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Chapter 7
Real-Time Aspects of VR Systems

Mathias Buhr, Thies Pfeiffer, Dirk Reiners, Carolina Cruz-Neira, 
and Bernhard Jung

Abstract  The term real-time refers to the ability of computer systems to deliver 
results reliably within a predictable – usually as short as possible – time span. Real-
time capability is one of the most difficult requirements for VR systems: users expect 
a VR system to let them experience the effects of interactions without noticeable 
delays. This chapter deals with selected topics concerning the real-time capability of 
VR systems. In the first section, an overall view of VR systems shows which types of 
latencies occur between user input and system reaction. It also discusses how laten-
cies of the sub-components of VR systems can be estimated or measured. The second 
section presents common methods for efficient collision detection, such as the use of 
bounding volumes, which are important in real-time simulation of dynamic virtual 
worlds. The third section deals with real-time aspects when rendering virtual worlds.

7.1  �Latency in VR Systems

A fundamental characteristic of VR systems is their interactivity. Realistic immer-
sive experiences in a virtual world are only possible when users can immediately 
perceive the consequences of their actions and relate them to their own behavior. 
For example, when a user pushes a real button of an input device or a virtual switch 
in the simulation, the effects of this action must be experienced within a response 
time that corresponds to the user’s expectations. The time span between action 
(input) and reaction (system response) is called latency. The greater the latency of 
the system, i.e., the greater the time interval between an action and its perceivable 
consequences, the less likely it is that users will associate the new world state with 
their own actions. This effect can also be observed in the real world: when 
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energy-saving light bulbs were first introduced, they had a rather long latency. In the 
transition phase, it happened quite often to the author of this section that after flip-
ping a light switch and observing no immediate reaction, he flipped the switch off 
and on again – this of course had the opposite effect: the waiting time for the light 
to turn on increased significantly, and thus also the frustration with the system.

In the context of this book, the frequently used term real-time capability also 
describes this relationship. A system is called real-time capable if it is able to deliver 
results to an input reliably within a predictable time period. In VR systems the 
latency should be below the human perception threshold. For the visual sense, for 
example, 1/60 of a second is usually considered sufficient. In some other areas of 
information technology, the term “real-time” is interpreted more strictly, in that a 
guaranteed reliability is demanded: a system is considered to be real-time capable if 
it guarantees to be able to respond to an input within a defined period of time. 
Although this interpretation would also be desirable for VR systems, constant laten-
cies cannot usually be guaranteed.

An example of an undesired effect in VR caused by latency occurs when moving 
a virtual tool that is coupled to the user’s hand movements via a tracking system: 
due to latency, the tool is not directly carried along with the hand, but rather, espe-
cially in the case of fast movements, is pulled at a greater or lesser distance. In this 
case, the total latency is made up of delays from the tracking system, network com-
munication and graphics output. For the graphical output part, real-time capability 
means, for example, that images can always be rendered and displayed at such 
speed that the user cannot perceive any single image sequence. However, this state 
is difficult to achieve in practice, as a simple change of perspective by the user can 
lead to situations in which the graphical system (the graphics hardware) is no longer 
able to compute the next image fast enough because the complexity of the now vis-
ible scene is too large or the required data is not directly available.

The graphics system and the communication network of the tracker are only two 
of many parts of a VR system where latencies occur. In order to operate an interac-
tive VR system, it is important to be aware of and, ideally, quantify all latencies that 
occur. Knowing the potential sources of latencies and how to determine these laten-
cies should already inform the design of VR systems and applications but is also 
useful for optimizations in later stages of development. This section first discusses 
the concept of latency in the context of VR systems by addressing the requirements, 
sources and methods for estimation and measurement of latencies. Sections 7.2 and 
7.3 show possible solutions for VR-related subproblems, which can be used to 
design real-time capable, and thus low-latency, VR systems.

7.1.1  �What Are the Requirements on Latency?

A specific feature of VR/AR systems is view-dependent image generation based on 
head tracking. Here, strong requirements exist on latency, especially when head-
mounted displays (HMDs) are used. As users can only see the virtual world but no 
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longer their own body, high latency has a particularly negative effect on the users’ 
well-being. This can lead to dizziness and cybersickness (see Chap. 2). Meehan 
et al. (2003), for example, found a significantly higher number of people suffering 
from vertigo when they increased the latency of an HMD from 50 ms to 90 ms. A 
latency below 50 ms is recommended for HMDs (Brooks 1999; Ellis 2009). In sta-
tionary projection systems, such as CAVEs, latency requirements are not as hard 
compared with HMDs. Here, when users turn their head, an image with the approxi-
mately correct perspective is already displayed, thus reducing the dissonance 
between the expected image and the presented image. A more detailed analysis of 
the interaction between different parameters of a simulation and the still perceivable 
latency can be found in Jerald et al. (2012).

When it comes to VR and AR, latency is fundamental  – if you don’t have low enough 
latency, it’s impossible to deliver good experiences, by which I mean virtual objects that 
your eyes and brain accept as real. By “real,” I don’t mean that you can’t tell they’re virtual 
by looking at them, but rather that your perception of them as part of the world as you move 
your eyes, head, and body is indistinguishable from your perception of real objects. […] I 
can tell you from personal experience that more than 20 ms is too much for VR and espe-
cially AR, but research indicates that 15 ms might be the threshold, or even 7 ms. 
(Abrash 2012).

The blog post by Michael Abrash quoted above was written at the time (December 
2012) when the Oculus Rift was first announced. The article received a lot of atten-
tion and inspired several extensive comments and discussions. Among others, John 
Carmack (co-founder of id Software, in a leading position at Oculus VR since 2013) 
reacted and discussed in a blog post of his own (Carmack 2013) problems and pos-
sible solutions in the areas of rendering and displays.

That such low latencies are called for may be surprising at first. A latency of 20 
ms corresponds to an update rate of 50 Hz. One often hears that a rate of only 24 Hz 
is needed to display moving images, and this is still the most common capturing rate 
in the movie industry today. Typically, however, images are projected in the movie 
theater at 48 Hz (i.e., each image is displayed twice). Actually, an update rate of as 
little as 14 Hz already suffices, for humans, for the illusion of continuous motion 
from individual images to appear. However, this does not mean that we cannot per-
ceive or distinguish between images at higher frequencies. At this point, it becomes 
useful to differentiate between the refresh rate (even of the same images) and the 
update frequency or frame rate (different images). The critical refresh rate at which 
one can no longer perceive the individual images of an image sequence starts just 
below 50 Hz, but depends on external factors (Bauer et al. 2009). Only with a refresh 
rate above 100 Hz is an image considered to be truly flicker-free. With HMDs, the 
frame rate plays a greater role, since the pixels of LCDs, for example, do not need 
to be refreshed as frequently as is the case for projectors and CRTs. Here, it is more 
important that the latency of the screen is low, so that the content can be updated in 
the shortest possible time. Also important, although often overlooked, are issues 
with fluctuations in the frame rate. 100 Hz (i.e. frames per second) are of little use 
if 99 of the frames are rendered and displayed within the first 5 ms and the last 
frame is only displayed after another 995 ms.

7  Real-Time Aspects of VR Systems
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Besides the effects of latencies that can be perceived consciously, unconscious 
effects also play a role. In a simulation, different latencies can arise in different 
presentation channels, e.g., visual, auditory and haptic. The presentation can then 
become asynchronous. Such incongruencies can, however, be perceived by humans 
and may lead to discomfort. The vestibulo-ocular reflex ensures, for example, that 
the eyes are automatically moved to counter a head movement (intentionally or 
unintentionally) while looking at objects to enable continuous perception. If the 
image generation in a head-mounted display has too much latency, the learned 
motion reflex of the eyes no longer fits and a refixation must be performed. This 
effect occurs similarly under the influence of alcohol or narcotics. In some people, 
it is precisely this incongruity that causes discomfort or even nausea.

7.1.2  �Where Do Latencies Actually Arise?

Figure 7.1 shows the structure of a typical VR system. Various input sensors, shown 
on the upper left of the figure, capture the user’s behavior. Tracking latency occurs 
between the time of the user’s movement and the availability of the movement data 
as an event for the world simulation. The transport medium exhibits another latency 
to be considered separately, the transport latency. An important task of sensor 
fusion is to make provisions regarding the latency differences between multiple 

Fig. 7.1  Latencies occur at various points in a VR system
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tracking systems. Often the weakest link, i.e., the slowest tracker, determines the 
overall latency of tracking as a whole.

In the world simulation, incoming tracking events are processed to simulate the 
effects of user interactions. The simulation latencies that occur here result from the 
necessary calculations and possible waiting times, e.g., for incoming tracking data. 
Simulation latencies may vary widely depending on the application.

After a new world state has been calculated by the simulation, the new state must 
be rendered into a format suitable for the respective output device. Rendering occurs 
not only for visual but also for other kinds of displays, such as auditory and haptic 
displays. The time necessary for rendering induces the rendering latency. Finally, 
the rendered data is displayed on the output devices, which also does not happen 
instantly and thus induces a display latency.

The total latency of the system is also known as end-to-end latency or, when 
focusing on visual displays, motion-to-photon latency. A similar categorization of 
latencies is proposed by Mine (1993).

When the virtual world, which has changed due to interaction, is (finally) pre-
sented to the user, a certain amount of time has already passed and the presentation 
is therefore already outdated. Depending on the frame rate of the system, it will now 
take a further amount of time until the currently presented content is overwritten 
with new content (frame-rate induced delay).

To assess the total duration of an interaction, it may be appropriate to also mea-
sure the reaction time of users, i.e., the time users need to recognize a newly pre-
sented stimulus, plan their reaction to it and, for example, respond to it with body 
movements. Here major fluctuations of latencies between users (e.g., age) but also 
within one and the same user (e.g., fatigue) may occur. Of course, the reaction time 
of a user is also a relevant factor for interactions in the real world. However, the fol-
lowing explanations refer exclusively to technology-induced latencies of VR 
systems.

7.1.3  �Is Latency in a VR System Constant?

The combined latency of the entire VR system depends on, among other things, the 
update rates of the involved processes. For example, if a tracking system has a sam-
pling rate of 60 Hz, the individual recording times are 16.7 ms apart. On average, a 
latency of 8.35 ms is already generated, as physical events (e.g., movements) that 
occur up to 16.7 ms later are not detected or passed on until the tracking system 
detects them. The same applies to the frame rate. If a projector is able to update the 
image at 100 Hz, a change that was not fully rendered until shortly after the last 
update will be displayed up to 10 ms later (on average 5 ms).

In a complex VR system with many concurrent subprocesses, update rates may 
vary a lot between its individual components. Therefore, the latencies of the overall 
system can be subject to significant fluctuations. Thus, in addition to minimizing the 
latency of the individual subsystems or the overall system, there is also the goal of 
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ensuring that latency is as constant as possible. Strong fluctuations in the overall 
latency can easily be perceived by users as jerking and can have a more disturbing 
effect than an overall higher but constant latency.

7.1.4  �What Are the Approaches to Determining Latency?

Various approaches to latency determination are presented below. First, it is dis-
cussed to what extent the latency of a system can be estimated from datasheets of 
the individual components. This approach is primarily helpful in the planning phase 
of VR systems, but it can also give hints for potential optimizations later on. Then, 
various methods are presented with which the latency of a running system can be 
systematically measured.

�Latency Estimation from Datasheets

To measure latencies, the VR system must already be operational and all relevant 
components accessible. However, this cannot be achieved in the planning phase of 
new installations. In this phase, the system designer must therefore rely on the infor-
mation provided by manufacturers, on data from comparable systems and on expert 
experiences.

Table 7.1 shows examples of the tracking latencies for different types of tracking 
systems. The listed examples are based on real system data and are exemplary for 
commercially available systems. The data in the table are based either on statements 

Table 7.1  Overview of frame rates and latencies of various existing tracking systems, the 
manufacturers were anonymized

Type Frame rate Latency

Optical Tracking Systems
Example System A 30 Hz 90 ms–300 ms
Example System B 60 Hz 15 ms–20 ms
Example System C Up to 10,000 Hz with reduced field-of-view 4.2 ms
Example System D 30–2000 Hz, depending on spatial resolution > 2.5 ms
Electromagnetic Tracking Systems
Example System E, wireless 120 Hz < 10 ms
Example System F, wired 240 Hz 3.5 ms
Inertial Tracking Systems
Example System G 60–120 Hz 10 ms with USBa

Hybrid Tracking Systems
Example System H 180 Hz 1–2 ms RS-232;

5–8 ms USB
aSkogstad et al. (2011) report a latency difference of 15 ms between the fast USB connection and 
the slower but mobile Bluetooth connection.
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by professional users or on information provided by the manufacturers on websites 
or in product brochures. A similar, somewhat older, list can be found in (Ellis 1994). 
The concrete values are mainly to be understood as rough reference points, since 
there is no exact specification of how the measurement process should be designed 
and, for example, how many objects were measured simultaneously to collect 
the values.

Transport latencies occur during network communication between input devices, 
computers with VR software and output devices. In collaborative or multi-player 
applications, further, hardly predictable transport latencies occur during communi-
cation with remote computers. With wireless transmission technologies such as 
Bluetooth and WLAN, which are often used for communication between input 
devices and control computers, transport latencies of > 1 ms occur for individual 
messages. With wired transmission, e.g., via Ethernet or InfiniBand, the transport 
latencies are generally lower, for example in the range of 0.001 ms to 0.03 ms. The 
actual transport latencies depend on the data volume to be transmitted: a network 
level event is a single data packet sent from A to B. In the best case, for example, a 
message describing a 6 DOF movement event fits into a single such data packet. 
Generally, however, this is not the case because some tracking systems send much 
larger amounts of data per time step, for example, 3D point clouds. For calculating 
the transmission time for all data, the number of packets that are sent over the net-
work would then have to be known. Depending on the network topology, a parallel 
transport may be possible but also collision with other data services, e.g., file server 
accesses (best to use different network channels here). The actual latency at the 
network level is therefore difficult to estimate. For example, in scientific visualiza-
tion very large amounts of data have to be moved. Here VR systems should be 
designed whose network components feature transmission rates in the multi-digit 
gigabit range, which then usually also offer very good latency characteristics.

Simulation latencies and tolerable threshold values strongly depend on the 
respective application and are therefore excluded from this analysis.

Rendering latencies are closely related to the complexity of the scene to be ren-
dered (visually, acoustically, haptically). If the time needed for rendering dominates 
the overall latency of the VR system, multi-GPU systems may be considered. 
Hardware approaches for multi-GPU rendering include Nvidia SLI and AMD 
Crossfire, but software solutions also exist. For an overview of multi-GPU render-
ing see Dong and Peng (2019). For stereoscopic rendering, two images must be 
calculated per time step. If the images for the left and right eyes are computed one 
after the other, i.e., in two independent passes, the rendering frame rate is effectively 
halved compared with monoscopic rendering (as a counter measure one may need 
to halve the geometric complexity of the scene). A rendering technique known as 
single pass stereo reduces the computational effort for stereoscopic image genera-
tion (Hübner et al. 2007). This method takes advantage of the fact that the positions 
of the left and right eyes are close together and therefore see largely identical sec-
tions of the virtual world. By parallel geometry processing during rendering for the 
left and right eyes, scenes can be rendered almost as fast as in the monoscopic case. 
Single pass stereo can also be extended to more than two displays (single pass 
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multi-view rendering or multi-view rendering for short), e.g., to support tiled dis-
plays with multiple projectors (see Sect. 5.4.3) or multi-display HMDs (see Sect. 
5.3.4). Another optimization possibility arises when VR or AR is used in combina-
tion with eye tracking: foveated rendering draws high-resolution images only in 
regions that the user is looking at. Other regions can be displayed in low resolution, 
as there is no detailed visual perception possible anyway (see Sect. 2.2). Section 7.3 
discusses further methods for real-time rendering in more detail.

At the end of the 1990s, when CRT screens were still standard, display latency 
was unproblematic, at least on the desktop, as refresh rates of up to 200 Hz were 
achievable. This also made it possible to display content in stereo on the screens 
using shutter technology. However, the success of flat screens has largely pushed 
CRT screens out of the market – unfortunately without initially being able to offer 
similarly high refresh rates. In the meantime, however, flat screens have reached a 
comparable level of performance in terms of refresh rates, with current models 
exceeding 200 Hz. However, stereo solutions based on shutter technology are not 
offered broadly on the consumer market for desktop systems. In addition to the 
worse refresh rate, some LCD screens also have an input delay, which can some-
times be reduced by turning on a special low-latency gaming mode.

A precise determination of the latency can ultimately only be made on the real 
system. Therefore, in the following, different approaches are presented for how 
latency can be determined by experimental measurement.

�Measuring the Latency of Tracking Systems

Most VR systems include some type of spatial tracking system. Viewer-dependent 
rendering, for example, relies on head tracking and many spatial interactions are 
based on 3D tracked controllers. Tracking latency is the time needed by the tracking 
system to detect and report the position and/or orientation of the tracked user or 
devices.

A very simple way to measure latency exists for the widely used marker-based 
optical tracking systems. These markers are usually attached to the user’s body or 
an interaction device and either reflect or actively emit infrared light (see Sect. 
4.3.1). The tracking latency can be easily determined with a setup where an infrared 
LED is placed in the tracking area. A computer that is connected to the tracking 
system controls the LED. The time difference between a strobe pulse of the LED 
and the reception of a corresponding event by the tracking system is the tracking 
latency.

While this method is very easy to implement, it also has a disadvantage: a robust 
tracking system may include filter mechanisms to eliminate short-term disturbances, 
e.g., due to reflections from clothing or jewelry. If these filters cannot be switched 
off in the system to be measured, the measured latency will be higher than later in 
the running system, where reflective markers usually move continuously and thus 
more predictably. A reasonable extension is therefore the use of an LED array, 
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where the LEDs can be controlled individually and thus any movement pattern can 
be simulated.

Instead of simulated movements, real movements can of course also be used for 
latency measurement. Periodically oscillating physical systems, such as pendulum 
systems, have proven to be particularly suitable (see Liang et al. 1991; Mine 1993). 
The basic setup could look like Fig. 7.2, where two pendulums are installed cen-
trally in the tracked area. One pendulum serves as a reference for the direction of 
gravity. A tracking marker is attached to the second pendulum. This pendulum is 
made to swing during the measurement.

The measured position data of the marker and the current time stamp are dis-
played on a separate monitor (the monitor should feature a low display latency). The 
whole installation is recorded by a camera, which is positioned in such a way that 
the two pendulums are aligned in rest position (one occludes the other) and the 
monitor is also in view.

If one now starts the video recording and sets the pendulum in oscillation, it is 
later easy to navigate to the video frames where either the displayed y-position 
(y-axis in the direction opposite to gravity) is at a minimum or the two pendulums 
are fully aligned. The time difference between pendulum alignment and the subse-
quent minimum of the y-position is the latency of the tracking system. As an alterna-
tive to a purely visual comparison, and provided that a temporal synchronization 
between video camera and tracking system has been established beforehand, one 

Fig. 7.2  Typical setup of a pendulum system for measuring the latency of an optical track-
ing system
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may also analyze the recorded (and time-stamped) tracking data directly instead of 
their display on the monitor. This is advisable, for example, if the video camera has 
a significantly slower capturing rate than the tracking system.

With this setup, it must be considered that latencies for camera recording and 
displaying the time stamp and tracking data on the monitor may influence the result.

If one has more technology available, such as a precisely controllable robot arm, 
the measurement can also be carried out in an automated closed-loop setup where 
visual inspection of video recordings by a human is no longer necessary and thus 
larger quantities of data can be generated and analyzed. The idea is to attach a track-
ing marker to the robot’s end effector. Tracking data then can be compared easily to 
the positions calculated from the robot’s joint angle data (the robot in this sense acts 
a mechanical tracking system with close to zero latency). For example, Adelstein 
et al. (1996) used a motorized swing arm – a simple robot arm with one degree of 
freedom – that swings back and forth in the horizontal plane to evaluate the laten-
cies of different tracking systems. Modern industrial robot arms with six degrees of 
freedoms also offer high precision and the additional advantage that they can per-
form movements resembling those of human VR users. Further, such robots have 
also been used to evaluate the inside-out tracking capabilities of mobile XR devices, 
such as AR-enabled smartphones and certain HMDs. Inside-out tracking uses a 
combination of visual camera images and other internal sensors (particularly the 
IMU – inertial measurement unit) to track the movement of the device. Instead of 
attaching a marker to the end-effector, the XR device is attached to – or simply held 
by – the robot arm (Eger Passos and Jung 2020).

�Measuring End-to-End Latency

Uniform and very well controllable periodic motions can also be produced with a 
record player (Swindells et al. 2000). The idea is similar to that of the pendulum (cf. 
preceding section). An infrared LED is placed on a physical turntable to generate a 
live animation of a virtual turntable. The virtual turntable is projected onto the phys-
ical turntable. From the angular differences between the real and virtual rotating 
turntables, the latency of the entire setup, i.e., the end-to-end latency, can then be 
determined.

He et al. (2000) pursue a similar idea with their approach to determining the end-
to-end latency in CAVEs and similar projection-based setups. A tracked input device 
(they used a wand) is moved by hand back and forth directly in front of one of the 
CAVE’s projection screens. The tracked position is displayed on the screen as a 
virtual cursor along with a grid. During controller movements, the virtual cursor 
may lag the physical controller by several grid cells, depending on the speed of 
movement. A video camera records the whole setup. During video analysis, the field 
differences between the physical input device and the virtual cursor are counted 
from which the end-to-end latency is determined by simple calculations.

This method can also be easily combined with a pendulum to eliminate the need 
for manual movement of the physical controller (or marker). It is also easier to 
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determine the speed of the pendulum. Steed (2008) describes two approaches for 
determining the latency between the real and virtual pendulum. In the one approach, 
he counts the number of video frames between the extreme positions of the real and 
virtual pendulums. In the other variant, he analyzes the trajectories of the two pen-
dulums by means of image processing methods and tries to find the most accurate 
mathematical approximation of the respective oscillation. Once this has been done, 
the phase shift and thus the latency can be easily determined. Steed reports that he 
achieves greater accuracy with the analytical method than by counting video frames.

7.1.5  �Summary of Latency

In VR systems, low latency is a decisive factor for the creation of believable experi-
ences of virtual worlds. Low latency is especially important when HMDs are used, 
since the scene portion to be displayed depends on the current head orientation of 
the user. In projection-based VR systems, where the displayed scene portion does 
not depend on the head orientation, latency requirements are less strict but still high. 
AR applications have even higher latency requirements, as virtual objects need to be 
anchored in the real world and the real world always has zero latency.

If the latency of an optical tracking system, as often found in VR installations, is 
too high, a combination with a low-latency inertial tracking system may be advanta-
geous (You and Neumann 2001). Between phases of stable position tracking by the 
optical system, the inertial system can provide the necessary data for extrapolation 
of the new positions and orientations until stable data from the optical tracking sys-
tem are available again. In this way, gaps can be bridged, e.g., when optical markers 
are occluded from the tracking cameras’ views.

In practical operation, network management in particular has a major influence 
on transport latencies. For example, the VR system should be operated in a separate 
subnet to avoid collisions with other applications. Frequency range and channel of 
wireless access points should be selected in such a way that, if possible, no interac-
tions with other wireless networks in the environment occur.

7.2  �Efficient Collision Detection in Virtual Worlds

Where one body is, there can be no other. This simple physical fact poses a serious 
problem for VR/AR systems and real-time computer graphics in general. Virtual 
objects may in principle be placed at arbitrary locations in the virtual world and 
therefore may also penetrate each other if no precautions are taken. In the case of 
statically arranged objects, the programmer, or designer, can take the necessary care 
to ensure that no penetrations are visible to the observer of the scene. For a realistic 
and immersive representation of dynamic content, however, it would be helpful if 
the objects in the scene showed (approximately) physically correct behavior. Objects 

7  Real-Time Aspects of VR Systems



256

should therefore be able to collide with and exert forces on each other. In the case 
of simulating the physics of the real world, not only the mere question of whether a 
collision occurred or not is relevant. To simulate a suitable reaction to a collision 
event, further properties of the collision must often be determined such as penetra-
tion depth, exact penetration locations and exact collision time. In many gaming 
applications it often suffices that the simulation provides a plausible approximation 
of the real world. In contrast, e.g., CAD, virtual prototyping, scientific applications 
and robotics problems usually place higher demands on collision detection and han-
dling. In these cases, aspects such as numerical stability and physical correctness 
are often more important than the real-time capability required by VR applications.

The need for efficient collision detection is, however, not limited to physics sim-
ulations in the virtual world, but also occurs in many other areas of VR and AR 
systems. Even seemingly simple user interaction tasks like the selection of a scene 
object (see also Sect. 6.3) lead to related problems: to detect which object the user 
is pointing at, a ray may be generated from the user’s pointing device. The scene 
objects are then tested for collision with the pointing ray and the object with the 
shortest distance to the user is chosen as the selected one.

Modern 3D computer graphics scenes achieve remarkable visual quality. Which 
techniques are used to render these scenes? Part of the reason can be found in the 
high performance of modern GPUs. However, the high quality could not be achieved 
if the GPU had to process all objects of the virtual world for each image to be gener-
ated. If an object is not at least partially in the view volume (or in other words, if 
there is no overlap or collision between the object and the view volume), the object 
does not contribute to the result of the image generation and therefore does not need 
to be processed further. This process is also called view volume culling and is 
described in more detail in Sect. 7.3.1. Given the desired graphical complexity of 
modern applications, the removal of non-visible objects based on efficient collision 
testing makes an important contribution to maintaining real-time capability of 
rendering.

The above-mentioned application areas of collision detection essentially require 
that the necessary calculations can be performed “in real time”, i.e., once per image 
frame (at least 25 Hz, ideally 60 Hz). View volume culling inserts a new processing 
step into the rendering pipeline that requires additional computation time. To justify 
the use of this technique, this computation time must be less than the rendering of 
the entire scene would otherwise require.

Real-time requirements on collision detection may even be much higher for VR 
systems that make use of haptic interfaces: according to Weller (2012), refresh rates 
of 1,000 Hz are required to ensure realistic haptic feedback for the user. In this case, 
less than 1 ms is available for collision detection.

Efficient algorithms and data structure are key for all the above-mentioned use 
cases of collision detection to ensure the central real-time requirement of VR and 
AR systems.

Following this introduction, Sect. 7.2.1 introduces common bounding volumes 
used for efficient collision detection. Section 7.2.2 then deals with their arrange-
ment in hierarchical or spatial structures before collision detection methods in large 
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virtual world are discussed in Sect. 7.2.3. Then, in Sect. 7.2.4, the collision detec-
tion techniques are summarized and advanced topics in are addressed.

For more in-depth reading on the topic, we recommend the books by Akenine-
Möller et al. (2018), Lengyel (2002) and Ericson (2005).

7.2.1  �Bounding Volumes

Scene objects are constructed from primitives, typically in the form of triangle or 
polygon meshes. In a naive collision test between two polygon meshes, each poly-
gon of the first mesh would have to be tested against each polygon of the second 
mesh. For example, if the two meshes consist of 500 and 1,000 polygons each, 500 
× 1,000 = 500,000 tests would have to be performed between pairs of polygons. 
Considering that virtual worlds can consist not only of two objects but perhaps 
thousands of objects, it becomes clear that such a naive collision test is not practical 
for large virtual worlds.

Bounding volumes (BV) approximate the shape of the actual scene objects to 
facilitate efficient collision testing. Bounding volumes are stored in addition to the 
visible object geometry but are not rendered in the visual image. The additional 
storage requirements of bounding volumes, however, are usually justified by the 
reduced computational effort for collision testing. When scene objects are moved or 
otherwise transformed (e.g., translation, rotation, scaling), their bounding volumes 
must be updated too. The computational costs for such updates must also be consid-
ered when choosing appropriate bounding volumes. Generally, it is often desirable 
for a bounding volume to tightly fit a scene object such that the number of falsely 
reported collisions is minimized.

For some applications, e.g., gaming, bounding volumes may already provide for 
sufficiently precise collision testing. This is especially the case when the bounding 
volumes closely approximate the scene objects’ shapes.

Even if approximated collision testing based on bounding volumes alone is not 
sufficient for the demands of the application (e.g., CAD, virtual prototyping, hap-
tics, robotics), bounding volumes can still be used advantageously. In most virtual 
worlds, only a few objects will actually collide at a given time. Fast approximate 
collision tests based on bounding volumes can be used to determine that collisions 
between two objects do not occur. Only in cases where the approximate bounding 
volume-based test reports a collision is exact collision testing on the polygon 
meshes necessary.

Furthermore, hierarchal data structures may be used to quickly exclude large 
groups of scene objects from further collision testing. Examples of such data struc-
tures are Bounding Volume Hierarchies (BVH) and Binary Space Partitioning (BSP) 
discussed in Sect. 7.2.2.

Summarizing the above, desirable properties of bounding volumes include:

•	 simple and fast collision testing
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•	 tight fit/good approximation of the detail geometry (otherwise false positives are 
possible)

•	 easy update in case of dynamic objects
•	 memory efficiency

These properties are partly contradictory. For example, two spheres are easy to 
test for collision and the memory requirement is minimal (position and radius). 
However, if you look at the fit, it is easy to see that not every object can be approxi-
mated as a sphere in a meaningful way.

The following typical bounding volume and their most important properties are 
discussed in the next sections:

•	 Axis-Aligned Bounding Box (AABB)
•	 Bounding sphere
•	 Oriented Bounding Box (OBB)
•	 (k-dimensional) discrete oriented polytope (k-DOP)

The text mostly discusses these bounding volumes for the two-dimensional case. 
This can easily be extended to three dimensions.

�Axis-Aligned Bounding Box (AABB)

An AABB is a rectangle or cuboid whose edges are parallel to the axes of the global 
coordinate system and which encloses a given object with a minimum area. For 
three or more dimensions, this body is also called an axis-parallel (hyper-) cube. 
The orientation of the AABB is independent of the enclosed object and always the 
same (i.e., aligned to the global coordinate system). When the enclosed object 
changes its position, the new position must be applied to the AABB too. When the 
enclosed object is rotated or scaled, it is also necessary to update the shape of 
the AABB.

Memory space is required for four values in the two-dimensional case:

•	 positions (x,y) of two opposite corners; or
•	 position (x,y) of one corner + width and height; or
•	 center point + (half) width and height

To test two AABBs for collision, the boxes are projected onto the axes of the 
global coordinate system. For each axis, the projection intervals are tested for over-
lap separately. A collision occurs only if projections overlap on all axes. Conversely, 
the collision test can be aborted if a non-overlapping axis is found. Fig. 7.3 shows 
different configurations for AABBs and illustrates the collision test between 
two AABBs.

An AABB can be constructed in different ways. A simple approach is to deter-
mine the minima and maxima of all corner point coordinates along each axis. 
However, if the AABB needs to be updated frequently due to rotations of the 
enclosed object, this simple approach is inefficient for large meshes. In principle, 
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only the vertices of the mesh that form its convex hull need to be considered for the 
construction of the AABB. This fact can be exploited, for example, by calculating 
the vertices of the convex hull once and saving them. To update the AABB it is then 
sufficient to consider the convex hull only. For further details see Ericson (2005).

�Bounding Spheres

Bounding spheres are very simple, easy-to-implement types of bounding volumes. 
They can be stored very efficiently (center point and radius) and collision testing 
can be carried out in a few steps: if the distance between the two center points is less 
than the sum of the two radii, then the two spheres collide. Otherwise, there is no 
collision.

A bounding sphere can be constructed by constructing an AABB first. The center 
of the AABB equals the center of the sphere and the distance to one of its corners 
gives the radius of the sphere. Alternatively, the sphere’s center can be calculated by 
averaging of all vertex positions of the enclosed object’s mesh. However, this 
approach does not necessarily result in a minimal envelope for any polygon mesh. 
In the worst case, the resulting bounding sphere could have twice the radius of a 
minimal variant and would therefore not be an optimal fit. The determination of a 
minimal bounding sphere from a point set has been the subject of various research. 
Welzl (1991) presents an algorithm for determining minimal circles and spheres 
from point clouds.

Due to the rotational symmetry of spheres, rotations of the enclosed object do not 
have to be transferred to the bounding sphere. Scaling and translations can be 
applied directly to the bounding sphere.

�Oriented Bounding Boxes (OBBs)

OBBs can be seen as an extension of AABBs. However, the edges of the bounding 
cuboid, or in the 2D case bounding rectangle, are not aligned to the global coordi-
nate system but oriented in such a way that the object is minimally enclosed. In 

Fig. 7.3  Collision testing with AABBs. Left: 2D objects A and B with overlap on one axis only 
(no collision). Right: A & B with overlap on both axes (collision)
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contrast to AABBs, the orientation of an OBB must therefore be saved explicitly. In 
the 2D case, this can be done using one of the following variants:

•	 positions of three corners (the fourth corner can be calculated from the 
three others)

•	 one corner + two orthogonal vectors
•	 center point + two orthogonal vectors
•	 center point + rotation (e.g., as rotation matrix, Euler angles or quaternion) + 

(half) edge lengths

These variants differ not only in terms of memory requirements but also in the 
amount of work required for collision testing. To save memory space in the two 
variants involving two orthogonal vectors, one of the vectors may be determined at 
runtime (using the cross product, see Chap. 11). However, in this case it is still nec-
essary to store the length of the vector explicitly.

Collision testing for OBBs can be performed based on the Separating Axis 
Theorem (SAT). This theorem states that two convex sets have no intersection 
exactly when a straight line/plane can be placed between them in such a way that 
one set lies in the positive half space and the other in the negative half space. The 
orthogonal projection of both sets onto an axis parallel to the normal of this line/
plane is then called the separating axis, because the projections onto this axis do not 
overlap (see Fig. 7.4). If a single separating axis can be found, a collision of the two 
sets can be excluded.

To apply the theorem in practice, it is obviously necessary to clarify how a sepa-
rating axis can be found. For three-dimensional OBBs it can be shown that 15 can-
didate axes have to be tested:

•	 The six axes orthogonal to the side faces of the OBBs (see Fig. 7.4, axes of the 
coordinate systems of the OBBs).

•	 The nine axes created by the cross product of one of the coordinate axes of each 
of the two OBBs.

Fig. 7.4  Collision test of two OBBs and a separating axis

M. Buhr et al.

https://doi.org/10.1007/978-3-030-79062-2_11


261

Similarly complex as the intersection test calculations is the generation of OBBs 
with a good fit. Exact algorithms for generating a minimal OBB typically belong to 
complexity class O(n3) and are therefore hardly applicable in practice. For this rea-
son, algorithms are often used that only provide an approximation of the minimal 
OBB but can be calculated easily and at runtime. In Ericson (2005) different 
approaches to the solution are discussed. The update costs for OBBs are lower as 
compared to AABBs (and k-DOPS), as in addition to translations and scaling, rota-
tions can also be applied directly to OBBs.

�Discrete-Oriented Polytopes (k-DOPs)

Discrete-oriented polytopes (k-DOPs) or fixed-directions hulls (FDH) are a gener-
alization of AABBs, as they are also always aligned to the global coordinate system. 
The term polytope refers to a polygon in the 2D case and, respectively, a polyhedron 
in the 3D case. A k-DOP is constructed from k half-spaces whose normals each take 
one of k discrete orientations. Opposite half-spaces are antiparallel, i.e., their nor-
mals point in opposite directions. The normals are usually formed from the value 
range M = {–1, 0, 1}. Since only the direction of the normals but not their length is 
relevant for further calculations, the normals do not have to be in normalized form 
(unit vector).

For the two-dimensional case, a 4-DOP (6-DOP for 3D) corresponds to an AABB, 
where the normals are parallel to the axes of the coordinate system. Different two-
dimensional k-DOPs are shown in Fig. 7.5.

As the normals are identical for all k-DOPs of different objects, the memory 
requirements per object are reduced to the extension along each normal. For an 
8-DOP, for example, eight values must be stored.

Collision tests between two k-DOPs are again performed based on the separating 
axis theorem. Since the normals are known and are the same for all objects, the great 
advantage of k-DOPs over OBBs is that only k/2 candidate axes must be considered 
as separating axis (opposite normals are antiparallel and thus yield the same axis). 
Accordingly, a maximum of four potentially separating axes must be tested for an 
8-DOP. Collision tests can therefore be performed very quickly and easily.

Fig. 7.5  Two-dimensional k-DOPs in different variants
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The construction of a k-DOP is similar to that of an AABB: along each of the k/2 
axes, minimal and maximal extensions of the object must be found. Although in 
principle any axis (or orientation) could be used, in practice the normals/orienta-
tions are usually chosen from the discrete number of values mentioned above. For 
collision testing it is only important that the same orientations of the half spaces 
must be chosen for all objects.

A disadvantage of k-DOPs is caused by the time-consuming updates that become 
necessary when the enclosed polygon mesh is rotated (translations can be trans-
ferred directly to the k-DOP), as the minima and maxima along the k/2 axes must be 
recalculated. To avoid cost-intensive iterations over all vertices of the enclosed 
polygon mesh (or its convex hull), additional optimizations are often applied at this 
point (e.g., hill climbing and caching; see Ericson (2005)).

Summarizing, k-DOPs offer efficient collision testing and low memory require-
ments without sacrificing a good fit. However, the high update costs imply that 
k-DOPs are often only of limited use for dynamic objects.

7.2.2  �Bounding Volume Hierarchies and Space 
Partitioning Techniques

Although the creation of bounding volumes will simplify and accelerate collision 
testing between two objects, the total number of collision tests required (object 
against object) remains unchanged. For a scene consisting of n objects still 
n(n − 1)/2 ∈ O(n2) collision tests must be performed in the worst case. To reduce the 
number of tests, several methods may be applied as discussed in the following.

�Bounding Volume Hierarchies (BVHs)

Bounding volume hierarchies (BVHs) are created by arranging bounding volumes in 
trees. The hierarchies are created by calculating new bounding volumes for several 
geometric objects (or their bounding volumes). These new bounding volumes can in 
turn be combined with neighboring objects (or their bounding volumes). The parent 
nodes do not necessarily have to completely surround the hulls of the child nodes. 
It is sufficient that the geometric objects at the leaf nodes are completely enclosed. 
However, the construction of BVHs is often easier in practice if the bounding vol-
umes are used for this process at each level of the tree. The granularity or depth of 
the tree is application-specific and can in principle be managed to such an extent 
that individual polygons and their bounding volumes are stored at the leaf nodes.

Examples of BVHs are AABB trees, OBB trees and sphere trees. An example of 
a sphere tree is shown in Fig. 7.6. The runtime gain of BVHs is due to the fact that 
the tree is tested against other objects, starting from the root. As an illustrative 
example, imagine a complex vehicle simulator that can display high-resolution 
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models with several million polygons. The user points at the scene and the system 
has to quickly determine which component of the vehicle intersects with the point-
ing ray. To do this, the root node of a sphere tree could be placed around the entire 
vehicle (the user may miss the vehicle while pointing). If the vehicle was hit, bound-
ing spheres of large components such as side/doors, rear/boot, front/engine com-
partment and tires may be tested on the second level of the tree. On the third level, 
individual parts of the respective branch could then be tested (e.g., for front/engine 
compartment: lights, air filter, battery, etc.). On each level, the collision test must be 
carried out only against a small number of bounding spheres, whereby the set of 
enclosed polygons becomes smaller and smaller. If no collision has been detected 
on one level (i.e., in all branches), the test can be aborted without testing lower lev-
els. If necessary for the application, the remaining part of the polygon mesh (i.e., 
enclosed polygons of leaf BVs) can be used as a last step for exact collision 
determination.

BVHs require extra memory space whose size depends on the depth of the tree 
and the type of bounding volume. For static objects, BVHs can be calculated once 
at the beginning of the simulation. If dynamic objects come into play, updating the 
tree can become a problem. In these cases, it is advisable to manage dynamic and 
static components separately to avoid the need for updating where possible.

�Space Partitioning Techniques

Space partitioning aims to minimize the number of collision tests required by 
assigning scene objects to spatial regions. With well-chosen partitioning strategies, 
collision testing can be reduced to objects known to be in the same or a close spa-
tial region.

Fig. 7.6  Sphere tree for a complex object. Left: Geometric data and corresponding bounding 
spheres. Right: Hierarchy of bounding spheres (sphere tree)
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World space can be divided in different ways. Quite common are regular grids, 
as they are easy to implement and grid cells can be addressed with simple modulo 
operations. Space partitioning into a regular grid is also called spatial hashing.

The choice of a good spatial resolution depends strongly on the application. 
Fig. 7.7 depicts three cases for different cell sizes. If the cell size is chosen too small, 
objects must be assigned to multiple cells. This case results in high update costs when 
the object is moved. In contrast, if the cell size is too large, many objects will be 
assigned to the same cell, which is the very situation that the space partitioning actu-
ally tried to avoid. In the ideal case, each object can be assigned to exactly one cell. 
The cell size should be chosen in such a way that there are always only small num-
bers of objects in a cell. Nevertheless, it should be noted that multiple assignments (at 
most four cells per object in 2D) cannot be avoided, even with favorable cell sizes.

The practical applicability of spatial hashing therefore depends strongly on the 
cell size and the memory space required for the necessary data structures. The 
method is less suitable for scenes with objects of very different sizes or resizable 
objects. A positive feature of spatial hashing is that it can be implemented 
quite easily.

In addition to regular grids, space partitioning hierarchies or trees can be con-
structed. One method is the binary space partitioning tree (BSP tree). Here, the 
space is recursively cut into two half spaces by a hyperplane at each recursion level. 
The two half spaces are also called positive and negative half spaces. When applied 
in two or three dimensions, the hyperplane is a straight line or, respectively, a plane. 
The space is usually recursively subdivided until only one primitive (triangle or 
polygon) can be assigned to a node. If a cutting plane intersects an individual poly-
gon, the polygon must be split into fragments. Fig. 7.8 shows an example of how a 
space containing one polygon could be partitioned by a BSP tree. Each inner node 
of the tree defines a cutting plane that partitions the space associated with the node 
into two halves and, thus, also the set of vertices enclosed by the node. During the 
subdivision process, new vertices/polygons may also be created. In Fig.  7.8, for 
example, the orange vertices are newly created during the subdivision. The original 
polygon in Fig. 7.8 could be further divided by additional half spaces. However, this 
has been omitted in favor of better readability. It should also be mentioned that other 
partitions are possible and could be considered for optimization of collision testing.

Fig. 7.7  Regular grids with different cell sizes. From left to right: grid too fine, grid too coarse, 
good grid size for the given objects

M. Buhr et al.



265

The positions of the hyperplanes and the depth (granularity) of the tree can be 
freely chosen in the case of general BSPs. If all cutting planes are chosen to coin-
cide with one side of the object (edge of the polygon), the tree is also called autopar-
titioning, since there is no explicit calculation of the cutting planes.

Depending on the intended use, different forms of the tree are conceivable. For 
example, individual polygons or larger groups of polygons may be stored in the leaf 
nodes. Also, geometry data may be stored exclusively in the inner nodes of the tree 
(node-storing BSP trees). However, leaf-storing BSP trees are more relevant for 
collision testing. As the name suggests, they store geometry data in the leaf nodes. 
The BSP tree shown in Fig. 7.8 is an example. This form of data storage leads to a 
tree structure in which the positional relationships of the geometry data are reflected 
in the arrangement of the tree nodes. This property is particularly useful for colli-
sion queries.

In general, the cutting planes should be chosen in such a way that the following 
requirements are fulfilled as well as possible:

•	 The result is a balanced tree (all branches have equal or similar depth; for leaf-
storing BSP trees each leaf node contains a similar number of objects).

•	 The number of half planes that cut through individual polygons (thus creating 
new vertices and polygon fragments) is minimal.

BSP trees can be constructed in various ways. The determination of the cutting 
planes according to the above requirements is often a non-trivial problem. Although 
the autopartitioning variant is easy to implement, it does not necessarily yield opti-
mal results. In addition to collision detection, BSP trees are also used to determine 
visibility, among other things (see Ericson (2005) for details).

BSP trees can be understood as a generalized form of a k-d tree (see Fig. 7.9). A 
k-d tree is also a binary tree that subdivides a space recursively. In the variant of a 
k-d tree presented in the following, the spatial subdivision is driven by the input 
data, a k-dimensional set of points. All inner nodes of the tree define a dividing 

Fig. 7.8  BSP tree. Left: Binary space partitioning of a space containing one complex polygon 
(green: vertices of the original polygon, orange: newly created vertices during decomposition). 
Right: Binary tree defining half-spaces 1, 2, 3, 4 with fragments A, B, C, D, E of the origi-
nal polygon
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hyperplane (straight line for 2D case, plane for 3D case). Fig. 7.9 (left) illustrates 
the construction of a k-d tree: (1) A set of k-dimensional (k = 2  in the example) 
points serves as input data. At each level of the tree one dimension – here: x or y – is 
selected for spatial partitioning. The cutting plane is perpendicular to the selected 
dimension. (2) An element of the input data, shown in orange in Fig. 7.9 (left), is 
now stored as the inner node of the tree and defines the position of this cutting plane 
by its coordinate value. (3) and (4) The newly created half spaces are subdivided 
further. At each tree level, a dimension different from the dimension in the level 
above is chosen – in the example, alternately x and y. To create a balanced tree, the 
position of the cut is chosen such that the same amount of data (approximately) 
remains in the positive and negative half spaces. Other k-d tree variants create the 
cutting planes explicitly and store data only in the leaf nodes.

When traversing a k-d tree from the root to a leaf node, only a single value needs 
to be compared at each level of the tree. For example, if a node of the tree defines a 
cutting plane orthogonal to the x-axis, then only the x-coordinate of the requested 
point needs to be compared with the value stored in the node. This process is there-
fore much easier to implement than for a BSP tree. Since the subdivision dimension 
can be anchored in the traversal algorithm, for example, dimension = depth modulo 
k, it does not have to be stored explicitly.

Quadtrees (or octrees for 3D) use two (or three) axis aligned cutting planes per 
recursion level and thus create four (or eight) child nodes each. This decomposition 
is usually done in such a way that a given maximum number of objects is assigned 
to a quadrant. Fig.  7.9 (right) shows a two-dimensional quadtree for a given set 
of points.

The discussed variants of space partitioning trees differ in their memory require-
ments, their update costs and the computational effort for collision queries. In the 
case of BSP trees, for example, the position and orientation of the cutting planes 
must be stored, whereas for a k-d tree only a single value (position of the plane, 
orientation is implicit) must be stored. Similarly, for a query in the k-d tree, only a 

Fig. 7.9  k-d tree and quadtree. Left: The first four levels of a k-d tree. Right: Complete quadtree 
for a given point set
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single comparison has to be made at each tree level (is the queried coordinate in this 
dimension greater or less than the stored value?).

It is quite common that dynamic objects are not integrated into the space parti-
tions discussed above, as the computational effort for updating them would be too 
large. Dynamic objects are usually managed separately.

7.2.3  �Collision Detection in Large Environments

The collision detection methods presented so far may or may not be sufficient for a 
given application and use case. Whereas in a simple bowling simulation it might be 
possible to test polygon meshes directly against each other, a complex vehicle simu-
lator likely requires both bounding volumes and space partitioning – and possibly 
additional methods – to ensure real-time capability. In large environments with very 
high numbers of objects, the task of collision detection is often split into two phases: 
a global broad phase and a local narrow phase.

�Broad Phase Collision Detection

In a virtual world with thousands of objects, the vast majority of objects may collide 
with one or a small number of other objects but not with thousands. For any given 
pair of two objects, it is often easy to establish that they do not collide with each 
other, for example, because they are located far away from each other.

The goal of the broad phase is thus to quickly determine which objects certainly 
do not collide with each other. The result of the broad phase is a set of potentially 
colliding object pairs. As the tests are not exact, non-colliding object pairs can still 
be contained in the set.

Besides bounding volume hierarchies and space partitioning, depending on the 
granularity and size of the object set, the use of bounding volumes may also be 
considered a method of the broad phase. Only when the bounding volumes of two 
objects collide is it necessary to examine this object pair more closely in a detail 
phase. The classical algorithms of the broad phase, however, include spatial hash-
ing, bounding volume hierarchies, and especially the Sort & Sweep (or Sweep & 
Prune) algorithm by David Baraff (1992). All techniques except for the latter have 
already been explained in the previous sections.

Sweep & Prune first projects the extents of the AABB of each scene object onto 
an axis, say the x-axis, of the global coordinate system. Since the axes for AABBs 
are aligned with the global coordinate system, this process is trivial. For each object 
i this yields an interval on this axis with the start value Si and the end value Ei. The 
start and end values generated in this way are inserted into a list, which is then 
sorted by value (Sort). Two objects only form a potential collision pair if the pro-
jected intervals overlap. These collision candidates can be easily read out from the 
list by iterating over the list from left to right (Sweep). If a start value is encountered 
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during the sweep, object i is marked as “active”. The object becomes inactive when 
the end value Ei is encountered. If a second start value Sj is encountered while object 
i is active, the objects i and j form a potential collision pair. This procedure – project 
objects’ extents onto an axis, sort, sweep – is then repeated for the other axes of the 
global coordinate system. Only if the projections of objects i and j intersect on all 
axes will the algorithm report the two objects as potentially colliding. The result set 
of the algorithm is therefore a list of potentially colliding object pairs, which can be 
examined more closely in a subsequent detail step that uses more complex methods 
(exact polygon test or GJK for convex hulls; see the subsection below on the narrow 
phase). Fig. 7.10 shows a schematic diagram of the Sweep & Prune algorithm.

A key idea of Sweep & Prune is the exploitation of temporal coherence. Under 
the reasonable assumption that objects do not move erratically but will be roughly 
at the same position as in the previous time step, the sort orders from the previous 
time step can be reused. That is, after initial and one-time sorting for the first time-
step, the lists are already presorted for the next time step. Certain sorting algorithms 
can update the list very efficiently when a presorted list is available as an extra 
input. Insertion Sort, for example, exhibits basically linear runtime behavior in 
these “best case” situations and is therefore particularly suitable.

However, it is precisely this temporal coherence that may also cause problems 
when scene objects form heaps. In these situations, small object movements can 
cause the list items of the intervals to be subject to major changes. As a result, sort-
ing operations often have to be performed in full, and temporal coherence can hardly 
be exploited. In Fig. 7.10 this situation occurs on the y-axis.

�Narrow Phase Collision Detection

After potential collision pairs have been found in the broad phase, the narrow phase 
performs exact collision tests on the objects’ detail geometry. Pairwise testing of all 
polygons of the two objects, however, has an algorithmic effort of O(n2) and would 
become inefficient for complex geometries. One possible measure is the insertion of 
an additional middle phase using bounding volume hierarchies, where parts of the 

Fig. 7.10  Sweep & Prune: Objects A, B, C and D with AABB and projected intervals on the x- 
and y-axes
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polygon meshes are approximated by bounding volumes. In this way, the set of 
polygons to be tested can be quickly limited to the relevant parts. However, depend-
ing on the type and objective of the application, other strategies may also be useful.

The near phase of collision detection can be broken down into subproblems:

•	 Removal of all false positives reported by the broad phase.
•	 Determination of the application-relevant collision parameters (e.g., contact 

points, penetration depth).

In practice, a third subproblem should be considered: objects may be in a state of 
permanent contact or collision. This state may occur, for example, when a thrown 
object comes to rest on the virtual floor. As long as no external forces other than 
gravity are applied, this state remains unchanged and, consequently, the two objects 
will be reported by the broad phase as a potential collision pair in all future time 
steps. Therefore, object pairs with similar contact information as in previous time 
steps should be marked as inactive, so that they are not examined by narrow phase 
collision detection over and over again.

A method often associated with the narrow phase is the GJK algorithm, named 
after its authors, Gilbert, Johnson and Keerthi (Gilbert et al. 1988). This algorithm 
determines the minimum distance between the convex hulls of two given point sets. 
If this distance is less than or equal to zero, the point sets collide with each other.

The GJK algorithm exploits the useful property of a Minkowski difference (see 
Fig. 7.11), i.e., that it contains the coordinate origin exactly when the convex hulls 
of the objects overlap. In this way, the collision detection between two point sets of 
size n and resp. m (number of vertices in the convex hulls of the two polygon 
meshes) can be reduced to calculating the distance of a single point set (the 
Minkowski difference of size n × m) to the coordinate origin. The explicit calcula-
tion of this large point set is avoided by iteratively checking whether the difference 

Minkowski Sum and Difference
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where A and B are two subsets of a vector space.

The result of the Minkowski sum is thus a set which contains the sum of each 
element from A with each element from B. The result set does not contain any 
element twice. Under a graphical interpretation, the result is obtained by mov-
ing B along the border of A. In Fig. 7.11 a graphical interpretation of both the 
Minkowski sum and the Minkowski difference is given. The latter is often 
used in the field of collision detection, where one of the properties of the 
Minkowski difference turns out to be especially useful: the Minkowski differ-
ence contains the coordinate origin if and only if the intersection of the two 
sets is not empty.
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can contain the coordinate origin. For this purpose, starting from any point of the 
difference a new point is searched for in each step, which is closer to the coordinate 
origin. If a point set containing the origin is found, a collision can be confirmed and 
the algorithm can be terminated. This method can further be used to determine the 
Euclidean distance of the convex hulls of the two polygon meshes as well as the 
points where the distance is minimal. This information can be used to determine 
contact points and collision depth. There are many publications around this algo-
rithm in the scientific literature. Some address improvements of particular aspects 
of the original algorithm, e.g., hill-climbing for vertex search (Cameron 1997; Lin 
and Canny 1991) while others examine the case of moving objects (Xavier 1997).

Thus, the GJK algorithm cannot only be used to answer the question of whether 
a collision has occurred. It can also provide the contact parameters for generation of 
a suitable collision response. The method is very efficient and can be used for a wide 
range of object configurations.

The result of the narrow phase is a list that contains definitely colliding object 
pairs and associated contact information. These results can then be used to resolve 
the collisions. This process is called collision response. However, not every applica-
tion area of collision detection requires the calculation of a collision response. For 
example, in the case of view volume culling, objects colliding with the view volume 
are displayed visually. All other objects are not rendered. Here, a spatial separation 
of the objects is not necessary. A physics simulation could, however, use the contact 
information to determine the forces necessary to separate the colliding objects.

7.2.4  �Summary and Advanced Techniques

This section has examined basic procedures and strategies for collision detection 
between rigid bodies. Different types of bounding volumes were presented and their 
properties were discussed. Furthermore, it was shown how space partitioning and 
bounding volume hierarchies can be used to reduce the total number of collision 
tests required. In Sect. 7.2.3, the basic collision detection methods were put into the 
context of large environments with potentially thousands of objects.

Fig. 7.11  Minkowski sum and difference: (from left to right) Objects A, B, C defined in a 2D 
coordinate system; Minkowski sum A + B; Minkowski difference A − C
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The preceding subsections give an idea of how broadly the subject of collision 
detection can be approached. In the discussion it was always assumed that the simu-
lation of the objects is carried out time step by time step (i.e., discretely). Although 
this process is easy to understand and implement, it involves some risks. If the 
movement of an object in one time step is larger than its extension, situations may 
arise where a “tunnel effect” occurs. As a practical example a soccer shot at the goal 
can be used: in the time step t the soccer ball is in front of the goal. However, due to 
the high speed of the ball, there is a high probability that the ball is already com-
pletely behind the goal in time step t + 1. The presented methods for collision detec-
tion do not report a collision for either time step. The ball has “tunneled” through 
the goal. To avoid this effect, various solutions may be pursued:

•	 Smaller time steps (= more computational effort at runtime).
•	 Determine the motion volume or motion vector and test for collision.
•	 Continuous collision detection.

The latter approach takes a completely different perspective on the problem: 
instead of examining objects present in each time step for collision testing, continu-
ous collision detection calculates the exact place and time of a collision. An imple-
mentation of this technique can be found in the freely available 2D physics engine 
box2d (Catto 2020). Continuous approaches are also called a priori while discrete 
approaches are called a posteriori.

Modern applications and simulations increasingly require methods that can han-
dle not only rigid bodies but also soft bodies such as clothes and fluids. These 
objects pose completely different challenges. For example, bounding volume hier-
archies are rarely applicable for deformable objects, because costs for their initial 
creation and repeated updates at runtime would be too high. However, this problem 
can be addressed with the help of powerful, programmable GPUs. Research work 
on this topic has already existed for some time, for example (Sathe and Lake 2006). 
The Nvidia Flex simulation framework provides collision detection methods for 
soft bodies as well as support for popular game engines such as Unity and 
Unreal Engine.

7.3  �Real-Time Rendering of Virtual Worlds

The visual sense is the most important one for human perception. Consequently, VR 
systems place particularly high demands on the real-time rendering of virtual 
worlds. In the literature it is generally assumed that the temporal resolution of our 
visual system is 60–90 Hz. A visual rendering system should therefore be able to 
provide at least 60 frames per second, so that the user is not able to perceive a 
sequence of individual images.

At present, typical display devices have resolutions of at least 1920 × 1080 pix-
els. If these are to be redrawn 60 times per second, almost 125 million pixels per 
second must be computed. This requires very powerful hardware to be able to 
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output the high-resolution content in real-time. The basic problem is to fill the pixel 
matrix in short time intervals. As this problem can be solved mostly independently 
for each pixel, special parallel computers are used for this task: the graphics pro-
cessing unit (GPU). Today’s GPUs often exceed the performance of CPUs many 
times over.

A naive program for the representation of virtual worlds could follow the follow-
ing procedure:

	1.	 Load the scene objects and build the virtual world.
	2.	 As long as the program is not terminated:

	 (a)	 read the user input
	 (b)	 change the virtual world according to the user input
	 (c)	 pass the scene to the GPU
	 (d)	 draw the scene on the GPU

In this naive approach, for each image to be drawn, the entire content of the vir-
tual world must be manipulated, transferred to the GPU and drawn. Despite the 
impressive computing capacity of today’s graphics hardware, it is not capable of 
providing an appropriate amount of visual detail at sufficiently high frame rates 
with this approach. A part of the VR system’s design should therefore include meth-
ods that support the rendering of visual images for high-resolution content, high-
resolution displays, and in high temporal resolution, i.e., in real time.

General approaches for making the visual rendering as efficient as possible 
include:

•	 Draw only necessary, i.e., visible and perceptible, data.
•	 Use compact representations of the graphical data and avoid memory movement 

of the data whenever possible (time and energy costs).
•	 Use the available hardware as effectively as possible.

This section presents several methods for how these approaches can be 
implemented.

7.3.1  �Algorithmic Strategies

Concerning the computational load of the graphics hardware, the best scene objects 
are those that do not need to be drawn at all. In the naive method above, all scene 
content is passed through the entire rendering pipeline, regardless of whether or not 
it can be seen by the viewer. For large virtual words with high-detail content, this is 
neither necessary nor efficient. At any time, large parts of the virtual world will be 
outside the user’s field of view, occluded by other objects, or simply too far away to 
be seen in full detail. Visibility testing of objects and graphics primitives and the 
subsequent removal of invisible ones from the rendering pipeline is called culling.
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�View Volume Culling

During rendering, a view volume is specified for each eye which describes a map-
ping of 3D coordinates to 2D image coordinates. In the case of the common per-
spective projection this visual volume is called a frustum (see Fig. 7.12 left). The 
basic idea of view volume culling (or view frustum culling) is that only objects that 
are at least partially inside the view volume have to be drawn.

Different approaches and methods exist to determine which objects are in view 
and which are not. The graphics hardware provides support for this process at the 
level of graphics primitives (i.e., points, lines, triangles, polygons, …) where it is 
called clipping (in addition to testing if a primitive is visible, partially visible primi-
tives are cropped – or “clipped” – to the view volume). At this point, however, parts 
of the graphics pipeline, namely the vertex, tessellation and geometry shaders, have 
already been executed. Thus, it might seem like a good idea to perform the clipping 
on the CPU. However, graphics processors are able to draw polygons much faster 
than it takes the CPU to clip them, so no speed-ups are to be expected.

A more useful level of abstraction for performing many visibility tests is the 
object level. As the object level is coarser than the polygon level, some polygons 
will be sent to the graphics hardware that will not contribute to the resulting image. 
However, culling costs are usually amortized easily as large amounts of polygons 
must not be transferred to the GPU. An optimal balance between the computational 
costs for culling and the savings in terms of polygons not sent to the GPU depends 
on the scenario and the application. It is important, however, that visibility testing 
should always be designed conservatively: it should be guaranteed that objects 
marked as invisible are truly not visible. Otherwise, there is a risk of removing con-
tent that is relevant for the resulting image.

Section 7.2 has already introduced most of the tools needed to implement view 
volume culling efficiently, particularly bounding volumes and bounding volume 
hierarchies. Since the view volume is generally not a cuboid but a truncated pyramid 
(a frustum), special methods for efficient collision testing with common bounding 

Fig. 7.12  View volume culling. Left: View frustum for perspective projection. Right: View vol-
ume culling with objects and bounding spheres (objects A, D, E and F are determined as visible)
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volumes (spheres, boxes) are required. Gregory (2009) sketches a simple test for 
bounding spheres: for each bounding sphere of an object in the virtual world to be 
tested, each plane that defines the frustum is shifted outwards by the radius of the 
sphere (the normal directions for the frustum planes are indicated in Fig. 7.12 right). 
If the center of the bounding sphere is now in the positive half space for all six 
planes (or four planes in the 2D case), the bounding sphere is at least partially 
within the view volume. Fig. 7.12 (right) illustrates the process of view volume cull-
ing, where the scene objects are enclosed by bounding spheres. The approximation 
of objects with bounding volumes may yield results where an object is marked as 
visible while actually being outside the view volume. An example for this is object 
A in Fig. 7.12 (right).

For bounding volumes other than spheres the following method can be used for 
conservative view volume culling (Assarsson and Möller 2000): the six planes 
defining the frustum can be specified by a transformation matrix. This matrix is 
called a projection matrix and describes the mapping of the view frustum content 
onto a unit cube. The inverse matrix of the projection matrix is applied to the bound-
ing volumes of the scene objects. For example, by applying the inverse projection 
matrix, a bounding box is “deformed” to the shape of a truncated pyramid (i.e., a 
frustum). For this “bounding frustum”, a new AABB (axis-aligned bounding box) is 
then constructed and used for intersection testing with the view volume (which is 
now a unit cube, after applying the projection matrix). In this way only AABBs have 
to be compared against each other.

�Hierarchical View Volume Culling

Hierarchical view volume culling is an extension of view volume culling that takes 
bounding volume hierarchies (BVHs) into account. When a separate bounding vol-
ume is used for each scene object, view volume culling may make up a significant 
part of the available compute time for large scenes with thousands of objects. The 
hierarchy-building techniques presented in Sect. 7.2.2 can lead to significant 
improvements in such cases. For example, instead of a list of all scene objects, a tree 
can be constructed that structures the scene objects (or their bounding volumes) in 
bounding volumes of increasing size. This requires a suitable method for identify-
ing suitable object groupings, and, in turn, groupings of groupings. Ultimately, the 
whole scene should be enclosed by a single bounding volume, i.e., the root of the 
BVH. In hierarchical view volume culling, the root node of the BVH is tested first. 
If it is not visible, no scene object is visible and the culling process finishes. 
Otherwise, deeper levels and branches of the tree can be tested recursively to deter-
mine the visible objects.

Other kinds of hierarchies, such as k-d trees and octrees, are also applicable and 
widely used for hierarchical view volume culling. Fig. 7.13 illustrates the hierarchi-
cal view volume culling method in 2D using a quadtree as example.
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�Occlusion Culling

View volume culling provides a coarse test whether an object is potentially visible 
or not. However, just because an object (or its bounding volume) is within the view 
volume, this does not mean that it is actually visible in the rendered image: it may 
be occluded by other objects, such as walls, that are closer to the viewer. Filtering 
out objects that are within the view volume but hidden from the view by other 
objects is called occlusion culling.

Implementing occlusion culling in 3D object-space based on the objects’ geom-
etries could provide exact solutions, but is usually too costly. Instead one usually 
prefers an image-space solution that exploits a feature of modern GPUs: without 
special precautionary measures, the scene objects can be sent to the graphics hard-
ware in arbitrary order where they are automatically drawn with correct occlusions. 
A simplified description of the standard rendering pipeline is:

	1.	 Projection of the three-dimensional input data (primitives: triangles, quadrilater-
als, etc.).

	2.	 Rasterization of the primitive and generation of a fragment (fragment: data for 
one pixel, e.g., depth; also, but not used in simplified pipeline: interpolated color, 
normal, texture, etc.).

	3.	 Fragment-based calculations and writing the pixel to the output buffer.

Without any further mechanism, this pipeline could lead to situations where 
scene objects that are close to the viewer are drawn early only to be overwritten, 
falsely, by other objects drawn later. To avoid this effect, the so-called Z-buffer (or 
depth buffer) of the GPU can be used. For each pixel, this buffer stores the z-
coordinate of the last drawn fragment. If the fragment to be drawn next has a higher 
z-value, it lies “deeper” in the scene from the viewer and must not be transferred to 
the output buffer. Transparent objects must be handled separately and are usually 
sorted according to their depth before drawing. Other, more effective, techniques 
based on programmable GPUs are possible.

This Z-buffering can now also be used for occlusion culling. For this purpose, the 
scene is rendered once in a pre-processing step, whereby the computationally 

Fig. 7.13  Hierarchical view volume culling. Left: A scene and its quadtree. Right: Hierarchical 
view volume culling using the quadtree (highlighted objects are determined as visible)
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expensive steps of the pipeline are deactivated beforehand (illumination, texturing, 
blurring, post-processing, etc.) and only the depth buffer is filled. The subsequent 
actual drawing process does not manipulate the Z-buffer, but only tests against the 
values in the buffer. The advantage of this procedure is that cost-intensive opera-
tions (e.g., illumination) are only carried out for fragments that contribute to the 
final image. In the literature, the described occlusion culling procedure is also 
referred to as early Z rejection or Z pre-pass.

An alternative occlusion culling method, which is also supported by the hard-
ware, is the so-called occlusion query. For an occlusion query, the primitives of the 
object geometry are not sent through the pipeline, but only the primitives of the 
associated bounding volume. Visual effects need not be calculated. Without manip-
ulating color or depth buffers, the graphics hardware counts the pixels that would be 
drawn for the bounding volume. The early stages of the rendering pipeline per-
formed on the CPU can request this value from the GPU after the request has been 
executed. If the number of pixels covered by a bounding volume is zero, it is 
occluded by another object and the actual scene object does not need to be drawn. 
The problem with this technique, however, is that the CPU has to wait for the pro-
cessing to finish for each request. In addition to sole processing time, a delay due to 
the comparatively slow communication channels to the GPU must also be expected. 
Fortunately, these requests can also be transferred asynchronously to the hardware, 
so that several tests can be processed in the GPU at the same time. Also, the CPU 
can process other tasks while waiting.

Occlusion culling is particularly interesting for applications whose runtime 
behavior is dominated by the computation time of the fragment shader (texturing, 
illumination, postprocessing).

�Backface Culling

When polygon meshes are rendered, it is usually possible to specify if a polygon 
should only be visible when seen from one side (one-sided polygon) or when seen 
from either front or back (two-sided polygon). Backface culling deals with the 
removal of polygons from the rendering pipeline that face away from the viewer. In 
general, associated normals are stored for each polygon. If the normals are not 
explicitly stored, the direction of the normals can also be derived by using a conven-
tion whereby the vertex order (clockwise or counterclockwise) determines the ori-
entation of the normal (see also Sect. 7.3.2). For backface culling the locally defined 
polygons and their normals are transformed into the camera’s coordinate system. 
Now the normals of the polygons are compared with the camera’s view direction. If 
the scalar product of a polygon’s normal with the view direction is smaller than 
zero, the two vectors point in opposite directions, meaning that the front face of the 
corresponding polygon is visible from the camera. Otherwise, a backfacing polygon 
is encountered and culled from the rendering pipeline. Backface culling is nowa-
days almost exclusively performed on the GPU, since the transformation step is an 
integral part of the graphics pipeline.
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�Small Feature Culling

In many cases, details of a scene can be omitted without the viewer noticing that 
they are missing. The basic idea of small feature culling is that very small or very 
distant objects affect only a few pixels in the resulting image. To determine whether 
this applies to a given object, its bounding volume can be projected and its size 
measured. If the size is below a specified threshold, the object is not drawn. This 
process is particularly easy to solve in connection with the occlusion query (see 
occlusion culling).

If small feature culling is enabled, the rendered output image will be slightly 
inaccurate. However, especially in dynamic scenarios (also including fast viewer 
movements, head tracking), the probability is high that the error will not result in 
noticeable differences but will give an improved frame rate.

�Portal Culling

The portal culling method is particularly suitable for virtual worlds that simulate 
closed rooms or buildings. For this purpose, the world is divided into sectors 
(rooms). The user can move from one sector to the next through defined portals 
(doors/passages). The sectors do not necessarily have to be spatially connected to 
each other. For portal culling it is only important that the polygon describing the 
portal is marked as such.

At a given time, the user (the camera) is in a sector. This sector is drawn us usual 
according to the camera’s viewing frustum. In addition, a new viewing frustum is 
determined for each portal in the field of view, which is defined by the viewer posi-
tion and the edges of the respective portal. With this new viewing frustum the sector 
on the other side of the portal is drawn (Fig. 7.14).

Thus, the number of sectors required for rendering is automatically limited to 
sectors that are actually visible through a portal. Furthermore, in these sectors, using 

Fig. 7.14  Portal culling: the viewer is located in sector A (view volume/frustum of the viewer 
drawn in grey). For each visible portal the view volume is highlighted in color
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view volume culling, only those objects have to be drawn that are located within the 
view volumes generated by portal culling.

As this method is very similar to view volume culling, these techniques can be 
combined without much effort. This makes portal culling not only easy to imple-
ment, but also very efficient for virtual worlds that are divided into different sectors 
or rooms.

�Level of Detail (LOD)

Small feature culling removes small – and therefore hardly visible – objects from 
the scene. However, the technique does not solve a problem that quickly arises with 
high-resolution objects: with increasing distance to the viewer, the details become 
less and less perceptible. Without further measures, possibly millions of polygons 
and high-resolution textures must be transferred to the graphics hardware and drawn 
completely, even if the object covers only a few pixels in the rendered image. This 
situation can be avoided by introducing replacement objects according to the level 
of detail (LOD) method (see also Sect. 3.3.4 and Luebke et al. 2003).

According to the LOD method, several simplified versions of decreasing detail 
are created offline for high-resolution scene objects and selectively rendered at run-
time. As soon as the object falls below or exceeds a certain distance threshold from 
the viewer, the system switches to a more or less detailed version. Alternatively, 
instead of the distance, the projected object size in screen space can be used as an 
indicator for the LOD level to be selected.

High-detail objects may be simplified in many ways. For example, versions with 
reduced polygon count are just as conceivable as versions with low-resolution tex-
tures or quality-reduced lighting. Provided that the switching times and quality lev-
els are correctly selected, the exchange of the levels can be unnoticeable in practice. 
Especially for objects with “infinite” detail, such as terrain data, the LOD method 
makes a decisive contribution for maintaining interactive frame rates. In general, 
scenes with many complex objects benefit most from the use of the LOD technique.

An obvious disadvantage of the LOD technique is the extra memory require-
ment, because in addition to the original model, several other, less detailed models 
must also be stored. However, since the low-detail models contain less information 
anyway, these costs are usually not a big concern in practice. A bigger problem is 
usually the generation of the LOD levels. The automated generation of visually 
appealing simplified versions of a high-resolution polygon mesh is a non-trivial 
problem. There are algorithms that can reduce the polygon count of given meshes. 
However, such algorithms usually require checking of results and manual correc-
tions to achieve appealing results.

In practice, therefore, the detail levels are often modeled by hand, which, how-
ever, significantly increases the effort and costs involved in their creation. Parametric 
models such as free-form surfaces allow the automatic creation of versions in differ-
ent resolutions. However, non-parametric, mesh-based modeling tools are much 
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more widespread and also more intuitive to use. A comprehensive overview of LOD 
techniques is given in Luebke et al. (2003).

7.3.2  �Hardware-Related Strategies

There are good reasons to hide the complexities of modern (graphics) hardware 
from the application developer. Suitable abstraction levels enable the developer to 
write programs that can be executed on different devices with similar efficiency. 
Nonetheless, a certain knowledge of special hardware features can provide starting 
points for performance improvements of the application.

The following strategies for real-time rendering of virtual worlds show ways to 
minimize memory consumption, utilize hardware processing units and optimize the 
usage of hardware caches.

�Object Size

Current graphics hardware is capable of displaying several hundred million trian-
gles per second. This processing speed is achieved because the problem of image 
rendering can be solved mostly independently for each pixel and because the highly 
parallel graphics hardware is optimized for this task. Modern GPUs contain dozens 
of stream processors where each stream processor in turn consists of many shading 
units. For example, an Nvidia Geforce RTX 3080 has 68 stream processors with 128 
shading units each, for a total of 8,704 shading units. While all shading units exe-
cute in parallel, shading units within the same stream processor perform the same 
operations on different parts of the input data, e.g., projecting vertices to NDC 
(Normalized Device Coordinates). It is the task of the graphics driver (or the hard-
ware) to partition the input data, e.g., polygon meshes, into groups and assign them 
to the available stream processors. To make a very simplified example: assume a 
GPU with four stream processors with 32 shading units each. Now a scene object 
consisting of 100 vertices is to be transformed. For this purpose, four subtasks must 
be created, which are then assigned to the four available stream processors. Say 
three stream processors are tasked to transform 32 vertices each, and the last one the 
remaining four vertices. As all threads of a stream processor run the same code, 28 
of them are masked so as not to provide invalid results. That is, 28/128 ≈ 22% of 
computational resources are wasted! The problem also occurs in the following situ-
ation: 100 cubes of a scene are to be drawn. Since the cubes consist of only eight 
vertices each and each cube has to be assigned to a stream processor of its own (each 
cube is transformed/projected differently), the utilization of the hardware’s process-
ing resources is very unfavorable. From this it can be concluded that scene objects 
should be modeled with sufficient detail if graphics processors are to benefit from 
their parallel computing hardware. Another conclusion is that simple scene objects 
should be combined to larger objects so that they can be passed as a whole to the 
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GPU. This gives the graphics driver (or the GPU) the opportunity to allocate avail-
able execution and shading units in a resource-efficient way.

�Indexing

Often, the geometry data of scene objects are available as unsorted triangle meshes. 
This data representation is often the output of modeling tools and is also known as 
triangle soup or polygon soup. These terms highlight that the polygons of the mesh 
are completely unstructured and have no explicit relation to each other. 
Metaphorically, the triangles “float” at arbitrary places in the soup. The actual data 
structure is just a vector (array, list) of vertices. A sequence of three vertices defines 
a triangle. However, triangles (and vertices) that are close to each other in the mesh 
are not necessarily close to each other in the data vector. Another consequence is 
that the vertices of a triangle mesh are typically contained several times in the data 
vector (once for each triangle they belong to). The memory requirement for such 
triangle soups is actually about three times the size of a memory-optimized variant 
(see Sect. 7.3.2 “Stripping”). Furthermore, the disadvantageous fact that a vertex 
may be contained in multiple copies in the data vector also means that it must be 
processed by the graphics pipeline multiple times (transformation, lighting, projec-
tion, etc.). Without additional measures a previously calculated result of vertex pro-
cessing cannot be reused.

To avoid these inefficiencies, an indexing scheme can be introduced (see also 
Sect. 3.3.1: indexed face set or indexed mesh). The vertex coordinates (usually three 
floating point values with 4–8 bytes each per vertex) are stored in one data vector. A 
second data vector, the index vector, defines which vertices combine to a triangle. 
Each sequence of three indices (integer with 2–4 bytes per value) defines a triangle. 
While the index vector requires extra memory space, this is more than compensated 
by the absence of multiple copies of a vertex in the vertex vector. Overall, the mem-
ory requirements of a polygon mesh can be significantly reduced. Fig. 7.15 (left) 
illustrates the indexed mesh data structure.

Software systems for graphical data processing sometimes use not only one 
index vector for all vertex data but separate index vectors for vertex coordinates, 
normals and other attributes (e.g., colors). This can be useful if a vertex is to use 
different attributes depending on the triangle from which it is referenced. However, 
this multiple indexing is not supported by typical graphics hardware. If 3D objects 
have been modeled in such a representation, they must be re-sorted to a single index 
data structure before they are passed to the hardware.

�Caching

Indexing alone does not solve the problem of reusing already computed vertex pro-
cessing results when the vertex is part of more than one triangle. As the index vector 
presupposes no particular order of triangles, in particular, geometrically adjacent 
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triangles may occur at totally different positions in the index vector. To put it in 
slightly different words, a vertex shared by two triangles may occur at very different 
positions in the index vector. With caching it is possible to reuse recently computed 
vertex data. For this, it is necessary that a second occurrence of the vertex is close 
to its first one in the index vector. If the distance is too large, the vertex data in the 
GPU must be completely recalculated. The sort order of the index vector thus 
becomes relevant. A desirable property is a high locality of the index vector, i.e., 
spatially adjacent triangles are also in each other’s neighborhood in the index vector 
(see also Fig. 7.15: the geometric positions of the vertices are not reflected in the 
index vector, i.e., low locality).

The typical model of a computer – the von Neumann architecture – provides that 
data and instructions use the same memory. From the programmer’s point of view, 
the flow of a program is therefore strictly sequential. Problematic, however, is the 
data transfer between memory and the CPU, the so-called von Neumann bottleneck. 
Nowadays it takes much more time to transport the data to the CPU than it takes the 
CPU to actually process this data. Without further mitigations, a modern CPU could 
never be used to full capacity.

Caches were introduced to compensate for this memory latency. Caches are fast 
intermediate memories. Often, they store data in the form of an associative array. 
Such caches are also used on the graphics hardware to avoid or minimize memory 
latencies. An important limitation of these caches is their storage capacity. To keep 
access times to these caches as low as possible, they are physically placed near the 
processing units. But especially there, chip area is an expensive commodity. 
Therefore, the capacities (compared to RAM/VRAM) are usually very small and 
only a few entries can be kept in the cache. Exact data about GPUs is difficult to 
access but the capacities are typically in the low megabyte range for level-2 caches 

Fig. 7.15  Triangle mesh representation with indexing and stripping. Left: Vertex and index vec-
tors define a triangle mesh. Right: Vertex vector and a convention on vertex ordering yield the tri-
angle mesh
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and in the kilobyte range for level-1 caches. Since the cache size is usually much 
smaller than the GPU RAM, not all data can be cached. A strategy must be imple-
mented that defines the assignment of cache entries to memory entries. Often a 
memory entry cannot be placed at any position in the cache (full associativity), but 
several memory entries/regions are mapped to the same cache entry (set associativ-
ity). To make a practical example, this means: if a vertex is needed to project a tri-
angle A, it must first be transferred from the slow GPU RAM to the cache. If another 
triangle B accesses this same vertex immediately afterwards, it is highly probable 
that the vertex data is still available in the fast cache. However, if calculations are 
made in the meantime that require other data, these will replace the vertex data in 
the cache. Then, for the projection of triangle B, the vertex must be reloaded from 
the GPU RAM.

Since cache properties are generally very hardware-specific, it is hardly possible 
to define generally applicable procedures. One consequence for real-time rendering 
of virtual worlds, though, is that the index vector for a triangle mesh should be 
sorted in such a way that it fulfills the locality property well. Furthermore, the pro-
gram code (including shader code) should also take into account the properties of 
the available caches and, if possible, access memory sequentially (instead of ran-
domized access patterns).

If the cache size is known, the optimization can be done very well (Hoppe 1999). 
However, as Bogomjakov and Gotsman (2002) have shown, good results are pos-
sible even if the cache size is unknown. A concise discussion with sample code can 
be found in Forsyth (2006).

�Stripping (Triangle and Quadrilateral Strips)

One way to convert polygon data into a cache-optimized form is stripping. Stripping, 
i.e., the transformation of a polygon mesh into triangle strips or quadrilateral strips, 
was already introduced in Sect. 3.3.1. In the context of rendering efficiency, their 
second advantage, besides the cache-optimized form, is that they explicitly describe 
which vertices form a triangle (or quadrilateral). Thus, duplicate vertices or vertex 
indices are avoided, making triangle and quadrilateral strips also a very memory-
efficient representation of polygon meshes.

The vertices of a data vector are interpreted according to a fixed convention. 
Assume a vector with four vertices A, B, C and D. These data can be interpreted, for 
example, in such a way that (ABC) and (BCD) each represent a triangle. The prob-
lem with this interpretation, however, is that the orientation differs between the two 
triangles, since by convention the clockwise direction determines the normal direc-
tion. In the interpretation presented here, the normals point to different sides (i.e., 
one triangle is front facing, the other one back facing). A better interpretation is 
therefore to specify the second triangle via the vertex sequence (BDC). Fig. 7.15 
(right) shows the stripping for a triangle mesh and also shows the orientation of the 
triangles. If vertex data are used as triangle strips, the geometric positions of the 
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associated triangles are also automatically reflected in the data vector. With respect 
to caching, the data are thus available in a favorable form.

By means of stripping, n triangles can be specified with only n + 2 vertices. As 
compared to indexing, which requires both a data vector and an index vector, strip-
ping is more favorable from a memory consumption perspective. Compared to poly-
gon soups (see Sect. 7.3.2 “Indexing”), stripping even reduces memory consumption 
by almost two thirds.

Strips offer a compact geometry presentation (no duplicate vertices, no index 
vector) and can positively influence the reuse of data on the GPU side. However, it 
is a non-trivial problem (NP-hard computational complexity) to find an optimal 
strip representation for an object. Instead, approximative greedy algorithms are usu-
ally used for strip generation that do not yield optimal but still very good results in 
very short times. Since, in general, an object cannot be represented by a single strip, 
either multiple strips or strips with degenerated triangles (i.e., triangles that degen-
erate into points or lines) must be used. This also results in reduced memory and 
display efficiency. To counteract this, modern 3D APIs offer “restart” interfaces 
(e.g., glPrimitiveRestartIndex for OpenGL). Instead of transmitting degenerated tri-
angles, this interface can be used to tell the GPU that the strip interpretation should 
be restarted from a given index.

In the literature, there are several articles and papers on the subject of calculating 
the strips (e.g., Evans et al. 1996; Reuter et al. 2005). Furthermore, programs are 
available that generate strips from polygon meshes (e.g., NVTriStrip (NVidia 2004) 
or Stripe (Evans 1998)). While polygon soups are easy to handle but memory-
consuming, strips are at the other end of the scale: they are memory efficient but 
much more difficult to handle and create.

�Minimizing State Changes

As the saying goes, time is money. For this reason, a contract painter will be inclined 
to finish pictures in the shortest possible time. Since he needs different brushes and 
colors for the paintings, he will try to change the drawing equipment or the paint 
color as rarely as possible. After all, for every change of brush, the old brush has to 
be cleaned and stowed away. The graphics hardware is not unlike the painter in this 
respect – although an even more accurate metaphor would be a large group of paint-
ers who must all use brushes of the same kind with the same paint color at a time.

As discussed earlier, a GPU is composed of many parallel processing units. 
These execute the same instructions at different points of the input data where com-
mon state information specifies how, e.g., with which texture a vertex or fragment 
is to be processed. When drawing a given object it is therefore important to make 
only those state changes that are actually necessary.

Also, it is advisable to organize the order of object transfer to the graphics hard-
ware in such a way that as few state changes as possible have to be made for an 
image to be drawn. If many objects are to be drawn, where some use one material 
(textures, colors, shaders), others a second material, and even others are a third 

7  Real-Time Aspects of VR Systems



284

material, etc., the objects could, e.g., be sorted by material before transferring them 
to the GPU.

Furthermore, changes to the graphics pipeline configuration (e.g., changing the 
shader program) can lead to time-consuming operations in the driver or hardware.

Virtual worlds are usually not designed according to the above principles. Which 
sort order (e.g., by material or shader program) is useful depends strongly on the 
specific virtual world and cannot be prescribed in a generally valid way. While this 
task cannot be performed by the graphics driver or the graphics hardware, software 
systems for virtual worlds can be helpful tools.

7.3.3  �Software Systems for Virtual Worlds

The previous sections described a number of methods that can help to increase the 
rendering speed of a virtual world. Ideally, these methods would be part of the 
graphics driver or hardware and any application could achieve optimal performance. 
However, this is not the case.

The graphics driver (and the APIs provided, e.g., Direct3D, OpenGL, Vulkan) 
provides a thin abstraction layer between the actual hardware and the application 
program. It mainly serves as a unified interface to the hardware of different manu-
facturers and contains no application-specific optimizations. These are left to the 
application developer, who has the freedom and responsibility to flexibly make 
design choices that suit the needs of the specific application.

Furthermore, the graphics driver does not have information about the entire 
scene (but only of individual objects), so that certain optimizations (e.g., view vol-
ume culling) cannot be implemented in a meaningful way. To support the develop-
ers of VR software, who cannot be expected to completely implement all algorithms 
and procedures, software systems exist which take over this task and thus support 
and accelerate application development. A widespread principle is the scene graph.

�Scene Graph Systems

The general concept of a scene graph was introduced in Sect. 3.2. This section 
focusses on processing aspects of scene graphs that are useful for the real-time 
capability of a VR system.

The basic idea of scene graphs is to represent the entire virtual world, including 
some metadata, in a hierarchical graph, either a tree or a directed acyclic graph 
(DAG). At runtime, the scene graph software then traverses this graph and performs 
operations on individual nodes or subgraphs. In many cases, the hierarchy is tra-
versed top-down and depth-first. Examples for these operations are intersection test-
ing during a user interaction, updating the position of dynamic objects, calculation 
of bounding volumes for both leaves and inner nodes and visibility testing on the 
basis of these bounding volumes.

M. Buhr et al.

https://doi.org/10.1007/978-3-030-79062-2_3


285

During a single time step, a scene graph is typically traversed several times. In 
this context, one often speaks of different phases:

•	 APP: Application phase (change structure and states of the graph)
•	 CULL: View volume culling
•	 DRAW: Rendering on the GPU

A trivial implementation of a scene graph sends all contained nodes to the graph-
ics hardware, even those representing objects not seen by the camera. However, as 
the entire scene and its hierarchy are contained in the graph, the scene graph system 
can easily calculate bounding volumes and bounding volume hierarchies. Based on 
these data and the view volume specified by a special camera node, the scene graph 
system can determine during the CULL phase which objects are within the field of 
view. LOD calculations are also easily performed. However, before the objects 
within the field of view are sent to the graphics hardware to be finally rendered dur-
ing the DRAW phase, they are usually sorted in such a way as to minimize changes 
of the graphics state.

This APP-CULL-DRAW model became popular through Iris Performer and its 
successor OpenGL Performer (Rohlf and Helman 1994). The model is particularly 
interesting because it provides a good basis for parallelization of scene graph pro-
cessing. This enables scene graph systems to benefit from modern multi-core pro-
cessors and thus to process more complex scenes in real time.

Scene graph systems can significantly accelerate the development of complex 
VR applications. They offer a wide range of tools for scene generation, animation, 
user interaction and various optimizations (e.g., cache optimization of vertex data, 
merging of static structures). They abstract the complexity of these methods and 
provide VR developers with accessible interfaces that enable them to achieve their 
goals quickly. Many scene graph systems also support special effects that are not 
completely performed by the graphics hardware (e.g., shadow calculations).

The price for these benefits is often a somewhat limited flexibility. Adding new 
algorithms to a complex system, such as a scene graph system, can be much costlier 
than implementing them from scratch. It is therefore not surprising that, for exam-
ple, scientific visualization or virtual communication applications often implement 
customized solutions without using a scene graph system.

�Game Engines

Game engines are development and runtime environments for computer games. In 
the field of real-time 3D computer games, game engines often combine high visual 
quality with comfortable development tools. Besides target platforms such as desk-
top PCs, game consoles and smartphones, many game engines also support the 
development of VR/AR applications.

Modern game engines are complex software systems consisting of various sub-
systems, such as a rendering engine, physics engine and audio system. In addition, 
game engines offer support for animation, multiplayer play modes, game AI and 
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user interaction. For level design, i.e., the modeling of virtual worlds, some game 
engines provide their own development environments, which are usually strongly 
customized to the respective functionalities of the game engine. Virtual worlds are 
often modeled based on scene graphs. Typically, special modeling systems are also 
provided for the creation of vegetation, terrain and particle systems as well as for the 
animation of virtual humans (see Chap. 3). Most game engines also offer scripting 
support for programming the game logic.

Chapter 10 illustrates the authoring process in game engines as well as their 
configuration for VR/AR applications using Unity and the Unreal Engine as 
examples.

7.4  �Summary and Questions

Real-time capability is of crucial importance for believable VR/AR experiences. In 
combination with head-tracking, a latency of at most 50 ms is recommended for 
HMD-based systems (Brooks 1999; Ellis 2009). Higher latencies are more tolerable 
for projection-based VR systems. Latencies occur in all subsystems of VR/AR sys-
tems. In addition, latencies of data transport between the subsystems must be con-
sidered to minimize the overall latency (end-to-end latency) of a VR/AR system. In 
this chapter, methods for measuring the latency of tracking systems as well as end-
to-end latency were presented. Furthermore, typical latencies for different hardware 
components of VR/AR systems were discussed, including different types of track-
ing systems and network components. The latencies of other VR/AR subsystems, 
such as world simulation and rendering are more dependent on the specific applica-
tion. A generic task during world simulation is collision detection. For this purpose, 
a number of methods exist that allow efficient collision detection even in large envi-
ronments with a high number of objects. The scene graphs commonly used in VR 
systems support efficient rendering in a variety of ways, e.g., different culling meth-
ods, level of detail techniques, and memory-effective and cache-friendly data struc-
tures for polygonal models, as well as optimization of the rendering order of the 3D 
objects in the virtual world.

Check your understanding of the chapter by answering the following questions:

•	 Why is low end-to-end latency so important for VR/AR systems?
•	 Where do the latencies of VR/AR systems come from?
•	 Sketch a concrete VR application and discuss the relevance of different kinds of 

latency on this example!
•	 How can latencies be measured or estimated?
•	 What are the typical requirements for bounding volumes? What consequences 

result from these requirements?
•	 What is a separating axis and how can one be found for two OBBs?
•	 Explain the Sweep & Prune procedure using a self-drawn sketch. Explain the 

advantages and disadvantages of the procedure!
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•	 Scene graphs can be organized according to different criteria. In a logical or 
semantic structure, objects could be grouped according to their type, e.g., by hav-
ing one common group node for all cars, another common group node for all 
houses etc. In a spatial structure, on the other hand, objects that are close to each 
other would be grouped together. What type of grouping is more efficient for 
view volume culling? Also explain hierarchical view volume culling!

•	 In scene graphs, bounding volumes such as cuboids or spheres are automatically 
generated for all inner nodes. How can this be exploited with the different vari-
ants of culling (view volume culling, occlusion culling, small feature culling)?

�Recommended Reading

Jerald JJ (2010) Scene-motion- and latency-perception thresholds for head-mounted 
displays. Dissertation, UNC, Chapel Hill, http://www.cs.unc.edu/techreports/10-
013.pdf. Accessed August 11, 2020 – Jerald’s doctoral thesis deals intensively 
with the topic of visual latencies in virtual reality and contains an extensive col-
lection of literature on the subject.

Ericson C (2004) Real-time collision detection. CRC Press – The book provides a 
comprehensive and in-depth overview of collision detection methods.

Akenine-Möller T, Haines E, Hoffman N, Pesce A (2018) Real-time rendering, 4th 
edn. CRC Press – Textbook on advanced topics in computer graphics, providing 
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