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Abstract. To achieve operational excellence, a clear understanding of
the core processes of a company is vital. Process mining enables com-
panies to achieve this by distilling historical process knowledge based
on recorded historical event data. Few techniques focus on the predic-
tion of process performance after process redesign. This paper proposes
a foundational framework for a data-driven business process redesign
approach, allowing the user to investigate the impact of changes in the
process, w.r.t. the overall process performance. The framework supports
the prediction of future performance based on anticipated activity-level
performance changes and control-flow changes. We have applied our app-
roach to several real event logs, confirming our approach’s applicability.

Keywords: Process mining · Process improvement · Process redesign

1 Introduction

Information systems, e.g., Enterprise Resource Planning (ERP), support the
execution of a company’s core processes. These systems capture at what point
in time an activity was performed for an instance of the process. Process mining
techniques turn such event data into actionable knowledge [1]. For example,
various process discovery techniques exist that transform the event data into
a process model describing the process behavior as captured in the data [2].
Similarly, conformance checking techniques quantify whether the process behaves
as recorded in the event data w.r.t. a given reference model [3].

The overarching aim of process mining techniques is to improve the process,
e.g., decreasing the process duration while maintaining the same quality level.
Yet, a relatively small amount of work focuses on data-driven techniques to sup-
port decision-makers in effectively improving the process. For example, in [4],
the authors propose to discover simulation models on the basis of recorded event
data, which can be used to simulate the process under different “What if” sce-
narios. In [5], a similar approach is proposed, explicitly focusing on macro-level
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Fig. 1. Overview of our proposed framework. The current process performance is quan-
tified in the context of a (given) process model. Anticipated performance changes are
injected to compute possible future performance.

aspects of the process, e.g., average case duration. The work presented in this
paper acts in the middle of the two spectra covered by the work mentioned.
Similar to [4], we measure performance on the activity-level. However, we do
not learn a complete simulation model. Instead, we explain the historical behav-
ior captured in the event log in the context of a model specifying the process
behavior. We use the annotated model for the prediction of future behavior.

In Fig. 1, we depict the proposed framework. An event log and a process
model act as the input artifacts. We compute timed partial order alignments,
which we use to quantify the process’s historical performance in the context of
the given model. Our framework supports the assessment of changes in the time-
performance of activities (either waiting or service time), and it supports stacking
multiple anticipated improvements of the process. Since our framework takes an
arbitrary process tree as an input, it is possible to extend it to calculate the
effect of control-flow changes. We have evaluated a prototypical implementation
of our framework using several collections of real event logs. Our experiments
confirm that our framework allows us to identify the main bottlenecks of the
process. Furthermore, we observe that, in some cases, the process model used as
an input influences the measured performance of the bottlenecks identified.

The remainder of this paper is organized as follows. Section 2 discusses related
work. In Sect. 3, we present background notions. In Sect. 4, we present our
framework, which we evaluate in Sect. 5. Section 6 concludes this paper.

2 Related Work

We refer to [1] for an overview of process mining. Most papers on prediction,
focus on intra-case prediction, e.g., see [6]. Early work, e.g., [7], learns and uses
annotated transition systems to predict possible future states of running pro-
cesses. In [8], LSTM neural networks for predicting the next activity/remaining
time for a process instance are studied. Data-driven global performance measure-
ment and prediction are studied less intensively. In [9], the authors structure the
field and identify the lack of relevant work in this space. Arguably the first work
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in this domain, i.e., [10], proposes to learn simulation models. In [11], a generic
framework describing the integration of data-driven simulation models in pro-
cess improvement/redesign is presented. More recently, the application of system
dynamics modeling in the context of process mining has been studied [5].

Case-id Instance-id Activity name Starting time Finishing time ...
...

...
...

...
... . . .

7 35 Register(a) 2020-01-02 12:23 2020-01-02 12:25 . . .
7 36 Analyze Defect(b) 2020-01-02 12:30 2020-01-02 12:40 . . .
7 37 Inform User(g) 2020-01-02 12:45 2020-01-02 12:47 . . .
7 38 Repair(Simple)(c) 2020-01-02 12:45 2020-01-02 13:00 . . .
8 39 Register(a) 2020-01-02 12:23 2020-01-02 13:15 . . .
7 40 Test Repair(e) 2020-01-02 13:05 2020-01-02 13:20 . . .
7 41 Archive Repair(h) 2020-01-02 13:21 2020-01-02 13:22 . . .
8 42 Analyze Defect(b) 2020-01-02 12:30 2020-01-02 13:30 . . .
...

...
...

...
... . . .

(a) Example event log.

a

[0, 2]

b

[7, 17]

c [22, 37]

g

[22, 24]

e

[42, 57]

h

[58, 59]

(b) POC of Case 7 of Fig. 2a.

Fig. 2. Example event log (Fig. 2a) and Partially-Ordered Case (POC) (Fig. 2b).

3 Background

Event Data. Information systems store the historical execution of processes in
event logs. In Fig. 2a, we depict an example event log. Each row refers to an activ-
ity instance describing an executed activity. Activity instances describe several
data attributes, e.g., the activity name, timestamps, resource, etc. The first row
of Fig. 2a describes an instance with id 35, describing activity Register, executed
on January 2nd 2020, from 12:23 until 12:25, in the context of a process instance
with identifier 7. Activity instances referring to the same process instance com-
pose a case, e.g., in the context of case-id 7: Register(a), Analyze Defect(b),
Inform User(g), Repair(Simple)(c), Test Repair(e), Archive Repair(h). Hence, a
case describes a collection of activity instances. Since activity instances record
a start and an end time, they may overlap in time, e.g., consider instance 37
(Inform User) and instance 38 (Repair (Simple)). We assume a strict partial
ordering (an irreflexive, anti-symmetric and transitive relation) of the activity
instances that belong to a case. In Fig. 2b, we depict a Partially Ordered Case
(POC) representation for Case 7. An event log is a collection of cases.

Process Trees. We use process trees as a process modeling formalism, i.e., rooted
trees in which the internal vertices represent control-flow constructs and the
leaves represent activities. In Fig. 3a, we depict an example process tree. The
sequence operator (→) specifies sequential behavior, i.e., first its left-most child is
executed, then its second left-most child, etc. The exclusive choice operator (×)
specifies an exclusive choice between its children. Parallel behavior is represented
by the parallel operator (∧), i.e., all children are executed simultaneously/in any
order. Repetition is represented by the loop operator (�). The →, ×, and ∧-
operator can have an arbitrary number of children. The �-operator has exactly
two children. Its left child is always executed, i.e., at least once. When executing
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→
v0

a

v1.1

b

v1.2

∧
v1.3

�
v2.1

→
v3.1

×
v4.1

c

v5.1

d

v5.2

e

v4.2

f

v3.2

g

v2.2

h

v1.4

(a) Example process tree
Q1. Leaf vertices describe
activity labels, internal ver-
tices describe control-flow
operators.

v1.1

a

v1.2

b

v5.1c

v2.2

g

v4.2

e

v1.4

h

(b) Labeled Partial Order
(LPO) that is in the lan-
guage of Q1.

a
v1.1

[0, 2]

b
v1.2

[7, 17]

c
v5.1 [22, 37]

g
v2.2

[22, 24]

e
v4.2

[42, 57]

h
v1.4

[58, 59]

(c) Partially-Ordered Align-
ment (POA) of the POC
in Fig. 2b and the LPO in
Fig. 3b.

Fig. 3. Example process tree (Fig. a) and a member of its language (Fig. b).

its right child, we again execute its left-most child to finish the operator. We
assume that a process tree describes a set of strict partial orders as its language,
e.g., in Fig. 3b we depict one Q1. Due to the loop operator (v2.1), the process
tree in Fig. 3a describes an infinite amount of LPO’s.

Partially-Ordered Alignments. Alignments [3, Chapters 7–9] quantify the behav-
ior captured in an event log in terms of a reference process model. We consider
Partially-Ordered Alignments (POAs) [12]. POAs align a POC with a partial
order in a process model’s language. The elements of alignments are called moves.
An observed activity for a case that is also described by the process model is
referred to as a synchronous move, e.g., for the POC in Fig. 2b the first activity
instance describes activity a, which is in line with any partial order described
by Q1. We record a synchronization as a tuple (a, v1.1) aligning the observed
activity instance with label a, with the execution of vertex v1.1. If an activity
occurred that is not described by the model, we write (a,�), i.e., referred to
as a log move. If the model describes behavior that is not observed, written as
(�, v) (here v is some leaf node), we refer to a model move. The ordering among
the moves is extracted from both the POC and the model. In Fig. 3c, we depict
a POA of the POC in Fig. 2b and the partial order in Fig. 3b, i.e., only describ-
ing synchronous moves. The double-headed arrows represent ordering relations
that are both described by the process model and the POC. The single-headed
dashed arrow represents an order relation that is only present in the POC.

4 POA-Based Performance Measurement and Prediction

Here, we present our framework for data-driven process performance measure-
ment and prediction. We focus on time-based performance, i.e., waiting, service,
idle and cycle time. These metrics are schematically visualized in Fig. 4.
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Fig. 4. Overview of the performance metrics considered.

In the remainder, we describe the steps of the approach: 1.) Performance
Quantification and 2.) Performance Change Injection (cf. Fig. 1).

4.1 Performance Quantification

To measure time performance, i.e., as recorded in an event log and conditional to
a given process model, we use the notion of Timed Partially-Ordered Alignments
(TPOA). In a TPOA, the moves of a POA are associated with timestamps
derived from the event log. For synchronous and log moves, the time range is
copied from the event log. Model moves are interpreted as point-intervals, i.e.,
having a zero-duration (this design decision is easily changed, e.g., by taking
the log-based average duration of the activity described by the model move).
To compute a point-interval for a model move, we obtain the maximum interval
value x of any of its predecessors in the POA, i.e., according to the model’s
ordering-relations, which is used as a point-interval of the form [x, x] or [0, 0] if
the move has no predecessors.

In the remainder of this section, we describe and exemplify the computation
of the three core metrics considered for an arbitrary subtree of a process tree
and a given trace, i.e., based on timed moves.

Service Time. The service time of a (sub)tree comprises all intervals at which it
is active, i.e., work has been performed. In Fig. 4, the service time of the root
operator, i.e., �, consists of three time ranges, i.e., s1, s2 and s3. The service time
range s2 consists of the service times observed for Q2 and Q3. In the running
example (Fig. 3c), the service time of v3.1 comprises the service times of moves
(c, v5.1) and (e, v4.2), i.e., ranges {[22, 37], [42, 57]}. The service time of v1.3 is
the same, i.e., (g, v2.2) is executed concurrently with (c, v5.1).

Waiting Time. The waiting time of a (sub)tree, i.e., w in Fig. 4, is the time
between the tree’s enabling until the first activity observed in any of its chil-
dren. Given a subtree Q′ of a process tree Q, its waiting time is computed by
subtracting the minimum starting time of any of the model/synchronous move
related to Q′, from the maximum finishing time of any synchronous/model move
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preceding any move related to Q′. Consider move (e, v4.2) in Fig. 3c. The move
starts at time 42. The maximum finishing time of any move preceding the move
is 37 recorded by (c, v5.1). Hence, the waiting time of the move is captured by
the range [37, 42]. We ignore the finishing time of move (g, v2.2), since v2.2 does
not precede v4.2, i.e., their common ancestor is v1.3 (parallel operator).

Idle Time. Idle time comprises all time ranges in which we observe no activity, yet
the process tree has been active before and has not finished yet. For example, the
waiting time of (e, v4.2), i.e., [37, 42] represents the idle time of the subtree formed
by v3.1. We obtain the idle time of an arbitrary subtree by taking the union of all
active times of the moves that are part of it, i.e., according to the POA’s timed
moves. Subsequently, we intersect the complement of the aforementioned set of
ranges with the range formed by the first start-time and maximum end-time of
any of the subtree’s moves.

Cycle Time. Each observed instance of a subtree Q′ of some process tree Q,
generates a singleton waiting time interval as well as a set of service and idle times
respectively. Hence, the cycle times of a subtree are calculated by computing the
union of the related sets of waiting, service and idle time.

4.2 Performance Change Injection

Fig. 5. Computation of the new start
point of a move (m′′). Before shifting,
move m′ directly precedes m′′, after
shifting, it precedes m′′.

We assume that the process owner cal-
culates the effect of changing the pro-
cess’s time-performance at the activity
level, e.g., assessing the impact of a wait-
ing time reduction of 20% of an activity
of the process. Given an expected change
(either positive or negative), we assume
that all other events behave the same.
Adopting such a scenario for performance
prediction translates to shifting the time
range of the timed moves, according to the
desired improvement. Consider improv-
ing the performance of activity c in the
running example (Fig. 2b and Fig. 3c)
by 20%. This results in a new service
time range of [22, 34] (0.8·(37 − 22)=12).
We shift the range of moves (e, v4.2) and
(h, v1.4) by 3, i.e., to [39, 54] and [55, 56]
respectively. Hence, the reduction on activity c, yields a ∼5% reduction in the
overall flow-time ( 3

59 ).
We use a move shift function, describing how to shift a timed move based

on a proposed change. The core idea is to maintain a shift value on both the
start and end time of a move of a TPOA. The shift function allows us to derive
the (new) interval boundaries described by the timed move. Given some move
m with time interval [a, b] and a corresponding shift function value x for the



Data-Driven Process Performance Measurement and Prediction 79

Table 1. Experimental results. Measured performance is in hours (rounded). The
impact of the bottleneck reductions is relative to the original cycle time.

Event Log Discovery
Threshold

Detected
Bottleneck

Avg. Bottleneck
Sojourn Time

Abg. Overall
Cycle Time

Rel. Cycle Time Red.
(1% Bott. Red.)

Rel. Cycle Time Red.
(2.5% Bott. Red.)

BPI 2017 [14] 10% O Cancelled 479 397.6 0.57355% 1.43387%

60% O Cancelled 479 397.6 0.57355% 1.43387%

BPI 2020 Domestic Declarations [15] 10% Declaration APP... 107 304.8 0.27794% 0.69486%

30% Declaration APP.. 107 304.8 0.27794% 0.69486%

BPI 2020 International Declarations [15] 10% Start trip 500.7 1244.8 0.40223% 1.00558%

20% Start trip 500.7 1244.8 0.39700% 0.99251%

BPI 2020 Request Payment [15] 10% Payment Handled 102.3 315.7 0.32398% 0.80995%

20% Payment Handled 102.3 315.7 0.32398% 0.80995%

BPI 2020 Travel Permit [15] 10% Send Reminder 1249.4 1331 0.19091% 0.47728%

20% Send Reminder 1349 1331 0.16858% 0.42145%

Road Traffic [16] 10% Send for Credit... 11704.8 6976.8 0.66604% 1.66510%

20% Send for Credit... 11704.8 6976.8 0.66604% 1.66510%

Hospital Billing [17] 10% FIN 560.2 556.7 0.65105% 1.62763%

20% FIN 560.2 556.7 0.65105% 1.62763%

start and y for the end time of m. The new time interval for m, is equal to
the interval [a + x, b + y] (shift forward in time: x<0 and y<0). Moves that
have no predecessors in the TPOA are not shifted or shifted on their start/end
time according to the performance change, e.g., a 5% reduction of service time
on (a, v1.1) in Fig. 3c, yields a shift on its end time of 2 − 0.95·2=0.1. For a
move m that does have predecessor moves, first, a new time range for all its
predecessors is computed, i.e., by applying (accumulated) shifting on top of
the initially recorded time annotation of the TPOA. The initial shift values of
move m are the difference between the maximum end point of its predecessors
excluding any shift (i.e., based on the original time ranges of the predecessors)
and the maximum ending point of its predecessors including any shift (i.e., based
on the new time ranges of the predecessors). If a move relates to an activity with
an anticipated performance change, the change is computed on top of the initially
computed shift values. Figure 5 shows an exemplification of the computation.

5 Evaluation

In this section we evaluate our approach. We conducted our experiments using
a publicly available implementation of our framework (https://github.com/
luisfsts/KPIAlgebras). We use seven publicly available event logs. For each log,
we discover two process trees by using different noise threshold values in the
discovery algorithm [13] (starting with threshold 10% and increasing with steps
of 10% until we discover a different process tree). To reduce time consumption,
we sampled 1000 cases per event log.

The results of the experiment are presented in Table 1. In all cases, as
expected, we observe that using a 2.5% reduction on the bottleneck yields a
better improvement on the overall cycle time of the process, i.e., roughly 2.5
times the 1% reduction. Only in the BPI 2020 Travel Permit data [15], the
model impacts the measured cycle time of the identified major bottleneck in the
process. Upon inspection, this is the case because the 10%-model incorporates
more synchronizations of the bottleneck activity, and hence, more performance

https://github.com/luisfsts/KPIAlgebras
https://github.com/luisfsts/KPIAlgebras
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measurements, leading to a slightly lower measured activity sojourn time. Fur-
thermore, the aforementioned event log and the BPI 2020 International Decla-
rations [15] event log are the only two event logs in which the process model has
an influence on the global performance reduction.

6 Conclusion

In this paper, we presented a foundational framework that allows us to mea-
sure the time-based performance of a process, based on historically logged event
data. The framework exploits partially ordered alignments (POAs), which are
annotated with time-based performance information derived from the data. The
use of POAs supports the use of data that records both start and end times
of events. The effect of anticipated changes of activity-level performance can be
injected into the framework. In our evaluation, we highlight the applicability of
our tool using real event data.
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