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Abstract. Predictive process analytics focuses on predicting the future
states of running instances of a business process. While advanced
machine learning techniques have been used to increase the accuracy of
predictions, the resulting predictive models lack transparency. Explain-
able machine learning methods can be used to interpret black-box mod-
els. However, it is unclear how fit for purpose these methods are in
explaining process predictive models. In this paper, we aim to inves-
tigate the capabilities of two explainable methods, LIME and SHAP,
in reproducing the decision-making processes of black-box process pre-
dictive models. We focus on fidelity metrics and propose a method to
evaluate the faithfulness of LIME and SHAP when explaining process
predictive models built on a Gradient Boosting Machine classifier. We
conduct the evaluation using three real-life event logs and analyze the
fidelity evaluation results to derive insights. The research contributes
to evaluating the trustworthiness of explainable methods for predictive
process analytics as a fundamental and key step towards human user-
oriented evaluation.
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1 Introduction

Predictive process analytics focuses on applying predictive analytics to forecast
future states of business process executions [10]. While advanced machine learn-
ing techniques have been used to increase accuracy of process predictions, the
resulting predictive models become ‘black-box’ models. Methods and techniques
have been proposed in machine learning to explain black-box models, forming a
new research theme known as explainable AI (XAI) [3]. Several recent studies in
predictive process analytics (e.g., [2,9]) have attempted to apply existing XAI
methods to interpret black-box process predictive models. However, there have
been few studies on evaluating how well available XAI techniques interpret pro-
cess predictions. One key measure of explanation fitness is fidelity, which aims
to determine how faithful the explanation is to the black-box predictive model,
i.e., how well the explanation method can mimic the black-box model [3].
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In this paper, we identify and draw on fidelity evaluation studies in XAI, and
propose a method for evaluating explanation fidelity for process predictions. We
apply the proposed method to evaluate the performance of LIME and SHAP
in interpreting process predictive models built on XGBoost, which has been
shown to be most accurate in process outcome predictions [10], and analyse
the evaluation results to derive insights. The research contributes to evaluating
the trustworthiness of explainable methods for predictive process analytics as a
fundamental and key step towards human user-oriented evaluation.

2 Background and Related Work

2.1 Explainable AI

While more complex algorithms often produce more accurate results, it is harder
for a human to understand their internal workings, thus becoming a ‘black box’
and requiring interpretation [3]. Post-hoc interpretation refers to the interpreta-
tion of a predictive model, a data neighbourhood or a prediction created after
the model has been generated, typically by an interpretation mechanism exter-
nal to the predictive model [3]. Two popular black-box-model-agnostic, local
explanation methods in literature are LIME and SHAP. LIME determines the
importance of all features in an input by perturbing the dataset to create a
surrogate linear model that captures the black-box model’s behaviour at a spe-
cific neighbourhood [8]. SHAP uses a game theoretic approach to assign a value,
known as SHAP value, to each feature at the instance level, describing its con-
tribution to the final output—the prediction [5].

2.2 Fidelity of Explanations

While post-hoc explanation methods can be used to interpret complex models,
because the explanation method is distinct from the prediction method, it is pos-
sible that the explanation generated is not always faithful to the decision-making
of the original black box. Hence, it is important to understand the fidelity of the
explanation method. Two ways of measuring fidelity are defined in [6]: external
and internal fidelity. External fidelity measures the similarity of decisions made
by a surrogate model or interpretation of a black box and the black box itself, but
this does not measure the similarity of their decision-making processes – defined
as internal fidelity [6]. A common method of evaluating the fidelity of post-hoc
approaches is to remove or change features identified by the interpreter and com-
paring the changes in prediction probability of the black box [1,4], though this
is typically applied to image or text data.

2.3 Problem Statement

Explainable predictive process analytics has emerged as a new research topic, and
current studies have attempted to use existing explainable methods in XAI [2,9].
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However, it is as yet unclear how fit for purpose these methods are for explaining
process predictions, given the relatively complex multidimensional structure of
event log data. As such, it is important to understand how well explainable meth-
ods can mimic the decision-making of process prediction black boxes. However,
methods of assessing internal explanation fidelity for tabular data like event logs
remain unexplored. In literature, internal fidelity evaluation methods often apply
ablation, in which the most influential features are removed from the input [1].
However, this is typically applied to text or image data, where the “removal”
of features is relatively simple, and would not be appropriate for tabular data.
This has motivated us to draw on existing work to build a method to assess the
fidelity of post-hoc methods used in explainable predictive process analytics.

3 Fidelity Evaluation Method

We evaluate the internal fidelity of explanations as we are interested in the
fidelity of the interpreter’s decision-making processes, not the decision (i.e., pre-
diction) itself. An ablation approach to measuring internal fidelity will not hold
for tabular data like event logs, particularly when using XGBoost which auto-
matically imputes missing data. As such, a perturbation strategy was judged to
be more effective. For the prediction of each instance, ten explanations were
generated—to mitigate the effects of explanation instability—and the top 10%
of features that were most common in the explanations were identified. For each
feature, LIME presents the feature value or feature value distribution which
affected the black box’s prediction. For example, an explanation including “1 <
Activity A < 3” indicates that the occurrence of “Activity A” more than once,
but fewer than three times was influential. As SHAP presents only the feature’s
influence on the end result, feature value distributions were generated based on
the SHAP value for a specific feature, for a specific instance (i.e., what feature
values would produce similar SHAP values in the entire test dataset). For exam-
ple, if “Activity A” has a SHAP value between 0.5 and 0.6 only when the feature
value is between 1 and 3, this would be the distribution attributed to a SHAP
value of 0.54. Using these distributions, for each instance:

1. A prediction using input vector x was generated, along with the prediction
probability for the predicted class Y (x)

2. For each feature to be perturbed, a new, uniform distribution outside of the
existing distribution was created to draw new feature values from

3. For each feature to be perturbed, a new value was randomly sampled from
the new distribution to replace the original value for that feature, creating
the perturbed feature vector x′

4. The prediction probability for the originally predicted class was determined
for input x′ resulting Y (x′), and the difference between Y (x) and Y (x′) was
computed

Each instance was perturbed ten times, and the differences in prediction prob-
ability were used to calculate the mean absolute percentage error (MAPE) of
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the differences as the fidelity score for each instance (see Eq. 1). We chose to
perturb the feature vectors, instead of the event logs used to derive the feature
vectors, as the input for both the black box and the explanation methods were
the derived features, and not the original event log.

It is important to note that the definition of the measure in Eq. 1 focuses on
the (local) explanations at the process instance level. The overall evaluation of
such a measure over the entire event log can be calculated as the average of the
scores for all instances in the event log. Error functions have previously been
applied to quantify internal fidelity, averaged out over the size of a dataset [1].
As such, MAPE is used to measure the fidelity of explanations, and we calculate
the fidelity (F) of an explanation for a single process instance in an event log as
follows:

F =

∑|X′|
1

|Y (x)−Y (x′)|
Y (x)

|X ′| (1)

where:
– x = original feature vector for the process instance
– X ′ = Set of perturbations for x and x′ ∈ X ′

– Y (x) = Prediction probability given input x
– Y (x′) = Prediction probability given input x′

Note that this measure is naturally bounded by the fact that prediction proba-
bilities fall between 0 and 1.

4 Evaluation and Analysis

4.1 Design of Experiments

The prediction target is process instance outcomes, as outcome classification is
one of the most common process prediction problems. Since XGBoost is generally
the most accurate algorithm for outcome prediction [10], it was used to create the
underlying black-box models. The XGBoost classifiers were trained on different
data encoding and bucketing methods. The following combinations of bucketing
and encoding methods were used:

– Aggregate encoding for dynamic attributes with prefix-length bucketing
– Index-based encoding for dynamic attributes with prefix-length bucketing
– Aggregate encoding for dynamic attributes with no bucketing

In the “no bucketing” method, all data is compiled as one bucket and a single
classifier is trained on this bucket. When prefix-length bucketing is used, data is
grouped (bucketed) based on shared prefix length (the number of activities that
have already been completed in a process instance), and a classifier is trained for
each bucket. For example, in a dataset with process traces ranging from prefix
length of 1 to 40, forty classifiers will be trained. Aggregate encoding, as the name
implies, aggregates the details of the entire case into a summary, while index-
based encoding attempts to preserve the temporal details of the case as much as
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possible. As such, combining aggregate encoding with single bucketing preserves
the characteristics within the original event log the least, while combining index-
based encoding with prefix-length bucketing preserves the most.

SHAP and LIME, two popular post-hoc interpretation methods, were chosen
for evaluation due to their prevalence in explainable predictive analytics [2,9].

4.2 Datasets

We use three open-source, real-life event logs, all varying in the amount of cases
recorded, types of attributes present and context (see Table 1). We follow the
preprocessing, bucketing and encoding methods used in [10].

Table 1. A summary of statistics of three event log datasets

Event log Productiona Sepsis casesb BPIC2012c

Description A manufacturing

process

Hospital event log

showing sepsis

cases

Loan application

process

No. of cases (before encoding) 220 782 4,685

Proportion of positive cases 55.0% 16.0% 53.4%

Maximum prefix length 23 29 40

Prefix lengths used 1–20 1–25 1–25

Feature

vector

shape

Single bucket &

aggregate encoding

162 274 134

Prefix-length buckets

& aggregate encoding

Min: 137 Max: 156 Min: 153 Max: 218 Min: 43 Max: 134

Prefix-length buckets

& index-based

encoding

Min: 100 Max: 844 Min: 147 Max: 535 Min: 11 Max: 1654

a https://doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399
b https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
c https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

The Production dataset has the fewest cases and a substantial number of
static and dynamic attributes (though more dynamic than static), and around
55% of the cases were completed with a positive outcome. The Sepsis Cases
dataset is highly unbalanced with only 16% positive cases. It also contains con-
siderably more static than dynamic attributes, which will result in comparatively
longer feature vector lengths when using aggregate encoding, but comparatively
shorter feature vector lengths at higher prefix lengths when using index-based
encoding. The training dataset was balanced through downsampling, but the
testing data remains unbalanced. The BPIC2012 event log contains one (numer-
ical) static attribute and a number of dynamic attributes, most of which are
categorical, resulting in comparatively smaller feature vectors when using aggre-
gate encoding, but the feature vector size will increase considerably as prefix
length increases when using index-based encoding.

https://doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
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4.3 Results and Analysis

The source code implementing the proposed evaluation method in Sect. 3 and
the design of experiments in Sect. 4.1 as well as the associated experiment results
are available at: https://git.io/JIYtH.

Evaluation Results. Overall, fidelity scores were low-to-moderate for both
explainable methods (see Table 2). SHAP is the better performer, though gen-
erally by small margins. Both explanation methods were generally least faithful
when single bucketing and aggregate encoding are used, whereas the best com-
bination of bucketing and encoding that produced better results varied across
datasets.

Table 2. Overall fidelity results for each of the three datasets

Production Sepsis cases BPIC 2012

Single bucket aggregate encoding LIME 0.26 0.36 0.37

SHAP 0.27 0.46 0.41

Prefix-length buckets aggregate encoding LIME 0.47 0.37 0.38

SHAP 0.51 0.49 0.42

Prefix-length buckets index-based encoding LIME 0.36 0.51 0.32

SHAP 0.51 0.56 0.4

LIME and SHAP are almost comparable when evaluating fidelity. In many
cases, such as with SHAP for the BPIC2012 dataset (see Fig. 1), the faithfulness
of explanations varies across instances in an almost uniform distribution. This
suggests that only some explanations are faithful, but there appears to be no
pattern or trend of faithfulness with regards to prefix length, encoding method,
bucketing method or the initial prediction probability.

There is generally no link between prefix length and fidelity, except with
BPIC2012 (most noticeable in LIME), where a higher prefix length generally
results in a more faithful explanation. The large size of the BPIC2012 dataset
(at least in comparison to the other two) has resulted in more reasonable black-
box accuracy at the higher prefix lengths (see Fig. 2), which in turn appears to
have ensured that LIME’s surrogate models better fit the data.

Analysis and Findings. At first glance, these low scores seem to suggest
that LIME and SHAP cannot accurately mimic process prediction black boxes.
However, a further analysis indicates that the reasons for poor fidelity results
may lie in the following aspects.

Firstly, event logs are inherently complex due to their multidimensional
nature and variety of event attributes, and it is possible that the processing
of the event log to a simpler, algorithm-readable feature vector could have led

https://git.io/JIYtH
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Fig. 1. Fidelity results over original prediction probability and prefix length of LIME
and SHAP for the BPIC2012 dataset.

(a) Single Bucket,
Aggregate Encoding

(b) Prefix-length Bucket,
Aggregate Encoding

(c) Prefix-length Bucket,
Index-based Encoding

Fig. 2. Accuracy of predictive models at each prefix length for the BPIC2012 dataset

to the poor fidelity results. As noted, perturbation of the input was conducted
using the feature vector, not the underlying event log, and potential dependen-
cies between the features (such as events and their attributes) could also have
contributed to these poor results. If this is true, it is possible that the combi-
nation of single bucketing with aggregate encoding produced the least faithful
explanations as it preserves the complexity of event logs the least.

Secondly, the poor fidelity results may also be due to some internal mech-
anisms of the explanation methods. In particular, sampling methods used by
LIME to produce surrogate models are known to often produce poor results [7].
It is possible that the underlying mechanisms of LIME and SHAP cannot appro-
priately recreate the complex dependencies between the features that can be
derived from event logs.

Thirdly, it is likely that the characteristics of the underlying black box also
affected the fidelity results. This is most noticeable in the BPIC2012 dataset,
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when fidelity increased as the accuracy of the black-box model increased at higher
prefix lengths. This phenomenon of increased accuracy closer to the completion
of a running instance is expected in predictive process monitoring [10]. It is
possible that the poor performance of the black-box models at smaller prefix
lengths led to overall low fidelity and a poorly-fit surrogate model. Also, in
predictive process analytics, an accurate prediction as early as possible during
the process is valuable. Accordingly, any corresponding explanations will also
perform better if they are faithful at an earlier stage during process prediction.

Insights for Future Work. Based on the above findings, we propose that a
number of considerations should be made when assessing the fidelity of process
prediction explanations. Firstly, a closer investigation needs to be made of the
perturbation method used, with consideration of whether perturbation of the
event log would be more appropriate than perturbation of the features extracted
from it. Secondly, it would also be useful to consider the assumptions made
when developing the proposed evaluation method, including the assumption that
the boundaries derived from the explanation are absolute. Thirdly, to better
understand whether the poor results stem from the use of event logs as datasets,
the proposed method should be applied with more standard, less complex tabular
datasets. Furthermore, evaluations should also be conducted with other types
of black-box models, to understand how the underlying black box, including
accuracy, contribute to the faithfulness of explanations.

5 Conclusion

As black-box models are often applied in predictive process analytics, explain-
ability becomes necessary to help understand why certain predictions are made
by the underlying predictive models. To determine the quality of explanations,
we have proposed a method to assess explanations of process predictive models.
The application of this proposed method to three event log datasets using a
variety of bucketing and encoding techniques has provided observations regard-
ing the faithfulness of process prediction explanations. Insights derived from the
observations can be used to guide future refinement of the proposed method and
evaluations as well as understanding of process prediction explainability.
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