complexity of our analysis in exchange for obtaining less precise matching
time estimates, but always upper bound estimates, we bound the size of the
backtracking tree btrE(w), by c ⋅ ∣w∣ ⋅ max0≤k≤∣w∣A

pre
E (w,k) ≤
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c ⋅ ∣w∣ ⋅ apre
E (∣w∣), where c is a constant such that the longest prefix run of w

goes through at most c ⋅ ∣w∣ states in T (E).

3 Generalization of Mohri’s Ambiguity Results to mNFA

In this section we generalize results from [6] and [7] to be applicable to mNFAs.
The next definition is taken from [7], but modified in a way to take memoization
and ε-loops (by enforcing v, vi ∈ Σ+, and not simply v, vi ∈ Σ∗) into account.

Definition 6. The following are the three required properties for the character-
ization of ambiguity of an mNFA A.

1. (EDA) There exists a state p with at least two distinct cycles on v ∈ Σ+

containing no memoized state.
2. (IDA) There exist two distinct states p and q with paths on v ∈ Σ+ from p to

p, p to q, and q to q. The loop on q should contain no memoized state.
3. (IDAd) There exist 2d states p1, . . . pd, q1, . . . , qd in A and 2d − 1 strings

v1, . . . , vd ∈ Σ+ and u1, . . . , ud−1 ∈ Σ∗, such that for all 1 ≤ i ≤ d, pi /= qi,
we can read vi on some path from pi to pi, pi to qi and qi to qi, while encoun-
tering no memoized state from qi to qi, and also read ui on some path from
qi to pi+1.

Note that EDA implies IDA, since the two states required for IDA can be
obtained from the two loops at p on v with no memoized states. Starting at p,
there must be a first state q at which we obtain a split to states r and r′ while
reading v and looping back to p. These two states, in any order, can now be used
as the two states required for IDA.

Theorem 1. We can decide IDA for an mNFA A = (M,Q.Σ, δ, q0, F ) in time
O(∣A∣3δ) if A is ε-loop free, and in time O(∣A∣2δ ∣Q∣

2) otherwise.

Proof. First we provide the argument for when A has no ε-transitions, and then
we point out how to add ε-transitions to our previous argument by using Mohri’s
filter transducer from [7], and finally, how to also allow ε-loops.

Let P = Q ∖M and R = Q ×Q × P . If P = ∅, then A does not have IDA,
so we assume P /= ∅. First assume A has no ε-transitions. We generalize the
argument used in the proof of Lemma 3.4 in [6] on how to decide if an NFA,
with no ε-transitions, has IDA. Let G3 = (R,E3) and G4 = (R,E4) be graphs
with nodes given by R and edges E3 and E4 respectively, where we define E3 and
E4 next. We let E3 be all edges ((p1, p2, p3), (q1, q2, q3)), with qi ∈ δ(pi, a) for
some a ∈ Σ, i = 1,2,3. Let E4 = E3∪E′3 with E′3 all edges ((p, q, q), (p, p, q)) such
that p ∈ Q, q ∈ P and p /= q. We can characterize IDA as (p, q, q) being reachable
from (p, p, q) in G3 for p /= q, or as having a strongly connected component C
in G4 with C2 ∩ E′3 /= ∅. This establishes the result when we assume A has no
ε-transitions.

Next assume we have ε-transitions, but no ε-loops. In this case when using
δ(pi, ε), for i = 1,2,3, to transition from one node to another in R, we are also
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allowed to simply stay at one or more of the pi’s without using δ. Just as is done
in [7], where the result from [6] on deciding IDA is extended from NFAs without
ε-transitions to NFAs with ε-transitions, by using what Mohri refers to as a
filter transducer, we also apply the exact same filter transducer. This transducer
ensures that the number of paths in a product NFA is counted correctly when
ε-transitions are present, and also ensures that we do not only stay at p, or only
at q, while taking only ε-transitions from p to q (on the 2nd component), when
determining that we have a path from (p, p, q) to (p, q, q) in R.

Finally, we consider the case where ε-loops are also allowed. In this case, we
remove all ε-transitions from the 3rd component P in R at the price of potentially
increasing the number of transitions in P to ∣Q∣2, but without changing whether
IDA is present or not. To achieve this, first note that ε self-loops at any given
state can be removed, unless they are at a state that forms part of a loop while
reading a non-empty word, in which case they cause EDA (and thus IDA).
Otherwise, if q ∈ δ(p, a), and we have a path from q to q′ while reading ε, we
remove the ε-transitions and add q′ as one of the destination states of δ(p, a),
but if q′ is already in this set, we end up with a parallel transition on a from p
to q′. Again, parallel transitions do not influence IDA, unless they form part of
a loop, in which case they also cause EDA (and thus IDA). Now we repeat the
argument in the previous paragraph, since if we obtain the necessary paths for
IDA, the fact that we changed P not to have ε-transitions, and the fact that the
filter transducer will not allow paths from (p, p, q) to (p, q, q) to only stay at the
same 3rd component q, will ensure that a path from (p, p, q) to (p, q, q) never
involves reading only ε. ⊓⊔

Next we generalize more results of Mohri, for the case where we allow ε-loops.

Lemma 1. Let A be an NFA (i.e. no states are memoized). Then A has:

i) Exponential ambiguity if and only it has EDA;
ii) Infinite ambiguity if and only if it has IDA; and
iii) Ambiguity of degree at least d, with d ≥ 1, if and only if it has IDAd.

Proof. In [7], it is shown that the three conditions EDA, IDA and IDAd are
necessary and sufficient if we do not have ε-loops. Consider the NFA A =
(Q,Σ, δ, q0, F ), having ε-loops. We show how to extend Mohri’s results to A.
We construct an NFA Aε = (Qε,Σ, δε, (q0,∅), Fε) from A, with no ε-loops, sat-
isfying EDA, IDA or IDAd if an only A does, and also having ambiguity equal to
that of A. This will imply that the ambiguity results of Mohri are applicable even
for NFA with ε-loops. We let Qε = {(p,S) ∣ S ∈ P(Q×Q)}, δε((p,S), a) = {(q,∅) ∣
q ∈ δ(p, a)} if a ∈ Σ, and δε((p,S), ε) = {(q, S ∪ {(p, q)}) ∣ q ∈ δ(p, ε), (p, q) /∈ S},
and Fε = {(p,S) ∈ Qε ∣ p ∈ F}. Note that the definition of δε((p,S), ε) implies
Aε has no ε-loops, and we can apply Mohri’s results to Aε and then obtained
the desired ambiguity results for A. ⊓⊔
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Theorem 2. Let A be an mNFA. Then A has:

i) Exponential prefix ambiguity if and only A has EDA;
ii) Prefix ambiguity of degree d, with d ≥ 1, if and only if A has IDAd.

Proof. It is clear that EDA and IDAd implies exponential prefix ambiguity and
prefix ambiguity of degree d respectively.

Conversely, assume A has exponential (or polynomial of degree d) ambigu-
ity and let A = (M,Q,Σ, δ, q0, F ). Recall, Ap denotes the mNFA obtained by
changing the set of final states of A to {p}. We make the simplifying assump-
tion that no state in A has outgoing transitions both on ε and some sym-
bols from Σ (although it is easy to extend our argument to the general case),
which is for example the case for mNFAs of the form T (E). For p ∈ Q, let
I(p) = {q ∈ Q ∣ δ(q, a) = p for some a ∈ Σ}, and I ′(p) = {q ∈ Q ∣ δ(q, ε) = p}.
Note for p ∈ Q we have aAp(n) ≤ ∑q∈I(p) aAq(n − 1) + ∑q∈I′(p) aAq(n). Combin-
ing this inequality with Lemma 1 and the additional observations listed next,
we obtain that a second loop at a state p reading the same word as the first,
but containing a memoized state, will not cause exponential prefix ambiguity,
and similar for IDAd and loops at the qi containing memoized states, and thus
provide us with the desired result. Additional observations: (1) If q ∈ M, then
aAq(n−1) = aAq(n) = 1; (2) the mNFA A has exponential (polynomial of degree
d) prefix ambiguity if and only if Ap has exponential (polynomial of degree d)
ambiguity at some p (and not a higher degree of ambiguity at other states); (3)
additional memoization can only decrease ambiguity; (4) memoizing a state in
a loop at p for IDA or pi for IDAd (with p and pi as in Definition 6), will not
remove IDA or lower the degree of ambiguity. ⊓⊔

Example 4. Applying the previous theorem to the Thompson constructed mNFA
for each m-regex given next, we obtain the following ambiguity. We have that
(a ∣a)∗ is exponentially ambiguous, ↦(a ∣a)∗ is finitely prefix ambiguous (but
not prefix unambiguous) and (a ∣a)∗↤ is unambiguous, but exponentially prefix
ambiguous. Also, (a∗)∗ is exponentially ambiguous, ↦(a∗)∗ has ambiguity of
degree 1 and (↦a∗)∗ has finite ambiguity.

To wrap up this section, we consider relationships between ambiguity and
prefix ambiguity, as well as relationships between (prefix) ambiguity of subex-
pressions of an m-regex and (prefix) ambiguity of the m-regex as a whole. Clearly,
prefix ambiguity is an upper bound for ambiguity, and since all states are useful
by assumption, Lemma 1 shows that for an NFA A, A has finite, polynomial of
degree d or exponential prefix ambiguity, if and only if A has finite, polynomial
of degree d or exponential ambiguity respectively. Also, Proposition 1 and Theo-
rem 2 implies that we have the following prefix ambiguity relationships between
an m-regex and its subexpressions. (1) If in the m-regex G = (E ∣F ), both E
and F have (prefix) ambiguity of degree at most d and at least one of E or F
has (prefix) ambiguity of degree d, then G has (prefix) ambiguity of degree d. A
similar statement holds for exponential (prefix) ambiguity. (2) The m-regex E∗

has exponential ambiguity if and only if E is ambiguous. (3) The m-regex E ⋅F
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has exponential prefix ambiguity if at least one of E or F has exponential prefix
ambiguity, but E and F could both be unambiguous while E ⋅ F has infinite
ambiguity.

4 Hardness Results

In this section we prove that it is computationally difficult to find a minimal
set of states to memoize in an NFA A to obtain an mNFA with finite prefix
ambiguity.

Definition 7. A directed graph G = (V,E) and a natural number k ∈ N is an
instance of the Feedback Vertex Set problem if and only if there exists
some V ′ ⊆ V such that ∣V ′∣ ≤ k and every directed cycle in G contains at least
one vertex from V ′.

That is, (G,k) is in Feedback Vertex Set if is possible to break all cycles by
the removal at most k vertices.

Theorem 3 (see [10]). Deciding Feedback Vertex Set is NP-complete.

We now show by reduction from Feedback Vertex Set, that given an
NFA A = (Q,Σ, q0, δ, F ), it is NP-hard to find some smallest M ⊆ Q such
that A

M
= (M,Q,Σ, q0, δ, F ) has finite prefix ambiguity, or equivalently, by

Theorem 2, that A
M

does not have IDA. Next we state this as a decision problem.

Definition 8. For an NFA A = (Q,Σ, q0, δ, F ) and k ∈ N, (A,k) is an instance
of the Small mNFA Memoization problem if and only if there exists some
M ⊆ Q, with ∣M∣ ≤ k, such that the mNFA A

M
= (M,Q,Σ, q0, δ, F ) has finite

prefix ambiguity (or equivalently, A
M

does not have IDA).

Lemma 2. Small mNFA Memoization is NP-hard.

Proof. We show this by reduction from Feedback Vertex Set. Let G = (V,E)
be a directed graph and k ∈ N. We construct an NFA AG

M
, such that (AG

M
, ∣M∣),

with ∣M∣ ≤ k, is an instance of Small mNFA Memoization if and only if
(G,k) is an instance of the Vertex Feedback Set problem by the following
procedure.

Let AG = (Q,{a}, q0, δ,{qf}), with Q = V ∪ {q0, qf}) (q0, qf are new states
not in V ), and in δ we have the transitions: (1) v′ ∈ δ(v, a) for (v, v′) ∈ E; (2)
q0, v ∈ δ(q0, a) for v ∈ V ; (3) qf ∈ δ(v, a) for v ∈ V . That is, we turn G into an
NFA by making each edge a transition reading a single ‘a’, we add an initial state
with a self-loop on ‘a’, from which every vertex in G is reachable on a single ‘a’,
and a final state reachable from any vertex in G on an a-transition. That is, G
gets turned into an NFA by having every edge read ‘a’, adding a new initial and
final state, having every “state” in G reachable from the initial state on ‘a’, and
having an a-transition from each “state” in G to the final state.
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We leave the k the same in the reduction. Assume there is a V ′ ⊆ V , with
∣V ′∣ ≤ k, such that G contains no cycles when all vertices in V ′ are removed.
Choose M = V ′, and note that the mNFA AG

M
= (M,Q,{a}, q0, δ,{qf}) cannot

have IDA, as it contains only a single cycle without a state fromM (the one on
q0).

q0 G qf

a
a

a

a
a

a
a

a

a
a

a
Conversely, assume we have M ⊆ Q, ∣M∣ =

k, that removes IDA from A, i.e. AG
M

does not
have IDA. Given the definition of IDA, we may
assume that both q0 and qf are not in M.
But then (G,k), with G being the subgraph
obtained from AG by removing q0 and qf , is in Feedback Vertex Set, as any
memoization-free cycle in that subautomaton in combination with the cycle on
q0 would cause IDA in AG. ⊓⊔

Finally, membership in NP is established by algorithm from Theorem 1.

Theorem 4. Small mNFA Memoization is NP-complete.

Proof. This combines Lemma 2 and Theorem 1. The latter establishes member-
ship in NP since we can nondeterministically guess a certificateM and verify it
in polynomial time by the algorithm presented in the proof of Theorem 1. ⊓⊔

5 Memoization Schemes

The NP-hardness of finding minimal memoizations raises interest in both heuris-
tics and focusing on NFAs of the form T (E), for selecting a small subset of states,
to conserve space used by the matcher as much as possible. In [1], Davis pro-
posed two such selective memoization schemes. The first memoizes all states
with in-degree at least two, and the second memoizes all states which are “cycle
ancestors”, which on an m-regex E corresponds to memoizing every subexpres-
sion F ∗ as (↦F )∗. We call this the Closure Node scheme, denoting the m-regex
obtained by CN(E), and observing that Theorem 2 implies T (CN(E)) has finite
prefix ambiguity.

On an m-regex E, the scheme of memoizing all states with in-degree at least
two, denoted as IN(E), memoizes each subexpression F ∗ as ↦F ∗↤, and each
subexpression (F ∣G) as (F ∣G)↤, and thus (possibly) add additional memoiza-
tion operators when compared to CN(E). From the definition of ambiguity, it
follows that T (IN(E)) is unambiguous at all states.

We propose the Infinite Ambiguity Removal (IAR) memoization scheme,
which for an m-regex E takes CN(E) and removes precisely those memoiza-
tion operators corresponding to memoizing states in T (E), that is not a state p
for EDA, or a state q for IDA, with p and q as in Definition 6. This can be done
with a modification to the algorithm outlined in the proof of Theorem 1 (with
a formal discussion of the algorithm and its complexity left as future work).
From Theorem 2, we have that IAR(E) has finite prefix ambiguity. We leave
it as future work to determine if this produces a memoization of minimal size,
conjecturing this to be the case. Note that this would not contradict Theorem 4
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as the hardness reduction relies on the construction of a general mNFA, where
the Thompson automaton T (E) is of a restricted form.

To implement IAR, we extended the implementation to identify IDA and
EDA in T (E), as discussed in [4]. This implementation was evaluated on imple-
mentation was evaluated on the RegExLib repository [11], and (ii) the Davis
polyglot regex corpus [12], a dataset containing more than 500,000 regexes
extracted from a large sample of software projects covering over eight differ-
ent major programming languages. For both RegExLib and the polyglot corpus,
more than 70% of regexes could be analysed based on regex features supported
by our implementation, and for 12% of the RegExLib repository, the states to be
memoized in order to determine IAR(E), took more than 1 second to compute,
while for the polyglot corpus, only 3% of the regexes took in excess of 1 s.

Example 5. For E = (a∗ ∣a∗)∗, we have that CN(E), IN(E) and IAR(E) are
given by ↦(↦a∗ ∣↦a∗)∗, ↦((↦a∗↤∣↦a∗↤)↤)∗↤ and ↦(a∗ ∣a∗)∗ respectively,
but for E′ = a∗b∗, CN(E′) equals (↦a∗)(↦b∗), whereas IAR(E′) = E′ (recall,
↦ has higher priority than Kleene star). For Fk = (a ∣a){1, k}, with k ∈ N, prefix
ambiguity is 2k for strings an, n ≥ k, but IN(Fk) = ((a ∣a)↤){1, k} has prefix
ambiguity at most 2, and IN is the only memoization scheme introduced reducing
ambiguity when applied to Fk.

6 Future Work

We are working on developing memoization schemes in which we combine the
search for where IDA is present in T (E) (for a regex E), with the use of the
atomic operator [5]. These schemes will be evaluated on repositories of regexes
typically used by developers. It could be argued that the required subexpressions
to be memoized or to which the atomic operator should be applied, could be
computed offline, and then developers are allowed to specify memoization infor-
mation in m-regexes (in addition to where to apply the atomic operator), but
this will require matching engines to support m-regexes. Another option could
be to let users specify which memoization scheme they would like to use, from a
list of well-studied memoization schemes, based on memory and matching time
requirements. An investigation should be done into the interplay between mem-
oization and various regexes extensions, as was already started for lookaheads
and backreferences in [1]. Formalizing the discussion on memoized prioritized
NFAs, initiated near the end of Sect. 2, and confirming that the hardness result
of Sect. 4 do not apply to NFAs of the form T (E), are natural next steps.
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Abstract. We show that the commutative closure combined with the
iterated shuffle is a regularity-preserving operation on group languages.
In particular, for commutative group languages, the iterated shuffle is a
regularity-preserving operation. We also give bounds for the size of min-
imal recognizing automata. Then, we use this result to deduce that the
commutative closure of any shuffle language over group languages, i.e.,
a language given by a shuffle expression, i.e., expressions involving shuf-
fle, iterated shuffle, concatenation, Kleene star and union in any order,
starting with the group languages, always yields a regular language.

Keywords: Commutative closure · Group language · Permutation
automaton · Shuffle expression · Shuffle · Iterated shuffle

1 Introduction

Having applications in regular model checking [1,7], or arising naturally in the
theory of traces [8,35], one model for parallelism, the (partial) commutative
closure has been extensively studied [12–14,16,18,20,28,30,34].

In [16], the somewhat informal notion of a robust class was introduced, mean-
ing roughly a class1 closed under some of the usual operations on languages, such
as Boolean operations, product, star, shuffle, morphism, inverses of morphisms,
residuals, etc. Motivated by two guiding problems formulated in [16], we formu-
late the following slightly altered, but related problems:

Problem 1. When is the closure of a language under [partial] commutation
regular?

Problem 2. Are there any robust classes for some common operations such that
the commutative closure is (effectively) regular?

1 We relax the condition from [15] that it must be a class of regular languages. However,
some mechanism to represent the languages from the class should be available.
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By effectively regular, we mean the stipulation that an automaton of the result
of the commutation operation is computable from a representational scheme for
the language class at hand.

Here, we will investigate the commutation operation on the closure of the
class (or variety thereof) of group languages under union, shuffle, iterated shuf-
fle, concatenation and Kleene star. For the class of finite languages, this closure,
called the class of shuffle languages, is definable by so called shuffle expres-
sions [9,23–26,36]. This is also true in our case, but the atomic expressions are
interpreted not as finite languages, but as group languages. In this sense, we
use the term shuffle expressions, or shuffle language, in a wider sense, by allow-
ing different atomic languages. It will turn out that the commutation operation
yields a regular language on this class of languages, and it is indeed effectively
regular. However, I do not know if the languages class itself consists only of
regular languages.

The shuffle and iterated shuffle have been introduced and studied to under-
stand the semantics of parallel programs. This was undertaken, as it appears
to be, independently by Campbell and Habermann [4], by Mazurkiewicz [29]
and by Shaw [36]. They introduced flow expressions, which allow for sequential
operators (catenation and iterated catenation) as well as for parallel operators
(shuffle and iterated shuffle). These operations have been studied extensively,
see for example [9,23–25].

The shuffle operation as a binary operation, but not the iterated shuffle, is
regularity preserving on all regular languages. The size of recognizing automata
was investigated in [2,3,5,6,17,19].

2 Preliminaries and Definitions

By Σ we denote a finite set of symbols, i.e., an alphabet. By Σ∗ we denote the
set of all words with the concatenation operation. The empty word, i.e., the word
of length zero, is denoted by ε. If u P Σ, by |u| we denote the length of u, and
if a P Σ, by |u|a we denote the number of times the letter a appears in u. A
language is a subset L Ď Σ∗. For a language L Ď Σ∗, we set L` “ {u1 · · · un |
{u1, . . . , un} Ď L, n ą 0} and L∗ “ L` Y {ε}. By N0, we denote the natural
numbers with zero.

A finite (complete and deterministic2) automaton A “ (Σ,Q, δ, q0, F ) over Σ
consists of a finite state set Q, a totally defined transition function δ : Q×Σ → Q,
start state q0 P Q and final state set F Ď Q. The transition function could
be extended to words in the usual way by setting, for u P Σ∗, a P Σ and
q P Q, δ̂(q, ua) “ δ(δ̂(q, u), a) and δ̂(q, ε) “ q. In the following, we will drop the
distinction with δ and will denote this extension also by δ : Q × Σ∗ → Q. The
language recognized, or accepted, by A is L(A) “ {u P Σ∗ | δ(q0, u) P F}.

A permutation automaton is an automaton such that for each letter a P Σ,
the function δa : Q → Q given by δa(q) “ δ(q, a) for q P Q is bijective. We also
2 Here, only complete and deterministic automata are used, hence just called automata

for short.
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say that the letter a permutes the state set. For a given permutation automaton
A “ (Σ,Q, δ, q0, F ) and a P Σ, the order of the letter a in A is the smallest
number n ą 0 such that δ(q, an) “ q for all q P Q. This equals the order of the
letter viewed as a permutation on Q. The maximal order of any permutation is
given by Landau’s function, which has growth rate O(exp(

√
n log n)) [11,27]. A

language L Ď Σ∗ is a group language, if there exists a permutation automaton A
such that L “ L(A). By G we denote the class of group languages. This class
could be also seen as a variety [32,33].

We will also use regular expressions occasionally, for the definition of them,
and also for a more detailed treatment of the above notions, we refer to any
textbook on formal language theory or theoretical computer science, for exam-
ple [21].

Let Σ “ {a1, . . . , ak} be the alphabet. The map ψ : Σ∗ → N
k
0 given by

ψ(w) “ (|w|a1 , . . . , |w|ak
) is called the Parikh morphism [31]. If L Ď Σ∗, we set

ψ(L) “ {ψ(w) | w P L}. For a given word w P Σ∗, we define perm(w) :“ {u P
Σ∗ : ψ(u) “ ψ(w)}. If L Ď Σ∗, then the commutative (or permutational) closure
is perm(L) :“ ⋃

wPL perm(w). A language is called commutative, if perm(L) “ L.

Definition 1. The shuffle operation, denoted by �, is defined by

u� v “ {w P Σ∗ | w “ x1y1x2y2 · · · xnyn for some words
x1, . . . , xn, y1, . . . , yn P Σ∗ such that u “ x1x2 · · · xn and v “ y1y2 · · · yn},

for u, v P Σ∗ and L1 � L2 :“ ⋃
xPL1,yPL2

(x� y) for L1, L2 Ď Σ∗.

In writing formulas without brackets, we suppose that the shuffle operation
binds stronger than the set operations, and the concatenation operator has the
strongest binding.

If L1, . . . , Ln Ď Σ∗, we set�n

i“1Li “ L1� . . .�Ln. The iterated shuffle of
L Ď Σ∗ is L�,∗ “ ⋃

ně0�
n

i“1L.

Theorem 2 (Fernau et al. [9]). Let U, V,W Ď Σ∗. Then,

1. U � V “ V � U (commutative law);
2. (U � V )�W “ U � (V �W ) (associative law);
3. U � (V Y W ) “ (U � V ) Y (U �W ) (distributive over union);
4. (U�,∗)�,∗ “ U�,∗;
5. (U Y V )�,∗ “ U�,∗

� V �,∗;
6. (U � V �,∗)�,∗ “ (U � (U Y V )�,∗) Y {ε}.

The next result is taken from [9] and gives equations like perm(UV ) “
perm(U) � perm(V ) or perm(U∗) “ perm(U)�,∗ for U, V Ď Σ∗. A semiring
is an algebraic structure (S, `, ·, 0, 1) such that (S, `, 0) forms a commutative
monoid, (S, ·, 1) is a monoid and we have a·(b`c) “ a·b`a·c, (b`c)·a “ b·a`c·a
and 0 · a “ a · 0 “ 0.

Theorem 3 (Fernau et al. [9]). perm : P(Σ∗) → P(Σ∗) is a semiring
morphism from the semiring (P(Σ∗), Y, ·, H, {ε}), that also respects the iterated
catenation resp. iterated shuffle operation, to the semiring (P(Σ∗), Y,�, H, {ε}).
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As ψ(U � V ) “ ψ(UV ) and ψ(U∗) “ ψ(U�,∗), we also find the next result.

Theorem 4. perm : P(Σ∗) → P(Σ∗) is a semiring morphism from the
semiring (P(Σ∗), Y,�, H, {ε}) to the semiring (P(Σ∗), Y,�, H, {ε}) that also
respects the iterated shuffle operation.

In [16] it was shown that the commutative closure is regularity-preserving
on G using combinatorial arguments, and in [20] an automaton was constructed,
yielding explicit bounds for the number of states needed in any recognizing
automaton.

Theorem 5 ([20]]). Let Σ “ {a1, . . . , ak} and A “ (Σ,Q, δ, q0, F ) be a per-
mutation automaton. Then perm(L(A)) is recognizable by an automaton with at
most

(
|Q|k ∏k

i“1 Li

)
many states, where Li for i P {1, . . . , k} denotes the order

of ai. Furthermore, the recognizing automaton is computable.

3 Shuffle Languages over Arbitrary Language Classes

Here, we introduce shuffle languages over arbitrary language classes and proof a
normal form result.

Definition 6. Let L be a class of languages.

1. SE(L) is the closure of L under shuffle, iterated shuffle, union, concatenation
and Kleene star.

2. Shuf(L) is the closure of L under shuffle, iterated shuffle and union.

For LAlp “ {H, {ε}} Y {{a} | a P Σ for some alphabet Σ} and LFin “ {L |
L Ď Σ∗ for some alphabet and L is finite } the resulting closures were investi-
gated in [9,23–25]. Note that SE(LAlp) “ SE(LFin). By Theorem 3, we can
compute a shuffle expression over LAlp for the commutative closure of any
regular language by rewriting a regular expression and vice versa. Hence, the
class Shuf(LAlp) equals the commutative closure of all regular languages. So,
Shuf(LAlp) �“ Shuf(LFin).

Proposition 7. Let L P Shuf(L). Then, L is a finite union of languages of the
form

L1 � . . .� Lk � L�,∗
k`1 � . . .� L�,∗

n

with 1 ≤ k ≤ n and Li P L for i P {1, . . . , n} and this expression is computable.

Proof. Theorem 2 provides an inductive proof of Proposition 7. Note that a
similar statement has been shown in [23, Theorem 3.1] for Shuf(LFin). However,
as we do not assume that L is closed under shuffle or union, we only get the
form as stated. ��
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Remark 1. By Theorem 2, we can write the languages in Proposition 7 also
in the form L1 � . . . � Lk � (Lk`1 Y . . . Y Ln)�,∗. So, if L is closed under
union, which is the case for languages from G over a common alphabet, we
can write the languages in Shuf(L) as a finite union of languages of the form
L1 � . . .� Ln−1 � L�,∗

n with L1, . . . , Ln P L.

Lastly, with Theorem 3 and Theorem 4, we show that up to permutational
equivalence SE(L) and Shuf(L) give the same languages.

Proposition 8. Let L be any class of languages. Suppose L P SE(L). Then, we
can compute L′ P Shuf(L) such that perm(L) “ perm(L′).

Proof. By Theorem 3 and Theorem 4, we have, for U, V Ď Σ∗, perm(U � V ) “
perm(U)�perm(V ) “ perm(U ·V ) and perm(U�,∗) “ perm(U)�,∗ “ perm(U∗).
So, inductively, for L P SE(G), by replacing every concatenation with the shuffle
and every Kleene star with the iterated shuffle, we find L′ P Shuf(G) such that
perm(L) “ perm(L′). ��

4 The Commutative Closure on SE(G)

By Proposition 8, the commutative closure on SE(L) for any language class L
equals the commutative closure of Shuf(L). Theorem 9 of this section, stating
that the commutative closure combined with the iterated shuffle is regular, is
the main ingredient in our proof that the commutative closure is regularity-
preserving on SE(G) and the most demanding result in this work.

Note that, in general, this combined operation does not preserves regularity,
as shown by perm({ab})�,∗ “ {w P {a, b}∗ | |w|a “ |w|b}.

Theorem 9. Let Σ “ {a1, . . . , ak} and A “ (Σ,Q, δ, q0, F ) be a permutation
automaton. Then

perm(L(A)�,∗)

is recognizable by an automaton with at most
(
|Q|k ∏k

j“1 Lj

)
` 1 many states,

where Lj for j P {1, . . . , k} denotes the order of aj, and this automaton is
effectively computable.

Proof (sketch). The method of proof, called state label method, is an extension
of the one used in [20], which also includes a detailed motivation and intuition
of this method.

In what follows, we will first give an intuitive outline of the method, geared
toward our intended extension, of how to use it to recognize the commutative
closure of a regular language. Then, we will show how to modify it to show our
statement at hand. We will only sketch the method, and will leave out some
details for the sake of the bigger picture.

The method consists in labeling the points of N|Σ|
0 with the states of a given

automaton that are reachable from the start state by all words whose Parikh
image equals the point under consideration.



58 S. Hoffmann

As it turns out, a word is in the commutative closure if and only if it ends
in a state labeled by a set which contains at least one final state.

Very roughly, the resulting labeling of N|Σ|
0 could be thought of as a more

refined version of the Parikh map for regular languages, and in some sense as a
blend between the well-known powerset construction, as we label with subsets
of states, and the Parikh map, as we not only indicate for each point if there is
a word in the language or not, but additionally store all states we could reach
by words whose Parikh image equals the point in question.

More specifically, let A “ (Σ,Q, δ, q0, F ) be an automaton. In [20], the point
p P N

|Σ|
0 was labeled by the set

Sp “ {δ(q0, u) | ψ(u) “ p}

and the following holds true: v P perm(L(A)) ⇔ Sψ(v) X F �“ H.
Then, along any line parallel to the axis, which corresponds to reading in a

single fixed letter, by finiteness, the state labels are ultimately periodic. However,
for each such line, the onset of the period and the period itself may change. For
example, take the automaton with state set Q “ {q0, q1, q2} over Σ “ {a, b} and
transition function, for q P Q and x P Σ,

δ(q, x) “
⎧
⎨

⎩

q1 if q “ q0, x “ a;
q0 if q “ q1, x “ b;
q2 otherwise.

Then, L(A) “ (ab)∗ and, for p “ (pa, pb) P N
2
0,

Sp “
⎧
⎨

⎩

{q0, q2} if pa “ pb;
{q1, q2} if pa “ pb ` 1;
{q2} otherwise.

Let c P N0. Then, along the lines {(pa, pb) P N
2
0 | pa “ c}, we have S(c,c`2) “

S(c,c`1) and the point (c, c`1) is the earliest onset after which the state labeling
Sp gets periodic on this line.

However, if, for any line parallel to the axis, we can bound the onset of
the period and the period itself uniformly, i.e., independently of the line we
are considering, then the commutative closure is regular, and moreover we can
construct a recognizing automaton with these uniform bounds.

This was shown in [20] and it was shown that for group languages, we have
such uniform bounds.

Note that in our example, we do not have such a uniform bound, as the onset,
for example, for the lines going in the direction (0, 1) starting at (c, 0) (i.e. reading
in the letter b) was c ` 1, i.e., it grows and is not uniformly bounded. In fact,
perm((ab)∗) “ {u P {a, b}∗ : |u|a “ |u|b} is not regular.

Up to now, the method only works for the commutative closure. So, let us
now describe how to modify it such that we get an automaton for the iterated
shuffle of the commutative closure of a given automaton.
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First, recall that, by Theorem 3, we have

perm(L(A))�,∗ “ perm(L(A)∗).

The usual construction for the Kleene star associates a final state with the start
state, and this is in some sense what we are doing now. More formally, in the
state labeling, we add the start state each time we read a final state, i.e., we
have another labeling which we describe next.

Let Σ “ {a1, . . . , ak} and ei “ ψ(ai) “ (0, . . . , 0, 1, 0, . . . , 0) P N
k
0 be the

vector with 1 precisely at the i-th position and zero everywhere else. If A “
(Σ,Q, δ, q0, F ) is an automaton, set

T(0,...,0) “ {q0} and Tp “
⋃

∃iP{1,...k}:p“q`ei

δ(S`
q , ai) for p �“ (0, . . . , 0),

where

S`
p “

{
Tp Y {q0} if Tp X F �“ H;
Tp if Tp X F “ H.

Then, v P perm(L(A)∗) ⇔ Sp̀ X F �“ H or v “ ε.
Note the extra condition that checks for the empty word. This is a techni-

cality, that surely could be omitted if q0 P F , but not in the general case. Please
see Fig. 1 for a visual explanation in the case of a binary alphabet.

Fig. 1. Illustration of how state labels are updated for the iterated shuffle if new input
symbols are read with Σ “ {a, b}. For the state label S(pa,pb), after reading the letter
b, we will end up at S(pa,pb`1) and the state label is updated according to Equation (1)
and Equation (2). Seen from the state label S(pa−1,pb), we account for both paths given
by the words ab and ba when ending at (pa, pb ` 1), hence the union in the definition
of T(pa,pb`1).

Finally, the same sufficient condition of regularity in terms of the new state
labels Sp̀ could be derived as in the previous case, namely if they are uniformly
bounded in the axis-parallel directions, then the commutative closure is regular.
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Now, the sets Tp are defined by the actions of the letters ai on previous
state labels Sq̀ . In a similar way to which it is done in [20], for a permutation
automaton, we can show that we can find such uniform bounds.

Intuitively, the reason is that if we always permute the state labels, they
cannot get smaller as we read in more letters. Hence, they have to grow and
eventually get periodic. Also, we can show, as we only have cycles, that after a
certain number of letters have been read, we have exploited all ways that these
sets could grow, i.e., we know that after we have read a certain numbers of letters
we must end up in a period, and this period could also be bounded uniformly
(but of course, depending on A).

To be a little more quantitative here, if Li denotes the order of ai, then, for
each line going in the direction ei, we can show that after at most (|Q| − 1)Lj

many steps we must enter the period, and the smallest period has to divide Lj .
This in turn could be used to derive that an automaton with at most

k∏

i“1

((|Q| − 1)Lj ` Lj) “ |Q|k
k∏

i“1

Lj

many states could recognize perm(L(A)`). Note that this statement is only
valid for the state labeling Sp̀ , and hence only applies to perm(L(A)`). So, to
recognize perm(L(A)∗), and incorporate the additional test for the empty word,
we have to add one more state.

Actually, a full formal treatment, especially the steps mentioned in the pre-
vious paragraphs, is quite involved and incorporates a detailed construction of
the recognizing automaton out of the state label method and a detailed analysis
of the action of the permutational letters on the state set. I refer to [20] and to
the extended version of this paper, which will appear in a special issue [18], for
a treatment of these issues in the context of the mere commutative closure.

Lastly, note that the constructions are effective, as we only have to label a
bounded number of grid points of Nk

0 , and the state labels are computable from
the transition function of A. ��

So, with Theorem 9, we can derive our next result.

Theorem 10. Let L P Shuf(G). Then perm(L) is effectively regular.

Proof. By Proposition 7, we only need to consider languages of the form L1 �

. . .�Lk�L�,∗
k`1� . . .�L�,∗

n with Li P G. By Theorem 4, perm(L1� . . .�Lk�

L�,∗
k`1 � . . .� L�,∗

n ) equals

perm(L1)� . . .� perm(Lk)� perm(L�,∗
k`1)� . . .� perm(L�,∗

n ).

The shuffle is regularity-preserving [3,5,22], where an automaton for it is com-
putable. So, by Theorem 5 and Theorem 9 the above language is effectively reg-
ular, where again for the commutative closure of a group language an automaton
is computable similarly as outlined at the end of the proof sketch for Theorem 5.
Hence, perm(L) is effectively regular. ��

So, with Proposition 8 our next result follows.

Theorem 11. Let L P SE(G). Then perm(L) is effectively regular.
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5 Commutative Group Languages

By Theorem 9, we can deduce that for commutative group languages L Ď Σ∗,
the iterated shuffle is a regularity-preserving operation. Also, for a commutative
regular language in general, it is easy to see that for a minimal automaton
A “ (Σ,Q, δ, q0, F ) we must have δ(q, ab) “ δ(q, ba) for any q P Q and a, b P
Σ [10]. Furthermore, if A “ (Σ,Q, δ, q0, F ) is a minimal permutation automaton
for a commutative language, then the order of each letter a P Σ equals the
minimal n ą 0 such that δ(q0, an) “ q0. For if q P Q, then, by minimality, there
exists u P Σ∗ such that δ(q0, u) “ q, which yields δ(q, an) “ δ(δ(q0, u), an) “
δ(q0, anu) “ δ(δ(q0, an), u) “ δ(q0, u) “ q. So, combining our observations, we
get the next result.

Proposition 12. Let Σ “ {a1, . . . , ak} and L Ď Σ∗ be a commutative group
language with minimal permutation automaton A “ (Σ,Q, δ, q0, F ) such that
L “ L(A). Then, the iterated shuffle L�,∗ is regular and recognizable by an
automaton with at most (|Q|k ∏k

i“1 pi)`1 many states, where pi ą 0 is minimal
such that δ(q0, a

pi

i ) “ q0 for i P {1, . . . , k}.

6 The n-times Shuffle

We just note in passing that the method of proof of Theorem 9 could also be
adapted to yield a bound for the size of a recognizing automaton of the n-times
shuffle combined with the commutative closure on group languages that is better
than applying the bounds from [3,5,20] individually.

Proposition 13. Let Ai “ (Σ,Qi, δi, qi, Fi) for i P {1, . . . , n} be n permutation
automata. Then

sc(perm(L(A1))� . . .� perm(L(An))) ≤
(

n∑

i“1

Qi

)k k∏

j“1

lcm(L(1)
j , . . . , L

(n)
j )

where L
(i)
j for i P {1, . . . , n} and j P {1, . . . , k} denotes the order of the letter aj

as a permutation on Qi.

7 Conclusion

We have shown that the commutative closure of any shuffle language over group
languages is regular. However, it is unknown if any shuffle language over the
group languages is a regular languages itself. As a first step, the question if the
iterated shuffle of a group language is regular might be investigated. I conjecture
this to be true, but do not know how to prove it for general group languages.
Observe that merely by noting that the commutative closure is regular, we can-
not conclude that the original language is regular. For example, consider the
non-regular context-free language given by the grammar G over {a, b} with rules

S → aTaS | ε, T → bSbT | ε.

and start symbol S.
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Proposition 14. The language L Ď {a, b}∗ generated by the above grammar G
is not regular, but its commutative closure is regular.

Proof. 1. L X (ab)∗(ba)∗ “ {(ab)n(ba)n | n ě 0}.
It is easy to see that {(ab)n(ba)n | n ě 0} Ď L X (ab)∗(ba)∗. For the other
inclusion, we will first show that if

S → u

with u P (ab)∗(ba)∗, then u “ ε or S → abSba → u with u “ abvba, which
implies v P (ab)∗(ba)∗. So assume S → u with u �“ ε. Then, we must have

S → aTaS → u,

As, by assumption u /P Σ∗aaΣ∗, we must apply S → ε and could not apply
T → ε. So, the following steps are necessary

S → aTaS → aTa → abSbTa → u. (3)

Assume we expand T into a non-empty word, then

abSbTa → abSbbSbTa.

As the factor bb occurs at most once in any word from (ab)∗(ba)∗, the above
must expand to abSbbSba. This, in turn, implies that the first S must expand
into a word from (ab)∗a. However, such a word always contains either an odd
number of a’s or an odd number of b’s, and by the production rules, as these
letters are always introduced in pairs, this is not possible. Hence, we cannot
expand T in Equation (3) into a non-empty word and we must have T → ε.
Then,

S → aTaS → aTa → abSba → u.

So, we can write u “ abvba with v P (ab)∗(ba)∗.
Finally, we reason inductively. If u “ ε, then u P {(ab)n(ba)n | n ě 0}.
Otherwise, by the previously shown statement, we have u “ abvba with S → v
and v P (ab)∗(ba)∗. Hence, inductively, we can assume v “ (ab)n(ba)n for some
n ě 0, which implies u “ (ab)n`1(ba)n`1.

2. The generated language is not regular.
Assume L is regular. Then, with the above result, also {(ab)n(ba)n | n ě 0}
would be regular. However, for the homomorphism ϕ : {c, d}∗ → {a, b}∗ given
by ϕ(c) “ ab, ϕ(d) “ ba we have {cndn | n ě 0} “ ϕ−1({(ab)n(ba)n | n ě 0}).
As the last language is well-known to be not regular, and as regular languages
are closed under inverse homomorphic mappings, the language {(ab)n(ba)n |
n ě 0} could not be regular.

3. The commutative closure of L is {u P {a, b}∗ : |w|a ≡ 0 (mod 2), |w|b ≡ 0
(mod 2), |w|a ě min{1, |w|b}}, which is a regular language.
We have, for any n ě 0 and m ě 0, that a(bb)ma(aa)n P L and ε P L. Also,
as each rule introduces the letters a or b in pairs, any word in L has an even
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number of a and b’s and as we can only introduce the letter b with the non-
terminal T , which we only can apply after producing at least one a, we see
that if we have at least one b, then we need to have at least one a. Combining
these observations yields that the commutative closure equals the language
written above and the defining conditions of this language could be realized
by automata.

So, we have shown the claims made in the proposition. ��
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Abstract. We study the problem of synthesizing regular expressions
from a set of positive and negative strings. The previous synthesis algo-
rithm proposed by Lee et al. [12] relies on the best-first enumeration of
regular expressions. To improve the performance of the enumeration pro-
cess, we define a new normal form of regular expressions called the con-
cise normal form which allows us to significantly reduce the search space
by pruning those not in the normal form while still capturing the whole
class of regular languages. We conduct experiments with two benchmark
datasets and demonstrate that our synthesis algorithm based on the
proposed normal form outperforms the previous algorithm in terms of
runtime complexity and scalability.

Keywords: Regular expression · Program synthesis · Normal form ·
Enumerative search

1 Introduction

Regular expressions (REs) are widely used for the pattern matching problem
to effectively and efficiently describe strings of interest. Due to their compact
representations and various advantages, REs are supported in many practical
applications such as search engines, text processing, programming languages, and
compilers. However, writing a minimal and correct RE for a given set of strings
is error-prone and sometimes difficult even for experts. With recent advances
in the program synthesis technology [8], to help novice users, many researchers
have investigated various methods that automatically generate REs from a set
of positive and negative examples [12,17], natural language descriptions [10,14],
or both [3,19].

In order to synthesize a RE satisfying the provided examples, it is often
inevitable to enumerate REs in some order and check if each RE satisfies the
synthesis constraints. Lee et al. [12] proposed a best-first enumeration algo-
rithm called AlphaRegex which synthesizes a RE from a set of positive and
negative strings. They also suggested various pruning algorithms that identify
c© Springer Nature Switzerland AG 2021
S. Maneth (Ed.): CIAA 2021, LNCS 12803, pp. 65–76, 2021.
https://doi.org/10.1007/978-3-030-79121-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79121-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-79121-6_6


66 S.-H. Kim et al.

semantically equivalent (language-equivalent) expressions and prune out hope-
less intermediate expressions determined by given positive and negative examples
to reduce the search space. Indeed, their pruning algorithms drastically improved
the näıve enumerative search algorithm, yet still far from being scalable for more
complex examples.

Meanwhile, there has been much interest in the descriptional complexity of
REs including several heuristics for simplifying them [2,5–7]. Brüggemann-Klein
introduced the star normal form (snf) to improve the time complexity of con-
structing the position automata from REs from cubic to quadratic time. While
Brüggemann-Klein considered REs recursively defined with union, concatena-
tion, and Kleene-star, Gruber and Gulan [7] extended the definition of the snf
with the question operator R?

1 defined as L(R?
1) = {ε} ∪ L(R1) and called

their extension the strong star normal form (ssnf). A RE R is in ssnf if for any
subexpression of the form R∗

1 or R?
1, the language represented by R1 does not

include the empty string ε. They also showed that the ssnf is more concise than
the previous snf and still computable in linear time as snf is. Lee and Shal-
lit [11] discussed enumeration of REs and corresponding regular languages using
unambiguous grammars generating REs and their commutative images. They
also provided exact numbers of regular languages representable by REs of given
length. Broda et al. [1] studied the average behavior of REs in ssnf by computing
the asymptotic estimates for the number of REs in ssnf and conducted several
experiments for corroborating the estimates.

In this paper, we revisit the problem of synthesizing a RE from a given set of
positive and negative examples. In particular, we aim to improve the performance
of previous studies by introducing a new normal form called the concise normal
form (cnf) of REs for an efficient enumeration during the best-first search. We
introduce several rules where the equivalence of REs is identifiable in polyno-
mial time and incorporate the rules to define the cnf. We show that the cnf is
considerably more concise than the ssnf by actually enumerating all expressions
in each normal form up to a given length. Finally, we demonstrate that our
RE synthesis algorithm based on the cnf improves the previous state-of-the-art
algorithm AlphaRegex.

The rest of the paper is organized as follows. Section 2 gives some defini-
tions and notations. We introduce our normal form definition in Sect. 3 and
the synthesis algorithm in Sect. 4. Finally, the experimental results are provided
in Sect. 5.

2 Preliminaries

This section briefly recalls the basic definitions used throughout the paper. For
complete background knowledge in automata theory, the reader may refer to
textbooks [9,18].

Let Σ be a finite alphabet and Σ∗ be the set of all strings over the alphabet
Σ. A regular expression (RE) over Σ is a ∈ Σ, or is obtained by applying the
following rules finitely many times. For REs R1 and R2, the union R1 + R2,
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the concatenation R1 · R2, the star R∗
1, and the question R?

1 are also REs. Note
that L(R?

1) is defined as L(R1) ∪ {ε}. Two REs R1 and R2 are equivalent if
L(R1) = L(R2). When R1 and R2 are equivalent, we write R1 ≡ R2 instead of
L(R1) = L(R2) for notational convenience.

The reverse Polish notation (RPN) length of R is denoted by rpn(R) and
defined as rpn(R) = |R|Σ + |R|+ + |R|· + |R|∗ + |R|?. For instance, rpn(ab?)
is 4 since we also count the question operator and the (hidden) concatenation
operator between a and b?. In other words, rpn(R) is the number of nodes in the
corresponding syntax tree of R. As we deal with REs in the form of parse trees
internally, rpn(R) can be considered as more accurate measure for representing
the complexity of the REs.

Let S be a set of REs and ck ∈ N for 1 ≤ k ≤ 5 be a natural number implying
the cost of a regular operator or a symbol. We define the cost of REs using the
cost function C : S → N which associates a cost with each expression as follows:

C(a) = c1

C(R1 + R2) = C(R1) + C(R2) + c2

C(R1 · R2) = C(R1) + C(R2) + c3

C(R∗) = C(R) + c4

C(R?) = C(R) + c5

Let � be a relation on S, and �∗ a transitive closure of �. A rewriting
system (S,�) is said to be terminating if there is no infinite descending chain
R0 � R1 � R2 � · · · , where Rk ∈ S for k ∈ N. In a terminating rewriting
system (S,�), every element in S has at least one normal form.

Here we introduce the concept of ‘similar’ REs which is a weaker notion of
the equivalence between two regular languages represented by REs. Owens et
al. [13] formally define the concept of being ‘similar’ to approximate the least
equivalence relation on REs as follows:

Definition 1. Let ≈ denote the equivalence relation on REs including the fol-
lowing equations:

R + R ≈ R

R1 + R2 ≈ R2 + R1

(R1 + R2) + R3 ≈ R1 + (R2 + R3)
(R1 · R2) · R3 ≈ R1 · (R2 · R3)

(R∗)∗ ≈ R∗

(R?)? ≈ R?

(R∗)? ≈ R∗

(R?)∗ ≈ R∗

Two REs R1 and R2 are similar if R1 ≈ R2 and dissimilar otherwise.

It is trivial that the following statement holds from simple algebraic conse-
quences of the inductive definition of REs.

Corollary 1. If R1 ≈ R2, then R1 ≡ R2.
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Given a set of positive and negative strings, we consider the problem of
synthesizing a concise RE that is consistent with the given strings. The examples
are given by a pair (P,N) of two sets of strings, where P ⊆ Σ∗ is a set of positive
strings and N ⊆ Σ∗ is a set of negative strings.

Then, our goal is to find a RE R that accepts all positive strings in P while
rejecting all negative strings in N . Formally, R satisfies the following condition:

P ⊆ L(R) and L(R) ∩ N = ∅.

Since there are infinitely many REs satisfying the condition, we aim at finding
the most concise RE among all such expressions. We utilize the cost function C
to quantify the conciseness of REs.

3 Concise Normal Form for REs

Now we define the relation � of REs to define a terminating RE rewriting system
(S,�) that produces a more concise RE in terms of RPN (or at least a RE
with the same RPN). Let R and Rk be REs for any natural number k. First,
we consider the case when a RE has a subexpression that is formed by the
concatenation of similar REs.

Lemma 1 (Redundant Concatenation (RC) Rule 1). For a RE R, the
following equivalences hold:

(i) R?R � RR?

(ii) R∗R � RR∗

(iii) R∗R? � R?R∗ � R∗

Using the lemma above, we consider all REs with subexpressions in the form
of R?R, R∗R, R∗R?, or R?R∗ as redundant, as we can always rewrite those
subexpressions as RR?, RR∗, or R∗ without changing the language represented
by the resulting RE. We can further consider the following type of redundant
concatenation even when two concatenated subexpressions do not share exactly
the same expression.

Lemma 2 (RC Rule 2). If ε ∈ L(R1) and L(R1) ⊆ L(R∗
2), then R1R

∗
2 � R∗

2

and R∗
2R1 � R∗

2.

Lemma 3 (Kleene-Concatenation-Kleene (KCK) Rule).
If L(R1) ∪ L(R3) ⊆ L(R∗

2), then (R1R
∗
2R3)∗ � (R1R

∗
2R3)?.

Lemma 4 (Kleene-Concatenation-Question (KCQ) Rule).
If L(R1) ∪ L(R3) ⊆ L(R∗

2) and ε ∈ L(R1) ∩ L(R3), then (R1R2R3)∗ � R∗
2.

When the question operator is used for the concatenation of two REs, we
find the following rule.

Lemma 5 (Question-Concatenation (QC) Rule).
(RR∗)? � R∗ and (RR?)? � R?R? hold.
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When the union operator is used for multiple subexpressions, we find the
following four equivalence cases.

Lemma 6 (Union-Question (UQ) rule). R1 + R?
2 � (R1 + R2)? holds.

Lemma 7 (Inclusive Union (IU) Rule). If L(R1)⊆ L(R2), then R1 +
R2�R2.

We also use a rule named the factoring rule, which trivially holds by a simple
algebraic law (distributive law), to factor the common prefix or suffix of REs
within a union operator until there is no such subexpression.

Corollary 2 (Factoring Rule).
R1R2 + R1R3 � R1(R2 + R3) and R2R1 + R3R1 � (R2 + R3)R1 hold.

Finally, we use the following observation when a Kleene-star operator is used
for an expression that represents each symbol in the alphabet, as the resulting
expression is equivalent to Σ∗ (Sigma-star), which represents all possible strings
over the alphabet Σ.

Corollary 3 (Sigma-star Rule). If Σ ⊆ L(R), then R∗ � Σ∗.

Corollary 4. If R1 � R2, then rpn(R1) ≥ rpn(R2) and R1 ≡ R2 hold.

Now we are ready to introduce our new normal form for REs called the con-
cise normal form (cnf). Simply speaking, a RE is in cnf if its every subexpression
does not fall into a case introduced thus far. We formally define the cnf as follows:

Definition 2. We define a RE R to be in cnf if R does not contain a subexpres-
sion in any of the following forms:

1. R∗ or R? where ε ∈ L(R) (ssnf)
2. R?R, R∗R, R∗R? or R?R∗ (RC Rule 1)
3. R1R

∗
2 or R∗

2R1 where ε ∈ L(R1) and L(R1) ⊆ L(R∗
2) (RC Rule 2)

4. (R1R
∗
2R3)∗ where L(R1) ∪ L(R3) ⊆ L(R∗

2) (KCK Rule)
5. (R1R2R3)∗ where L(R1) ∪ L(R3) ⊆ L(R∗

2), ε ∈ L(R1) ∩ L(R3) (KCQ Rule)
6. (RR∗)? or (RR?)? (QC Rule)
7. R1 + R?

2 (UQ Rule)
8. R1 + R2 where L(R1) ⊆ L(R2) (IU Rule)
9. R1R2 + R1R3 or R2R1 + R3R1 (Factoring Rule)

10. R∗ where R = a1 + a2 + · · · + an and Σ ⊆ L(R) (Sigma-star Rule)

In order to prove that there always exists a RE in cnf for any given RE, we
prove the following result:

Lemma 8. The rewriting system (S,�) is terminating.

Proof. For the sake of contradiction, suppose that (S,�) is not terminating and
there is an infinite chain R0 � R1 � R2 � · · · . Since Corollary 4 guarantees
that the RPN length of REs does not increase by (S,�), it is easy to verify that
there exists a RE R which is repeated infinitely many times in the chain.

Therefore, it suffices to consider the following cases where the rewriting sys-
tem results in the same RPN length:
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(i) R?R � RR? (By Lemma 1)
(ii) (R1R

∗
2R3)∗ � (R1R

∗
2R3)? (By Lemma 3)

(iii) (RR?)? � R?R? (By Lemma 5)
(iv) R1 + R?

2 � (R1 + R2)? (By Lemma 6)

In the following, we demonstrate that no rule can initiate an infinite chain
of REs with proof by cases.

Case (i): Assume that the infinite chain is formed by the first rewriting rela-
tion R?R � RR?. This implies that there exists a derivation in the form of
R1RR?R2 �∗ R1R

?RR2 for any R1, R2 ∈ S. Since there is no relation that
rewrites the concatenation of two expressions other than R?R � RR?, we should
consider derivations of the following form:

R1RR?R2 � R′
1R

′′
1RR?R′

2R
′′
2 �∗ R1RR?R2,

where R1 = R′
1R

′′
1 and R2 = R′

2R
′′
2 .

In this case, R′′
1R should be converted into R′′′

1 R? where (R′′′
1 )? = R′′

1 by
the case (i) since there is no other possibility to convert R? into R. Hence,
we have the intermediate expression R′

1R
′′′
1 R?R?R′

2R
′′
2 . Now, we can see that

rpn(R′
1R

′′′
1 ) < rpn(R1) and therefore there is no possibility to reach R1RR?R2

by the rewriting system.

Case (ii): Let us consider the second case (R1R
∗
2R3)∗ � (R1R

∗
2R3)?. It is easy

to see that the rule cannot be used to form the infinite chain of REs as the
rule replaces a Kleene-star operator with a question operator. Since there is no
relation that places the removed question operator back, it is simply impossible
to use the rule in the infinite chain.

Case (iii): The third case (RR?)? � R?R? can be applied when concatenation
is used inside the question operator. In order to move back to the form before
the rule is applied, we need a relation that places a question operator enclosing
an expression which is a concatenation of two expressions. However, there is no
such rule in the rewriting system.

Case (iv): The fourth case R1 +R?
2 � (R1 +R2)? can be applied when union is

used inside the question operator. In order to move back to the form before the
rule is applied, we need a relation that places a question operator enclosing an
expression which is a union of two expressions. However, there is no such rule in
the rewriting system.

Since we have shown that an infinite chain of REs by the rewriting system
(S,�) cannot exist, the proof is completed. ��

As a corollary of Lemma 8, we observe the following result:

Corollary 5. Given a RE R, there always exists a RE R′ in cnf such that
R ≡ R′.

Unfortunately, it is well-known that the problem of testing inclusion between
two REs is PSPACE-complete [16]. Hence, we can easily deduce that the problem
of testing whether a given RE is in cnf is also PSPACE-complete as follows:
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Lemma 9. Given a RE R, the problem of determining whether or not R is in
cnf is PSPACE-complete.

Proof. Without loss of generality, we assume that two REs R1 and R2 do not
share the common prefix or suffix as we can easily factor out them. We also
assume that R1 and R2 do not contain a question operator.

Note that testing L(R1) ⊆ L(R2) is PSPACE-complete. Now a RE R1 +
R2 can be converted into a cnf expression R2 if and only if L(R1) ⊆ L(R2).
Therefore, it is easily seen that the problem of determining whether a given RE
is in cnf is also PSPACE-complete. ��

Since the cnf testing is PSPACE-complete, we instead introduce a relaxed
concept of the cnf called the soft concise normal form (scnf) by relaxing the
language inclusion restrictions in the cnf such as L(R1) ⊆ L(R2).

We first introduce a weaker notion of the language inclusion relation as follows
which can be determined in linear time:

Definition 3. Given two REs R1 and R2 over Σ = {a1, a2, . . . , an}, we define
R1 � R2 if R1 and R2 satisfy one of the following conditions:

(i) R1 ≈ R2

(ii) R2 = R∗ for any R ∈ S such that Σ ⊆ L(R)
(iii) R2 = R∗

1

(iv) R2 = R?
1

(v) R2 = R∗ and R1 = R? for any R ∈ S
(vi) R2 = (R1 + R)∗ for any R ∈ S

Note that the following relation trivially holds:

Corollary 6. If R1 � R2, then L(R1) ⊆ L(R2).

Now we formally define the scnf as follows:

Definition 4. We define a RE r to be in scnf if r does not contain a subexpres-
sion in Definition 2 where every restriction in the form of L(R1) ⊆ L(R2) is
replaced by R1 � R2.

Actually, it turns out that it is possible to determine whether or not a given
RE is in scnf in polynomial time.

Lemma 10. Given a RE R, we can determine whether or not R is in scnf in
polynomial time.

4 RE Synthesis Algorithm

We synthesize REs by relying on the best-first search while only considering REs
in scnf as REs not in scnf have more concise expressions representing the same
regular languages. Hence, we can prune out numerous REs by simply checking
if the expressions are in the scnf regardless of the given examples.
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4.1 Best-First Search Algorithm

As in the AlphaRegex [12], we utilize the best-first search to find the most concise
RE consistent with the given examples. Starting from the simplest form of REs,
we examine more complicated expressions until finding the solution.

We introduce a hole (�) that is to be replaced with some concrete RE. We
call REs with holes the templates. In order to perform the best-first search, we
rely on a priority queue to determine the next candidate. After pushing the
initial template � into the priority queue, we retrieve each template with the
minimal cost determined by the cost function C from the priority queue. For
each retrieved template, we generate more complicated templates or concrete
expressions by replacing holes with each symbol in Σ, ε, ∅, �+�, � ·�, �∗, and
�? and push them into the priority queue to continue the best-first search. The
search algorithm terminates when we find a solution which is consistent with the
given examples and not redundant.

We also use the additional pruning rule considered in AlphaRegex. Given a
template R, we define ̂R ( ˜R, resp.) to be a concrete RE obtained by replacing
every hole in R with Σ∗ (∅, resp.). Informally, ̂R is an over-approximation of R

as Σ∗ is the most general RE and ˜R is an under-approximation of R as ∅ is an
expression for the smallest set of strings among all REs. During the search, we
prune a template R if either P ⊆ L( ̂R) or L( ˜R) ∩ N = ∅ holds as it is already
impossible for R to reach any concrete expression consistent with (P,N).

4.2 Finding Redundancy Using Positive Examples

Meanwhile, we can further prune out the search space by relying on the set of
positive strings that the resulting RE should accept. In AlphaRegex [12], the
authors define a RE to be redundant if the RE contains an operator that can be
omitted while still accepting the positive strings.

We first explain the functions introduced in the AlphaRegex here to be self-
contained as follows:

un(a) = a (a ∈ Σ)
un(R1+R2) = un(R1)+un(R2)
un(R1 · R2) = un(R1) · un(R2)

un(R∗) = R · R · R∗

un(�) = �

sp(a) = {a} (a ∈ Σ)
sp(R1 + R2) = sp(R1) ∪ sp(R2)
sp(R1 · R2) = {R′

1 · R2, R1 · R′
2 | R′

i ∈ sp(Ri)}
sp(R∗) = {R∗}
sp(�) = {�}

Lee et al. introduced the un and sp functions to check the redundancy of star
and union operators used in REs, respectively. Given a RE R (possibly with
holes) and a set P of positive examples, they define R to be redundant if there
exists a regular expression R′ ∈ sp(un(R)) such that L(̂R′)∩P = ∅. For instance,
consider a set P = {0, 01, 011, 0111} and two templates: 1∗ · � and 0∗ · �. Then,
1∗ ·� is redundant since sp(un(1∗ ·�)) = {111∗ ·�} and apparently L(111∗ ·Σ∗)
does not contain any string in P . Analogously, 0∗ · � is also redundant.
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Algorithm 1: Our Synthesis Algorithm
Input : Positive and negative strings (P,N)
Output: A RE R consistent with (P,N)
Initialize a priority queue Q;
Push the initial template � into Q;
repeat

Pop a minimal cost template R from Q;
if R is a complete RE then

if R is consistent with (P,N) then
return R

else
foreach R′ ∈ next(R) do

if P ⊆ L(̂R′) or L(˜R′) ∩ N = ∅ then
if R′ is in scnf then

if R′ not redundant for P then
Push R′ into Q;

until Q �= ∅;

4.3 Our Synthesis Algorithm

Algorithm 1 shows the final synthesis algorithm. We first initialize a priority
queue Q that internally sorts templates according to their costs calculated by
the cost function C in increasing order. We first push the simplest template �
into Q and repeat the following procedure.

1. We retrieve a minimal cost template R from Q and check whether or not R
is a complete RE and consistent with the given examples (P,N). If so, we
return R as a synthesized RE. Otherwise, we proceed to the next step.

2. If R is a template with holes, then we generate templates by replacing a hole
with one of Σ, ε, ∅, � + �, � · �, �∗, or �? (defined as the set next(R)). For
each generated template R′, we test whether or not R′ has a possibility of
evolving into a RE satisfying the given examples. If so, we also test whether
R′ is in scnf and not redundant for positive examples P . If R′ qualifies the
tests, then we push R′ into Q.

5 Experimental Results

We conduct several experiments to verify that the proposed normal form of REs
significantly reduces the number of REs when enumerating all possible regular
languages. By doing so, we first show that the new normal form is more efficient
to enumerate distinct regular languages that are given in the form of REs by
pruning out numerous REs not in the new normal form. Second, we demonstrate
that the proposed normal form is useful when synthesizing a RE from a set of
positive and negative strings by enumerating all possible candidates by pruning
a vast amount of the search space during the enumeration process.
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Table 1. The number of REs in a given RPN length.

rpn(R) Exact Enum. [11] Base ssnf [7] scnf Pruning Ratio

1 2 2 2 2 0.00

2 4 4 4 4 0.00

3 7 7 7 5 28.57

4 13 38 38 24 36.84

5 32 106 90 42 60.38

6 90 364 312 146 59.89

7 189 1,444 1,236 481 66.69

8 580 5,170 3,650 1,278 75.28

9 1,347 19,741 14,849 4,636 76.52

10 3,978 77,838 52,388 14,675 81.15

11 - 302,908 188,820 46,978 84.49

12 - 1,206,042 741,108 165,818 86.25

13 - 4,853,655 2,690,537 537,446 88.93

5.1 Exact Enumeration of REs in Normal Form

First, we count the number of REs in a given RPN length and compare it with
the number of REs in scnf in Table 1. Recall that Lee et al. [11] attempted to
obtain the asymptotic estimates on the number of regular languages specified by
REs of given size n by the aid of the Chomsky-Schützenberger theorem [4] and
singularity analysis of the algebraic formal power series. Note that the upper
bound and lower bound obtained in [11] are O(3.9870n) and Ω(2.2140n).

In order to estimate the expected growth rate of the numbers given
in Table 1, we fit exponential curves to enumeration results using SciPy’s
scipy.optimize.curve fit function which implements a non-linear least-square fit.
As a result, we obtain the following estimates for the number of all valid REs
and the number of all REs in the proposed normal form of a given RPN length
as follows:

0.067 × 4.022n + 882.444 and 0.108 × 3.275n − 303.477.

As the numbers are growing exponentially, our synthesis algorithm is
expected to run exponentially faster than simple enumeration-based algorithm
and scale much better for more complicated examples.

5.2 Performance of RE Synthesis

For experiments of RE synthesis, we utilize two benchmark datasets: the
AlphaRegex dataset and random dataset. The AlphaRegex dataset consists of
25 REs from famous textbooks [9,15] on automata and formal language theory.
The authors of AlphaRegex created a set of positive and negative examples for
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Table 2. Comparisons of performance of AlphaRegex and our synthesis algorithm.

Benchmark Method Avg. Count Avg. Time Success Ratio

Random AlphaRegex 7,445 9.36 s 83.3%

AlphaRegex +
Redundancy Check

4,432 6.84 s 87.4%

Ours 3,478 4.39 s 87.9%

Ours + Redundancy
Check

1,813 2.68 s 91.9%

AlphaRegex AlphaRegex 7,038 8.71 s 76.0%

AlphaRegex +
Redundancy Check

5,190 7.38 s 88.0%

Ours 3,814 4.66 s 88.0%

Ours + Redundancy
Check

2,202 3.11 s 96.0%

each RE in the dataset1. Note that both datasets only consist of REs over binary
alphabet {0, 1}.

The random dataset contains 1,000 distinct randomly generated REs. We first
start from an initial template ‘�’ and randomly replace a hole in the template
by one of a ∈ Σ, ε, ∅, �+�, �·�, �∗, or �?. We repeat the process 10 times and
complete the template by randomly replacing every hole with one of the symbols
in Σ. If it is impossible to generate 10 positive examples from the random RE
as it can only describe a finite number of strings or its length is shorter than 7,
we re-generate a RE. We generate a set of 10 positive examples and 10 negative
examples for each random RE. In order to generate positive examples, we utilize
a Python library called the Xeger2. For generating negative examples, we first
randomly choose a number n between 1 and 15 and generate a random string of
length n. We repeat the process until we have 10 distinct strings that cannot be
described by the RE.

The experimental results are shown in Table 2. We compare our algorithm
implemented in Python 3 with our implementation of AlphaRegex on the two
benchmark datasets with or without the redundancy checking algorithm intro-
duced in AlphaRegex. Note that we use our implementation of AlphaRegex instead
of the original OCaml implementation of AlphaRegex for a fair comparison. We
set the limit on the number of visited templates to be 100,000 and consider the
examples synthesized before reaching the successful limit. The average numbers
(e.g., count and time) are calculated only for the successful examples. The exper-
imental results show that our synthesis algorithm is faster than AlphaRegex in
terms of both the average number of visited templates (including complete REs)
to find the solution and the actual runtime of our Python implementation.

1 The OCaml implementation of AlphaRegex and dataset are publicly available at
https://github.com/kupl/AlphaRegexPublic.

2 https://pypi.org/project/xeger/.

https://github.com/kupl/AlphaRegexPublic
https://pypi.org/project/xeger/
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Abstract. A three-way (resp., two-way) two-dimensional automaton
has a read-only input head that moves in three (resp., two) directions on
a finite array of cells labelled by symbols of the input alphabet. Restrict-
ing the input head movement of a two-dimensional automaton results in
a model that is weaker in terms of recognition power.

In this paper, we introduce the notion of “degrees of restriction”
for two-dimensional automata, and we develop sets of extended two-
dimensional automaton models that allow for some bounded num-
ber of restricted moves. We establish recognition hierarchies for both
deterministic and nondeterministic extended three-way two-dimensional
automata, and we find similar hierarchies for both deterministic and
nondeterministic extended two-way two-dimensional automata. We also
prove incomparability results between nondeterministic and determin-
istic extended three-way two-dimensional automata. Lastly, we con-
sider closure properties for some operations on languages recognized by
extended three-way two-dimensional automata.

Keywords: Closure properties · Degrees of restriction · Extended
two-dimensional automata · Recognition properties

1 Introduction

The two-dimensional automaton model is a generalization of the one-dimensional
(or string) automaton model that takes as input an array or matrix of sym-
bols from some alphabet Σ. The input head of such an automaton can move
either upward, downward, leftward, or rightward within its input word. The
two-dimensional automaton model was introduced by Blum and Hewitt [2].

If we restrict the input head movement of a two-dimensional automaton
so that it cannot move in certain directions, then we obtain variants of the
model that are weaker in terms of recognition power. If we forbid only upward
moves, then we obtain what is known as a three-way two-dimensional automa-
ton. Similarly, if we forbid both upward and leftward moves, then we obtain
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what is known as a two-way two-dimensional automaton. The three-way two-
dimensional automaton model was introduced by Rosenfeld [9], while the two-
way two-dimensional automaton model was introduced by Anselmo et al. [1] and
formalized by Dong and Jin [3].

Motivated by the question of how the accepting power of two-dimensional
computational models is affected by the number of input head reversals,
Morita et al. [8] studied “input head reversal-bounded” two-dimensional Tur-
ing machines. In their paper, Morita et al. considered two-dimensional Turing
machines operating on square tapes whose input heads may switch their verti-
cal direction of movement some bounded number of times. The authors inves-
tigated a relationship between deterministic and nondeterministic input head
reversal-bounded two-dimensional Turing machines, proposed a reversal hierar-
chy of space-bounded two-dimensional Turing machines, and established neces-
sary and sufficient conditions for three-way two-dimensional Turing machines to
simulate reversal-bounded four-way two-dimensional automata.

In the present paper, we consider a similar idea, which we term “degrees of
restriction” for two-dimensional automata. We introduce an i-extended three-
way two-dimensional automaton model, i ∈ N, where the computation on any
input word may move downward, leftward, and rightward, and is additionally
permitted to make at most i upward moves. Similarly, we introduce an (i, j)-
extended two-way two-dimensional automaton, i, j ∈ N, which is permitted to
make at most i upward moves and at most j leftward moves in a computation.
The i and j bounds can be viewed as being maintained by a counter stored on an
auxiliary tape that the automaton can only read from and decrement; this is to
prevent the automaton from using the tape as general storage. Equivalently, the
counter can be viewed as a stack containing some predefined number of unary
symbols that can only be popped.

Automata with reversal-bounded counters have been studied in the past;
for example, see Ibarra’s survey [4]. However, the models defined in past work
differ from our present model in that the counters of the former models may be
either decremented or incremented. For simplicity, in our model, we assume that
counters may only be decremented. Our model also differs from those considered
by Morita et al. in that we do not restrict the number of input head reversals (e.g.,
down-to-up or up-to-down), but rather the number of restricted moves made by
the input head (e.g., upward moves only). Thus, in our model, an automaton
can make any number of normal input head moves, but only a limited number
of restricted moves.

2 Preliminaries

A two-dimensional word consists of a finite array, or rectangle, of cells each
labelled by a symbol from a finite alphabet Σ. When a two-dimensional word
is written on the input tape of a two-dimensional automaton, the cells around
the word are labelled by a special boundary marker # �∈ Σ. A two-dimensional
automaton has a finite state control that is capable of moving its input head in
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four directions within its input word: up, down, left, and right (denoted by U ,
D, L, and R, respectively).

Definition 1 (Two-dimensional automaton). A two-dimensional automa-
ton is a tuple (Q,Σ, δ, q0, qaccept), where Q is a finite set of states, Σ is the input
alphabet (with # �∈ Σ acting as a boundary symbol), δ : (Q \ {qaccept}) × (Σ ∪
{#}) → Q × {U,D,L,R} is the partial transition function, and q0, qaccept ∈ Q
are the initial and accepting states, respectively.

We can modify the deterministic model given in Definition 1 to be nondeter-
ministic by changing the transition function to map to 2Q×{U,D,L,R}. We denote
the deterministic and nondeterministic two-dimensional automaton models by
2DFA-4W and 2NFA-4W, respectively.

By restricting the movement of the input head, we obtain the aforementioned
restricted variants of the two-dimensional automaton model. By prohibiting
upward movements, we obtain the three-way two-dimensional automaton model.
Similarly, by prohibiting both upward and leftward movements, we obtain the
two-way two-dimensional automaton model.

Definition 2 (Three-way/two-way two-dimensional automaton). A
three-way (resp., two-way) two-dimensional automaton is a tuple (Q,Σ, δ, q0,
qaccept) as in Definition 1, where the transition function δ is restricted to use
only the directions {D,L,R} (resp., the directions {D,R}).

We denote deterministic and nondeterministic three-way two-dimensional
automata by 2DFA-3W and 2NFA-3W, respectively, while the two-way model
is denoted by the suffix -2W.

Additional details about the two-dimensional automaton model and its
restrictions can be found in surveys by Inoue and Takanami [6], Kari and Salo [7],
and the first author [11].

We now move on to defining the main models of the paper, which we call
“extended” two-dimensional automata. We denote a (deterministic) i-extended
three-way two-dimensional automaton by 2DFA-3W[i], where i is the number of
upward moves the input head is permitted to make. Similarly, we denote a (deter-
ministic) (i, j)-extended two-way two-dimensional automaton by 2DFA-2W[i, j],
where i (resp., j) is the number of upward (resp., leftward) moves the input head
is permitted to make.

Clearly, 2DFA-2W[∞,∞] = 2DFA-3W[∞] = 2DFA-4W. Similarly, 2DFA-2W
[0,∞] = 2DFA-3W, and 2DFA-2W[∞, 0] is equivalent to 2DFA-3W�, or the class
of deterministic three-way two-dimensional automata where the transition func-
tion is restricted to use only the directions {U,D,R}. Lastly, 2DFA-3W[0] =
2DFA-3W and 2DFA-2W[0, 0] = 2DFA-2W. All of the previous definitions and
results apply also to nondeterministic models.

Remark 1. One could alternatively define the extended two-dimensional automa-
ton model in terms of a four-way two-dimensional automaton that is only per-
mitted to use at most i upward moves and at most j leftward moves. In this
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Fig. 1. An example of a word in the language L1 from the proof of Theorem 1, where
the symbol ∗ denotes either 0 or 1

paper, however, we formulate the model in terms of three-way/two-way two-
dimensional automata, as we feel this formulation better demonstrates how our
model fits into the landscape of more well-known models from the literature.

3 Recognition Properties

3.1 Three-Way Recognition

We begin by examining relationships between three-way and four-way two-
dimensional automata and the i-extended three-way variant.

Theorem 1. 2NFA-3W[0] ⊂ 2NFA-3W[1].

Proof. Let Σ = {0, 1}. We define the language L1 to be the language of all two-
dimensional words w with two rows such that w contains at least two occurrences
of “stacked 1s”; that is, at least two columns j where w[1, j] = w[2, j] = 1. An
example of a word in the language L1 is illustrated in Fig. 1.

An automaton A ∈ 2NFA-3W[1] recognizes words in L1 via the following
procedure:

1. The input head of A moves rightward and scans the first row of the input
word until it nondeterministically selects an occurrence of 1.

2. The input head moves downward to verify that the symbol in the second row
is a 1.

3. The input head moves rightward and scans the second row of the input word
until it nondeterministically selects another occurrence of 1.

4. The input head moves upward to verify that the symbol in the first row is a
1.

Clearly, this procedure requires only one upward move, which is performed in
Step 4.

Recall that any automaton A′ ∈ 2NFA-3W[0] is in fact a three-way two-
dimensional automaton. For the sake of contradiction, suppose such an automa-
ton A′, with m states, recognizes the language L1.

Let u(i, j, z) denote the single-row (i.e., one-dimensional) word of length z
where cells at positions i and j contain the symbol 1, 1 ≤ i < j ≤ z, and all other
positions contain the symbol 0. Furthermore, let w(i, j, z) denote the two-row
word where both rows are exactly the word u(i, j, z). This two-dimensional word
contains exactly two occurrences of “stacked 1s”, while all other cells contain 0s.
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Choose a length z such that (z − 1)/2 > m. The automaton A′ must accept
all words w(i, j, z), where 1 ≤ i < j ≤ z. For each such word, let C(i, j, z) denote
an accepting computation of A′ on that word. Since z(z−1)/2 > m·z, there exist
two different computations C(i, j, z) and C(r, s, z), with i �= r or j �= s, such
that in both computations C(i, j, z) and C(r, s, z) the automaton A′ makes a
downward move to the second row in the same column and same state. Without
loss of generality, all accepting computations of A′ must make a downward move,
since otherwise all symbols on the second row of the input word could be 0.

However, as a consequence of this observation, A′ will also accept the two-
dimensional word w0 where the first row is the word u(i, j, z) and the second row
is u(r, s, z). Since i �= r or j �= s, the word w0 contains at most one occurrence
of “stacked 1s” and, therefore, is not in the language L1. 	


We can use a similar argument to generalize the previous theorem to work
for any number of upward moves i.

Theorem 2. 2NFA-3W[i] ⊂ 2NFA-3W[i + 1].

Proof. Recall the language L1 from the proof of Theorem 1. We create a family
of languages Li, i ≥ 2, by taking i copies of L1 and concatenating row-wise to
form a new language. In this way, we create a language of two-dimensional words
each consisting of 2i rows where rows 2j and 2j + 1, 0 ≤ j < i, contain at least
two occurrences of “stacked 1s” as defined earlier.

An automaton B ∈ 2NFA-3W[i+1] recognizes words in Li+1 via the following
procedure:

1. The input head of B follows the process presented in the proof of Theorem 1 to
verify that the first two rows of the input word contain at least two occurrences
of “stacked 1s”.

2. After verifying that the first two rows satisfy this condition, the input head
moves back to the left border of the input word and then makes two downward
moves.

3. The automaton repeats these two steps until all consecutive pairs of rows are
checked.

The first two steps of this procedure require one upward move, and since there
are a total of 2i+2 rows in the input word, the procedure must be repeated i+1
times. Therefore, in order for B to accept an input word, it must make a total
of i + 1 upward moves.

For the sake of contradiction, suppose an automaton B′ ∈ 2NFA-3W[i] with
m states also recognizes words in Li+1. Each word in Li+1 consists of 2i+2 rows
where, for each odd c, the cth and (c + 1)st rows form a word in L1. Choose the
number of columns z such that

(z − 1)/2 > m · (i + 1). (1)

Let v(j, k, z) denote a two-dimensional word with z columns each of length 2i+2,
where the jth and kth columns, 1 ≤ j < k ≤ z, consist entirely of 1s and all
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other symbols are 0. Let C(j, k, z) denote an accepting computation of B′ on the
word v(j, k, z).

Since C(j, k, z) can make at most i upward moves, by the choice of z in Eq. 1,
there exist C(j, k, z) and C(r, s, z), with (j, k) �= (r, s), such that for some even
row value x, both C(j, k, z) and C(r, s, z) do not make an upward move from
row x to row x − 1 and both C(j, k, z) and C(r, s, z) make a downward move
from row x − 1 to row x in the same column and same state.

However, as a consequence of this observation, B′ must accept a word where
the first x − 1 rows are from v(j, k, z) and the last 2i + 3 − x rows are from
v(r, s, z). Since j �= r and k �= s, the (x − 1)st and xth rows do not form a word
in L1. 	


Combining Theorems 1 and 2 together with the fact that, for all i ≥ 1,
2NFA-3W[i] ⊂ 2NFA-3W[∞] = 2NFA-4W, we obtain a recognition hierarchy
amongst nondeterministic extended three-way two-dimensional automata. A
similar hierarchy exists for deterministic models.

Theorem 3. For all i ≥ 1,

2DFA-3W ⊂ · · · ⊂ 2DFA-3W[i] ⊂ 2DFA-3W[i + 1] ⊂ · · · ⊂ 2DFA-4W.

The proof of Theorem 3 goes through in a similar way to other proofs in
this section, but it uses a different language Mi to separate different classes
in the hierarchy. We define the language M1 to be the language of all two-
dimensional words with two rows where each word contains exactly two occur-
rences of “stacked 1s” as defined earlier,1 and where all other symbols of the
word are 0s. We can then create a family of languages Mi, i ≥ 2, by taking i
copies of M1 and concatenating row-wise.

3.2 Deterministic vs Nondeterministic Three-Way Recognition

Thus far, we have established that separate hierarchies exist for deterministic
and nondeterministic i-extended three-way two-dimensional automata. When
we compare deterministic and nondeterministic models to each other, however,
it turns out that the models are incomparable. This stands in contrast to the
usual relationship between deterministic and nondeterministic three-way two-
dimensional automata, where 2DFA-3W ⊂ 2NFA-3W [9]. In what follows, we
present a series of lemmas building up to the main result of this section.

Lemma 1. There exists a language M1 that is recognized by an automaton in
2DFA-3W[1] and not recognized by any automaton in 2NFA-3W[0].

Proof. Let Σ = {0, 1}. Recall the definition of the language M1 from the dis-
cussion following Theorem 3. We shall use this language again in the present
proof.
1 Note that the language M1 differs from the language L1 in that words in M1 contain
exactly two occurrences of “stacked 1s”, while words in L1 contain at least two
occurrences of “stacked 1s”.
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An automaton M ∈ 2DFA-3W[1] recognizes M1 via the following procedure:

1. The input head of M scans the first row of its input word and verifies that
the row contains exactly two occurrences of 1.

2. The input head returns to the leftmost occurrence of 1 in the first row and
makes one downward move to verify that the symbol in the corresponding
column of the second row is also 1.

3. The input head scans the second row of its input word and verifies that the
row contains exactly two occurrences of 1.

4. The input head returns to the rightmost occurrence of 1 in the second row
and makes one upward move to verify that the symbol in the corresponding
column of the first row is also 1.

Clearly, this procedure requires only one upward move.
However, an automaton N ∈ 2NFA-3W[0] cannot recognize any words in the

language M1 by an argument analogous to that given in the proof of Theorem 1
showing that no automaton B ∈ 2NFA-3W[0] can recognize words in the language
L1. 	


We may generalize the previous argument to apply to i-extended three-way
two-dimensional automata for any value of i ≥ 1.

Lemma 2. There exists a language Mi+1 that is recognized by an automaton in
2DFA-3W[i + 1] and not recognized by any automaton in 2NFA-3W[i].

Next, we consider the opposite direction.

Lemma 3. There exists a language N2 that is recognized by an automaton in
2NFA-3W[0] and not recognized by any automaton in 2DFA-3W[1].

Proof. Let Σ = {0, 1}. We define the language N1 to be the language of all two-
dimensional words consisting of two rows that contain at least one occurrence
of “stacked 1s”. We then define N2 to be the language created by concatenating
two copies of N1 row-wise; that is, N2 is the language of all two-dimensional
words consisting of four rows, where the first two rows and the last two rows
each contain at least one occurrence of “stacked 1s”.

An automaton P ∈ 2NFA-3W[0] recognizes words in N2 via the following
procedure:

1. The input head of P moves rightward and scans the first row of the input
word until it nondeterministically selects an occurrence of 1.

2. The input head moves downward to verify that the symbol in the second row
is a 1.

3. The input head moves to the leftmost symbol, makes a downward move to
the third row of the input word, and scans the third row until it nondeter-
ministically selects another occurrence of 1.

4. The input head moves downward to verify that the symbol in the fourth row
is a 1.

Moreover, this procedure does not require any upward moves.
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To show that no automaton Q ∈ 2DFA-3W[1] is capable of recognizing words
in N2, we first require an intermediate claim.

Claim. No automaton Q′ ∈ 2DFA-3W[0] is capable of recognizing words in N1.

Suppose that an automaton Q ∈ 2DFA-3W[1] recognizes words in N2. As a
consequence of the preceding claim, Q cannot correctly verify that the first two
rows of its input word form a word from N1 without making an upward move.
If, for all input words, Q reads the first two rows without making an upward
move, then it will enter the third row of an input word whose first two rows do
not form a word from N1. If we suppose the third and fourth rows of this input
word consist entirely of 1s, then this forces Q to accept an illegal input word.

Thus, for some input words, Q must make an upward move in the first two
rows, thereby exhausting its single upward move before it reaches the third row.
Again, as a consequence of the preceding claim, it follows that Q cannot correctly
verify that the third and fourth rows of its input word form a word from N1.
Therefore, if Q accepts all words in N2, it must also accept some words not in
N2. 	


As a consequence of Lemmas 1 and 3, we obtain the aforementioned result.

Theorem 4. The classes 2NFA-3W[0] and 2DFA-3W[1] are incomparable.

Remark 2. As we did with Lemmas 1 and 2, it seems reasonable to extend
Lemma 3 to show that there exists a language recognized by an automaton in
2NFA-3W[i] and not recognized by any automaton in 2DFA-3W[i+1] for all i ≥ 1.
However, we would require a language different from that used in Lemma 3 to do
so, as all languages Ni, i ≥ 1, are recognized by an automaton in 2NFA-3W[0].

3.3 Two-Way Recognition

In this section, we turn to examining relationships between two-way and three-
way two-dimensional automata and the (i, j)-extended two-way variant.

We prove our first result relating to extended two-way two-dimensional
automata in a manner similar to the three-way case presented in Theorem 1.

Theorem 5. 2NFA-2W[0, 0] ⊂ 2NFA-2W[1, 0].

Proof. Let Σ = {0, 1}. Recall the language L1 from the proof of Theorem 1.
An automaton C ∈ 2NFA-2W[1, 0] recognizes words in L1 in exactly the same

way as the automaton A ∈ 2NFA-3W[1] from the proof of Theorem 1. Again,
this process requires only one upward move, and no leftward moves are needed.

Recall that any automaton C′ ∈ 2NFA-2W[0, 0] is in fact a two-way two-
dimensional automaton. For the sake of contradiction, suppose such an automa-
ton C′ recognizes the language L1. Then C′ must necessarily accept the word

1 1
1 1

.
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Moreover, the accepting computation of C′ on this word cannot visit all cells of
the word. Thus, if we change the one unvisited cell to contain a 0 instead of a
1, then C′ must also accept this word not in L1. 	


We now move on to proving the generalized form of the previous theorem.
The idea of the proof is similar to that used in Theorem 2, but due to the fact
that the model under consideration cannot move leftward, we must consider a
simplified version of the language Li+1 that does not require an automaton to
make leftward moves in order to accept words from the language.

Theorem 6. 2NFA-2W[i, 0] ⊂ 2NFA-2W[i + 1, 0].

Proof. Let Σ = {0, 1}. We define the language Ki+1, i ≥ 1, to be the language
of all two-dimensional words u with two rows such that u contains at least 2i+2
occurrences of “stacked 1s”.

An automaton D ∈ 2NFA-2W[i + 1, 0] recognizes words in Ki+1 via the fol-
lowing procedure:

1. The input head of D moves rightward and scans the first row of the input
word until it nondeterministically selects the first occurrence of “stacked 1s”.
The input head then moves downward to verify the other occurrence of 1.

2. The input head moves rightward and scans the second row of the input word
until it nondeterministically selects the second occurrence of “stacked 1s”.
The input head then moves upward to verify the other occurrence of 1.

3. The input head repeats the previous two steps a total of i + 1 times to verify
that a total of 2i + 2 columns of the input word contain “stacked 1s”.

Altogether, this procedure requires a total of i+1 upward moves, and no leftward
moves.

For the sake of contradiction, suppose an automaton D′ ∈ 2NFA-2W[i, 0]
recognizes the language Ki+1. Then D′ must accept the two-dimensional word
u0 consisting of two rows, where each row consists of the string 12i+2. However,
an accepting computation of D′ cannot visit all cells of u0, since it can only make
i upward moves. Moreover, an accepting computation of D′ cannot backtrack
through the word, as it cannot make any leftward moves. Thus, if we change one
unvisited cell in u0 to contain a 0 instead of a 1, then D′ must also accept this
word not in Ki+1. 	


Combining Theorems 5 and 6 together with the fact that, for all i ≥ 1,
2NFA-2W[i, 0] ⊂ 2NFA-2W[∞, 0] = 2NFA-3W�, we obtain another recognition
hierarchy for the two-way case. Naturally, we get a similar hierarchy as before
for deterministic models.

Theorem 7. For all i ≥ 1,

2DFA-2W ⊂ · · · ⊂ 2DFA-2W[i, 0] ⊂ 2DFA-2W[i + 1, 0] ⊂ · · · ⊂ 2DFA-3W�.



86 T. J. Smith and K. Salomaa

To prove Theorem 7, we use the singleton language Si over the alphabet
Σ = {0, 1} consisting of one word of dimension 2 × i, i ≥ 1, where all symbols
are 1. Then, in a manner similar to the proof of Theorem 6, we can show that a
deterministic two-way two-dimensional automaton making (i+1) upward moves
can recognize the word in S2i+2, while no deterministic two-way two-dimensional
automaton making i upward moves can visit all cells in such a word.

Since the classes 2DFA-3W/2NFA-3W and 2DFA-3W�/2NFA-3W� are equiv-
alent up to rotation,2 both of the two-way hierarchies are upper-bounded by
the class of languages recognized by traditional three-way two-dimensional
automata.

Moreover, if a two-way two-dimensional automaton can recognize a language
using at most i upward moves and no leftward moves, then the “transpose” of
that language (i.e., each word in that language reflected about its diagonal) can
be recognized by a two-way two-dimensional automaton using no upward moves
and at most i leftward moves. Therefore, there exist analogous hierarchies for
the (0, i)-extended models 2NFA-2W[0, i] and 2DFA-2W[0, i], where i ≥ 1.

4 Closure Properties

In this section, we take a brief diversion to investigate some closure properties
for extended two-dimensional automata. From past work [5,10], we know that
the classes of languages recognized by nondeterministic three-way and nondeter-
ministic four-way two-dimensional automata are closed under the operations of
union and reversal (or “row reflection”). On the other hand, the deterministic
counterparts of these language classes are closed only under language comple-
ment [12]. Thus, it is worthwhile to determine whether closure holds for the
“in-between” models of 2DFA-3W[i] and 2NFA-3W[i].

It seems clear that the class 2NFA-3W[i] is closed under union, since we can
simply take the set of automata recognizing each language in the union and
nondeterministically choose which automaton to use on a given input word.

Proposition 1. For all i ≥ 1, the class 2NFA-3W[i] is closed under union.

Using an approach based on that used to prove closure for the traditional
three-way two-dimensional automaton model, we can show that deterministic
i-extended three-way two-dimensional automata are closed under complement.

Theorem 8. For all i ≥ 1, the class 2DFA-3W[i] is closed under complement.

Proof. Let A ∈ 2DFA-3W[i]. We show that there exists an automaton A′ ∈
2DFA-3W[i] such that, if A accepts some input word, A′ does not, and vice
versa.

2 By “up to rotation”, we mean that a language L recognized by an automaton A ∈
2NFA-3W� can also be recognized by an automaton A′ ∈ 2NFA-3W if each word in
L is rotated clockwise by 90 degrees. The same applies to deterministic models.
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If A halts on every input word, then we simply swap the accepting and non-
accepting states of A to obtain the automaton A′. Otherwise, A loops infinitely
on some input word, and we must show that A′ can simulate the computation
of A while ensuring that, in each row of its input word, the input head of A′

either moves upward or downward, or the computation halts in that row.
To do so, A′ simulates the computation of A in the style of Theorem 1 of

Szepietowski [12]. The details of the construction are largely similar, with the
exception of how right crossing sequences are computed. In our simulation, right
crossing sequences may now account for a new outcome, {↑}, corresponding
to the case where the input head of A leaves the current row by making an
upward move. This outcome is in addition to the existing outcomes given by
Szepietowski, {�, ↓,←}, which correspond to looping within the current row,
leaving the current row by moving downward, and moving leftward beyond the
leftmost boundary of the crossing sequence, respectively. We make an analogous
change to the method of computing left crossing sequences. Since A can only
make a limited number of upward moves, A′ will never enter a “vertical loop”
(i.e., a loop where the input head of A returns infinitely often to an earlier row
via upward moves). Thus, we need only to detect and handle loops within a
single row, which is done by our modified form of Szepietowski’s construction.
Lastly, A′ accepts if and only if A does not accept, and vice versa. 	


Going further, an interesting set of language operations to study would
be operations that are closed for either three- or four-way two-dimensional
automata, but not both. For instance, union, intersection, reversal, and rota-
tion are closed for 2DFA-4W, but not for 2DFA-3W. Similarly, intersection and
rotation are closed for 2NFA-4W but not for 2NFA-3W, while row concatenation
and row closure are closed for 2NFA-3W but not for 2NFA-4W. (Full details may
be found in the surveys on two-dimensional automata [6,7,11].) Using our model,
we could determine whether an operation becomes closed at some intermediate
stage, or whether any modification to input head movement results in loss of
closure.

5 Conclusion

Restricting the input head movement of a two-dimensional automaton results in
a model that is weaker in terms of recognition power. However, based on past
related work, it is reasonable to assume that this recognition power is affected
by permitting some bounded number of input head reversals. In this paper,
we considered the notion of degrees of restriction, and we developed extended
two-dimensional automaton models in both three-way and two-way variants. We
established that separate strict recognition hierarchies exist for both determin-
istic and nondeterministic i-extended three-way two-dimensional automata, and
similar hierarchies exist for the two-way model. When we consider deterministic
and nondeterministic extended three-way two-dimensional automata together,
however, we find that the two models are incomparable. This is in contrast
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to the usual strict containment relationship between deterministic and nonde-
terministic three-way two-dimensional automata. We also investigated closure
properties of extended three-way two-dimensional automata, finding that the
nondeterministic model is closed under union and the deterministic model is
closed under complement.

There remain some natural avenues for further study on this model. For the
extended two-way two-dimensional automaton model, it would be worthwhile
to investigate what kind of “sub-hierarchy” might result when modifying the
numbers of permitted upward and leftward moves simultaneously, rather than
separately. There also remains the problem of establishing a relationship between
2DFA-2W[i, j] and 2NFA-2W[i, j], similar to the result of Theorem 4. Moreover,
the question of closure status persists for some operations such as reversal for
2NFA-3W[i].

Lastly, in the introduction, we mentioned related work of Morita et al. on
input-head reversal-bounded two-dimensional Turing machines, and we con-
trasted our model with theirs. We may alternatively consider a three-way two-
dimensional automaton model more closely related to the model of Morita et
al., where the automaton has two modes of operation (specifically, where its ver-
tical direction of movement is either downward or upward) and it may switch
between these two modes some constant k number of times. We may also con-
sider extended two-dimensional automaton models with non-constant bounds on
the number of upward or leftward moves. Investigating such models may prove to
be interesting and could lead to results similar to those presented in this paper.
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Abstract. We investigate the state complexity of languages resulting
from the cascade product of two minimal deterministic finite automata
with n and m states, respectively. More precisely we study the magic
number problem of the cascade product operation and show what range
of complexities can be produced in case the left automaton is unary, that
is, has only a singleton letter alphabet. Here we distinguish the cases
when the involved automata are reset automata, permutation automata,
permutation-reset automata, or do not have any restriction on their
structure. It turns out that the picture on the obtained state complexi-
ties of the cascade product is diverse, and for all cases, except where the
left automaton is a unary permutation(-reset) or a deterministic finite
automaton without structural restrictions, and the right one is a reset
automaton or a deterministic finite automaton without structural restric-
tions, we are able to identify state sizes that cannot be reached—these
numbers are called “magic.”

1 Introduction

Originally, the magic number problem for finite automata [8] asks whether there
exists a minimal n-state nondeterministic finite automaton whose equivalent
minimal deterministic finite automaton (DFA) has α states for all n and α with
n ≤ α ≤ 2n. A number α not satisfying this condition is called a magic number
for n. The problem was solved in [9], showing that for ternary languages no
magic numbers exist contrary to the unary case [3]. It is worth noting that for
binary languages the original problem from [8] is still open.

Observe that the idea behind the magic number problem is not limited to
the determinization of nondeterministic finite automata. In fact, shortly after
the introduction of the magic number problem several papers studied regularity
preserving operations from a magic number perspective. In [7] it was shown
that for the intersection of DFAs no number in the interval [1, nm] is magic—
this already holds for binary automata. Besides intersection also other formal
language operations such as, e.g., union [7], concatenation [9], square [2], star [1],
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reversal, and the cut operation [6] were investigated on the quest for magic
numbers. It turned out that magic numbers are quite rare. For instance, for the
star of unary languages there are linearly many magic numbers [1]. On the other
hand, star of binary languages has no magic numbers. For the cut operation on
unary automata the interval 2m up to n − 1 turns out to be magic. Thus, these
complexities cannot be reached by the cut operation on m- and n-state DFAs,
if 2m ≤ n − 1.

We contribute to the list of magic number problems for operations on
automata by studying the cascade product, which is the main ingredient to
the celebrated Krohn-Rhodes Theorem [10] that states that any finite automa-
ton can be decomposed into (several) simple “automata prime factors.” Here we
are not interested in the classification of regular languages by automata prime
factors. Instead, we investigate the descriptional complexity of the cascade oper-
ation on two finite automata A and B, only. We further limit our study to the
case where the left automaton A is unary. For a better fine grain investigation of
the subject in question we use minimal DFAs only from the following automata
classes as operands to the cascade product operation: reset automata (RFA), per-
mutation automata (PFA), permutation-reset automata (PRFA), and automata
with no structural restrictions (DFA)—for unary automata every permutation-
reset automaton is in fact either a reset or a permutation automaton. We list
our findings in Table 1. A careful inspection of the table reveals that the right
automaton B in the cascade product is more important for the number of reach-
able states in the product than the left one. Moreover, the picture turns out to
be quite diverse. For instance, in case the left automaton is a unary RFA all com-
binations for the cascade product lead to magic numbers, which is not the case
for the remaining products where a RFA is the right automaton in the product.
The most complex situation appears whenever PFAs or PRFAs are involved. In
these cases the set structure of the reachable number of states is mostly deter-
mined by the size n of the left automaton and the non-trivial divisors t of n.
These cases lead to a significant amount of magic numbers. In fact, for all cases
where magic numbers exist, except for the case where both devices are RFAs,
the number nm− 1 turns out to be always magic. For the cascade product of an
n-state unary PFA or a DFA with an m-state finite automaton in general the
whole range {1, 2, . . . , nm} can be obtained, and thus no magic numbers exist
in these cases. This is not too surprising since the cascade product can simulate
the intersection of two automata—compare with [7]. The obtained results are in
sharp contrast to the general case, when we do not restrict to unary automata
as left operands in the cascade product. In [5] it was shown that for the gen-
eral case, magic numbers only exist for the cascade product of two permutation
automata. In all other cases the cascade products do not have magic numbers
at all.

2 Preliminaries

We recall some definitions on finite automata as contained in [4]. A deterministic
finite automaton (DFA) is a quintuple A = (Q,Σ, · , q0, F ), where Q is the finite
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Table 1. The range of state complexities for the cascade product of a minimal unary
n-state automaton A and a minimal m-state finite state device B of the mentioned
types. The parameter t used in the set descriptions is a non-trivial divisor of n or k,
depending on the case we are in. Moreover, the operation ⊕ on sets of numbers S1

and S2 is defined as S1 ⊕ S2 = {x + y | x ∈ S1 and y ∈ S2 }. In all cases where magic
numbers exist, except for the cascade product of two RFAs, the number nm − 1 turns
out to be magic.

Automata State complexities of minimal DFAs for L(A ◦ B) Magic number(s)

A B

RFA RFA {1, 2, 3} Yes Theorem 5

PFA {1, 2, . . . , m + 1} Yes Theorem 6

PRFA

DFA

PFA RFA {1, 2, . . . , 2n} No Theorem 7

PFA {1} ∪ { nx | 1 ≤ x ≤ m } ∪ { tx | 1 ≤ x < m } Yes Theorem 9

PRFA {1, 2, . . . , 2n} ∪ { nx | 1 ≤ x ≤ m } ∪ { tx | 1 ≤ x < m } Yes Theorem 17

DFA {1, 2, . . . , nm} No Theorem 18

DFA RFA {1, 2, . . . , 2n} No Theorem 7

PFA
⋃n

k=1(Mk ⊕ [0, n − k]), where Yes Theorems 19 and 20

PRFA Mk = {1} ∪ { kx | 1 ≤ x ≤ m } ∪ { tx | 1 ≤ x < m }
DFA {1, 2, . . . , nm} No Theorem 18

set of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state,
F ⊆ Q is the set of accepting states, and the transition function · maps Q × Σ
to Q. The language accepted by the DFA A is defined as

L(A) = {w ∈ Σ∗ | q0 · w ∈ F },

where the transition function is recursively extended to a mapping Q×Σ∗ → Q in
the usual way. Obviously, every letter a ∈ Σ induces a mapping on the state set Q
to Q by q �→ δ(q, a), for every q ∈ Q. A DFA is unary, if the input alphabet Σ is
a singleton set, that is, Σ = {a}, for some input symbol a. Moreover, a DFA is
said to be a permutation-reset automaton (PRFA), if every input letter induces
either a permutation or a constant mapping on the state set. If every letter of the
automaton induces only permutations on the state set, then we simply speak of
a permutation automaton (PFA). Finally, a DFA is said to be a reset automaton
(RFA), if every letter induces either the identity or a constant mapping on the
state set. The class of reset, permutation, permutation-reset, and deterministic
automata in general are referred to as RFA, PFA, PRFA, and FA, respectively.
It is obvious that the following chain of inclusions XFA ⊆ PRFA ⊆ FA, where
X ∈ {P,R}, holds. Moreover, it is not hard to see that the classes RFA and PFA
are incomparable.

In [10] the cascade product of two DFAs A = (QA, Σ, ·A , q0,A, FA) and
B = (QB , QA × Σ, ·B , q0,B , FB), denoted by A ◦ B, is defined as the automaton

A ◦ B = (QA × QB , Σ, · , (q0,A, q0,B), FA × FB),
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where the transition function is given by

(p, q) · a = (p ·A a, q ·B (p, a)),

for p ∈ QA, q ∈ QB , and a ∈ Σ. We say that A is the left automaton and B
the right automaton in the cascade product A ◦ B. It is obvious that the cascade
product of two DFAs contains their direct product. In order to explain our
notation we give a small example.

Example 1. Consider the PFA A = ({q0, q1, q2, q3}, {a}, ·A , q0, {q0, q1, q2}),
where the transitions are given by qi ·A a = qi+1 mod 4, for 0 ≤ i ≤ 3. More-
over, let

B = ({p0, p1}, {q0, q1, q2, q3} × {a}, ·B , p0, {p0})

be the PFA, where for all states and letters the transition function ·B acts like the
identity, except for the letters (q0, a) and (q1, a). In this case, let p0 ·B (q0, a) = p1
and p1 ·B (q0, a) = p0. Moreover, let p0 ·B (q1, a) = p1 and p1 ·B (q1, a) = p0. The
automata A and B are depicted in Fig. 1 on the top and lower right, respectively.
It is easy to see that both automata are minimal.

By construction the cascade product of A and B is given by

A ◦ B = ({q0, q1, q2, q3} × {p0, p1}, Σ, · , (q0, p0), {q0, q1, q2} × {p0}),

where the transition function can be deduced from Fig. 1 on the lower left.
Observe, that A ◦ B is also a PFA and that not all states are initially reach-
able. From the initially reachable part of A ◦ B the states (q0, p0) and (q2, p0)
(states (q1, p1) and (q3, p0), respectively) are equivalent. Because these states
are the only initially reachable ones and only two of the four are accepting, the
minimal DFA which accepts the language L(A ◦ B) has exactly two states.

The following result is immediate by the lower bound results on the opera-
tional complexity of the intersection operation on finite automata [7].

Theorem 2. Let A be an n-state and B an m-state DFA. Then nm states are
sufficient and necessary in the worst case for any DFA accepting L(A ◦ B). The
lower bound even holds for automata with binary input alphabet.

When considering the descriptional complexity of the cascade product, we
limit ourselves to the case where the involved automata are non-trivial, i.e., they
have more than one state. This is due to the fact that if the right automaton in
the operation under consideration is a singleton device, then the cascade product
accepts either the empty set or the same language as the involved other device. If
the left automaton is a singleton device, then the cascade product accepts either
the empty language or the language L that is the image of the language that the
right automaton accepts under the bijective mapping (q, a) �→ a for the letters a
of the left automaton, where q is the state of the left automaton. Therefore,
only 1- or m-state automata, for m ≥ 1, appear as results of a cascade product
with a trivial automaton. Thus, in the forthcoming we only consider non-trivial
automata.
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Fig. 1. The example automata A and B on the top and lower right, respectively. For
a better visibility not all transitions of an automaton are shown. In particular, this is
the case for automaton B, where self-loops are only depicted by dotted loops without
letters. The cascade product A ◦B is depicted on the lower left.

3 Results on the Cascade Product

This section is fourfold. In the first subsection we investigate the magic number
problem for the cascade product, where at least one automaton is a reset device,
while in the second subsection we study the magic number problem when both
automata are PFAs. Afterwards we study the case, where the left automaton is
a PFA and the right automaton is a PRFA. Finally we investigate the magic
number problem for the cascade product, where at least one automaton is an
arbitrary DFA. Before we start our studies we present a lemma on the minimality
of PFAs that is used very often in the subsections to come without further notice.
It is helpful and provides important information about the properties of PFAs.

Lemma 3. Let A be a PFA with a sole accepting state with all states reachable
from the initial state. Then A is minimal. Minimality is preserved even if the
initial state is changed to any other state.

Now we are ready for the first subsection considering the cascade product,
where at least one automaton is a reset device.

3.1 At Least One Automaton is a Reset Automaton

Before we start our investigation on the cascade product where at least one
automaton is a RFA, we take a closer look on minimal reset devices. It is easy
to see that one cannot distinguish more than two non-accepting states, because
the word that proves both of these states distinguishable must contain at least
one letter that acts as a reset and therefore after reading this letter both states
are mapped to the same state and thus cannot be shown inequivalent anymore.
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A similar reasoning applies to accepting states. Hence, every minimal RFA has
at most one accepting and one non-accepting state. Thus, we have shown the
following result, where the single state case is trivial.

Lemma 4. Every minimal reset automaton has at most two states. 	

Although minimal RFAs form a very restricted class of automata their cas-

cade product is worth to be considered in detail. We find the following situation—
recall, that we only deal with non-trivial automata:

Theorem 5. Let A and B be two minimal non-trivial RFAs, that is, both devices
are 2-state automata. (i) If A is a unary automaton, then the minimal DFA
accepting the language L(A ◦ B) has α states with 1 ≤ α ≤ 3 and (ii) if A has
an input alphabet of at least two letters, then the minimal DFA accepting the
language L(A ◦ B) has α states with 1 ≤ α ≤ 4.

One can try to generalize the results of the previous theorem to other
automata classes such as permutation automata for the right automaton in the
product. In fact, one can show that for a non-trivial minimal unary RFA A and
a minimal m-state PFA B, any DFA accepting the language A ◦ B has at most
m + 1 states. Next we show that the whole interval [1,m + 1] can be reached, if
the left automaton is a minimal non-trivial unary RFA.

Theorem 6. Let m ≥ 1. Then for every α with 1 ≤ α ≤ m + 1, there exists a
minimal non-trivial unary RFA A and a minimal m-state PFA B such that the
minimal DFA for the language L(A ◦ B) has α states.

This completes the case where the right automaton of the cascade product
is a PFA. Now the question arises what happens if the PFA appears as the left
automaton in the cascade product with a RFA. Compared to the previous case
already for minimal unary PFAs and non-trivial RFAs the whole interval [1, 2n],
where n is the number of states of the PFA, can be reached. Observe that in the
unary case the next theorem is in stark contrast to Theorem 6.

Theorem 7. Let n ≥ 1. Then for every α with 1 ≤ α ≤ 2n, there exists a
minimal unary n-state PFA A and a minimal non-trivial RFA B such that the
minimal DFA accepting the language L(A ◦ B) has exactly α states. The result
holds true even in the case if A is has an input alphabet of arbitrary size. 	


Since PFA ⊆ PRFA ⊆ FA holds the results from this subsection, where PFAs
are involved, immediately generalize to permutation-reset and finite automata
in general.

3.2 Two Permutation Automata

Before we start with the descriptional complexity analysis of the cascade product
of two permutation automata we prove a useful result that is helpful to determine
which deterministic state complexities are reachable and which ones are not.
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Lemma 8. The cascade product A ◦ B of two permutation automata A and B
is a permutation automaton, too.

Now we are ready to give an overview of all possible deterministic state
complexities that can arise. We call a divisor t of a number n non-trivial if t is
neither equal to 1 or n.

Theorem 9. Let n,m ≥ 2 and t be a non-trivial divisor of n. Then for every α
in {1} ∪ {nx | 1 ≤ x ≤ m } ∪ { tx | 1 ≤ x < m }, and only for those, there exists
a minimal unary n-state PFA A and a minimal m-state PFA B such that the
minimal DFA for the language L(A ◦ B) has α states.

In a series of lemmata we first show how to reach each of the above specified
values. Afterwards we show that only these values can be obtained. We start
with the values of the form nx, for 1 ≤ x ≤ m.

Lemma 10. Let n,m ≥ 2 and x with 1 ≤ x ≤ m. Then for every α that is
equal to nx, there exists a minimal unary n-state PFA A and a minimal m-state
PFA B such that the minimal DFA for the language L(A ◦ B) has α states.

With additional effort we can also show that every divisor of n is also reach-
able. This obviously includes the cases 1 and t of Theorem 9.

Lemma 11. Let n,m ≥ 2. Then for every α that is equal to one or to a non-
trivial divisor of n, there exists a minimal unary n-state PFA A and a minimal
m-state PFA B such that the minimal DFA for the language L(A ◦ B) has α
states.

We can extend the statement from the above lemma to the multiples of the
divisors of n with some side conditions.

Lemma 12. Let n,m ≥ 2. Moreover, assume that x satisfies 2 ≤ x ≤ m−1 and
that t is a non-trivial divisor of n. Then for every α that is equal to tx, there
exists a minimal unary n-state PFA A and a minimal m-state PFA B such that
the minimal DFA for the language L(A ◦ B) has α states.

The Lemmata 10, 11, and 12 thus show the reachability of the number of
states in the cascade product of a unary PFA with a PFA as claimed in Theo-
rem 9. Hence, it remains to prove that these are the only numbers that can be
obtained. To this end we first prove two structural properties of cascade products
of PFAs.

Lemma 13. Let A and B be minimal n- and m-state PFAs, respectively. Then
there is an x with 1 ≤ x ≤ m such that for every state q in A the number of
initially reachable states in A ◦ B that have q as their first component is exactly x.
As a direct consequence the initially reachable part of A ◦ B has exactly nx states.

The next lemma provides information about the equivalence classes of the
cascade product of permutation automata.
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Lemma 14. Let A ◦ B be the cascade product of two minimal PFAs A and B.
Then the minimal deterministic finite automata that accepts L(A ◦ B) has α
states, where α is a divisor of the quantity of initially reachable states of A ◦ B.
Furthermore, every state of A ◦ B has the same number of equivalent states,
if A ◦ B is strongly connected.

The last two lemmata obviously imply that only the numbers in

{ tx | t is a divisor of n and 1 ≤ x ≤ m }

can be reached in the cascade product of two PFAs. This set differently written
is equal to

{1, 2, . . . ,m} ∪ {nx | 1 ≤ x ≤ m }
∪ { tx | t is a non-trivial divisor of n and 1 ≤ x < m}

∪ { tm | t is a non-trivial divisor of n },

where the unions are eventually not disjoint. In order to prove Theorem 9 it
remains to exclude those numbers α that do not have a representation as given
there. Because we showed already that α = 1 is reachable we assume that α ≥ 2.
Due to the Lemma 13 we know that the number of initially reachable states
in A ◦ B is nx, for an integer 1 ≤ x ≤ m. Moreover, by Lemma 14 we know
that α is a divisor of nx. Now we distinguish two cases depending on the greatest
common divisor t of n and α.

1. Case t = 1. Recall that α is the number of states of the minimal automaton
accepting L(A ◦ B). First observe that the word aα is the shortest word that
only permutes equivalent states of A ◦ B and on the other hand the word an

is the shortest word which induces the identity mapping on the states of A.
Because α and n are coprime the smallest word which fulfills both conditions
is anα. This in turn implies that every mapping ajα, for 1 ≤ j ≤ n, has a
different image in A for a given state. Because α ≥ 2, there is at least one
accepting and one non-accepting state that is initially reachable in A ◦ B.
We pick an arbitrary initially reachable accepting state (q, p) in A ◦ B. Then
by applying the mappings ajα, for 1 ≤ j ≤ n, to (q, p) one observes that
every of the obtained images has a different first component. Because (q, p) is
accepting we obtain that n different states of A have to be accepting, which
is a contradiction to the minimality of A.

2. Case t > 1. Then we distinguish two subcases:
(a) Assume α/t �= m. Trivially, α equals t · α/t, where t is a divisor of n

and α/t is a divisor of x. Because t > 1 we obtain the reachability of α
by the Lemmata 10 and 12.

(b) In this case we observe that α = tα/t = tm and because there is no other
common divisor of n and α it follows that n/t and m are coprime. We
will show in the following theorem that α is not reachable in this case.
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Theorem 15. Let n,m ≥ 2 and t be a non-trivial divisor of n. Then for every α
that is equal to tm, there does not exist a minimal unary n-state PFA A and a
minimal m-state PFA B such that the minimal DFA for the language L(A ◦ B)
has α states, if the numbers m and n

t are relatively prime.

This completes our investigation on the cascade product of two permutation
automata and eventually proves Theorem 9. Finally we want to point out that
for example the numbers nm−1 are magic numbers for every non-trivial minimal
n-state PFA A and minimal m-state PFA B. This can be easily seen because
for n,m ≥ 2 we have (i) 1 < 3 ≤ nm − 1, (ii) n(m − 1) < nm − 1 < nm, and
(iii) tx ≤ t(m−1) < nm−1, for every non-trivial divisor t of n and 1 ≤ x ≤ m−1.
Therefore the reachability of nm − 1 is excluded by Theorem 9.

3.3 Permutation Automata with Permutation-Reset Automata

The next case that we consider for the cascade product is that of a unary per-
mutation automaton with a permutation-reset device. We will see that a few
further numbers on the state complexity are added to the case considered in the
previous subsection. We start with the following lemma.

Lemma 16. Let n,m ≥ 2. Then for every α with 1 ≤ α ≤ 2n, there exists a
minimal unary n-state PFA A and a minimal non-trivial PRFA B such that the
minimal DFA accepting the language L(A ◦ B) has exactly α states.

Since permutation-reset automata subsume permutation and reset automata
we may safely conclude that at least all state sizes that appear in the cascade
product A ◦ B of a permutation automaton A with an automaton B of the above
types can be reached. Thus, by Theorems 7, 9, and Lemma 16 this results in the
set {1, 2, . . . , 2n} ∪ {nx | 1 ≤ x ≤ m } ∪ { tx | 1 ≤ x < m } of reachable state
numbers. In the following theorem we show that these are indeed the only cases
that can be reached for the cascade product of a unary PFA with a PRFA.

Theorem 17. Let n,m ≥ 2 and t be a non-trivial divisor of n. Then for every α
in {1, 2, . . . , 2n} ∪ {nx | 1 ≤ x ≤ m } ∪ { tx | 1 ≤ x < m }, and only for those,
there exists a minimal unary n-state PFA A and a minimal m-state PRFA B
such that the minimal DFA for the language L(A ◦ B) has α states.

Clearly for m = 2 there are no magic numbers for the cascade product of
a minimal n-state PFA and a minimal m-state PRFA. But for m > 2 we have
that 2n < nm − 1, and therefore nm − 1 is a magic number for every pair n,m
with n ≥ 2 and m ≥ 3.

3.4 Deterministic Finite Automata Without Restrictions

In order to complete our study on the cascade product for unary automata it
remains to consider the cases, where in particular the right automaton is allowed
to be a DFA in general. We will show that in this case there do not exist magic
numbers, i.e., we obtain the whole interval [1, nm].
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Theorem 18. Let n,m ≥ 2. Then for every α in the interval [1, nm] there exists
a minimal unary n-state PFA A and a minimal m-state DFA B such that the
minimal DFA for the language L(A ◦ B) has α states.

By Theorem 18 we know that there are no magic numbers in the integer
interval [1, nm], if we allow the right automaton to be an arbitrary DFA. Because
PFA ⊂ PRFA ⊂ FA we can transfer this result one-to-one to the case where both
automata are DFAs.

It remains to consider the case where the left automaton is a DFA and the
right one is a PFA or a PRFA. We need some notation for the next theorem: for
two sets S1 and S2 of numbers let S1 ⊕ S2 := {x + y | x ∈ S1 and y ∈ S2 }. Now
we are ready for the statement, where the right automaton is a PFA.

Theorem 19. Let n,m ≥ 2. For k with 1 ≤ k ≤ n we define

Mk = {1} ∪ { kx | 1 ≤ x ≤ m }
∪ { tx | t is a non-trivial divisor of k and 1 ≤ x < m }.

Observe that M1 = {x | 1 ≤ x ≤ m }, because 1 does not have any non-trivial
divisors. Then for every α in

⋃n
k=1(Mk ⊕ [0, n − k]), and only for those, there

exists a minimal unary n-state DFA A and a minimal m-state PFA B such that
the minimal DFA for the language L(A ◦ B) has α states.

Finally, we show that there is no improvement on the reachable numbers if
we use a PRFA B instead of a PFA as right operand in the cascade product with
a DFA as left operand.

Theorem 20. Let n,m ≥ 2. Let Mk, for 1 ≤ k ≤ n, be defined as in the
previous theorem. Then for every α in

⋃n
k=1(Mk ⊕ [0, n−k]), and only for those,

there exists a minimal unary n-state DFA A and a minimal m-state PRFA B
such that the minimal DFA for the language L(A ◦ B) has α states.

One may ask whether all numbers in the integer interval [1, nm] are reach-
able by Theorems 19 and 20. This is in fact not the case. For instance, if n = 3
and m = 4 then the reader may verify that we can only reach the values
{1, 2, 3, 4, 5, 6, 7, 8, 9, 12}, because

M1 ⊕ [0, n − 1] = ({1, 2, 3, 4} ⊕ [0, 2]) = {1, 2, 3, 4, 5, 6},

M2 ⊕ [0, n − 2] = ({1, 2, 4, 6, 8} ⊕ [0, 1]) = {1, 2, 3, 4, 5, 6, 7, 8, 9},

and
M3 ⊕ [0, n − 3] = ({1, 3, 6, 9, 12} ⊕ [0]) = {1, 3, 6, 9, 12}.

A list of all magic numbers, for n and m with 2 ≤ n,m ≤ 6 is given in Table 2.
The interested reader may have noticed that the number nm − 1 appears in all
non-empty sets in the presented table. This holds in general and can be seen as
follows: (i) the largest number describable by an addition of n−k to the elements
of Mk, for k < n − 1, is less or equal to (n − 1)m + 1, (ii) the largest number
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in Mn−1 is (n − 1)m, which gives the number (n − 1)m + 1, that for m > 2, is
strictly less than (n−1)m+m−1 = nm−1, (iii) the second largest number in the
set Mn is n(m−1), which is strictly less than nm−1, and (iv) the largest number
in Mn is nm, which is strictly greater than nm − 1. This shows that nm − 1 is
not a member of

⋃n
k=1(Mk ⊕ [0, n − k]) and thus is a magic number.

Table 2. The sets of magic numbers for the cascade product of a minimal unary n-state
DFA A and a minimal m-state PFA B, for 2 ≤ n,m ≤ 6, w.r.t. the interval [1, nm].

DFA A PFA or PRFA B with m states

n-states 2 3 4 5 6

2 ∅ {5} {7} {7, 9} {9, 11}
3 ∅ {8} {10, 11} {13, 14} {14, 16, 17}
4 ∅ {11} {11, 14, 15} {14, 17, 18, 19} {17, 21, 22, 23}
5 ∅ {14} {18, 19} {18, 19, 22, 23, 24} {22, 23, 26, 27, 28, 29}
6 ∅ {17} {19, 22, 23} {19, 23, 27, 28, 29} {23, 27, 28, 29, 32, 33, 34, 35}

4 Conclusions

The Krohn-Rhodes Theorem [10] states that for every DFA A there exists a
cascade product of PRFAs that is equivalent to A. The descriptional complexity
version of this statement [11,12] gives exponential upper and lower bounds on the
size of the cascade product of A. To our knowledge the descriptional complexity
of the cascade product for two automata was not investigated so far. We close
this gap in this paper, by studying the problem in question for unary automata as
left operands in the cascade product. In this way we are able to draw a complete
picture for the studied cases and identify magic numbers, that is, size values that
cannot be obtained by a cascade product of two minimal automata. See Table 1
for the obtained results in detail. The general problem, i.e., the descriptional
complexity of the cascade product for non-unary left operands is studied in [5].
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Abstract. A communicating system is k-synchronizable if all of the
message sequence charts representing the executions can be divided into
slices of k sends followed by k receptions. It was previously shown that,
for a fixed given k, one could decide whether a communicating system is
k-synchronizable. This result is interesting because the reachability pro-
blem can be solved for k-synchronizable systems. However, the decision
procedure assumes that the bound k is fixed. In this paper we improve
this result and show that it is possible to decide if such a bound k exists.

Keywords: Communicating automata · MSC · Synchronizability

1 Introduction

Communicating finite state machines [4] model distributed systems where par-
ticipants exchange messages via FIFO buffers. Due to the unboundedness of the
buffers, the model is Turing powerful as soon as there are two participants and
two queues. In order to recover decidability, several works introduced restric-
tions on the model, for instance: lossiness of the channels [1], specific topolo-
gies, or bounded context switching [13]. Another line of research focused on
analyzing the system under the assumption that the semantics is synchronous
[2,5,6,8,9,11,12,14] or that buffers are bounded. This assumption is not as res-
trictive as it may seem at first, because several systems enjoy the property
that their execution, although not necessarily bounded, can be simulated by
a causally equivalent bounded execution. Existentially k-bounded communica-
ting systems [10] are precisely the systems whose message sequence charts can
be generated by k-bounded executions. In particular, the reachability problem
is decidable for existentially k-bounded communicating systems. A limitation of
this framework is that the bound k on the buffer size must be fixed. A natural
question is whether the existence of such a bound can be decided. Genest, Kuske
and Muscholl answered this question negatively [10]. Bouajjani et al. [3]1 intro-
duced a variant of existentially k-bounded communicating systems they called
k-synchronizable systems. A system is k-synchronizable if each of its execution is
causally equivalent to a sequence of communication rounds composed of at most
1 The results in [3] have then been refined in [7].
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k sends followed by at most k receptions. In particular, each execution of a k-
synchronizable system is causally equivalent to a k-bounded execution (provided
all messages are eventually received). Like for existentially bounded systems, the
reachability problem becomes decidable for k-synchronizable systems, and the
membership problem - whether a given system is k-synchronizable for a fixed
given k is decidable as well. Bouajjani et al. conjectured that the existence of a
bound k on the size of the communication rounds was undecidable.

Instead, in this paper, we show that this problem is decidable. This result con-
trasts with the negative result about the same question for existentially bounded
communicating systems. There is an important difference between existentially
bounded and k-synchronizable ones that explains this situation. Existentially
bounded systems deal with peer-to-peer communications, with one buffer per
pair of machines, whereas k-synchronizable systems deal with mailbox commu-
nications where one buffer per machine merges all incoming messages.

The paper is organized as follows: in the next section, we introduce preli-
minary definitions on communicating automata and k-synchronizable systems.
In Sect. 3 we explain the general strategy for computing the bound k, which is
to compute the automata of two regular languages: the language of reachable
exchanges, and the language of prime exchanges. In Sect. 4 we focus on reachable
exchanges, and in Sect. 5 on prime exchanges. Section 6 lastly computes the
bound k. Finally Sect. 7 concludes with some final remarks. Additional material
and proofs can be found here: https://arxiv.org/abs/2104.14408.

2 Preliminaries

Let V be a finite set of messages and P a finite set of processes exchanging
messages. A send action, denoted send(p, q, v), designates the sending of mes-
sage v from process p to process q, storing it in the queue of q. Similarly,
a receive action rec(q, v) expresses that process q pops message v from its
queue of incoming messages. We write a to denote a send or receive action.
Let S = {send(p, q, v) | p, q ∈ P, v ∈ V} be the set of send actions and
R = {rec(q, v) | q ∈ P, v ∈ V} the set of receive actions. Sp and Rp stand for
the set of sends and receives of process p respectively.

A system is a tuple S =
(
(Lp, δp, l

0
p) | p ∈ P

)
where, for each process p, Lp is

a finite set of local control states, δp ⊆ (Lp × (Sp ∪ Rp) × Lp) is the transition
relation and l0p is the initial state. In the rest of the paper, when talking about
a system S, we may also identify it with the global automaton obtained as the
product of the process automata and denoted (LS, δS, l0) where LS = Πp∈PLp

is the set of global control states, l0 = (l0p)p∈P is the initial global control state
and ((l1, · · · , lq, · · · , ln), a, (l1, · · · , l′q, · · · , ln)) ∈ δS iff (lq, a, l′q) ∈ δq for q ∈ P.
We write l in bold to denote the tuple of control states (lp)p∈P, and we sometimes
write lq

a−→q l′q (resp. l a−→ l′) for (lq, a, l′q) ∈ δq (resp. (l, a, l′) ∈ δS). We write
a1···an====⇒ for a1−→ · · · an−−→.

A configuration is a pair (l, Buf) where l = (lp)p∈P ∈ LS is a global control
state of S, and Buf = (bp)p∈P ∈ (V∗)P is a vector of buffers, each bp being a word

https://arxiv.org/abs/2104.14408
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over V. Buf0 stands for the vector of empty buffers. The mailbox semantics of a
system is defined by the two rules below.

[SEND]

l
send(p,q,v)−−−−−−−→ l′ b′

q = bq · v

(l, Buf)
send(p,q,v)�−−−−−−−→ (l′, Buf[b′

q/bq])

[RECEIVE]

l
rec(q,v)−−−−−→ l′ bq = v · b′

q

(l, Buf)
rec(q,v)�−−−−−→ (l′, Buf[b′

q/bq])

In this paper, we focus on mailbox semantics. An execution e = a1 · · · an is a
sequence of actions in S ∪ R such that (l0, Buf0)

a1�−→ · · · an�−−→ (l, Buf) for some l
and Buf. As usual, e

�=⇒ stands for a1�−→ · · · an�−−→. We write asEx(S) to denote the
set of executions of a system S. Executions impose a total order over the actions.
To stress the causal dependencies between messages we use message sequence
charts (MSCs) that only impose an order between matched pairs of actions and
between the actions of a same process.

Definition 1. A message sequence chart μ is a tuple (Ev, λ,≺po,≺src) such
that (1) Ev is a finite set of events partially ordered under (≺po ∪ ≺src)∗, (2)
λ : Ev → S∪R tags each event with an action, (3) for each process p, ≺po induces
a total order on the events of p, i.e. on λ−1(Sp ∪Rp), (4) (Ev,≺src) is the graph
of a bijection between a subset of λ−1(S) and the whole of λ−1(R) (5) for all
s ≺src r, there are p, q, v such that λ(s) = send(p, q, v) and λ(r) = rec(q, v).

We say that s ∈ λ−1(S) is a matched send if there exists r such that
s ≺src r. Otherwise, we say that s is unmatched. When v is either an unmatched
send(p, q, v) or a pair of matched actions {send(p, q, v), rec(q, v)}, we write
procS(v) for p and procR(v) for q. Note that procR(v) is defined even if v is
unmatched. An MSC is depicted with vertical timelines (one for each process)
where time goes from top to bottom. Points on the lines represent events of this
process. We draw an arc between two matched events and a dashed arc to depict
an unmatched send. The concatenation μ1 · μ2 of two MSCs is the union of the
two MSCs where, for each p, all p-events of μ1 are considered ≺po smaller than
all p-events of μ2. We write msc(e) for the MSC associated with the execution
e, and we say that a sequence of actions e is a linearization of a given MSC if it
is the sequence of actions induced by a total order extending (≺po ∪ ≺src)∗. We

write asTr(S) for the set {msc(e) | e ∈ asEx(S)}. We write l
μ

l′ to denote
that l e=⇒ l′ for any linearization e of μ. Finally, we recall from [7] the definition of
causal delivery that allows to consider only MSCs that correspond to executions
in the mailbox semantics.

Definition 2 (Causal delivery). Let μ = (Ev, λ,≺po,≺src) be an MSC. We
say that μ satisfies causal delivery if it admits a linearization with the total order
< such that for any two events s1, s2 ∈ Ev, if s1 < s2, λ(s1) = send(p, q, v)
and λ(s2) = send(p′, q, v′) for a same destination process q, then either s2 is
unmatched, or there are r1, r2 such that s1 ≺src r1, s2 ≺src r2, and r1 < r2.

A k-exchange (with k ≥ 1) is an MSC that admits a linearization e ∈ S≤kR≤k

starting with at most k sends and followed by at most k receives. An MSC is
k-synchronous if it can be chopped into a sequence of k-exchanges.
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Definition 3 (k-synchronous). An MSC μ is k-synchronous if μ = μ1 ·
μ2 · · · μn where, for all i ∈ [1..n], μi is a k − exchange.

Fig. 1. MSC μ1

For instance, the MSC μ1 depicted on Fig. 1 is 2-
synchronous, as it can be split in two 2-exchanges.

An execution e is k-synchronizable if msc(e) is k-
synchronous. A system S is k-synchronizable if all its exe-
cutions are k-synchronizable.

Theorem 1 ([3,7]). It is decidable whether a system S is k-synchronizable for
a given k. Moreover, it is decidable to know whether a control state is reachable
under the assumption that S is k-synchronizable.

This result is interesting but somehow incomplete as it assumes that a fixed
value of the parameter k has been found. We aim at answering this limitation
by computing the synchronizability degree of a given system.

Definition 4 (Synchronizability degree). The synchronizability degree
sd(S) of a system S is the smallest k such that S is k-synchronizable. In par-
ticular, sd(S) = ∞ if S is not k-synchronizable for any k.

3 Largest Prime Reachable Exchange

In this section, we relate the synchronizability degree of a system to the size of
a “maximal, prime, reachable exchange”. We start with defining these notions.

An exchange is a k-exchange for some arbitrary k, and we call k the size of
the exchange. An exchange μ is reachable if there exist exchanges μ1, · · · , μn for
some n ≥ 0 and such that μ1 · · · μn · μ ∈ asTr(S). An exchange μ is prime if
there does not exist a decomposition μ = μ1 · μ2 in two non-empty exchanges.
For instance, the 2-exchange (depicted by the MSC μ2, Fig. 2) with linearization:

Fig. 2. MSC μ2

send(p, q, v1) · send(r, q, v2) · rec(q, v1) · rec(q, v2)

is not prime, as it can be factored in two 1-exchanges
as follows

send(p, q, v1) · rec(q, v1) · send(r, q, v2) · rec(q, v2).

The size of the biggest prime reachable exchange is related to the synchro-
nizability degree sd(S) by the following property.

Lemma 1. Let k ∈ N∪{∞} be the supremum of the sizes of all prime reachable
exchanges. (1) If k = ∞, then sd(S) = ∞ (2) if k < ∞, then either S is
k-synchronizable and sd(S) = k, or S is not k-synchronizable and sd(S) = ∞.
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Since by Theorem 1 it is decidable whether S is k-synchronizable, it is enough
to know k in order to compute sd(S). In order to compute k, we have to address
two problems: the number of exchanges is possibly infinite, and one should exam-
ine sequences of arbitrarily many exchanges. To solve these issues, we are going
to reduce to a problem on regular languages. Let Σ = {!?, !} × V × P

2; for
better readability, we write !?vp→q (resp. !vp→q) for a Σ-symbol. To every Σ-
word w we associate an MSC msc(w) as follows. Consider the substitutions
σ1 : Σ → S and σ2 : Σ → R ∪ {ε} such that σ1(!?vp→q) = σ1(!vp→q) =
send(p, q, v), σ2(!?vp→q) = rec(q, v) and σ2(!vp→q) = ε. Then msc(w) is defined
as msc(σ1(w)σ2(w)). Clearly, it is an exchange (by construction, it admits a
linearization in S∗R∗), but more remarkably any reachable exchange can be
represented by such a word.

Lemma 2. For all reachable exchanges μ, there exists w ∈ Σ∗ s.t. μ = msc(w).

The proof follows from the fact that it is always possible to receive messages
in the same global order as they have been sent. Such a property would not hold
for peer-to-peer communications (see a counter-example in the long version).

We can now define two languages over Σ:

Lr = {w ∈ Σ∗ | msc(w) is reachable} and Lp = {w ∈ Σ∗ | msc(w) is prime}

Then the bound k we are looking for is the length of the longest word in Lr∩Lp.
It suffices to show that both Lr and Lp are effective regular languages to get an
algorithm for computing k. This is the content of Sects. 4 and 5.

4 Regularity of Reachable Exchanges

In this section, we aim at defining a finite state automaton that accepts a word
w ∈ Σ∗ iff msc(w) is reachable, that is, iff there exists μ1, μ2, . . . , μn such that
μ1 ·μ2 · · · μn ·msc(w) ∈ asTr(S). Now, observe that the prefix μ1 ·μ2 · · · μn brings
the system in a certain global control state that conditions what can be done
by msc(w). Moreover, the presence of unmatched messages in a buffer imposes
that none of the subsequent messages sent to the same buffer can be read.

The construction of the automaton accepting Lr proceeds in three sepa-
rate steps. First, we build an automaton that accepts the language of all words
that code an exchange, starting in a certain global control state in, and ending
in another global control state fin, and possibly not satisfying causal delivery.
Secondly, we consider the set of MSCs that satisfy causal delivery. We define
automata that recognize the words coding MSCs starting from a certain “buffer
state” and ending in another “buffer state”, the “buffer state” characterizing
whether or not the MSC satisfies causal delivery. Finally, we show that Lr is a
boolean combination of the languages of some of these automata.
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4.1 Automata of the Control States

We consider triples of global states (in,mid,fin), representing the exchanges
such that mid can be reached only with sends from in and fin can be reached
only with receptions from mid. We want to define an automaton SR(in,mid,fin)
that recognizes the words coding such exchanges. Intuitively, SR(in,mid,fin) is a
product of on the one hand the global automaton S restricted to send transitions
and on the other hand S restricted to receive transitions. For each send action,
either the reception is available and a matched message possible, or there is no
corresponding reception and so we obtain an unmatched message.

Definition 5 (Automaton of control states). Let S be a system and
in,mid, fin global states. SR(in,mid,fin) = (LSR, δSR, l0SR, FSR) is the automa-
ton where:

– LSR = {(l, l′) | l, l′ ∈ LS}; l0SR = (in,mid); FSR = {(mid,fin)};
– for each (ls, send(p, q, v), l′s) ∈ δS:

• ((ls, l), !vp→q, (l′s, l)) ∈ δSR for l ∈ LS;
• if (lr, rec(q, v), l′r) ∈ δS then ((ls, lr), !?vp→q, (l′s, l

′
r)) ∈ δSR

We denote L(SR(in,mid,fin)) the language of a such automaton. This is an
example of the construction.

Example 1. Let S1 be the system whose process automata p, q and r are depicted
in Fig. 3. For the triple (in,mid,fin) where in = (0, 0, 0),mid = (2, 0, 1) and
fin = (2, 1, 2), automaton SR(in,mid,fin) recognizes the following language:

L(SR(in,mid,fin)) = !?ap→r(!cp→q!?br→q + !?br→q!cp→q)
+ !?br→q!?ap→r!cp→q

Fig. 3. System S1

Lemma 3. w ∈ L(SR(in,mid,fin)) for some mid iff in
msc(w)

fin.
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4.2 Automata of Causal Delivery Exchanges

Let us now move to the trickier part, namely the recognition of words cod-
ing MSCs that satisfy causal delivery. Let μ = (Ev, λ,≺po,≺src) be an
MSC, and v ∈ λ−1(S) a send event, we write evS(v) for the event v and,

Fig. 4. MSC μ3 and its conflict
graph

when it exists, evR(v) for the event v′ ∈
λ−1(R) such that v ≺src v′. We say that v is
unmatched if evR(v) is undefined. We recall
from [3] the notion of conflict graph. Intu-
itively, it captures some (but not all) causal
dependencies between events. The figure on
the right represents an MSC and its associ-
ated conflict graph (Fig. 4).

Definition 6 (Conflict Graph). The conflict graph CG(μ) of an MSC μ =
(Ev, λ,≺po,≺src) is the labeled graph (V, {XY−→}X,Y ∈{R,S}) where V = λ−1(S),

and for all v, v′ ∈ V , there is a XY dependency edge v
XY−→ v′ between v and v′

(X,Y ∈ {S,R}), if evX(v) and evY (v′) are defined and evX(v) ≺po evY (v′).

The extended conflict graph [7] ECG(μ) is obtained by adding all dashed edges

v
XY��� v′ satisfying the relation

XY��� in Fig. 5. Intuitively, v
XY��� v′ expresses that

the event X of v must happen before the event Y of v′ due to: their order on
the same machine (Rule 1), or the fact that a send happens before its matching
receive (Rule 2), or to the mailbox semantics (Rules 3 and 4), or because of a
chain of such dependencies (Rule 5). This captures all constraints induced by
the mailbox communication, and it has been shown that an MSC satisfies causal
delivery if and only if its extended conflict graph is acyclic (Theorem 2 in [7]).

We build an automaton that recognizes the words w such that msc(w) satis-
fies causal delivery. To this aim, we associate to each MSC a “buffer state” that
contains enough information to determine whether its extended conflict graph
is acyclic. We write B for the set (2P × 2P)P. The buffer state B(μ) ∈ B of the
MSC μ is the tuple B(μ) = (Cμ

S,p, Cμ
R,p)p∈P such that for all p ∈ P:

Cμ
S,p = {procS(v) | v′ SS��� v & v′ is unmatched & procR(v′) = p} ∪

{procS(v) | v is unmatched & procR(v) = p}
Cμ

R,p = {procR(v) | v′ SS��� v & v′ is unmatched & procR(v′) = p & v is matched}
We can show that the ECG(μ) is acyclic if for all p ∈ P, p �∈ Cμ

R,p (immediate
consequence of Theorem 2 in [7]). Moreover, we write Bgood for the subset of B
formed by the tuples (CS,p, CR,p)p∈P such that p �∈ CR,p for all p.

Proposition 1 ([7]). For w ∈ Σ∗, msc(w) satisfies causal delivery if and only
if B(μ(w)) ∈ Bgood.

Noticing that B is finite, we build an automaton A(B0, B1) with B0, B1 ∈ B.
The intuition behind these two buffer states is that B0 summarises the conflict
graph derived from previous exchanges and B1 summarises the conflict graph
obtained when a new exchange is added.
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Fig. 5. Deduction rules for extended dependency edges of the conflict graph

Definition 7 (Automaton of causal exchanges). The automaton A(B0, B1)
is defined as follows:

– B is the set of states,
– B0 is the initial state (hereafter, we assume that B0 = (C(0)

S,p, C
(0)
R,p)p∈P).

– {B1} is the set of final states
– the transition relation ( a−→)a∈Σ is defined as follows:

• (CS,p, CR,p)p∈P

!?vp→q

−−−−→ (C ′
S,p, C

′
R,p)p∈P holds if for all r ∈ P: let the inter-

mediate set C ′′
S,r be defined by

C ′′
S,r =

{
CS,r ∪ {p} if p ∈ C

(0)
R,r or q ∈ CR,r

CS,r otherwise

Then

C′
S,r =

{
C′′

S,r ∪ CS,q if p ∈ C′′
S,r

CS,r otherwise
and C′

R,r =

{
CR,r ∪ {q} ∪ CR,q if p ∈ C′′

S,r

CR,r otherwise

• (CS,p, CR,p)p∈P

!vp→q

−−−−→ (C ′
S,p, C

′
R,p)p∈P holds if for all r ∈ P,

C ′
S,r =

{
CS,r ∪ {p} if q = r or q ∈ CR,r

CS,r otherwise and C ′
R,r = CR,r

Let L(B0, B1) denote the language recognized by A(B0, B1).

Fig. 6. MSC μ4

Example 2. Consider μ4 = msc(w)
with w =!vp1→p2

3 !?vp3→p2
4 !?vp4→p6

5 !?
vp6→p7
6 and assume we start with

B0 such that CS,p5 = {p4} and
CR,p5 = {p3}. Then the update
of B (or, more precisely, of CS,p5 ,
CR,p5 , and CS,p2) after reading
each message is shown below. Note
how v6 has no effect, despite the
fact that p6 ∈ CR,p5 at the time
the message is read (Fig. 6).
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CS,p5 {p4} {p4} {p1, p3, p4} {p1, p3, p4} {p1, p3, p4}
CR,p5 {p3} !v3−−→ {p3} !?v4−−→ {p2, p3} !?v5−−→ {p2, p3, p6} !?v6−−→ {p2, p3, p6}
CS,p2 ∅ {p1} {p1} {p1} {p1}
Next lemma states that A(B,B′) recognizes the words w such that msc(w),

starting with an initial buffer state B, ends in final buffer state B′.

Lemma 4. Let B,B′ ∈ B and w ∈ Σ∗. Then w ∈ L(B,B′) if and only if for
all MSC μ such that B = B(μ), B′ = B(μ · msc(w)).

4.3 Language of Reachable Exchanges

The only thing that remains to do is to combine the previous automata to
define one that recognizes the (codings of) reachable exchanges. The language
L(SR(in,mid,fin)) contains arbitrary exchanges which do not necessarily satisfy
causal delivery. Here comes into play the A(B,B′) automata, where we take B
and B′ ∈ Bgood in order to ensure causal delivery.

Let

Lc(in,fin, B,B′) def=
⋃

mid∈LS

L(SR(in,mid,fin)) ∩ L(B,B′).

Intuitively, Lc(in,fin, B,B′) is the language of (codings of) exchanges between
global states in and fin starting with an initial buffer state B and ending in
final buffer state B′; when moreover B,B′ ∈ Bgood, these exchanges satisfy
causal delivery.

The last step is to combine causal delivery exchanges so that they can be
performed by the system one after the other from the initial state l0. This
motivates the definition of the following set R of reachable languages. Let B∅ =
(∅, ∅)p∈P.

Definition 8 (Reachable languages). Given a system S = (LS, δS, l0), the
set R of reachable languages is the least set of languages of the form
Lc(in,fin, Bi, Bf ) defined as follows.

1. for any l ∈ LS and B ∈ Bgood, Lc(l0, l, B∅, B) is in R
2. for any l1, l2, l3 ∈ LS and any B1, B2, B3 ∈ Bgood, if Lc(l1, l2, B1, B2) ∈ R

and Lc(l1, l2, B1, B2) �= ∅ then Lc(l2, l3, B2, B3) ∈ R.

Then the union
⋃ R of all reachable languages is equal to the language

Lr = {w ∈ Σ∗ | msc(w) is reachable}. As a consequence, we get the following
result.

Theorem 2. Lr is a regular language and is accepted by an effective finite state
automaton.
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5 Prime Exchanges

We reformulate the primality of an exchange in terms of its conflict graph. We say
that the conflict graph CG(μ) associated with the MSC μ is strongly connected
if for all v, v′ ∈ V it holds that v →∗ v′, where →∗ is the reflexive transitive
closure of →=

⋃
X,Y ∈{S,R}

XY−→.

Lemma 5. An exchange μ is prime iff CG(μ) is strongly connected.

Next we discuss the construction of the automaton that recognizes {w ∈ Σ∗ |
msc(w) is prime}. Since there are infinitely many CG(msc(w)), in order to have
a finite state automaton, we compute a finite abstractions of CG(msc(w)) that
is sound in the sense that CG(msc(w)) is strongly connected if and only if its
abstraction is of a certain shape. Let us now define this abstraction.

We need to define some graph transformations. The graphs we are going to
manipulate are oriented graphs labeled with a pair of set of processes on each ver-
tex. We call such objects P-graphs. Formally, a P-graph is a tuple (V,E, λS , λR)
with E ⊆ V ×V and λX : V → 2P for X ∈ {S,R}. The P-graph pgr(μ) associated
with the conflict graph CG(μ) = (V, {XY−→}X,Y ∈{S,R}) is (V,E, λS , λR) where (1)

(v, v′) ∈ E if v
XY−→ v′ for some X,Y , (2) λS(v) = {procS(v)}, and (3) if v is

matched, then λR(v) = {procR(v)}, and if v is unmatched λR(v) = ∅.
The first graph transformation we consider consists in merging the vertices

that belong to a same strongly connected component (SCC). Formally, let G =
(V,E, λS , λR) be a P-graph, and let merge(G) = (V ′, E′, λS , λR) be defined by
(1) V ′ is the set of maximal SCCs of G, (2) for two distinct maximal SCCs U,U ′,
(U,U ′) ∈ E′ if there are v ∈ U and v′ ∈ U ′ such that (v, v′) ∈ E+ (the transitive
closure of E), (3) for X = S,R, λX(U) =

⋃
v∈U λX(v).

The second graph transformation we consider consists in erasing some of
the processes that appear in the labels. Let G = (V,E, λS , λR) be a fixed P-
graph, and let v ∈ V , X ∈ {S,R}, and p ∈ λX(v) be fixed. We say that p is
X-redundant in v if there are v1, v2 such that (1) (v1, v) ∈ E+ and (v, v2) ∈ E+,
and (2) p ∈ λX(v1)∩λX(v2). Intuitively, p is redundant in v if it also appears in
the label of an ancestor and a descendant of v. We define the P-graph erase(G)
as (V,E, λ′

S , λ′
R) where for all X ∈ {S,R}, for all v ∈ V , λ′

X(v) is the set of
processes p ∈ λX(v) such that p is not X-redundant at v.

The last graph transformation we consider consists in sweeping out the ver-
tices labeled with empty sets of processes. Formally, for G = (V,E, λS , λR), the
P-graph sweep(G) is (V ′, E′, λS , λR) where V ′ = {v ∈ V | λS(v) ∪ λR(v) �= ∅}
and E′ = E ∩ V ′ × V ′. The abstraction α(G) of a P-graph G is defined as
sweep(erase(merge(G))). An example of the construction is in Fig. 7.

Lemma 6. CG(μ) is strongly connected iff α(pgr(μ)) is a single vertex graph.

By construction, for any process p, and for any X ∈ {S,R}, there are at
most two vertices v of α(pgr(μ)) such that p ∈ λX(v). From this, we deduce that
α(pgr(μ)) has at most 2|P| vertices, and as a consequence:
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Fig. 7. MSC μ5, its associated P-graph pgr(μ5), and the abstraction α(pgr(μ5)).

Lemma 7. �{α(pgr(μ)) | μ is an exchange} ≤ 26|P|2 .

There are therefore finitely many α(pgr(μ)). This allows us to define the
automaton that computes α(pgr(msc(w))) for any w ∈ Σ∗ and accepts w
in the language of this new automaton when this P-graph is a single vertex
graph. Let G = (V,E, λS , λR) and a letter †vp→q ∈ Σ be fixed. We want
to define the transition function δg of our automaton, or in other words, the
P-graph δg(G, †vp→q) reached after adding the message †vp→q to the MSC.
We let δg(G, †vp→q

0 ) = α(G′). G′ = (V ′, E′, λ′
S , λ′

R) is defined as follows: (1)
V ′ = V � {v0}, (2) λ′

S(v0) = {p}, (3) if † =!?, then λ′
R(v0) = {q}, and if † =!,

then λ′
R(v0) = ∅, (4) for all v ∈ V , for all X ∈ {S,R}, λ′

X(v) = λX(v), and (5)
the set of edges E′ is defined as

Fig. 8. Graph G′

E′ = E ∪ {(v, v0) | p ∈ λS(v)} ∪ {(v0, v) | p ∈ λR(v)}
∪

{{(v, v0) | q ∈ λS(v) ∪ λR(v)} if † =!?
∅ if † =!

For example, consider the MSC μ of Fig. 7 and let G =
α(pgr(μ)) be its associated abstracted P-graph. Let G′ be
defined as above while reading !?vr→q

6 . Then G′ is the
graph on the right, and δg(G, vr→q

6 ) is a single vertex
graph (Fig. 8).

Lemma 8. δg(α(pgr(msc(w))), †vp→q) = α(pgr(msc(w · †vp→q))).

Theorem 3. There is an effective deterministic finite state automaton A with
less than 26|P|2 states such that L(A) = {w ∈ Σ∗ | msc(w) is prime}.

6 Computation of k

So far we have shown: in Lemma 1, we established that a way to compute sd(S)
was to compute the length k of the largest prime reachable exchange. To every
word w ∈ Σ∗, we associated an MSC msc(w), and we showed that for every
reachable MSC μ, there exists a word w ∈ Σ∗ such that μ = msc(w) (Lemma 2).
We deduced that k corresponds to the length of the longest word of Lr ∩ Lp, if
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Lr ∩ Lp is finite, otherwise k = ∞. In Sect. 4, we showed that Lr is an effective
regular language, and, in Sect. 5, we showed that Lp is also an effective regular
language. We deduce that Lr ∩Lp is therefore an effective regular language, and
that k is computable (since the finiteness and the length of the longest word of a
regular language are computable). With a careful analysis of the automata that
come into play, we can give an upper bound on k.

Theorem 4. sd(S) is computable, and if sd(S) < ∞ then sd(S) < |S|228|P|2 ,
where |S| is the number of global control states and |P| the number of processes.

As an immediate consequence of Theorems 1 and 4, we get the following.

Theorem 5. The following problem is decidable : given a system S, does there
exists a k such that S is k-synchronizable.

7 Conclusion

We established that it is possible to determine whether there exists a bound k
such that a given communicating system is k-synchronizable. For this, we showed
how the set of sequences of actions that compose an exchange of arbitrary size can
be represented as a regular language, which was possible thanks to the mailbox
semantics of communications. We leave for future work to decide whether it
would be possible to extend our result to peer-to-peer semantics.
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Abstract. We investigate the state complexity of the permutation oper-
ation, or the commutative closure, on Alphabetical Pattern Constraints
(APC). This class corresponds to level 3{2 of the Straubing-Thérien hier-
archy and includes the finite, the piecewise-testable, or J -trivial, and
the R-trivial and L-trivial languages. We give a sharp state complexity
bound expressed in terms of the longest strings in the unary projection
languages of an associated finite language. This bound is already sharp
for the subclass of finite languages. Additionally, for two subclasses, we
give sharp bounds expressed in terms of the size of a recognizing input
automaton and the size of the alphabet. Lastly, we investigate the inclu-
sion and universality problem on APCs up to permutational equivalence.
These two problems are known to be PSPACE-complete on APCs in gen-
eral, even for fixed alphabets. However, we show them to be decidable in
polynomial time for fixed alphabets if we only want to solve them up to
permutational equivalence.

Keywords: State complexity · Finite automata · Alphabetic pattern
constraint language · Commutative closure · Inclusion problem

1 Introduction

In regular model checking [1], a set of initial configurations is modelled as a
regular language and the actions of the system are modeled as a rewriting rela-
tion. For example, suppose we have an arbitrary number of processes that are
connected linearly and need access to a common resource, but only one at a
time and in order, starting from the first processor. Then, the state of a given
processor could be modeled by Σ “ {0, 1}, where 1 means the processor has
access to the resource, and 0 otherwise. The set of initial configurations is then
the regular languages 10∗, where a specific initial configuration is determined by
the number of processors involved. The transition relation is given by the rule
10 �→ 01 and the set of reachable configurations is the the language 0∗10∗. The
bad configurations are given by the language (0 ` 1)∗1(0 ` 1)∗1(0 ` 1)∗, and we
see that intersection of this set with the reachable configurations is empty.
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The computation of the set of reachable configurations is the closure of the set
of initial configurations under the rewriting relation. However, in this generality,
the framework is Turing-complete and hence restrictions have to be imposed.
In [2] the class of Alphabetical Pattern Constraints (APC) was introduced as
a class to describe initial and bad configurations, given by forbidden patterns,
that is closed under semi-commutations. The constructions in [2] rely on an
inductive transformation of an APC expression into another APC expression for
the closure. Here, our constructions will give a more direct and efficient procedure
for the full commutative closure and will also yield deterministic automata, which
we then use to devise polynomial time decision procedures for the inclusion and
universality problem up to permutational equivalence.

The state complexity of a regular language L is the minimal number of states
needed in a deterministic automaton recognizing L. Investigating the state com-
plexity of the result of a regularity-preserving operation on regular languages,
depending on the state complexity of the regular input languages, was first ini-
tiated in [15] and systematically started in [31]. As the number of states of a
recognizing automaton could be interpreted as the memory required to describe
the recognized language and is directly related to the runtime of algorithms
employing regular languages, obtaining state complexity bounds is a natural
question with applications in verification, natural language processing or soft-
ware engineering [8].

In general, the permutation operation is not regularity-preserving. But it is
regularity-preserving on finite languages, APCs and on group languages [2,9,
11]. The state complexity on group languages was studied in [11], but it is not
known if the derived bounds are tight. The state complexity of the permutation
operation on finite languages was first investigated in [5,18]. However, sharp
bounds were only obtained for subclasses and it is unknown if the general bound
stated in [5,18] is sharp. Surely, every finite language is an APC.

The dot-depth hierarchy [6] is an infinitely increasing hierarchy whose union
is the class of star-free languages. This hierarchy was motivated by alternately
increasing the combinatorial and sequential complexity of languages and cor-
responding recognizing devices [4,20]. Later, the more fundamental Straubing-
Thérien hierarchy was introduced [21,27,28]. Here, we start with {H, Σ∗} at
level zero and, alternately, build (1) the half-levels: finite unions of marked prod-
ucts of the form L0a1L1a1 · · · akLk with k ě 0, a1, . . . , ak P Σ and L1, . . . , Lk

from the previous full-level or, (2) the full levels: the Boolean closure of the
previous half-level. More formally, set L(0) “ {H, Σ∗} and for n ě 0, level
L(n ` 1

2 ) consists of all finite unions of languages L0a1L1a2 · · · akLk with k ě 0,
L0, . . . , Lk P L(n) and a1, . . . , ak P Σ, and level L(n ` 1) consists of all finite
Boolean combinations of languages from level L(n` 1

2 ). Every star-free language
is contained in some level of this hierarchy, which is also infinitely increasing. The
different levels could also be characterized logically by the quantifier alternation
of first order sentences [29].

The membership problem and related decision and separation problems with
respect to the levels of both hierachies, and their connection to logic, have
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sparked much interest [14,21,29]. The APCs precisely correspond to the lan-
guages of level 3{2 in the Straubing-Thérien hierarchy [2,14].

Green’s relations are five equivalence relations, named H, R, L, J and D,
that characterize the elements of a semigroup in terms of the principal ide-
als they generate [10]. By the notion of the syntactic monoid [17,23], these
relations entered into formal language theory and proved to be useful in the
classification of formal languages [7,13,19]. For example, it turned out that the
J -trivial, or piecewise-testable languages, are precisely the languages of level
one in the Straubing-Thérien hierarchy [19,26]. The H-trivial languages are pre-
cisely the star-free languages [24]. Also, the R-trivial and the L-trivial languages
are properly contained in level 3{2 of the Straubing-Thérien hierarchy, i.e., are
APCs [2,3,14].

2 Preliminaries and Definitions

We assume the reader to have some basic knowledge of automata and complexity
theory. For all unexplained notions, as, for example, regular expressions, the
Nerode equivalence relation and more formal definitions of PSPACE, the class of
problems solvable with polynomially bounded space, and P, the class of problems
solvable in polynomial time, we refer the reader to [12].

For an alphabet (finite nonempty set) Σ, denote by Σ∗ the set of all finite
words over the alphabet Σ including the empty word ε. If u P Σ∗ and a P Σ,
by |u| we denote the length of u and by |u|a the number of occurrences of the
symbol a in u. A language over Σ is any subset of Σ∗. Let L Ď Σ∗. We set
Pref(L) “ {u P Σ∗ | Dv P Σ∗ : uv P L}. A word u P Σ∗ is a prefix of a
word v P Σ∗, if u P Pref({v}). For a P Σ, the one-letter projection language is
πa(L) “ {a|u|a : u P L} and, for u P Σ∗, we set πa(u) “ a|u|a .

For a natural number n ě 0, we set [n] “ {0, . . . , n´1}. For a finite subset A
of natural numbers, by maxA and minA we denote the maximal and minimal
element in A with respect to the usual order, where we set max H “ min H “ 0.

A nondeterministic finite automaton (NFA) is given by A “ (Σ,Q, δ, q0, F ),
where Σ is an input alphabet, Q a finite set of states, δ : QˆΣ Ñ 2Q the transition
function, having a set of states as image, q0 the initial state and F Ď Q the set
of final states. If, for any q P Q and a P Σ, we have |δ(q, a)| ď 1, then A is
called a partial deterministic finite automaton (PDFA). If A is a PDFA, then
the transition function is often written as a partial function Q ˆ Σ Ñ Q. In
the usual way, the transition function δ can be extended to the domain Q ˆ Σ∗.
The language recognized by A is L(A) “ {u P Σ∗ | δ(q0, u) X F �“ H}. We
will also need the finite simple language Lsimple(A) “ {w P L(A) | δ(q0, w) \(⋃

uPPref(w)\{w} δ(q0, u)
)

�“ H} associated with A. This is the set of all words

that label paths with no loops1.

1 The length of the longest word in Lsimple(A) is called the depth in [16].
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Lemma 1. Let a P Σ and n “ max{|u|a | u P Lsimple(A)} ` 1. Then, for any
w P Σ∗ with2 |w|a ě n, we have: w P perm(L) ô wa P perm(L).

The state complexity of a regular language is the smallest number of states
in any PDFA recognizing the language.

Let A “ (Σ,Q, δ, q0, F ). A state q P Q is said to be reachable from a state
p P Q, if there exists u P Σ∗ such that q P δ(p, u).

An automaton is called partially ordered, if the reachability relation is a
partial order. Equivalently, if the only loops are self-loops. Partially ordered
automata are also known as weakly acyclic automata [22].

The shuffle operation of two languages U, V Ď Σ∗ is defined by

U � V “ {w P Σ∗ | w “ x1y1x2y2 · · · xnyn for some words
x1, . . . , xn, y1, . . . , yn P Σ∗ such that x1x2 · · · xn P U and y1y2 · · · yn P V }.

and u� v “ {u}� {v} for u, v P Σ∗. For languages L1, . . . , Ln Ď Σ∗, we set
�n

i“1Li “ L1 � . . .� Ln. Let L Ď Σ∗. If L “�aPΣ{a|u|a | u P L}, then we
call it a strict shuffle language.

Example 1. Let Σ “ {a, b}.

1. If u P Σ∗, then perm(u) is a strict shuffle language.
2. The language {u P {a, b}∗ | |u|a “ 1 and 2 ď |u| ď n} “ {a} �

{b, b2, . . . , bn´1} is a strict shuffle language.
3. perm({aabb, ab}) is not a strict shuffle language.
4. perm({aaabbb, abbb, aaab, ab}) is a strict shuffle language.

The permutation operation, or commutative closure, on a language is the set
of words that we get when permuting the letters of the words from the language.
Formally, for L Ď Σ∗, we set perm(L) “ {u P Σ∗ | Dv P L @a P Σ : |u|a “ |v|a}.
For example, perm({abb}) “ {abb, bab, bba}. For u P Σ∗, we also write perm(u)
for perm({u}). A language L Ď Σ∗ is called commutative, if perm(L) “ L. Note
that for strict shuffle languages L Ď Σ∗ we have perm(L) “ L.

An Alphabetical Pattern Constraint (APC) is an expression3 p1 ` . . . ` pn,
where each pi is of the form Σ∗

0a1Σ
∗
1 · · · anΣ∗

n with Σ0, . . . , Σn Ď Σ and
a1, . . . , an P Σ. In the following, we will not distinguish between the expres-
sion and the language it denotes, and taking the liberty to denote “`” by the
union symbol as well. Hence, an APC is a finite union of languages of the form
Σ∗

0a1Σ
∗
1 · · · anΣ∗

n as above. Equivalently, as concatenation distributes over union,
it is the closure of the subsets Γ ∗, Γ Ď Σ, and {a} for a P Σ under concatenation
and finite union4. The APCs are precisely the languages recognized by partially
ordered NFAs [14,25].

2 The assumption |w|a ě n is needed. For example, consider L “ an´1b∗.
3 With the shorthand Γ ∗ “ (a1 ` . . . ` an)∗ for Γ “ {a1, . . . , an} Ď Σ.
4 Note that, for Σ0, Σ1 Ď Σ nonempty, we have Σ∗

0Σ∗
1 “ Σ∗

0 Y ⋃
aPΣ1

Σ∗
0aΣ∗

1 .
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3 State Complexity Bound of Permutation on APCs

The APCs are closed under the permutation operation. However, they are not
closed under complementation. For example, the complement of Σ∗aaΣ∗ Y
Σ∗bbΣ∗ Y bΣ∗ Y Σ∗a over Σ “ {a, b} is (ab)∗. As perm((ab)∗) “ {u P Σ∗ |
|u|a “ |u|b} is not regular, it is not an APC. This also shows that level 3{2 of
the Straubing-Thérien hierarchy is the lowest level in which the permuation of
any language is regular.

Remark 1. Let L “ ⋃m
i“1 Σ

(i)
0 a

(i)
1 Σ

(i)
1 · · · a(i)

ni Σ
(i)
ni . Set Γ (i) “ Σ

(i)
0 Y . . . Y Σ

(i)
ni .

Then, perm(L) “ ⋃m
i“1 perm(a(i)

1 · · · a(i)
ni Γ

(i)) “ ⋃m
i“1 perm(a(i)

1 · · · a(i)
ni ) � Γ (i).

Hence, the permutational closure, as a finite union of languages of the form
Γ ∗a1Γ

∗ . . . anΓ ∗, is itself an APC.

Theorem 2. Let L be an APC recognized by a partially ordered NFA A. Then,
perm(L) is recognizable by a PDFA that uses at most (where we set max H “ 0)

∏
aPΣ

(max{|u|a : u P Lsimple(A)} ` 1)

many states and this bound is sharp even for finite languages.

Proof. Suppose we have k symbols and Σ “ {a1, . . . , ak}. Set nj “ max{|u|aj
|

u P Lsimple(A)} ` 1 for j P {1, . . . , k}. Construct B “ (Σ,Q, δ, q0, F ) with Q “
[n1 ` 1] ˆ . . . ˆ [nk ` 1] and

δ((s1, . . . , sk), aj) “
{

(s1, . . . , sj´1, sj ` 1, sj`1, . . . , sk) if sj ă nj ;
(s1, . . . , sk) if sj “ nj and as1

1 · · · ask
k aj P perm(Pref(L)).

Also q0 “ (0, . . . , 0) and F “ {δ(q0, w) | w P L and @j P {1, . . . , k} : |w|aj
ď nj}.

Claim: We have L(B) “ perm(L).

Proof of the Claim: By Lemma 1, for any w P Σ∗ with |w|aj
ě nj , we have

w P perm(L) ô waj P perm(L).

Let w P perm(L). Then a
min{n1,|w|a1}
1 · · · amin{nk,|w|ak

}
k P perm(L). Hence,

δ(q0, a
min{n1,|w|a1}
1 · · · amin{nk,|w|ak

}
k ) P F.

Furthermore, if |w|aj
ě nj , then, for

q “ (min{n1, |w|a1}, . . . ,min{nk, |w|ak
}),

we have δ(q, aj) “ q for any j P {1, . . . , k} such that |w|aj
ě nj . So,

δ(q0, w) “ δ(q0, a
min{n1,|w|a1}
1 · · · amin{nk,|w|ak

}
k ) P F.
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Conversely, suppose δ(q0, w) P F . If |w|aj
ą nj with j P {1, . . . , k}, then,

for the state q “ (min{n1, |w|a1}, . . . ,min{nk, |w|ak
}), we have δ(q, aj) “

q and so perm(amin{n1,|w|a1}
1 · · · amin{nk,|w|ak

}
k aj) Ď perm(L) by the above

definition of the transition function δ. Hence, the letter aj could be appended
nj ´|w|aj

many times and B stays in the same state, for every such letter with

|w|aj
ą nj . So, we find perm(a|w|a1

1 · · · a|w|ak

k ) Ď perm(L), which is equivalent
to w P perm(L). [End, Proof of the Claim]

That the bound is sharp is shown in Remark 2. ��
Lemma 3. Let A “ (Σ,Q, δ, q0, F ) be a partially ordered NFA. If any NFA for
Lsimple(A) needs at least n states, then |Q| ě n. A similar statement holds true
for PDFAs.

Let A “ (Σ,Q, δ, q0, F ) be a partially ordered NFA. As Lsimple(A) is finite,
every path from the start state to a final state in any recognizing automaton has
no loops. Hence, the length of a longest string in Lsimple(A) is a lower bound
for the number of states of any NFA recognizing Lsimple(A). Surely, for a P Σ
and u P Lsimple(A), the number |u|a is a lower bound for the length of the
longest string in Lsimple(A). So, combining with Lemma 3, we have max{|u|a :
u P Lsimple(A)} ď |Q| for a P Σ. This yields the next corollary to Theorem 2.

Corollary 4. Let L be an APC recognized by a partially ordered NFA with n
states. Then, perm(L) is recognizable by a PDFA with at most n|Σ|many states.

We have formulated Theorem 2 and the above corollary in terms of partially
ordered NFAs recognizing a given APC. However, APC expressions and partially
ordered NFAs are closely connected, for example, see Lemma 9 in Sect. 6. Hence
a corresponding statement could be made for APC expressions, where Lsimple(A)
corresponds to the set of words resulting if we delete all subexpressions Σ∗

i in
the parts of the unions.

4 When perm(Lsimple(A)) Is a Strict Shuffle Language

Here, we investigate a class of languages for which we can devise a sharp bound
expressed in the size of the input NFA. The bound is formulated with the number
of states and the size of the alphabet of the input automaton. As the bound is
sharp for a subclass of languages, it also yields a lower bound for the general
case.

For finite strict shuffle languages, we can derive the following lower bound
for the size of recognizing NFAs, which we will need in the proof of Theorem 6.

Lemma 5. Let L Ď Σ∗ be finite. If perm(L) is a strict shuffle language, then
any NFA recognizing L needs at least (

∑
aPΣ max{|u| : u P πa(L)}) ` 1 many

states.

Next, we state the main result of this section.
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Theorem 6. Let L be an APC language recognized by a partially ordered NFA A
with n states such that perm(Lsimple(A)) is a strict shuffle language. Then,
perm(L) is recognizable by a PDFA with at most

⌈
n ´ 1
|Σ| ` 1

⌉|Σ|

many states and this bound is sharp even for finite languages.

Proof. By Lemma 5, any automaton for Lsimple(A) needs at least
(ΣaPΣ max{|u|a : u P πa(L)}) ` 1 many states. So, by Lemma 3 we have
0 ď (ΣaPΣ max{|u|a : u P πa(L)}) ` 1 ď n. The value

∏
aPΣ(max{|u|a : u P

Lsimple(A)} ` 1) from Theorem 2 with the constraint 0 ď (ΣaPΣ max{|u|a : u P
πa(L)}) ` 1 ď n is maximized5 if max{|u|a : u P Lsimple(A)} equals (n ´ 1){|Σ|
for every a P Σ, which gives the claim. That the bound is sharp is shown in
Remark 2. ��

Note that for a single word u P Σ∗, we have perm(u) “�aPΣπa(u), i.e., the
commutative closure is a strict shuffle language. Hence, we get the next corollary
from Theorem 6, which is also sharp, as shown by Remark 2.

Corollary 7. Let L “ Σ∗
0a1Σ

∗
1a2 · · · amΣ∗

m. Then, perm(L) is recognizable by
a PDFA with at most �m{|Σ| ` 1�|Σ| many states. In particular, the commu-
tative closure of a single word u could be recognized by a PDFA with at most
�|u|{|Σ| ` 1�|Σ| many states and this bound is sharp.

Proof. The NFA A with state set Q “ {q0, q1, . . . , qm}, transition function
δ(qi, a) “ {qi : a P Σi} Y {qi`1 : i ă m and a “ ai`1} for i P {0, . . . , m}
and a P Σ, start state q0 and final state set {qm} recognizes L. We have
Lsimple(A) “ {a1a2 · · · am} and perm(Lsimple(A)) is a strict shuffle language.
Note that, by Lemma 3 and Lemma 5, A has the least possible number of
states. Then, Theorem 6 gives the claim and the bound is sharp by Remark 2. ��
Remark 2. Suppose Σ “ {a1, . . . , ak}. Let m ą 0 and u “ am

1 · · · am
k . Then,

any PDFA recognizing perm(u) needs at least (m ` 1)k many states. For let
0 ď mi, ni ď m, i P {1, . . . , k}, such that there exists j P {1, . . . , k} with
mj ă nj . Then, choose ri for each i P {1, . . . , k} such that ni ` ri “ m.
Set w “ an1

1 · · · ank

k ar1
1 · · · ark

k . As |w|ai
“ m for any i P {1, . . . , k}, we find

w P perm(u). However, for w′ “ am1
1 · · · amk

k ar1
1 · · · ark

k we have |w′|aj
ă m, so

that w′ {P perm(u). So, w and w′ represent different Nerode right-congruence
classes [12] for the language perm(u), which yields the lower bound for the num-
ber of states of any recognizing automaton.

As u is recognizable by a minimal NFA A with k·m`1 many states, |u|ai
“ m

for any i P {1, . . . , k} and Lsimple(A) “ L(A), as L(A) is finite, the bounds of
Theorem 2, Theorem 6 and of Corollary 7 are all meet by this example.
5 More precisely, if Σ “ {a1, . . . , ak}, we seek to maximize the function f(x1, . . . , xn) “∏k

i“1(xi ` 1) due to the constraint 0 ď ∑k
i“1 xi ď n ´ 1, which happens for x1 “

. . . “ xk “ n´1
k

with maximum value
(

n´1
k

` 1
)k

.
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5 State Complexity on General Chain Automata

A general chain automaton A “ (Σ,Q, δ, q0, F ) is a NFA such that the state set
is totally ordered, i.e., we can assume Q “ {0, . . . , n ´ 1} with the usual order
and q0 “ 0 and F “ {n ´ 1} and, for any q P Q \ {n ´ 1} and a P Σ, we have
δ(q, a) Ď {q, q ` 1}. If A is a general chain automaton, then Lsimple(A) Ď Σn´1.

These automata, with no self-loops allowed6, were introduced in [5] under the
name chain automata. The sharp bound we will give is essentially an adaption
of the bound derived in [5]. Note that we only have a result for binary alphabets.

Proposition 8. Let Σ “ {a, b} and A be a general chain automaton with n

states. Then, perm(L(A)) is recognizable by a PDFA with at most n2`n`1
3 many

states and this bound is sharp even on finite languages.

Proof (sketch). Let the set of states of A be {0, . . . , n ´ 1}, where 0 is the start
state and n ´ 1 is the only final state. Set Γ “ {x P Σ | Dq P Q : q P δ(q, x)}, the
symbols which label self-loops. Note that L(A) is finite if and only if Γ “ H.
For 0 ď h ď n ´ 2, the transitions only go from h to h ` 1 or we have a self-loop
from h to h. We have three possibilities for outgoing transitions from a state
0 ď h ď n ´ 2 that are not self-loops:

1. {h ` 1} Ď δ(h, a) and δ(h, b) X {h ` 1} “ H (a-transition);
2. {h ` 1} Ď δ(h, b) and δ(h, a) X {h ` 1} “ H (b-transition);
3. {h ` 1} Ď δ(h, a) X δ(h, b) (a&b-transition).

The order of the different types of transitions (a, b, or a&b) of A does not
affect the language perm(L(A)). A similar reasoning applies to the self-loops.
Hence, without loss of generality, we can assume that A has first a (possibly
empty) sequence of a-transitions, followed by a (possibly empty) sequence of b-
transitions, followed by a (possibly empty) sequence of a&b-transitions and only
self-loops with labels from the (possibly empty) subset Γ Ď Σ at the final state.
Thus, we can assume that L(A) “ aibj(a`b)kΓ ∗ for some non-negative integers
i, j, k such that i ` j ` k “ n ´ 1. By modifiying a construction from [5], we
can construct a PDFA for perm(L(A) with f(i, j, k) “ (i ` 1) · (j ` 1) ` k · j `
k · i ` k many states. In order to get an upper bound for the state complexity
of perm(L(A)) as a function of the size of A, we determine for which values of
i, j, k, where i ` j ` k “ n ´ 1, the function f(i, j, k) has a maximal value. The
function f is maximized if ij ` kj ` ki is maximal, thus if i “ j “ k “ n´1

3 .
More generally,

max
i`j`k“n´1

f(i, j, k) “
{

n2`n`1
3 if n ” 1 (mod 3);

n2`n
3 otherwise.

In [5, Lemma 4.2], as every chain automaton is a general chain automaton rec-
ognizing a finite language, it was shown that for n ” 1 (mod 3) there exists a
language recognized by a chain automaton with n states such that any automa-
ton for the commutative closure needs at least n2`n`1

3 many states. ��
6 This is no restriction when we have no self-loops.



Permutation on Alphabetical Pattern Constraints 123

6 Complexity Results

Here, we consider the alphabet to be fixed in advance and not part of the input.
In model checking, when the specification and the implementation could be

represented by finite automata, the inclusion problem arises naturally [1,30]. In
this problem, we are given two automata and ask if the recognized language
of the first is contained in the recognized language of the second automaton.
In [2] it was shown that the universality problem, i.e., deciding if a given APC7

denotes Σ∗, is PSPACE-complete, even for fixed binary alphabets. This implies
PSPACE-completeness of the inclusion problem.

Here, we show the somewhat surprising result that the above decision prob-
lems are polynomial time solvable modulo permutational equivalence, i.e., if we
ask the same questions for the commutative closure of the input languages, see
Theorem 11 and Corollary 12.

This result is not as artificial as it might seem. For example, consider the
introductory example from regular model checking in Sect. 1. Here, the set of
reachable configurations 0∗10∗ is closed under the commutative closure, as well
as the set of bad configurations (0 ` 1)∗1(0 ` 1)∗1(0 ` 1)∗ and its complement.
More specifically, these sets are commutative languages and the original deci-
sion problem is equivalent to the same decision problem modulo permutational
equivalence.

At the heart of this result lies the fact that the PDFA constructed in the
proof of Theorem 2 could be constructed, for a fixed alphabet, in polynomial
time. This will be shown in Proposition 10. But before this result, let us first
state that, with respect to polynomial time, it makes no difference if the input
is given as an APC expression or a partially ordered NFA.

Lemma 9. For a given partially ordered NFA A an APC expression of L(A)
could be computed in P and for every APC expression a partially ordered NFA
is computable in P. This result also holds for variable input alphabets.

So, we are ready to derive that from a given partially ordered NFA, a PDFA
recognizing the commutative closure could be computed in P.

Proposition 10. Given a partially ordered NFA A with n states, the recognizing
PDFA for perm(L(A)) from Theorem 2 could be constructed in polynomial time
for a fixed alphabet. More precisely in time O(n|Σ|`2).

Proof (sketch). This is only a rough and intuitive outline of the procedure.
Let Σ “ {a1, . . . , ak} and A “ (Σ,S, μ, s0, E) be a partially ordered NFA. We

outline a polynomial time algorithm to compute B “ (Σ,Q, δ, q0, F ) as defined
in the proof of Theorem 2. We can assume that s0 is minimal for the partial
order of A and every maximal state is final. Set na “ max{|u|a : u P Lsimple(A)}
for a P Σ

7 Or a partially ordered NFA, which follows by Lemma 9.
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The state set, and hence the numbers na, could be computed by a dynamic
programming scheme starting at the maximal final states and ending at the
start state. For each letter a P Σ, we store at every state q the number
max{|u|a | δ(q, u) P F and no loops are entered by u in A}, i.e., the longest
unary projection string for that letter when starting at this state, ending at
a final state and traversing no self-loops8. For a final maximal state, those num-
bers are initialized to zero and for every other state, they are computable from
the predecessor states. For the start state, the last state in this procedure, these
are precisely the numbers na, from which Q is easily constructible.

The computation of the transition function and the final state set is more
involved. Note that for states (s1, . . . , sk) P Q with si ă nai

for i P {1, . . . , k} the
transition function is easily computable. The only difficulty is to determine which
“boundary” states should be labeled by self-loops. We do this by constructing
an auxiliary automaton A′ out of A by “unfolding” the self-loops into paths of
length |S| ` 1. The automaton A′ then has no loops anymore. Now, we label the
states of this auxiliary automaton with those states from Q that are reachable
in B by words that go from the start state to the state under consideration of A′.
If such a word passes an unfolded path completely, then, as they are sufficiently
long, we know that it must traverse a self-loop in A labeled by the same letter a
as the unfolded path. In this case, for every “boundary” state of Q in the labeling
of the target state of the word in A′ we add a self-loop for the letter a to that
state from Q in B.

Finally, a state from Q is declared to be final if and only if it appears in a
label of a final state of A′.

This procedure indeed computes B and could be made to run in the stated
time bound. ��

With Proposition 10, we derive that, given two APCs, the inclusion problem
modulo permutational equivalence is solvable in polynomial time.

Theorem 11. Fix an alphabet Σ. Then, the following problem is in P:
Input: Two APC expressions L1, L2 over Σ∗.
Question: Is perm(L1) Ď perm(L2)?

Given an APC, the universality problem modulo permutational equivalence
is solvable in polynomial time, as it is reducible to the corresponding inclusion
problem up to permutational equivalence.

Corollary 12. Fix an alphabet Σ. Then, the following problem is in P:
Input: An APC expression L over Σ∗.
Question: Is perm(L) “ Σ∗?

As for commutative languages L Ď Σ∗ we have perm(L) “ L, we get the next
corollary. This generalizes a corresponding reduction of complexity for unary
alphabets [14].

8 So, essentially we are working in the automaton that results if we delete all self-loops,
which gives a recognizing automaton for Lsimple(A) for partially ordered NFAs A.
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Corollary 13. Fix an alphabet Σ. Given an APC describing a commutative
language, the universality problem is in P. Also, given two APCs describing
commutative languages, the inclusion problem is solvable in polynomial time.

7 Conclusion

We have given a sharp upper bound for the number of states needed in a deter-
ministic recognizing automata for the commutative closure of APCs. Addition-
ally, we have shown that the recognizing automaton could be computed in poly-
nomial time for fixed alphabets. Using this result, we have shown that the inclu-
sion and universality problem modulo permutational equivalence are solvable
in polynomial time for a fixed input alphabet. This contrasts with the gen-
eral inclusion and universality problem for APCs. Both are PSPACE-complete
even for binary alphabets [14]. For two subclasses of the APC languages, we
have given sharp bounds for the commutative closure expressed in the size of
the input automata. In the case that the language is given by a general chain
automaton, the result was only established for binary alphabets. The case for
larger alphabets is still open.

Acknowledgement. I thank the anonymous reviewers for careful reading, noticing
a reoccurring typo in the proof of Theorem 1 that was luckily spotted and fixed and
helping me identifying some unclear formulations throughout the text.
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18. Palioudakis, A., Cho, D.-J., Goč, D., Han, Y.-S., Ko, S.-K., Salomaa, K.: The state

complexity of permutations on finite languages over binary alphabets. In: Shallit,
J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 220–230. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19225-3 19

19. Pin, J.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, pp. 679–746. Springer, Heidelberg (1997). https://doi.
org/10.1007/978-3-642-59136-5 10

20. Pin, J.: The dot-depth hierarchy, 45 years later. In: Konstantinidis, S., Moreira,
N., Reis, R., Shallit, J.O. (eds.) The Role of Theory in Computer Science - Essays
Dedicated to Janusz Brzozowski, pp. 177–202. World Scientific (2017)

21. Place, T., Zeitoun, M.: Generic results for concatenation hierarchies. Theor. Com-
put. Syst. 63(4), 849–901 (2019)

22. Ryzhikov, A.: Synchronization problems in automata without non-trivial cycles.
Theor. Comput. Sci. 787, 77–88 (2019)

23. Schützenberger, M.P.: On an application of semi groups methods to some problems
in coding. IRE Trans. Inf. Theory 2(3), 47–60 (1956)

24. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8(2), 190–194 (1965)
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Abstract. This paper introduces a framework for building probabilistic
models with subsequential failure transducers. We first show how various
types of subsequential transducers commonly used in natural language
processing are represented by probabilistic and conditional probabilistic
subsequential failure transducers. Afterwards we introduce efficient algo-
rithms for composition of conditional probabilistic subsequential trans-
ducers with probabilistic subsequential failure transducers and weight
pushing (canonization) of probabilistic subsequential failure transducers.
Those algorithms are applicable to many tasks for representing proba-
bilistic models with subsequential failure transducers. One such task is
the construction of the HCLG weighted transducer used in speech recog-
nition which we describe in detail. At the end, empirical results and com-
parison between the presented HCLG failure weighted transducer and
the standard HCLG weighted transducer constructions are shown.

Keywords: Weighted transducers · Failure transducers · Probabilistic
models

1 Introduction

Weighted finite-state transducers (WFST) are widely used for representing prob-
ability distributions over words such as language models, pronunciation lexicons,
and hidden Markov models in automatic speech recognition (ASR) [8], and trans-
lation transformations in statistical machine translation [5]. In [1] it is shown
that a back-off n-gram language model can be efficiently represented as a subse-
quential failure transducer. In practice however the failure transitions are often
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substituted with ε-transitions [1,8]. The benefit is that general constructions for
finite-state transducers can be applied. The drawback is twofold. First, since new
non-valid paths are introduced, the output of the transducer is not equivalent to
the original one. Second, the transducer is not deterministic anymore and there
are many paths for one input. In [1] a procedure for eliminating some of the
non-valid paths is presented. This procedure has the property that the maximal
output probability for a given input in the resulting transducer will be equal to
the output probability of this input in the original failure transducer. However,
the resulting transducer might still contain more than one successful path for
a given input and its size typically becomes 2 to 3 times the size of the input
transducer.

In this paper we explore another approach. We introduce a framework for
building probabilistic models with failure transducer constructions. Particularly,
we show how to efficiently construct the HCLG transducer [7] used in many
modern ASR systems. We perform all constructions on failure transducers but
we maintain the determinism on the input and thus obtain subsequential failure
transducers as a result. The main advantages of our approach are:

– we directly construct deterministic devices – subsequential failure transduc-
ers, thus, avoiding additional determinizations,

– the resulting transducers represent correct probabilistic models.

Related work is conducted in [3] where specialized algorithms including inter-
section, failure transition removal and shortest distance for weighted failure
automata are presented. As opposed to [3] here we focus our attention on subse-
quential failure transducers only. We present efficient, direct constructions which
preserve the sequentiality of the failure transducers.

The formal definitions and detailed proofs of the constructions presented in
this paper are provided separately in [4].

2 Preliminaries

We will use the standard notions of alphabet, word, language etc. from formal
language theory. We will call a language L over the alphabet Σ prefix-free if
(∀α, β ∈ L)((∃γ ∈ Σ∗)(αγ = β) =⇒ α = β). Throughout the paper we will
distinguish between words as elements of the free monoid and lexicon words
which occur in natural language. With R we will denote the monoid 〈R+,×, 1〉
of non-negative real numbers with multiplication as the monoid operation. In
this paper we consider only subsequential transduction devices introduced by
Schützenberger [12]. For reasons of brevity, we will deliberately omit the word
“subsequential”.

A transducer is a tuple T := 〈Σ, 〈M,⊗, 1̄〉, Q, s, F, δ, λ, ι, ρ〉, where Σ is an
alphabet, 〈M,⊗, 1̄〉 is a monoid, Q is a finite set of states, s ∈ Q is an initial
state, F ⊆ Q is a set of final states, δ : Q × Σ → Q is a partial transition
function, λ : Q × Σ → M is a partial output function, ι ∈ M is an initial
output, ρ : F → M is a total final output function, and Dom(δ) = Dom(λ).
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The generalized transition function δ∗ : Q × Σ∗ → Q and the generalized output
function λ∗ : Q × Σ∗ → M are the natural extensions of δ and λ over Q × Σ∗.

For each q ∈ Q the function Oq
T : Σ∗ → M is defined for α ∈ Σ∗ as Oq

T (α) :=
λ∗(q, α) ⊗ ρ(δ∗(q, α)) if δ∗(q, α) ∈ F and is undefined otherwise. The function
OT : Σ∗ → M , defined for α ∈ Σ∗ as OT (α) := ι ⊗ Os

T (α), is the function
represented by the transducer T . A state q ∈ Q is called co-accessible in T if
Dom(Oq

T ) �= ∅.
A failure transducer is a tuple F := 〈Σ, 〈M,⊗, 1̄〉, Q, s, F, δ, λ, ι, ρ, f, ϕ〉

where 〈Σ, 〈M,⊗, 1̄〉, Q, s, F, δ, λ, ι, ρ〉 is a transducer, f : Q → Q is a partial fail-
ure transition function, ϕ : Q → M is a partial failure output function, and
Dom(f) = Dom(ϕ). We define the completed transition function δf : Q×Σ → Q
and the completed output function λf : Q × Σ → M inductively:

δf (q, σ) :=

{
δ(q, σ) if ! δ(q, σ)
δf (f(q), σ) otherwise

λf (q, σ) :=

{
λ(q, σ) if !λ(q, σ)
ϕ(q) ⊗ λf (f(q), σ) otherwise

where with ! δ(q, σ) (resp. ! λ(q, σ)) we denote that (q, σ) ∈ Dom(δ) (resp. (q, σ) ∈
Dom(λ)).

The expanded transducer of the failure transducer F is the transducer T :=
〈Σ,M, Q, s, F, δf , λf , ι, ρ〉. For each q ∈ Q we define Oq

F := Oq
T . The function

OF := OT is called the function represented by the failure transducer F . A state
q ∈ Q is co-accessible in F if it is co-accessible in T .

Definition 1. A failure transducer is monotonic if for every q ∈ Dom(f) and
every a ∈ Σ it holds that q ∈ F =⇒ f(q) ∈ F and ! δ(q, a) =⇒ ! δ(f(q), a).

The signature of a (failure) transducer state q is the set of labels for which
q has an outgoing transition, i.e. Sig(q) := {σ ∈ Σ | !δ(q, σ)}. If the failure
transducer is monotonic then Sig(q) ⊆ Sig(f(q)). Therefore the signatures of the
states in every failure cycle are identical and thus the failure transitions in the
cycle are redundant. In what follows, we will assume that every monotonic failure
transducer that we consider has no failure cycles since they can be efficiently
removed.

3 Probabilistic Transducers

In speech recognition a widely used approach is to construct the so-called HCLG
transducer [7,8]. This transducer is constructed by composing (from right to left)
the language model transducer G with the lexicon transducer L, the context-
dependency transducer C, and the HMM transducer H. We will show that the
transducer G can be represented by a probabilistic failure transducer.

Definition 2. A transducer T over the monoid R is probabilistic if OT is
a probability distribution over Σ∗, i.e. (∀α ∈ Dom(OT ))(OT (α) ∈ [0, 1]) and∑

α∈Dom(OT ) OT (α) = 1. In order to emphasize that T represents a probability
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distribution, in what follows with PT (α) we shall denote OT (α). We will use the
expression e(q) to mean ρ(q) if q ∈ F and 0 otherwise. We call T stochastic if
(∀q ∈ Q)

(
e(q) +

∑
a∈Σ : ! δ(q,a) λ(q, a) = 1

)
.

We call a failure transducer probabilistic (stochastic) if its corresponding
expanded transducer is probabilistic (stochastic). Note that stochastic failure
transducers may have failure outputs greater than 1.

Allauzen et al. have shown [1] that a smoothed n-gram language model can be
represented by a failure transducer G. The transducer G maps a given sequence of
lexicon words w1w2 . . . wn to the smoothed n-gram probability for the sequence
P (w1w2 . . . wn). A typical back-off formulation of a smoothed n-gram language
model is represented by the probability of a lexicon word w given a history h
as follows: P (w|h) := P̂ (w|h) if hw occurs, P (w|h) := αhP (w|h′) otherwise,
where P̂ is an empirical estimate of the probability that reserves probabilities
for unseen n-grams, αh is a normalizing back-off weight and h′ is obtained by
removing the earliest lexicon word from the history h. A failure transducer that
represents the n-gram language model has states corresponding to the observed
sequences of length < n. Its proper transitions (δ transitions) represent the case
in which hw occurs and have weights equal to P̂ (w|h). The failure transitions
represent the other case and have weights αh. It is assumed that every sentence
in the corpus ends with the special lexicon word $. A state h is final if P̂ ($|h)
> 0 and ρ(h) = P̂ ($|h). Figure 1a depicts a failure transducer that represents a
small bigram language model.

We can note that the failure transducer G is monotonic because the fail-
ure transitions enter states corresponding to shorter history. Also, the nor-
malization constants αh ensure that

∑
w P (w|h) = 1, which implies that

e(h) +
∑

w λf (h,w) = 1. Therefore, G is monotonic and stochastic.

Fig. 1. The transducer G (left) and the composition L ◦ G (right).
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4 Conditional Probabilistic Transducers

We next show that the transducers L, C, and H used to construct the HCLG
transducer can be represented by conditional probabilistic transducers.

Definition 3. A conditional probabilistic transducer is a transducer T := 〈Σ,
Ω∗ ×R, Q, s, F, δ, λ, ι, ρ〉 such that for every β ∈ Proj1(Range(OT )) it holds that∑

α∈Dom(OT (•|β)) OT (α | β) = 1, where the function OT (• | β) : Σ∗ → R+ for
α ∈ Σ∗ is defined as OT (α | β) := r if OT (α) = 〈β, r〉 and is undefined oth-
erwise. Again, in order to emphasize that T represents a conditional probability
distribution, in what follows with PT (α | β) we shall denote OT (α | β).

The conditional probabilistic transducer L. The transducer L represents the
pronunciation probabilities for the lexicon words. Here we assume that the set
of lexicon words coincides with Ω. Given a sequence of lexicon words the trans-
ducer L represents the probability distribution over all phonetizations of the
given sequence. In what follows the set of phones will be denoted with Σ. If the
conditional probabilistic transducer V := 〈Σ,Ω∗ × R, Q1, s1, F1, δ1, λ1, ι1, ρ1〉
represents the phonetizations of single lexicon words then the transducer L is
equal to the iteration (Kleene-Star) of V. We have that Proj1(Range(OV)) = Ω
because V provides phonetizations for all lexicon words. Without loss of gener-
ality we can assume that Dom(OV) is prefix-free (this condition can easily be
satisfied by adding new end word symbols to Σ), there are no transitions that
enter s1, Range(ρ1) = {〈ε, 1〉} and ι1 = 〈ε, 1〉.

Under these assumptions we construct the conditional probabilistic trans-
ducer L equal to the iteration (Kleene-Star) of V as

L = V∗ := 〈Σ,Ω∗ × R, Q1 \ F1, s1, {s1}, δ3, λ1, 〈ε, 1〉, {〈s1, 〈ε, 1〉〉}〉,

where δ3 := δ1 �(Q1\F1)×Σ×(Q1\F1) ∪{〈p1, a, s1〉 | 〈p1, a, q1〉 ∈ δ1, q1 ∈ F1}.
It follows that Dom(OV∗) = Dom(OV)∗ and for every sequence of phonetiza-
tions ᾱ1, ᾱ2, . . . , ᾱn ∈ Σ∗ of lexicon words β1, β2, . . . , βn ∈ Ω it follows that
OV∗(ᾱ1ᾱ2 . . . ᾱn|β1β2 . . . βn) =

∏n
i=1 PV(ᾱi|βi). Since V is conditional proba-

bilistic, summing in the above equation over all phonetizations of β1, β2, . . . , βn

we can observe that L = V∗ is conditional probabilistic.
The conditional probabilistic transducer C. The context-dependency trans-

ducer C maps from context-dependent phones to context-independent phones.
The context-dependent phones consist of l phones to the left (left context),
central phone, and r phones to the right (right context). The states of the
conditional probabilistic transducer C represent the last l + r read context-
independent phones. The transitions have context-dependent phones as labels
and are of the form p1p2 . . . pl+r

p1p2...pl+rq−−−−−−−−→ p2p3 . . . pl+rq. The corresponding
output of the transition is 〈q, 1〉. Insufficient contexts are padded with a special
empty phone symbol. C is conditional probabilistic since for every sequence
of context-independent phones β there exists a unique sequence of context-
dependent phones α, such that OC(α) = 〈β, 1〉.
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The conditional probabilistic transducer H. The transducer H represents the
HMM set, i.e. the Kleene-Star of the union of the HMMs for individual context-
dependent phones. Each of the HMMs is a stochastic and conditional proba-
bilistic transducer. The input symbols on the transitions are unique identifiers
of the transitions in the HMM corresponding to the given context-dependent
phone. Therefore, the union of the HMMs is prefix-free. Thus its Kleene-Star is
conditional probabilistic and can be obtained using the same construction as the
V∗ transducer.

5 Composition of Conditional Probabilistic Transducers
with Probabilistic Failure Transducers

In the previous section we showed how to construct efficiently the probabilistic
failure transducer G and the conditional probabilistic transducers L, C and H.
Here we introduce a general construction method for composing a conditional
probabilistic transducer with a probabilistic failure transducer and obtaining
a probabilistic failure transducer as a result. Using this general method we can
construct the HCLG transducer by the composition H◦(C◦(L◦G)). In addition,
we also introduce a more efficient construction for composition, applicable when
certain conditions are satisfied by the conditional probabilistic transducer.

5.1 Generic Composition

In this subsection let T := 〈Σ,Ω∗ × R, Q1, s1, F1, δ1, λ1, ι1, ρ1〉 be a condi-
tional probabilistic transducer and F := 〈Ω,R, Q2, s2, F2, δ2, λ2, ι2, ρ2, f2, ϕ2〉
be a probabilistic failure transducer. As a natural extension of the composition
of transducers [8] and the intersection of weighted finite automata with failure
transitions [3] we obtain a construction for the composition of T and F .

Definition 4. The composition of T and F is the failure transducer T ◦ F :=
〈Σ,R, Q1 × Q2, s, F, δ, λ, ι, ρ, f, ϕ〉, where

s := 〈s1, δ2∗
f2

(s2,Proj1(ι1))〉,
F := {〈p1, p2〉 | p1 ∈ F1, 〈p2,Proj1(ρ1(p1)), q2〉 ∈ δ2

∗
f2

, q2 ∈ F2},

δ := {〈〈p1, p2〉, a, 〈q1, p2〉〉 | 〈p1, a, q1〉 ∈ δ1, 〈p1, a, 〈ε, o1〉〉 ∈ λ1, p2 ∈ Q2}∪
{〈〈p1, p2〉, a, 〈q1, q2〉〉 | 〈p1, a, q1〉 ∈ δ1, 〈p1, a, 〈ωα, o1〉〉 ∈ λ1, 〈p2, ω, r2〉 ∈ δ2,

〈p2, ωα, q2〉 ∈ δ2
∗
f2

},

λ := {〈〈p1, p2〉, a, o1〉 | 〈p1, a, 〈ε, o1〉〉 ∈ λ1, p2 ∈ Q2}∪
{〈〈p1, p2〉, a, o1o2〉 | 〈p1, a, 〈ωα, o1〉〉 ∈ λ1, 〈p2, ω, r2〉 ∈ δ2,

〈p2, ωα, o2〉 ∈ λ2
∗
f2

},

ι := Proj2(ι1)ι2λ2
∗
f2

(s2,Proj1(ι1)),

ρ := {〈〈p1, p2〉, o1o2o3〉 | 〈p1, p2〉 ∈ F, 〈p1, 〈α, o1〉〉 ∈ ρ1, 〈p2, α, o2〉 ∈ λ2
∗
f2

,
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〈δ2∗
f2

(p2, α), o3〉 ∈ ρ2},

f := {〈〈p1, p2〉, 〈p1, q2〉〉 | p1 ∈ Q1, 〈p2, q2〉 ∈ f2},

ϕ := {〈〈p1, p2〉, o2〉 | p1 ∈ Q1, 〈p2, o2〉 ∈ ϕ2}.

The above composition reflects the chain rule P (α, β) = P (α | β)P (β). In our
case β is uniquely identified by α, therefore PT ◦F (α) = PT (α | β)PF (β). The
following proposition formalizes this idea. The proof can be found in [4].

Proposition 1. Let Proj1(Range(OT )) ⊇ Dom(OF ). Then

1. (∀α ∈ Dom(OT ◦F ))(PT ◦F (α) = PT (α | β)PF (β)), where β = Proj1(OT (α));
2. T ◦ F is probabilistic;
3. if F is monotonic and for every p ∈ Dom(f2), α ∈ Proj1(Range(λ1)) and

β ∈ Proj1(Range(ρ1)) we have that ! δ2∗
f2

(p, α) =⇒ ! δ2∗
f2

(f2(p), α) and
δ2

∗
f2

(p, β) ∈ F2 =⇒ δ2
∗
f2

(f2(p), β) ∈ F2, then T ◦ F is monotonic.

In particular, when T = L and F = G, the third statement of Proposition
1 follows from the monotonicity of G and Proj1(Range(λ1 ∪ ρ1)) ⊆ Ω ∪ {ε}.
Also, since Proj1(Range(OL)) = Ω∗, we obtain that L ◦ G is monotonic and
probabilistic. Figure 1a depicts a monotonic stochastic failure transducer for a
simple language model. Therefore, its composition with a lexicon transducer will
be monotonic and probabilistic (see Fig. 1b). Similarly the compositions C ◦ LG
and H ◦ CLG yield monotonic and probabilistic failure transducers.

In practice the construction from Definition 4 might produce many states
that are redundant. This particularly applies when composing L with G. We
present a more efficient construction for this special case in Subsect. 5.2. This
construction is also applicable for composing H with CLG more efficiently.

5.2 Special Case Composition

Let V := 〈Σ,Ω∗ × R, Q1, s1, F1, δ1, λ1, ι1, ρ1〉 be a trim (i.e. (∀q ∈ Q1)(∃α, β ∈
Σ∗)(δ∗

1(s1, α) = q ∧ δ∗
1(q, β) ∈ F1)) conditional probabilistic transducer, which

satisfies the conditions: Proj1(Range(OV)) = Ω and Dom(OV) is prefix-free. Let
F := 〈Ω,R, Q2, s2, F2, δ2, λ2, ι2, ρ2, f2, ϕ2〉 be a monotonic probabilistic failure
transducer in which every state is co-accessible. Let us consider Definition 4
for the special case where T = V∗. We obtain V∗ by redirecting the transitions
ending in final states to the initial state. To express this we introduce the function
E : Q1 → Q1, such that E(p) := s1 if p ∈ F1 and E(p) := p otherwise. Every
successful path in V is of the form

p01
a1:ε/o1−−−−−→ . . .

ai−1:ε/oi−1−−−−−−−→ pi−1
1

ai:ω/oi−−−−−→ pi
1

ai+1:ε/oi+1−−−−−−−→ . . .
an:ε/on−−−−−→ pn

1 ,

where p01 = s1 and pn
1 ∈ F1. If we have a transition in F of the form p2 →ω:o′

q2,
then we obtain the following path in the composition:

〈p0
1, p2〉 a1:o1−−−→ . . .

ai−1:oi−1−−−−−−→ 〈pi−1
1 , p2〉 ai:oio

′
−−−−→ 〈pi

1, q2〉
ai+1:oi+1−−−−−−→ . . .

an:on−−−−→ 〈E(pn
1 ), q2〉.
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If ω �∈ Sig(p2), then according to Definition 4 the states 〈p11, p2〉, . . . , 〈pi−1
1 , p2〉

are constructed but are redundant in V∗◦F . In order to avoid constructing those
states, we will restrict the states of V, which we consider, to those on a successful
path with label from the signature of the corresponding state in F . Formally,
we define the states to the left (Ql

ω) and to the right (Qr
ω) of transitions with

output ω.

Definition 5. Let ω ∈ Ω. We define

Δω := {〈p1, a, q1〉 ∈ δ1 | Proj1(λ1(p1, a)) = ω},

Ql
ω :=

⋃
〈p1,a,q1〉∈Δω

{l1 | (∃α ∈ Σ∗)(〈l1, α, p1〉 ∈ δ∗
1)},

Qr
ω :=

⋃
〈p1,a,q1〉∈Δω

{r1 | (∃α ∈ Σ∗)(〈q1, α, r1〉 ∈ δ∗
1)}.

For the example path in V, the states p01, p
1
1, . . . , p

i−1
1 are from Ql

ω and
pi
1, p

i+1
1 , . . . , pn

1 are from Qr
ω. Clearly the sets Ql

ω and Qr
ω are disjoint and any

transition between two states in Ql
ω or two states in Qr

ω outputs ε and some
probability. If for every ω ∈ Ω we have Δω (the transitions with output ω),
the sets Ql

ω and Qr
ω can be computed in linear time with respect to their size

with a simple traversal from respectively the source states of the transitions
towards the initial state (having explicit backward transitions) and from the
target states of the transitions towards the final states. We also observe that the
failure transitions of the states with first coordinate in Qr

ω are useless.

Proposition 2. Let W := 〈Σ,R, Q, 〈s1, s2〉, {s1} × F2, δ, λ, ι2, ρ, f, ϕ〉, where

Q :=
⋃

〈p2,ω,q2〉∈δ2

Ql
ω × {p2} ∪ E(Qr

ω) × {q2},

δ :=
⋃

〈p2,ω,q2〉∈δ2

{〈〈p1, p2〉, a, 〈q1, p2〉〉 | p1, q1 ∈ Ql
ω, 〈p1, a, q1〉 ∈ δ1}∪

{〈〈p1, p2〉, a, 〈E(q1), q2〉〉 | 〈p1, a, q1〉 ∈ Δω}∪
{〈〈p1, q2〉, a, 〈E(q1), q2〉〉 | p1, q1 ∈ Qr

ω, 〈p1, a, q1〉 ∈ δ1},

λ :=
⋃

〈p2,ω,q2〉∈δ2

{〈〈p1, p2〉, a, o1〉 | p1 ∈ Ql
ω, 〈p1, a, 〈ε, o1〉〉 ∈ λ1}∪

{〈〈p1, p2〉, a, o1o2〉 | 〈p1, a, 〈ω, o1〉〉 ∈ λ1, 〈p2, ω, o2〉 ∈ λ2}∪
{〈〈p1, q2〉, a, o1〉 | p1 ∈ Qr

ω, 〈p1, a, 〈ε, o1〉〉 ∈ λ1},

ρ := {〈〈s1, p2〉, o2〉 | 〈p2, o2〉 ∈ ρ2},

f :=
⋃

〈p2,ω,q2〉∈δ2

{〈〈p1, p2〉, 〈p1, r2〉〉 | p1 ∈ Ql
ω, 〈p2, r2〉 ∈ f2},

ϕ :=
⋃

〈p2,ω,q2〉∈δ2

{〈〈p1, p2〉, o2〉 | p1 ∈ Ql
ω, 〈p2, o2〉 ∈ ϕ2}.

Then W is trim and OW = OV∗◦F .
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The construction from Proposition 2 can be implemented in linear time with
respect to the transitions of the resulting transducer. The proof of the proposition
can be found in [4].

6 Canonization

It has been shown that stochastic transducers are more effective than non-
stochastic ones for speech recognition decoding [9]. As discussed the transducer
G is stochastic. If LG is stochastic, then C ◦ LG is also stochastic because all
weights in C are equal to 1. It can be easily observed that in this case H ◦ CLG
will also be stochastic, since H is constructed from stochastic HMMs. However,
the presented constructions for composition do not ensure that LG is stochastic.

It is easily shown that the stochasticity in the monoid R is equivalent to
canonicity with respect to the semiring R+ := 〈R+,+,×, 0, 1〉.

Definition 6. The transducer T := 〈Σ, 〈K,⊗, 1̄〉, Q, s, F, δ, λ, ι, ρ〉 is canonical
with respect to the semiring K := 〈K,⊕,⊗, 0̄, 1̄〉 if for every q ∈ Q it holds that⊕

α∈Dom(Oq
T ) Oq

T (α) = 1̄.

We call a failure transducer canonical if its expanded transducer is canonical.
The standard canonization algorithm is based on modification of the weights
of a given transducer so that the transition weights of every given state sum
to 1̄. For a probabilistic (failure) transducer T and a state p with ST (q) we
denote the sum

∑
α∈Dom(Oq

T ) Oq
T (α). The weight-pushing is defined as updating

the probability r of a given transition from the state p to the state q to rST (q)
ST (p) .

Next we extend the standard canonization algorithm for the case of probabilistic
failure transducers.

Proposition 3. Let W := 〈Σ,R, Q, s, F, δ, λ, ι, ρ, f, ϕ〉 be a probabilistic failure
transducer and WC := 〈Σ,R, Q, s, F, δ, λC , ιC , ρC , f, ϕC〉, where

– λC := {〈p, a, rSW(δ(p,a))
SW(p) 〉 | 〈p, a, r〉 ∈ λ};

– ιC := ιSW(s);
– ρC := {〈p, r

SW(p) 〉 | 〈p, r〉 ∈ ρ};
– ϕC := {〈p, rSW(f(p))

SW(p) 〉 | 〈p, r〉 ∈ ϕ}.

Then OWC = OW and WC is stochastic and canonical with respect to R+.

The construction in Proposition 3 requires the computation of the sums SW(q),
which is computationally expensive. In this section we show how this can be
achieved more efficiently in case W is obtained by composing a conditional
probabilistic transducer V∗ with a monotonic and stochastic failure transducer
F , where V is acyclic. This is the case for LG. The main idea of the special-
ized construction is to avoid the expansion of failure transitions by constructing
an acyclic graph with nodes corresponding to transducer states with restricted
signatures.
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Let V and F be as in Subsect. 5.2. Also, let F be stochastic and W :=
〈Σ,R, Q, s, F, δ, λ, ι, ρ, f, ϕ〉 be the failure transducer from Proposition 2, equiv-
alent to the composition of V∗ and F . Since W is probabilistic, the sums SW(q)
exist for every q ∈ Q and Proposition 3 can be used to obtain the canonical
form of W. Since F is stochastic, it is also canonical with respect to R+, i.e. for
every state q of F , SF (q) = 1. We show that the states of W with s1 as first
coordinate also satisfy this property.

Let ω ∈ Ω and ΓV
ω be the set of all words from Σ∗ for which V produces

ω as output. i.e. ΓV
ω := {α ∈ Σ∗ | Proj1(OV(α)) = ω}. For example, in the

case of the lexicon transducer L, ΓL
ω represents the set of all phonetizations of

ω. Then for every transition 〈p, ω, q〉 ∈ δ2 in F and every α ∈ ΓV
ω , there will

be a path in W from 〈s1, p〉 to 〈s1, q〉 with input label α. Therefore, the sum
of the outputs of the paths from 〈s1, p〉 to 〈s1, q〉 in W with input labels in ΓV

ω

will be equal to the output of the transition 〈p, ω, q〉 in F . This is illustrated
in Fig. 1. The highlighted transition in Fig. 1a with input α and output 0.49
is transformed into the two highlighted paths in Fig. 1b with inputs aa and ab
(the phonetizations of α) and outputs 0.245. Using this observation and the fact
that F is stochastic, the following proposition can be proved.

Proposition 4. (∀p ∈ Q2) (SW(〈s1, p〉) = 1).

Therefore, it is sufficient to compute SW(q) only for the states q ∈ Q such
that Proj1(q) �= s1. Thus, we consider the failure transducer W̃ in which the
transitions from W that begin in such states are omitted and those states are
made final with final output 1. Let W̃ := 〈Σ,R, Q, s,Qs1 , δ̃, λ̃, ι, Qs1 ×{1}, f̃ , ϕ̃〉,
where Qs1 = {〈p, q〉 ∈ Q | p = s1}, Qs1

is Q\Qs1 , δ̃ := δ �Qs1
×Σ , λ̃ := λ �Qs1

×Σ ,

f̃ := f �Qs1
×Σ , and ϕ̃ := ϕ �Qs1

×Σ . From Proposition 4 it follows that (∀q ∈
Q)(S

˜W(q) = SW(q)).
We reduce the problem of finding S

˜W(q) to the single-source shortest distance
problem with respect to the semiring R+ [6] in a special graph corresponding
to W̃. The graph contains a node for each state in the transducer and an edge
for each δ and failure transition. If there is a δ transition from p with label
a then all δf transitions from p with a that begin with a failure transition are
invalid. In order to avoid such paths in the graph we clone the target states of the
failure transitions and allow from each cloned state only edges that correspond
to δ-transitions that are not defined in the source of the failure transition (see
Fig. 2).

We construct a labeled weighted acyclic graph, which in addition to the
states from W̃ contains the cloned states, such that only the valid paths in W̃
are represented. Let G := (V,E), where

V := Q ∪ {〈q, f̃(q)〉 | q ∈ Dom(f̃)},

E := {〈p, 〈a, λ̃(p, a)〉, q〉 | 〈p, a, q〉 ∈ δ̃} ∪ {〈p, 〈ε, ϕ̃(p)〉, 〈p, q〉〉 | 〈p, q〉 ∈ f̃}∪
{〈〈p, q〉, 〈a, λ̃(q, a)〉, r〉 | 〈p, q〉 ∈ f̃ , 〈q, a, r〉 ∈ δ̃,¬ ! δ̃(p, a)}∪
{〈〈p, q〉, 〈ε, ϕ̃(q)〉, 〈q, r〉〉 | 〈p, q〉 ∈ f̃ , 〈q, r〉 ∈ f̃}.
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q
r
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r'α:u'

s'

t'

q

r

q,p

s'

t'p β:v
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α:u
ε:φ γ:w

β:vα:u

Fig. 2. 〈q, p〉 in the graph (right) is a clone of p in the failure transducer (left).

It then follows that S
˜W(q) is the shortest distance from the new vertex x

to the vertex q in the graph G̃ := (V ∪ {x}, Erev ∪ {x} × {1} × Qs1), which
represents the reverse of the graph G extended with the initial vertex x. An
important property of G̃ is that it is acyclic, since V is acyclic, there are no δ
cycles because the transtions are restricted to those from Qs1

, and there are no
failure cycles. This allows the sums S

˜W(q) for q ∈ Qs1
to be computed in linear

time with respect to the size of G̃1.
Thus, the procedure to construct the canonical form of W consists of first

building the graph G̃, using G̃ to compute the values SW(q), and applying Propo-
sition 3 to push the weights of W. Formal proofs of the above propositions are
presented in [4].

7 Experimental Results and Conclusion

In our experiments we applied the presented constructions for building the
HCLG transducer for the LibriSpeech ASR language model [10] and compared
them with the corresponding Kaldi [11] implementation which uses OpenFst
[2]. All experiments are performed on a dual Intel Xeon Silver 4210 CPU at
2.20 GHz machine with 384 GB RAM running Debian Linux. The source code
for the experiments can be requested from the authors by e-mail. For obtaining
the HCLG transducer we applied the following steps:

1. The stochastic failure transducer G is constructed using the construction from
[1];

2. From the lexicon we construct L ◦ G using Subsect. 5.2, thus obtaining a
probabilistic failure transducer;

3. Using the procedure from Sect. 6, we construct a stochastic failure transducer
equivalent to L ◦ G which we additionally quasi minimize2;

4. We construct the context-dependecy transducer C and compose it with the
stochastic failure transducer LG, using Definition 4; The resulting failure
transducer CLG is trim and stochastic;

1 In comparison with the corresponding algorithm for φ-WFA presented in [3] we
empirically observed that our algorithm introduces significantly less states and tran-
sitions.

2 We use the standard automata minimization procedure considering failure transi-
tions as proper transitions with special label.
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5. From the definition of the HMMs using Proposition 2 we construct the fail-
ure transducer HCLG which is stochastic, and which we additionally quasi
minimize.

For constructing the standard WFST we used the standard Kaldi recipe . The
main differences are that in the Kaldi recipe two intermediate deteminizations
and additional optimization tricks are applied. The table below presents size and
time comparison between the Kaldi construction of the HCLG WFST and our
construction of the HCLG failure WFST.

Transducer WFST Failure WFST

States Transitions Time States Transitions Time

G 7.6M 93.5M 4m 24 s 7.6M 93.5M 1m 47 s

LG 85.1M 230.5M 17m 40 s 288.0M 717.9M 2m 45 s

min&push(LG) 72.7M 211.3M 1h 10m 30 s 254.7M 646.2M 20m 34 s

CLG 73.6M 219.3M 1h 20m 14 s 255.1M 649.5M 27m 13s

min(HCLG) 89.4M 316.7M 2h 29m 14 s 536.9M 1 213.1M 1h 22m 34 s

The experiments show that the size of the failure WFST gets approximately
3–4 times bigger than the corresponding WFST but the construction time is
around two times shorter. The main benefit of the presented approach is that
the resulting failure WFST is deterministic, has no invalid paths, and represents
a correct probability distribution.
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Abstract. Weighted tree automata (WTA) extend classical weighted
automata (WA) to the non-linear structure of trees. The expressive power
of WA with varying degrees of ambiguity has been extensively studied.
Unambiguous, finitely ambiguous, and polynomially ambiguous WA over
the tropical (as well as the arctic) semiring strictly increase in expres-
sive power. The recently developed pumping results of Mazowiecki and
Riveros (STACS 2018) are lifted to trees in order to achieve the same
strict hierarchy for WTA over the tropical (as well as the arctic) semiring.

1 Introduction

Trees are a fundamental data structure in computer science and are used in
many application areas like natural language processing, database theory, and
compiler construction. All the mentioned applications require effective represen-
tations of sets of trees. These requirements triggered detailed investigations of
various classes of such sets since the 1960s [11,12] and yielded an abundance
of representations [6]. The most robust class is the class of regular tree lan-
guages [7,27]. It is generated by finite-state tree automata, which are a natural
generalization of finite-state automata, which generate the regular languages [28].
Finite-state tree automata are a very effective representation and most standard
decision problems remain decidable and the problem complexity is often similar
to that of the corresponding problem for finite-state automata [6].

Quantitative extensions of finite-state automata, called weighted automata
(WA) [25], as well as finite-state tree automata, called weighted tree automata
(WTA) [8], have been proposed and thoroughly investigated. The weights are
usually taken from a semiring like the nonnegative integers N, the tropical semi-
ring T [26] or the arctic semiring A.

It is well-known that the computational properties improve dramatically for
deterministic devices. While deterministic finite-state automata are as expres-
sive as general finite-state automata, this equivalence breaks down for weighted
automata over relevant semirings [2]. Thus, less restricted devices have been
investigated as well. While general finite-state automata might allow expo-
nentially many successful runs (in the length of the input) on a given input,
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deterministic finite-state automata naturally permit at most one successful run
for each input that is additionally locally determined. We obtain polynomi-
ally ambiguous, finitely ambiguous, and unambiguous automata by requiring
that for each input the number of successful runs is restricted by a polynomial,
by a uniform bound, and by 1, respectively. The expressive power of weighted
automata and weighted tree automata of limited ambiguity is actively investi-
gated [17,18,21,22], but essential questions remain open.

Recently, it was established that unambiguous, finitely ambiguous, and poly-
nomially ambiguous WA over the tropical semiring T strictly increase in expres-
sive power [19]. This result was achieved with the help of pumping lemmas,
which were also used to derive the same result [5] for the arctic semiring A.
The inclusion is obvious, but for the strictness results, pumping lemmas for the
smaller classes are developed [19, Theorems 7, 14, and 18] and [5, Theorems
6.1 and 6.5]. These together with specific examples from the larger class that do
not obey the pumping conditions establish the strictness.

Our goal is the development of a similar hierarchy for WTA. To this end,
we utilize the same approach and develop the corresponding pumping results
for WTA over T (Theorems 3, 7, and 11) and over A (Theorems 9 and 13). The
main ingredient is a matrix representation of the behavior of a WTA along a
tree decomposition into contexts (see Section 3) since it allows us to consider
WTA as special weighted automata and apply the theorems of [5,19]. Along the
way we prove that unambiguous WTA over T and A can be expressed as WTA
over N∞ (Lemma 1). In the end, we achieve the desired results and thus prove
that finitely ambiguous WTA over T and A are strictly more expressive than
unambiguous WTA (Theorems 4 and 5) and strictly less expressive than poly-
nomially ambiguous WTA (Theorems 8 and 10). Finally, Theorems 12 and 14
illustrate that polynomially ambiguous WTA over those semirings are strictly
less expressive than general WTA.

2 Preliminaries

Basic Notation. We denote the set of nonnegative integers (including 0) by N.
For every k ∈ N we use the subset [k] = {i ∈ N | 1 ≤ i ≤ k}. For any set S the
set of all finite words over S is S∗ =

⋃
k∈N Sk, where Sk = S ×· · ·×S containing

k factors S and S0 = {ε} contains just the empty word ε. The length |w| of
a word w = s1 · · · sk ∈ S∗ with s1, . . . , sk ∈ S is |w| = k; i.e., the number
of occurrences of symbols in w. Given words v, w ∈ S∗, their concatenation is
written v.w or simply vw.

Trees. A ranked alphabet (Σ, rk) is a pair consisting of a finite set Σ and a
mapping rk: Σ → N that assigns a rank to each symbol of Σ. If there is no risk
of confusion, we denote a ranked alphabet (Σ, rk) by just Σ. We also write σ(k)

to indicate that rk(σ) = k. Moreover, for every k ∈ N we let Σ(k) = {σ ∈ Σ |
rk(σ) = k}. Given a ranked alphabet Σ and a set Z, the set TΣ(Z) of Σ” trees
indexed by Z is the smallest set T such that Z ⊆ T and σ(t1, . . . , tk) ∈ T for
every k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ T . We abbreviate TΣ(∅) simply to TΣ ,
and any subset L ⊆ TΣ is called a tree language.
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Next, we recall some notions for trees. Let t ∈ TΣ(Z) be a tree for a ranked
alphabet Σ and a set Z. The set pos(t) of positions of t is inductively defined for
all z ∈ Z by pos(z) = {ε} and for all k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(Z)
by pos(σ(t1, . . . , tk)) = {ε} ∪ {ip | i ∈ [k], p ∈ pos(ti)}. The height of t is
height(t) = maxp∈pos(t) |p|, and the size of t is size(t) = |pos(t)|. A leaf of t is
a position p ∈ pos(t) such that p1 /∈ pos(t). We denote the set of all leaves of t
by leaf(t). Given a position p ∈ pos(t), the label t(p) of t at p and the subtree t|p
of t at p are given by z(ε) = z|ε = z for all z ∈ Z and

(
σ(t1, . . . , tk)

)
(p) =

{
σ if p = ε

ti(p′) if p = ip′ with i ∈ N and p′ ∈ pos(ti)

σ(t1, . . . , tk)|p =

{
σ(t1, . . . , tk) if p = ε

ti|p′ if p = ip′ with i ∈ N and p′ ∈ pos(ti)

for all k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(Z). Finally, the replacement t[t′]p
of the subtree at position p ∈ pos(t) by a tree t′ ∈ TΣ(Z) is given by z[t′]ε = t′

for all z ∈ Z and

σ(t1, . . . , tk)[t′]ε = t′

σ(t1, . . . , tk)[t′]ip′ = σ(t1, . . . , ti−1, ti[t′]p′ , ti+1, . . . , tk)

for every k ∈ N, σ ∈ Σ(k), t1, . . . , tk ∈ TΣ(Z), i ∈ [k], and p′ ∈ pos(ti).
We reserve the use of the special symbol �. A tree t ∈ TΣ({�}) is a context,

if there exists exactly one p ∈ pos(t) with t(p) = �; i.e., there is exactly one
occurrence of � in t. The set of all such contexts is denoted by CΣ . Given a
context C ∈ CΣ and a tree t ∈ TΣ({�}), the substitution C[t] of t into C
yields the tree C[t]p, where p is the unique position p ∈ pos(C) with C(p) = �.
Note that C[C ′] ∈ CΣ for C,C ′ ∈ CΣ . Similarly, we write Ck for C[· · · C[C] · · · ]
containing k times the context C. The set of decompositions of ξ ∈ TΣ ∪ CΣ is

D(ξ) =
⋃

k≥1
C1,...,Ck−1∈CΣ

ξ′∈CΣ∪TΣ

{
(C1, . . . , Ck−1, ξ

′) | ξ = C1[· · · Ck−1[ξ′] · · · ]
}
.

Note that ξ ∈ TΣ iff ξ′ ∈ TΣ for every (C1, . . . , Ck−1, ξ
′) ∈ D(ξ). The depth

depth(C) of a context C ∈ CΣ is depth(C) = |p|, where p ∈ pos(C) is the
unique position with C(p) = �. A context c ∈ CΣ of depth 1 is elementary,
and the set of all such elementary contexts is denoted by EΣ . A decomposi-
tion (E1, . . . , Ek) ∈ D(C) of a context C ∈ CΣ is elementary if E1, . . . , Ek ∈ EΣ .
In fact, the monoid (CΣ , ·[·], �) is freely generated by EΣ [4], which proves the
existence of an elementary decomposition for each context. Finally, let t ∈ TΣ ,
C = (Dn, Cn, . . . , D1, C1, s) ∈ D(t) and D = (D′

n, C ′
n, . . . , D′

1, C
′
1, s

′) ∈ D(t) be
decompositions of the tree t. We call D a refinement of C (refining the occurrences
of Ci) if for every i ∈ [n] there exist Li, Ri ∈ CΣ such that D′

i = Ri+1[Di[Li]],
s′ = R1[s], and Ci = Li

[
C ′

i[Ri]
]
, where Rn+1 = �.
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Weighted Automata. A commutative semiring [13,15] is a tuple (S,+, ·, 0, 1)
such that both (S,+, 1) and (S, ·, 1) are commutative monoids, · distributes
over +, and 0 · s = 0 for all s ∈ S. More specifically we consider

– the Boolean semiring B = ({0, 1},∨,∧, 0, 1),
– the extended Boolean semiring B∞ = ({0, 1,∞},∨,∧, 0, 1) with ∞ ∨ n = ∞

for all n ∈ {0, 1,∞} and ∞ ∧ 0 = 0 and ∞ ∧ 1 = ∞ ∧ ∞ = ∞,
– the tropical semiring T = (N ∪ {∞},min,+,∞, 0),
– the arctic semiring A = (N ∪ {−∞},max,+,−∞, 0), and
– the extended semiring N∞ = (N ∪ {∞},+, ·, 0, 1) of nonnegative integers.

We will refer to a semiring (S,+, ·, 0, 1) by its carrier set S.
A weighted automaton (WA) [24] over S is a tuple A = (Q,A, I, (Ma)a∈A, F ),

where Q is a finite set of states, A is a finite set of symbols, Ma ∈ SQ×Q is a
transition weight matrix for every a ∈ A, and I, F ∈ SQ are initial and final
weight vectors, respectively. Given a word w = a1 · · · an with a1, . . . , an ∈ A, we
let Mw = Ma1 · . . . ·Man

with standard matrix multiplication using the semiring
operations.

Finally, the weighted language �A� : A∗ → S recognized by A is defined for
every w ∈ A∗ by �A�(w) = IT · Mw · F . A weighted language f : A∗ → S is
recognizable if there exists a WA recognizing it.

A weighted tree automaton (WTA) [10] over S is a tuple T = (Q,Σ,Δ,wt, F ),
where Q is a finite set of states, Σ is a ranked alphabet, Δ ⊆

⋃
k∈N Qk ×Σ(k)×Q

is a set of transitions, wt : Δ → S is a transition weight function, and F ∈ SQ is
a root weight vector. We generally assume that wt(τ) �= 0 for all τ ∈ Δ, and we
write σ(q1, . . . , qk) s→ q for a transition τ = (q1, . . . , qk, σ, q) ∈ Δ with wt(τ) = s.
Weighted tree automata over the Boolean semiring (i.e., for S = B) are also called
tree automata (TA) and their weight function ‘wt’ is superfluous. Given t ∈ TΣ , a
mapping r : pos(t) → Q is called run of A on t, if (r(p1), . . . , r(pk), t(p), r(p)) ∈
Δ for all p ∈ pos(t), where k = rk(t(p)). The run is accepting if Fr(ε) �= 0.
We denote the set of all accepting runs of T on t by RunT (t). Moreover, for
every q ∈ Q let Runq

T (t) = {r ∈ RunT (t) | r(ε) = q} be the set of runs with root
label q. The weight of a run r ∈ RunT (t) is

wtT (r) =
∏

p∈pos(t)
k=rk(t(p))

wt
(
r(p1), . . . , r(pk), t(p), r(p)

)
.

The weighted tree language �T � : TΣ → S recognized by T is defined for every
tree t ∈ TΣ by �T �(t) =

∑
r∈RunT (t) wtT (r) · Fr(ε). A weighted tree lan-

guage f : TΣ → S is recognizable if there exists a WTArecognizing it. The class
of recognizable weighted tree languages over S is denoted by RTL(S).
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3 Matrix Representation and Ambiguity

For our pumping arguments we first need a matrix-like representation for the
weighted tree language recognized by a WTA T = (Q,Σ,Δ,wt, F ) that is similar
to that of weighted automata. Since processing a symbol σ of rank k requires
k vectors from the subtrees, we can directly utilize Kronecker products [9] or
tensor products [23], but a simpler approach [3] using contexts, whose processing
again will only require a single vector for the subtree replacing �, actually suffices
for our purposes. Our run semantics is rather unsuitable for this purpose, so let
us recall the equivalent initial algebra semantics [1]. We immediately present the
extended variant that can handle contexts as well. For every ξ ∈ TΣ({�}) we
inductively define the weight matrix wtT (ξ) ∈ SQ×Q by

– wtT (�)q,q = 1 and wtT (�)q,q′ = 0 for all q, q′ ∈ Q with q �= q′, and
– for all k ∈ N, σ ∈ Σ(k), t1, . . . , tk ∈ TΣ({�}), and q, q′ ∈ Q

wtT
(
σ(t1, . . . , tk)

)
q,q′ =

∑

(q1,...,qk,σ,q′)∈Δ

wt(q1, . . . , qk, σ, q′) ·
k∏

i=1

wtT (ti)q,qi
.

Note that wtT (t)q1,q′ = wtT (t)q2,q′ for all q1, q2, q
′ ∈ Q and t ∈ TΣ . Hence

we identify wtT (t) with a vector of SQ and obtain �T �(t) = wtT (t)T · F for
all t ∈ TΣ by [3, Lemma 4.1.13] as well as

wtT (c[ξ]) = wtT (ξ) · wtT (c) (1)

for all contexts c ∈ CΣ and ξ ∈ TΣ ∪ CΣ by [3, Lemma 4.1.8].
Next we recall the relevant notions of ambiguity. Let T = (Q,Σ,Δ,wt, F ) be

a WTA. For a given � ∈ N, the WTA T is �-ambiguous if every tree t ∈ TΣ has at
most � accepting runs; i.e., |RunT (t)| ≤ �. It is unambiguous (or a UA-WTA) if it
is 1-ambiguous, and it is finitely ambiguous (or an FA-WTA) if there exists � ∈ N
such that T is �-ambiguous. For the notions of ‘polynomially ambiguous’ and
‘exponentially ambiguous’ we distinguish two variants: one based on the size and
another based on the height of the input tree. More precisely, T is polynomially
ambiguous in f : TΣ → N if there exists a polynomial P such that |RunT (t)| ≤
P (f(t)) for all t ∈ TΣ . We say that T is a PA-WTA (respectively, a PAH” WTA)
if it is polynomially ambiguous in ‘size’ (respectively, in ‘height’). Similarly, T is
exponentially ambiguous in f : TΣ → N if there exists an exponential e such
that |RunT (t)| ≤ e(f(t)). We say that T is an EA-WTA(respectively, an EAH-
WTA) if it is exponentially ambiguous in ‘size’ (respectively, in ‘height’). Note
that every WTA (Q,Σ,Δ,wt, F ) is an EA-WTAbecause there are naturally at
most |Q|size(t) runs for every input tree t. We use the same prefixes π in front
of RTL(S) for the class of weighted tree languages over S that are recognizable
by π-WTA. For example, PA-RTL(S) is the class of those weighted tree languages
over S that are recognizable by WTAthat are polynomially ambiguous in size.
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4 Unambiguous vs. Finitely Ambiguous

In this section we present a weighted tree language over the tropical semiring T
that is recognized by a FA-WTA but cannot be recognized by any UA-WTA,
which proves that UA-RTL(T) � FA-RTL(T). The main component of this result
is a pumping result for recognizable weighted tree languages over N∞, which is
applicable due to the folklore result UA-RTL(T) ⊆ RTL(N∞), which we recall
first. The inclusion follows from the well-known construction that is used to show
that size ∈ RTL(N∞).

Lemma 1. UA-RTL(T) ⊆ RTL(N∞).

The matrix representation allows us to apply a well-known result of idempotent
elements, which we recall next. Given a monoid (M, ·, 1) an element m ∈ M is
idempotent if m · m = m. The following well-known result for finite monoids,
which states that any sequence of sufficiently many factors contains a nonempty
subsequence of factors whose product is idempotent, is the main tool for our
first pumping result.

Lemma 2 (e.g. [14, Theorem 3.1]). Let M be a finite monoid. There exists a
constant N > 0 such that for all n ≥ N and x1, . . . , xn ∈ M there exist �, u ∈ N
with � < u ≤ n such that

∏u
i=�+1 xi is idempotent.

Theorem 3 (Pumping Lemma for RTL(N∞)). Let f ∈ RTL(N∞). There
exists N ∈ N such that for each tree t ∈ TΣ and decomposition C = (D,C, s) ∈
D(t) with depth(C) ≥ N there is a refinement (D′, B, s′) ∈ D(t) of C with B �= �
such that

– f
(
D′[Bh[s′]]

)
= f

(
D′[Bh+1[s′]]

)
for all h ≥ N or

– f
(
D′[Bh[s′]]

)
< f

(
D′[Bh+1[s′]]

)
for all h ≥ N .

Next we present a weighted tree language f ∈ FA-RTL(T) \ UA-RTL(T)
inspired by [19, Examples 2 and 8]. We explicitly show f ∈ FA-RTL(T) as well
as f /∈ RTL(N∞) using Theorem 3. The latter result yields f /∈ UA-RTL(T)
by Lemma 1. For those particular weighted tree languages in the differences we
use a ranked alphabet with a single binary symbol and a single nullary symbol.
By various encodings (e.g., first-child-next-sibling [6, Proposition 8.3.2]) these
results apply to essentially any ranked alphabet. This correspondence extends
to weighted tree languages (see [16, Lemma 4.2]).

Theorem 4. UA-RTL(T) � FA-RTL(T).

Proof. Let Σ = {σ(2)α(0)} be a ranked alphabet and T = (Q,Σ,Δ,wt, F ) a
WTA over T with Q = {q�, qr, qα}, F (q) = 0 for each q ∈ Q, and the following
transitions and weights

{
α

0→ qα σ(qα, q�)
1→ q� σ(q�, qα) 0→ q� σ(q�, q�)

0→ q� σ(qα, qα) 1→ q�

σ(qr, qα) 1→ qr σ(qα, qr)
0→ qr σ(qr, qr)

0→ qr σ(qα, qα) 1→ qr

}
.
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Clearly, T has two runs for each input tree t, in which we mark all leaves by qα

and then proceed to count either occurrences of L = σ(α, �) using q� or occur-
rences of R = σ(�, α) using qr. We thus calculate the minimum of occurrences
of L and R, and f = �T � ∈ FA-RTL(T).

Now let us apply our pumping lemma in order to prove that no WTAover N∞
can recognize f . We observe that f(Rn[Lm[α]]) = min(m,n) for all m,n ∈ N.
Assume that f ∈ RTL(N∞). Let N be the constant of Theorem 3 applied to f ,
and let t = R(N+1)2 [LN [α]] and C = (D,C, α) ∈ D(t) be a decomposition,
where D = R(N+1)2 and C = LN . Theorem 3 yields a refinement (D′, B, s′) ∈
D(t) of C; i.e., B = Ln for some 0 < n < N . However,

f
(
D′[BN [s′]]

)
= (n + 1)N − n < (n + 1)N = f

(
D′[BN+1[s′]]

)

f
(
D′[B(N+1)2 [s′]]

)
= (N + 1)2 = (N + 1)2 = f

(
D′[B2(N+1)2 [s′]]

)
,

contradicting Theorem 3. Hence f /∈ RTL(N∞). Since UA-RTL(T) ⊆ RTL(N∞)
by Lemma 1 we obtain f /∈ UA-RTL(T) as desired. �

Since clearly UA-RTL(T) = UA-RTL(A), we may replace the minimum in
the proof of Theorem 4 with a maximum and similar calculations show that this
language is not in RTL(N∞), either.

Theorem 5. UA-RTL(A) � FA-RTL(A).

5 Finitely Vs. Polynomially Ambiguous

The second pumping lemma will allow us to give a weighted tree language
over T, which can be recognized by a PA-WTA, but cannot be recognized by
any FA-WTA. The theorem itself works on point-wise minima of recognizable
weighted tree languages over N∞. We call f : TΣ → N∞ a point-wise recog-
nizable minimum if there exist k ∈ N and recognizable weighted tree lan-
guages f1, . . . , fk ∈ RTL(N∞) of type f1, . . . , fk : TΣ → N∞ such that for
all t ∈ TΣ it holds that f(t) = min{f1(t), . . . , fk(t)}. To relate this notion to
finitely ambiguous weighted tree languages over T, we recall the following result.

Theorem 6 ([20, Theorem 2]). Let � ∈ N and T = (Q,Σ,Δ,wt, F ) be an
�-ambiguous WTAover the commutative semiring S. Then there exist � unam-
biguous WTA U1, . . . ,U� over S such that �T � =

∑�
i=1�Ui�.

Let us now move on to the pumping lemma. To this end, let t ∈ TΣ be a tree
and D = (Dn, Cn, . . . , D1, C1, s) ∈ D(t) be a decomposition of t. Additionally,
let h ∈ N and ϕ = (ϕ1, . . . , ϕn) ∈ Bn be a selector. Then we let

Dh
ϕ = Dn

[
Cϕn·h

n

[
· · · D1[C

ϕ1·h
1 [s]] · · ·

]]
. (2)
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Theorem 7 (Pumping Lemma for Point-wise Minima). Let f : TΣ →
N∞ be a point-wise recognizable minimum. Then there exists N ∈ N such that
for each tree t ∈ TΣ and decomposition C = (Dn, Cn, . . . , D1, C1, s) ∈ D(t) of t
with n ≥ N and depth(Cj) ≥ N for all j ∈ [n] the following holds. There is a
refinement D = (D′

n, Bn, . . . , D′
1, B1, s

′) ∈ D(t) of C with B1, . . . , Bn �= � such
that for every subset Φ ⊆ Bn with |Φ| ≥ N

– there exists ϕ ∈ Φ such that f(Dh
ϕ) < f(Dh+1

ϕ ) for all h sufficiently large or
– there are ϕ,ψ ∈ Φ with ϕ �= ψ such that f(Dh

ϕ∨ψ) = f(Dh+1
ϕ∨ψ) for all h suffi-

ciently large.

Finally, we give a weighted tree language f ∈ PA-RTL(T) \ FA-RTL(T)
inspired by [19, Examples 3 and 15]. To this end, we show that f ∈ PA-RTL(T)
and that f is not a point-wise recognizable minimum over T using Theorem 7.
By Theorem 6 we can then conclude that f /∈ FA-RTL(T).

Theorem 8. FA-RTL(T) � PA-RTL(T).

Proof. We consider the ranked alphabet Σ = {σ(2), α(0)} and the two elementary
contexts R = σ(�, α) and L = σ(α, �). Additionally, we consider the WTA T =
(Q,Σ,Δ,wt, F ) over T with Q = {q�, qr, qα}, F (q�) = F (qα) = ∞ and F (qr) = 0,
and the following transitions and weights

{
α

0→ qα σ(qα, q�)
1→ q� σ(q�, qα) 0→ q� σ(qα, qα) 0→ q� (counting L)

σ(qr, qα) 1→ qr σ(qα, qr)
0→ qr σ(qα, qα) 0→ qr (counting R)

σ(q�, qα) 0→ qr σ(qα, q�)
1→ qr

}
. (switch)

In each run, reading the input tree bottom-up the WTA T first counts occur-
rences of L in state q�, then nondeterministically switches to qr, and finally
counts occurrences of R in state qr. Thus, T has at most height(t) runs for
each t ∈ TΣ , which proves that f = �T � ∈ PA-RTL(T). Additionally, we have

f(t) = min
i∈[n]

{
|{j ∈ [i] | Cj = R}| + |{j ∈ [n] \ [i] | Cj = L}|

}

for a tree of the form t = C1[· · · Cn[σ(α, α)] · · · ] with C1, . . . , Cn ∈ {L,R} and
n ∈ N, and f(t) = ∞ otherwise.

It remains to show that f /∈ FA-RTL(T), which we prove by showing that
f cannot be a point-wise recognizable minimum. For the sake of a contra-
diction, suppose that it is. Let N be the constant of Theorem 7 and con-
sider the decomposition C =

(
�, LN , �, RN , . . . , �, LN , �, RN , σ(α, α)

)
∈ D(t)

of t = (LN [RN ])N [σ(α, α)]. Moreover, for every j ∈ [N ], let ϕj ∈ B2N be such
that ϕj(2j −1) = ϕj(2j) = 1 and 0 otherwise. Finally, let Φ = {ϕ1, . . . , ϕN}. We
first claim that f(Dh

ϕ) = N(N − 1) for each refinement D ∈ D(t) of C, ϕ ∈ Φ,
and h > N . To see this, let j ∈ [N ] be such that ϕ = ϕj . Then Dh

ϕ only pumps
one part of the j-th block of LN [RN ] to L�1 [R�2 ] for some �1, �2 > N . Thus for
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the minimum, the WTA T should switch from q� to qr after processing the seg-
ment R�2 , which yields f(Dh

ϕ) = N(N − 1). For the second item of Theorem 7,
let ϕ,ψ ∈ Φ with ϕ �= ψ and φ = ϕ ∨ ψ. Since ϕ and ψ select different blocks,
no matter where the WTA T switches from q� to qr we will either count the
pumped occurrences of L or the pumped occurrences of R in at least one block.
Thus, f(Dh

φ) < f(Dh+1
φ ) for all h > N . Thus, f is not a point-wise recognizable

minimum, which together with Theorem 6 proves f /∈ FA-RTL(T). �
The height and size of the input trees in Theorem 8, for which accepting runs

exist, are linearly related, so we also obtain FA-RTL(T) � PAH-RTL(T).
In fact, using [5, Theorem 6.1] we are able to present similar results for the

arctic semiring A. Let C = (D1, C1, . . . , Dn, Cn, s) ∈ D(t) be a decomposition of
a tree t ∈ TΣ and f : TΣ → A be a weighted tree language. The decomposition C
is linear if for all ϕ ∈ Bn there is a constant Kϕ such that f(Ch+1

ϕ ) = Kϕ +f(Ch
ϕ)

for all sufficiently large h. Given a linear decomposition C, a selector φ ∈ Bn is
elementarily linear for C if Kφ =

∑n
j=1 φj ·K1j

, where 1j = (0, . . . , 0, 1, 0, . . . , 0)
with the 1 occurring in the j-th component.

Theorem 9 (Pumping Lemma for FA-RTL(A)). Let f ∈ FA-RTL(A). There
exists a constant N ∈ N such that for each tree t ∈ TΣ and decomposition
C = (Dn, Cn, . . . , D1, C1, s) ∈ D(t) of t with n ≥ N and depth(Cj) ≥ N for
all j ∈ [n], there exists a linear refinement D = (D′

n, Bn, . . . , D′
1, B1, s

′) ∈ D(t)
of C with B1, . . . , Bn �= � such that for every subset Φ ⊆ Bn with |Φ| ≥ N

– there exists ϕ ∈ Φ that is not elementarily linear for D or
– there exist ϕ,ψ ∈ Φ with ϕ �= ψ such that 1i ∨1j is elementarily linear for D

for all i, j ∈ [n] with ϕi = 1 and ψj = 1.

Theorem 10. FA-RTL(A) � PA-RTL(A).

Proof. We reconsider the WTA T = (Q,Σ,Δ,wt, F ) of the proof of Theorem 8
over the arctic semiring A. Clearly, f = �T � ∈ PA-RTL(A). Additionally, we
have

f(t) = max
i∈[n]

{
|{j ∈ [i] | Cj = R}| + |{j ∈ [n] \ [i] | Cj = L}|

}

for a tree of the form t = C1[· · · Cn[σ(α, α)] · · · ] with C1, . . . , Cn ∈ {L,R} and
n ∈ N, and f(t) = −∞ otherwise. For the proof of f /∈ FA-RTL(A) we use the
same technique as in the proof of Theorem 8. Since now the maximum is taken,
each ϕ ∈ Φ is elementarily linear for D. For the second condition, let ϕ,ψ ∈ Φ
with ϕ �= ψ and i, j ∈ [n] such that ϕi = 1 and ψj = 1. However, φ = 1i ∨ 1j is
not elementarily linear for D since Kφ = max(K1i

,K1j
). �

6 Polynomially Ambiguous Vs. Recognizable

Our last pumping lemma will allow us to present a recognizable weighted tree
language over T that is not recognizable by any PAH-WTA. To this end, we
introduce some additional notation. Let n ∈ N. A set Φ ⊆ Bn \ {(0, . . . , 0)} is
called a partition of [n] if

∨
Φ = (1, . . . , 1) and ϕ∧ψ = (0, . . . , 0) for all ϕ,ψ ∈ Φ

with ϕ �= ψ. We call ψ ∈ Bn a cover of Φ if
∑

j∈[n](ψ ∧ ϕ)j = 1 for every ϕ ∈ Φ.
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Theorem 11 (Pumping Lemma for PAH-RTL(T)). Let f ∈ PAH-RTL(T).
There exists N ∈ N and a mapping c : N → N such that for each tree t ∈ TΣ and
decomposition C = (Dn, Cn, . . . , D1, C1, s) ∈ D(t) of t with depth(Ci) ≥ N for
all j ∈ [n], there exists a refinement D = (D′

n, Bn, . . . , D′
1, B1, s

′) ∈ D(t) of C
such that for every partition Φ of [n] with |Φ| ≥ c(

∑
j∈[n] ϕj) for all ϕ ∈ Φ

– there exists ϕ ∈ Φ such that f(Dh
ϕ) = f(Dh+1

ϕ ) for all h sufficiently large or
– there exists a cover ψ of Φ such that f(Dh

ψ) < f(Dh+1
ψ ) for all h sufficiently

large.

Now we give a recognizable weighted tree language f /∈ PA-RTL(T). We
will actually show f /∈ PAH-RTL(T), but due to the special shape of f the
height and size are themselves polynomially related, so f /∈ PAH-RTL(T) implies
f /∈ PA-RTL(T). In contrast to the previous examples Theorem 11 operates
directly on the tropical semiring.

Theorem 12. PA-RTL(T) � RTL(T).

Proof. We consider the ranked alphabet Σ = {σ(2), τ (1), α(0)}, s = σ(α, α), and
the contexts R = σ(�, α) and L = σ(α, �) as before. Additionally, we consider
the weighted tree language f : TΣ → T such that for every t ∈ TΣ

f(t) =

⎧
⎪⎨

⎪⎩

∑k
�=1 min(i�, j�) if t = τ

(
Li1

[
Rj1

[
· · ·

[
τ(Lik [Rjk [s]])

]
· · ·

]]
)

for (i1, . . . , ik), (j1, . . . , jk) ∈ Nk

∞ otherwise.

Let T = (Q,Σ,Δ,wt, F ) be the WTAover T with Q = {q�, qr, qα}, F (q) = 0 for
each q ∈ Q, and the following transitions and weights

{
α

0→ qα σ(qα, q�)
1→ q� σ(q�, qα) 0→ q� σ(qα, qα) 0→ q� (counting L)

σ(qr, qα) 1→ qr σ(qα, qr)
0→ qr σ(qα, qα) 0→ qr (counting R)

τ(q�)
0→ q� τ(q�)

0→ qr τ(qr)
0→ q� τ(qr)

0→ qr

}
. (reset)

Clearly, T recognizes f and thus f ∈ RTL(T). Assume now f ∈ PAH-RTL,
as mentioned above by the special shape of f , this implies f ∈ PA-RTL. By
Theorem 11 there exist a constant N and a mapping c : N → N with various
properties. Let m > c(2) and consider t = (τ [LN [RN ]])m[s] with decomposition
C = (τ(�), LN , �, RN , . . . , τ(�), LN , �, RN , s). Additionally, for each j ∈ [m]
let ϕj ∈ B2N be such that ϕj(2j − 1) = ϕj(2j) = 1 and 0 otherwise. Finally,
let Φ = {ϕ1, . . . , ϕm}. Clearly, f(t) = Nm. However, for every refinement D
of C and h > N we have f(Dh

ϕ) < f(Dh+1
ϕ ) for every ϕ ∈ Φ as well as f(Dh

ψ) =
f(Dh+1

ψ ) for every cover ψ of Φ. �

As before, we collect the corresponding results for the arctic semiring A.
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Theorem 13 (Pumping Lemma for PAH-RTL(A)). Let f ∈ PAH-RTL(A).
There exists N ∈ N and a mapping c : N → N such that for each tree t ∈ TΣ and
decomposition C = (Dn, Cn, . . . , D1, C1, s) ∈ D(t) of t with depth(Ci) ≥ N for
all j ∈ [n], there exists a linear refinement D = (D′

n, Bn, . . . , D′
1, B1, s

′) ∈ D(t)
of C such that for every partition Φ of [n] with |Φ| ≥ c(

∑
j∈[n] ϕj) for all ϕ ∈ Φ

– there exists ϕ ∈ Φ that is elementarily linear for D or
– there exists a cover ψ of Φ that is not elementarily linear for D.

Theorem 14. PA-RTL(A) � RTL(A).

Proof. Reconsider the WTA T as well as the other infrastructure of the proof
of Theorem 12 over the arctic semiring A and its recognized mapping g = �T �,
which is essentially the mapping f with the minimum replaced by the maximum.
It is straightforward to see that no ϕ ∈ Φ is elementarily linear for D, but each
cover ψ of Φ is elementarily linear for D since different selectors apply to different
parts of t, separated by an occurrence of τ . �

7 Conclusion

We investigated the expressive power of weighted tree automata with vari-
ous amounts of ambiguity over the tropical semiring T as well as the arctic
semiring A. More precisely, we compared the expressive power of WTAthat
are unambiguous (UA-WTA), finitely ambiguous (FA-WTA), and polynomi-
ally ambiguous (PA-WTA) and proved the strictness of the corresponding hier-
archy UA-RTL(S) � FA-RTL(S) � PA-RTL(S) � RTL(S) for S ∈ {T,A}
using arguments corresponding to those of [5,19]. Moreover, we obtain a sim-
ilar hierarchy UA-RTL(S) � FA-RTL(S) � PAH-RTL(S) � EAH-RTL(S) for
the same ambiguity notions in the height of the input tree. Obviously it holds
that PAH-RTL(S) ⊆ PA-RTL(S) as well as EAH-RTL(S) ⊆ RTL(S). It remains
open, whether those inclusions are strict.
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Abstract. While the closure of a language family L under certain lan-
guage operations is the least family of languages which contains all mem-
bers of L and is closed under all of the operations, a kernel of L is a max-
imal family of languages which is a sub-family of L and is closed under
all of the operations. Here we investigate properties of the Boolean ker-
nels of the family of context-free languages. Additionally, languages that
are mandatory for each Boolean kernel and languages that are optional
for Boolean kernels are studied. That is, we consider the intersection of
all Boolean kernels as well as their union. The expressive capacities of
these families are addressed leading to a hierarchical structure. Further
closure properties are considered. Furthermore, we study descriptional
complexity aspects of these families, where languages are represented by
context-free grammars with proofs attached. It turns out that the size
trade-offs between all families in question and deterministic context-free
languages are non-recursive. That is, one can choose an arbitrarily large
recursive function f , but the gain in economy of description eventually
exceeds f when changing from the latter system to the former.

1 Introduction

Classical and well-developed concepts to represent (formal) languages are, for
example, grammars, language equations, or accepting automata. Similarly, fam-
ilies of languages can be represented in several ways. For example, a language
family can be defined to be the set of all languages represented by a certain
type of grammar, automaton model, language equation, or by applying appro-
priate operations on other language families. From a practical point of view,
there is often a considerable interest in language families that are robust with
respect to language operations, that is, the families are preferably closed under
the operations, and/or in language families that admit efficient recognizers. A
good example are context-free languages, that are one of the most important and
most developed area of formal language theory. However, the family is not closed
under the two Boolean operations complementation and intersection. Moreover,
c© Springer Nature Switzerland AG 2021
S. Maneth (Ed.): CIAA 2021, LNCS 12803, pp. 152–164, 2021.
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the known upper bound on the time complexity for context-free language recog-
nition still exceeds O(n2). As an approach to characterize language families hav-
ing strong closure properties and efficient recognizers but decrease the expressive
capacity only slightly, closures of sub-classes of the context-free languages have
been investigated. The Boolean closure of the linear context-free languages offers
a significant increase in expressive capacity compared with the linear context-
free languages itself. In addition, it preserves the attractively efficient recognition
algorithm [10] taking O(n2) time and O(n) space. The systematic investigation
of the Boolean closures of arbitrary and deterministic context-free languages
started in [12–14]. The closure of deterministic languages under the regular
operations is studied in [1], while the regular closure of the linear context-free
languages is considered in [9].

Here we are interested in language families with strong closure properties
obtained as sub-families of a given family instead of closing and, thus, extending
the family. To this end, we study Boolean kernels of the family of context-free
languages. Basically, such a kernel is a maximal sub-family of the context-free
languages that is closed under the Boolean operations.

The paper is organized as follows. After presenting the basic definitions and
notions in the next section, Sect. 3 deals with the expressive capacities of Boolean
kernels of context-free languages as well as with languages that are mandatory
for each Boolean kernel and languages that are optional for Boolean kernels. For
the latter, the intersection and union of all Boolean kernels is considered. The
hierarchical structure of these families is depicted in Fig. 1. Section 4 is devoted
to additional closure properties. In particular, the operations reversal, concate-
nation, and inverse homomorphism are studied. The results are summarized in
Table 1. Descriptional complexity aspects are dealt with in Sect. 5. The size of
a language is given by the size of its representation. Since, in most cases, no
automata or grammar characterizations are known for kernels, here we use rep-
resentations by context-free grammars which come with a corresponding proof
attached. The proofs certify that the grammar generates a language belonging
to the desired sub-family. The length of the proof is then added to the size of
the grammar. It turns out that the size trade-offs between all families in ques-
tion and deterministic context-free languages are non-recursive. That is, one
can choose an arbitrarily large recursive function f , but the gain in economy of
description eventually exceeds f when changing from the latter system to the
former. Finally, we discuss some interesting untouched problems and questions
for further research in Sect. 6.

2 Preliminaries

We write Σ∗ for the set of all words over a finite alphabet Σ. The empty word
is denoted by λ, and we set Σ+ = Σ∗ \{λ}. The reversal of a word w is denoted
by wR, and for the length of w we write |w|. For the number of occurrences of a
symbol a in w we use the notation |w|a. Set inclusion is denoted by ⊆ and strict
set inclusion by ⊂.
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A subset of Σ∗ is called a (formal) language over Σ. A language operation
is an operation whose finite number of parameters are languages, and whose
result is a language. For example, the complement of a language is defined with
respect to the underlying alphabet Σ. That is, the complement of L ⊆ Σ∗

is L = {w ∈ Σ∗ | w /∈ L }. For all k ≥ 1, a k-ary language operation ◦ is
said to be idempotent if ◦(L,L, . . . , L) = L, for all L in the domain of ◦. For
easier writing, here we call even a unary language operation ◦ with the property
◦(L) = L idempotent (so we do not require ◦(◦(L)) = ◦(L)).

Let Ω be an infinite enumerable set of letters. The set L is a family of
languages over Ω if for each L ∈ L there is a finite subset Σ ⊂ Ω such that
L ⊆ Σ∗. In the sequel we tacitly omit Ω when it is understood.

Let L be a family of languages and op1, op2, . . . , opk, k ≥ 1, be a finite
number of operations defined on L .

1. By Γop1,op2,...,opk
(L ) we denote the (op1, op2, . . . , opk) closure of L . That is,

the least family of languages which contains all members of L and is closed
under op1, op2, . . . , opk. In other words, there exists no language family L ′

that is closed under op1, op2, . . . , opk such that L ⊆ L ′ ⊂ Γop1,op2,...,opk
(L ).

2. By γop1,op2,...,opk
(L ) we denote the set of (op1, op2, . . . , opk) kernels of L .

That is, the set of maximal families of languages which are sub-families of
L and are closed under op1, op2, . . . , opk. In other words, for all kernels κ ∈
γop1,op2,...,opk

(L ) there exists no language family L ′ that is closed under
op1, op2, . . . , opk such that κ ⊂ L ′ ⊆ L .

In particular, we consider the operations complementation ( ), union (∪),
and intersection (∩), which are called Boolean operations. Accordingly, we write
ΓBOOL for Γ ,∪,∩ and γBOOL for γ ,∪,∩.

Since special attention is paid to sub-classes of context-free languages, we
refer to the literature, for example to [3], for detailed definitions of context-free
grammars and of the characterizing automata models. In particular, an automa-
ton model for the recognition of context-free languages is the nondeterministic
pushdown automaton. Its deterministic variant characterizes the deterministic
context-free languages (DCFL).

It is known from [8] that the sets γBOOL(CFL) as well as γBOOL(DCFL)
include infinitely many kernels, while the complementation kernel of the context-
free languages is unique. Moreover, not all context-free languages belong to some
Boolean kernel, while any deterministic context-free language belongs to some
kernel κ ∈ γBOOL(DCFL).

3 Expressive Capability

In connection with the question of whether any language of a family belongs to
some kernel based on given operations, or whether there are languages that do
not belong to any of such kernels, the union of all kernels has been considered.
Similarly, the question which languages belong to all kernels based on given
operations raised the definition of the intersection of all of these kernels.
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The union of all Boolean kernels of the context-free languages is denoted
by U , that is, U = {L | L ∈ κ for some κ ∈ γBOOL(CFL) }.

Similarly, the intersection of all Boolean kernels of the context-free languages
is denoted by I , that is, I = {L | L ∈ κ for all κ ∈ γBOOL(CFL) }.

It turns out that the union of all Boolean kernels of the context-free languages
characterizes an interesting language family. Theorem 1 shows that it coincides
with the unique complementation kernel in γ (CFL). That is interesting in itself
but beyond that, the unique complementation kernel is also known as the family
of strongly context-free languages [7]. A machine characterization of that family
in terms of self-verifying pushdown automata is obtained in [2].

Theorem 1. The family U coincides with the unique complementation kernel
in γ (CFL).

Proof. Let L be a language in U ⊆ CFL. Then there is a κ ∈ γBOOL(CFL) with
L ∈ κ. Since κ is closed under complementation, the complement L of L belongs
to κ as well. We conclude that L belongs to U and, thus, to CFL. In particular,
since L and L are context free, they belong to the unique kernel in γ (CFL).

For the converse, let L be some language over the alphabet Σ such that L
and, thus, L belong to the unique kernel in γ (CFL). We consider the set
ν = {L,L,Σ∗, ∅} which is clearly closed under complementation, union, and
intersection. Since L and L are context free, either ν is itself a Boolean kernel of
CFL, or there exists a kernel in γBOOL(CFL) having ν, and thus {L}, as subset.
So, L belongs to U . 
�

Since the family of context-free languages is not closed under comple-
mentation but by Theorem 1 the family U is, the inclusion U ⊂ CFL is
strict. Moreover, since there are infinitely many different Boolean kernels in
γBOOL(CFL), the maximality of kernels implies that any κ ∈ γBOOL(CFL) is
strictly included in U . For example, consider the two context-free languages
L1 = { anbnam | m,n ≥ 1 } and L2 = { ambnan | m,n ≥ 1 }. Their com-
plements are context free as well and, thus, both belong to the unique kernel
in γ (CFL) which coincides with U . Therefore, by Theorem 1 both belong to
some Boolean kernel from γBOOL(CFL). However, languages L1 and L2 cannot
belong to the same Boolean kernel from γBOOL(CFL), since their intersection is
the non-context-free language { anbnan | n ≥ 1 }.

In order to continue with the exploration of the hierarchical structure of
Boolean kernels, we turn to consider the family I which is the intersection of
all Boolean kernels of the context-free languages.

Proposition 2. The family I is strictly included in any Boolean kernel κ ∈
γBOOL(CFL).

It is shown in [8] that all Boolean kernels of the context-free languages include
the regular languages and some non-regular languages. So far, we have the hier-
archy REG ⊂ I ⊂ κ ⊂ U ⊂ CFL, for all kernels κ ∈ γBOOL(CFL), (see Fig. 1).
Finally, we turn to compare the family of deterministic context-free languages
with the hierarchical structure of Boolean kernels.
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Fig. 1. Hierarchical structure of language classes. The class
⋃

κ ∈ γBOOL(CFL)
denotes the union of all Boolean kernels of CFL. It coincides with the unique com-
plementation kernel of CFL. By κ ∈ γBOOL(CFL) we denote an arbitrary Boolean
kernel of CFL, and by

⋂
κ ∈ γBOOL(CFL) the intersection of all Boolean kernels of

CFL.

First we deduce that the family DCFL is strictly included in the family U .

Corollary 3. The family DCFL is strictly included in the family U .

Proof. By Theorem 1, any context-free language whose complement is also con-
text free belongs to U . Since the family DCFL is closed under complementation
and a subset of CFL, we obtain the inclusion DCFL ⊆ U . Its strictness is wit-
nessed, for example, by the context-free language {w ∈ {a, b}∗ | w = wR } not
belonging to DCFL whose complement is also context free (cf. [2]). So, it belongs
to U but is not deterministic context free. 
�

Concerning an arbitrary Boolean kernel κ ∈ γBOOL(CFL) and the family I
we obtain incomparability with DCFL.

Theorem 4. For any κ ∈ γBOOL(CFL), the family DCFL is incomparable with
κ and with the family I .

Proof. Both languages { anbnam | m,n ≥ 1 } and { ambnan | m,n ≥ 1 } are
deterministic context free. Assume that they do belong to κ. Since κ is closed
under intersection, the non-context-free language { anbnan | n ≥ 1 } must belong
to κ as well, a contradiction. So, there is a language in DCFL \ κ and, trivially,
in DCFL \ I .

Conversely, it is known that the languages L1 = { anbn | n ≥ 1 } and
L2 = { anb2n | n ≥ 1 } are included in any Boolean kernel of the context-
free languages [8]. So, they belong to the family I and, trivially, to κ. We
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consider the union L1 ∪ L2. Since L1 and L2 belong to any Boolean kernel of
the context-free languages which, in turn are closed under union, also L1 ∪ L2

must belong to any Boolean kernel of the context-free languages. In other words,
L1 ∪ L2 = { anbm | m = n or m = 2n,m, n ≥ 1 } belongs to I and, trivially,
to κ. But L1 ∪ L2 is not deterministic context free. So, there is a language in
κ \ DCFL and, trivially, in I \ DCFL. 
�

So far we have derived the comparisons of DCFL with the other families in
question. However, as shown in Fig. 1, its position in the hierarchical structure
needs a finer adjustment. The first question is whether the union of some kernel κ
and DCFL already characterizes the family U . Proposition 5 gives a negative
answer.

Proposition 5. For any κ ∈ γBOOL(CFL), there is a language in U \ (κ ∪
DCFL).

To continue with the finer adjustment let us next ask whether the union of
DCFL and I already captures the kernels κ. Again, the answer is negative.

Proposition 6. There exists a κ ∈ γBOOL(CFL) such that there is a language
in κ \ (I ∪ DCFL).

Proof. A language we are looking for has been considered in the proof of Propo-
sition 5. There, it is shown that the complement of the context-free language
L1 = { anbnam | m,n ≥ 1 } ∪ { anb2nam | m,n ≥ 1 } is context free as well,
and, thus, that L1 belongs to U . This implies that L1 belongs to some kernel
κ ∈ γBOOL(CFL).

Similarly, it is shown that L2 = { ambnan | m,n ≥ 1 }∪{ ambna2n | m,n ≥ 1 }
belongs to some kernel from γBOOL(CFL), but L1 and L2 cannot belong to the
same kernel.

So, we conclude that at least one of L1 and L2 does not belong to I . Both
languages are not deterministic context free. So, the assertion follows. 
�

The last two areas to be considered in Fig. 1 are the intersection of DCFL
and κ without I , and the intersection of DCFL and I without REG. For the
latter, we can utilize once more the non-regular but deterministic context-free
language { anbn | n ≥ 1 } that is included in any Boolean kernel of the context-
free languages [8].

Corollary 7. There is a language in (DCFL ∩ I ) \ REG.

For the former, we have the following result.

Proposition 8. There exists a κ ∈ γBOOL(CFL) such that there is a language
in (DCFL ∩ κ) \ I .
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4 (Non-)Closure Properties

The closure properties of the kernels from γBOOL(CFL) under the Boolean oper-
ations are trivial by definition. By Theorem 1, the properties of U can be derived
from the results on strongly context-free languages obtained in [7]. In particular,
it is closed under complementation but is not closed under union and intersection
(see Table 1). For the family I and Boolean operations we have the following
situation.

Proposition 9. The family I is closed under complementation, union, and
intersection.

Since all κ ∈ γBOOL(CFL) include the regular languages and are closed
under intersection, they are closed under intersection with regular sets. The
same argument applies to the family I .

We call a language that witnesses the non-inclusion of another language
in some family by violating closure properties toxic. More precisely, let L be
some family of languages not closed under an operation ◦, and L be a language
belonging to L . Then a language L′ ∈ L is said to be L -◦-toxic for L if and
only if L ◦ L′ /∈ L .

Lemma 10. Let L be a family of languages that includes ∅ and Σ∗, for all
alphabets Σ, and κ ∈ γBOOL(L ). A language L ∈ L does not belong to κ if
and only if either L /∈ L or there is a language L′ ∈ κ that is L -∩-toxic or
L -∪-toxic for L.

Proof. Let L ∈ L be a language not belonging to κ. Assume that L ∈ L and all
languages L′ ∈ κ are neither L -∩-toxic nor L -∪-toxic for L. Then we consider
ΓBOOL(κ ∪ {L,L}). In particular, we have that L as well as L belong to L ,
L ∩ L′ and L ∪ L′ do belong to L for all L′ ∈ κ. Moreover, L ∩ L = ∅ ∈ κ and
L∪L = Σ∗ ∈ κ. Therefore, ΓBOOL(κ∪{L,L}) is included in L . This contradicts
the maximality of κ.

If L ∈ κ then L ∈ κ ⊆ L , since κ is closed under complementation. Moreover,
since κ is closed under union and intersection, for all languages L′ ∈ κ, we have
L ∪ L′ ∈ κ ⊆ L and L ∩ L′ ∈ κ ⊆ L . We conclude that L′ is neither L -∪-toxic
nor L -∩-toxic for L. 
�

Reversal. The family U is closed under reversal. Before we turn to the closure
of the family I , we show that the closure may get lost for fixed kernels κ ∈
γBOOL(CFL).

Proposition 11. There is a kernel κ ∈ γBOOL(CFL) that is not closed under
reversal.

Theorem 12. The family I is closed under reversal.
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Proof. Assume in contrast to the assertion that there is an L ∈ I such that
LR /∈ I . Then there is a κ ∈ γBOOL(CFL) with LR /∈ κ.

Consider the complement LR. Since complementation commutes with rever-
sal we have LR = L

R
. Since L ∈ κ we derive L ∈ κ and, since CFL is closed

under reversal also L
R

= LR ∈ CFL. Knowing this we apply Lemma 10 and
conclude that there is a language L′ ∈ κ that is CFL-∩-toxic or CFL-∪-toxic
for LR. Since CFL is closed under union, L′ must be CFL-∩-toxic for LR.

So, LR ∩ L′ does not belong to CFL. Since the family CFL is closed under
reversal, we conclude (LR ∩L′)R /∈ CFL and, thus, (LR)R ∩ (L′)R = L∩ (L′)R /∈
CFL. Since L belongs to all Boolean kernels of CFL, we derive that all Boolean
kernels do not include (L′)R. Now Theorem 1 implies that either (L′)R or (L′)R

is not context free. Again, since complementation commutes with reversal we
obtain that either (L′)R or L′R is not context free. However, L′ ∈ κ implies L′ ∈
κ. By the closure of CFL under reversal we obtain the contradiction (L′)R ∈ CFL
and L′R ∈ CFL. 
�

Concatenation and Inverse Homomorphism. In order to prove the non-
closure of the family I and all kernels κ ∈ γBOOL(CFL) under concatenation
and inverse homomorphism, we consider semilinear languages that are subsets
of a∗b∗, where the number of b’s depends linearly on the number of a’s. The
dependency is given by linear functions ϕ : N → N with ϕ(n) = c1 · n + c0, for
some c0, c1 ≥ 0. For such functions, we define Lϕ = { anbϕ(n) | n ≥ 0 }. In [8]
it has been shown that all regular languages as well as all languages Lϕ belong
to all Boolean kernels of CFL. A generalization of the proofs reveals that this is
true also for all reversals of the languages Lϕ, that is, all languages LR

ϕ belong
to all Boolean kernels of CFL.

Theorem 13. The family I and all kernels κ ∈ γBOOL(CFL) are not closed
under concatenation, not even with concatenation of unary regular sets.

Theorem 14. The family I and all kernels κ ∈ γBOOL(CFL) are not closed
under inverse homomorphisms, not even under length-preserving inverse homo-
morphisms.

Proof. Let ϕ : N → N be the linear function ϕ(n) = 2n. We know that the
languages Lϕ = { anb2n | n ≥ 0 } and LR

ϕ belong to all kernels κ ∈ γBOOL(CFL).
Furthermore, let h : {a, b, c}∗ → {a, b}∗ be the homomorphism h(a) = a, h(b) =
h(c) = b and ĥ : {a, b, c}∗ → {a, b}∗ be the homomorphism ĥ(a) = ĥ(b) = b,
ĥ(c) = a. Then we have

h−1(Lϕ) ∩ a∗b∗c∗ = { anbmck | n ≥ 0,m + k = 2n } and

ĥ−1(LR
ϕ ) ∩ a∗b∗c∗ = { akbmcn | n ≥ 0,m + k = 2n }.

Assume that the family I or some kernel κ ∈ γBOOL(CFL) is closed under
inverse homomorphism. Since they include the regular languages and are closed



160 M. Kutrib and L. Prigioniero

under intersection, we derive that they include the language

h−1(Lϕ) ∩ ĥ−1(LR
ϕ ) ∩ a∗b∗c∗ = { anbncn | n ≥ 0 }

as well, a contradiction. 
�

Table 1. Closure properties of the language families discussed. Symbol • denotes
concatenation and κ stands for an arbitrary but fixed kernel from γBOOL(CFL). The
properties shown for κ hold for all κ ∈ γBOOL(CFL) with the exception of reversal.
For reversal, it has been shown that some kernels are not closed. It is currently open
if there exists some κ ∈ γBOOL(CFL) that is closed under reversal. The non-closure
under inverse homomorphism holds even for length-preserving homomorphisms.

∪ ∩R ∩ REV • h−1

CFL ✗ ✓ ✓ ✗ ✓ ✓ ✓

U ✓ ✗ ✓ ✗ ✓ ✗ ✓

κ ✓ ✓ ✓ ✓ ✗ ✗ ✗

I ✓ ✓ ✓ ✓ ✓ ✗ ✗

DCFL ✓ ✗ ✓ ✗ ✗ ✗ ✓

REG ✓ ✓ ✓ ✓ ✓ ✓ ✓

5 Descriptional Complexity

One topic in the field of descriptional complexity is to study the relative suc-
cinctness of different representations of languages by automata, grammars, and
descriptional systems from a more abstract perspective. For languages that have
more than one representation, the size trade-offs when changing the representa-
tion may be bounded by a recursive function or not. In the latter case we are
faced with the phenomenon of so-called non-recursive trade-offs. In particular,
whenever the trade-off from one descriptional system to another is non-recursive,
one can choose an arbitrarily large recursive function f but the gain in economy
of description eventually exceeds f when changing from the latter system to the
former. See [6] for more details on descriptional complexity.

In order to deal with such questions for kernels, a descriptional system for
languages from the kernel is necessary whose size can be measured. Since, in
general, no automata or grammar characterizations are known for kernels, we
take up an idea of Hartmanis [4] who raised the question whether the trade-off
between two descriptional systems is caused by the fact that in one system it
can be proved what is accepted, but that no such proofs are possible in the
other system. For example, consider descriptional systems for the deterministic
context-free languages. It is easy to verify whether a given pushdown automaton
is deterministic, but there is no uniform way to verify that a nondeterministic
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pushdown automaton accepts a deterministic context-free language. So, one may
ask whether the trade-off is affected if descriptional systems are considered which
come with a corresponding proof attached whose length is added to the size of
the system.

So, in the following we consider the representation of context-free languages
by nondeterministic pushdown automata (NPDA) to which a proof is attached
that the accepted language belongs to U , κ ∈ γBOOL(CFL), or I . We denote
these automata as U -NPDA, κ-NPDA, or I -NPDA. The size of such an
automaton is the length of the description of the automaton plus the length
of the proof, say in binary. Then it is clear that, for any c ≥ 1, there are only
finitely many U -NPDA, κ-NPDA, or I -NPDA whose size is at most c.

It will turn out that the trade-offs between any of these three descriptional
systems and deterministic pushdown automata (DPDA) are non-recursive. The
proof is by reduction of the halting problem for Turing machines on empty tape.
To this end, histories of Turing machine computations are encoded into strings.
It suffices to consider deterministic Turing machines with one single tape and
one single read-write head. Without loss of generality and for technical reasons,
we safely may assume that the Turing machines cannot print blanks, can halt
only after an odd number of moves, and accepts by halting. The size of a Turing
machine is again measured as the length of its description. As for the NPDA,
there are only finitely many Turing machines of the same size.

Let Q be the state set of some Turing machine M , where q0 is the initial
state, T ∩ Q = ∅ is the tape alphabet containing the blank symbol, and Σ ⊂ T
is the input alphabet. Then a configuration of M can be written as a word of
the form T ∗QT ∗ such that t1t2 · · · tiqti+1 · · · tn is used to express that M is in
state q, scanning tape symbol ti+1, and t1, t2 to tn is the support of the tape
inscription.

Dependent on M we define the language of valid computations. Let $ /∈ T ∪Q,
n ≥ 0, and wi ∈ T ∗QT ∗, 0 ≤ i ≤ 2n+1, be configurations of M . Then VALC(M)
is defined to be the language of all words of the form

$w0$w
R
1 $w2$w

R
3 $ · · · $w2n$w

R
2n+1$,

where w0 is an initial configuration of the form q0, w2n+1 is a halting config-
uration, and wi is the successor configuration of wi−1, 1 ≤ i ≤ 2n + 1. The
language of invalid computations INVALC(M), is the complement of VALC(M)
with respect to the alphabet {$} ∪ T ∪ Q.

Corollary 15. For any deterministic Turing machine M , the language
INVALC(M) is a linear context-free language, such that its nondeterministic
one-turn pushdown automaton can effectively be constructed from M .

We denote the size of some system X by |X|.
Theorem 16. The trade-offs between U -NPDA and DPDA, κ-NPDA and
DPDA, as well as between I -NPDA and DPDA are non-recursive.
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Proof. Assume in contrast to the assertion that one of the trade-offs is recursive.
We turn to show that in this case the halting problem for Turing machines on
empty tape would be decidable, a contradiction.

So, let M be some given Turing machine of size c ≥ 1. Then a Turing
machine Mc with unary input alphabet {a} is uniformly constructed as follows.
On input ax, first Mc enumerates all the finitely many Turing machines whose
size is c. Then it simulates all these finitely many Turing machines on empty
tape by dovetailing for exactly x steps (or up to halting if a machine halts before
x steps). Machine Mc accepts its input ax by halting if at least one of the simu-
lations halts exactly after step x. If not, Mc does not halt. We conclude that the
language L(Mc) accepted by Mc is finite. Moreover, the length of the longest
word in L(Mc) gives the latest time step at which a Turing machine of size c
halts on empty tape.

The finiteness of L(Mc) is easily proved by a proof Π1. The length of Π1 can
be bounded from above by 	1(c), where 	1 is a recursive function.

Next, from Mc an NPDA N accepting INVALC(Mc) is constructed by Corol-
lary 15. The corollary can be proved by a proof Π2 whose length can be bounded
from above by 	2(c), where 	2 is a recursive function.

Since Mc accepts a finite language, INVALC(Mc) is a co-finite and, thus,
regular language. This fact is easily proved by a proof Π3 whose length can be
bounded from above by 	3(c), where 	3 is a recursive function.

Since all regular languages belong to all Boolean kernels κ ∈ γBOOL(CFL),
the proofs Π1, Π2, and Π3 reveal that N is a U -NPDA, a κ-NPDA, as well as
an I -NPDA. The total length of this proof, which is attached to N , can be
bounded from above by 	(c), where 	 is a recursive function.

Recall that we assume in contrast to the assertion that the trade-off between
the size of N (including the attached proof) and the size of some equivalent
DPDA D is given by a recursive function f , that is |D| ≤ f(|N |). Then f(|N |)
can be computed from N , and all DPDAs whose size is at most f(|N |) can
be enumerated. Since the family of deterministic context-free languages is effec-
tively closed under complementation, each DPDA P in the list can be replaced
by a DPDA accepting the complement of L(P ). Since finiteness of determin-
istic context-free languages is decidable, each DPDA that accepts an infinite
language can be removed from the new list. The decision of finiteness of deter-
ministic context-free languages includes the computation of an upper bound for
the length of the longest word in the language. So, an upper bound for the
length of the longest word accepted by any of the remaining DPDAs in the list
can be computed. Moreover, among the remaining DPDAs there must be one
that accepts the finite complement of L(D). The finite complement of L(D) is
the language VALC(Mc). Clearly, the longest word in VALC(Mc) is longer than
the longest word in L(Mc). As before, an upper bound of the length of this
longest word can be computed from D. But recall that the length of the longest
word in L(Mc) gives the latest time step at which a Turing machine of size c
halts on empty tape.
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Finally, it suffices to simulate the given Turing machine M for this number
of steps in order to decide whether it halts on empty tape or not. 
�

6 Untouched and Open Questions

We have started to study the properties of Boolean kernels of the family of
context-free languages. Since little is known about kernels, many questions and
problems remain open or untouched. Exemplarily, we mention some of them:
(1) Is there a Boolean kernel κ ∈ γBOOL(CFL) that is closed under reversal or
are all these kernels non-closed under reversal? (2) Further non-trivial closure
properties of kernels are of natural interest. (3) A machine characterization of the
complementation kernel of the context-free languages in terms of self-verifying
pushdown automata is known [2]. Basically, the characterization is given by
a machine for the underlying language family, where the acceptance condition
is modified. Are there machine characterizations of other kernels? (4) In [5]
an improved version of Earley’s algorithm is adapted to context-free grammars
which are extended by complement and intersection operators retaining cubic
behavior. More generally, in [11] so-called conjunctive and Boolean grammars are
studied. Can these techniques be applied to sub-families of context-free languages
in order to find characterizations of kernels? (5) Alternative characterizations of
kernels could be generators, where a generator is some smallest set of languages
whose closure under certain operations is the kernel. Based on a generator, the
languages in the kernel could be represented as expressions.
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Abstract. Automata play a very important role in the design of string
matching algorithms as their use has always led to elegant and very effi-
cient solutions in practice. In this paper, we present a new general app-
roach to the exact string matching algorithm based on a non-standard
efficient simulation of the suffix automaton of the pattern and give a
specific efficient implementation of it. To show the effectiveness of our
algorithm, we perform an extensive comparison against the most effec-
tive alternatives known in literature in terms of search speed and shift
advancements. From our experimental results the new algorithm turns
out to be very efficient in practical cases scaling much better when the
length of the pattern increases, improving the search speed by nearly 10
times under suitable conditions.

Keywords: Text processing · String matching · Automata based
algorithms · Suffix automaton simulation · Design and analysis on
algorithms

1 Introduction

The string matching problem consists in finding all the occurrences of a pattern x
of length m in a text y of length n, both defined over an alphabet Σ of size σ. The
first linear-time solution to the problem was the Knuth–Morris–Pratt (KMP)
algorithm [13], whereas the Boyer–Moore (BM) algorithm provided the first
sub-linear solution on average. Subsequently, the BDM algorithm reached the
optimal O(n logσ(m)/m) time complexity on the average [6]. Both the KMP and
the BDM algorithms are based on finite automata; in particular, they simulate,
respectively, a deterministic automaton for the language Σ�x and a deterministic
suffix automaton for the language of the suffixes of x.

Beyond the theoretical results, from the practical point of view the efficiency
of such solutions is strictly affected by the encoding used for simulating the
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underlying automata. One of the side effects of the BDM algorithm lies indeed
in the use of the deterministic variant of the suffix automaton since the work-
load required to manage the individual transitions may be not negligible and,
although its construction is linear in the size of the string, the proportionality
factor hidden in the asymptotic notation is particularly high, making its con-
struction prohibitive in the case of long patterns [11].

The most efficient solutions available in the literature are rather based on
the simulation of the non-deterministic version of the suffix automaton by bit
parallelism [1], an approach which takes advantage of the intrinsic parallelism of
the bitwise operations inside a computer word, allowing to cut down the number
of actual transitions on the automaton by a factor up to ω, where ω is the number
of bits in a computer word. It is the case, for instance, of the Backward-Non-
deterministic-DAWG-Matching (BNDM) algorithm [14] which is based on the
bit-parallel simulation of the non-deterministic version of the suffix automaton
of the reverse of the pattern.

However one bit per pattern symbol is still required for representing the states
of the automaton, for a total of �m/ω� words. Thus, as long as the automaton fits
in a computer word, bit-parallel algorithms are extremely fast, otherwise their
performances degrade considerably as �m/ω� grows. Although such limitation is
intrinsic, several techniques have been developed which retain good performance
also in the case of long patterns [2,3,7,15].

A common approach to overcome this problem consists in constructing an
automaton for a substring of the pattern fitting in a single computer word, to
filter possible candidate occurrences of the pattern. However, besides the costs
of the additional verification phase, a drawback of this approach is that, in the
case of the BNDM algorithm, the maximum possible shift length cannot exceed
ω, which could be much smaller than m.

The Long-BNDM [15] (LBNDM) and the BNDM with eXtended Shift [7]
(BXS) algorithms are two efficient solutions specifically designed for simulating
the suffix automaton using bit-parallelism in the case of long patterns. Specif-
ically the LBNDM algorithm works by partitioning the pattern in �m/k� con-
secutive substrings, each consisting in k = �(m− 1)/ω�+1 characters. Similarly
the BXS algorithm cuts the pattern into �m/ω� consecutive substrings of length
w except for the rightmost piece which may be shorter. In both cases the sub-
strings are superimposed getting a superimposed pattern of length ω. The idea is
to search using a filter approach: first the superimposed pattern is searched in the
text, then an additional verification phase is run when a candidate occurrence
of the pattern has been located.

Cantone et al. presented in [2] an alternative technique, still suitable for bit-
parallelism, to encode the non-deterministic suffix automaton of a given string
in a more compact way. Their encoding is based on factorization of strings in
which no character occurs more than once in any factor. It turns out that the
non-deterministic automaton can be encoded with k bits, where k is the size of
the factorization. As a consequence, the resulting algorithm, called Factorized-
BNDM (FBNDM) tends to be faster in the case of sufficiently long patterns.
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Finally, particularly relevant for this work is the Backward-SNR-DAWG-
Matching (BSDM) algorithm, introduced by Faro and Lecroq in [10]. It is an effi-
cient filtration algorithm based on a very simple encoding of the suffix automaton
of a pattern x. The BSDM algorithm is based on the fact that a string where
each character is repeated only once admits a deterministic suffix automaton
which can be encoded with a simple integer.

In this paper, we present a new general approach to the exact string matching
algorithm based on a non-standard efficient simulation of the suffix automaton
of the pattern which avoids the construction of the full deterministic automaton,
on the one hand, overcoming the drawbacks of the bit-parallel simulation of the
non-deterministic automaton, on the other. The idea is to perform the first μ
transitions in the suffix automaton all at once, where the value of μ is suitably
chosen in order to simplify the simulation of subsequent automaton transitions.

We also give a specific implementation of such generic approach where the
value of μ is related to the occurrence of unique factors in the pattern. The
resulting algorithm, named Unique-Factor-Matcher (UFM) turns out to scale
much better than any previous solution when the size of the pattern increases,
improving the search speed by nearly 10 times under suitable conditions.

The paper is organized as follows. In Sect. 2 we briefly introduce the basic
notions which we use along the paper. In Sect. 3 we introduce the new general
approach and give its specific implementation in Sect. 4. Finally, in Sect. 5, we
compare the newly presented solution with the best algorithms known in litera-
ture and draw our conclusions in Sect. 6.

2 Basic Notions and Definitions

Given a finite alphabet Σ, we denote by Σm, with m ≥ 0, the set of all strings
of length m over Σ. We represent a string x ∈ Σm as an array x[0 . . m − 1]
of characters of Σ and write |x| = m (for m = 0 we obtain the empty string
ε). Thus, x[i] is the (i + 1)-st character of x, for 0 ≤ i < m, and x[i . . j] is the
substring of x contained between its (i + 1)-st and the (j + 1)-st characters, for
0 ≤ i ≤ j < m. For any two strings x and x′, we say that x′ is a suffix of x
if x′ = x[i . . m − 1], for some 0 ≤ i < m, and write Suff (x) for the set of all
suffixes of x. Similarly, x′ is a prefix of x if x′ = x[0 . . i], for some 0 ≤ i < m,
and write xi to indicate the prefix of length i of x, i.e. xi = x[0..i − 1]. We
write x · x′, or more simply xx′, for the concatenation of x and x′, and xr for
the reverse of the string x. Given a string x ∈ Σm, we indicate with S(x) =
(Q,Σ, δ, I, F ) the non-deterministic suffix automaton with ε-transitions for the
language Suff (x), where Q = {I, q0, q1, . . . , qm} is the set of automaton states, I
is the initial state, F = {qm} is the set of final states and the transition function
δ : P(Q)×(Σ∪{ε}) −→ P(Q), where P(Q) is the set of parts of Q. Specifically,
for any Q′ ⊆ Q we have qi+1 ∈ δ(Q′, c) if qi ∈ Q′ and c = x[i], for 0 ≤ i < m. In
addition we have δ({I}, ε) = Q. In all other cases we agree that δ(Q′, c) = ∅. For
simplicity, in what follows, we will use the notation δ(q, c) instead of δ({q}, c).
The valid configurations δ∗(I, w) which are reachable by the automaton S(x)
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on input w ∈ Σ∗ and starting from the initial state I are defined recursively as
follows

δ∗(w) :=

{
{q0, q1, ..., qm} if w = ε,⋃

q′∈δ∗(I,w′) δ(q′, c) if w = w′c, for some c ∈ Σ, and w′ ∈ Σ∗.

3 The BTSM Generic Algorithm

From the analysis of the performance of the algorithms presented in the previous
section [2,7,10] it turns out that the efficiency of a suffix automata based algo-
rithms relies on the right trade-off between the encoding used to represent the
underlying automaton and the size of the automaton itself. Regarding the first
point it turns out that automata admitting simpler encoding are more efficient
in practice. This is the case, for instance, of bit-parallel based solutions which
limit the size of the automaton to the machine word size in turn of an efficient
representation, like LBNDM and BXS. However, on the other hand, longer shifts
are achieved when the size of the underlying automaton is close to the length
of the pattern. This is the case of the FBNDM algorithm which trades a more
complex representation in exchange for a higher size of the automaton.

In this section we present a generic algorithm, called Backward-Two-Step-
Matcher (BTSM), for the online exact string matching problem based on a sim-
plified and efficient simulation of the suffix automaton of the reverse of the
pattern which, however, doesn’t require its whole construction.

Before diving into the details of our solution, we introduce some additional
useful definitions which will help to understand how the BTSM algorithm works.

Let x be a pattern of length m over an alphabet Σ of size σ. Given the
suffix automaton S(x) = 〈Q,Σ, δ, I, F 〉 of x, we define the minimum transitions
function γ : Σ+ −→ {1, 2, ...,m} which associates any string w ∈ Σ∗ with the
length of its shortest prefix which must be read in order to reach a configuration
containing at most one state. More formally, for each string w ∈ Σ+, we have

γ(w) = min{1 ≤ 	 ≤ m : |δ∗(w�)| ≤ 1}.

Plainly, by the definition of δ, it trivially follows that if 	 = γ(w) then |δ∗(wμ)| ≤
1 for any 	 ≤ μ ≤ m.

In addition, given a string w such that |δ∗(w)| ≤ 1, we define the position
function pos : Σ∗ −→ {0, 1, ...,m − 1} as the function which maps any string w
to its eventually unique starting position inside the pattern x. Formally, for any
string w ∈ Σ∗, we have

pos(w) =

{
m − i if δ∗(w) = {qi}, 0 < i ≤ m,

−1 otherwise.

Assume, for instance to match the pattern x = banana against the text
window w = anaban. Then, we have γ(w) = 3 and Pos(ban) = 0.



Efficient Matching Based on a Two-Step Simulation of the Suffix Automaton 169

We are now ready to present the generic BTSM algorithm. The main underly-
ing idea is that the recognition process of a string w through the automaton S(xr)
can be simplified by dividing it in two separate steps: a first non-deterministic
step eventually followed by a deterministic step.

Specifically, as before, let x be a pattern of length m and let y be a text
of length n, both strings over a common alphabet Σ of size σ and let S(xr) =
〈Q,Σ, δ, I, F 〉 the suffix automaton for the reverse of the pattern xr.

As in the case of the standard BDM algorithm, the searching phase of the
BTSM algorithm works by sliding a window w of length m along the text,
starting from the left end of the text and proceeding from left to right. At each
iteration of the algorithm a new window position is attempted. For each attempt
the recognition process of a string w through the automaton S(xr) is divided in
the following two steps:

– non-deterministic step: during the first step an integer value μ is computed,
depending on w, such that γ(wr

μ) ≤ μ ≤ m and μ+1 transitions are performed
all at once by computing δ∗(wt). Then the position p corresponding to the
unique active state q (if any) belonging to δ∗(wr

μ) is computed by means
of the function Pos. If no active state q exists, i.e. if p = −1, the window is
advanced to the right by one position, if μ = m, by m−μ positions otherwise.

– deterministic step: If p ≥ 0, then the computation proceeds with the subse-
quent transitions, which are simulated by comparing each character of the
pattern, starting from position p, with its counterpart in the text, until a
mismatch occurs or until p transitions have been performed. If a mismatch
occurs then the window is simply advanced by m − μ positions to the right.
Otherwise if p characters are read then a prefix of size k + μ of the pattern
has been recognized. If k +μ = m then the pattern itself has been recognized
and a match is reported, otherwise the window is shifted in order to align the
first character of x with the starting position of the recognized prefix.

Denoting by f(m) the computational effort related for computing μ and p,
the worst case time complexity of the BTSM algorithm is O((m + f(m)) · n).

The approach described above represents a generic way to avoid managing
multiple states while simulating a suffix automaton for a given string at the
cost of reducing the length of the shifts. Indeed, the only way to compute the
exact shift value s consists in recognizing each suffix of xr (i.e. each prefix of x),
through the use of a full suffix automaton. Performing μ + 1 transitions at once
implies that only suffixes of length μ′ ≥ μ can be recognized. However, provided
that we can determine a value of μ which is close to γ(wr) and that δ∗(wr

μ) can
be computed efficiently for any given text window w, overestimating the shifts
values impacts less the efficiency than simulating the full automaton.

4 The UFM Algorithm

In this section we show how to turn the generic BTSM algorithm into a con-
crete efficient string matching algorithm. Our approach for estimating a good
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approximation for γ(w) relies on the definition of unique characters, i.e. charac-
ters which occurs only once in the pattern. Although it can be rare for a given
character c ∈ Σ to occur only once, especially when m grows, we will show that,
by convenient alphabet transformations, it could become very likely to happen.
The resulting algorithm is called Unique-Factor-Matcher (UFM).

As before, let x be a pattern of length m over an alphabet Σ. For each
character c ∈ Σ, we denote by fx(c) the number of occurrences of the character
c inside x and we say that c is a unique character of x if fx(c) = 1.

In addition, for each position of the pattern, we define the unique distance
function d : {0, 1, ...,m − 1} −→ {0, 1, ...,m − 1} as the function which maps
each position i of the pattern with the rightmost position j ≤ i (if any) such
that x[j] is a unique character in x. If such a unique character does not occur in
x we set by default d(i) = i. More formally, for 0 ≤ i < m, we have

d(i) = min({i − j | 0 < j ≤ i ∧ fx(x[j]) = 1} ∪ {i}).

Starting from the previous definition, we put d̄(c) := max{d(i) | 0 ≤ i <
m ∧ x[i] = c} for each character c appearing in x, while we set d̄(c) = −1 if c
does not occur in x. For instance, assume x = pepsi is a string over the alphabet
Σ = {a, b, i, e, p, s}. Then, we have d̄(p) = 1, d̄(c) = 0, for any c ∈ {e, s, i} while
d̄(c) = −1 for c ∈ {a, b}.

The following two technical lemmas define how unique characters of the pat-
tern can be used to compute, for a given string w, a candidate value μ, such that
γ(w) ≤ μ ≤ m. Roughly speaking we prove in Lemma1 that δ∗(w) ≤ 1 for any
string w ending with a unique character. In addition we prove in Lemma2 that
if the second transition of the suffix automaton of xr is performed on a character
c ∈ Σ, then performing d̄(c) + 1 transitions is enough to get (at most) a unique
active state on the automaton.

Lemma 1. Let x be a string of length m over Σ and let S(x) = 〈Q,Σ, δ, I, F 〉
be the suffix automaton for x. Moreover, let c ∈ Σ such that fx(c) = 1. Then for
each Q′ ∈ P(Q), |δ(Q′, c)| ≤ 1 holds.

Proof. Since c occurs only once in x, then c = x[i] for some 0 ≤ i < m. By
the definition of δ it follows that δ(Q′, c) is nonempty if and only if qi ∈ Q′.
Specifically, when qi ∈ Q′ we have δ(Q′, c) = {qi+1} and δ(Q′, c) = ∅ otherwise.
In both cases |δ(Q′, c)| ≤ 1 holds.

Lemma 2. Let x,w be strings of length m, both over a common alphabet Σ, and
let S(xr) = 〈Q,Σ, δ, I, F 〉 the suffix automaton for xr. Then, d̄(w[0]) ≥ γ(w).

Proof. Let μ = d̄(w[0]) and let Q = |δ∗(wμ)|. Without loss of generality, we can
suppose that Q �= ∅. Then, there must exists at least one factor of the pattern
f = x[i..i + μ − 1], for some 0 ≤ i ≤ m − μ, such that f = wμ. Moreover, by
the definition of d̄, f must contain at least one unique character of x. Let j the
position of the first unique character of x inside f . By Lemma 1, |δ∗(fj)| ≤ 1
must hold, and in particular |δ∗(f)| = |δ∗(wμ)| ≤ 1 hold too, implying μ ≥ γ(w).

In the following two sections we describe the preprocessing and the searching
phase of the resulting UFM algorithm in detail (Fig. 1).
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Fig. 1. The pseudocode of the algorithm UFM and its auxiliary procedures.

4.1 The Algorithm

The preprocessing phase starts by computing the frequency of each character of
the alphabet, in order to find the unique characters of the string x.

Then, function d̄ is computed in the form of a table D. We recall that, given
a text window w of length m, μ = D(w[m − 1]) + 1 characters must be read in
order to be sure that the suffix automaton for xr contains at most one state.
When this happens, we need to efficienty recover the starting position of the
string w[m − μ..m − 1] inside x. In other words, we need an efficient method to
implement the position function Pos. To this purpose, a hash table Ht can be
used, storing the starting position of several unique factors of x. In particular,
for each position i of the pattern x, factor x[i − μ..i] of length μ = D(x[i]) + 1
is inserted into the table, whenever i + 1 ≥ μ. Note that, character x[i] itself is
used as the hash code of factor x[i − μ..i]. In this way, each bucket Ht[c] of the
table contains exactly fx(c) elements, for each c ∈ Σ. The Preprocessing takes
O(m) space O(m) time to be performed.

Regarding the searching phase, it follows the structure of the BTSM algo-
rithm, specifically adapted to handle functions D and hash table Ht. In partic-
ular, a window w of length m is slided along the text y. For each window, value
d = D(w[m − 1]) is retrieved. If d is nonnegative, then the suffix of w of length
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μ = d + 1 is searched in the hash table, in order to get its starting position in
the pattern, otherwise the window is instantly shifted by m characters to the
right. The searching then proceeds as in the BTSM algorithm.

Regarding the time complexity of the search phase of the UFM algorithm, we
observe that a single entry of table Ht could contain up to O(m) factors, each
of size equal to k = O(m). This means that a single call to procedure HashGet
could require in the worst case O(km) = O(m2) to be performed, leading to
an overall complexity of O(m2n) in the worst case. Despite its worst case time
complexity the UFM algorithm turns out to be very fast in practice, as shown
in the following section.

4.2 Extension to Condensed Alphabets

In order to enlarge the number of unique characters of x it is convenient to
use a condensed alphabet whose elements are obtained by combining groups
of q characters of the original alphabet, for a fixed value q. A hash function
hash : Σq ← {0, . . . ,Max−1} can be used for combining the group of characters,
for a fixed constant value Max. Thus a new condensed pattern xq of length
m − q + 1, over the alphabet {0, . . . ,Max − 1}, is obtained from x. Specifically
we have xq[i . . j] = hash(x[i] · · · x[i + q − 1]) · · · hash(x[j] · · · x[j + q − 1]) for
0 ≤ i, j ≤ m − q, where xq = xq[0 . . m − q]. The set of unique characters is then
computed on xq.

The size Max of the new condensed alphabet depends on the available mem-
ory and on the size of the original alphabet Σ. An efficient method for com-
puting a condensed alphabet was introduced by Wu and Manber [16]. It com-
putes the shift value by using a shift-and-addition procedure and in particular
hash(c1, c2, . . . , cq) = (

∑q
i=1(ci � (sh · (q − i)))) mod Max where ci ∈ Σ for

i = 1, . . . , q. The value of the shift sh depends on Max and q.
Table 1 shows the average number of the unique characters in patterns ran-

domly extracted from a genome sequence, a protein sequence and a natural
language text, for different values of q and m, and with Max = 216. When
1 ≤ q ≤ 4 we use the value sh = 2 for computing the hash value, while we use
sh = 1 when q > 4.

From experimental results it turns out that the highest number of unique
characters, though quite less than m in almost all cases, can be extremely larger
than the size of a computer word (which typically is 32 or 64) exceeding this value
by two orders of magnitude. This leads to larger shift in a suffix automata based
algorithm. The highest value in the number of unique characters is obtained, in
almost all cases, by the value q = 10. We notice however that for patterns of
medium length (m ≤ 64) the highest number of unique characters is obtained
by smaller values of q, typically q = 6 or q = 8. This is also reflected in the
practical performance of the corresponding algorithms.
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Table 1. Average number of unique characters present in strings of increasing size,
for several values of q. For display purposes all numbers have been rounded down.
The three tables refer to random strings, extracted from a genome sequence, a protein
sequence and a English text

G
e
n
o
m
e

q/m 32 64 128 256 512 1, 024 2, 048 4, 096 8, 192 16, 384 32, 768 65, 536

1 0 0 0 0 0 0 0 0 0 0 0 0

2 4 1 0 0 0 0 0 0 0 0 0 0

4 25 44 66 77 62 28 6 1 0 0 0 0

6 25 53 99 165 234 264 232 155 74 23 4 0

8 24 55 114 223 410 686 986 1,153 1,090 817 492 229

10 22 54 117 240 476 914 1,660 2,775 4,009 4,742 4,528 3,477

P
r
o
t
e
in

q/m 32 64 128 256 512 1, 024 2, 048 4, 096 8, 192 16, 384 32, 768 65, 536

1 5 2 1 0 0 0 0 0 0 0 0 0

2 21 30 33 24 12 6 2 0 0 0 0 0

4 28 58 113 209 358 530 594 443 232 131 74 40

6 26 55 106 189 292 357 297 185 128 102 84 68

8 24 55 116 231 439 770 1,177 1,436 1,204 742 515 417

10 22 54 117 241 483 937 1,759 3,088 4,751 5,762 4,825 2,961

E
n
g
l
is
h
T
e
x
t

q/m 32 64 128 256 512 1, 024 2, 048 4, 096 8, 192 16, 384 32, 768 65, 536

1 8 8 8 6 6 5 5 4 4 3 2 1

2 22 32 40 42 39 34 31 29 29 27 25 21

4 27 54 95 164 256 377 502 604 654 649 607 565

6 26 55 106 192 325 508 701 824 798 684 581 503

8 24 55 113 221 411 743 1,278 2,006 2,813 3,362 3,340 2,877

10 22 54 115 232 453 855 1,582 2,891 5,051 8,039 11,237 13,306

5 Experimental Results

In this section, we report the results of an extensive experimental comparison
of the UFM algorithm against the most efficient solutions known in the liter-
ature for the online exact string matching problem, mostly focusing on those
algorithms which make use of the suffix automaton. Specifically, the following
14 algorithms (implemented in 43 variants, depending on the values of their
parameters) have been compared:

– BNDMq: the Backward-Nondeterministic-DAWG-Matching algorithm [14]
implemented with q-grams, for 1 ≤ q ≤ 6;

– LBNDM: the Long BNDM algorithm [15];
– BSXq: the Backward-Nondeterministic-DAWG-Matching algorithm [14] with

Extended Shift [7] implemented using q-grams, with 1 ≤ q ≤ 4;
– FBNDM: the Factorized variant [2,3] of the BNDM algorithm [14];
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– BSDMq: the Backward-SNR-DAWG-Matching algorithm [10] using con-
densed alphabets with groups of q characters, with 1 ≤ q ≤ 10;

– UFMq: the UFM algorithm presented in Sect. 4 implemented with condensed
alphabets, using groups of q characters, with 1 ≤ q ≤ 10.

For the sake of completeness, we also evaluated the following three string
matching algorithms which are not based on automata but are considered among
the most effective algorithm in practice in the case of long patterns:

– WFRq: the Weak Factors Recognition algorithm [4,5], implemented using
q-gram, with 3 ≤ q ≤ 7;

– TWFRq: the Tuned Weak Factors Recognition algorithm [5], implemented
using q-gram, with 3 ≤ q ≤ 7.

– EPSM: the Exact Packed String Matching algorithm [8,9] based on SIMD
instructions;1

Table 2. Experimental results obtained for searching on a genome sequence, a protein
sequence and an English text. Searching speed is reported in GB/s. Best results have
been bold faced.

G
e
n
o
m
e

q/m 32 64 128 256 512 1, 024 2, 048 4, 096 8, 192 16, 384 32, 768 65, 536

1 0 0 0 0 0 0 0 0 0 0 0 0

2 4 1 0 0 0 0 0 0 0 0 0 0

4 25 44 66 77 62 28 6 1 0 0 0 0

6 25 53 99 165 234 264 232 155 74 23 4 0

8 24 55 114 223 410 686 986 1,153 1,090 817 492 229

10 22 54 117 240 476 914 1,660 2,775 4,009 4,742 4,528 3,477

P
r
o
t
e
in

q/m 32 64 128 256 512 1, 024 2, 048 4, 096 8, 192 16, 384 32, 768 65, 536

1 5 2 1 0 0 0 0 0 0 0 0 0

2 21 30 33 24 12 6 2 0 0 0 0 0

4 28 58 113 209 358 530 594 443 232 131 74 40

6 26 55 106 189 292 357 297 185 128 102 84 68

8 24 55 116 231 439 770 1,177 1,436 1,204 742 515 417

10 22 54 117 241 483 937 1,759 3,088 4,751 5,762 4,825 2,961

E
n
g
l
is
h
T
e
x
t

q/m 32 64 128 256 512 1, 024 2, 048 4, 096 8, 192 16, 384 32, 768 65, 536

1 8 8 8 6 6 5 5 4 4 3 2 1

2 22 32 40 42 39 34 31 29 29 27 25 21

4 27 54 95 164 256 377 502 604 654 649 607 565

6 26 55 106 192 325 508 701 824 798 684 581 503

8 24 55 113 221 411 743 1,278 2,006 2,813 3,362 3,340 2,877

10 22 54 115 232 453 855 1,582 2,891 5,051 8,039 11,237 13,306

1 We notice that the EPSM algorithm is designed for simply counting the number of
matching occurrences without reporting the corresponding positions.
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All algorithms have been implemented in the C programming language2 and
have been tested using the Smart tool [12]. All experiments have been exe-
cuted locally on a computer running Linux Ubuntu 20.04.1 with an Intel Core
i5 3.40 GHz processor and 8 GB RAM. In all cases the patterns were randomly
extracted from the text and the value m was made ranging from 32 to 65536.

Our tests have been run on a genome sequence, a protein sequence, and an
English text (each of size 5MB). Such sequences are provided by the Smart
research tool and are available online for download (additional details on the
sequences can be found in Faro et al. [12]). In the experimental evaluation, pat-
terns of length m were randomly extracted from the sequences, with m ranging
over the set of values {2i | 5 ≤ i ≤ 16}. In all cases, the mean over the search
speed (expressed in Gigabytes per seconds) of 500 runs has been reported.

Table 2 summarise the search speed of our evaluations. Each table is divided
into two blocks. The first block presents results relative to the most effective
algorithms based on automata known in the literature. Best results among the
first set of algorithms have been boldfaced to ease their localization. The second
block concerns the speed search obtained by three algorithms among the best
solution known in literature.

Many of the tested algorithms has been implemented using q-grams, for dif-
ferent values of the parameter q (including the UFM algorithm). For such algo-
rithms we report only the best performance obtained among the variants.

Among the automata based algorithms the new UFM algorithm turns out
to achieve the best results in almost all cases, showing considerable speed ups,
especially in the case of long patterns. The only exception is in the case of
natural language texts, where it is BSDM to achieve the best results for medium
length patterns (m = 32, 64). Notice that as the length of the pattern grows,
the performance of the UFM algorithm deviates more and more from that of
the previous solutions, reaching a search speed up to 10 times higher than the
second best solution, i.e. the BSDMq algorithm.

Extending the comparison also to non-automata-based solutions, it is inter-
esting to note how the UFM algorithm scales better as the size of the pattern
increases, outperforming all the remaining algorithms starting from m = 512,
in the case of genome sequences, m = 1024 for protein texts, and m = 8192 for
texts in natural language. Moreover, we also notice how the UFM algorithm is
still very competitive also for patterns of medium size, since the search speed
never deviates too much from the best results.

6 Conclusions

In this paper we introduced an efficient algorithm, called Unique Factor Matcher
(UFM), based on a novel technique for simulating the non-deterministic suffix
automaton of a string which separates the simulation into a non-deterministic
and a deterministic part and turns out to be suitable for efficient string matching.

2 Source code is available at: https://github.com/ostafen/unique-factor-matcher.

https://github.com/ostafen/unique-factor-matcher
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We showed experimentally how the new algorithm turns out to be very com-
petitive when compared with the most efficient algorithms known in literature,
and, under certain circumstances, the fastest in practice.

In our future works we intend to tune the algorithm in order to further
improve its efficiency also for strings of medium size. This includes the use of
fast loops and efficient hash functions for implementing the condensed alphabets
and hash table operations. We would also investigate the possibility of finding
alternative, more efficient strategies for implementing the BTSM generic algo-
rithm.
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Abstract. The paper extends ideas from data compression by dedu-
plication to the Bioinformatic field. The specific problems on which we
show our approach to be useful are the clustering of a large set of DNA
strings and the search for approximate matches of long substrings, both
based on the design of what we call an approximate hashing function.
The outcome of the new procedure is very similar to the clustering and
search results obtained by accurate tools, but in much less time and with
less required memory.

1 Introduction

A particular form of lossless data compression is known as deduplication, which
is often applied in a scenario in which a large data repository is given and we wish
to store a new, updated, version of it. A case in point would be a backup system,
which regularly saves the entire content of the digital storage of some company,
even though the changes account only for a tiny fraction of the accumulated
information. The idea is then to find duplicated parts and store only one copy
P of them; the second and subsequent occurrences of these parts can then be
replaced by pointers to P . The problem is of course how to define these parts in
a useful way, and then how to locate them efficiently.

One of the approaches to solve the problem is based on hashing and can
be schematically described as follows. The available data is partitioned into
parts called chunks; a cryptographically strong hash function h is applied to
these chunks, and the set S of different hash values, along with pointers to the
corresponding chunks, is kept in a data structure D allowing fast access. These
hash values act as signatures of the chunks, uniquely representing them, but
requiring orders of magnitude less space than the original data. For each new
chunk to be treated, its hash value is searched for in D, and if it appears there,
we know that the given chunk is a duplicate and may be replaced by a pointer to
its earlier occurrence. If the hash value is not in D, the given chunk is considered
new, so it is stored and its hash value is adjoined to the set S [14].

An alternative has been suggested in [2] and is implemented in the IBM Pro-
tecTIER Product [7]. The main idea there is to look for similar , rather than
c© Springer Nature Switzerland AG 2021
S. Maneth (Ed.): CIAA 2021, LNCS 12803, pp. 178–189, 2021.
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identical chunks and if such a chunk is located, only the difference is recorded,
which is generally much smaller than a full chunk. This allows the use of signif-
icantly larger chunks than in identity based systems. However, for similarity, a
classical hashing function cannot be used to produce the signature, since one of
the properties of hashing is yielding uniformly distributed values, regardless of
regularities in the input, so that when changing even a single bit of the file, the
resulting hash value should be completely different.

This lead to the design of what could be called an Approximate Hash (AH)
function, a notion which seems bearing an internal contradiction, since unlike
standard hash functions, their approximate variants should not be sensitive to
“small” changes within the chunk, and yet behave like other hash functions as far
as the close to uniform distribution of their values is concerned. The idea of AH
functions is an extension of the notion of locality-sensitive hashing introduced in
[9]. The approach of using similarity instead of identity has been adapted in [3]
to applications in which the data is more fine grained, such as backup systems.
The current paper is an extension, which applies similar techniques to string
processing problems arising in Bioinformatics.

We concentrate in this paper on the following two problems, clustering and
substring search, though similar ideas can be applied to a wide variety of other
bioinformatic challenges. The first problem is that of clustering a large collection
of DNA strings into sub-collections forming clusters, in the sense that strings
assigned to the same cluster may be considered as similar for practical biological
purposes (e.g., one may be obtained from the other by a limited number of muta-
tions), whereas strings of different clusters are different enough to be judged not
originating from the same source. Many clustering methods have been suggested,
such as cd-hit (CD) [12], or MeShClust2 (MC) [10].

The second problem is that of locating a single string within a large collection
on the basis of one of its fragments, or rather, one of its fragments that has
undergone some limited number of mutations. We show how our notion of an
approximate hash may be adapted to these and similar problems and report on
the experimental setup and its results in the following sections.

2 Design of an Approximate Hash Function

Before trying to cluster a set of strings, one first needs some measure for the
distance d(ω1, ω2) between two given strings ω1 and ω2. If they were of equal
length n, the Hamming distance, counting the number of corresponding positions
in which the strings differ, would be a plausible candidate, and can be computed
in O(n). However, the Hamming distance is biased when insertions and deletions
are allowed and is a reasonable choice only when ω2 can be obtained from ω1

by a series of substitutions. Therefore, in a general setting, one should rather
use the edit distance, defined as the minimal number of single character inser-
tions, deletions or substitutions necessary to transform one string into the other.
Using dynamic programming, it takes quadratic time O(nm) to compute the
edit distance between strings of lengths n and m. The clustering problem is thus
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a difficult one: if a million (p) strings are given, each of length about one million
(q), the time to evaluate the edit distance between all pairs of strings would
be O(p2q2) = O(280), which is still too much for our current technology. We
therefore suggest a more practical solution as follows.

2.1 Definition of the Signature

The idea is, given a collection C of DNA strings ω, to produce a signature
encapsulating the main features of the strings in as few as possible bits. A
first approach could be to devise what could be called an occurrence map of
the various substrings of length k, called k-mers, for k ≥ 1, of all strings ω in C.
Since our alphabet consists of just four nucleotides represented by the 4 letters,
Σ = {A,C,G,T}, there are 4 1-mers, 16 2-mers, 64 3-mers and generally 4k dif-
ferent k-mers. Depending on the available space, a general approach to devise a
signature could include the following steps:

1. Fix lower and upper limits � and u for the values of k we wish to include in
the definition of the signatures, each of which will consist of a bitstring of
length 4� + 4�+1 + · · · + 4u;

2. iterate over all the DNA strings ω in the given set C and perform for each
string:
(a) Choose a threshold tk for each of the values of k, depending only on k

and the lengths of the given DNA string ω;
(b) sort, separately for each � ≤ k ≤ u, the 4k k-mers according to some

predefined order, e.g., lexicographically;
(c) for all k in [�, u], the bit indexed i +

∑k−1
j=� 4j , 0 ≤ i < 4k, corresponding

to the i-th ordered k-mer, will be set to 1 if and only if the number of
occurrences of this i-th k-mer within the given string ω is at least tk. For
example, AAAA is the first 4-mer in lexicographic order, so if � = 2, then
the bit indexed 42 + 43 + 0 = 80 will be set if the number of occurrences
of AAAA in the string ω is at least t4.

A reasonable choice for the thresholds tk would be the median of the number
of occurrences of the 4k k-mers within the given string ω, for each k, which would
yield signature strings in which the probability of a 1-bit is about 1

2 . Since this is
only a heuristic, the median can be approximated by setting tk as the expected
number of occurrences, that is, their average, which is easier to evaluate.

As example, consider the input string

ACCTTGAAGTTGGGCCAACTGTTGCCC

of length n = 27 and set � = u = 2. The number of occurrences of the 16 possible
pairs are:

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT
2 2 1 0 1 4 0 2 1 2 2 2 0 0 4 3
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There are n−k +1 overlapping k-mers in a string of length n, so the average
number of occurrences for each specific k-mer is (n − k + 1)/4k = 1.63 on our
small example. One could thus set the threshold to t2 = 1, for which the resulting
signature would be 1110 1101 1111 0011, where spaces have been included for
readability. For t2 = 2, one would get 1100 0101 0111 0011.

By concentrating on the distribution of the different k-mers within a string
we try to catch underlying similarities, since DNA strings that are essentially
different not just because of a limited number of mutations, will not tend to
exhibit matching occurrence distributions. On the other hand, the proposed
measure is flexible enough to allow some fluctuations, because the exact number
of occurrences of a given k-mer is not given importance, only the fact whether
or not this number exceeds the given threshold.

The idea of using k-mers to derive features of entire DNA strings is not new
to Bioinformatics, and has been used in [5,8,16], to cite just a few, though, our
approach is different.

2.2 Clustering

To extend the approach used for the deduplication of chunks, we shall apply
here the clustering on the signatures rather than on the corresponding DNA
strings, in order to obtain clusters from which the partition of the original set of
strings can be deduced. There is obviously a significant reduction of the required
time complexity, turning the clustering attempt into a feasible one. In particular,
instead of using the edit distance between two strings, the appropriate choice for
the distance between their signatures is the Hamming distance, as the signatures
are of the same length and bits at the same index correspond to identical k-mers.

To check whether one can indeed identify clusters on the basis of using just
the much smaller signatures, we report here on the details of a series of tests we
have performed, first on artificially constructed sets, then real-life data. Even
for the first set, we started with real DNA strings, downloaded from the website
of the National Center for Biotechnology Information1, and only the modified
strings simulating data after mutations, were artificially generated. A sample of
50 different DNA sequences of various lengths and origins was randomly chosen,
with lengths between thousands and millions of nucleotides. For each of the
chosen strings, 15 variants, partitioned into three groups of 5, were generated,
simulating various mutations. The first group consisted of strings derived from
the given one by deleting some of their characters. More precisely, the heuristic
used to produce the strings was:

1. Choose randomly an integer r between 1 and 50;
2. choose randomly a position t within the given string;
3. delete r consecutive characters starting from position t;
4. if the cumulative number of deleted characters does not exceed 7% of the

length of the original string, repeat the process from step 1.

1 https://www.ncbi.nlm.nih.gov/nuccore.

https://www.ncbi.nlm.nih.gov/nuccore
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For the second group, a similar heuristic was applied, but instead of deleting,
substrings of length r chosen randomly from the alphabet Σ = {A,C,G,T}
were inserted at position t. The five strings in the third group were obtained by
allowing both deletions and insertions, more precisely, applying first the heuristic
for the deletion and then that of the insertion on the output of the first, until
the cumulative change reaches about 14%. The total number of strings in our
set S was therefore 50 originals plus 50 × 15 variants = 800.

Generating artificial DNA strings by inserting or deleting elements is often
used for simulations in Bioinformatics, as, e.g., in [13]. We wish to emphasize
that there is no claim that the 50 chosen elements be representative of the entire
NCBI database of more than 200 million sequences. We could have just as well
started with arbitrarily produced strings.

The aim of the test was to check whether after applying our approximate hash
function ah, the generated signatures ah(ω) for ω ∈ S carry enough information
of the DNA strings ω they were produced from to identify the natural clusters,
each consisting of one of the 50 randomly chosen strings and its 15 variants.
We thus took the 800 signatures and calculated the Hamming distance between
each of the 1

2800 × 799 = 319, 600 pairs. We used � = 2 and u = 4 on our
tests, yielding signatures of length 42 + 43 + 44 = 336 bits. Choosing u = 5
would already require 1024 more bits for each signature, a significant increase,
for getting only moderately better results. As mentioned above, the thresholds
tk were chosen as the expected number of occurrences of a specific k-mer, which
is (n − k + 1)/4k, where n is the lengths of the string.

Table 1 displays a sample of these distances, showing, in the upper right
triangle, only the results for the original strings indexed j ∈ {A,B,C,D,E}2,
and for each of these, two variants of each of the 3 groups, identified by j.d.r, j.i.r
and j.di.r for the strings obtained by deletion, insertion and both, respectively,
with r ∈ {1, 2} giving the index of the variant within its group. For a pair
ω1, ω2 ∈ S, the displayed value is the normalized Hamming distance between
ah(ω1) and ah(ω2), that is, the number of 1-bits in ah(ω1) xor ah(ω2) divided
by the size of the signature 336, expressed as percentage. For visibility, cells
containing values below 10% have been shaded in light green and the others in
red. The lower left triangle contains, for each pair, a measure for the similarity
of the original DNA strings. We chose the number of shared canonical 11-mers,
as percentage of their total number, averaged for the two members of the pair.

One can see on this sample, which is representative for the entire 800 × 800
matrix, that while the distances between elements within the set of variants of
the same original string are all small, all inter-set distances are much larger,
so that one may conclude that using the signatures instead of the much longer
original strings to perform the clustering process may be justified. A noteworthy
exception are the sets produced by the strings indexed C and D, for which
the pair-wise distances are only about 7–8%. This is in accordance with the

2 The names of these 5 strings in the database are:
A - KV453883.1, B - NZ DS996920.1, C - UPTC01000856.1, D - UPTC01000985.1, E -

VAHF01000278.1.
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Table 1. Sample of normalized Hamming distances between signatures.

A A.i.1 A.i.2 A.d.1 A.d.2 A.di.1 A.di.2 B B.i.1 B.i.2 B.d.1 B.d.2 B.di.1 B.di.2 C C.i.1 C.i.2 C.d.1 C.d.2 C.di.1 C.di.2 D D.i.1 D.i.2 D.d.1 D.d.2 D.di.1 D.di.2 E E.i.1 E.i.2 E.d.1 E.d.2 E.di.1 E.di.2

A 0.5 0.2 0.2 0.8 0.0 1.7 19.6 19.0 19.0 19.0 20.5 19.3 22.0 12.7 12.7 13.0 13.0 13.3 12.7 12.2 13.6 14.2 12.7 13.6 13.3 13.9 13.0 13.0 13.0 13.6 13.0 14.5 13.9 13.9

A.i.1 0.8 0.2 1.4 0.5 2.3 19.6 19.0 19.0 19.0 20.5 19.3 22.0 12.2 12.2 12.5 12.5 12.7 12.2 11.6 13.0 13.6 12.7 13.0 12.7 13.3 12.5 13.0 13.0 13.6 13.0 14.5 13.9 13.9

A.i.2 0.5 1.1 0.2 2.0 19.9 19.3 19.3 19.3 20.2 19.6 21.7 12.5 12.5 12.7 12.7 13.0 12.5 11.9 13.3 13.9 12.5 13.3 13.0 13.6 12.7 13.3 13.3 13.9 13.3 14.8 14.2 14.2

A.d.1 1.1 0.2 2.0 19.3 18.7 18.7 18.7 20.2 19.0 21.7 12.5 12.5 12.7 12.7 13.0 12.5 11.9 13.3 13.9 12.5 13.3 13.0 13.6 12.7 13.3 13.3 13.9 13.3 14.8 14.2 14.2

A.d.2 0.8 0.8 19.9 19.3 19.3 19.3 20.8 19.6 22.3 13.0 13.0 13.3 13.3 13.6 13.0 12.5 13.9 14.5 13.0 13.9 13.6 14.2 13.3 13.9 13.9 14.5 13.9 15.4 14.8 14.8

A.di.1 1.7 19.6 19.0 19.0 19.0 20.5 19.3 22.0 12.7 12.7 13.0 13.0 13.3 12.7 12.2 13.6 14.2 12.7 13.6 13.3 13.9 13.0 13.0 13.0 13.6 13.0 14.5 13.9 13.9

A.di.2 20.8 20.2 19.6 19.6 21.1 20.5 22.0 12.7 12.7 13.0 13.0 13.9 12.7 12.2 14.8 15.4 13.9 14.8 14.5 15.1 13.6 14.2 14.2 14.2 13.6 15.7 14.5 15.1

B 2.88% 1.1 1.7 1.1 2.6 2.0 3.5 19.3 19.9 19.6 20.2 19.9 19.9 20.5 20.2 20.2 19.9 20.2 19.9 20.5 20.8 23.8 23.2 23.2 24.4 23.5 24.1 24.7

B.i.1 1.7 1.1 2.6 1.4 3.5 18.7 19.3 19.0 19.6 19.3 19.3 19.9 20.2 20.2 19.9 20.2 19.9 20.5 20.8 23.2 22.6 22.6 23.8 22.9 23.5 24.1

B.i.2 1.1 2.0 2.0 2.9 19.3 19.9 19.6 20.2 19.9 19.9 20.5 20.2 20.2 19.9 20.2 19.9 20.5 20.2 23.2 22.6 22.6 23.8 22.3 23.5 23.5

B.d.1 2.0 2.0 2.9 18.7 19.3 19.0 19.6 19.3 19.3 19.9 20.2 20.2 19.9 20.2 19.9 20.5 20.2 22.6 22.0 22.0 23.2 22.3 22.9 23.5

B.d.2 2.9 1.4 19.6 20.2 19.9 20.5 20.2 20.2 20.8 20.5 20.5 20.2 20.5 20.2 20.8 20.5 24.1 23.5 23.5 24.7 23.2 24.4 24.4

B.di.1 3.2 19.0 19.6 19.3 19.9 19.6 19.6 20.2 20.5 20.5 20.2 20.5 20.2 20.8 21.1 23.5 23.5 22.9 24.1 23.2 24.4 24.4

B.di.2 20.5 21.1 20.8 21.4 21.1 21.1 21.7 22.0 22.0 21.7 22.0 21.7 22.3 22.0 25.5 25.0 25.0 26.1 24.7 25.8 25.8

C 3.41% 3.31% 1.1 0.2 0.8 1.1 0.5 1.1 8.0 8.6 8.3 8.0 7.7 8.3 8.0 12.2 12.7 11.6 12.2 13.6 13.0 13.6

C.i.1 1.4 0.8 1.1 1.1 2.3 8.0 8.6 7.7 8.0 7.7 8.3 7.4 11.6 12.2 11.0 11.6 13.0 12.5 13.0

C.i.2 1.1 0.8 0.8 1.4 8.3 8.9 8.6 8.3 8.0 8.6 8.3 11.9 12.5 11.3 11.9 13.3 12.7 13.3

C.d.1 0.8 0.2 1.4 7.1 7.7 7.4 7.1 6.8 7.4 7.7 12.5 13.0 11.9 12.5 13.9 13.3 13.9

C.d.2 1.1 2.3 7.4 8.0 7.7 7.4 7.1 7.7 7.4 11.6 12.2 11.6 12.2 13.0 13.0 13.0

C.di.1 1.1 7.4 8.0 7.7 7.4 7.1 7.7 8.0 12.7 13.3 12.2 12.7 14.2 13.6 14.2

C.di.2 8.0 8.6 8.3 8.0 7.7 8.3 8.6 12.2 12.7 12.2 12.2 13.6 13.0 13.6

D 3.94% 3.47% 4.81% 0.5 1.4 0.0 0.2 0.2 1.7 13.6 13.6 13.6 14.2 14.5 14.5 15.1

D.i.1 1.4 0.5 0.8 0.2 2.3 14.2 14.2 14.2 14.8 15.1 15.1 15.7

D.i.2 1.4 1.7 1.7 1.4 13.3 13.3 13.3 13.9 14.2 14.2 14.8

D.d.1 0.2 0.2 1.7 13.6 13.6 13.6 14.2 14.5 14.5 15.1

D.d.2 0.5 2.0 13.9 13.9 13.9 14.5 14.8 14.8 15.4

D.di.1 2.0 13.9 13.9 13.9 14.5 14.8 14.8 15.4

D.di.2 12.5 12.5 12.5 13.0 13.3 13.3 13.9

E 3.25% 2.72% 3.50% 4.15% 1.1 1.1 0.5 1.4 1.4 2.0

E.i.1 1.7 1.1 2.0 1.4 2.0

E.i.2 1.1 2.6 2.0 3.2

E.d.1 2.0 0.8 2.0

E.d.2 1.7 1.7

E.di.1 2.3

E.di.2

corresponding similarity measure of 4.81%, the only one exceeding a threshold
of 4.5% (in green), and may be explained by the fact that the DNA strings were
similar to begin with, being related to the same parasite.

As a control experiment, we also applied a real hash function instead of our
approximate one. The choice was MD5 [15], for which all the values of the matrix
were between 0.37 and 0.62, so that, as expected from a hash function, MD5 did
not detect any of the clusters and would thus not be useful in this context.

To enable a fair comparison with alternative clustering methods, we took
the same test collection as the one used for MC by [10] as second set of DNA
strings: the top-level FASTA sequences containing one chromosome from Ensembl
Genomes release 35 [6], a set of 3670 bacteria genomes taken from a collection of
about 42,000. The size of the sequences varied from 114 KB to 15 MB, with an
average of 3.5 MB.

We need a measure to compare the outcome of different clusterings A and B.
Note that this measure is not symmetric: A is considered to be the base scenario,
and we shall use MC as defining it, and B is a suggested new clustering method,
one derived from ah in our case, and we wish to assess how much B deviates
from A. It is acceptable that A should be a refinement of B, that is, every cluster
in A is included in one of the clusters of B, but if a cluster of A is split over
several different ones in B, we consider this as an error. Iterating over all the
clusters c of A, we accumulate the error counts of c, defined as the difference
of the size of cluster c with that of the largest intersection of c with one of the
clusters of B. Finally, we define the normalized error rate by dividing the sum
of the error counts by the number of sequences.

For example, consider 6 sequentially indexed strings. Figure 1 shows the clus-
tering performed by a clustering A into clusters x, y and z, and by B into clusters
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Fig. 1. Comparing two different clusterings A and B

a, b and c. We see that B has merged the clusters x and z into a, but split the
cluster y into b and c. Thus for clusters x, z, which are subsets of a, there is no
error, but cluster y is not a subset of any cluster of B, and the largest intersection
is with cluster b of B. This yields an error rate of 1

6 .
The reason for preferring such an asymmetric measure is that we intend using

the clustering derived from our ah function in a preliminary filtering stage, on the
outcome of which some other clustering can then be applied, with significantly
reduced complexity. If several clusters of A are entirely included in a single cluster
c of B, this is acceptable because the A clustering will anyway be applied on c
after the filtering stage. Table 2 brings the comparative results. All tests were
run on a Dell XPS 15 7590 with 32 GB RAM i9-9980HK @ 5.0 GHz, running
Ubuntu 18.04.

Table 2. Comparison of clustering on 3670 strings from a Bacteria database

Method Running tme
(mm:ss)

Memory
(MB)

Error
rate

Number
of clusters

Max size of
cluster

MC 16:25 31744 – 1861 176

ah – CC 1:08 107 0.35% 861 1053

MC after ah 14:12 8200 2.02% 1862 177

We see that while there is a significant reduction in both time and required
RAM when replacing MC by a simple Connected Component (CC) clustering3

based on our ah signatures rather than the original DNA strings, this comes at a
price of only marginally hurting the resulting clusters themselves, with an error
rate of less than 1% of falsely assigned sequences. Even if we use ah only as a
preliminary filter, the processing time is improved and the memory consumption
is cut to a quarter, whereas the error rate is just 2%, and 96% of the clusters
match those produced by MC alone. The table shows also that while most clusters
are small, there are also some larger ones. The large difference in the number of
clusters in spite of a low error rate implies that most MC clusters are entirely
included in ah ones. We tried also to apply CD as alternative clustering, but had
to abort its run after 24 h without results.

To enable also a comparison with CD to run in reasonable time, we limited
the lengths of the strings in our third test set to be between 50 and 100K and
3 Each string is a vertex, and vertices are connected by an edge if the distance between

them is smaller than some threshold.
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retrieved 4523 strings of viruses from the GenBank database4. The results appear
in Table 3.

Table 3. Comparison of clustering on 4523 strings of a Virus database

Method Running Time
(mm:ss)

Memory
(MB)

Error
vs CD

Error
vs MC

Number
of clusters

Max size
of cluster

CD 38:44 1500 – – 3774 67

MC 00:54 2200 – – 1934 208

ah – CC 00:04 160 0.71% 0.08% 1158 794

CD after ah 22:04 1115 0.75% – 3804 67

MC after ah 00:45 265 – 0.80% 1945 208

The conclusions are similar to those for the set of bacteria DNA strings. CD
is much slower than MC but requires only 1.5 GB of RAM instead of 2.2 GB and
produces about twice as many clusters. If ah is used as a preliminary clustering,
99% and 98% of the original clusters are recovered for CD and MC, respectively.

2.3 Searching for a String Including Some Read

In the problem we consider here, a large collection C of strings is given, where
both the size of C and that each of its individual elements may be of the order of
millions and more. In addition, we are given a read R whose length could be in the
thousands, and we wish to retrieve the subset of elements Ci ∈ C for which R is
a substring of Ci. Actually, the notion of being a substring has to be understood
in a broader sense, as we allow a limited number � of mismatches. If � = 0, this is
the exact matching problem that has been thoroughly investigated. For general
�, the problem is much more difficult; the best deterministic algorithm has a
complexity proportional to n

√
� log � [1], which is not reasonable for large values

of �. A faster probabilistic algorithm, running in time O(n log n) can be found
in [4], where n is the total length of the strings.

Our approach here is similar to the Karp-Rabin probabilistic algorithm for
string matching [11], but using our approximate hash function instead of simple
hashing modulo a large prime number. A brute force approach would be to
compare R with the substrings Cj

i = Ci[j]Ci[j+1] · · · Ci[j+m−1] of length m =
|R| of Ci starting at position j, for all Ci ∈ C and all possible values of j, 1 ≤ j <
ni−m, where ni = |Ci| is the length of Ci. This yields a complexity of mn, with n
the total length of all the strings in C, which may be prohibitive for the intended
application. Instead, we suggest applying the approximate hash function ah to
both R and the substrings Ci and compare the results. A Hamming distance
above some threshold is a clear indication that the pattern R does not occur at
the given position in Ci, yet being below does not guarantee that it does appear
4 https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/.

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/
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there. Nevertheless, the function ah can serve as a filter, allowing us to restrict
a full comparison of R with substrings of Ci only to indices at which a match
has been declared.

At first sight, for calculating ah(Cj
i ) for all i and j, one needs O(nm) oper-

ations, so there seems to be no gain by applying the approximate hash. Note,
however, that the value of ah(ω) for a string ω is defined as a function of the
statistics of occurrences of the different k-mers forming the string, and it does not
matter where exactly they occur in ω. One can thus easily evaluate ah(Cj+1

i )
as a function of ah(Cj

i ) in constant time, because of the large overlap of size
m − 1 they share, just as in the Karp-Rabin algorithm. The global complexity
may therefore be reduced to O(n + m).

The strategy of replacing comparisons between long reads by comparisons of
the much shorter ah signatures will only be useful if, for DNA string fragments ω1

and ω2, there is a strong enough correlation between the edit distance d(ω1, ω2)
and the corresponding Hamming distance HD(ah(ω1), ah(ω2)). Note that we do
obviously not expect a perfect match and that the edit distance between strings
could be replaced by the HD between their signatures, so that

d(ω1, ω2) < d(ω3, ω4) ⇐⇒ HD(ah(ω1), ah(ω2)) < HD(ah(ω3), ah(ω4)).

This is theoretically impossible because the signatures are shorter and thus can-
not carry the same amount of information content. Even requesting just a weak
inequality on the right hand side would not be realistic, and for a fixed edit
distance, the corresponding HD values might fluctuate. We do, however, expect,
that in spite of these fluctuations, the results may be partitioned into regions
allowing to derive some cut-off points, that is, that d is small if and only if
the corresponding HD is small, for some reasonable definition of smallness. The
following experiment illustrates the validity of this assumption.

A sample of s = 200 strings has arbitrarily been chosen from the bacteria
database, and the normalized edit distance has been evaluated for each of the(

s
2

)
pairs. The increasing purple line in Fig. 2 shows these values as function

of their rank, after having sorted them in non-decreasing order. The blue line
plots the corresponding Hamming distances between the ah values for the same
pairs. Though these values are strongly fluctuating, one can still identify a clear
cutoff point at about 3200, separating the plot into two regions with distinct
and different extreme values for the Hamming distance. This fact enables the
definition of thresholds for both edit and Hamming distances; in our case, we
chose empirically 0.3 (in red) for the former, and 0.1 (in yellow) for the latter.

It will be convenient to describe our experiment borrowing the vocabulary
of the Information Retrieval field. We are looking for relevant pairs, defined
here as those for which their edit distance is below the chosen threshold, but we
choose them by means of the Hamming distance between their signatures, so the
retrieved pairs are those for which the HD is below the threshold. The outcome
is color coded in Fig. 3 showing the matrix of all the pairs. True positive results
are those for which both distances are below their thresholds and are shown in
light green; true negatives (both distances above their thresholds) appear in blue.
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Fig. 2. Comparing edit distance between strings with Hamming distance on corre-
sponding signatures, both normalized. The x-axis is the index in the sequence of 19900
pairs of strings, sorted by non-decreasing edit distance. (Color figure online)

Erroneous outcomes are false positives, shown in red, with a low HD in spite of a
large edit distance, and false negatives (HD above in spite of edit distance below),
which is not shown in this example—not a single pair fell into this category.

Table 4. Recall and Precision for various threshold settings.

ah threshold Edit dist threshold Precision Recall

0.125 0.275 0.61 1

0.1 0.3 0.82 1

0.075 0.35 0.97 0.99

Table 4 displays the Recall/Precision values obtained for various settings of
the two chosen thresholds. Recall is the fraction of the relevant items that have
actually been retrieved, precision is the fraction of the retrieved items that are
indeed relevant. We see that recall is very close to 1, as there are very few false
negative results, and precision can also be very high for well chosen thresholds.

Our last experiment directly checked the applicability of the approximate
hash approach to searching a long read in a DNA string. An arbitrary string C
of length about 900K was chosen from the bacteria set, as well as a substring R
of length m = 5000 starting at an arbitrary position (at about 650K), serving
as pattern to be located. Figure 4 plots in green, as function of i, the normalized
Hamming distance between ah(R) and ah(Ci), where Ci is the substring of
length m of C starting at i. We see that there is only a very narrow region for
which the distance is practically zero. As a control experiment, the search for
the same pattern was repeated with a different DNA string C ′ of length about
1M, yielding the purple curve with not a single value even approaching zero.
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Fig. 3. Comparing pair distances: Blue – true positive; green – true negative; red –
false positive; no false negative (Color figure online)
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Fig. 4. Searching for a substring by comparing signatures. (Color figure online)

The search procedure will thus declare a match if the HD is below some
threshold, symbolized in Fig. 4 by the blue line. It should be emphasized that
if there are indeed matches, the procedure will find them all, and the possible
errors are only to declare non-existing matches. However, the validity of the
match can be verified, since we know where to check. We conclude that using
the ah is a powerful tool significantly reducing the amount of work while only
marginally affecting the quality of the results.
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