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Abstract. With the growing amount of data gathered from business
processes in recent years, predictive process monitoring (PPM) estab-
lished as a method to provide valuable insights and make resilient fore-
casts. However, sophisticated machine learning algorithms and statis-
tical techniques are always equipped with various hyper parameters,
which aggravates finding the best configuration for laypeople. Tools like
Nirdizati Research (http://research.nirdizati.org/) or apromore (https://
apromore.org/) aim to assist in these tasks. Nonetheless these approaches
are isolated solutions, which do not integrate into existing productive
environments. In this work, a plugin for the widely used workflow and
decision automation tool Camunda (https://camunda.com/) is presented
which allows creating classifier for the most common operations in PPM.
Furthermore, the framework includes a hyper parameter optimization
(HPO) and is extensible in prediction types, methods and optimization
algorithms.
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optimization · Camunda

1 Introduction

In the last two decades, the digitalization of business processes has equipped
companies with substantial new means to investigate the internal company pro-
cesses. With business processes being executed by workflow management systems
that continuously log event data, the availability of big data allows to generate
valuable insights into company activities. Here, a wealth of recent research has
focused on exploiting such workflow log data for predictive process monitoring,
in order to leverage insights to create competitive advantages by means of intelli-
gent predictions (c.f. [5] for an overview). While such results are clearly beneficial
for companies, there are unfortunately no user friendly solutions for PPM that
integrate seamlessly into existing workflow management systems and guide end-
users through the selection of suitable prediction methods. Even though there
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are refined solutions for PPM like for example Nirdizati Research or several
ProM-Plugins1, these are always implemented in an isolated environment. This
however impedes a practical usage, as running a workflow engine and analysing
tools in parallel can lead to data storage problems such as redundancy and
requires extensive employee training for the external tools. Here, methods are
needed that integrate PPM with existing workflow management systems in a
unified manner, in order to lower the obstacles of adoption.

In this work, we therefore introduce a Camunda plugin2 which enables an
effortless use of machine learning techniques for PPM directly in the running
workflow management system. Camunda is an open source workflow manage-
ment and automation platform which is widely used by a variety of small- to
large-scale companies such as Atlassian, Generali and Deutsche Telekom3. The
presented plugin adds a clean user interface for predictions on single process
instances and a detailed configuration panel for administrative tasks. Classifiers
may be trained on the basis of the internal Camunda log or with external logs
in the common Extensible Event Strean (XES) format. The plugin ships with
three available prediction types of next activity, time and risk prediction that
can directly be used, however, arbitrary prediction types like forecasting process
variables or cost can be added afterwards. Also, the Classifier interface is left
generic to allow for an extension with arbitrary prediction algorithms. Out of
the box, N-Grams, LSTM neural networks, regression are available inter alia.

While the flexible design allows for a high degree of customization, the wealth
of prediction types and prediction algorithms may require extensive background
knowledge by end-users to select an optimal prediction method and therefore
might hamper the feasibility in practice due to the skill sets of the involved
(non-technical) users. Therefore, the core feature of this plugin also includes
HPO for combined algorithm search and hyper parameter setting. Classifiers are
ranked by an evaluation metric and may be created on the fly. In this way, the
optimal classifier type and parameter settings for the company can be determined
by the plugin. This is especially useful for the training of predictive models for
individual company logs, as the sheer amount of algorithms and hyper parameter
settings largely depends on the process definition and the underlying log, which
makes it impossible to provide generally suitable parameter settings.

This article will continue with a background section on PPM and optimiza-
tion. Then, the approach architecture will be introduced in Sect. 3, including
data management, different classifier architectures and HPO techniques. After-
wards, the implemented plugin will be demonstrated by showing typical usage
examples. To evaluate the feasibility of our approach, results of conducted run-
time experiments on real-life datasets will be presented in Sect. 4. Last, the
contributions and limitations of this work are concluded in Sect. 5.

1 http://promtools.org/.
2 https://gitlab.uni-koblenz.de/fg-bks/camunda-ppm-hpo/.
3 https://camunda.com/case-studies/.
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2 Background

As a couple of PPM approaches appeared in the last ten years, there also exist
detailed literature reviews [5,11]. [11] illustrates the importance of the research
area by showing the growing amount of related publications from 2010 to 2016.
Furthermore, from [5], it can be observed that neural networks are frequently
used for next activity predictions. Another discovery is that the preponderance
of implementations are realized with WEKA [7] or ProM-Tools4. Nonetheless,
both articles conclude with addressing the need for practical implementations.

2.1 Predictive Process Monitoring

PPM is performed on historic data from process executions, which is usually
stored in the XES log standard. An event log L is a collection of traces τ0...n

from distinct process instances, i.e., possible traversals through a process model.
Each trace τ consists of events e1...m, such as conducting an activity or receiving
a message. Moreover, an event can store additional properties like the assigned
employee. In order to make predictions on an event log, the log data has to
be encoded to subsequently train a predictive model. Then, depending on its
configuration and capabilities, the classifier returns a prediction such as the
probability of a task to occur next, the remaining time or the risk to fail. Taylored
solutions may also include linear temporal logic business rules [10], alarm based
risk models [12] or additional preprocessing steps like clustering [4]. For the
actual training process, it is common to split the available data into a training
and a validation set. Hence, one can train the classifier on the training set and
can calculate a quality metric or a loss function for the validation set.

When training a model, the training process itself often depends on hyper
parameters. For instance, neural networks require a variety of parameters such as
the number of epochs. Research in machine learning has shown that the outcome
of a prediction algorithm may largely depend on its configuration and the under-
lying data set. Therefore, parameter optimization is an important challenge in
the scope of achieving more accurate predictions.

2.2 Hyper Parameter Optimization

The configuration space for a machine learning algorithm A with N hyper param-
eters is denoted as Λ = Λ1 × Λ2...ΛN where Λn is the domain of the n-th hyper
parameter. The domain can be real-valued, ordinal, binary or categorical. An
instance of A to a vector of hyper parameters λ ∈ Λ is written as Aλ. For a
given data set D, the optimization problem can be formulated as:

λ∗ = argminλ∈ΛE(Dtrain,Dvalid∼D)V(L,Aλ,Dtrain,Dvalid) (1)

where V(L,Aλ,Dtrain,Dvalid) is the loss the algorithm Aλ trained on Dtrain

and validated on Dvalid. Typically used loss functions are sum of squared error
4 https://www.promtools.org/doku.php.
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or misclassification rate. Vice versa, a quality metric like accuracy can be max-
imized. For conducting an actual optimization, different strategies such as Grid
Search, population-based strategies or bayesian optimization can be applied [6].

Grid Search is the most trivial way to find the minimum of the objective
function. It evaluates all permutations of configurations on a finite configuration
space and returns the best one. The disadvantage of this simple approach is that
the number of executions and the runtime consequently increases dramatically
when being applied on a large configuration space. Random Search enhances
Grid Search by traversing the configuration space in a random manner for a
fixed number of iterations. By design, important parameters are detected faster
and evaluated more densely [1].

Population-based strategies like evolutionary algorithms are initialized with
a random set of configurations. Thereupon, genetic operations such as crossover,
mutation and elitism are applied to generate a new set of configurations. A fixed
number of generations or a saturating loss rate forces the algorithm to terminate.
The most popular genetic algorithm for HPO is CMA-ES [8], whereas a current
genetic algorithm for the PPM domain can be found in [3].

Bayesian Optimization tackles the problem that a configuration space may
become infinitely large by creating a model that predicts the best possible config-
uration. Initially, the model is build on a randomly selected set of configurations
considering the observed loss rates. In the following step, the model predicts a
configuration that will have a low expected loss rate. Eventually the actual loss
rate is evaluated and used to refine the model. The last two steps are replayed
iteratively until the loss rate saturates or a maximal number of iterations is
reached. The model used for this sequential model based optimization method
can be a Gaussian Process [9] or a Tree Parzen Algorithms [2] among others.

A remarkable work in the field of HPO is Auto-WEKA [13], which enables
combined selection and HPO for classification algorithms (CASH). Hence, the
library is able to find the optimal algorithm with least possible user interaction.
Apart from that, the resulting configuration space grows exponentially as WEKA
provides 27 base classifier, 10 booster and 2 ensemble learning techniques.

As motivated, HPO is an important aspect in the context of PPM. In the fol-
lowing, we present our developed plugin for applied PPM, allowing for a seamless
integration of results from PPM and intuitive HPO in Camunda.

3 Tool Description and Demonstration

The presented plugin is based on a previous plugin (See footnote 2), which
equips Camunda with PPM functionalities. While empowering companies with
means for PPM may seem beneficial, yet, creating value from a productive plugin
for PPM remains a tightrope walk between complexity and usability, as some
classifiers depend on a multitude of hyper parameters. Withal, it cannot be
assumed that a typical Camunda user disposes of expert knowledge about HPO.
Thus, the presented plugin integrates a much needed intuitive HPO functionality
to create suitable predictive models.
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A new plugin tab in Camunda allows to start a new parameter optimiza-
tion process, with the goal of finding a) an optimal learning algorithm, and b)
the best/suitable parameters for a given process model and the corresponding
internal Camunda log. In this way, end-users can be supported in determining
optimal algorithms and settings for model training, directly in Camunda.

Fig. 1. Steps to find and create the best classifier. Left: Setting configuration space
and optimizer. Top right: Selecting and creating a resulting classifier. Bottom right:
Prediction in the process view.

Figure 1 shows the user workflow for configuring a new search and deploy-
ing the resulting classifier. Different classifier types are included in the search,
allowing to compare the suitability of different learning algorithms (1). Note that
arbitrary classifiers can be added if needed. Then, for each classifier type, certain
ranges for the respective parameters can be specified as a general search space
(2). Reasonable ranges for the hyper parameter configurations are provided as a
default so that an inexperienced user only has to select which classifier should be
included. Regarding the subsequent optimization process, the user may choose
and customize the evaluation metrics, as well as the optimization algorithm (3).
If the whole configuration space should be tested, the user can use Grid Search.
Otherwise, Random Search and Bayesian Optimization offer fast and reliable
recommendations after only a few iterations. In the current implementation, the
model for Bayesian Optimization may be one of Random Forest, Regression or
Naive Bayes. Besides that, own optimization algorithms can be added.
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After the parameter optimization has been performed, the user is presented
with a comprehensive overview of the best learning algorithms and the best
respective parameter settings. The user can browse the n best performing con-
figurations and select a suitable model for deployment (4). Also, the underlying
parameters for the model configuration are shown. The user can directly select
the “create configuration” option (5), which automatically deploys the selected
predictive model in the Camunda PPM environment (6).

4 Evaluation

To investigate the feasibility of applying our plugin in an industrial setting,
the runtime of the three optimization algorithms was evaluated with the help
of real-life event logs from the BPI Challenge 20205. This dataset includes two
logs, namely the Domestic Declarations dataset (10.500 traces), and the Interna-
tional Declarations dataset (6.449 traces). For each dataset, scenarios with three
different configuration spaces (small, medium, large) and optimization methods
(Grid Optimizer, Random Optimizer, Bayesian Optimizer) were tested on five
classifiers (N-Grams, IBk, Naive Bayes, Random Forest, Hoeffding Tree). A file
containing the used configuration setting as well as the runtime results can be
found online6. The experiments were performed on a CentOS Linux Server with
i7-3770 CPU and 16 GB RAM.

Figure 2 shows the total runtime of the individual optimization methods. As
can be seen, the Bayesian Optimizer outerperforms the other approaches signif-
icantly w.r.t. runtime. For Grid and Random Optimizer, runtime increases with
growing configuration space. Moreover, Table 1 shows the runtime per classifier.
Only classifier with large configuration spaces seem to be found faster by the
Bayesian Optimizer. For example, the runtime of N-Grams does not differ a lot
per optimization method, whereas a considerable speedup can be observed for
Random Forest. Noticeably, the model accuracy while using the prediction-based
Bayesian Optimizer does not seem to drop significantly as opposed to a brute-
force approach via the Grid Optimizer. Thus, based on our results, the Bayesian
Optimizer can be recommended, especially w.r.t. runtime.

Because of a lack of computational power, we were not able to include Regres-
sion and LSTM classifiers in our evaluation. Especially for the LSTM with its
large configuration space and its massive training effort, it would be interesting
to determine the computational speedup. As the capabilities of some classifier
increase, difficulties arise when one wants to conduct a comparison objectively.
Accordingly, further tests may include larger training logs and more sophisti-
cated prediction types such as risk models.

5 https://data.4tu.nl/collections/BPI Challenge 2020/5065541.
6 https://gitlab.uni-koblenz.de/fg-bks/camunda-ppm-hpo/blob/master/Resources/

tables.pdf.
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Fig. 2. Runtime evaluation for grouped by dataset, optimizer and size of configuration
space.

Table 1. Evaluation of the runtime per classifier. (D: Domestic Declarations, I: Interna-
tional Declarations, G: Grid Optimizer, R: Random Optimizer, B: Bayesian Optimizer,
each cell contains runtime in seconds and accuracy in percent)

Data Opt. Size N-Grams IBk Naive Bayes Random Forest Hoeffding

D G Small .452 s - 98% 685.8 s - 97% 7.79 s - 86% 3705 s - 97% 776.1 s - 91%

D G Medium .565 s - 98% 1042 s - 97% 11.47 s - 87% 7393 s - 97% 1225 s - 91%

D G Large .834 s - 98% 1411 s - 97% 15.07 s - 91% 0272 s - 97% 1495 s - 91%

D R Small .412 s - 98% 667.3 s - 97% 7.462 s - 86% 373.8 s - 97% 83.97 s - 91%

D R Medium .585 s - 98% 1042 s - 97% 11.64 s - 87% 371.1 s - 97% 83.52 s - 91%

D R Large .839 s - 98% 1415 s - 97% 15.58 s - 91% 395.6 s - 97% 83.80 s - 91%

D B Small .408 s - 98% 259.6 s - 97% 7.54 s - 86% 11.20 s - 97% 3.178 s - 91%

D B Medium .568 s - 98% 338.6 s - 97% 3.51 s - 87% 12.87 s - 97% 5.494 s - 91%

D B Large .848 s - 98% 1282 s - 97% 3.85 s - 86% 44.02 s - 97% 3.539 s - 91%

I G Small .634 s - 98% 747.3 s - 96% 11.18 s - 82% 5958 s - 96% 984.2 s - 86%

I G Medium .917 s - 98% 1246 s - 96% 17.53 s - 82% 1702 s - 96% 1557.4 s - 87%

I G Large 1.47 s - 98% 168.2 s - 96% 23.03 s - 82% 6218 s - 96% 1881 s - 87%

I R Small .683 s - 98% 762.4 s - 96% 11.11 s - 82% 593.7 s - 96% 108.5 s - 86%

I R Medium .939 s - 98% 1216 s - 96% 17.26 s - 82% 615.9 s - 96% 108.4 s - 87%

I R Large 1.47 s - 98% 172.7 s - 96% 22.80 s - 82% 638.5 s - 96% 106.6 s - 87%

I B Small .644 s - 98% 736.3 s - 96% 11.19 s - 82% 21.61 s - 96% 8.46 s - 86%

I B Medium .842 s - 98% 436.9 s - 96% 6.63 s - 82% 15.39 s - 96% 6.44 s - 86%

I B Large 1.52 s - 98% 408.9 s - 96% 4.62 s - 82% 18.06 s - 96% 5.25 s - 86%

5 Conclusion

The field of PPM is still developing and solutions for productive environments are
still pending. With the introduced plugin, users can effortlessly create powerful
and suitable predictive models for immediate predictions, without the need for
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extensive knowledge on the underlying machine learning algorithms. The direct
integration into Camunda promotes a seamless application of predictive process
monitoring, without the need for isolated tools and (redundant) data transferals
between tools.

Further challenges include the development of additional prediction types like
linear temporal logic and further evaluation metrics like Cohen’s Kappa. Here
again, the trade-off between usability and degrees of freedom must be balanced.
Besides, in situations where only little or no training data is available, the results
of the HPO are overfitted and thus not meaningful. An integrated simulation
environment to create synthetic logs would be useful in these cases.
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