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Abstract. Alignments pinpoint trace deviations in a process model and
quantify their severity. However, approaches based on trace alignments
use crisp process models and recent probabilistic conformance checking
approaches check the degree of conformance of an event log with respect
to a stochastic process model instead of finding trace alignments. In this
paper, for the first time, we provide a conformance checking approach
based on trace alignments using stochastic Workflow nets. Conceptually,
this requires to handle the two possibly contrasting forces of the cost
of the alignment on the one hand and the likelihood of the model trace
with respect to which the alignment is computed on the other.
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1 Introduction

In the existing literature on conformance checking, a common approach is based
on trace alignment [1]. This approach uses crisp process models as reference
models. Yet, recently developed probabilistic conformance checking approaches
provide a numerical quantification of the degree of conformance of an event log
with a stochastic process model by either assessing the distribution discrepan-
cies [7], or by exploiting entropy-based measures [10,11]. As these strategies are
not based on trace alignments, they cannot be directly used to repair a given
trace with one of the traces generated by a stochastic process model. In this
paper, we present, for the first time, a tool for the probabilistic alignment of
a trace and a stochastic reference model. The tool provides different alignment
options since, conceptually, probabilistic trace alignment requires the analyst to
balance between the alignment cost and the likelihood of model traces: an opti-
mal but very unlikely alignment could, in fact, be much less interesting than a
slightly worse but very likely alignment.

With reference to Fig. 1, a user might be interested in aligning the
log trace 〈add item, close order, archive order〉 with one of the two possi-
ble model traces 〈add item, close order, accept order, pay order, archive order〉 or
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Fig. 1. A simple order management process in BPMN, with choice probabilities.
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Fig. 2. Encoding of the BPMN diagram in Fig. 1 using a stochastic Workflow net with
bounded silence.

〈add item, close order, refuse order, archive order〉. The latter model trace provides
the least alignment cost, but comes with a very low probability (0.8 ·0.1 = 0.08);
on the other hand, the former model trace gives a slightly worse alignment cost,
but comes with a much higher probability (0.8 · 0.9 = 0.72). Depending on the
context, analysts might prefer either the former or the latter alignment. In gen-
eral, finding a portfolio of the “best” k alignments among all the distinct model
traces empowers analysts to find their own trade-off between alignment cost and
model trace probability.

To achieve this, we frame the probabilistic trace alignment problem into the
well-known k-Nearest Neighbors (kNN) problem [2] that refers to finding the
k nearest data points to a query x from a set X of data points via a distance
function defined over X ∪ {x}. We introduce two ranking strategies. The first
one is based on a brute force approach that reuses existing trace aligners [8]
requiring to re-compute the alignments for all possible traces in the log. For
models generating a large number of model traces, this clearly becomes ineffi-
cient. Therefore, we propose a second strategy that produces an approximate
ranking where x and X are represented as numerical vectors via an embedding
φ. If the embedding φ for X is independent of the query of choice x, this does
not require to constantly recompute the numeric vector representation for X .
Instead, it is possible to pre-order it to efficiently visit the search space. The
developed tool is publicly available1.

1 https://github.com/jackbergus/approxProbTraceAlign.

https://github.com/jackbergus/approxProbTraceAlign
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Fig. 3. A process model with a loop accepting fully silent iterations.
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Fig. 4. A process model with a loop accepting iterations with skippable steps.

2 The Process Models

To formalize the kind of processes shown in Fig. 1, we resort to a special class
of stochastic Petri nets, following what has been done in the literature [7,11].
We dscribe next the features of the class we consider, and why they lead to an
interesting trade-off between expressiveness and amenability to analysis. Figure 2
shows the encoding of the BPMN diagram of Fig. 1 into the Petri net class
supported by our conformance checking tool.

Untimed, Stochastic Nets. We focus on stochastic Petri nets with immediate
transitions, that is, we do not consider timed aspects such as delays and dead-
lines, but concentrate on the key feature of having a probability distribution over
the enabled transitions. This is achieved by taking a standard Petri net and by
assigning weights to its transitions. At each execution step, the probability of
firing an enabled transition is then simply computed by dividing its weight by
the total weight of all currently enabled transitions.

Workflow Nets. In the whole Petri net spectrum, we focus, as customary in
process mining, on Workflow nets with a distinguished pair of input and output
places, marking the start and completion of a case in the process. Specifically, a
model run is a sequence of fireable transitions leading from the initial marking
(which assigns one single token to the special input place, while leaving all the
other places empty) to the final marking (which assigns one single token to the
special output place, while leaving all the other places empty). As usual, the
probability of a model run is then computed by multiplying the probabilities



A Tool for Computing Probabilistic Trace Alignments 121

of each transition. For example, by considering the net of Fig. 2, we have that
ρ = 〈t0, t1, t3, t6, t7〉 is a model run whose probability is 0.8 · 0.1 = 0.08.

In our specific setting, focusing on Workflow nets has the advantage that
every model run is a maximal sequence of transition firings that cannot be
extended into a different model run. This provides a direct way to character-
ize the (finite-length) runs accepted by the Workflow net and their probabilities,
without the need of introducing additional constructs such as the probability of
stopping in a marking.

Silent Transitions. To provide support for control-flow gateways, we include
silent transitions in the net. More specifically, every transition comes with a label
that corresponds either to the name of a (visible) task, or to the special symbol
τ (denoting a silent transition). Figure 2 shows how τ -transitions are used to
capture the BPMN process of Fig. 1. In particular, silent transition t2 is used
to model that one can loop to add multiple items to the order. Notice that, for
simplicity of modeling, we support the possibility of labeling multiple transitions
with the same task.

Having silent transitions and repeated labels deeply impacts the obtained
framework. In fact, a model run does not directly correspond to a model
trace, intended as a “legal” sequence of (visible) tasks according to the pro-
cess. On the one hand, a model run yields a corresponding trace by extracting,
in order, the labels attached to the transitions contained therein, projecting
away the invisible ones. For example, model run ρ above yields the model trace
〈add item, close order, archive order〉. On the other hand, the same model trace
may be obtained through distinct model runs, differing from each other in terms
of the silent tasks they contain. Hence, in general, to obtain the probability of a
model trace, one must sum up the probabilities of all (possibly, infinitely many)
model runs yielding that trace. This number is guaranteed, by construction, to be
between 0 and 1 (since the collective sum of the probabilities of all model runs is
indeed 1). In our example, the probability of 〈add item, close order, archive order〉
is that of the model run ρ (i.e., 0.08), since ρ is the only model run yielding that
trace.

Nets with “Bounded Silence”. The last requirement we impose over our nets
is that of bounded silence. This requirement states that the net cannot accept
runs containing unboundedly many consecutive silent transitions. Mathemati-
cally, this means that there exists an a-priori bound on the maximum number
of silent transitions that can be fired between two visible transitions.

In conceptual modeling terms, this requirement imposes that it is not possible
to have loops in the process where an entire iteration consists only of visible
transitions, that is, where an iteration can be executed without any visible task
to witness its existence. We argue that, in this case, executing an entire iteration
where all visible transitions are skipped is not different from the situation where
the iteration is not executed at all. Consider, for example, the process fragment
shown in Fig. 3. There, the trace consisting of three item additions could be
produced by infinitely many distinct runs, each containing a different number of
silent iterations in the loop.
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On the other hand, it is perfectly possible to have loops with skippable tasks,
provided that there exists at least one visible transition witnessing that an iter-
ation in the loop has been executed. Figure 4 shows a variant of the process
fragment in Fig. 3 where each iteration must be witnessed by (visibly) picking
an item, then deciding whether to add it or not (the latter choice resulting in a
silent step). This variant has bounded silence, as two consecutive iterations need
to contain two distinct executions of the pick item task, with at most one silent
transition in between.

In mathematical terms, our untimed, stochastic workflow nets with bounded
silence enjoy the following property. Consider a net with a bound b on the max-
imum number of consecutive silent transitions. Given a model trace of length n,
a model run yielding that trace must have a length bounded by n + (n + 1) · b.
This gives us a direct way to compute the probability of such a model trace:

1. we fetch all model runs of length at most n + (n + 1) · b (which can be easily
done with a bounded-depth search strategy over reachable markings);

2. among all such runs, we keep all and only those that yield the model trace of
interest;

3. we sum up the probabilities of the so-filtered model runs.

Notice that if the net is bounded in the usual Petri net sense, then we can
directly compute this probability by inspecting the reachability graph of the net.

3 The Probabilistic Trace Alignment Tool

Our tool takes as input (i) a reference model represented as a BPMN model
or an equivalent stochastic Workflow net, (ii) a minimum positive probability
threshold ρ ∈ (0, 1] (iii) a trace σ of interest, and returns a ranking over all
the model traces having a probability greater than or equal to ρ, based on a
combined consideration of their probability values and their distance from σ.

Transition Graphs. The model trace probabilities can be directly computed
by inspecting the reachability graph of the reference model. Still, graph embed-
ding techniques required to represent traces as data points (e.g., vectors) can-
not be directly defined over reachability graphs since they rely on probabilistic
Transition Graphs [6]. Such Transition Graphs can be computed by shifting the
transition labels over graph nodes, and performing τ -closures, while preserving
τ -transitions for both start and completion nodes, if required, to preserve trace
probabilities. An example of a Transition Graph is shown in Fig. 5.

Alignment Strategies. We frame the probabilistic trace alignment problem
into the well-known k-Nearest Neighbors (kNN) problem that refers to finding
the k nearest data points to a query x from a set X of data points via a distance
function dk defined over X ∪{x}. In particular, by exploiting ad-hoc data struc-
tures, such as VP-Trees and KD-Trees, we can retrieve the neighborhood of x
in X of size k by pre-ordering (indexing) X via dk and starting the search from
the top-1 alignment.
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Fig. 5. An example of a Transition Graph.

1) Optimal-Ranking Trace Aligner. One way to probabilistically align traces
is to reuse existing trace aligners [1,8], where the distance d(σ, σ′) between model
and log traces is the Levenshtein distance. We can then express the ranking score
as the product PN (σ′)d(σ, σ′), considering both the alignment cost (given by the
distance between the model trace and the trace to be aligned) and the model
trace probability. We can represent this weighted distance as a ranking function
returning 1 when σ′ = σ and PN (σ) = 1 hold. To this aim, we need to express d as
a normalized similarity score sd(σ, σ′) := 1

d(σ,σ′)+1 . The golden ranking function
(i.e., the one producing the optimal ranking) can therefore be represented as
R(σ, σ′) = PN (σ′)PN (σ)sd(σ, σ′). Such a function can be exploited to generate
the best optimal-ranking trace alignment for a log trace σ, where R must be
computed a-new for all possible σ.

2) Approximate-Ranking Trace Embedder. Ranking optimality comes at
the sub-optimal cost of a brute-force recomputation of R for each novel trace σ
to align. Since each embedding φ entails an associated similarity metric kφ, and
hence an associated distance dkφ

, we can compute the embeddings for all the
model traces before performing the top-k search ensuring that they are indepen-
dent of the trace to align, thus avoiding the brute-force cost. This computational
gain comes with a loss in precision [3,6] and, in its approximated version, is not
able to accurately represent the data using low-dimensional vectors [12]. Our
aim is to represent model traces, which might be composed by different valid
sequences (paths), as vectors. We are also interested in the intersection of embed-
ding strategies for whole node-labeled graphs with string embedding traces, as
we use vectors to compare model traces with log traces.

To obtain our proposed embedding φg, we hence adapt the embedding strat-
egy φtr from [9] by addressing some shortcomings: we (a) propose a weakly-ideal
embedding [5], which, differently from current literature, (b) exploits an ω fac-
tor for preserving probabilities from and to τ transitions. We also (c) mitigate
the numerical truncation errors induced by trace length and probability dis-
tribution skewness through two sub-embedding strategies, ε and ν, where the
former descends from φtr and the latter approximates the trace similarity via
label frequency similarity. Since a model trace embedding, in our tool, requires
an intermediate representation G of the model trace, we map each σ′ to a pair
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Table 1. Projected Transition Graphs associated to model traces with maximum length
4.
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(Gσ′ , ω), where (i) Gσ′ is a transition graph containing all the paths describing
σ′, where all τ -labeled nodes are removed, while (ii) the graph weight ω pre-
serves the weight of the possible initial and final edges that were removed due
to the former requirement.

Given the τ -closed Transition Graph in Fig. 5, we assign the probabil-
ity values ρ23 = 0.8, ρ24 = 0.2, ρ55 = ρ57 = 0.5, ρ65 = 0.7, and
ρ67 = 0.3. The model traces with maximum length 4 are: {〈a, 0.4〉 , 〈aa, 0.2〉 ,
〈aaa, 0.1〉 , 〈ca, 0.07〉 , 〈cb, 0.06〉 , 〈aaaa, 0.05〉 , 〈caa, 0.035〉 , 〈caaa, 0.0175〉}. Table 1
shows the projected transition graphs associated to such traces, where only the
relevant information for embedding them is displayed (e.g., all the τ -labeled
nodes are removed).

Our proposed embedding φg is computed for each pair (Gσ′ , ω). The goal is
to use kφg for ranking all model traces. To this aim, we extend the embedding
φtr [9] by including the trace probabilities, and making the ranking induced by
kφg the inverse of the ranking induced by the sum of the following distances:
the transition correlations ε and the transition label frequency ν. Therefore, our
proposed φg embedding is defined as follows:

Definition 1 (G-Embedding). Given a G projection over σ′ (Gσ′ , ω) and
a tuning parameter tf ∈ [0, 1] ⊆ R

+
0 (that can be inferred from the available

data [4]), the G-Embedding φg exploiting the matrix representation of [6] in ν
and ε for Transition Graphs is defined as

φg
i(Gσ′) =

{
ω εab(Gσ′ )

‖ε‖2
t
|R>0|
f i = ab

νa(Gσ′ )
‖ν‖2

t
|R>0|
f i = a

Here, the kernel function associated to such embedding can be exploited to
return the best approximated trace alignment for a log trace represented as Gσ.
It can be proven that our embedding performs weakly-ideally. In addition, the
proposed embedding is independent of the trace to be aligned. Therefore, it does
not have to be recomputed at each alignment for a different σ.
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Table 2. Comparison between the ranking induced by the optimal ranking R and the
proposed kernel kφg : arrows ↓ remark the column of choice under which we sort the
rows.

σ′ (PN (σ′) , ↓ sd(σ, σ′)) = R(σ, σ′) kφg (Gσ, Gσ′)

caa 0.035 0.8333 0.0292 1.14 · 10−40

caaa 0.0175 0.8333 0.0145 9.84 · 10−41

a 0.4 0.6250 0.2500 8.16 · 10−21

aaaa 0.05 0.6250 0.0357 8.44 · 10−41

aa 0.2 0.7142 0.1428 9.28 · 10−41

aaa 0.1 0.7142 0.0714 8.72 · 10−41

ca 0.07 0.7142 0.0500 1.89 · 10−24

cb 0.06 0.7142 0.0428 7.64 · 10−25

σ′ ↓ R(σ, σ′)

a 0.2500

aa 0.1428

aaa 0.0714

ca 0.0500

cb 0.0428

aaaa 0.0357

caa 0.0292

caaa 0.0145

σ′ ↓ kφg (Gσ, Gσ′)

a 8.16 · 10−21

ca 1.89 · 10−24

cb 7.64 · 10−25

caa 1.14 · 10−40

caaa 9.84 · 10−41

aa 9.28 · 10−41

aaaa 8.44 · 10−41

aaa 8.72 · 10−41

Table 2 shows the output of our tool. In particular, in the example, the kernel
kφg of model traces of maximum length 4 is provided. From the results, it is
possible to see that kφg approximates the optimal ranking as it tends to rank
the transition graphs Gσ′ (generated from G via projection) similarly to the
model traces over R. In the table, the ranking similarities shared between the
two different ranking strategies are highlighted in blue, while the most evident
ranking discrepancies are marked in red.
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4. Driessens, K., Ramon, J., Gärtner, T.: Graph kernels and gaussian processes for
relational reinforcement learning. Mach. Learn. 64(1–3), 91–119 (2006). https://
doi.org/10.1007/s10994-006-8258-y
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