
Virtual and
Augmented Reality
(VR/AR)

Ralf Doerner
Wolfgang Broll
Paul Grimm
Bernhard Jung Eds.

Foundations and Methods of
Extended Realities (XR)

Virtual and Augmented Reality (VR/AR)

Ralf Doerner • Wolfgang Broll
Paul Grimm • Bernhard Jung
Editors

Virtual and Augmented
Reality (VR/AR)
Foundations and Methods of Extended
Realities (XR)

ISBN 978-3-030-79061-5 ISBN 978-3-030-79062-2 (eBook)
https://doi.org/10.1007/978-3-030-79062-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editors
Ralf Doerner
Department of Design, Computer
Science, Media
RheinMain University of Applied Sciences
Wiesbaden, Germany

Paul Grimm
Department of Media
Darmstadt University of Applied Sciences
Darmstadt, Germany

Wolfgang Broll
Department of Computer Science
and Automation / Department for
Economic Science and Media
Ilmenau University of Technology
Ilmenau, Germany

Bernhard Jung
Institute for Informatics
TU Bergakademie Freiberg
Freiberg, Germany

Translated from the German language edition: Virtual und Augmented Reality (VR/AR) by Dörner,
© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2013, 2019. All Rights Reserved.

https://doi.org/10.1007/978-3-030-79062-2

v

Foreword

You hold in your hands – or are viewing on a screen – an excellent book on virtual
and augmented reality. It will introduce you to a plethora of topics from a variety of
viewpoints by multiple experts.

Virtual and augmented reality has indeed come a long way since Ivan Sutherland’s
1968 head-mounted 3D display. The paper starts:

The fundamental idea behind the three-dimensional display is to present the user with a
perspective image which changes as he moves. … if we can place suitable two-dimensional
images on the observer’s retinas, we can create the illusion that he is seeing a three-
dimensional object. … The image presented by the three-dimensional display must change
in exactly the way that the image of a real object would change for similar motions of the
user’s head. (Sutherland 1968, first paragraph)

Every aspect of Sutherland’s above description – and much, much more – is
addressed extensively in this book: (1) the basic elements of VR/AR systems, (2)
the perceptual aspects of VR, (3) modeling of virtual worlds, (4) input devices and
tracking, (5) output devices, (6) interaction, (7) real-time aspects of VR, (8) AR
overview, (9) a group of case studies, (10) a tutorial on creating VR/AR applications
with current hardware and software, and (11) mathematical foundations of VR/
AR. This list is but a hint of the many topics in this volume.

This text will be useful and enjoyable for both the beginner as well as the expe-
rienced practitioner. For “old folks” like yours truly, many pages convey new infor-
mation (trying to use VR to teach literacy to prisoners) and many trigger memories
of old VR adventures (building 1980s VR systems with miniature TV displays and
analog TV camera-based trackers).

In this volume you will learn not only about VR/AR topics but also about many
other topics whose utility extends far beyond VR/AR boundaries: physically based
modeling, user interfaces, real-time rendering, and haptic devices, to name just a few.

The authors present each chapter with a gentle introduction, clear organization,
useful illustrations, clear exposition, and end each chapter with a summary, a set of
self-study questions, a short list of recommended further readings, and the list of
references for that chapter. The list of recommended further readings is particularly
helpful for many of us who, when we delve into a topic of interest, often yearn for

vi

more. This recommended reading list is a short annotated list, in contrast to the
long, complete list of references for that chapter.

As a reader, I really appreciate this chapter-oriented organization; it is much
easier to look up references and scan for other relevant readings at the end of a par-
ticular chapter than to consult a much longer list of all the combined references at
the end of an entire book. When there are overlaps with other chapters, the authors
make clear references to the other locations, to the related topics, and to the relevant
illustrations.

This is indeed an excellent volume. It is sure to be useful both for adoption as a
textbook in a VR/AR course and also for self-study. I highly recommend it.

The University of North Carolina at Chapel Hill,
Chapel Hill, North Carolina, USA

 Henry Fuchs

June 2021

Foreword

vii

Preface

Professional associations and societies in the field of sciences, such as the
Association for Computing Machinery (ACM) or the IEEE Computer Society, play
an important role in advancing scientific discourse and education. Their activities
lead to tangible outcomes, such as journals or conference proceedings. This book is
the result of an initiative that started in the special interest group for virtual reality
and augmented reality (VR/AR) of the German Society for Computer Science (GI).
The members of this special interest group, who come not only from academia (e.g.,
universities, research institutes) but also from companies and organizations, started
a project in 2010 that aimed to provide a scientifically based introductory book to
VR/AR that can serve as a textbook for students of various disciplines and also cater
to professionals and the interested public. It soon became clear that a multi-faceted
and broad topic such as VR/AR needed the expertise of many authors from the
group. However, just slapping chapters from different authors together does not
necessarily lead to a good introductory text – especially for beginners, consistency
and coherency are key. Therefore, we four editors saw our task as being to invest
significant time and to heavily edit the initial texts from the authors to obtain a
coherent and consistent book. In this context, we are especially grateful to Rolf
Kruse, Professor of Digital Media and Digital Design, who ensured consistency and
quality for all of the figures.

Since the German version of this book appeared for the first time in 2013, it has
become widely popular, especially as basic literature for courses in VR and AR. The
most recent German edition is from 2019. In 2020, we decided to publish this inter-
national edition. This did not just mean that we translated the book from German to
English. For instance, the case studies that initially came only from Germany were
replaced by case studies from all over the world.

This preface is a good opportunity to thank once again all those involved in this
book project. These include not only the authors and those involved with Springer
Nature but also all our readers of the German editions, especially our students and
the members of the VR/AR special interest group of the German Society for
Computer Science, who have given us incredibly valuable feedback that has been
incorporated into this current edition. Among other things, we have complied with

viii

the request to make the illustrations contained in the book available electronically
for non-commercial use, for example, in lecture slides or student works. A corre-
sponding package, which also contains code examples from Chap. 10, is available
for free download at vr-ar-book.org.

Now, it is a pleasure for us to serve as your guide for your journey into the fasci-
nating world of virtual and augmented reality.

Wiesbaden, Germany Ralf Doerner
Ilmenau, Germany Wolfgang Broll
Darmstadt, Germany Paul Grimm
Freiberg, Germany Bernhard Jung

Preface

ix

Contents

 1 Introduction to Virtual and Augmented Reality 1
Ralf Doerner, Wolfgang Broll, Bernhard Jung, Paul Grimm,
Martin Göbel, and Rolf Kruse

 2 Perceptual Aspects of VR . 39
Ralf Doerner and Frank Steinicke

 3 Virtual Worlds . 71
Bernhard Jung and Arnd Vitzthum

 4 VR/AR Input Devices and Tracking . 107
Paul Grimm, Wolfgang Broll, Rigo Herold, Johannes Hummel,
and Rolf Kruse

 5 VR/AR Output Devices . 149
Wolfgang Broll, Paul Grimm, Rigo Herold, Dirk Reiners,
and Carolina Cruz-Neira

 6 Interaction in Virtual Worlds . 201
Ralf Doerner, Christian Geiger, Leif Oppermann, Volker Paelke,
and Steffi Beckhaus

 7 Real-Time Aspects of VR Systems . 245
Mathias Buhr, Thies Pfeiffer, Dirk Reiners, Carolina Cruz-Neira,
and Bernhard Jung

 8 Augmented Reality . 291
Wolfgang Broll

x

 9 VR/AR Case Studies . 331
Ralf Doerner, Alexander Tesch, Axel Hildebrand,
Stephan Leenders, Tobias Tropper, Wilhelm Wilke,
Christian Winkler, Julian Hillig, Alec Pestov, James A. Walsh,
Bruce H. Thomas, Gerhard Kimenkowski, Stephen Walton,
Torsten W. Kuhlen, Geert Matthys, Holger Regenbrecht,
Chris Heinrich, Xiumin Shang, Marcelo Kallmann, Benjamin Lok,
Francisco A. Jimenez, Cheryl Wilson, Marc Erich Latoschik,
Carolin Wienrich, Silke Grafe, Mario Botsch, and Jonny Collins

 10 Authoring of VR/AR Applications . 371
Wolfgang Broll, Florian Weidner, Tobias Schwandt, Kai Weber,
and Ralf Doerner

 11 Mathematical Foundations of VR/AR . 401
Ralf Doerner

 About the Authors . 413

 Index . 421

Contents

1© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
R. Doerner et al. (eds.), Virtual and Augmented Reality (VR/AR),
https://doi.org/10.1007/978-3-030-79062-2_1

Chapter 1
Introduction to Virtual and Augmented
Reality

Ralf Doerner, Wolfgang Broll, Bernhard Jung, Paul Grimm, Martin Göbel,
and Rolf Kruse

Abstract What is Virtual Reality (VR)? What is Augmented Reality (AR)? What is
the purpose of VR/AR? What are the basic concepts? What are the hard- and soft-
ware components of VR/AR systems? How has VR/AR developed historically? The
first chapter examines these questions and provides an introduction to this textbook.
This chapter is fundamental for the whole book. All subsequent chapters build on it
and do not depend directly on one another. Therefore, these chapters can be worked
through selectively and in a sequence that suits the individual interests and needs of
the readers. Corresponding tips on how this book can be used efficiently by different
target groups (students, teachers, users, technology enthusiasts) are provided at the
end of the chapter, as well as a summary, questions for reviewing what has been
learned, recommendations for further reading, and the references used in the chapter.

1.1 What Is VR/AR About?

Let us first look at the ideal conception of a Virtual Reality (VR): What is a perfect
VR? In this extreme case the underlying ideas of VR become particularly clear.
Then we will look at why perfect VR cannot be achieved today (and why one would
not want to achieve it, e.g., for ethical reasons) and show how a virtual environment
can still be created. We introduce the concept of Augmented Reality (AR). Finally,
we motivate what VR and AR can be used for today and why these topics are being
dealt with intensively.

R. Doerner (*)
Department of Design, Computer Science, Media, RheinMain University of Applied
Sciences, Wiesbaden, Germany
e-mail: ralf.doerner@hs-rm.de

Dedicated website for additional material: vr-ar-book.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79062-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-79062-2_1#DOI
mailto:ralf.doerner@hs-rm.de
http://vr-ar-book.org

2

1.1.1 The Perfect Virtual Reality

Humans perceive the world through sensory impressions. If, for example, light is
reflected by a real object, such as a tiger, and enters a person’s eye, photochemical
processes are triggered in special sensory cells located in the retina. The light acts
as a stimulus for these sensory cells. The light stimuli set off nerve impulses, which
are modified via nerve cells that are connected in a complex way. These signals are
then transmitted throughout the brain and processed further. Various areas of the
brain that contribute to visual perception have already been identified. The per-
ceived image is not created in the eyes, but rather in brain regions, mainly in the
back of the head. The processes in the brain can be divided into several stages. At
first, fast parallel processing of the visual sensory impressions takes place during
which, for example, the yellow and black areas and also the pattern on the fur of the
tiger are identified. Based on this, slower sequential processing follows, e.g., the
composition of the colored surfaces to objects (as for example a paw or the teeth of
the tiger) with the support of the person’s memory. If the human being has already
seen a tiger before, this can lead to recognition. We call the whole apparatus, from
the sensory cells, via the visual nerves to the visual centers in the brain, the visual
system of the human being. So, in our example, the human being sees the tiger
thanks to the visual system and can draw conclusions about reality from this, e.g.,
that a real predatory cat is standing nearby and it would be a perfectly suitable time
to start running away.

The connection between reality and what people perceive about it through their
visual system is anything but simple. The same reality can cause different percep-
tions in different people. A wall that reflects light with a wavelength of 630 nm
triggers the color perception “red” in many people – but some people have a differ-
ent perception. Because they are in the minority, these people are called color-
blind – after all, about 9% of men and 1% of women perceive colors differently than
the rest of the population. Color, a term people use to describe visual perception, is
therefore not a term that objectively describes reality. Color is not a physical prop-
erty of the real wall but rather stands for a subjective perception that is indirectly
triggered in people by the wall through reflected light.

Even in a single individual there is no simple connection between reality and
visual perception of reality. If you look at Fig. 1.1, you can see black squares
arranged on a grid. At the intersections of the grid, one can see alternating, partly
flickering dark and bright points. But this does not correspond to the properties of
the grid points in reality. All grid points are identical and always reflect the light in
the same way (if this text is being read with an e-book reader, be assured that there
is no trickery here). A number of such phenomena have been described in percep-
tual psychology, showing how the visual system combines, amplifies, filters out or
recombines responses to external stimuli originating from the sensory cells during
the complex process of perception. The same stimuli can lead to different percep-
tions in the same individual at different times, for example depending on whether
the individual is concentrating on something or not – or whether the individual has

R. Doerner et al.

3

just had a glass of vodka or not. A remarkable characteristic of the visual system is
that it can also change its mode of operation over time, adapting itself. The psy-
chologist George M. Stratton made this clear in an impressive self-experiment at the
end of the nineteenth century. Stratton wore reversing glasses for several days,
which literally turned the world upside down for him. In the beginning this caused
him great difficulties: Just putting food in his mouth with a fork was a challenge for
him. With time, however, his visual system adapted to the new stimuli from reality
and he was able to act normally in his environment again, even seeing it upright
when he concentrated. As he took off his reversing glasses, he was again confronted
with problems: He used the wrong hand when he wanted to reach for something, for
example. Fortunately for Mr. Stratton, an adaptation of perception is reversible, and
he did not have to wear reversing glasses for the rest of his life. For him, everything
returned to normal after one day.

We can conclude that there is no fixed, unambiguous and objective connection
between (1) reality with the light stimuli it exerts on a human being and (2) the
visual perception by the human being of this reality. This creates some leeway for
manipulating the human visual perception of reality. A simple way is to replace a
stimulus emanating from a real object with a similar, artificial stimulus. If the human
visual system, stimulated by this artificial stimulus, comes to a similar perception as
it would have done with a real object, the human being may even be under the mis-
taken impression that this object actually exists in reality. Images are a typical
example of this approach. If one wishes to cause the visual perception “tiger” in a
human being, then one does not need to inconvenience a real predatory cat. One can
show the person a photograph of a tiger. Of course, this photograph of a tiger – a
sheet of paper printed with pigments reflecting light in a certain way – is a funda-
mentally different object than a flesh and blood tiger. But both have something in
common: They reflect light in a similar way, stimulate the visual system in a similar
way and evoke similar visual perceptions in the human being.

Fig. 1.1 A Hermann grid. Although in reality all grid intersections always reflect light to the same
extent, a person sometimes perceives dark spots there. The dark spots disappear as soon as you try
to look at them directly

1 Introduction to Virtual and Augmented Reality

4

Typically, a person will not be deceived so simply. People are usually able to
distinguish a real tiger from a photo of a tiger. Therefore, let us assume that we
could bring the light stimuli that emanate from a real tiger perfectly into the visual
system of a human being, e.g., by playing in the impulses of sensory cells resulting
from outside stimuli via a “socket” implanted into the brain. Let us go a step further
in our thoughts and not limit ourselves to visual perception alone. Visual perception
is the most important source of information about a person’s environment – more
than 130 million sensory cells (about 70% of all human sensory cells) and more
than four billion neurons, i.e., more than about 40% of the cerebral cortex, are
involved in seeing. “Man is an eye animal” as Leonardo da Vinci put it. However,
the human perception of reality is also based on other sensory impressions. For
example, in addition to the cone cells in the retina that react to light, there are spe-
cial sensory cells, such as Merkel cells, which respond to pressure, or the Pacinian
corpuscles, which are stimulated by acceleration. Therefore, let us further assume
that we could also transfer the reaction of all these other sensory cells directly to the
brain via the imaginary “socket”. Besides seeing (visual perception) we would thus
also manipulate

• hearing (auditory perception),
• smelling (olfactory perception),
• tasting (gustatory perception),
• feeling (haptic perception),
• and, as part of feeling, touch (tactile perception),
• sense of balance (vestibular perception),
• body sensation (proprioception),
• the sensation of temperature (thermoception),
• and the sensation of pain (nociception).

Would we then be in a position to have the stimuli emanating from a tiger calcu-
lated by a computer and played into the brain of a person in such a way that this
person would be convinced that there was a real tiger nearby? Would we be able to
put a human being into an apparent reality, a virtual reality, that the human being
could no longer distinguish from the “real” reality? Can we create a perfect illusion
of reality?

These are fascinating questions that the Wachowskis, for example, have vividly
dealt with in their film The Matrix and its sequels. Other films, such as Vanilla Sky
and science fiction novels by Stanislaw Lem, for example, also address this ques-
tion. It also touches on philosophical questions such as those raised by Plato over
2400 years ago with his allegory of the cave. Plato wondered how people would
react who had been trapped in a cave since childhood with their heads fixed in such
a way that they never see objects behind them but only perceive the objects’ shad-
ows cast on the cave wall visible to them. According to Plato’s Theory of Ideas, we
do not directly recognize reality – the true being – but are only able to perceive
indirectly “shadows”, images of reality in our “cave”, our world limited by the

R. Doerner et al.

5

realm of sensual experiences. Similar ideas can also be found, for example, in
Indian mythology. Here, Maya, the goddess of illusion, prevents people from
directly recognizing reality. Instead, Maya makes us experience only a projection of
the world created by ourselves and our perception.

The French philosopher René Descartes went a step further. He stated that our
perception of reality might not only be an imperfect image but a complete illusion
and that all knowledge about reality is to be doubted. Descartes introduces the figure
of the Genius Malignus, an evil spirit, who makes people believe in a reality that
does not exist. So, you are not reading a book, but an evil spirit makes you believe
that you have eyes and can read a book that does not exist in reality. In fact, the spirit
is even so evil that it is a textbook about Virtual Reality.

The philosophical direction of skepticism doubts that there is such a thing as
reality or such a thing as fundamental truths at all. With the “Brain in a Vat” experi-
ment, a thought experiment similar to our considerations, the followers of skepti-
cism justify their position. In this experiment, it is assumed that a brain extracted
from a human being floating in a vat of nutrient solution is supplied by a computer
with impulses that simulate an apparent reality. They answer our question of whether
the consciousness in this brain can distinguish the faked reality from real reality,
namely the disembodied brain floating in a tub, with a firm “No”. Therefore, the
argument goes, we can never be sure whether we are in a Virtual Reality – just as
most people in the feature film The Matrix never realize what their actual reality
looks like.

1.1.2 The Simulation of the World

In order to realize a perfect Virtual Reality, at least to some extent, sensory stimuli
must be generated that make a person perceive this alternative world. In the first
flight simulators, a video camera was attached to a linkage and moved over a physi-
cal landscape model similar to a model railway. The images captured by the camera
were displayed to the pilot in the flight simulator, who could thus perceive an image
of the world when looking out of the cockpit. A more modern approach would be to
use computer graphics to generate images or light stimuli for Virtual Reality.

But the generation of the stimuli is only one task on the way to the perfect Virtual
Reality. People not only want to see and feel the world but also to act in it. For
example, if a person perceives a ball in Virtual Reality, he or she might want to be
able to kick the ball and run after it. This requires that the virtual world is simulated,
that the actions of the person are known to the simulation, and that these actions can
influence the simulation. The results of the simulation in turn have an effect on the
generation of the stimuli – if a person moves in Virtual Reality, the generation of
stimuli must also take the new position into account. The task of simulation can be
performed by a computer system that must have a simulation model of the world at

1 Introduction to Virtual and Augmented Reality

6

its disposal. The simulation model of the world determines the behavior of the
Virtual Reality. Consequently, the reactions of the virtual world in response to the
actions of users must be simulated, as well as changes in the virtual world that do
not depend on human actions. For example, a day-night cycle in the virtual world
could be simulated that cannot be influenced by people.

One can strive to build the simulation model of the world in such a way that the
behavior of the virtual world corresponds as closely as possible to that of reality. If
a person kicks a virtual ball, the world simulation would move the ball according to
the well-known laws of physics – the ball would have a virtual mass and a virtual
frictional resistance, and would continue to roll on sloping virtual terrain until it
reached a rest position. In Virtual Reality, however, one is not bound by the laws of
reality. A kick against a virtual ball, for example, could also cause the ball to move
along a serpentine path – or to turn it into a chicken. In this way you can create
fantastic virtual worlds, virtual worlds that play in an imaginary future, or virtual
worlds that recreate past times.

Being tasked with the recognition of human actions, the simulation of the virtual
world, and the generation of stimuli for humans, the VR system can become highly
complex. The simulation of a single virtual human being – which includes the gen-
eration of realistic images of skin and clothing, speech synthesis, and the simulation
of human behavior, emotions, irony and willpower – is a major challenge today. The
challenge is further increased by the requirement that this computer system must
operate in real time, i.e., it has to keep pace with human beings. This implies that
calculations must not take up arbitrary time but must adhere to strict time con-
straints. For example, a large number of images for Virtual Reality must be gener-
ated per second so that the human observer perceives movements in the virtual
world as continuous and natural. The required number of images per second depends
on the viewers and their current situation – typically 60 images per second are
needed to meet the demand for real time (if the viewers have large amounts of alco-
hol in their blood, however, four images per second may be sufficient). This means
that the computer system may not take more than 16 ms to generate images. Real-
time requirements are even more demanding for haptic feedback. Typically, the VR
system must generate haptic stimuli 1000 times per second in order to create a
convincing sensation of touch.

We call a VR system a computer system consisting of suitable hardware and
software to implement the concept of Virtual Reality. We call the content rep-
resented by the VR system a virtual world. The virtual world includes, for
example, models of objects, their behavioral description for the simulation
model and their arrangement in space. If a virtual world is presented with a
VR system, we speak of a virtual environment for one or more users.

R. Doerner et al.

7

1.1.3 Suspension of Disbelief

The Matrix in the feature film of the same name and the Holodeck in the television
series Star Trek both transport a person into Virtual Reality. There is one crucial dif-
ference: In the Matrix, people do not know that they are in Virtual Reality at all. On
the contrary, people enter the Holodeck on the starship Enterprise consciously.
They go through a door into the virtual environment and know that it is a simulation,
but in reality, they are still in a large hall. Nevertheless, people seem to perceive the
Holodeck as very real. Does it not bother you to know that you are in Virtual Reality?
Can the illusion of a virtual world be achieved at all if you are aware of being in
Virtual Reality?

Let us consider the following experiment. We put a helmet on a person, in which
two small monitors, one for each eye, are attached. The person can no longer per-
ceive the environment visually, but only the images in the monitors, which are fed
in from outside. A sensor is built into the helmet which can determine how the per-
son is turning their head and where the person is located. This information is used
to adjust the generated images to the current head position: If the person looks up,
images from the sky are shown; if the person tilts their head downwards, then he or
she sees the ground; and if the person takes a step forward, then images from this
new position are shown. We use a computer to create images of the roof of a virtual
skyscraper and want to give the impression that the person is standing at a dizzy
height on the edge of a huge building. If you observe people in this situation, you
often see that they move forward very slowly and carefully. The closer they get to
the edge of the building, the faster their pulse and breathing become. Their hands
get wet. These are typical fear reactions that are caused by a danger such as an abyss
in reality. The people are always aware that the building is only virtual, that in real-
ity there is no abyss at all, and that they are standing safely in a room. Nevertheless,
they succumb to the illusion of Virtual Reality and react to it as if it were the
real world.

In certain situations, people possess the ability to blank out the obvious contra-
diction between a fictitious world and reality. Besides, people want to do this. The
philosopher Samuel T. Coleridge coined the expression “willing suspension of dis-
belief”. For entertainment purposes, people are prepared to accept the figure of
Scrooge McDuck and his virtual world Duckburg as existing, even if it is known
that this character consists only of hand-drawn lines and that in reality older drakes
do not bathe in money. In dubbed films, one fades out the fact that James Bond as
an English agent obviously does not always speak perfect Japanese or German.
However, this “suspension of disbelief” is not easy to describe and is sometimes
selective. Cartoonist Gary Larson describes the indignation of his readers about the
fact that in one of his cartoons a polar bear is surrounded by penguins. Readers criti-
cized that this is impossible since polar bears live at the North Pole, but penguins
live at the South Pole. However, at the same time readers are not in the least both-
ered by the fact that the penguins in the cartoon talk to each other and the polar bear
has disguised himself as a penguin.

1 Introduction to Virtual and Augmented Reality

8

For the creation of Virtual Reality, this human characteristic of blanking out dis-
belief means that one does not have to resort to drastic measures. Fortunately, there
is no need to drill holes in the top of someone’s skull and directly manipulate the
brain in order to put people into a virtual environment in which they feel present. In
this way, Virtual Realities can be created at different stages of technological
advancement, where the ultimate stage would allow the creation of the perfect
Virtual Reality discussed above. In fact, highly believable virtual environments can
already be created today with relatively little effort.

1.1.4 Motivation

What is the point of all this? Why would you want to build a virtual environment at
all and put people into it? What are the advantages of dealing with Virtual Reality?
There are many answers to these questions. We will consider some of them in the
following.

If the world simulation is performed by a computer, then Virtual Reality is the
interface between the computer system and the human being. Under this perspec-
tive, every Virtual Reality implements a human–machine interface. This interface
can be characterized as being particularly natural and intuitive. For example, instead
of using a mouse and keyboard, the use of a steering wheel and foot pedals for a car
racing game is a step towards Virtual Reality that makes the operation of the virtual
car and its navigation through the virtual world more natural. A perfect Virtual
Reality can then be understood as a perfect user interface for software. Users can
simply act as they are used to doing in the world. Ideally, they are completely
unaware of the fact that they are interacting with a computer program. In this
respect, the engagement with Virtual Reality can be understood as a methodical
approach to finding new forms of human–computer interaction by working towards
a vision of a perfect Virtual Reality. Even though this vision may never be achieved
(or one may not even want to achieve this, because extensive manipulation of
humans is ethically questionable), valuable new ideas can emerge along the way
and innovative user interfaces can be designed to make it easier for humans to han-
dle computer systems.

By exploiting its sophisticated visualization capabilities, Virtual Reality can also
make it easier for people to absorb and understand data. For example, through years
of study and experience, architects have acquired the ability to imagine a building
in their minds by looking at 2D construction plans – many real-estate investors do
not have this ability. Virtual Reality can also visualize the data in the construction
plans for clients in such a way that they can get a good impression of the building
and make more informed decisions regarding alternative design choices. Complex
results of computer simulations, e.g., the calculation of how air would flow around
a newly planned vehicle, can be visualized directly on a virtual vehicle. Engineers
and designers can work together in the virtual world to develop aesthetically

R. Doerner et al.

9

pleasing body shapes that avoid air turbulence and reduce the vehicle’s air resis-
tance. Even completely abstract data can be displayed in Virtual Reality. In this way,
an analyst can be transported to a virtual world of financial data.

Virtual realities offer researchers tools to find out more about human perception.
For example, experiments can be conducted in Virtual Reality that help to gain
insight into how people orient themselves in three-dimensional space. In addition to
gaining knowledge in science, Virtual Reality can also offer a very practical use
with tangible financial benefits, as case studies show, e.g., on the use of VR in con-
struction (see Chap. 9).

Hardly any car is built today without using methods from Virtual Reality. For
example, designs can be visualized more realistically, and prototypes can be created
more cost-efficiently than in traditional model-making (see Chap. 9). How the
robots in production lines of automobiles are adjusted to a new car model can be
simulated in a virtual world and presented in Virtual Reality before the start of pro-
duction. The analysis of the planning and the elimination of planning errors in a
virtual plant or a virtual factory is much easier and more cost-efficient than perform-
ing it in the real world.

Pilots take advantage of Virtual Reality during their training in flight simulators.
By not using a real aircraft, the airline saves money. But training in Virtual Reality
does not only have financial advantages. As no kerosene is burned, less CO2 is emit-
ted, which benefits the environment. In comparison to a real aircraft, the pilots can
rehearse extreme situations without danger. In addition to flight simulators, simula-
tors of ships, trams, trains, and trucks are also commonly used. German air traffic
control even operates a virtual airport where air traffic controllers can train. Another
example is the training of personnel for complex systems, such as operating the
control center of a coal-fired power plant or maintaining aircraft. Virtual Reality
allows training to take place even before the real object is completed, so that well-
trained personnel are already available at the time of commissioning. In addition to
training in the civilian sector, Virtual Reality also has application potential in the
military. For example, crews of fighter jets or tanks are trained in virtual
environments.

Interested people can buy tickets to an attraction that allow them to drive a high-
speed train through a virtual landscape sitting in a highly realistic mock-up of a
locomotive. This is an example of how Virtual Reality is used for entertainment
purposes in simulation games. Other game genres also benefit from the use of
Virtual Reality, so players can experience adventures in fantastic worlds in adven-
ture games. Very close to reality, tourists can experience historical cities such as
ancient Rome by visiting them in Virtual Reality. Museums can offer engaging sen-
sual experiences in virtual environments. Artists use Virtual Reality for installa-
tions. Virtual Reality arouses interest and can serve as an eye-catcher – accordingly,
it offers potential for marketing, for example at trade show booths.

In medicine, there are possible applications in the field of training. Doctors can
practice and plan operations in Virtual Reality without any risk for their patients.
Nursing staff can train in the handling of patients. Virtual Reality can even be used

1 Introduction to Virtual and Augmented Reality

10

for treatment. As already described, people can be positioned at a virtual abyss. In
this way, people with a fear of heights can be confronted with critical situations and
their phobia can be treated. In Virtual Reality, the factors that cause fear can be
safely controlled and dosed during treatment.

The range of possible applications of Virtual Reality can be significantly
expanded by trying not to completely cut people off from reality when placing them
in a virtual environment. Instead, one can try to integrate parts of a virtual world into
reality. Let us look again at the example already described where we have placed a
person on the edge of a virtual abyss. Would it not be more effective if we did not
have to put a helmet on the person and instead could place him or her on a large
glass plate? An image from the virtual world would be projected onto this glass
plate from below instead of showing it on the small monitors in the helmet. If the
person looks down, he or she can see not only the virtual edge of the building but
also their own real feet. So the person still perceives reality, but additionally, at some
points, integrated parts from a virtual world that fit into reality. The idea of aug-
menting images from reality in real time by exactly fitting virtual partial images
opens up a whole field of new application possibilities for VR technologies. Another
example is the use of special binoculars, similar to the well-known coin-operated
binoculars, that are permanently installed at viewing points. When looking through
the binoculars, the user sees not only reality but also parts of a virtual world that are
displayed according to the area of reality currently being viewed. For example, if
the observer is looking at the tower remains of an old castle ruin, the binoculars can
display a virtual tower at exactly this point, just as it might have appeared several
centuries ago. In this case, one no longer speaks of Virtual Reality (VR) but of
Augmented Reality (AR). The virtual and real portions of an image can vary. In fact,
there is a smooth transition. One speaks of AR when the real parts predominate. In
Sect. 1.2, we look at VR in more detail, while AR is the subject of Sect. 1.3.

So, there are many reasons to learn more about the theoretical foundations of VR
and AR as well as the practice of creating convincing virtual and augmented worlds.
If one embarks on this endeavor, one is confronted with many questions. What do
you have to consider if you want to put people into a virtual world? What makes it
believable? What is conducive to achieving suspension of disbelief – and what can
destroy it? What effort must be made in a particular application area to achieve this?
How is the transmission of different stimuli from a VR technically realized? Which
devices are there to make it easier for a person to immerse him or herself in Virtual
Reality? How is a computer system structured that generates the corresponding
stimuli, e.g., generates images from a VR close to reality? What is the system archi-
tecture of a VR system? Which interfaces are there, which norms, and which stan-
dards? How do you build simulation models for the world simulation of VR? How
does the simulation get information about the actions of people? How can people
move in a virtual world? Which algorithms are used in VR? What is the runtime of
these algorithms? How can the VR system meet real-time requirements? When
looking at AR in comparison to VR, additional questions arise: Which technology is
used to include parts of a virtual world into reality? What is the relationship between

R. Doerner et al.

11

virtual and real objects? Can they occlude each other? How is a virtual object illu-
minated with a real light source? How does a virtual object cast a shadow on a real
object? How can a virtual object be placed on top of a real object?

In science, but also in practical implementation, many people have already dealt
with such questions and contributed to finding answers. In this textbook, basic sci-
entific knowledge in the field of VR and AR is compiled and its practical application
is illustrated with case studies. The knowledge conveyed in the book is a solid foun-
dation for all those who want to use VR and AR practically, but also for those who
want to actively contribute to the vision of a perfect Virtual Reality through research
and development in the field.

1.2 What Is VR?

As should be clear from the introductory remarks above, one can approach the field
of VR in very different ways. At the visionary end of the spectrum, e.g., in science
fiction movies and popular culture, “perfect VR” is presented as a comprehensive
simulation which is no longer distinguishable from human reality. At the practical
end of the spectrum, VR has long been established as a tool for product develop-
ment in many industrial sectors. In this section, we examine how the scientific and
technological field of VR is characterized by the members of the research community.

VR is a relatively young field of science and its development is strongly driven
by rapid advances in the underlying hardware. In view of this, it may come as no
surprise that the scientific discipline of VR has so far not produced a uniform defini-
tion of “Virtual Reality”. Nevertheless, there is very broad agreement on the essen-
tial or desirable features of VR. The following characterizations of VR take different
perspectives to differentiate VR systems from traditional human–computer inter-
faces: the focus on technological aspects, the classification of VR as a new form of
human–computer interaction, and the emphasis on the mental experience of VR.

1.2.1 Technology-Centered Characterizations of VR

“The ultimate display would, of course, be a room within which the computer
can control the existence of matter. A chair displayed in such a room would be
good enough to sit in. Handcuffs displayed in such a room would be confin-
ing, and a bullet displayed in such a room would be fatal. With appropriate
programming such a display could literally be the Wonderland into which
Alice walked.” (Sutherland 1965)

1 Introduction to Virtual and Augmented Reality

12

An iconic feature of VR in many photos or other visual depictions is the special
input and output devices worn by the users such as head-mounted displays (HMDs),
stereo glasses, spatial tracking devices or data gloves. Accordingly, one way to char-
acterize VR is by highlighting its technological components. However, there is a
certain danger with technology-centered approaches that such definitions of VR
may refer too much to specific input and output devices (e.g., “wired data suits”),
which become quickly outdated by technological progress. “Future-proof” defini-
tions of VR should also be compatible with visionary ideas like Sutherland’s
Ultimate Display or the Holodeck from Star Trek. The following technology-ori-
ented characterizations from the early years of VR still apply to today’s VR systems:

These characterizations of VR can perhaps best be understood in contrast to “tra-
ditional” computer graphics, as the science and technology field from which VR
evolved. VR builds on 3D content from computer graphics but focuses in particular
on real-time computer graphics. Matching the 3D content, three-dimensional dis-
plays are used for its presentation. In the case of the sense of vision, this is achieved
using stereoscopic displays. Moreover, 3D content is often presented in a multi-
sensory manner by addressing further senses such as hearing or touch, for which
spatial audio and haptic feedback devices are employed. Besides 3D presentation,
VR systems also facilitate 3D interaction. 3D interaction devices are input devices
whose position and orientation can be tracked in 3D space. Whereas in desktop
systems the classic mouse and other “pointing” devices such as trackpads only pro-
vide 2D positional information, VR systems make use of 3D tracking to realize, for
example, natural pointing gestures. By tracking body and finger movements, grasp-
ing of virtual objects can be simulated. Interactivity includes users receiving sen-
sory feedback on their inputs, e.g. by mapping hand movements directly onto a
virtual hand model. The tracking of the user’s position and orientation, particularly
head-tracking, is the basis for another characteristic of VR systems: Viewer-
dependent image generation. If a VR user moves in real space, the 3D environment
is automatically displayed from her new perspective. Steve Bryson (2013) suc-
cinctly summed up this quintessential property of VR: “If I turn my head and noth-
ing happens, it ain’t VR!”

“Virtual Reality (VR) refers to the use of three-dimensional displays and
interaction devices to explore real-time computer-generated environments.”
(Steve Bryson, Call for Participation 1993 IEEE Symposium on Research
Frontiers in Virtual Reality)

“Virtual Reality refers to immersive, interactive, multi-sensory, viewer-
centered, three-dimensional computer-generated environments and the com-
bination of technologies required to build these environments.” (Carolina
Cruz-Neira, SIGGRAPH ’93 Course Notes “Virtual Reality Overview”)

R. Doerner et al.

13

Immersion is often considered as an essential feature to distinguish VR from
other kinds of human–computer interfaces. Unfortunately, the term immersion is
used in non-uniform ways in the literature. Following Slater and Wilbur (1997), we
take a technology-centered view of immersion. According to Slater and Wilbur
(1997), immersion is based on four technical properties of display systems: Inclusive
(I) indicates the extent to which the user’s sensory impressions are generated by the
computer, i.e., the user should be largely isolated from the real environment.
Extensive (E) refers to the range of sensory modalities accommodated. Surrounding
(S) indicates the extent to which the presentation is panoramic rather than limited to
a narrow area. Vivid (V) indicates the resolution, fidelity and dynamic range of
stimuli within a particular sensory modality. Immersion is therefore a gradual char-
acteristic that is achieved to different degrees by different displays. For example,
HMDs are usually considered highly immersive displays, since the visual sensa-
tions of the user are exclusively computer-generated. However, an HMD with a
small field of view is less immersive than an HMD with a wider field of view.
Similarly, multi-wall projections like CAVEs (see Sect. 9.2) are more immersive
than single-screen projections.

The goal of total immersion is achieved by today’s VR displays to varying
degrees. The terms immersive VR or fully immersive VR usually refer to VR systems
based on HMDs or CAVEs. Desktop systems that provide stereoscopic displays and
head-tracking are sometimes referred to as non-immersive and large single-screen
or table-top displays as semi-immersive VR.

Besides the use of the term immersion as a technical property of VR displays,
some authors also use the term to describe a mental quality of the VR experience
(e.g., Witmer and Singer 1998). To differentiate between the two uses, one also
speaks of physical immersion and mental immersion (Sherman and Craig 2003) and
sometimes also of physiological and psychological immersion (Sadowski and
Stanney 2002).

Table 1.1 summarizes the distinguishing features of VR as compared to conven-
tional computer graphics.

Table 1.1 Features of VR as compared to conventional computer graphics

3D Computer Graphics Virtual Reality

Visual presentation only Multimodal presentation (i.e., addressing several senses,
e.g., visual, acoustic and haptic)

Presentation planning/rendering not
necessarily in real-time

Real-time presentation planning and rendering

Viewer-independent image generation
(exocentric perspective)

Viewer-dependent image generation(egocentric
perspective)

Static scene or precomputed
animation

Real-time interaction and simulation

2D interaction (mouse, keyboard) 3D interaction (body, hand and head movements and
gestures) + speech input

Non-immersive presentation Immersive presentation

1 Introduction to Virtual and Augmented Reality

14

1.2.2 VR as an Innovative Kind of Human–
Computer Interaction

Another way to characterize VR is to emphasize the goal of creating human–
computer interfaces, which, in comparison to traditional user interfaces, enable
much more natural or intuitive interaction with the three-dimensional simulated
environment (see Fig. 1.2).

Graphical user interfaces (GUIs) and the associated WIMP (Windows, Icons,
Menus, Pointing) interaction style represent a paradigm of human–computer inter-
action that has been dominant for several decades. The WIMP paradigm, which was
originally developed for document-processing tasks, however, turns out to be rather
inefficient when manipulating 3D content. For example, the task of repositioning an
object in 3D space can be naturally achieved in VR by grasping and moving the
object. In 2D GUIs, however, this task usually has to be broken down into several
subtasks, e.g., first move the object in the xy-plane, then move in the z-direction.
Besides the additional motor effort (e.g., two 2D mouse movements instead of one
hand movement in 3D space), this also requires an additional cognitive effort for
remembering when and how to change the system control state (e.g., how do you
tell the computer that the next 2D mouse movements should be interpreted as trans-
lation in the z-dimension of 3D space?). As a prerequisite for successfully complet-
ing the task, the user must first learn how the 3D task can be broken down into a
sequence of 2D subtasks, i.e., there is also a greater learning effort.

“The promise of immersive virtual environments is one of a three- dimensional
environment in which a user can directly perceive and interact with three-
dimensional virtual objects. The underlying belief motivating most virtual
reality (VR) research is that this will lead to more natural and effective
human–computer interfaces.” (Mine et al. 1997)

Fig. 1.2 Example of natural interaction: A virtual switch is turned like a physical switch using
one’s hand

R. Doerner et al.

15

Virtual and Augmented Reality, along with other innovative forms of human-
computer interaction, are examples of so-called post-WIMP interfaces. Post-WIMP
interfaces build on interaction techniques that exploit prior knowledge and skills
that the human user has already learned from everyday interactions with physical
objects. For example, a person knows from everyday experience how one can use
one’s body to manipulate objects and has expectations of how these objects will
typically behave as a consequence of this interaction. By using this knowledge,
learning and further mental effort in natural interaction techniques may be greatly
reduced when compared with WIMP techniques.

The following quote from Robert Stone explains the goal of intuitive user inter-
faces in the context of VR systems:

Compared to other innovative forms of human–computer interaction, VR offers
great potential for an especially thorough realization of intuitive human–machine
interfaces in the sense of Robert Stone. However, the goal of completely natural
forms of interaction has arguably not yet been achieved nor is it always aimed for in
today’s VR systems. Nevertheless, through the use of 3D input and output devices,
interactions in existing VR systems are typically much more natural than is the case
with conventional 2D interfaces.

Metaphors represent another important aspect in the design of human–computer
interfaces. Metaphors aim to explain the user interface through analogies with
everyday life experiences. Within the WIMP paradigm, well-known examples of
metaphors are the desktop, folders with documents in them, or cutting and pasting
for transferring parts of one document to another. In the case of VR, the term Virtual
Reality itself is a metaphor that makes the analogy to reality as such. The VR meta-
phor conveys to the user that the objects in the simulated world behave realistically
and that natural forms of interaction are supported. Another aspect of the VR meta-
phor is that the user is situated within the simulated world and experiences it “from
the inside” instead of looking at the simulated world “from the outside” through a

“An intuitive interface between man and machine is one which requires little
training … and proffers a working style most like that used by the human
being to interact with environments and objects in his day-to-day life. In other
words, the human interacts with elements of his task by looking, holding,
manipulating, speaking, listening, and moving, using as many of his natural
skills as are appropriate, or can reasonably be expected to be applied to a
task.” (Stone 1993)

“The primary defining characteristic of VR is inclusion; being surrounded by
an environment. VR places the participant inside information.” (Bricken 1990)

1 Introduction to Virtual and Augmented Reality

16

window as with conventional desktop computers. According to the VR metaphor –
which could be implemented using future perfectly immersive systems – the user is
totally isolated from physical reality so that all sensory impressions are computer-
generated. Fig. 1.3 contrasts the interaction models of conventional desktop com-
puters with 2D displays and VR.

1.2.3 Mental Aspects of the VR Experience

In perfect VR, all of the sensory impressions of the user would be generated by
the computer, in the same quantity and quality as people are used to in the real
world. Human actions in VR would have the same effects and virtual objects would
affect people as they do in the real world. Today’s VR systems are by no means
perfect, but the development of VR technology is aimed at ever more realistic expe-
riences. But if the computer-generated sensory level is no longer (or hardly) distin-
guishable from physical reality, what effects does this have on higher-level processes
of human perception? Does the user perceive the pixels of the visual displays as
pictures or does the feeling of being at another place emerge? What other properties
characterize the mental experience of VR? How can you measure or otherwise
quantify these properties? How does this inform the design of virtual worlds and the
setup of VR systems?

In VR research, these and similar questions regarding the mental experience of
VR have played an important role right from the start. The fact that these questions
are still the subject of research shows on the one hand their relevance for the research
area of VR, but on the other hand that no generally accepted answers have yet
become established. Unfortunately, the relevant terms in the literature such as

“At the heart of VR is an experience – the experience of being in a virtual
world or a remote location” (Rheingold 1991)

Fig. 1.3 Interaction models for desktop computers and VR: (a) When looking at the 2D display of
a desktop computer, the user perceives both the real world and the computer-generated environ-
ment. (b) According to the VR metaphor the user is completely situated within the computer-
simulated virtual world and fully isolated from the physical world. (c.f. Rekimoto and Nagao 1995)

R. Doerner et al.

17

“immersion” and “presence” are sometimes used with different meanings. As noted
above, we reserve the term “immersion” in this book, consistent with much of the
research community, to exclusively describe the technical properties of VR systems.
In contrast, some authors also use the term to describe the mental sensations of VR
experiences. When reading different texts on VR, it is necessary to pay close atten-
tion to how key terms such as immersion are used. The following presentation of the
most important concepts for the analysis of the mental experience of VR essentially
follows the terminology of Slater (2003, 2009).

Presence is the central concept for describing the mental aspects of the VR expe-
rience. In a broad sense, it refers to the feeling of being within the virtual environ-
ment that is displayed by an immersive VR system (“being there”). The concept of
presence was originally developed in the context of telerobotics. The aim was to
provide the operator with the most realistic impression possible of the robots’ envi-
ronment during remote control of robots, in particular using immersive VR tech-
nologies such as HMDs and data gloves. In the early 1990s, the concept of presence
was transferred to VR (Held and Durlach 1992; Sheridan 1992). Evidence for (the
feeling of) presence is, for example, when VR users react to the virtual environment
as if it were a real environment. The concept of presence can be further decomposed
to involve three different components:

First, the place illusion refers to the feeling of being in the location presented by
the VR system (Slater 2009). The place illusion is the human response to a given
level of immersion. It tends to arise naturally in highly immersive systems, but is
more difficult to achieve with desktop systems (Slater 2009). Particularly important
is the ability of the immersive VR system to display the scene from the perspective
of the viewer. If the user turns their head, then the virtual environment should still
be visible, just from a different perspective. If this is not the case, e.g., due to a
single-screen setup, a break in presence may occur.

Second, the plausibility illusion arises when the events of the simulated environ-
ment are perceived as if they are really happening (Slater 2009). While the place
illusion is largely induced by how the virtual world is presented, the plausibility
illusion has to do with the content of the simulated world. The plausibility illusion
relates in particular to events that affect the user but were not initiated by the user
him or herself (e.g., a projectile suddenly flying towards the user or a virtual person
who appeals to the user). The believability of the virtual environment seems to be
more important than sensory realism for the emergence of the plausibility illusion.
For example, a visually perfectly represented virtual person who communicates
only in simple phrases would lead to a break of the plausibility illusion.

Third, involvement refers to the level of user attention or interest in the simulated
world (Witmer and Singer 1998). Involvement, like the plausibility illusion, is
mainly related to the content of the virtual environment. For example, in an immer-
sive VR system, users might feel strongly that they are part of the simulated world
(convincing place illusion), but may still get bored (low involvement).

To test whether and to what degree the feeling of presence arises with users,
experimental studies with test persons are necessary. Different users may experi-
ence different levels of presence in one and the same VR application. One way to

1 Introduction to Virtual and Augmented Reality

18

record presence is to use special questionnaires (e.g., Witmer and Singer 1998).
Furthermore, the behavior of the experiment’s participants can be observed, for
example movements (e.g., a user ducks away when an object comes flying towards
them at high speed) and emotional expression such as fright. Other studies measure
physiological parameters such as heart rate or skin resistance, which are often inter-
preted as signs of stress. In Slater et al. (2010) a “VR in VR” scenario is proposed
as a further possibility for quantifying presence, in which the user can configure a
VR system in the simulated world that generates a maximal level of presence.

Finally, the feeling of presence is not limited to VR, but may also arise with other
media, such as books, movies or arcade machines, though perhaps not equally
intensely. A further discussion on this can be found in Sherman and Craig (2003),
for example.

1.3 What Is AR?

In the literature, a large number of different and sometimes contradictory definitions
of AR exist. While Ivan Sutherland was the first to create an AR system in the late
1960s (Sutherland 1968), the definition according to Azuma from 1997 is widely
used in science.

According to Azuma (1997), an AR system (see also Sect. 1.6) has the following
three characteristic features: (1) It combines reality and virtuality. (2) It is interac-
tive in real time. (3) The virtual contents are registered in 3D. While the second
feature is also found in VR, the other two aspects differ significantly from VR. The
combination of reality and virtuality is typically achieved by overlaying reality with
(artificial) virtual content. That is, an observer (the AR user) simultaneously per-
ceives the real environment and the virtual objects within it as a coherent whole.
The virtual content allows for real-time interaction. Furthermore, the virtual content
is registered in 3D (i.e., geometrically). This means that in an AR environment, a
virtual object has a fixed place in reality and, as long as it is not changed by user
interaction or changes itself, e.g., by animation, it remains there. In other words,
from the user’s perspective, it behaves exactly like a real object that would be in that
location. As registration in 3D space and visual superimposition occur in real-time,

“Augmented Reality (AR) is a variation of Virtual Environments (VE), or
Virtual Reality as it is more commonly called. VE technologies completely
immerse a user inside a synthetic environment. While immersed, the user can-
not see the real world around him. In contrast, AR allows the user to see the
real world, with virtual objects superimposed upon or composited with the
real world. Therefore, AR supplements reality, rather than completely replac-
ing it.” (Azuma 1997)

R. Doerner et al.

19

this does not change even if the user changes their perspective and therefore per-
ceives a different part of the environment.

In the domain of popular science, the term AR is often used to refer to examples
limited to the first of the features described by Azuma (i.e., the augmentation of
reality by virtual content), while interactivity, real-time capability and especially 3D
registration are frequently ignored.

More generally, AR may be defined as follows:

Implicitly, this definition also includes the aspects of interactivity and real-time
capability, though it considers AR from the perceptual perspective. While AR today
(as in much of this book) is mostly limited to the augmentation of visual perception,
it can, just like VR, extend to any other form of sensory experience, including audi-
tory, olfactory, gustatory, haptic (including tactile), vestibular, proprioceptive, ther-
moceptive and nociceptive perception. In contrast to VR, it is not intended to replace
the sensory impressions completely by virtual ones. Rather, real and virtual sensory
impressions are mutually superimposed.

In addition to AR, the term Mixed Reality (MR) is often used, indicating that real
and virtual content are mixed together. Although MR and AR are often used inter-
changeably, MR, unlike AR, represents a continuum. The MR taxonomy of the real-
ity–virtuality continuum introduced by Paul Milgram et al. (1995) is widely accepted
in the research community (see Fig. 1.4).

While Azuma sees AR as a special case of VR, Milgram et al. define AR as one
representation of MR, whereas MR and VR are disjunct. Thus, while using the AR
definition from Azuma, we will apply the taxonomy from Milgram throughout the
remainder of this book. Furthermore, although the term XR as an abbreviation for
eXtended Reality goes back to a patent application by the photographer Charles

Augmented Reality (AR) refers to the immediate and seamless perception of
the real environment enriched by virtual content in real-time, the latter resem-
bling reality to the largest extent possible regarding its characteristics, appear-
ance, and behavior, so that (if desired) sensory impressions from reality and
virtuality may become indistinguishable (for any senses).

Reality–Virtuality Continuum (according to Milgram): Mixed Reality (MR) is
a continuum that extends between reality and virtuality (Virtual Reality),
whereby the share of reality continuously decreases while that of virtuality
increases. As far as the share of virtuality is prevailing here, without the envi-
ronment being completely virtual (Virtual Reality), one speaks of Augmented
Virtuality. If on the other hand the share of reality is larger, then we are talking
about AR.

1 Introduction to Virtual and Augmented Reality

20

Wyckhoff in 1961, it has also been used since then by Sony, for example, to describe
their X-Reality technology, or by Paradiso and Landay (2009) and others to describe
types of Cross-Reality, i.e., a crossbreed between a Virtual Reality and ubiquitous
sensor/actuator networks placed in reality. In this book, however, we will use the
currently most common variant, namely XR as a generic term for VR and MR (and
by that also AR). In this sense, the “X” may also be considered as a placeholder for
“V”, “A” or “M”. As the “X” resembles a cross, XR is also sometimes referred to as
Cross Reality (not to be confused with the concept of Cross-Reality mentioned
above).

“Virtual Reality (VR) replaces the user’s perception of the real environment
by a virtual world. In contrast, Augmented Reality (AR) augments or enhances
the perception of reality by virtual content – Diminished Reality (DR) removes
parts from the real environment. Augmenting, enhancing, deliberately dimin-
ishing, or otherwise altering the perception of the real environment in real
time is referred to as Mediated Reality” (Mann 1999)

Fig. 1.4 Reality–Virtuality Continuum. (According to Milgram et al. 1995)

R. Doerner et al.

21

VR replaces the perception of the user’s real environment by that of a virtual
world. AR enriches the user’s perception of the real environment by virtual content
(see Fig. 1.5). In Mediated Reality the perception of the real environment is aug-
mented, enriched, consciously diminished or otherwise changed in real time (Mann
1999). If the perception of reality is consciously reduced, i.e., real contents of the
environment are deliberately removed from the perception of the user in real time,
this is called Diminished Reality (DR). While not necessarily following the extended
taxonomy of Mann et al. (2018), we use will use their definitions of Mediated
Reality and Diminished Reality in this book. Further, we will consider eXtended
Reality (XR) to be a subset of Mediated Reality. For clarification of the taxonomy
as used in this book, refer to Fig. 1.6.

Comparing AR with VR (see Table 1.2), it becomes obvious that many basic
characteristics are very similar, if not identical. Both use a multimodal presentation,
in that both interaction and simulation take place in real time, both visualize virtual
3D objects, and both use the egocentric perspective, i.e., the visualization is (at least
conceptually) correct in terms of perspective for the respective viewer (although this

Fig. 1.5 AR compared to VR. In contrast to VR, the user interacts with the virtual content as well
as with the real environment. Furthermore, an interaction between the real environment and the
virtual content can take place. Virtual content and the real environment are not strictly separated
from each other, but can overlap, be superimposed or penetrate each other

Fig. 1.6 Euler diagram
showing the relationships
between Augmented
Reality (AR), Augmented
Virtuality (AV), Mixed
Reality (MR), Virtual
Reality (VR), eXtended
Reality (XR), Diminished
Reality (DR) and Mediated
Reality

1 Introduction to Virtual and Augmented Reality

22

is not always the case with actual VR and AR systems). However, there are also a
number of differences: The most obvious difference is that in VR all content is
purely virtual, whereas in AR the virtual content is embedded in the real world.
Accordingly, there is no real immersion in AR like there is in VR. For its application
to AR, the concept of immersion would have to be significantly expanded. In AR,
the focus is rather on the correct superimposition or fusion of reality and virtuality.
This is achieved by registration. VR and AR also differ with respect to navigation.
While in VR implicit navigation (the user moves in the virtual world analogous to
movement in reality) is limited due to the inherent limitation of the dimensions of
the room, the tracking area, the cable length of the HMD or the dimensions of the
CAVE (see Sect. 1.4), navigation in AR is often unrestricted. For this purpose, VR
additionally enables explicit navigation, in which the user changes their point of
view by changing the camera position using specific interaction techniques. This
allows, for instance, the user to fly through a virtual world, which is obviously not
possible in AR at all. VR takes place primarily in closed rooms and these are usually
stationary (location-bound) systems. Although there are many AR applications for
indoor use, AR is generally not limited to these. Many AR applications are mobile
and used outdoors. Also, the lighting and scaling of the virtual contents are funda-
mentally different. While in VR only the virtual lighting is of importance, in AR
there is a mutual influence of the real and virtual lighting situation, although this is
only rudimentarily or not at all considered by many applications. In VR, content can
be scaled as desired. A user can, therefore, move between molecules or microbes as
well as holding the entire Milky Way in their hands. With AR, in contrast, the real
environment always provides a frame of reference, so that virtual objects usually
have to be on a scale of 1:1. Of course one could also superimpose the Milky Way

Table 1.2 Features of AR as compared to VR

Virtual Reality Augmented Reality

Multimodal presentation Multimodal presentation
Real-time presentation planning and
rendering

Real-time presentation planning and rendering

Viewer-dependent image
generation(egocentric perspective)

Viewer-dependent image generation(egocentric
perspective)

Real-time interaction and simulation Real-time interaction and simulation
Virtual 3D objects Virtual 3D objects
All content purely virtual Combination of reality and virtual content
Immersive presentation (central aspect) Immersive presentation (open issue)
Tracking Tracking and geometric (3D) registration
Implicit (restricted) and explicit
navigation

Implicit (unrestricted) navigation

Stationary Stationary or mobile
Indoor Indoor and outdoor
Virtual illumination Mutual influence of real and virtual illumination
Arbitrary scaling of the user perspective User perspective always unscaled (virtual models

may have limited scalability)

R. Doerner et al.

23

in AR in such a way that the user is holding it in their hands. However, the percep-
tion would be fundamentally different. While in VR the users get the illusion that
they have shrunk to the size of a microbe or grown to the size of a galaxy, in AR the
users have the impression of holding a model of the Milky Way, since their own size
remains unchanged in relation to the real environment.

Sometimes you may hear the question: Which one is better: VR or AR? This
question cannot be answered because VR and AR are aimed at different application
scenarios. There will rarely be a situation where you have a choice between VR and
AR when it comes to implementing them. Rather, the application scenario usually
determines the type of system to be used. This, however, does not mean that VR and
AR cannot complement each other – in fact, quite the opposite! Thus, for example,
in a purely virtual environment (VR), the details of a complex machine can be
explained to trainees, problem and danger scenarios can be simulated and options
can be tested that do not exist in reality (at least not on site). By using AR, the
acquired knowledge can then be tested and further consolidated on the real machine
with virtual support. For instance, it is possible to look into a component using vir-
tual X-ray vision, etc. Basically VR, in contrast to AR, has no limitations: neither in
content nor in physics (in a VR you can define your own physics!). On the other
hand, the continuous use of VR is – at least currently – limited to rather short peri-
ods of time (minutes rather than hours). Since you always have to leave the real
world for VR, this will not change fundamentally (unless we will live in the matrix
one day). AR, on the other hand, has the potential to be used always and everywhere
(24/7), although this potential currently cannot be fully exploited due to limitations
in software and hardware.

1.4 Historical Development of VR and AR

The history of VR as a field of science and technology began in the 1960s. As part
of his research on immersive technologies, Ivan Sutherland (1965) wrote “The
Ultimate Display”, in which he described the vision of a room “within which the
computer can control the existence of matter”. In his pioneering work, Sutherland
took the first step towards connecting the computer with the design, construction,
navigation, and experience of virtual worlds, even before the personal computer
(PC) was invented (1970). In 1968, Sutherland created a Head-Mounted Display
System consisting of a data helmet and a mechanical and alternatively ultrasound-
based tracking system (see Fig. 1.7a). This system (Sutherland 1968) is often erro-
neously called the “Sword of Damocles” in the literature, although this was only the
name of the mechanical tracking component of it. It enabled the viewer to view a
simulated, albeit simple, 3D environment in the correct perspective. This system
can also be regarded as the first AR system due to its see-through property.

The VIEW project (Virtual Environment Interface Workstations) of the NASA
Ames Research Center in the mid-1980s had the goal of developing a multi-sensory
workstation for the simulation of virtual space stations.

1 Introduction to Virtual and Augmented Reality

24

Around 1987 Thomas Zimmermann described the “DataGlove”, a glove that was
equipped with glass fibers on the top of the hand to capture finger flexion. He and
Jaron Lanier jointly founded the company VPL. Lanier is often credited as the first
scientist to use the term “virtual reality”. Besides selling the “DataGlove”, VPL also
developed the “EyePhone” data helmet, a continuation of Sutherland’s Head-
Mounted Display from the 1960s. The LX version of the EyePhone offered a resolu-
tion of 442 × 238 pixels, while the HRX version offered 720 × 480 pixels.

Another milestone was the commercialization of electromagnetic trackers by
Polhemus 3Space in 1989. This made it possible to control or determine a target at
a certain distance from a computer.

Around the same time, the “BOOM” (Binocular Omni-Orientation Monitor) was
developed by Fake Spaces Labs, a 3D visualization device with two monochrome
cathode ray tubes, which received NTSC signals generated by a Silicon Graphics
Workstation VGX380 (8 RISC processors, 33 MHz per processor, 1280 × 1024 pix-
els at the graphics output). This workstation was able to generate 800,000 small,
transformed and shaded triangles per second that were also clipped at the border of
the drawing area. One of the first applications to take advantage of this feature was
the “Virtual Wind Tunnel” in the aerospace field by Steve Bryson in 1991.

Around 1988, various high-quality workstations for graphics were introduced to
the market. These included Ardent, Stellar, Silicon Graphics (SGI) and HP, of which
the SGI Reality Engine from Silicon Graphics prevailed on the worldwide market
for high-end graphics systems around 1995. Commercial VR software systems were
also introduced to the market. These were “RB2 – Reality built for two” by VPL,
“dVS” by the English company Division and “WorldToolKit” by Sense8
(1990–1995).

Fig. 1.7 Pioneering work in the field of VR/AR. (Left) Sutherland’s data glasses with 6-DOF
ultrasound tracking; image courtesy of © Ivan Sutherland, all rights reserved. (Right) Replica of
the MARS system of 1997 (Bell et al. 2002). (Image courtesy of © Steve Feiner, all rights reserved)

R. Doerner et al.

25

The term “Augmented Reality” was coined in the early 1990s by a pioneering
project at Boeing, which used information superimposed on the visual field to make
it easier for workers to lay aircraft cables (Caudell and Mizell 1992).

In 1993, a student of the Massachusetts Institute of Technology (MIT) founded
SensAble Technologies Inc., a company that developed and commercially distrib-
uted haptic devices. The “PHANTom” facilitated the experience of force feedback –
a great innovation at that time.

At the beginning of the 1990s, groundbreaking research was undertaken in the
field of Virtual Reality. For the first time, these made projection-based representa-
tions possible. The main representatives of these are the “Powerwall”, which con-
sisted of a stereo screen, the “CAVE” (Cave Automatic Virtual Environment), which
had four screens (developed at the University of Illinois in 1992), the “Responsive
Workbench”, which arranged a screen horizontally analogous to a table surface
(developed by GMD in 1993), and “iCONE”, which used semicircular screens.

With “MARS” (see Fig. 1.7b), the first mobile AR system was presented at
Columbia University in 1997 (Feiner et al. 1997). The publication of ARToolkit in
1998 (Kato and Billinghurst 1999) made computer vision-based tracking for AR
available and triggered a huge wave of research around the world.

After the development of electromagnetic tracking systems, ultrasonic tracking
systems came on the market, which in turn were replaced by optical tracking sys-
tems based on infrared light around the year 2000. PC clusters also replaced the SGI
Reality Engine II, reducing the price for the user to about one fifth. This made more
extensive research possible. Founded in 1993, the company Nvidia released their
GeForce graphics chips as a successor to the RIVA chip family in 1999. Introducing
advanced features to consumer-level 3D hardware, the GeForce is a milestone in
graphics hardware.

On the software side, Silicon Graphics developed a toolkit named OpenInventor
(originally IRIS Inventor) to support application development that also benefitted
VR applications in 1988. It was based on the ANSI standard PHIGS that introduced
the concept of a scene graph. The Open Graphics Library (OpenGL) debuted in
1992. With the success of the World Wide Web, VRML, a dedicated markup lan-
guage for VR, was developed and became an ISO standard in 1997. It would later
evolve into X3D. This was also the time when dedicated VR software companies
emerged and basic application areas were explored. For example, Henry Fuchs
investigated telepresence applications as well as medical applications with VR/AR
(Fuchs et al. 1998).

There is a regular exchange of information on the subject of VR throughout the
world. In the USA there have been VRAIS Symposia since 1991 and in Europe
EuroGraphics VE Workshops since 1993. In Japan the ICAT workshops have also
taken place since the beginning of the 1990s. In 1999 the IEEE VR Conference was
established as the successor to the VRAIS, which attracts about 500 participants
from all over the world every year. Similarly, dedicated conferences on the topic of
AR were introduced, e.g., ISMAR, the IEEE International Symposium on Mixed
and Augmented Reality, which started in 2002 as a merger of the International
Symposium on Augmented Reality (ISAR) and the International Symposium on

1 Introduction to Virtual and Augmented Reality

26

Mixed Reality (ISMR). Moreover, VR and AR have been featured in trade shows
such as the consumer electronics show (CES).

For several decades, access to VR and AR technology was limited to research
institutions, large industrial companies and government agencies, not least because
of the sometimes astronomical prices for the necessary hardware. This changed
abruptly with the introduction of the first high-end low-cost data glasses, Oculus
Rift, in 2013. Since the delivery of the consumer version in 2016 and the market
entry of numerous comparable displays (HTC Vive, Playstation VR, Microsoft’s
“Mixed Reality” displays, etc.) VR has experienced a boom. Approaches to AR
glasses have not yet been able to achieve this success. For example, Google Glass
has not yet prevailed in the market and Microsoft’s Hololens is considered a techni-
cal masterpiece but has not achieved widespread use quickly. A new phase in the
evolution of AR applications started in 2017 with the introduction of several major
software platforms for mobile AR on smartphones and tablet computers. Apple pre-
sented ARKit and Google presented ARCore, two modern frameworks that have
started to strongly influence the commercial development of AR applications.

1.5 VR Systems

If we summarize the previous requirements for a VR system, we get the following
situation: We need a computer system that recognizes the actions of users, simulates
the world under this influence, and lets users perceive a virtual world via appropri-
ate stimuli. Technically, three parts can be distinguished: input devices, output
devices, and the world simulation. As simply as the tasks of a VR system can be
broken down into these three parts, each subsystem can become rather complex:
Which sensors can detect a user’s actions? What coverage and resolution do these
sensors have in terms of space and time? What range of actions do these sensors
allow? Do the sensors restrict or limit the user? How can sensor data be passed on
to the simulation of the world? How can knowledge about the world be made avail-
able to the simulation? How can stimuli be generated in a suitable way for all per-
ception channels of the user? What is the quality of these stimuli? In what radius of
action can the user sensibly perceive these stimuli? How can it be ensured that the
response time of the overall system keeps pace with the actions of the user?

To demonstrate the importance of the individual subsystems of a VR system, let
us revisit a prior experiment and examine it in more depth. In that experiment, we
had placed a user in VR on the edge of a virtual abyss to observe the user’s reactions
to images of the user’s surroundings. The user’s position and viewing direction must
be tracked by the input devices all the time to be able to calculate the correct per-
spective for the user in the virtual environment. In the first variant of the experiment,
it was assumed that a sensor was built into the user’s helmet to provide this position
and orientation data. What does such a sensor look like? Is only the orientation of
the head recognized or also the direction of the eyes? What distances of movement
does such a sensor allow? In addition to tracking the head’s orientation, is it possible
to also track the position of the head so that bending forward is possible in the

R. Doerner et al.

27

virtual environment? Can you approach the virtual abyss by taking a step or two? Is
it possible to walk on the entire roof of the virtual skyscraper? In addition, is it pos-
sible to track the whole body with all limbs to visualize the user’s body as an avatar
to support self-perception? Would this body tracking recognize only roughly the
limbs or also individual finger movements, e.g., is it possible to press the elevator
button with one finger to leave the roof of the virtual skyscraper by elevator?

In the early days of Virtual Reality, it was common to attach many of the sensors
required here, and the input devices were mostly connected by cable (called wired
clothing). Examples of this are helmets with monitors or data gloves to recognize
finger movements. Electromagnetic and ultrasound-based devices have also been
developed over time. Such systems usually consist of transmitter(s) and receiver(s),
so that users had always something attached to their bodies. These days the trend is
towards optical processes based on one or more cameras, whereby a distinction is to
be made regarding the use of so-called markers or markerless systems. Markers are
patterns known to the VR system that can be detected automatically with high reli-
ability. Markers can be used to enable or stabilize the camera-based detection, as
they are designed in a way that they are easy to detect in camera images and less
prone to detection errors due to factors such as occlusions or unfavorable lighting
situations. In addition to RGB cameras, markerless systems often use so-called
depth cameras, which support the extraction of foreground objects and background.
By using multiple cameras, accuracy can be improved and situations can be avoided,
where tracking fails in single-camera setups due to occlusion.

Multiple, possibly redundant, input devices are often used at the same time to
ensure the best possible recognition of user actions. An example of this is the com-
bination of precise position tracking within a large action space in combination with
hand/finger tracking and voice input. Here, the sensor data must be aggregated in a
suitable form (sensor fusion) in such a way that overall plausible and non-
contradictory data are provided reliably by combining sensor data of different types,
even if single sensors fail due to occlusions.

When designing or configuring a VR system, one should always focus on the actual
task and analyze which input devices are necessary. It is not always advantageous to
include as many sensors as possible in a setup if this results in restrictions for the user.
In our abyss experiment, it could be possible to measure the pressure distribution of
the sole to infer whether the user is leaning forward or backward. This could be done
using pressure-sensitive mats, which would require that the user may only stand on the
mat, and thus the user’s location would be fixed. This would be counterproductive in
relation to other objectives, e.g., that the user should be able to move freely.

The output devices are the counterpart to the input devices. They serve to present
the virtual world to the user in multiple modalities. This conversion of the virtual
world model to sensory stimuli for the user is called rendering. According to the dif-
ferent sensory modalities through which humans perceive the real world, it is helpful
to address as many of them as possible in Virtual Reality. Regarding our experiment,
the visual output is of course highly important. Should the user be able to look around
freely, as would be possible with a tracked helmet? Is it enough for the user to look
down only, as in the second variant of the experiment, in which the image is projected
onto the floor? Is it important for this use case that the user can turn and look around?

1 Introduction to Virtual and Augmented Reality

28

Which action space should be provided where the user can perceive the virtual envi-
ronment? In which visual quality should the virtual world be presented? Is it impor-
tant to recognize moving cars or pedestrians from the skyscraper? In addition to
visual stimuli, other sensory modalities of the user can also be addressed. Should the
noise of road traffic be perceived louder when you get closer to the edge of the build-
ing of the skyscraper? Should the user be able to perceive wind, and should it also
change at the edge of the building? As already discussed, the time requirements for
the stimulus calculation and rendering for the individual sensory modalities also dif-
fer. For the visual system, many new images must be calculated every second. In
contrast, it is enough to determine the strength of the wind from the example once or
twice per second. It is advisable to analyze exactly what is important for the actual
application, instead of implementing everything that is technologically possible.

The task of world simulation is performed by a computer system that relies on an
appropriate world model. This model determines the behavior. Depending on the
application, physically based simulation models (e.g., for simulating flow behavior)
or models based on artificial intelligence (AI) may be appropriate. The world simu-
lation responds to data from the input devices. In addition to the question of the
granularity in which the world is or can be modeled, which was dealt with in Sect.
1.1.2, there are questions relating to technical issues: Which delays occur from rec-
ognition by an input device to rendering in all output devices? To reduce this
response time (which is called end-to-end latency), it may be helpful or even neces-
sary to use pre-calculated simulation data instead of calculating everything in real
time. For our experiment, the movements of road traffic can be calculated as well as
the flow simulation for the winds between the skyscrapers. It may even be necessary

Fig. 1.8 Overview of the subsystems of a VR system

R. Doerner et al.

29

to make major simplifications to keep the delays to an acceptable level. It may also
be necessary to distribute the calculation of the world simulation or the rendering to
several computers. Does the world simulation rely on locally available data only or
does it depend on remote data (e.g., current flight data for a simulator for air traffic
controllers or data from VR systems that enable collaboration in virtual space)?
Such data can be made available to the world simulation via network connections.

An overview of a VR system is shown in Fig. 1.8, with sensors, which can serve
as input devices (in orange), output devices that address the various sensory modali-
ties (in green), and all remaining subsystems of the VR system (in blue).

1.6 AR Systems

We define the term AR system by analogy with the already introduced term VR
system.

Even though an AR system typically looks different, its basic composition com-
prising subsystems is very similar to that of a VR system. Consider the requirements
for an AR system: Again, we first need a computer system that performs a simula-
tion depending on user activities. However, this simulation only affects certain parts
of the world. One might be inclined here to limit the simulation of an AR system to
the virtual part of the world perceived by the user. However, this is by no means suf-
ficient for AR. Since the real and virtual contents are closely intertwined, i.e., there
is an interdependency between the two, the parts of the real world that are influenced
by the virtual content or, respectively, influence the virtual content, must also be
simulated. In AR, the stimulus is generated in such a way that the real and virtual
contents complement each other. Many aspects relating to sensors and stimuli apply
in a similar way to AR systems. However, in contrast to VR systems, AR systems are
usually not restricted to a specific location. This means that factors such as the oper-
ating range are omitted, but questions regarding the usability in certain environ-
ments have to be added. Can I use my AR System indoors or only outdoors? Will it
still work in the subway? What if I am in a room with smooth white walls? Will the
display work in sunlight? So, does an AR system have higher or lower technical
requirements than a VR system? There is no general answer to these questions, but
in a non-stationary system the amount of hardware is naturally limited. Thus, AR
systems use on average fewer devices (sensors, output devices, computers, etc.) than
VR systems. Nevertheless, the baseline requirements are rather high. While in the
above example in the VR system we had a variety of configurations with more or

We call an AR system a computer system that consists of suitable hardware
and software to enrich the perception of the real world with virtual content as
seamlessly and indistinguishably as possible for the user.

1 Introduction to Virtual and Augmented Reality

30

less sophisticated sensor technology, an AR system must always guarantee the cor-
rect superposition of the real and virtual worlds with the proper perspective. On the
other hand, many components of VR systems are not required. Through the aware-
ness of reality, self-perception is always guaranteed. Also, navigation in the virtual
world is not necessary, because users change their point of view by moving in their
natural environment, the real world. While in VR systems the sensors, world simula-
tion and stimulus generation are often distributed over a number of computer sys-
tems to ensure the required performance of the overall system, most AR systems are
confined to a single computer system. This can be a mobile device such as a smart-
phone or tablet or it is sometimes completely integrated into AR data glasses (such
as the Microsoft Hololens). However, there are also approaches where optical track-
ing or rendering are outsourced to external systems to improve quality.

The overall view of an AR system is shown in Fig. 1.9: By analogy with Fig. 1.8,
the sensors for input are shown in orange, output devices in green and the other
subsystems of the AR system in blue.

1.7 Using the Book

In the following, you will find information on how the book is structured and sug-
gestions on how the book can be used by different target groups for different pur-
poses. Recommendations for use in academic courses are also given.

Fig. 1.9 Overview of the subsystems of an AR system. (See also Fig. 1.8)

R. Doerner et al.

31

1.7.1 Structure of the Book

Following this introduction, the next chapter (Chap. 2) describes the basics of spatial
perception. Starting from the human visual system, the theory of “depth cues” is pre-
sented, which describes the basic theory of spatial perception. The physiological
aspects of stereoscopy are considered as well as supporting recommendations to
enhance spatial perception. In addition to visual perception, the importance of other
perceptual channels is discussed. The chapter on virtual worlds (Chap. 3) describes
typical concepts employed to build them. Starting from data structures like the scene
graph, advanced modeling concepts for virtual worlds are presented: Examples are
animation methods, behavior descriptions and event models. In the chapters about
VR input devices (Chap. 4) and VR output devices (Chap. 5), the characteristics of
sensors and displays are described. After the introduction of underlying properties,
methods for the tracking of user actions are shown as well as realization alternatives
addressing the different sensory modalities of the user. Based on individual technolo-
gies, typical setups with VR hardware are also presented. Concepts and techniques
for interactions in virtual worlds are presented in Chap. 6. Basic techniques for navi-
gation and selection are described as well as the iterative approach to creating user
interfaces based on user testing. Chapter 7 describes the requirements for the real-
time capability of VR systems and presents solutions to meet these requirements.
Based on fundamentals such as the importance of latency and efficient representa-
tions of large scenes, procedures for typical problems like synchronization and colli-
sion detection are discussed. Chapter 8 is dedicated to the topic of Augmented Reality.
In addition to special input/output devices, the focus is on geometric and photometric
registration as well as on the question of how authenticity or believability can be
increased. Chapter 9 contains a series of small case studies that provide insights into
the practice of VR/AR and illuminate the many facets of the topic. Software and tools
for the practice of VR/AR development are the subject of Chap. 10, while Chap. 11
contains an introduction to the basic mathematics relevant to VR and AR.

1.7.2 Usage Instructions

Each further chapter of this book presumes having read in this chapter. For example,
to work through Chap. 6, it is not necessary to read Chaps. 2, 3, 4, and 5 but only the
first chapter. This means that the book can be used modularly and selectively – it
does not have to be worked through from front to back. All the necessary basic
knowledge has already been addressed in this chapter. Although the individual
chapters of the present book differ considerably in the complexity of the material
dealt with and thus in their scope, all chapters are structured according to a similar
basic pattern. This enables the readers to find their way around the individual chap-
ters quickly and to work through them similarly.

Chapters always start with an abstract that summarizes the most important con-
tent in a concise form. This enables readers who already have prior knowledge in

1 Introduction to Virtual and Augmented Reality

32

individual areas or are only interested in certain topics, i.e., who do not want to
work through the book sequentially, to quickly identify and select the chapters rel-
evant to them. The most important topics are then dealt with in the respective sub-
chapters. The individual chapters are concluded with a list of questions on the topics
covered and a list of recommendations for more in-depth or supplementary literature.

1.7.3 Target Groups

This book is primarily an academic textbook, i.e., it is intended to offer teachers and
students a comprehensive and structured treatment of the topic of VR/AR. Therefore,
fundamental aspects of VR and AR are covered. Prior knowledge in this field is
therefore not necessary, but mathematical basics and basic knowledge of computer
graphics are useful. Chapter 11 contains a summary of the most important mathe-
matical elements of VR. A comprehensive and in-depth treatment of all topics rel-
evant to VR/AR would go far beyond the scope of a single book – this book can
serve here as an introduction and preparation for the study of specialist literature.

The book has a modular structure – each chapter only requires the reading of in
this chapter. This allows students and teachers to adapt the order in which they work
through the subject matter to the requirements of their course. It is also possible to
select individual chapters and to omit other chapters (except in this chapter) without
any problems, as it is not a prerequisite for understanding that all previous chapters
have been read.

The creation of interactive virtual worlds is also one of the foundations of mod-
ern 3D computer games. Although the present book deals with these topics and
there is considerable overlap with the realization of computer games, the book is not
primarily aimed at developers of computer games, as game-specific aspects are not
considered.

 Lecturers in the Field of VR/AR

The book can be used directly as a basis for lectures and seminars in the field of VR/
AR. Due to the modular structure of the book it is easy to vary the order of the dif-
ferent topics and thus to adapt to the individual requirements of the respective teach-
ing unit. The individual chapters conclude with a collection of comprehension and
transfer questions. These can be used directly as a basis for corresponding examina-
tions or the preparation for them.

In the following, some typical combinations for individual courses are shown as
examples. However, this can and should only serve to illustrate and in no way
replaces the individual selection based on the respective curriculum and scope.

R. Doerner et al.

33

Introduction to VR/AR
Chapter 1
Sections 2.1, 2.2, 2.3, 2.4
Sections 3.1–3.3, optional 3.5
Sections 4.1, 4.2, 4.3, 4.6
Sections 5.1, 5.2, 5.3, 5.4
Sections 6.1, 6.2, 6.3, 6.4, 6.5
Sections 7.1, 7.2, 7.3
Section 8.1, 8.3, 8.4

3D User Interfaces
Chapter 1
Sections 2.1, 2.2, 2.3, 2.4, 2.5.2
Sections 4.1, 4.2, 4.3, 4.6
Chapter 6: all subchapters
Section 7.1
Section 8.5

Applications of Virtual Reality
Chapter 1
Sections 2.4, 2.5
Chapter 3: all subchapters
Sections 5.1, 5.2, 5.3
Chapter 6: all subchapters
Section 7.2
Section 8.6
Chapter 9 (VR examples)
Section 10.1, 10.2/10.3

Graphically Interactive Systems
Chapter 1
Chapter 2: all subchapters
Chapter 4: all subchapters
Chapter 5: 5.1
Chapter 6: all subchapters
Chapter 9: all subchapters
Chapter 10: all subchapters

Augmented Reality
Chapter 1
Chapter 3
Sections 4.1–4.4
Sections 5.1, 5.2, 5.3
Chapter 6
Chapter 8
Chapter 9 (AR examples)
Chapter 10

1 Introduction to Virtual and Augmented Reality

http://dx.doi.org/10.1007/978-3-662-58861-1_6
http://dx.doi.org/10.1007/978-3-662-58861-1_3
http://dx.doi.org/10.1007/978-3-662-58861-1_6
http://dx.doi.org/10.1007/978-3-662-58861-1_9
http://dx.doi.org/10.1007/978-3-662-58861-1_2
http://dx.doi.org/10.1007/978-3-662-58861-1_4
http://dx.doi.org/10.1007/978-3-662-58861-1_5
http://dx.doi.org/10.1007/978-3-662-58861-1_6
http://dx.doi.org/10.1007/978-3-662-58861-1_9
http://dx.doi.org/10.1007/978-3-662-58861-1_10
http://dx.doi.org/10.1007/978-3-662-58861-1_3
http://dx.doi.org/10.1007/978-3-662-58861-1_6
http://dx.doi.org/10.1007/978-3-662-58861-1_8
http://dx.doi.org/10.1007/978-3-662-58861-1_9
http://dx.doi.org/10.1007/978-3-662-58861-1_10

34

 Students

The book offers students a universal companion and reference reading for courses
on VR, AR and XR. In addition, it enables the self-study of the subject matter. The
book is suitable for students of courses of study who might want to develop or
extend VR/AR systems themselves, implement VR/AR applications or just use VR/
AR applications. While the first aspect particularly appeals to students of Computer
Science, Media Computing, Computational Imaging and Media Technology, the
other aspects cover a wide range of natural and engineering sciences, humanities
and social sciences, as well as creative and artistic fields.

 Users and Those Who Want to Become Users

Potential users of new technologies such as VR and AR often have only a vague idea
of the potentials and limitations as well as the resources required for their use. This
leads to the fact that such technologies are often not used at all or are used too late.
Or even worse, many introductions fail in the end. One of the main problems is that
often extensive investments are made in hardware before it is clear whether and how
it will be used afterward. Who are the users? Who benefits? How are the users
trained? How is the infrastructure maintained and developed? Which applications
should be created or used? How are they integrated into a production process or
adapted to it? This book should help potential users of VR and AR to better assess
these issues in advance and thus prevent or at least reduce misplanning. For users
from both research and industry, the book enables them to deal with the topic in
detail and thus to assess whether and to what extent the use of VR and AR appears
to be sensible and what resources are required for this.

 The Technology-Savvy

Ultimately, the book reflects the current status quo in the field of VR/AR and thus
gives the technologically interested reader an insight into this fascinating world.
New techniques and technologies that are currently still primarily used in research
or research-related prototype and application development are presented, as well as
those that are already an integral part of the production chain today, for example in
the automotive industry.

1.8 Summary and Questions

There is no single generally accepted definition of VR today. One can approach
the term from a technology-centered perspective and understand it to mean com-
puter systems that build immersive and interactive environments using

R. Doerner et al.

35

appropriate hardware, such as stereo displays. But VR can also be described as a
methodology to give users the experience of inclusion in an alternative reality. The
goal is not necessarily to achieve a perfect Virtual Reality that can no longer be
distinguished from reality. Peculiarities of human perception and cognition such
as the suspension of disbelief can be exploited to successfully create virtual envi-
ronments for people and give them the feeling of presence in a VR. This can serve
different purposes: research (e.g., about human perception), education, entertain-
ment, communication support, visualization of simulation results or economic
goals (e.g., prototyping to increase efficiency or save costs). The basic purpose of
VR is to create an innovative interface between humans and computers. The idea
of leaving users present in reality, but extending it with parts from a virtual world,
leads to Augmented Reality. For the realization of virtual or augmented environ-
ments a virtual world and a VR/AR system are required. The virtual world pro-
vides the content to be shown in the environment (e.g., description of the geometry,
appearance, and behavior of the virtual objects occurring in it). With regard to the
VR/AR system, a computer system needs to be implemented that comprises the
essential components for the collection of information about the users and their
interactions (e.g., by tracking), the generation of stimuli for the user (e.g., images
and sounds) as well as the simulation of the virtual world. Despite its more than
50 years of existence, VR/AR is still a young science. Four generations can be
distinguished in its development, which can be characterized by the hardware
used: (1) HMD and data glove, stereo projection and optical tracking, (2) high-
resolution displays and low-cost tracking without the use of artificial markers, (3)
consumer HMD including tracking and controllers, and (4) AR on smartphones
and tablets.

Check your understanding of the chapter by answering the following questions:

• What would your definitions of the terms “virtual reality”, “virtual world”, “vir-
tual environment”, “augmented reality”, “mixed reality”, “immersion”, “pres-
ence”, “simulation”, “tracking”, “user”, “human-machine interaction” and
“suspension of disbelief” be?

• The text describes a scenario in which a user stands on a glass plate that is used
as a projection screen. This gave the user the impression of standing on a virtual
high-rise building where the user could see their real feet. Is this scenario an
example of VR or AR?

• Suppose you want to create a jogging app where you run against other runners
(or even yourself the day before). Would you implement this with VR or AR?
What might this depend on? What would your environment look like? Which
hardware would you use for this?

• What can VR and AR be used for? Which application examples do you know, or
can you imagine? Why are you interested in VR/AR?

1 Introduction to Virtual and Augmented Reality

36

 Recommended Reading

Angel E, Shreiner D (2015) Interactive computer graphics: a top-down approach
with WebGL. Pearson Education, Harlow – Textbook covering the basics of com-
puter graphics, e.g., discussing the generation of images with the computer. It
also introduces OpenGL and WebGL, a programming library for computer
graphics, and discusses the possibilities of using graphics processors (GPUs) in
the form of so-called shaders.

Rabin S (2009) Introduction to game development, 2nd edition. Charles River
Media, Boston – a standard work on computer games. Due to the manifold points
of contact between VR and computer games, literature from the field of computer
games is also relevant.

Original scientific literature can be found in specialist journals and conference pro-
ceedings which can be researched and accessed in digital libraries (e.g., dl.acm.org,
ieeexplore.org, link.springer.com) or via search engines (e.g. scholar.google.com).
In the field of VR the IEEE VR Conference (ieeevr.org) takes place annually.
Moreover, there is the Eurographics Symposium on Virtual Environments (EGVE)
as well as the VR Conferences of euroVR, which are partly jointly organized as
Joint Virtual Reality Conference (JVRC). With the focus on AR, ISMAR, the IEEE
Symposium for Mixed and Augmented Reality, is held annually. In addition, there
are special events that focus on aspects of user interfaces of VR and AR, such as the
ACM VRST conference or the 3DUI, the IEEE Symposium for 3D User Interfaces.
There are also further events dealing with special applications of VR, for instance in
the industrial sector (e.g., VRCAI – ACM International Conference on Virtual
Reality Continuum and Its Applications in Industry). Some scientific journals also
focus on VR and AR, e.g., Presence – Teleoperators and Virtual Environments by
MIT Press, Virtual Reality by Springer Verlag or the Journal of Virtual Reality and
Broadcasting (jVRb) as an open access e-journal.

In addition to conference proceedings and professional journals that deal primar-
ily with VR and AR, literature is also recommended that deals with essential aspects
of VR and AR, such as Computer Graphics (e.g., ACM SIGGRAPH and the ACM
Transactions on Graphics), Computer Vision (e.g., IEEE ICCV) or Human–Machine
Interaction (e.g. ACM SIGCHI).

References

Azuma R (1997) A survey of augmented reality. Presence Teleop Virt 6(4):355–385
Bell B, Feiner S, Hoellerer T (2002) Information at a glance. IEEE Comp Gr Appl 22(4)., July/

August, 6–9
Bricken W (1990) Virtual reality: directions of growth. Notes SIGGRAPH ‘90 Panel (HITL

Technical Report R-90-1), University of Washington, Seattle
Bryson S (2013). Virtual Reality: a definition history – a personal essay. ArXiv, abs/1312.4322

R. Doerner et al.

http://dl.acm.org
http://ieeexplore.org
http://springerlink.bibliotecabuap.elogim.com
http://scholar.google.com
http://ieeevr.org

37

Caudell TP, Mizell DW (1992) Augmented reality: an application of heads-up display technology
to manual manufacturing processes. In: Proceedings of 25th Hawaii International conference
on system sciences, Vol. 2, 659–669

Feiner S, MacIntyre B, Höllerer T (1997) A touring machine: prototyping 3D mobile augmented
reality systems for exploring the urban environment, digest of papers. In: First International
Symposium on Wearable Computers, pp 74–81

Fuchs H, Livingston MA, Raskar R, Colucci D, Keller K, State A, Crawford JR, Rademacher P,
Drake SH, Meyer AA (1998) Augmented reality visualization for laparoscopic surgery. In:
Wells WM, Colchester A, Delp S (eds) Medical image computing and computer-assisted inter-
vention — MICCAI’98, LNCS, vol 1496. Springer, Berlin/Heidelberg

Held RH, Durlach NI (1992) Telepresence. Presence Teleop Virt 1(1):109–112
Kato H, Billinghurst M (1999) Marker tracking and HMD calibration for a video-based augmented

reality conferencing system. In: 2nd IEEE and ACM international workshop on augmented
reality (IWAR), pp. 85–94, IEEE

Mann S (1999) Mediated Reality. Linux Journal, Article No 5, Issue 59
Mann S, Furness T, Yuan Y, Iorio J, Wang Z (2018) All Reality: Virtual, Augmented, Mixed (X),

Mediated (X,Y), and Multimediated Reality. https://arxiv.org/abs/1804.08386
Milgram P, Takemura H, Utsumi A, Kishino F (1995) Augmented reality: a class of displays on the

reality-virtuality continuum. Proc SPIE 2351:282–292
Mine MR, Brooks Jr FP, Sequin CH (1997) Moving objects in space: Exploiting proprioception in

virtual-environment interaction. In: Proceedings of SIGGRAPH 1997, pp 19–26
Paradiso JA, Landay JA (2009) Guest editors’ introduction: cross-reality environments. IEEE Perv

Computing 8(3):14–15
Rekimoto J, Nagao K (1995) The world through the computer: computer augmented interaction

with real world environments. In: Proceedings of UIST ‘95, pp 29–36
Rheingold H (1991) Virtual reality. Summit Books, New York
Sadowski W, Stanney KM (2002) Presence in virtual environments. In: Stanney KM (ed)

Handbook of virtual environments: design, implementation, and applications. Lawrence
Erlbaum Associates Inc, Mahwah

Sheridan TB (1992) Musings on telepresence and virtual presence. Presence Teleop Virt
1(1):120–125

Sherman W, Craig A (2003) Understanding virtual reality. Morgan Kaufmann, San Mateo
Slater M (2003) A note on presence terminology. Presence Connect 3:3
Slater M (2009) Place illusion and plausibility can lead to realistic behaviour in immersive virtual

environments. Phil Trans R Soc B 364(1535):3549–3557
Slater M, Wilbur S (1997) A framework for immersive virtual environments (FIVE): speculations

on the role of presence in virtual environments. Presence Teleop Virt 6(6):603–616
Slater M, Spanlang B, Corominas D (2010) Simulating virtual environments within virtual envi-

ronments as the basis for a psychophysics of presence. ACM Trans Graph 29(4):92
Stone RJ (1993) In: Earnshaw RA, Gigante MA, Jones H (eds) Virtual reality systems. London,

Academic
Sutherland IE (1965) The ultimate display. Proceedings of the IFIP congress, 506–508
Sutherland I (1968) A head mounted three dimensional display. In: Proceedings of the AFIPS fall

joint computer conference. Thompson Books, Washington, DC, pp 757–764
Witmer BG, Singer MJ (1998) Measuring presence in virtual environments: a presence question-

naire. Presence Teleop Virt Environ 7(3):225–240

1 Introduction to Virtual and Augmented Reality

https://arxiv.org/abs/1804.08386

39© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
R. Doerner et al. (eds.), Virtual and Augmented Reality (VR/AR),
https://doi.org/10.1007/978-3-030-79062-2_2

Chapter 2
Perceptual Aspects of VR

Ralf Doerner and Frank Steinicke

Abstract Virtual Reality (VR) has the special ability to provide the user with the
illusion of presence in a virtual world. This is one aspect of the valuable potential
that VR possesses concerning the design and realization of human–machine inter-
faces. Whether and how successfully this potential is exploited is not only a techni-
cal problem. It is also based on processes of human perception to interpret the
sensory stimuli presented by the virtual environment. This chapter deals with basic
knowledge from the field of human information processing for a better understand-
ing of the associated perceptual issues. Of particular interest in VR are the percep-
tion of space and the perception of movement, which will be dealt with specifically.
Based on these fundamentals, typical VR phenomena and problems are discussed,
such as double vision and cybersickness. Knowledge of human perception pro-
cesses can be used to explain these phenomena and to derive solution strategies.
Finally, this chapter shows how different limitations of human perception can be
utilized to improve the quality and user experience during a VR session.

2.1 Human Information Processing

The way that people perceive and process information is essential for the design of
virtual environments and the interaction within them. Ultimately, every virtual envi-
ronment is used by humans. For this reason, it is useful to study the basic functions
of human information processing to better understand the various effects and phe-
nomena of VR and to be able to take advantage of possible limitations.

R. Doerner (*)
Department of Design, Computer Science, Media, RheinMain University of Applied
Sciences, Wiesbaden, Germany
e-mail: ralf.doerner@hs-rm.de

Dedicated website for additional material: vr-ar-book.org

https://doi.org/10.1007/978-3-030-79062-2_2#DOI
mailto:ralf.doerner@hs-rm.de
http://vr-ar-book.org

40

Humans perceive their environment through different senses. In the context of
today’s VR technologies, the most important senses are:

• the visual sense,
• the acoustic sense, and
• the haptic sense.

In most of today’s VR systems, other senses, such as the olfactory (smelling) or
gustatory (tasting) senses, are not stimulated. Thus, most information presented in
the virtual environment is perceived through the eyes, ears, or skin. At first glance,
perception in a virtual environment does not differ from perception in a typical
desktop environment and the associated senses and sensory impressions. The virtual
worlds presented on the screen or from the loudspeakers act as visual or acoustic
stimuli; haptic impressions are conveyed via mouse and keyboard. An important
aspect of the VR experience is the possibility to explore the virtual world in an
immersive way. In contrast to desktop-based environments, in VR this is not only
done by mouse and keyboard but by 3D input devices or by movements of the user
in real space, which are mapped to corresponding movements in the virtual world.
In addition to these inputs into the VR system, there are other forms of input, such
as speech, gestures, and other forms of human expression (Preim and Dachselt 2015).

To better understand the complexities of human perception and cognition, it is
helpful to imagine humans as an information processing system (see Fig. 2.1). In
this metaphor from the field of computer science, all physical characteristics of
humans are assigned to hardware and all psychological characteristics to software.
The chain of information processing starts with an input, which is processed in the
computer and finally presented as output on the output media. In human information
processing, stimuli from the external world are thus first transferred to the percep-
tual system as input and perceived there (Card et al. 1986a). This perceptual proces-
sor has access to memory (e.g., visual memory) and processor (e.g., for pre-filtering)
similar to the input to the computer. The processing of the resulting perceived stim-
uli then takes place in the cognitive processor. Here, further memories, i.e., the
working and long-term memories, can be accessed to interpret the stimuli and plan
appropriate action. The actual action then takes place in the motor processor, which
initiates corresponding movements.

These partly substantial simplifications only approximate the much more com-
plex biological processes, but they allow us to make predictions about human infor-
mation processing. For example, Card et al. (1986a) were able to predict the time
required for a whole series of human interaction tasks. This model makes it clear,
among other things, why tasks that require the cognitive processor to be run through
several times (e.g., comparisons) require more time than those tasks in which the
cognitive processor is only run through once (e.g., simple response to stimulus).

In this context, a whole range of other models, such as GOMS or the Keystroke-
level Model (KLM), can be mentioned, which are used in the field of human–com-
puter interaction (Card et al. 1986b; Sharp et al. 2019; Shneiderman et al. 2018). In
the following, we want to give a more detailed insight into the individual compo-
nents of human information processing.

R. Doerner and F. Steinicke

41

2.2 Visual Perception

The visual system is the part of the nervous system responsible for processing visual
information. The structure of the human eye allows light to be projected through the
lens onto the inner retina. There are about 120 million photoreceptor cells. These
are divided into the rods, which only perceive brightness, and the approximately
7 million cones, which are responsible for color vision. The cones, in turn, can be
divided into three types, each of which reacts to blue, green or red hues. The optical
apparatus of the eye produces an upside-down and reversed image on the retina. For
the perceived image to arrive sharply on the retina, the lens must be correctly
adjusted by muscles depending on the distance of the object being viewed. This
process is called accommodation. The fovea is the retina area with the highest image
sharpness and the highest density of photoreceptor cells. Although the eye has an
aperture angle of approximately 150° (60° inside, 90° outside, 60° above, and 75°
below), only 2° to 3° of the field of vision is projected onto the fovea. Under ideal
conditions, the resolving power is about 0.5–1 min of angle. This means that a 1 mm
spot can be perceived from a distance of about 3–6 m. The eye only remains at such
a fixation point for a period of about 250 ms to 1 s before rapid, jerky eye move-
ments (known as saccades) occur. These saccades serve to complement peripheral

Fig. 2.1 Model of human information processing. (According to Card et al. 1986a)

2 Perceptual Aspects of VR

42

perception, in which the resolution is only about one-fortieth of the foveal resolu-
tion, and thus enable us to perceive a complete high-resolution image.

In particular, visual perception enables us to identify objects. For this purpose,
the projected image of the scene is already analyzed in the retina (e.g., brightness,
contrast, color and motion) and processed (e.g., brightness compensation and con-
trast enhancement). During transmission via the optic nerve, the spatial relation-
ships of the photoreceptors are retained in the nerve tracts’ positional relationships
and synapses. This positional relationship can be detected in the visual cortex as a
neural map and supports, for example, the identification and differentiation of
objects (Marr 1982). The recognition of individual elements and their meaning is
probably done by comparison with already stored experiences (scenes linked to
body sensation, emotions, smell, sounds, and much more).

2.2.1 Stereo Vision

As an example of how human perception works and how it can be manipulated by a
VR system to create presence in the virtual environment, we consider a phenome-
non important for VR: stereopsis, also called stereo vision. Humans have two eyes
but do not perceive two separate images of reality. In addition, the visual system
succeeds in obtaining a three-dimensional impression of the environment from the
light stimuli impinging on the two-dimensional retina of the eyes.

Let us consider point A in Fig. 2.2a. If we assume the eyes have fixated on point
A, then they have been adjusted so that light from point A enters both the fovea of
the left eye (and impinges on the retina at point AL) and the fovea of the right eye

Fig. 2.2 (a) Stereopsis. (b) Manipulation of the stereopsis with a stereo display

R. Doerner and F. Steinicke

43

(there at point AR). Adjusting means that the eye muscles are moved accordingly.
The closer the point A between both eyes is to the observer, the more the eyes must
be turned inwards towards the nose to fixate on A. This movement of both eyes is
called convergence. As the visual system has information on how big the conver-
gence is, the angle α can be estimated in the triangle A, AL and AR, because the big-
ger the convergence, the bigger α is. With the knowledge of α and the distance k of
both eyes, which is constant for a person, the distance d of point A from the observer
can be concluded. By simple trigonometry, the following relationship between d
and α can be established: d = k/ (2 · tan α). With this triangulation of A, which is only
possible with two eyes, the visual system can thus perceive the distance of A.

The points AL and AR are called corresponding points of the retina. They would be
in the same place if the two eyes were thought to be superimposed. The visual system
is able to determine this correspondence. All points in reality that are mapped onto
corresponding points on the retina form the horopter. It has the shape of a surface
curved around the head, which contains the fixation point. Let us now look at point
B in Fig. 2.2, which is not on the horopter. In the left eye, light from B still strikes at
point AL, while in the right eye, it strikes at point BR. The points AL and BR are not
corresponding points. The difference between BR and the point AR corresponding to
AL is called the disparity created by B. Disparities are often given as angles; in our
example in Fig. 2.2 this would be the angle β. The larger β is, the more the point B is
away from the horopter. The disparity generated by B thus provides a point of refer-
ence for determining the distances of points like B, which, unlike A, are not fixated
on and whose distance cannot be determined directly based on eye convergence alone.

Retinal disparities also allow us to obtain information about the distance of
points that are in front of the horopter from the observer. Point C in Fig. 2.2 is such
a point, and while light from C in the left eye also arrives at point AL, this happens
in the right eye at point CR. The disparity now exists between AR (the point corre-
sponding to AL) and CR. The point CR lies to the right of AR, while BR lies to the left
of AR. B creates an uncrossed disparity and C a crossed disparity. Whether a point
lies behind or in front of the horopter can be distinguished by the fact that in the first

Two Small Experiments on Convergence and Disparity
 1. Hold a pen at a distance of about 1 m in front of a person’s face. Ask the

person to fixate on the tip of the pen and leave it fixed. Now move the pen
towards the person’s nose so that you can easily observe the convergence:
the eyes are directed inwards towards the nose.

 2. Sit in front of a rectangular object (e.g., a monitor), close your right eye
and hold your index finger so that the left index finger points to the left
edge of the object and the right index finger to the right edge. Now open
the right eye and close the left one. The object seems to jump relative to the
fingers – the right and left eyes perceive a slightly different image; there
are disparities.

2 Perceptual Aspects of VR

44

case uncrossed disparities are generated and in the second case crossed disparities
are generated.

If the disparity becomes too large, i.e., the point generating the disparity is too far
away from the horopter, the visual system is no longer able to fuse the image infor-
mation of both eyes into one image. As a result, one no longer sees one point but two
points. All points in the world that create disparities small enough to allow a fusion
of the image information from the left and right eye form Panum’s fusional area.
This area has the smallest extension around the point the eyes fixate on.

In a virtual environment, stereopsis can be manipulated with the aim of creating
a three-dimensional impression, even though only a two-dimensional display sur-
face is used. Figure 2.2b shows that a display surface is viewed by an observer.
Viewing means that the observer fixates on a point A on the display surface with the
eyes. We now illuminate two points PL and PR on the display surface. By taking the
technical precautions described in detail in Chap. 4, we ensure that light from PL
only hits the left eye and light from PR only the right eye. The distance between PL
and PR on the display surface is called parallax. The visual system can react to this
situation in two ways. First, two different points are perceived. In reality, it happens
all the time that light from points in the world only enters one of the eyes. The visual
system can also spatially arrange such points in relation to points from which light
falls into both eyes and whose location could already be deduced (DaVinci-
stereopsis). Secondly, the visual system explains the light stimuli at points PL and PR
by the fact that the light comes from a single point P* located in front of the display
surface. P* is the fusion of PL and PR. Which of the two cases actually occurs
depends on a number of factors, such as how far the apparent point P* is located
from the display surface. If the visual system merges PL and PR, then a point outside
the display surface is successfully displayed. It is also possible to create points
behind the display surface by reversing the order of the points for the left and right
eyes on the display surface. This is shown in Fig. 2.2 at point QL and QR, where the
two points shown on the display could be fused to form a point Q* behind the dis-
play. When PL and PR are displayed, this is called negative parallax, while in the
case of QL and QR one speaks of positive parallax.

In VR, it is, therefore, possible to create a stereo display by exploiting the pecu-
liarities of human perception. The visual system creates not only a two-dimensional
but also a plastic three-dimensional image impression, in which objects appear in
front of or behind the screen based on an appropriate selection of the parallax. This
must be distinguished from true three-dimensional displays (volumetric displays),
in which, for example, a display surface is moved in space.

2.2.2 Perception of Space

Not only disparities are used by the visual system to perceive spatiality and the
arrangement of objects in space. This can be seen by the fact that there are people
who are unable to evaluate information from disparities (‘stereo blindness’) but

R. Doerner and F. Steinicke

45

nevertheless develop a three-dimensional idea of the world. There are no exact fig-
ures, but it is estimated that about 20% of the population is stereo blind. A test can
be used to determine stereo blindness in the same way as a test for color vision
defects. It is recommended to perform such a test, especially for people who are
active in the field of VR. Many people are not aware that they are stereo blind.

Today we know a whole series of clues, called depth cues, which are used by the
brain for the perception of space. Disparity is an example of a depth cue. If a car
covers a tree, the visual system can derive the information that the car is closer to
the observer than the tree. This information does not require the interaction of both
eyes. Thus, this clue is called a monocular depth cue. As it is still possible to obtain
depth cues even from 2D images, this is also referred to as a pictorial depth cue.
Disparity, on the other hand, is a binocular depth cue. With depth cues, one can
distinguish whether they help to estimate the spatial position of an object absolutely
or only relative to another object. Convergence, for example, allows an absolute
position determination, whereas occlusion only permits a determination relative to
the occluded object.

The informative value and reliability of the various depth cues depend in particu-
lar on the observer’s distance to the respective object. While occlusion provides
reliable information in the entire visible range, this is not the case for disparity. The
further away a point is from the observer, the lower the disparity it generates. A
point at a distance of 2–3 m produces a very small disparity. From a distance of
10 m, the disparity is de facto no longer perceptible. For VR, this means that for
virtual worlds where significant objects are within arm’s reach, the effort to use
stereo displays should be invested. Disparity is essential in this area. For virtual
worlds, however, where objects are more than 3 m away from the viewer, the use of
a stereo display does not contribute much to the perception of space and may be
superfluous.

Table 2.1 lists various depth cues and gives details of the area of action and the
information content (indications of relative arrangement or absolute distance deter-
mination), as well as the category (monocular depth cue, binocular depth cue or
dynamic depth cue, the latter being understood as depth cues that the observer
receives through movement). The depth clues mentioned in the list are all of a visual
nature, but the brain can also obtain cues from other senses, e.g., by interpreting
information from touch or by analyzing the pitch of a moving object’s sound. As it
is essential for a good perception of a virtual world to give as many depth clues as
possible in VR, we go through the list below. Occlusion, disparity and convergence
have already been discussed. Similar to convergence, where muscle tension is taken
into account to align the eyes, the brain also uses the muscle tension necessary for
accommodation, the adjustment of the refractive power of the eye lens, as a depth
cue. To see nearby objects clearly, the eye lens must be pressed together with more
muscle power than is the case with distant objects. If a person fixates on an object
at a certain distance, other objects appear sharp only in the vicinity of this object
(e.g., in the distance range 75 cm to 1.5 m if the fixed object is 1 m away from the
observer). Objects that are too far away or too close to the observer appear blurred.
From the image blur, it is, therefore, possible to draw conclusions about the distance

2 Perceptual Aspects of VR

46

of objects. Linear perspective is a depth indication based on perspective distortion.
Objects further away appear smaller; in reality, parallel lines seem to converge at a
vanishing point (see, for example, the street in Fig. 2.3a).

Also, with textures, the texture elements become smaller with increasing dis-
tance. Thus, the texture gradient can serve as a depth cue. For similar objects, such
as the three squares in Fig. 2.3a, which have different sizes in the image, the visual
system assumes that the differences in size can be explained by different distances
(and not by the fact that the objects themselves are of different size: assumption of
size constancy). This depth cue is called relative size. However, the known size also
contributes to distance estimation. We get a good impression of the size and orienta-
tion of the triangle in Fig. 2.3a because a person is standing next to it – and thus an
object of which we know the size and the usual orientation in space. Moreover, the
height in the field of view is an indication of depth. In Fig. 2.3a, square C is arranged
higher in the image than square A and thus closer to the horizon line. This indicates
that square C is further away. Connected to this is also the direction of view. If one
has to look straight ahead or raise the head, the object is assumed to be further away
(Ooi et al. 2001). Very distant objects do not appear so rich in contrast and have a
slightly bluish coloration (cf. Fig. 2.3b), because more air and the particles it con-
tains lie between the observer and the object (atmospheric perspective). The illumi-
nation of objects gives clues about their arrangement in space. On the one hand,
shaded objects appear more spatial (shape from shading, cf. left pyramid with shad-
ing, right pyramid without in Fig. 2.3c); on the other hand, the shadows cast give
cues about the spatial arrangement of objects (cf. shadows of spheres in Fig. 2.3d).
It is especially effective when shadows are cast from above on a base surface
because the visual system is used to a light source from above: the Sun. If the object
is in motion, the shadow of this object is particularly useful for depth perception.

Table 2.1 List of depth cues (with range of action and classification)

Depth cue Range of action Classification Positioning

Occlusion Complete range Monocular Relative
Disparity Up to 10 m Binocular Relative
Convergence Up to 2 m Binocular Absolute
Accommodation Up to 2 m Monocular Absolute
Image blur Complete range Monocular Relative
Linear perspective Complete range Monocular Absolute
Texture gradient Complete range Monocular Relative
Relative size Complete range Monocular Absolute
Known quantity Complete range Monocular Absolute
Height in the field of view Over 30 m Monocular Relative
Atmospheric perspective Over 30 m Monocular Relative
Shape from shading Complete range Monocular Relative
Shadows Complete range Monocular Relative
Motion parallax Over 20 m Dynamic Relative
Accretion Complete range Dynamic Relative

R. Doerner and F. Steinicke

47

Finally, certain depth cues are based on movement: movement of objects or move-
ment of the observers themselves. This includes motion parallax: the light stimuli
from near objects move faster across the retina than those from farther away. If we
drive through an avenue in a car, the nearby trees pass us quickly while the moun-
tains in the background move only slowly. Through movement, objects suddenly
become occluded or reappear behind the objects that are obscuring them. This
change, called accretion, also gives cues to the spatial arrangement of the objects.

Depth cues are not to be considered independently of each other. For example,
accommodation and convergence depend on each other (Howard 2002). Also, depth
cues are of varying strength. For example, while accommodation is a weak depth
cue, occlusion is a strong depth cue. All depth cues are considered for spatial per-
ception in the form of a weighted sum. How much weight is given to a depth cue is
flexible and depends on the distance of the object to be assessed. One theory
(Wanger et al. 1992) assumes that the weights also depend on the current task the
observer is engaged in. If the task is to estimate the spatial arrangement of distant
objects, then motion parallax, linear perspective, texture gradient and shadows have
a high weight. If the task is to grasp an object, disparity, convergence and

Fig. 2.3 Examples of depth cues

2 Perceptual Aspects of VR

48

accommodation are important. According to this, the depth cues in the brain are not
used to form a single model of the 3D world, which is then used for different tasks,
but rather task-dependent models are formed. Therefore, if not all depth cues can be
generated in a VR, then a prioritization should be made depending on the task the
user has to perform.

2.3 Multisensory Perception

Even though the visual sense is undoubtedly the most important source of informa-
tion in the perception of virtual worlds, the auditory and haptic senses also play an
increasingly important role (Malaka et al. 2009). In this respect, these two senses
will also be examined more closely in the context of this chapter. Other senses, such
as smell and taste, play more of an exotic role and are currently mostly used as pro-
totypes in research laboratories. At this point, it should be noted that perceptions via
the individual sensory organs are by no means processed separately, but rather an
integration of the different impressions is created. For further literature, please refer
to Ernst (2008).

2.3.1 Auditory Perception

The ears enable humans to perceive air movements. Such air and pressure fluctua-
tions generate mechanical waves that hit the ear, which is made up of the outer,
middle and inner ear. The auricle (outer ear) collects sound waves and transmits
them to the middle ear. In the middle ear, sound waves are converted into vibrations
of the eardrum. The eardrum vibrations are transmitted to the cochlea via the ossi-
cles (anvil, malleus and stapes). The sensory cells in the cochlea then convert the
mechanical energy into electrical signals. Finally, these electrical nerve impulses
are transmitted to the brain via the auditory nerve. The different frequencies can be
perceived by hair cells in the inner ear. The waves perceived by humans have lengths
of about 0.02–20 m, which correspond to audible frequencies in the range of about
18–0.016 kHz (Malaka et al. 2009). In contrast to the visual sense, the spatial reso-
lution is much lower. The Head-Related Transfer Function (HRTF) or outer ear
transfer function describes the complex filter effects of the head, outer ear, and
trunk. The evaluation and comparison of the amplitudes are, along with the transit
time differences between the ears, an essential basis of our acoustic positioning
system. However, the absolute distinguishability of intensity and frequency has
clear limits, so that two noise sources are only distinguished if they are several
degrees apart. In contrast, the temporal resolution is much better and acoustic stim-
uli can be distinguished already at 2–3 ms temporal discrepancy. The principle of
localizing noise sources at different receiver positions is also used in acoustic track-
ing systems (see Chap. 4).

R. Doerner and F. Steinicke

49

2.3.2 Haptic Perception

Haptics, or haptic perception, describes the sensory and/or motor activity that
enables the perception of object properties such as size, contours, surface texture
and weight by integrating the sensory impressions felt in the skin, muscles, joints
and tendons (Hayward et al. 2004). The senses that contribute to haptic perception
are divided into:

• tactile perception (element of surface sensitivity),
• kinesthetic perception/proprioception (depth sensitivity) and
• temperature and pain perception.

These senses thus enable the perception of touch, warmth and pain. Such percep-
tion phenomena are based on receptors in the skin. The more such receptors are
available, the more sensitive the respective body part (e.g., hand, lips or tongue) is.
The most important receptors are the mechanoreceptors (e.g., pressure, touch or
vibration), the thermoreceptors (heat, cold) and the nociceptors (e.g., pain or itch-
ing). The mechanoreceptors, for example, convert mechanical forces into nerve
excitation, which are transmitted as electrical impulses to the sensory cortex, where
they are processed. As a result, shapes (roundness, sharpness of edges), surfaces
(smoothness and roughness), and different profiles (height differences) can be
perceived.

Haptic output devices stimulate the corresponding receptors, for example, by
vibration (see Chap. 5).

2.3.3 Proprioception and Kinaesthesia

In contrast to surface sensitivity, depth perception describes the perception of stim-
uli coming from inside the body. Depth perception is essentially made possible by
proprioception and kinaesthesia. Both terms are often used synonymously. However,
we will use the term proprioception to describe all sensations related to body posi-
tion – both at rest and in motion – whereas kinaesthesia describes only those sensa-
tions that occur when active muscle contractions are involved. Proprioception thus
provides us with information about the position of the body in space and the posi-
tion of the joints and head (sense of position) as well as information about the state
of tension of muscles and tendons (sense of strength). Proprioception enables us to
know at any time what position each part of our body is in and to make the

A small experiment on the spatial resolution of haptic perception: take a com-
pass or two sharp pencils and test with somebody else or yourself where in
your upper extremities you can best distinguish between two points of contact
and where you can distinguish least.

2 Perceptual Aspects of VR

50

appropriate adjustments. Kinaesthesia (sense of movement) enables us to feel
movement in general and to recognize the direction of movement in particular.

These two senses are essential, considering that interaction in a virtual environ-
ment is largely carried out by active movements of the limbs. In VR, various devices
are available to stimulate these senses, such as haptic joysticks, complete exoskel-
etons or motion platforms (see Chaps. 4 and 5).

2.3.4 Perception of Movement

Movement is a fundamental process in real and computer-generated environ-
ments. We move through the real world, for example, by simply walking, running,
or driving a car or bicycle. In addition to the user’s actual movements, most virtual
worlds contain a multitude of movements of other objects. From a purely physical
point of view, motion is defined as a change of location over time. In visual per-
ception, the movement of a stimulus leads to a shift in the corresponding retinal
image. Provided it has the same speed, the further away the stimulus is, the smaller
is the retinal shift. Still, we mostly perceive the physical and not the retinal speed.
This ability is called speed constancy (analogous to size constancy; see Sect.
2.4.5). The human body has elementary motion detectors available for the visual
perception of movement, which detect local movements in a certain direction at a
certain speed. More complex, global movements are composed of local movement
stimuli.

Another essential sense in the perception of movement is the vestibular sense.
Hair cells in the inner ear detect fluid movements in the archways of the organ of
equilibrium. This then makes it possible to perceive linear and rotational accelera-
tions. To stimulate the vestibular sense, motion simulators (platforms) are used in
some VR systems. It is also possible, however, to create the illusion of an own
movement by visual stimuli only. This illusion is called vection and is created, for
example, in a standing train when looking at another train that starts moving next to
it. This illusion is mainly based on the perception of the optical flow. The optical
flow can be modeled as a vector field, i.e., each point P on an image is assigned a
vector – whereby the image is not isolated but is part of a sequence of images in
which pixels corresponding to P can be found. The direction of this vector indicates
the direction of movement of the pixel P in the sequence of images. The speed of
the movement can be determined from the length of the vector. In this respect, the
optical flow is a projection of the 3D velocity vectors of visible objects onto the
image plane. Accordingly, when we humans move, we receive a whole series of dif-
ferent movement cues, which are all integrated to derive a final perception of move-
ment (Ernst 2008).

R. Doerner and F. Steinicke

51

2.3.5 Presence and Immersion

As described at the beginning of this chapter, an essential potential of VR lies in the
possibility to create in the user the illusion of presence in a virtual world. For exam-
ple, the user should get the feeling of complete immersion in the virtual world. The
term presence (cf. Chap. 1) describes the associated subjective feeling that one is
oneself in the virtual environment and that this environment becomes real. Stimulus
from the real environment is thereby faded out. On the other hand, immersion
describes the degree of inclusion in a virtual world caused by objective, quantifiable
stimuli, i.e., multimodal stimulations of human perception. Various studies have
shown that presence occurs, particularly when a high degree of immersion is
achieved. Presence is achieved when the user feels located in VR and behaves as in
the real world. Various studies have shown that various virtual environment param-
eters have the potential to increase the presence of test subjects, such as a large field
of vision, activated head-tracking and real walking (Hendrix and Barfield 1996).
There are several questionnaires to measure the subjective feeling of presence
(Witmer and Singer 1998; Slater et al. 1994). However, it is also possible to deter-
mine the degree of presence based on physiological data or human behavior. For
example, a user with a high degree of presence in an apparently hazardous situation
occurring in VR will respond physiologically, e.g., with increased skin conductance
or heart rate (Slater et al. 1994).

2.4 Phenomena, Problems, Solutions

When using VR, one can observe surprising phenomena. From 1 s to the next, the
presentation of a virtual world in a stereo display no longer succeeds. The viewer no
longer sees the world plastically but sees everything twice. Users of VR start to
complain about headaches or even vomit. Although the car’s interior appeared spa-
cious when first viewed in VR, the space in the real car is then perceived as disap-
pointingly tight, even though the virtual car and the real car are identical in terms of
proportions. With knowledge of human perception, one can try to explain these
phenomena and develop solution strategies to avoid or at least mitigate the resulting
problems. With today’s VR, we are not able to reproduce reality 1:1; there are
always deviations. For example, the two images required for stereopsis for the right
and left eye may have been generated at a distance between the two virtual cameras
that does not correspond to the actual eye distance of an individual observer. Is that
bad? Knowledge of human perception helps us to assess the magnitude of the prob-
lem associated with these deviations. The following eight subsections deal with
VR-typical phenomena and problems. In each subsection, the currently known
attempts at explanation are also presented as well as approaches to solutions that
can be derived from them.

2 Perceptual Aspects of VR

52

2.4.1 Deviating Observation Parameters

Let us assume that we recreate the Eiffel Tower and its surroundings in a virtual
environment. With a virtual camera, we create an image and show it to a human
observer. Light stimuli from this image are projected onto the retina in the eyes of
the observer and create a visual sensation. Ideally, the image of the virtual Eiffel
Tower creates the same impression that viewers would have if they were standing in
front of the real Eiffel Tower. However, aberrations usually occur, which can be
explained by deviations in the viewing parameters. The virtual camera generates
images on a plane, while human retinas are curved. The angle of view of the virtual
camera can deviate from the field of view of the observer. The observer does not
necessarily look at the image from the same place where the virtual camera was
standing – the observer might be closer or further away, perhaps not looking perpen-
dicularly at the image but from the side. As a result, enlargements or reductions, as
well as distortions of image impressions, occur. This affects the estimation of dis-
tance or the perception of the inclination of objects (Kuhl et al. 2006).

However, the distortions caused by looking at the image of the virtual world from
a different perspective are surprisingly not experienced as bothersome. One speaks
of the robustness of linear perspective in human perception (Kubovy 1986). This
phenomenon can also be observed in a cinema – if the viewer sits in the first row on
the very outside, he or she is very likely to have a completely different perspective
than the camera that shot the film. There is, if at all, only one place in the whole
cinema where the perspective of the film camera is maintained. Although this means
that almost all viewers see the film in a distorted way, they do not mind. One expla-
nation for this phenomenon is that the viewer’s visual system actively corrects the
distorted image impression. This correction is based, among other things, on the
deviation of the viewing direction from the normal of the image plane (Vishwanath
et al. 2005). Conversely, this active correction could be responsible for the fact that
images taken with a wide opening angle of the virtual camera (‘wide-angle perspec-
tive’) may appear distorted even when viewed from the correct position.

Although deviating viewing parameters are not experienced as particularly irri-
tating, it is advisable to strive to minimize the deviation. This is especially true for
applications where the correct estimation of distances or orientation of objects in
space is of high importance. It is particularly relevant if the virtual world is not only
viewed passively, but active actions (grasping objects, movement) are performed.
Moreover, the virtual world and one’s own body should not be perceived simultane-
ously from different viewing positions. An approach to minimization of such devia-
tions frequently pursued in VR consists of determining the current viewing
parameters (e.g., by head-tracking, see Chap. 5), such as position and direction of
gaze. If these are known, they can be transferred to the virtual camera. Another
approach is to simulate long focal lengths in the virtual camera, i.e., to realize
almost a parallel projection. This reduces the distortions caused by a deviating
viewer position (Hagen and Elliot 1976).

R. Doerner and F. Steinicke

53

Stereo displays can cause additional deviation because the two virtual cameras
that generate the image for the left and right eyes have a distance (called virtual eye
separation) that may differ from the distance of the viewer’s pupils. On average, the
pupil distance is 64 mm, but the individual range is large and lies approximately in
the interval from 45 mm to 75 mm. Figure 2.4 shows an example that small changes
in pupil distance can result in large changes in depth perception. In this example, the
pupil distance is initially 64 mm and the object shown on the projection surface
appears to be 9 m behind the projection surface. If the distance between the eye
points is reduced by 4 mm, it follows from the set of beams that the virtual object
moves forward by 3.6 m. But as with deviations in the viewing position, deviations
between virtual eye separation and pupil distance are compensated by adaptation in
such a way that they do not irritate the viewer. In fact, the distance between the
virtual cameras can be changed several times in 1 s without the viewer even realiz-
ing it. In VR, it is therefore not absolutely necessary to first measure the distance
between the two eyes of the viewer and then adapt the distance between the two
virtual cameras accordingly. However, side effects such as nausea (see Sect. 2.4.7)
can occur, even if the user does not consciously notice the difference.

2.4.2 Double Vision

If the viewer of a stereo display is not able to fuse the two different images shown
to the left and right eyes, diplopia occurs. This is a severe problem in VR, as it is
perceived as extremely irritating and has a negative effect on the feeling of presence
in VR. Thus, diplopia should be avoided at all costs.

Fig. 2.4 Geometric effect of changing the virtual eye separation (drawing is not to scale). The
geometric effects also influence perception (Bruder et al. 2012a)

2 Perceptual Aspects of VR

54

The reason for diplopia has already been explained in Sect. 2.2.1: the point to be
merged lies outside Panum’s fusional area. Since accommodation always occurs to
the display plane, the visual system tends to move Panum’s fusional area near the
display surface of the stereo display as well (see vergence-focus conflict, Sect.
2.4.4). This means that a stereo display cannot make objects appear arbitrarily far in
front of or behind the display surface. So, if one wants to display a virtual world
with the help of a stereo display, there is only a limited area available in which the
virtual objects can be placed in front of or behind the display (parallax budget)
without diplopia. Williams and Parrish (1990) state that −25% to +60% of the dis-
tance from the viewer to the display surface are the limits for the usable stereo range
(in the case of an HMD, the virtual distance of the display is to be used). Here,
Panum’s fusional area has its thinnest extent in the area of the point that the eyes
fixate on. In the worst case, it has only a width of 1/10 degree viewing angle. At a
distance of 6° from the fixated point, Panum’s fusional area increases in width.
Then, it has a visual angle of about 1/3 degree. If a display is at typical monitor
distance and has 30 pixels per cm, then points can only be arranged in a depth range
of 3 pixels before diplopia occurs (Ware 2000). The situation is aggravated by the
fact that the entire Panum’s fusional area should not be used, since only in a partial
area can fusion be achieved without effort even over longer periods of time. This
partial area is called Percival’s zone of comfort and it covers about one-third of
Panum’s fusional area (Hoffmann et al. 2008).

One strategy to avoid diplopia is to enlarge Panum’s fusional area. The size of
this area depends, among other things, on the size and richness of detail of the
objects being viewed and on the speed of moving objects. By blurring the images to
be fused, the amount of detail is reduced. This way, Panum’s fusional area can be
enlarged. Another strategy is to bring virtual objects closer to the display area and
thus into Panum’s fusional area. With virtual eye separation, we have already
learned a technique for this. If one reduces the distance between the virtual cameras,
objects meant to appear behind the display can be brought closer to the display
surface. Since human perception is robust against this manipulation, changing the
virtual eye separation is useful to avoid diplopia. Ware et al. (1998) propose the fol-
lowing formula: virtual eye separation v = 2.5 cm + 5 cm · (a / b)2, where a is the
distance of the point in the scene closest to the viewer and b is the distance of the
point furthest away. Another technique to bring the virtual world into Panum’s
fusional area is the cyclopean scale (Ware et al. 1998). Here, the whole scene is
scaled by one point between the two virtual cameras (cf. Fig. 2.5). The cyclopean
scale can be combined with the manipulation of virtual eye separation, where scal-
ing should be performed first. Such scaling is not only useful to bring a virtual world
that is too spatially extended into Panum’s fusional area, but also in the opposite
case: a virtual world that does not use the limited area around the stereo display can
be made to appear more three-dimensional by extending it. In VR, it is useful to be
clear about the available parallax budget and its use. In a stereo display, the parallax
that can be displayed cannot be arbitrarily small. The lower limit is the width of
one pixel.

R. Doerner and F. Steinicke

55

2.4.3 Frame Cancellation

The displays used for the presentation of virtual worlds usually have several imper-
fections, e.g., they cannot display the brightness levels found in reality, such as in
sunlight. Also, the surface of the display is usually recognized as such and can be
distracting. In particular, the edge of a display surface can be perceived as irritating.
Let us assume we use a stereo display to make an object appear in front of the dis-
play plane. In case this object approaches the edge of the display and finally touches
it. The following phenomenon can be observed. The illusion that the object is in
front of the display is suddenly lost and the object snaps back to the level of the
display. Moreover, diplopia can also be observed. This phenomenon is called frame
cancellation, paradoxical window or stereoscopic window violation
(Mendiburu 2009).

This phenomenon can be explained by the fact that the object has conflicting
depth cues. According to the disparities, the object is in front of the display. However,
the edge of the display seems to occlude the object, which suggests that it is behind
the display. Occlusion is a stronger depth cue than disparity, which is why the object
is perceived to be behind the display. Other explanation attempts point out that the
object can only be seen by one eye when it is at the edge.

Keeping objects with negative parallax away from the edge or moving them
quickly at the edge so that they are either completely visible or completely invisible
on the image are simple strategies to avoid frame cancellation. Another strategy is
to darken objects at the edge of the display and color the edge itself black so that the
contrast between the edge and the object is small. Finally, black virtual stripes can
be inserted in the depth of the object in the scene, thus seemingly bringing the dis-
play edge forward. The virtual stripes cover the virtual object when it approaches
the display edge.

Fig. 2.5 Cyclopean scale

2 Perceptual Aspects of VR

56

2.4.4 Vergence-Focus Conflict

In contrast to reality, some depth cues may be completely missing in VR, e.g.,
because the VR system’s performance is not sufficient to calculate shadows in real
time. Depth cues can also be wrong, e.g., the image blur might not be displayed
correctly because it is difficult to determine the exact point the observer fixates on.
While in reality the depth cues are consistent, they can be contradictory in VR, as
the frame cancelation example shows. Contradictory depth cues not only have con-
sequences such as a misjudgment of the spatial arrangement of objects in space or
the loss of presence because the virtual world appears unnatural; other negative
consequences can include eye stress, exhaustion and headaches. An example of this
is the vergence-focus conflict (Mon-Willams and Wann 1998), also called
accommodation- convergence discrepancy or vergence-accommodation conflict.

No matter whether a virtual world is viewed on a computer monitor, a projection
or a head-mounted display (see Chap. 5), the viewers must adjust their eyes so that
the display surface is seen sharply to easily perceive what is shown there. If a stereo
display is used and an object appears in front of or behind the display surface due to
disparity, the convergence is not set to the distance of the display surface but the
apparent distance of the virtual object. Therefore, if the viewer wants to focus on a
virtual object that appears to be in front of the display surface, the viewer must
increase the convergence. As a result, however, the object suddenly appears unex-
pectedly blurred, as the eyes no longer focus on the display surface. This can also
cause a contradiction between convergence and image blur. Convergence and focus
information are therefore in conflict. As a result, headaches can occur. The risk of
this increases with the duration of viewing of the virtual world (Hoffman et al. 2008).

The contradiction between the above depth cues can be reduced by bringing the
virtual objects as close as possible to the display surface. For this purpose, the
already discussed techniques, such as the cyclopean scale or the change of virtual
eye separation can be used. These techniques can have side effects, such as falsifica-
tion of depth perception. These side effects must be weighed against phenomena
like fatigue or headache. There is no way to avoid the viewer’s eyes converging on
the display surface, as this is the only way to ensure that the image shown on the
screen can be perceived sharply. The approach of subsequently introducing depth of
field into the image (computer calculations of images allow the creation of images
that are sharp everywhere – in contrast to real imaging systems such as a camera or
the human eye) by blurring parts of the image and thus adapting the focus informa-
tion to the convergence has not proven to be successful (Barsky and Kosloff 2008).

2.4.5 Discrepancies in the Perception of Space

In applications from the fields of architecture, CAD, urban visualization, training,
simulation and medicine, three-dimensional spaces are presented. In these applica-
tions, it is essential that the users correctly perceive the virtually presented space, so

R. Doerner and F. Steinicke

57

that they can draw conclusions about their actions and decisions in the real world.
Discrepancies between the perception of size and distance in the virtual and real
worlds are particularly critical in this application context. For example, a physician
simulating an operation in the virtual world should not train wrong movements due
to misjudgments of space. The correct perception of sizes and distances is essential
for many applications in the field of VR.

Unfortunately, many studies show that there can always be discrepancies in the
perception of virtual space. For example, it has often been shown that users tend to
underestimate distances in the virtual world by up to 50% (Interrante et al. 2006;
Steinicke et al. 2010a). A common approach to measuring distance estimation is, for
example, blind or imaginary walking. Here the user is shown a mark at a certain
distance (e.g., 4 m, 6 m or 8 m) on the floor, and the user must then walk to this mark
with eyes closed. In the real world, this task is easy to accomplish, and we walk
almost exactly up to the mark. A user in the virtual world who sees the same scene
(geometrically correct) on a head-mounted display, for example, will most likely
walk much too short a distance; in some cases by up to 50%. This effect can be
observed with many techniques for evaluating spatial perception (e.g., triangular
completion, blind throwing, imaginary walking or verbal assessment). Many studies
have shown the influence of some factors (such as stereoscopic imaging, limited
field of view, realistic lighting or shading) on this distance underestimation, but up
till now, there is no complete explanation for this phenomenon.

According to Emmert’s law, there is a clear connection between sizes and dis-
tances. In this respect, the phenomenon of underestimating distances can also be
observed as a phenomenon of overestimating sizes. The law states that the perceived
size is proportional to the product of perceived distance with retinal size, i.e., the
size of the image on the retina. The resulting law of size constancy is used by
humans already in infancy. If, for example, a mother distances herself from her
child, the projection of the mother on the retina of the child becomes smaller, but the
child is aware that the mother is not shrinking, but merely moving further away. It
is also the case that the more of the above-mentioned depth cues are missing, the
more the angle of vision is used for size estimation. Misjudgments in the real world
can also occur. These can be exploited in perspective illusions, for example.
However, such misjudgments result not only from perceptual errors but also from
cognitive processes. Distances are considered to be greater, for example, when sub-
jects carry a heavy backpack (Proffitt et al. 2003) or are asked to throw a heavier ball
(Witt et al. 2004). Thus, not only optical stimuli and their processing play a role in
depth perception but also the intended actions and the associated effort. Furthermore,
studies have shown that presence influences the perception of distances. The more
present we feel in the virtual world, the better our assessments of distances become
(Interrante et al. 2006). This illustrates that the correct assessment of space can be a
complex task even in the real world, depending on perceptual, cognitive and motor
processes.

Various approaches exist to improve the estimation of distances or sizes in the
virtual world or to make the space presented or the objects displayed in it appear
larger or smaller. For example, one could simply scale the entire geometry. Now the

2 Perceptual Aspects of VR

58

test persons would perceive the space as they would in the real world, but this does
not solve the problem. Similar effects can be achieved by enlarging the geometric
field of view. The geometric field of view refers to the area presented by the virtual
scene, which is defined by the horizontal and vertical opening angle of the virtual
camera. If this is enlarged, the viewer sees a larger area of the virtual world.
However, since the same physical display is still used, this larger area must be
mapped to the same area of the screen. Thus, the scene is minified, and objects
appear further away (Kuhl et al. 2006). This is illustrated in Fig. 2.6. Similar effects
can be achieved by changing the pupil distance. However, these approaches have the
disadvantage that they actually present a different space utilizing, for example, per-
spective distortion. Subjects now continue to walk further, but they do so in another
room that is projected with different geometric properties (see Fig. 2.6).

Alternative approaches are based on the idea of exaggerating the given depth
cues to give the users clearer indications for the assessment of distances. For exam-
ple, artificial shadows created by drawing lines to the base surface can give just as
effective depth indications as stereoscopy. By using fog to desaturate the colors of
distant objects, atmospheric depth can be imitated. This helps the user to better
estimate distances, for example in virtual city models.

As already indicated above, cognitive factors also influence the assessment of
space. It has been shown that the estimation of distances is significantly better in
virtual space that is an exact representation of real space (Interrante et al. 2006).
Follow-up studies have shown that this is not only due to the knowledge of real
space, but especially to the higher sense of presence in such virtual worlds. This
improved ability to assess distance can even be transferred to other virtual worlds.

Fig. 2.6 Presentation of the same virtual space with (left) small and (right) large geometric field
of view. (According to Steinicke et al. 2009)

R. Doerner and F. Steinicke

59

For instance, a transfer can succeed if one is teleported from a virtual space exactly
simulating real space to these other virtual worlds through a portal (see Fig. 2.7).

2.4.6 Discrepancies in the Perception of Movement

A similar effect as with distance underestimation can also be observed in the per-
ception of movement, such that speeds of movement or distances covered are over-
or underestimated. For example, many studies have shown that forward movements
along the line of sight are underestimated (Lappe et al. 2007; Loomis and Knapp
2003). This is particularly true if the movement is only visually presented, and the
user essentially perceives only the optical flow. Even if the user moves simultane-
ously and the movements are mapped 1:1 onto the virtual camera, this underestima-
tion of forward movements along the line of vision occurs. In contrast to virtual
straight-line movements, virtual rotations often lead to an overestimation (Steinicke
et al. 2010a).

In principle, these discrepancies in the perception of movement can be resolved
relatively easily by applying gains to the tracked movements. For example (tx, ty, tz)
is a measured vector that describes the head movement of a user from one frame to
the next. By means of a gain gT, this movement can now be scaled simply by (gT ∙ tx,
gT ∙ ty, gT ∙ tz). If gT = 1 no scaling occurs; for gT > 1 the motion becomes faster; and
for gT < 1 the motion becomes slower. Psychophysical studies have shown that, for
example, forward movements must be slightly accelerated (approx. 5–15%) to be

Fig. 2.7 Representation of a virtual portal through which users can travel to different virtual
worlds. (According to Steinicke et al. 2010b)

2 Perceptual Aspects of VR

60

considered correct by users. In contrast, rotational speeds should be reduced slightly
(by approximately 5–10%).

These manipulations now lead to the fact that the virtually represented move-
ments are correctly perceived, i.e., the visually perceived movements match the
vestibular-proprioceptive as well as the kinesthetic feedback. However, the users
now actually perform different movements in the virtual and real environments,
with the effect that, for example, certain distance estimation methods, such as count-
ing steps, no longer work. More recent approaches by Bruder et al. (2012b) prevent
such discrepancies between real and virtual movements by manipulating the optical
flow. Such optical illusions only manipulate the perception of the movement but not
the movement itself.

2.4.7 Cybersickness

Users of a VR/AR application may experience undesirable side effects: headaches,
cold sweat, paleness, increased salivation, nausea and even vomiting, ataxia (distur-
bance of movement coordination), drowsiness, dizziness, fatigue, apathy (listless-
ness) or disorientation.

It is generally known that the use of IT systems is not free of health side effects.
Just working at a screen can lead to headaches, for example, because the eyes are
overstrained by focusing on one plane for a long time, or the visual system is
stressed by flickering at low refresh rates or blurred images. These visual distur-
bances, known as asthenopia (eye strain), can also occur in VR/AR applications
because they also use monitors. The symptoms can be more severe, e.g., because the
displays in an HMD may be closer to the eyes or fusion may still be necessary for
stereo vision. An early study (Stone 1993) concluded that 10 min of use of an HMD
is as stressful for the visual system as sitting in front of a computer monitor for 8 h.
The situation is worse for individuals who suffer from vision disorders and, for
example, have problems with eye muscle coordination.

Side effects can also be expected when users are moving or being moved within
an application, e.g., by means of a motion platform, or by simply walking. The syn-
drome of symptoms known as seasickness (more generally: motion sickness) has
been known for a long time and has also been the subject of research. It is possible
to characterize movements that cause seasickness – for example, it is known that
low-frequency vibrations (which may also occur in VR installations) lead to sea-
sickness. In flight simulators, which move an entire replica of a cockpit, it was
observed early on that a significant proportion of pilots complain of feeling unwell
(simulator sickness).

It is noteworthy that in VR/AR applications, the physiological symptoms men-
tioned at the beginning, which sometimes also occur in motion sickness or simula-
tor sickness, can be observed even when the users are not moving at all. Just seeing
images seems to cause discomfort. Therefore, a separate term has been coined:
cybersickness (sometimes also called VR sickness). Cybersickness can occur not

R. Doerner and F. Steinicke

61

only during VR/AR use but also for some time afterward. Usually, the symptoms
disappear by themselves. However, users may still be sensitized even after the
symptoms have subsided, i.e., they may suffer from cybersickness more quickly if
they repeatedly use VR/AR systems within a certain period.

The exact causes of cybersickness are not known today. Probably there is also no
single cause, but it is a multifactorial syndrome. One theory often used to explain
cybersickness and motion sickness is the sensory conflict theory: problems occur
when sensory perceptions are inconsistent. If, for example, a passenger is below
deck while heavy seas are moving the ship, the brain receives information via the
vestibular sense that strong movements are present. In contrast, the visual sense sug-
gests precisely the opposite when no movement is detected in the cabin. Treisman
(1977) motivates the sensory conflict theory by means of evolution: in the past, such
inconsistencies in sensory perception only occurred if one had eaten the wrong
mushrooms – and it is a sensible protective mechanism to quickly get rid of the
poisoned stomach contents. Although in motion sickness inconsistencies between
the visual sense and the sense of balance are particularly important in explaining
symptoms, in cybersickness inconsistencies within a sense (e.g., contradictory
depth cues in the visual sense, as in the vergence-focus conflict) are also considered,
or even inconsistencies between the expected sensory impressions of a user and
what is actually perceived. However, the sensory conflict theory cannot explain all
phenomena in the area of cybersickness, and in particular, the extent to which symp-
toms occur can only be predicted with difficulty. Other attempts at explanation are
therefore being sought. For instance, the postural instability theory (Riccio and
Stoffregen 1991) assumes that people cannot cope with unfamiliar situations (such
as those that can occur in a virtual environment) and that there is a disruption in the
control of body posture that causes further symptoms.

Even though cybersickness’s exact causes cannot be explained, factors have been
identified that promote cybersickness’s occurrence. The first group of factors
depends on the individual. Age, gender, ethnicity and also individual previous expe-
riences with VR and AR can influence the occurrence of cybersickness. Remarkable
are significant individual differences in the susceptibility to cybersickness. People
who frequently suffer from motion sickness are also more susceptible to cybersick-
ness. The second group of factors is related to the VR/AR system. Influencing fac-
tors include image contrast and associated flicker, refresh rate, tracking errors,
quality of system calibration and use of stereo displays. The larger the field of view
(and the more peripheral vision is involved), the more frequently the occurrence of
cybersickness is observed. Other essential factors are latencies, e.g., the time offset
between head movement, the new head position’s detection, and the correct image
display of this new head position. A rule of thumb says that latencies above 40 ms
are too high and that latencies below 20 ms should be aimed for. Finally, there is a
third group of factors that are related to the application. Does the user spend a long
time in the application? Does the user have to move the head frequently? Does the
user rotate, perhaps even more than one axis at a time? Is the head tilted off the axis
around which the user is rotated (Coriolis stimulation)? Is the user standing instead
of sitting or lying down? Do users look directly down at the area in front of their feet

2 Perceptual Aspects of VR

62

and cannot see far in the scene in general? Is it difficult to orientate in the scene, e.g.,
because a static frame of reference is missing? Is there much visual flow? Do users
move quickly and a lot in a virtual world? Are there frequent changes in speed, are
movements oscillating rather than linear, and are there abrupt movements? Does the
user jump often or climb stairs? Are there unusual movements? Are users anxious?
The more questions are answered in the affirmative and the more emphatic the
agreement, the more cybersickness can be expected. Another factor is the degree of
control (combined with the anticipation of movement) that a user has when navigat-
ing through a virtual environment. This is consistent with the phenomenon that the
driver of a car or the helmsman of a ship suffers less often from motion sickness.
Finally, a further factor is whether the application favors vection, i.e., the illusion of
moving even though no movement is taking place.

If one wants to reduce the risk of cybersickness, one can minimize the influence
of the factors mentioned, such as reducing latencies by improving the technical
realization, reducing movements of the user by increased use of teleportation, or by
inserting artificial blurring during the rotation of the user. Individually, one can
avoid the occurrence of cybersickness by slowly getting used to VR/AR applica-
tions (McCauley and Sharkey 1992). Chewing gum and adequate fluid intake are
recommended. In extreme cases, one can take medication against motion sickness.
As a herbal remedy, ginger does not prevent cybersickness, but it does counteract
nausea and vomiting. Ultimately, it must be accepted that the occurrence of cyber-
sickness cannot be prevented with certainty. Consequently, users should be given an
easy way to terminate a VR/AR application at any time. It is also important to
inform users about the possible side effects and to obtain the explicit consent of
users, especially in user tests.

Whether and to what extent cybersickness occurs is usually determined by
observing or asking users. For this purpose, it makes sense to use standardized ques-
tionnaires. Although not intended for cybersickness, the Simulator Sickness
Questionnaire (SSQ) and the Motion Sickness Assessment Questionnaire (MSAQ)
are often used (Kennedy et al. 1993). Alternatively, users can be watched to detect
symptoms – but this is sometimes difficult, e.g., headaches are difficult to detect, but
vomiting is easy. Physiological body values (e.g., heart rate, skin conductivity) are
sometimes measured. Here, especially, the interpretation of the measured values is
difficult. Based on such measurements, studies such as Lawson (2015) conclude
that 60–80% of users of a VR application show symptoms of cybersickness. Around
15% show symptoms so severe that they have to stop using the application. However,
such figures should be applied with great caution to a specific VR/AR application –
there are many possible influencing factors and, therefore, strong fluctuations in the
values. Individual differences among users are also considerable; the same user can
react very differently to a scenario repeated several times during each repetition.
Nevertheless, these figures show that cybersickness is not a marginal problem, but a
real barrier to the use of VR and AR. Consequently, cybersickness should be taken
into account in the development of every VR/AR application.

R. Doerner and F. Steinicke

63

2.4.8 Vertical Parallax Problem

One problem with the technical implementation of stereo vision is that the virtual
projection plane used in rendering cannot be brought into alignment with the dis-
play’s real plane if the two are not parallel to each other. This leads to vertical paral-
lax, which the viewer perceives as a strain and can lead to errors in depth perception,
blurring at specific image points or double images. Let us look at Fig. 2.8a. An
observer fixates on point P, and thus the eyes are aligned accordingly – the direc-
tions of gaze are no longer parallel and convergence occurs. If we reproduce this
when rendering the images, i.e., if we apply the toe-in method, the two projection
planes intersect at point P and are not parallel to each other. Most of the time, it is
technically not possible to realize that, for each of the two projection planes, there
is a separate display available that can be aligned accordingly. Instead, a common
real display is used for both projection planes. The point A has the distance v from
the display. This is the unwanted vertical parallax. The further point A is from point
P, the greater the vertical parallax, and the more blurred or distorted the image
appears. As with horizontal parallax, you can distinguish between negative parallax
(located before the display plane, such as point A) and positive parallax (located
behind the display plane, such as point B).

Because of the problem of vertical parallax, the toe-in method is avoided, and the
off-axis method is used instead. This is shown in Fig. 2.8b. Here, each eye has a ficti-
tious point of view P′ or P″, so that both projection planes lie on top of each other.
This means that both projection planes can also be mapped exactly onto a single
display plane. As a result, the viewing volumes are no longer symmetrical.
Accordingly, an asymmetrical viewing volume must be set during rendering. This is

Fig. 2.8 (a) The toe-in method leads to the occurrence of vertical parallax. (b) The off-axis
method solves this problem

2 Perceptual Aspects of VR

64

shifted by the distance t from the center axis (‘off-axis’). The exact size of the view
volumes can be calculated through a set of rays if the distance between the projec-
tion plane and the eyepoint is known. This solves the problem of vertical parallax.

2.5 Use of Perceptual Aspects

With knowledge of human perception, we can not only explain problems occurring
in VR. Knowledge about the operation of human perception can also be useful to
improve a VR experience or to use available resources well. In Sect. 2.4.1 we have
already seen an example of how the ability of the human visual system to adapt
makes complex technical solutions superfluous: we do not have to measure the dis-
tance between the pupils of an observer to adjust the virtual cameras correctly. On
the contrary, we can manipulate virtual eye separation to prevent diplopia because
we know that human perception reacts robustly to changes in virtual eye separation.
Besides adaptation, there are two other important perceptual aspects of VR that are
exploited in VR: salience and user guidance.

2.5.1 Salience

Human perception does not have the capacity to process all environmental stimuli
in equal detail. Priorities are set, and people can focus attention on certain aspects.
In the human visual system, for example, differentiation is already inherently built-
 in through the uneven distribution of sensory cells on the retina of the eye – humans
can align the fovea in such a way that light stimuli from environmental objects clas-
sified as particularly relevant hit this point in the retina, which possesses a high
number of sensory cells.

VR makes use of this characteristic of human perception because VR systems
often do not have the capacity to artificially generate all environmental stimuli
equally well. If you know what the user of a VR system is focusing his or her atten-
tion on, you can adjust the quality of the rendering (e.g., simulation of surface mate-
rials, quality of the object models, effort invested in anti-aliasing), sound quality,
quality of the animation or accuracy of the world simulation. Conversely, one does
not need to invest any or only a few resources of a VR system in areas that are not
the focus of attention. In extreme cases one can even observe inattentional blind-
ness. In an experiment, Simons and Chabris (1999) showed nearly 200 students 75 s
long videos in which basketball players throw a ball at each other. The viewers had
the task of counting how many passes a team makes – attention was thus focused on
the ball. The video showed an unusual event for 5 s, e.g., a person dressed as a
gorilla walking across the field. About half of the viewers did not notice this at all.
So why go to the trouble of creating images of a gorilla in a VR version of this scene
if the viewer does not notice it?

R. Doerner and F. Steinicke

65

There are two obstacles to exploiting these phenomena of human perception. On
the one hand, while it is possible to make statements about probabilities, it is not
possible to predict with certainty which environmental stimuli are considered
important for an individual in a concrete situation. Hence, we could make mistakes.
For example, we leave out the gorilla in our VR scene even though the viewer would
have seen it in the concrete situation. Here it is essential to weigh up the likelihood
of making a mistake and the consequences. Due to the limited performance of VR
systems, one may have no choice but to set priorities to meet real-time require-
ments. Violating real-time conditions (e.g., the virtual environment reacts with a
noticeable delay to a user’s action; see Chap. 7) can have more serious consequences
than choosing the wrong priorities.

On the other hand, there is the issue that the information is needed on which the
viewer’s attention is currently focused. There are different approaches to obtaining
this information. Firstly, technical systems can be used to determine where the
observer is currently looking (eye-tracking; see Chap. 4). Secondly, through knowl-
edge about the application and the current goals and tasks of the user of VR, it can
be estimated which objects of the virtual world are likely to attract a high level of
attention (Cater et al. 2003). In the gorilla example, we could deduce from the task
given to the viewers that the ball is the center of attention. Myszkowski (2002) cre-
ates task maps that assign each object a priority for rendering, with moving objects
automatically getting a higher priority. A third approach (Treisman and Gelade
1980) is based on the feature integration theory. This approach is attractive for VR
because it does not require any additional knowledge about the application or the
viewing direction of the viewer but can work solely on the images of the 3D scene:
the salience (also called saliency) of objects is determined as a measure of their
importance.

Salience describes how strongly an object stands out from its surroundings (e.g.,
in color, orientation, movement, depth). If one shows a person a picture with 50
squares of equal size, 47 of which are grey and 3 are red, the 3 red squares stand out
and are immediately noticed. The person can easily and quickly answer the question
of how many red squares can be seen in the picture. Even if the number of gray
squares is quintupled, the person can just as quickly recognize that there are 3 red
squares present. The feature integration theory explains this observation by postu-
lating that human perception works stepwise. In the first stage, all incoming image
stimuli are processed in parallel and examined for specific features. This happens
subconsciously. It is called preattentive processing (see Fig. 2.9). Anatomically,
receptive fields have already been identified, i.e., groups of nerve cells in the brain
that are responsible for these tasks of feature extraction. The result of preattentive
processing then serves as the basis for the decision in the next stage as to which
regions in the image are to receive attention.

If one wants to take advantage of this in VR, one must first calculate an attention
map (saliency map) of an image in which every pixel of an image is assigned a
salience value. Today’s algorithms for this purpose are based on the work of Itti
et al. (1998). The procedure consists of first splitting the input image into feature
images, e.g., extracting a luminance image that contains only brightness values.

2 Perceptual Aspects of VR

66

These feature images are examined in parallel with image processing methods,
whereby the operation of the receptive fields in the brain is modeled mathemati-
cally. Receptive fields that recognize orientation in a feature image can be described,
for example, by Gabor filters. A Gabor filter is constructed from a Gaussian func-
tion modulated by a sinusoidal function and can thus map the sensitivity for differ-
ent frequencies and orientations. The results of processing the individual feature
images are normalized. The salience values are determined from this by weighted
summation. The weighting can also be chosen depending on the current task of the
observer. It is often determined by machine learning, e.g., utilizing neural networks.
In this processing step, another phenomenon of human perception can be mimicked:
inhibition. Inhibition means that nerve cells can not only be stimulated but also
inhibited by stimuli, which increases differences. Algorithmically, this can be real-
ized, for example, with a winner-takes-all approach, i.e., the greatest value is used
for salience, while salience in the vicinity of the greatest value is reduced to enhance
its significance further. The saliency map finally obtained then serves as a basis for
decisions on how to use resources of the VR system, e.g., for areas with high
salience 3D models with a high level of detail are used. Further data can also be
obtained, e.g., fixation maps (Le Meur et al. 2006), which predict what an observer
is likely to fixate on. Since saliency maps are two-dimensional, a relatively complex
back-calculation into the 3D scene is necessary to assign a salience value to virtual
3D objects. Therefore, approaches are also being considered that directly examine
characteristics of 3D objects and derive a salience value from them (Lee et al. 2005).

2.5.2 User Guidance

The area covered by the virtual environment’s hardware platform in which users can
move around is usually much smaller than the virtual world represented in it. Clearly,
without additional input devices, the users can only explore a very small part of the
virtual world by their own movements. There is a variety of so-called locomotion
devices that prevent the user from moving from one place to another in the real world

Fig. 2.9 Example of preattentive processing: the time required to find the number of occurrences
of the digit ‘7’ in a series of numbers can be reduced considerably if the number ‘7’ is displayed in
a different color. This is processed in a preattentive stage. If the number series size increases, the
time for the task completion increases if the number ‘7’ is not highlighted; otherwise it remains
the same

R. Doerner and F. Steinicke

67

while walking. Examples are omnidirectional treadmills or the Virtuix Omni (see
Chap. 4). Another approach is based on the idea of manipulating users in such a way
that they walk on different paths in the real world than those perceived in the virtual
world. If, for example, a small virtual rotation to one side is introduced during a
user’s forward movement, the user has to compensate for this rotation in the real
world to be able to continue walking virtually straight ahead. This results in the user
walking on a curved path in the opposite direction. Thus, users can be guided on a
circular path in the VR setup while they think they are walking straight ahead in the
virtual world. Investigations have shown whether and from when on test persons can
detect such manipulations through re-directed walking (Steinicke et al. 2010a). For
instance, test persons who walk straight ahead in the virtual world can be guided on
a circle with a radius of about 20 m in the real world without noticing this.

2.6 Summary and Questions

In this chapter, you have acquired basic knowledge in the field of human informa-
tion processing. In particular, we have dealt with some of the most important aspects
in the field of spatial perception and the perception of movement. Based on this, you
have learned about relevant phenomena and problems of VR. You have also seen
examples of how different limitations of human perception can be exploited to
improve the quality and user experience during a VR session. To design effective
virtual worlds, it is essential to take findings from perceptual psychology on human
information processing into account. Aspects related to perception have become
increasingly important in recent years, which is reflected in the increased number of
research projects in this field.

Check your understanding of the chapter by answering the following questions:

• Why is the response time for a subject longer when deciding whether a stimulus
displayed on the screen matches a previously displayed stimulus than when the
subject only has to respond when the stimulus appears?

• Compare a photo of a beach in the Caribbean and a photo of the streets of
Manhattan. What pictorial depth cues are present in the photos?

• How does the object in Fig. 2.4 move if the virtual eye separation is not reduced
from 64 mm to 60 mm, but instead increases to 70 mm?

• Why should a cyclopean scale be performed before virtual eye separation?
• Take a stereo display and conduct experiments to determine Panum’s fusional

area of the stereo display. Try using the techniques presented in Sect. 2.4 to fit a
3D scene that initially protrudes over the panorama area.

• Find more examples of conflicting depth cues in VR.
• You would like to build a light rail simulator with which a learner can drive a

streetcar through a virtual city. Think about where perceptual aspects need to be
considered. Which problems can potentially arise? Where can perceptual aspects
be exploited in the technical realization of the simulator?

2 Perceptual Aspects of VR

68

 Recommended Reading1

Goldstein EB (2016) Sensation and Perception (10th edn). Cengage Learning,
Belmont – Standard work from the psychology of perception which is not limited
to visual perception. Very informative and with many examples.

Thompson WB, Fleming WF, Creem-Regehr SH, Stefanucci JK (2011) Visual
Perception from a Computer Graphics Perspective. CRC Press, Boca Raton –
Textbook which also explains essential aspects of perception for VR and always
makes the connection to computer graphics.

References

Barsky BA, Kosloff TJ (2008) Algorithms for rendering depth of field effects in computer graph-
ics. In: Proceedings of 12th WSEAS international conference on computers, pp 999–1010

Bruder G, Pusch A, Steinicke F (2012a) Analyzing effects of geometric rendering parameters on
size and distance estimation in on-axis stereographic. In: Proceedings of ACM Symposium on
Applied Perception (SAP 12), pp 111–118

Bruder G, Steinicke F, Wieland P, Lappe M (2012b) Tuning self-motion perception in virtual real-
ity with visual illusions. IEEE Trans Vis Comput Graph 18(7):1068–1078

Card SK, Moran TP, Newell A (1986a) The model human processor: an engineering model of
human performance. In: Handbook of perception and human performance. Vol. 2: cognitive
processes and performance, pp 1–35

Card SK, Moran TP, Newell A (1986b) The psychology of human–computer interaction. CRC Press
Cater K, Chalmers A, Ward G (2003) Detail to attention: exploiting visual tasks for visual render-

ing. In: Proceedings of Eurographics workshop on rendering, pp 270–280
Ernst MO (2008) Multisensory integration: a late bloomer. Curr Biol 18(12):R519–R521
Hagen MA, Elliott HB (1976) An investigation of the relationship between viewing conditions and

preference for true and modified perspective with adults. J Exp Psychol Hum Percept Perform
5:479–490

Hayward V, Astley OR, Cruz-Hernandez M, Grant D, La-Torre GR-D (2004) Haptic interfaces and
devices. Sens Rev 24(1):16–29

Hendrix C, Barfield W (1996) Presence within virtual environments as a function of visual display
parameters. Presence Teleop Virt 5(3):274–289

Hoffmann DM, Girshick AR, Akeley K, Banks MS (2008) Vergence-accommodation conflicts
hinder visual performance and cause visual fatigue. J Vis 8(3):1–30

Howard IP (2002) Seeing in depth: Vol. 1. Basic mechanisms. I Porteous, Toronto
Interrante V, Anderson L, Ries B (2006) Distance perception in immersive virtual environments,

revisited. In: Proceedings of IEEE virtual reality 2006, pp 3–10
Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis.

IEEE Trans Pattern Anal Mach Intell 20:1254–1259
Kennedy RS, Lane NE, Berbaum KS, Lilienthal GS (1993) Simulator sickness questionnaire:

an enhanced method for quantifying simulator sickness. International Journal of Aviation
Psychology 3(3):203–220

1 The ACM Symposium on Applied Perception (SAP) as well as the journal Transaction on Applied
Perception (TAP) deal with multisensory perception in virtual worlds.

R. Doerner and F. Steinicke

69

Kubovy M (1986) The psychology of linear perspective and renaissance art. Cambridge University
Press, Cambridge

Kuhl SA, Thompson WB, Creem-Regehr SH (2006) Minification influences spatial judgement in
immersive virtual environments. In: Symposium on applied perception in graphics and visual-
ization, pp 15–19

Lappe M, Jenkin M, Harris LR (2007) Travel distance estimation from visual motion by leaky path
integration. Exp Brain Res 180:35–48

Lawson B (2015) Motion sickness symptomatology and origins. In: Hale KS, Stanney KM (eds)
Handbook of virtual environments: design, implementation, and applications. CRC Press,
pp 532–587

Le Meur O, Le Callet P, Barba D, Thoreau D (2006) A coherent computational approach to model
the bottom-up visual attention. IEEE Trans Pattern Anal Mach Intell 28(5):802–817

Lee CH, Varshney A, Jacobs DW (2005) Mesh saliency. In: Proceedings of SIGGRAPH 2005,
pp 659–666

Loomis JM, Knapp JM (2003) Visual perception of egocentric distance in real and virtual environ-
ments. In: Hettinger LJ, Haas MW (eds) Virtual and adaptive environments. Erlbaum, Mahwah

Malaka R, Butz A, Hußmann H (2009) Media informatics – an introduction. Pearson, Munich
Marr D (1982) Vision: a computational investigation into the human representation and processing

of visual information. MIT Press, Cambridge
McCauley ME, Sharkey TJ (1992) Cybersickness: perception of self-motion in virtual environ-

ments. Presence Teleop Virt 1(3):311–318
Mendiburu B (2009) 3D movie making: stereoscopic digital cinema from script to screen. Focal

Press, New York
Mon-Williams M, Wann JP (1998) Binocular virtual reality displays: when problems do and don’t

occur. Hum Factors 40(1):42–49
Myszkowski K (2002) Perception-based global illumination, rendering and animation techniques.

In: Spring conference on computer graphics, pp 13–24
Ooi TL, Wu B, He ZJ (2001) Distance determination by the angular declination below the horizon.

Nature 414:197–200
Preim B, Dachselt R (2015) Interaktive Systeme (Band 2). Springer Vieweg, Berlin, Heidelberg
Proffitt DR, Stefanucci J, Banton T, Epstein W (2003) The role of effort in distance perception.

Psychol Sci 14:106–112
Riccio GE, Stoffregen TA (1991) An ecological theory of motion sickness and postural instability.

Ecol Psychol 3(3):195–240
Sharp H, Preece J, Rogers Y (2019) Interaction design: beyond human–computer interaction.

Wiley, Indianapolis
Shneiderman B, Plaisant C, Cohen M, Jacobs S, Elmqvist N, Diakopoulos N (2018) Designing

the user interface – strategies for effective human–computer interaction. Pearson Education
Ltd, Harlow

Simons DJ, Chabris CF (1999) Gorillas in our midst: sustained inattentional blindness for dynamic
events. Perception 28(9):1059–1074

Slater M, Usoh M, Steed A (1994) Depth of presence in virtual environments. Presence Teleop
Virt 3:130–144

Steinicke F, Bruder G, Kuhl S, Willemsen P, Lappe M, Hinrichs KH (2009) Judgment of natural
perspective projections in head-mounted display environments. In: Proceedings of VRST 2009,
pp 35–42

Steinicke F, Bruder G, Jerald J, Frenz H, Lappe M (2010a) Estimation of detection thresholds for
redirected walking techniques. IEEE Trans Vis Comput Graph 16(1):17–27

Steinicke F, Bruder G, Hinrichs KH, Steed A (2010b) Gradual transitions and their effects on pres-
ence and distance estimation. Comput Graph 34(1):26–33

Stone B (1993) Concerns raised about eye strain in VR systems. Real-Time Graph 2(4):1–13
Treisman M (1977) Motion sickness: an evolutionary hypothesis. Science 197:493–495

2 Perceptual Aspects of VR

70

Treisman AM, Gelade G (1980) A feature integration theory of attention. Cogn Psychol
12(1):97–136

Vishwanath D, Girshick AR, Banks MS (2005) Why pictures look right when viewed from the
wrong place. Nat Neurosci 8(10):1401–1410

Wanger LR, Ferwander JA, Greenberg DA (1992) Perceiving spatial relationships in computer-
generated images. IEEE Comput Graph Appl 12(3):44–58

Ware C (2000) Information visualization – perception for design. Morgan Kaufmann, San
Francisco

Ware C, Gobrecht C, Paton M (1998) Dynamic adjustment of stereo display parameters. IEEE
Trans Syst Man Cybern 28(1):56–65

Williams SP, Parrish RV (1990) New computational control techniques and increased understand-
ing for 3-D displays. In: Proceedings of SPIE Stereoscopic Display Applications, pp 73–82

Witmer BG, Singer MJ (1998) Measuring presence in virtual environments: a presence question-
naire. Presence: Teleoperators Virtual Environ 7(3):225–240

Witt JK, Proffitt DR, Epstein W (2004) Perceiving distance: a role of effort and intent. Perception
33:577–590

R. Doerner and F. Steinicke

71© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
R. Doerner et al. (eds.), Virtual and Augmented Reality (VR/AR),
https://doi.org/10.1007/978-3-030-79062-2_3

Chapter 3
Virtual Worlds

Bernhard Jung and Arnd Vitzthum

Abstract Virtual worlds, the contents of VR environments, consist of 3D objects
with dynamic behavior that react in real time to user input. After a brief overview of
the creation process of virtual worlds, this chapter introduces a central data structure
of many VR/AR applications, the scene graph, which allows us to structure virtual
worlds in a hierarchical manner. Afterwards, different ways to represent 3D objects
are presented and discussed in the context of interactive virtual worlds. Special
attention is given to methods for optimizing 3D objects with respect to the real-time
requirements of virtual worlds. Subsequently, an overview of basic methods for
generating the dynamic behavior of 3D objects is given, such as animations, physics-
based simulations and the support of user interactions with 3D objects. A section on
sound, lighting and backgrounds describes elements of virtual worlds that are sup-
ported by common scene graph systems. The concluding section on special-purpose
systems deals with 3D objects that are usually modeled with the help of custom
methods and tools, such as virtual humans, particle systems, terrains and vegetation.

3.1 Introduction

The term virtual world refers to the content of VR environments. Virtual worlds
consist of 3D objects that exhibit dynamic behavior and can react to user input.
Besides the actual 3D objects, virtual worlds also contain abstract, invisible objects
that support the simulation and rendering of the virtual world. These include light
and sound sources, virtual cameras and proxy objects for efficient collision checks
or physics calculations. In the following, a simplified overview of the steps in mod-
eling virtual worlds and their integration into VR systems is given.

B. Jung (*)
Institute for Informatics, Technical University Bergakademie Freiberg, Freiberg, Germany
e-mail: jung@informatik.tu-freiberg.de

Dedicated website for additional material: vr-ar-book.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79062-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-79062-2_3#DOI
mailto:jung@informatik.tu-freiberg.de
http://vr-ar-book.org

72

3.1.1 Requirements on 3D Object Representations
for Virtual Worlds

In contrast to other areas of 3D computer graphics that often emphasize photoreal-
ism and high visual detail of still images or animations, virtual worlds demand real-
time capability and interactivity.

In simple terms, real-time capability means that the virtual world is updated and
displayed immediately, i.e., without any noticeable delay. Ideally, the user would
not perceive any difference from the real world in terms of the temporal behavior of
the virtual world. For a more detailed description of the topics real-time capability
and latency in the context of entire VR systems, refer to Sect. 7.1. For each time step
or frame, e.g., 60 times per second, the subtasks of user tracking and input process-
ing, virtual world simulation, rendering and output on the displays have to be per-
formed by a VR/AR system (see Sect. 1.5). The way in which 3D objects are
modeled directly influences the subtasks of world simulation and rendering. If the
virtual world model becomes too complex, real-time capability may no longer be
possible.

Interactivity means first of all that the system will respond to (any) activities of
the user, such as moving around in the virtual world or influencing the behavior of
the 3D objects contained therein. User interaction techniques for, e.g., navigation
and object manipulation in VR, are the topic of Chap. 6. While the implementation
of interactive behavior usually requires scripting or other forms of programming,
certain measures can already be taken at the modeling stage of virtual worlds to
make these interactions effective and efficient. For example, to accelerate user inter-
actions as well as the dynamic behavior of 3D objects resulting from these interac-
tions, 3D objects are often enriched with simpler collision geometries such as
cuboids or spheres. This allows efficient collision checks not only of the 3D objects
with each other, but also, during user interactions, with the virtual representation of
the user or a virtual pointing ray emanating from an interaction device (see also
Sects. 6.2 and 6.4 for selecting and manipulating 3D objects, and Sect. 7.2 for col-
lision detection).

Concerning the visual realism of virtual worlds, a wide spectrum of requirements
exists in different kinds of VR/AR applications. While virtual worlds for training
purposes should strongly resemble the real world, the visual appearance of gaming
applications may range from toon-like, through realistic to artistically fanciful. In
scientific applications, often clearer form and color schemes are preferred over real-
istic appearance. Even in VR/AR applications with high demands on visual quality,
however, the requirements regarding real-time and interactivity of the virtual world
generally take precedence.

B. Jung and A. Vitzthum

73

3.1.2 Creation of 3D Models

The first step in the creation process of virtual worlds is the creation of the individ-
ual 3D models. This can be done in different ways:

• ‘Manual’ modeling of 3D objects in 3D modeling tools. Widely used examples
are Autodesk’s 3ds Max and Maya, and the open-source tool Blender. 3D model-
ing tools typically also support the creation of animations, for example by inte-
grating motion capture data to animate virtual humans. In the technical domain,
CAD systems are used which often provide very precise geometric modeling.
Before import into VR systems, it is typically necessary to simplify the often
very complex CAD models (see below and Sect. 3.3.4).

• Procedural modeling techniques are used for the automatic generation of very
large or very complex objects, whose modeling by hand would be too time-
consuming. An example is the automatic generation of 3D models of buildings
or entire cities, possibly based on real-world geodata. Another example is the
generation of objects with fractal shapes, such as terrain or trees (see Sect. 3.5).

• Furthermore, 3D models can be acquired as 3D scans of real objects or environ-
ments. For this purpose, e.g., laser scanners, which provide depth information,
are used in combination with color cameras to obtain the object textures. By
means of photogrammetric methods it is also possible to create 3D models solely
on the basis of multiple camera images of the object (see Fig. 3.1). Raw 3D scans
may require complex post-processing steps, such as filling gaps (in areas not
captured by the camera due to occlusion), simplifying the geometry and remov-
ing shadows or viewpoint-dependent highlights from the object textures. A good
overview of the algorithmic procedures for the 3D reconstruction of objects from
2D images can be found in the book by Hartley and Zisserman (2004). Among
the more frequently used software tools are Agisoft Metashape, Autodesk ReCap,
3DF Zephyr and the open source VisualSFM.

Fig. 3.1 Generation of 3D models using photogrammetry software. Left: Selection of photos of
an object; typically several dozen photos would be used. Middle: Generated 3D model in wire-
frame view. Right: Textured 3D model

3 Virtual Worlds

74

3.1.3 Preparation of 3D Models for VR/AR

3D objects created or acquired by the above methods usually require post- processing
so that they can be included in virtual worlds. This typically concerns simplification
of the object geometry and the adaptation of visual detail. Further, objects must be
converted into file formats suitable for the respective VR/AR system.

The simplification of the object geometry aims, among other things, at enabling
an efficient rendering of the 3D objects. Essentially, the goal is to reduce the number
of polygons of a 3D object. This can be done, for example, mostly automatically by
special programs for simplification of polygon meshes (some manual postprocess-
ing is typically required, however). Another option is to model an additional, low-
resolution variant of the 3D object, which is textured with renderings of the original,
high-resolution 3D object (texture baking). Furthermore, it can be useful to provide
several variants of a 3D object in different resolutions, between which it is possible
to switch at runtime depending on the distance to the viewer or the field-of-view
covered (level of detail). These and other techniques are elaborated in Sect. 3.3.

The 3D objects must also be converted into a file format that is supported by the
respective runtime environment of the virtual world. This step can be done using
special conversion programs or export options of 3D modeling tools. For commer-
cial game engines, the proprietary FBX format by Autodesk is primarily relevant.
Popular file formats are also, for example, the somewhat older but still widely sup-
ported formats Wavefront (.obj) and Autodesk 3DS (.3ds). Open standards include
COLLADA (.dae), glTF (.gltf) and X3D (.x3d).

3.1.4 Integration of 3D Models into VR/AR
Runtime Environments

Finally, the individual 3D models must be combined into complete virtual worlds.
For this, the 3D objects are arranged in a scene graph. This could be done, for
example, by creating a single X3D description of the entire virtual world. More
common, however, is to load the individual objects into a world editor of a game
engine and to create the scene graph there. Furthermore, to simplify collision detec-
tion and collision handling as part of the world simulation, it is often advisable to
equip the 3D objects with simplified collision geometries at this point (see Sect. 3.4

X3D (Web 3D Consortium 2013) is an XML and scene graph-based descrip-
tion language for 3D content. The successor of VRML (Virtual Reality Markup
Language), X3D was adopted by the W3C Consortium as a standard for the
representation of virtual worlds in web applications. Many common 3D mod-
eling tools offer an export option to the X3D format, which thus also plays an
important role as an exchange format for 3D models and 3D scenes.

B. Jung and A. Vitzthum

75

and in-depth Sect. 7.2). In addition to the actual 3D objects, virtual worlds contain
special objects such as virtual cameras, light sources, audio sources and back-
grounds, which should now also be defined (see Sect. 3.5).

3.2 Scene Graphs

The elements of the virtual world, such as its 3D objects, sounds, cameras and light
sources, as well as information on how these elements are spatially arranged and
hierarchically structured are described by the so-called scene. At runtime, the scene
is rendered from the user’s point of view, i.e., converted into one, or in the case of
stereo displays two, or in the case of multi-projector systems multiple 2D raster
graphics (bitmap images). The rendered raster graphics are then displayed on suit-
able devices (e.g., monitor, head-mounted display, projection systems such as a
CAVE, etc.; cf. Chap. 5). In addition, audio information contained in the scene is
output via speakers or headphones. A scene can change dynamically at runtime. For
example, the positions of 3D objects can vary over time. This is referred to as an
animated scene. If 3D objects also react to user input, the scene is interactive. The
ability of an object to react to events such as user input or interaction with other
objects by changing its state is called behavior.

A scene graph describes the logical and often spatial structure of the scene ele-
ments in a hierarchical way. Common data structures for scene graphs are trees and,
more general, directed acyclic graphs (DAGs). Conceptually, a scene graph consists
of nodes connected by directed edges. If an edge runs from node A to node B, A is
called the parent node and B is called the child node. Scene graphs contain exactly
one root node, that is, a node that does not have a parent node. Nodes without chil-
dren are called leaf nodes. Unlike a tree, which is a special kind of DAG, child
nodes are allowed to have multiple parent nodes in DAGs. The scene graph is tra-
versed from the root to the leaves at runtime, collecting information for rendering,
among other things (see Sect. 7.3).

Scene graphs allow a compact representation of hierarchically structured virtual
worlds. Figure 3.2 shows an example of a scene comprising a vehicle, a road and a
nail. The vehicle consists of several sub-objects, i.e., the body and four wheels. The
hierarchical relationship is modeled by grouping them in a transformation group.
By using a transformation group instead of a ‘plain’ group, the vehicle can be moved
as a whole. The four wheels are also each represented by a transformation group
that allows the wheels to rotate while the car is moving. Figure 3.2 also illustrates
an advantage of scene graphs having a DAG structure rather than being trees, i.e.,
the ability to reuse 3D objects (or groups of them) very easily. In the vehicle exam-
ple, only one geometry object of the wheel has to be kept in memory instead of
keeping four separate copies.

The leaf nodes of the scene graph represent the actual (mostly geometric) 3D
objects. All internal nodes have a grouping function. The root node represents the
entire scene, as it encompasses all 3D objects. Transformation groups deserve

3 Virtual Worlds

76

special elaboration. They define a local coordinate system for their child nodes, usu-
ally by means of a transformation matrix contained as an attribute of the node. The
transformation defined by such a node then describes the displacement, rotation and
scaling of the local coordinate system with respect to the coordinate system of the
parent node. To determine the global position, orientation and scaling of an object,
the path from the root of the scene graph to the object must be traversed. For all
transformation nodes occurring on the path, the corresponding transformation
matrices must be chained together in the order of the path by right multiplication.
The resulting matrix must now be multiplied by the vertex coordinates of the object.
The mathematics of calculating with transformation matrices is explained in Chap.
11. Figure 3.3 illustrates the typical node types of scene graph architectures. The
meaning and usage of these and other node types will be explained in more detail at
the appropriate places within this chapter. In addition to the actual geometric 3D
objects, the scene graph usually contains other elements, such as audio sources,
light sources and one or more virtual cameras (or viewpoints). Lens parameters such
as the horizontal and vertical view angle (or field of view) as well as the orientation
and position of a virtual camera determine the visible section of the virtual world.

The hierarchical structure of scene graphs also offers the interesting possibility
of representing an object in the coordinate system of another object (the reference
object). For example, the vertex coordinates of a geometric object can be trans-
formed into the coordinate system of the virtual camera. For this purpose, a path in
the scene graph must be traversed from the node of the reference object to the

Fig. 3.2 Example of a scene graph. The scene consists of a vehicle with four wheels and a road
with a nail on it. The 3D object for the wheel only has to be loaded into memory once, but is reused
several times

B. Jung and A. Vitzthum

77

respective object node. Edges can also be traversed in the reverse direction. As
before, the transformation matrices occurring on the path must be multiplied. If the
corresponding transformation group is reached via an edge in the reverse direction,
multiplication with the inverse matrix must be performed.

As an example, the transformation matrix MNail → Wheel1 is to be determined, which
transforms the object coordinates of the first wheel of the vehicle into the coordinate
system of the nail lying on the road (see Fig. 3.2). This yields the following matrix
multiplication:

M M M M MNail Wheel Nail Street Vehicle Wheel�

� �� � � �1
1 1

1

3.3 3D Objects

3D objects are the most important elements of virtual worlds. 3D models should
define the object geometry both as precisely as possible and in a form that can be
efficiently processed by a computer. Some common ways of representing objects

A widely used, platform-independent scene graph library is the C++-based
OpenSceneGraph, which is used, e.g., for the development of immersive VR
systems. With the X3DOM framework, which is also open source, X3D-based
virtual worlds can be displayed in web browsers. In game engines, scene
graphs are also common. Popular examples are Unity, Unreal Engine and the
open-source Godot engine. Scene graphs of game engines, however, usually
have a tree structure, which is a special case of a DAG. To achieve memory-
efficient reusability of 3D objects, other mechanisms such as instantiation are
used here.

Fig. 3.3 Selection of typical node types in scene graph architectures. The leaf nodes (green) in the
scene graph are usually displayed visually or audibly, group nodes (red) serve to structure the scene

3 Virtual Worlds

78

for VR/AR applications are presented below. A fundamental distinction exists
between surface and solid models. Surface models, such as polygon meshes,
describe surfaces that may, but are not guaranteed to, enclose a 3D volume. Solid
models, e.g., b-reps, in contrast, always describe objects that enclose a volume.

3.3.1 Surface Models

In computer graphics, it is often sufficient to model what a 3D object looks like
when seen from a certain distance, but unnecessary to model the invisible interior.
Surface models thus capture only the outer appearance of objects but not their
inside. While some surfaces are of simple, regular shape, the natural world also
contains many complex, curved surfaces, such as human faces or hilly landscapes.

 Polygonal Representations

Polygon-based surface representations are widely used in computer graphics as they
both allow us to model arbitrary shapes and can be efficiently rendered. A disadvan-
tage, however, is that the geometry of curved surfaces can only be reproduced
approximately, since it is modeled by a mesh of planar polygons. To describe a
curved surface with sufficient accuracy, a high number of polygons is therefore
necessary, which in turn requires a larger amount of memory and makes rendering
more complex.

On modern graphics hardware, so-called tessellation shaders are available which
allow the creation of polygons directly on the GPU. With the help of the tessellation
shaders, curved surfaces can be represented with low memory requirements and ren-
dered efficiently. However, tessellation shaders are not yet supported by many model-
ing tools. Instead, when exporting 3D models with curved surfaces, polygon meshes
with a high polygon count are typically generated. Thus, memory efficiency is an issue
when choosing an appropriate data structure for polygonal representations.

 Polygons

A polygon is a geometric shape that consists of vertices that are connected by edges.
Only planar polygons are of interest here, i.e., polygons whose vertices lie in a
plane. The simplest and necessarily planar polygon is the triangle. Slightly more
complex is the quadrilateral (or quad in computer graphics speak). Also possible,
but less common in computer graphics, are n-gons, i.e., polygons with n vertices.
For the purpose of rendering, more complex polygons are typically split into trian-
gles, as the graphics hardware can process triangles very efficiently. Polygons that
are part of an object surface are also called faces. Figure 3.4 shows the conceptual
relationship between objects, faces, triangles, edges, and vertices.

B. Jung and A. Vitzthum

79

 Polygon Meshes

A polygon mesh consists of a number of connected polygons that together describe
a surface. As the vertices in a polygon mesh are shared by different faces, the
indexed face set (or indexed mesh) is often a good choice as a data structure for stor-
ing the mesh. Two separate lists are defined for faces and vertices. A face is then
defined by references (indices) to the vertex list (Fig. 3.5). Compared to an indepen-
dent definition of the individual faces, the indexed set saves memory space.
Furthermore, topology information (relationships between vertices, edges and sur-
faces) can be derived from the data structure.

 Triangle Strips

An even more memory efficient representation of polygon meshes (or, more pre-
cisely, triangle meshes) is achieved by triangle strips. Here only the first triangle is
defined by explicitly specifying all three vertices. Each further vertex then creates a
new triangle by reusing two of the previously defined vertices (Fig. 3.6). Thus, for
N triangles, only N + 2 vertices need to be defined instead of 3 ∙ N vertices. In addi-
tion to saving memory space, the fast processing of triangle strips is supported by

Fig. 3.4 Elements of polygonal object representations

Fig. 3.5 Representation of a polygon mesh by separate lists for vertices and faces as an indexed
face set. An indexed face set can contain different kinds of polygons, i.e., triangles, quadrilaterals
or general n-gons, but each face must be planar

3 Virtual Worlds

80

the graphics hardware. Efficient algorithms exist for the automated conversion of
other polygonal representations into triangle strips. Some scene graph architectures
may provide special geometry nodes, so-called TriangleStripSets, which describe
objects as a set of triangle strips. Also, many real-time oriented computer graphics
environments, including those for VR/AR, may try to automatically optimize 3D
models when loading them, e.g., by converting them to triangle strips.

For a more in-depth discussion of triangle strips and other polygonal representa-
tion, see Sect. 7.3.

3.3.2 Solid Models

A surface by itself does not have to enclose a volume, i.e., it does not necessarily
have to describe a solid. While surface representations are often good enough for
rendering purposes, other cases may require solids, e.g., in a physical simulation to
calculate the volume or the center of mass of an object. Similarly, for collision
detection, it can be advantageous to approximate objects by bounding volumes, i.e.,
simple solid bodies that fully enclose the actual objects (see also Sects. 3.4.2
and 7.2.1).

 Boundary Representations (B-Reps)

A boundary representation (b-rep) defines a solid as a set of surfaces that define the
border between the interior and the exterior of the object. A simple example is a
polygon mesh that encloses a volume in a watertight manner. To execute certain
algorithms efficiently, e.g., for checking the validity of the boundary representation
(i.e., the ‘watertightness’ of the polygon mesh), data structures are required that
provide information about the topology of the object surface (as relationships

Fig. 3.6 Representation of a triangle mesh by triangle strips. The first triangle of each strip is
specified by three vertices, and the following triangles by only one vertex. For example, the first
triangle F1 is specified by vertices v1, v3 and v2. The following vertex v4 specifies the triangle F2
with vertices v3, v2, v4 and the vertex v5 specifies the triangle F3 with vertices v3, v5, v4, etc.

B. Jung and A. Vitzthum

81

between vertices, edges and faces). This is where data structures such as the indexed
face sets discussed above come into play. In addition, it must be possible to distin-
guish the inside and outside (or back and front) of a boundary face. For this purpose,
vertices or edges of the face can be defined in a certain order, e.g., counterclock-
wise. The order of the vertices determines the direction of the normal vector, which
is perpendicular to the polygon front. Alternatively, the normal vector can be defined
explicitly. An observer looks at the front side of a polygon when its normal vector
points approximately in the direction of the observer (Fig. 3.7b). For b-reps (and
solids in general) the drawing of the polygon back sides (backfaces) can be omitted,
because they never become visible. In many scene graph libraries, the node classes
for polygon meshes contain a binary attribute that indicates whether the polygon
mesh models a solid.

 Primitive Instancing

Primitive instancing is based, as the name already suggests, on the instantiation of
so-called primitives. These are predefined solid objects, such as spheres, cylinders,
capsules and tori, or sometimes more complex objects, such as gears. The properties
of a primitive instance (e.g., the radius in the case of a sphere) can be set via param-
eters. Many scene graph libraries offer support at least for simple primitive objects
like spheres, cuboids, cylinders and cones.

3.3.3 Appearance

While the surface or solid models discussed above describe the shape of 3D objects,
their appearance is modeled by ‘materials’. Different types of textures play impor-
tant roles for this.

Fig. 3.7 (a) Example of a b-rep solid. (b) Determination of the front or back side of a polygon. If
the polygon normal

n is approximately opposite to the viewing direction

v , or more precisely: if

n and

v form an angle between 90° und 270°, then the viewer is looking at the front of the polygon

3 Virtual Worlds

82

 Materials

The visual appearance of objects is mainly characterized by their material proper-
ties regarding reflection and transmission (transparency and translucency) of inci-
dent light. In computer graphics, a multitude of lighting models have been proposed
which, with more or less computational effort, aim to approximate the underlying
physical processes at least in effect. The lighting models differ, among other things,
in their material systems used to model the appearance of the objects.

Two main approaches are currently relevant for real-time 3D applications such as
VR and AR. Modern game engines, including Unity and the Unreal Engine dis-
cussed in Chap. 10, use physically based rendering (PBR) with associated material
systems, which may, however, differ in detail between the various engines. PBR
(e.g., Pharr et al. 2016). delivers comparatively photorealistic image quality but
places higher demands on the available computing power. The older, ‘classical’
approach follows the illumination model by Phong (1975), which is also well suited
for applications in web browsers and mobile devices due to the lower requirements
regarding computing power. Older, but still common, file formats for 3D objects
like Wavefront obj only support the well understood Phong model, so knowledge of
it is still useful for application development with modern game engines.

According to Phong’s illumination model, the light reflected from a surface is
composed of three components, which must be specified separately for each mate-
rial: ambient, diffuse and specular reflection. Ambient reflection models the influ-
ence of directionless ambient light and provides the basic brightness of the object.
Diffuse reflection occurs on matte surfaces and depends on the orientation of the
object surface to the light source. The resulting shades contribute significantly to the
spatial impression of the 3D object. Specular reflection creates shiny highlights on
smooth surfaces. Material specifications according to the Phong model are usually
supplemented by emission properties to model objects that themselves emit light.

Among the advantages of the Phong model are its conceptual simplicity and the
low computing power requirements. An obvious disadvantage is that it cannot com-
pete with modern PBR approaches in terms of visual realism. For example, the
Phong model still produces reasonably attractive results for matte surfaces, but is
less suitable for smooth surfaces, which often give the impression of plastic even
when metals are to be displayed. A further disadvantage is that the specification of
the different material properties requires a certain understanding of the different
parameters of the model. For example, the ambient, diffuse and specular reflection

glTF (GL Transmission Format) is a royalty-free standard for storage and net-
work transmission of 3D models, which in particular offers support for
physics- based rendering (Khronos Group 2017). Models using the metalness-
roughness material system can be described in a purely declarative manner.
For models that use other material systems, shader programs can be embedded.

B. Jung and A. Vitzthum

83

properties can be specified independently of each other, although there are physical
dependencies between them. In practice, this may tempt the 3D designer to experi-
ment with the parameter settings of the materials until a visually appealing result is
achieved, but which violates basic physical laws. Such an object, with physically
impossible reflective properties, may even look good under the lighting conditions
of a given application, but is unlikely to be easily reusable in other applications.

PBR, which is used in modern game engines, is essentially a methodology with
many variations, but not a standardized model. The various concrete forms share the
common goal of achieving the most photorealistic renderings possible by imple-
menting concepts that are comparatively close to physics. For example, PBR
approaches ensure energy conservation, i.e., it is guaranteed that no more light is
reflected than is incident on a surface. The calculation of light reflection often fol-
lows the Cook-Torrance model (Cook and Torrance 1981), which, among other
things, makes a physically well-founded distinction between metals and non-metals
(‘dielectrics’) with respect to material types. This takes into account, for example,
that in the case of metals specular reflections occur in the object color, whereas in
the case of non-metals specular highlights occur in the light color. Furthermore,
PBR approaches conceptually regard surfaces as consisting of many micro-facets
(Torrance and Sparrow 1967). The orientation of the micro-facets, in similar or
varying directions across the surface, models smooth or rough surfaces.
Corresponding to the multitude of concrete implementations of the PBR approach,
modern game engines offer the 3D designer a number of different shader models to
choose from. Most engines offer ‘standard shader models’, but these may differ
between engines (or versions of the same engine). The shader models available in
game engines typically try to provide the 3D developer with parameters that are as
intuitive as possible, i.e., that ‘hide’ the complexity of the underlying physics
of light.

A typical minimal PBR material system contains the following parameters:
albedo, metalness and roughness/smoothness. Albedo is the basic color of the
object. In contrast to the Phong model, no other color needs to be specified. Albedo
corresponds approximately to the diffuse color of the Phong model. Metalness
describes whether the material is a metal or not. Formally, the parameter usually
allows values between 0 and 1. In practice, binary modeling with the exact values 0
or 1 or values that are close is often sufficient. The roughness parameter also allows
values in the range between 0 and 1, although here the whole range of values can be
used to define more or less smooth surfaces (Fig. 3.8). In game engines, these
parameters can be specified for an entire object or, what is more common in prac-
tice, per pixel, using textures (see below). The material systems of game engines
typically also provide options for specifying emission properties and textures such
as bump, normal and ambient occlusion maps (see below).

With regard to the light transmission of objects, a rough distinction can be made
between transparency and translucency. If the objects behind the considered object
are still clearly visible, this is called transparency, e.g., clear glass, otherwise it is
called translucence, e.g., frosted glass. Physically, the transition between transpar-
ency and translucency is continuous. In the simplest case, transparency is modeled

3 Virtual Worlds

84

using an opacity value (opacity is the opposite of transparency). For example, the
alpha value of RGBA textures is such an opacity value. More complex models also
account for the refraction of light when it passes into other media, e.g., from air to
water, for which physical parameters such as a refractive index or the Fresnel reflec-
tion ‘F0’ are required. To make it easier for 3D designers to use such models in
practice, game engines typically provide specialized shader models for this purpose,
as well as for related effects such as subsurface scattering or clear coat surfaces.

A more in-depth introduction to the concepts and methods of PBR is given, for
example, in Pharr et al. (2016) and Akenine-Möller et al. (2018).

 Textures

To represent fine-grained structures, e.g., of wood or marble, or to represent very
fine details, a trick is used which can also be found in many old buildings, such as
churches: the details are only painted on instead of modeling them geometrically. In
computer graphics this is called texturing. Textures are raster images that are placed
on the object surfaces. The exact mapping of pixels of the texture to points on the
object surface is achieved by assigning normalized texture coordinates (i.e., raster
image coordinates) to the vertices of the polygons representing a surface. During
rendering, texture coordinates for pixels located between the vertices of a polygon
are calculated by the graphics hardware by means of interpolation (Fig. 3.9a).

Even more realistic surface structures can be created using methods such as
bump mapping, normal mapping or displacement mapping. In bump mapping, the
pixel colors of the object surface are modified based on a grayscale image (the bump
or height map). The bump map represents the ‘height profile’ of the object surface,
with small (i.e., ‘dark’) values usually representing lowered areas and large (i.e.,
‘light’) values representing raised areas of the object surface. A bump map is placed
on the object’s surface like a conventional texture. However, the values of the bump
map are not interpreted as colors, but modify the normals on the corresponding

Fig. 3.8 Effects of the metalness and roughness parameters in a typical PBR material system.
Mooth surfaces reflect the environment sharply, whereas on rougher surfaces the environment
reflection is blurred or even imperceptible. Highlights on metals shine in the color of the surface,
highlights of non-metals in the color of the light source

B. Jung and A. Vitzthum

85

points on the object surface. Thus, as normals play an important role in illumination
calculations, the surface brightness can be varied pixel by pixel (Fig. 3.9b). Normal
mapping is a variant of bump mapping with the difference that normal vectors are
stored directly in a so-called normal map. Nevertheless, both bump-mapping and
normal-mapping are ‘display tricks’ which create the visual effect of rough surfaces
even on coarsely resolved polygon models without actually changing the object’s
geometry. In contrast, displacement mapping indeed manipulates the geometry of
the object’s surfaces. It may be necessary to refine the polygon mesh for this
purpose.

Ambient occlusion maps are also quite common, modeling how much ambient
light arrives at the different parts of a surface. For cracks, this value will tend to be
low, but higher in exposed areas. Ambient occlusion maps are typically calculated
from object geometry during the modeling stage using texture baking (see
Sect. 3.3.4).

 Shader

To enable an even more varied design of object surfaces, so-called shaders can be
used. Shaders are small programs that are executed on the graphics hardware
(graphics processing unit, GPU). Shaders are written in a special shader language
like the OpenGL Shading Language (GLSL) or the High Level Shading Language
(HLSL) by Microsoft. The most commonly used shader types are vertex shaders,
which modify vertex information, and fragment shaders (often also referred to as
pixel shaders), which allow manipulation of color values in the rasterized image of
an object surface. For example, displacement mapping could be realized based on a
vertex shader and bump mapping based on a fragment shader. The final color of a
pixel on the screen may also result from color fragments of several objects, e.g., if
a semi-transparent object is in front of a more distant object from the viewer’s point
of view.

Fig. 3.9 (a) Object with image texture; section of the texture at the top left of the image, (b) object
with image texture and bump map; section of the bump map at the top left of the image

3 Virtual Worlds

86

Modern GPUs contain thousands of processing units (also known as hardware
shaders, shader processors or stream processors) that enable highly parallel execu-
tion of shader programs. GPUs are increasingly being used for tasks beyond com-
puter graphics, including high-performance computing, crypto-mining and machine
learning. Accordingly, newer GPUs also offer hardware support for such tasks, e.g.,
specialized deep learning processing units (e.g., Nvidia’s ‘tensor cores’). These new
capabilities of the graphics hardware open up novel possibilities for using machine
learning when rendering virtual worlds in the future. For example, an approach
presented by Nvidia in 2018 uses deep neural networks to evaluate the visual quality
of shadow renderings in real-time applications, so that they can be improved by
means of ray tracing if necessary.

3.3.4 Optimization Techniques for 3D Objects

Rendering efficiency is a crucial factor for maintaining real-time performance and
thus for compelling VR experiences. The rendering efficiency can be significantly
improved by simplifying complex object geometries. In this section several useful
optimization approaches are presented, namely simplification of polygon meshes,
level of detail techniques and texture baking for replacing geometry with textures.

 Simplification of Polygon Meshes

An important measure to obtain real-time 3D models is the reduction of the number
of polygons. A common method for triangle meshes is the repeated application of
‘edge collapse’ operations (Hoppe 1996). For example, to remove vertex v1 from the
mesh, it is merged with an adjacent vertex v2 into a single vertex v2. First, the two
triangles that share the edge (v1, v2) under consideration are removed from the mesh.
Then, in all triangles of the mesh that still contain v1, v1 is placed by v2. Finally, the
position of the unified vertex v2 is adjusted, e.g., halfway between the old positions
of v1 and v2. This procedure effectively removes one vertex and two triangles from
the mesh.

A question that arises, however, is according to which criteria the vertices to be
deleted are selected by an automated procedure. Intuitively, the number of polygons
in a mesh can be reduced at points where the surface is relatively ‘flat’. For a trian-
gle mesh, for example, the variance of the normals of the triangles sharing a vertex
can be checked (Schroeder et al. 1992). If the variance is rather small, at least in the
local neighborhood of the vertex, the surface is ‘flat’ and the vertex can be deleted.
Depending on the choice of threshold value for the variance, the triangle reduction
can be stronger or weaker.

B. Jung and A. Vitzthum

87

 Level-of-Detail Techniques

With increasing distance of a 3D object to the viewer, less and less detail is percep-
tible. This fact can be used to optimize rendering efficiency if a 3D object is stored
in several variants of different level of detail (LOD). Object variants with different
levels of detail can be created, for example, by gradually simplifying a polygon
mesh as described above, or by lowering the resolution of textures. Also, the two
techniques addressed in the following, i.e., texture baking and billboarding, can be
used to generate object variants at lower levels of detail.

At runtime, a suitable level of detail is selected by the VR system depending on
the distance to the viewer. For example, if the object is further away, a 3D model is
displayed that consists of relatively few polygons or uses smaller, less detailed tex-
tures and can therefore be rendered faster. In contrast, a more detailed model is
rendered at shorter distances. The distance ranges for the detail levels are usually
defined per object during the modeling stage. When defining these distance ranges,
care should be taken that the VR user will not notice the transitions between the
detail levels. In practice, three detail levels are often sufficient.

Some scene graph architectures support this mechanism directly through a dedi-
cated LOD node type (e.g., in X3D). Alternatively, customized switch nodes could
be used. A switch node is a group node where only one of the child nodes is dis-
played. The child node to be displayed can be selected at runtime. To mimic the
behavior of an LOD node, one could select the child node to be displayed depending
on the distance to the virtual camera (see also Sect. 3.4.3 on using switch nodes to
display the state changes of dynamic objects).

Some modern game engines provide even more sophisticated LOD mechanisms.
Besides the use of lower-detail models, it may also be possible to vary certain prop-
erties of the rendering process, depending on the detail level. For example, the more
accurate per-pixel lighting might be replaced by faster per-vertex lighting, or com-
putationally expensive indirect lighting methods could be turned off at lower
detail levels.

 Texture Baking

It is often necessary to reduce the number of polygons of a high-resolution 3D
object to guarantee the real-time requirements mandated by VR/AR applications. To
still get the impression of a detailed representation, the technique of texture baking
is commonly used. Here, the color information of the illuminated surface of a high-
resolution 3D model is stored in a texture. The texture ‘baked’ in this way is then
applied to the low-resolution, polygon-reduced version of the 3D model. Instead of
a color texture, this technique can be used in a similar way to create a bump map or
normal map for the corresponding low-resolution model from a high-resolution
model (Fig. 3.10).

3 Virtual Worlds

88

 Billboards

Billboards are special transformation groups that are automatically aligned to face
the observer. Billboards often contain very simple geometries, such as textured
quadrilaterals. For example, it is much more efficient to render a billboard with the
image of a distant tree as a texture than to render a detailed geometric tree model.
Accordingly, billboards with textured quadrilaterals are often used in conjunction
with LOD methods. Another important use case of billboards is the visual represen-
tation of individual particles in particle systems for fire, smoke, explosions etc. (see
Fig. 3.15). Compared to a ‘true’ geometric model, the billboard has the disadvan-
tage that the observer always sees the object from the same side. Therefore, it is
generally recommended to use billboards only for more distant or very small objects
whose details are less visible. An exception is the display of text, e.g., in textual
labels or menu items, where the auto-aligning property of billboards can be exploited
to ensure readability.

Fig. 3.10 Example of Texture Baking. Left: high resolution original scene. Right: scene with
simplified geometry and baked textures for color and bump mapping

B. Jung and A. Vitzthum

89

3.4 Animation and Object Behavior

If the properties of objects in the virtual world change over time, they are called
animated objects. A wide variety of properties can be modified, such as position,
orientation, size, color and geometry (vertex coordinates). In the following, two
basic types of animation are briefly explained: keyframe and physics-based
animation.

3.4.1 Keyframe Animation

A very common and simple method for animating 3D objects is keyframe anima-
tion. Here, the animator defines the values of a property to be animated, e.g., the
position of an object, at selected time steps of an animation sequence – the so-called
keyframes. Values at time steps between two keyframes are determined automati-
cally by interpolation of the key values (Fig. 3.11). Different interpolation methods
can be used, such as linear or cubic spline interpolation.

3.4.2 Physics-Based Animation of Rigid Bodies

It is often desirable to generate object movements in an at least approximately real-
istic manner. A common approach is to treat 3D objects as rigid bodies – which in
contrast to soft bodies are not deformable – and to simulate their behavior based on
physical laws. For this, several physical object properties must be modeled or com-
puted. Important physical properties of an object include:

• its mass, to determine accelerations when forces or torques are applied to the
object, e.g., after a collision,

• its linear velocity and (when rotating) angular velocity,

Fig. 3.11 Keyframes at time steps t1 and t2, interpolated frames in between. In this example, the
rotation angle of the object is animated

3 Virtual Worlds

90

• material-related damping parameters to damp the movement of the object due to
friction,

• elasticity values to simulate the reduction in speed due to the loss of kinetic
energy after a collision.

Furthermore, the initial forces and torques acting on a body at the beginning of
the simulation must be defined. Global influences, such as the gravity force perma-
nently acting on all bodies, must also be taken into account by the simulation. For
each time step, the behavior of a rigid body is calculated by the physics simulation.
Its updated position and orientation are then applied to animate the 3D object.

Another important task in physics-based animation is collision detection. To
facilitate efficient collision testing, the actual geometry of the body is usually
approximated by a bounding volume (Fig. 3.12). The bounding volume is assigned
to a proxy object (often called collision proxy in this context). The collision proxy
is not rendered and thus remains invisible. Simple bounding volumes are spheres,
cuboids or capsules. A more accurate approximation of an object’s detail shape is its
convex hull (the convex hull is a polygon mesh that is also a b-rep solid; see Sect.
3.3.2). Whether simpler or more accurate collision proxies are useful depends on
the application. The augmentation of geometric objects with suitable collision prox-
ies is therefore typically a task during the modeling stage of the virtual world. For a
more detailed discussion of collision detection, see Sect. 7.2.

The rigid body simulation is usually performed within a physics engine that man-
ages its own ‘physics world’ that is separate from and exists parallel to the actual
scene of renderable objects – the ‘geometry world’. Collision detection calculations
are sometimes performed in a special collision engine, but when a physics engine is
present the latter will usually both detect and handle collisions.

Not every geometric object of the visually displayed scene necessarily has to be
represented by a corresponding physical rigid body. For example, it is not necessary
to include distant background objects in the physics simulation if it is clear in
advance that these objects will never collide with other objects. When augmenting
the ‘geometry world’ with rigid bodies for the ‘physics world’, a suitable aggrega-
tion of single geometries is usually sensible. For example, a car may be composed
of several individual geometric objects, e.g., body and four wheels (cf. Fig. 3.2), but
for the special application case it may be sufficient to simulate the whole car as a
single rigid body. At the end of each simulation step, the position and orientation
values calculated by the physics engine are transferred to the corresponding

Fig. 3.12 The detail geometry of an object is approximated by two different bounding volumes, a
capsule and a box. Bounding volumes are used instead of the actual geometry to efficiently detect
collisions between objects

B. Jung and A. Vitzthum

91

property fields of the geometric objects in the visual scene. When the scene is ren-
dered next, the object movements become visible.

In some cases, the freedom of movement of bodies is restricted because they are
connected by joints. Typical joint types are ball joints, sliders and hinges. For exam-
ple, the elbow of a virtual human could be modeled in a somewhat simplified form
as a hinge joint. Furthermore, the maximum opening angle of the joint in this exam-
ple could be defined as approximately 180°. Such motion constraints must also be
ensured by physics engines during the simulation.

3.4.3 Object Behavior

A high-level method of controlling animations of objects is the specification of their
behavior when certain events are inflicted on them. For example, when a vehicle is
involved in a severe collision, its state may change from ‘new’ to ‘demolished’
along with a corresponding change in its visual appearance. Similarly, the keyframe
animation applied to a virtual human should change when transitioning from an idle
to a walking state. In general, state changes can affect all kinds of properties of the
3D object, such as color, shape, position or orientation.

Different methods of specifying object behavior exist. A simple, yet powerful,
way is the use of state machines (or finite state machines, FSM). State machines are
formally well understood and supported by the major game engines. Further, special
description languages have been proposed for behavior specification based on state
machines, such as Behavior3D (Dachselt and Rukzio 2003) and SSIML/Behaviour
(Vitzthum 2005). In scene graph architectures, state changes could be realized with
the help of a switch node. In the vehicle example, a switch node could be defined
with two child nodes: one geometry node for the vehicle before and another one for
the vehicle after the collision. The task of a state machine is then to change the state
of the switch node when the relevant event – here a car crash – occurs in the vir-
tual world.

Besides instant changes of an object property, a state transition can also trigger
the execution of an animation. This animation can also be repeated until the next
state transition is triggered by another event. The example in Fig. 3.13 illustrates a
state machine for the behavior of a door. Here, keyframe animations for opening and
closing the door are executed in the corresponding states.

While rigid-body dynamics only considers the motion of non-deformable
objects, soft-body dynamics is concerned with the simulation of deformable
objects such as clothes. Furthermore, fluid animation addresses fuzzy phe-
nomena of unstable shape and undefined boundaries such as water and smoke.
Soft-body and fluid simulations are supported by several modern game
engines. However, they require special editing tools and effort at the modeling
stage and induce relatively high computational costs at runtime.

3 Virtual Worlds

92

Triggers for state transitions can be events of various types. In the simplest case,
a state transition can occur after a defined period of time has elapsed (timer event).
Another typical event would be the selection of an object by the user (touch event).
Further, a proximity event may be triggered when the user approaches an object and
the distance falls below a certain threshold. For example, a (virtual) door could be
opened when the user moves close to it. A visibility event may be triggered when an
object enters the user’s field of view, e.g., causing an animation of the object to start.
Similarly, the animation of the object could be stopped when the user no longer sees
it to save computational resources.

3.4.4 Behavior and Animation in Scene Graphs

To implement animations and behavior, the scene graph must be dynamically
updated in each frame before rendering. In addition to the obvious option of modi-
fying the scene ‘from the outside’, e.g., by using an external physics engine (Sect.
3.4.2) or other procedures to simulate object behavior (Sect. 3.4.3), some scene
graph architectures provide native support for keyframe animations (Sect. 3.4.1) by
means of special node types. For example, X3D features nodes that generate certain
events (e.g., proximity sensors, touch sensors) and keyframe animations in conjunc-
tion with timers and interpolation nodes. To update the scene graph before

State machines are conceptually simple and widely supported in modern
game engines. When it comes to the modeling of more complex behaviors,
e.g., the ‘game AI’ of non-playing characters in games, extensions or alterna-
tive means of behavior specification are also commonly used. These include
hierarchical finite state machines, decision trees and behavior trees (see
Colledanchise and Ögren 2018).

Fig. 3.13 State machine for defining the behavior of a door: if the distance between the VR user
and the door is less than two meters, the door is opened, and closed again in the opposite case

B. Jung and A. Vitzthum

93

displaying it, all new or not yet handled events must be evaluated, interpolation
values must be calculated and animation-related actions (e.g., updating the position
of an object or playing a sound) must be executed. This programming model of
X3D and some other scene graph architectures allows elegant specifications of sim-
ple animations and behavior. On the other hand, the propagation of the relevant
events through the scene graph – in the general case involving a multitude of nodes –
induces relatively high runtime costs, which is why this is not done in performance-
optimized scene graph architectures.

3.5 Light, Sound, Background

This section gives a brief overview of various further objects that are typically part
of virtual worlds: light sources, sound sources and background objects. Due to the
common use of these objects, scene graph architectures typically provide special
nodes to integrate them into the scene.

3.5.1 Light Sources

Rendering of virtual worlds is based on calculations of how much incident light is
reflected back from the surfaces of the 3D objects. Without lighting, all objects
would appear pitch black. Virtual worlds thus should also include at least one but
usually several light sources, in addition to the 3D objects. In computer graphics,
typically, a distinction is made between directional light, point light and spot light
sources. Directional light models a very far away or even infinitely distant light
source (such as the Sun), whose rays arrive in the virtual world in parallel direc-
tions. Similar to a light bulb, a point light source emits light spherically in all direc-
tions (point light is sometimes called omni light, as it is omnidirectional). A spot
light source produces a light cone, just like a flashlight. For all types of light sources,
the light color and intensity can be defined. In the case of point and spot lights, the
light intensity also decreases with increasing distance from the light source (light
attenuation). For directional light, in contrast, distance-dependent attenuation does
not make sense, as the distance to the light source is not defined (or infinitely large).
In the real world, more distant light bulbs or flashlights cover a smaller area in the
observer’s field of view than closer ones do. This could be modeled as light attenu-
ation that is proportional to the inverse square of the distance. In computer graphics
practice, light attenuation is, however, often modeled with a less steep falloff so that
a light source casts its light in a wider area, e.g., as proportional to the inverse of the
distance to the light source. Generally, it is possible to define and tweak an attenua-
tion function according to the application’s needs, for example, to also account for
dust or other particles in the air (atmospheric attenuation). In the case of spot lights,
additionally, the light intensity decreases not only with increasing distance but also

3 Virtual Worlds

94

towards the edge of the light cone. The strength of this radial falloff can be adjusted,
as can the radius of the spot light cone. Moreover, often a radius of influence can be
defined around a point or spot light source. Only objects that lie within the sphere
defined by the radius of influence are illuminated by the light source.

In some VR/AR environments, area lights are offered as a further type of light
source. Area lights emit light from a 2D rectangular area, in one direction only.
Compared with point and spot lights, area lights produce much more realistic shad-
ows, for example. However, the computational costs are also considerably higher
for area lights.

In real-time applications such as VR and AR, for efficiency reasons often only
local illumination models are implemented that only account for direct light paths
between light sources and 3D objects. However, real-world lighting is much more
complex. Let us take the example of a street canyon in a city center with many high-
rise buildings. Even in the early afternoon, no direct sunlight arrives at street level,
which is in the shadow of the tall buildings. Nevertheless, it is not completely dark
there either, as the Sun’s rays are reflected by the buildings’ facades and – possibly
after several reflections from facade to facade – arrive at the bottom of the street. In
real-time applications, this indirect lighting is usually not simulated but instead
accounted for by the simplified concept of a global ambient light. Ambient light is
classically assumed to be directionless, equally strong throughout the whole scene
and defined just once for the entire virtual scene. A variant makes use of a textured
sky box (see Sect. 3.5.3) that acts as the source of ambient light that is now direc-
tional. Another extension is ambient occlusion techniques (see Sect. 3.3.3 on tex-
tures) that locally attenuate the ambient light intensity to approximate the effect of
occlusions. While these variants improve the visual quality of rendered images, they
still constitute a drastic simplification of real-world light propagation.

Global illumination models, such as raytracing, pathtracing or radiosity, in con-
trast, also account for light reflections over several surfaces (indirect illumination).
However, global illumination models are not yet computable in real time for fairly
complex virtual worlds. Some game engines offer precomputed global illumination
that is used to improve the illumination of static objects. For this, a global illumina-
tion method, e.g., pathtracing, is applied at the end of the virtual world’s modeling
stage and the (direct and indirect) light arriving at a surface is stored in a special
texture called a lightmap. This trick of lightmap baking, however, cannot be applied
to dynamic, animated objects because, e.g., their positions during gameplay are not
known at the time of the precomputation.

To apply indirect lighting to moving objects, several game engines offer the pos-
sibility to distribute light probes throughout the virtual world. Light probes capture
and ‘bake’ the lighting conditions at modeling time at selected locations in the vir-
tual world. In the example of the street canyon, light probes could be positioned in
open space along the street, even at different heights. At runtime, indirect lighting
can then be applied to moving objects by interpolation between nearby light probes.
Of course, light probes can only provide a coarse approximation of true real-time
global illumination, since they ‘bake’ indirect lighting at only one point in time and
only a few points in space. Some game engines may even provide an option to

B. Jung and A. Vitzthum

95

periodically update the light probes every few frames. Calculating global illumina-
tion at runtime is, however, computationally expensive and may slow down overall
game play.

A special light source in many VR applications is the headlight, which moves
along with the viewer, similar to a real headlight attached to a person’s head. The
headlight is typically realized as a directional light source whose direction is aligned
with the viewing direction. Through this, the objects in the observer’s field of view
are well lit, even if they are insufficiently illuminated by other light sources. A pos-
sible disadvantage of using the headlight is that it changes the lighting conditions of
a virtual world with carefully modeled light sources. In such cases the headlight
should be explicitly switched off.

3.5.2 Sound

Besides light sources, audio sources can also be part of the virtual world. These can
be integrated into the world just like other objects. In scene graph systems this inte-
gration is accomplished in the form of audio nodes. However, the extent and type of
sound support differs from system to system. Typical types of audio sources in vir-
tual worlds are presented below. For an overview of audio output devices, see
Sect. 5.5.

When adding an audio source to a scene, one first has to specify the sound ema-
nating from the source (based on an audio clip or an audio stream) and whether the
sound is played only once or repeated in a loop. Probably the simplest audio source
type is the background sound (e.g., birdsong) that is not bound to a defined spatial
position and can be heard everywhere. In contrast, spatial audio sources have a
defined position in the 3D world. These include point sources that can be heard
within a certain radius, similar to point light sources that emit light in all directions.
Similar to spot light sources, there can also be audio sources that emit sound waves
within a conical volume. Since a purely conical emission hardly ever occurs in real-
ity, it is recommended to combine a sound cone with a point source to model a more
realistic sound propagation.

The volume of most audio sources decreases with increasing distance from the
listener. This acoustic attenuation can be modeled approximately, for example, by a
piecewise linear, monotonically decreasing function. Background sound is an
exception, as the position of the audio source is undefined and therefore no distance
to the listener can be calculated.

In the real world, binaural hearing enables a spatial perception of sound and the
localization of sound sources. In VR, this can be an important navigation aid and
generally improves the feeling of immersion. The ear that is closer to the sound
source hears the sound signal a little bit earlier than the other ear. Moreover, the
sound signal is slightly attenuated by the head, so that the sound level between the
two ears also varies slightly. This situation can be reproduced by using two (stereo)
or more output channels. The sound is played with slightly different delays for each

3 Virtual Worlds

96

channel, possibly also with slight differences in the sound volume. As alternatives
to multichannel sound processes that work with a fixed number of channels or loud-
speakers, methods such as Ambisonics (Gerzon 1985) and wave field synthesis
(Berkhout 1988) do not assume a fixed number of loudspeakers. For example,
Ambisonics calculates the audio signals for the individual loudspeakers based on
sound property values at the respective loudspeaker positions.

A physically exact real-time calculation of sound absorption, reflection and dif-
fraction through arbitrary obstacles – similar to the reflection and refraction of light
rays – requires very high computing performance and is therefore not supported by
game engines and scene graph systems. However, both modern game engines and
some scene graph systems – the latter using additional libraries that use low-level
programming interfaces for real-time 3D audio such as FMOD or OpenAL – offer
various advanced audio effects. These include reverb and echo, simulation of the
change in the sound signal caused by obstacles between the sound source and the
listener, and simulation of the Doppler effect. The Doppler effect increases the
sound frequency (pitch) as the sound source, e.g., a fast-moving ambulance, moves
towards the listener and decreases the pitch as the distance increases.

3.5.3 Backgrounds

In addition to the actual objects in the scene, the scene background, such as the sky,
must also be displayed. In the simplest case, a static image can be used for this.
Another option is to use a three-dimensional volume, such as a large sphere or box,
whose inner surface is textured with the background graphics. This volume is usu-
ally modeled large enough so that it contains all (other) objects of the virtual world.
The center of this volume is always at the current camera viewpoint. Thus, while
different parts of the background volume might become visible by camera rotations,
camera movements will not change the distance to the volume’s surface. By rotating
the sky sphere or sky box, effects like passing clouds can be simulated. In modern
game engines, backgrounds typically also contribute to the illumination of the
scene. Thus, for example, objects with smooth surfaces could show reflections
of clouds.

3.6 Special Purpose Systems

Rounding off this chapter on virtual worlds, this section discusses special 3D objects
that make virtual worlds more interesting, but whose modeling and animation pose
distinct challenges, such as virtual humans, particle systems, terrains and vegeta-
tion, e.g., trees. These are often managed within special purpose systems of game
engines, scene-graph systems and 3D modeling tools. The presentation of the

B. Jung and A. Vitzthum

97

individual topics has an overview-like character while providing references to fur-
ther literature.

3.6.1 Virtual Humans

Virtual worlds are often populated with virtual humans (or virtual characters). The
function of these virtual humans can vary greatly depending on the application area
of the respective virtual worlds. In game-oriented scenarios, virtual humans act as
autonomous opponents or fellows (non-player characters, NPCs). In multi-player
games and social virtual worlds, avatars serve as virtual representatives of the vari-
ous participants. In virtual prototyping, virtual humans are used in ergonomics stud-
ies. Other application areas include training scenarios, architectural applications
and the virtual reconstruction of historical environments. The following presenta-
tion focuses on the basic procedures for computer graphics modeling and animation
of virtual humans in today’s game engines and VR environments.

A simple method to model virtual humans is to represent the different body parts,
such as the upper body, upper and lower arms, hands, head and legs, by separate,
hierarchically structured 3D objects. Since this simple modeling often does not
appear very realistic (e.g., unnatural gaps at the joints typically occur when animat-
ing such models), another method, skeleton-based animation, has become estab-
lished, which distinguishes between the underlying skeleton structure (‘rig’) and a
deformable surface model (‘skin’). During animation, the surface model is auto-
matically deformed according to the respective skeleton pose. A prerequisite for this
is that the vertices of the skin have been coupled to suitable bones of the skeleton in
a prior modeling step called ‘skinning’. The even earlier process of setting up a suit-
able skeleton structure for a given surface model is called ‘rigging’. Figure 3.14
illustrates the principle of skeleton-based animation.

The skeleton structure defines the hierarchical structure of abstract bones of the
virtual human model. The individual bones, e.g., thigh, lower leg and foot, are con-
nected by joints. Thanks to the hierarchical skeleton structure, a rotation of the knee
joint not only affects the lower leg, but also the position of the foot. The facial
expression of virtual humans can be animated by defining suitable ‘facial bones’.
Compared to the skeletons of natural humans, the skeletons of virtual humans are
usually greatly simplified. There are different conventions concerning the number,

An avatar is a virtual figure that acts as representative or proxy of a VR user
in a virtual world. Avatars often, but not necessarily, have a human-like
appearance. Avatars are distinguished from non-playing characters (NPCs) or
bots whose behavior is generated by control programs of the game engine or
VR environment.

3 Virtual Worlds

98

naming and hierarchical structure of the bones. An open standard is H-ANIM of the
Humanoid Animation Working Group of the Web 3D Consortium (2019). In com-
mercial tools such as the Character Studio of the modeling tool 3DS MAX different
conventions may be used.

The animation of virtual humans is often based on the combination of different
individual methods. Basic animations such as those for walking or running are typi-
cally created by means of motion capture. Motion capture data for typical basic
animations can be found, e.g., on the internet or are supplied with 3D modeling
tools. Goal-oriented animations, such as looking at a moving object, grasping an
object or placing the feet when climbing stairs, however, must be calculated at run-
time. Inverse kinematics algorithms can be used to compute skeletal postures such
that the extremities (i.e., hands, feet, head) are placed at the intended target position
(and in the correct orientation). Finally, virtual humans should be able to react to
events in the virtual world or user interactions in a manner that is appropriate for the
current situation. This is achieved by more or less complex control programs (called
‘Game AI’ in computer games; in the simplest case realized by means of state
machines as described above in Sect. 3.4.3), which, among other things, choose
between available basic animations and apply inverse kinematics procedures as
demanded by the current situation.

The generation of realistic or believable behavior of virtual humans generally
places many demands on the modeling and simulation of human abilities regarding
perception, planning and action. These topics are far from being fully understood in

Fig. 3.14 Modeling and animation of virtual humans: by moving the skeleton bones, animations
of bodies and facial expressions can be created

B. Jung and A. Vitzthum

99

research. Research topics concern, for example, abilities to understand and generate
natural language, including abilities for non-verbal communication, emotion, and
personality. A comprehensive overview of the research area of virtual humans is
given, for example, in Magnenat-Thalmann and Thalmann (2006).

3.6.2 Particle Systems

Particle systems enable the modeling of special effects such as fire, smoke, explo-
sions, water drops or snowflakes in virtual worlds (Reeves 1983). In contrast to the
3D objects considered so far, which represent bodies with a firmly defined bound-
ary, phenomena of fuzzy, continuously changing shapes can be represented.
Accordingly, the underlying concepts for modeling and animating particle systems
differ fundamentally from the geometry-based representations of solid bodies.
Scene graph-based systems for modeling virtual worlds typically provide a special
node type for particle systems. Figure 3.15 shows several visual effects that can be
accomplished with particle systems.

A particle system consists of a multitude of individual particles: in real-time VR
applications, for example, several hundreds or thousands. During the simulation of
a particle system, each particle is understood as a point mass (i.e., a particle has no
spatial extension but non-zero mass) whose position in 3D space is updated in each
time step based on simple physical simulations of the forces acting on the particle.
At each time step:

Fig. 3.15 Examples of particle systems. The animation of smoke and fire is accomplished using
the physical simulations and particle-age dependent colorizations outlined in the text. Grass can be
generated by a variant in which individual blades of grass are simulated by a fixed number of con-
nected particles. The gushing water on the right is modeled with a hybrid approach consisting of a
deformable geometry for the main water gush and a particle system for the water droplets
splashing away

3 Virtual Worlds

100

• new particles are inserted into the particle system via a so-called ‘emitter’,
• old particles are removed from the particle system if their lifetime has expired or

if they leave a predefined area,
• for each particle, the forces acting on the particle (e.g., gravity, wind, damping)

are used to update the position and velocity of the particle, and
• visualization attributes such as color and texture are updated for each particle

and the particles are visually displayed.

There are various types of emitters that differ in the initial positions of the ejected
particles. For example, depending on the type of emitter, all new particles may be
ejected from a single point, along a line segment, 2D shapes such as circles or poly-
gons, or 3D volumes such as cuboids. Emitters can also differ in their ejection direc-
tion, i.e., whether particles are ejected in all directions or only within predefined
direction ranges. An essential feature of emitters is that all the parameters, such as
number, initial position, and ejection velocity (i.e., direction and magnitude of
velocity), of the newly generated particles are randomly varied within predefined
ranges to achieve the desired irregular, fuzzy appearance of the simulated
phenomena.

In each simulation time step, all the forces acting on a particle are calculated and
accumulated. Typical forces considered are gravity, global wind fields or damping
(a particle becomes slower with time). In some cases, spring forces are also consid-
ered. For example, in clothing simulations or in the modeling of strand-like objects
such as hair and grass, springs are attached to particles that connect them with other
particles. From the forces acting on the particle and its constant mass, its accelera-
tion is calculated by simple Newtonian physics (F = m ∙ a). By integration over the
time interval passed since the previous time step, the new velocity and position of
the particle are then computed.

There are also various possibilities for the visual rendering of particle systems.
In applications with strong real-time requirements, such as VR systems, particles
are typically displayed as textured polygons, usually quadrilaterals, that are aligned
to the viewing direction of the VR user (see Sect. 3.3.4 Billboards). The color and
texture of the particles may change over time, e.g., from red-hot at emission to
smoky-gray in later phases. Alternatively, to provide a better sense of the movement
direction of the particles, particles may be rendered as line segments, e.g., with the
current particle position as the starting point and the added velocity vector as the
end point. Furthermore, particles may be rendered by more or less complex geom-
etries, e.g., spheres, cylinders or, if a history of past particle positions is additionally
stored, as line segments or ‘tubular’ extrusion geometries. Solid particle systems
render each particle as a complex static polygonal mesh, e.g., for flying debris or
shrapnel. However, the more complex the geometries used, the higher becomes the
rendering effort, which may impair the real-time capability of big systems with a
large number of particles.

B. Jung and A. Vitzthum

101

3.6.3 Terrain

Fundamental to terrain modeling is a simple data structure, the so-called height
field, sometimes also called the elevation grid. In essence, this is a two-dimensional
grid where each grid point is assigned a height value. A height field in which all
height values are equal would yield a completely flat landscape, for example. A
realistic appearance can be achieved by texturing the height field.

To model more interesting and varied terrains with mountains, hills and valleys,
suitable height values should be assigned to the elements of the height field. To
avoid drastic discontinuities in the landscape, care should be taken to ensure that
adjacent elements have similar height values. Since height fields often become quite
large – e.g., with a dimension of 256 × 256, more than 65,000 height values must be
set – modeling ‘by hand’ is obviously not practical. In common 3D modeling tools,
the creation of height fields is therefore supported by partially automated tech-
niques. Here, the user defines the height values for selected areas, e.g., the highest
elevations of hilly landscapes, whereupon the transitions to the surrounding terrain
are automatically smoothed, e.g., by means of a Gaussian filter.

For the creation of fissured landscapes such as rock formations, which have a
fractal structure, even more automated procedural modeling techniques are used. A
simple algorithm is the midpoint displacement method, which is illustrated in
Fig. 3.16. Starting from the height values at the four corners of the height field, first
height values are calculated for the points in the middle between the corners. As
shown in Fig. 3.16 (left), exactly five midpoints are considered. In a first step, the
height values of the five midpoints are calculated as the mean value of the neighbor-
ing corner points. In a second step, the new height values are slightly varied by
adding a random value. The addition of this random value is crucial for the genera-
tion of fissured structures, since otherwise only linear interpolation would be per-
formed. The midpoints, for each of which new height values were just calculated,
define a subdivision of the entire height field into four sectors. In the following itera-
tion of the algorithm, these four sectors are processed (recursively) by assigning
new height values to the midpoints in the four sectors. The recursive subdivision –
each sector is split into four smaller subsectors – is repeated until all elements of the
height field have been assigned new height values. The basic midpoint displacement
algorithm can be modified in various ways to further increase the realism of the
generated terrain shapes. For example, in addition to the recursive subdivision into
four squares, the diamond square algorithm also considers diamonds rotated by 45°
in intermediate steps (Fournier et al. 1982).

An optimization technique for very large areas is the spatial subdivision into so-
called tiles (tiling). When the user moves through the terrain, only a small section of
the terrain, one or a few tiles, needs to be loaded into memory.

3 Virtual Worlds

102

3.6.4 Vegetation

Trees and other plants occur in nature in very complex, fractal shapes. In computer
graphics, similar to rugged terrain, they are typically created using procedural mod-
eling techniques. A comprehensive overview of common generation methods is
given in Deussen and Lintermann (2005). The following example for the procedural
modeling of a tree is based on the method of Weber and Penn (1995). In the first
stage, the wooden parts, i.e., everything but the leaves, are generated. In the exam-
ple, a three-level branching structure is assumed consisting of a trunk, the branches
and the twigs. A configurable number of branches is randomly attached to the trunk,
then several twigs are attached to each branch. The trunk, branches and twigs are
each defined by line segments, which can later be wrapped by extrusion geometries
in the final 3D model (Fig. 3.17a, b). In the second stage, the leaves are added to the
branches (Fig. 3.17c). Instead of modeling the individual leaves geometrically as
polygon meshes, which would result in an excessive number of polygons, the leaves
are represented by highly simplified geometries, e.g., rectangular polygons (quadri-
laterals) which are rendered with semi-transparent leaf textures mapped to them
(Fig. 3.17d, e).

Fig. 3.16 Procedural generation of terrain using the midpoint displacement method. Top: Starting
from the four corners of the height field, height values for the five midpoints are calculated by
averaging over the height values at the corners and then adding a random displacement.
Subsequently, the height values for four subsectors (upper left subsector highlighted) are recur-
sively calculated using the same procedure. Bottom: Wireframe and textured rendering of a larger
height field

B. Jung and A. Vitzthum

103

In practice, the procedural modeling of trees and other plants is typically done
within specialized modeling tools, some of which are also integrated into common
general purpose 3D modeling tools. The procedurally generated trees can be
exported as (textured) polygon meshes and stored in common 3D file formats. Since
the complex structure of the trees typically results in a large number of polygons,
however, not too many trees should be displayed in full resolution with regard to the
real-time capability of the VR system. An often-used optimization technique is to
represent more distant trees, which occupy only a few pixels on the screen, simply
as semi-transparent textured billboarded quadrilaterals (see Sect. 3.3.4).

In addition to trees, other forms of vegetation can also be created using similar
procedures to those described above. Bushes can usually be created by suitable
parameterizations of the tree generators. For the automatic generation of ivy and
similar climbing plants, the contact with surrounding objects such as house walls or
columns is also taken into account. Grass, for example, can be realized as a variant
of particle systems, where each blade of grass is made of several particles connected
by line segments (Reeves and Blau 1985). Some game engines support the simula-
tion of dynamic behavior of trees, grass and other plants under the influence of wind.

3.7 Summary and Questions

On the one hand, virtual worlds should often appear as realistic as possible, but on
the other they are subject to strict real-time requirements. A main concern of this
chapter was to show how virtual worlds can be optimized with respect to real-time
aspects, both by clever modeling techniques and by the use of memory-efficient
data structures. A general idea for increasing the rendering efficiency is to reduce
the number of polygons and other visual details of the 3D objects in the virtual
world. For this purpose, game engines and other scene graph architectures provide

Fig. 3.17 Procedural generation of a tree. (a) Trunk and branches. (b) Trunk, branches and twigs
(c) with leaves. (d) Leaves are modeled as quadrilaterals (e) with semi-transparent textures

3 Virtual Worlds

104

a number of optimization options. For example, the hierarchical structure of a
directed acyclic graph (DAG) used in many scene graphs allows the reuse of geom-
etries that therefore only need to be loaded into memory once. The conversion of
polygon meshes to triangle strips, which in scene graph systems can also be done
automatically when loading the objects, significantly reduces the number of vertices
per triangle compared to other polygon mesh representations. Level of detail tech-
niques reduce the detail with which distant objects are rendered: an object is repre-
sented by multiple 3D models with different resolutions of geometry and textures,
from which an appropriate one is automatically selected for rendering depending on
the distance to the viewer. Bump mapping and texture baking are useful techniques
for reducing the number of polygons in the modeling stage. Besides supporting the
efficient rendering of virtual worlds, scene graphs also provide mechanisms for ani-
mation, simulation and user interaction with 3D objects. Supplementing the model-
ing of 3D objects ‘by hand’, procedural modeling methods are commonly used for
the generation of complex, natural phenomena, e.g., fire and smoke (using particle
systems) and rugged terrains as well as trees and other kinds of vegetation.

Check your understanding of the chapter by answering the following questions:

• What is the main purpose of a scene graph?
• Name five node types that typically appear in a scene graph.
• A person is standing on a tower and watches a moving car with a telescope.

Sketch a scene graph that reflects this situation. Which transformation maps the
vertex coordinates of the car into the coordinate system of the telescope?

• A triangle mesh consists of 15 triangles. By how many vertices are the triangles
described if the mesh can be represented by a single triangle strip?

• Explain the basic principles of physics-based rendering (PBR) and the Phong
illumination model! Why is the latter often called an ‘empirical’ model?

• Explain the difference between a color texture and a bump map. What is the dif-
ference between a bump map and a normal map?

• What types of light sources exist, and how do they differ from each other?
• What does LOD stand for? What is it used for and how?
• The behavior of a car driving autonomously over an (infinite) plane is to be mod-

eled. The car should try to avoid collision with obstacles in front of it, if possible,
by changing its direction (the direction of avoidance does not matter). If a colli-
sion with an obstacle nevertheless occurs, the car stops. From the initial state, the
car should switch directly to the moving state. Sketch a simple state machine to
model this behavior.

• A common method of animating virtual humans is to play back motion capture
data. These define, for each time step or only for single keyframes, the virtual
human’s pose (i.e., all joint angle values). How can a smooth transition between
two subsequent animations, e.g., from walking to running, be achieved? How
must a pre-recorded jump animation be modified so that the virtual human can
land on platforms of different heights?

B. Jung and A. Vitzthum

105

 Recommended Reading

Akenine-Möller T, Haines E, Hoffman N, Pesce A, Iwanicki M, Hillaire S (2018)
Real-Time Rendering, 4th edn. Taylor & Francis – Textbook on advanced topics
in computer graphics, providing a comprehensive overview of techniques for
real-time rendering of 3D objects.

Millington I, Funge J (2019) Artificial Intelligence for Games, 3rd edn, Morgan
Kaufman, San Francisco – The book provides a comprehensive overview of
‘Game AI’ techniques that are suitable for planning and controlling intelligent
behavior of virtual humans, for example.

References

Akenine-Möller T, Haines E, Hoffman N, Pesce A, Iwanicki M, Hillaire S (2018) Real-time ren-
dering, 4th edn. Taylor & Francis

Berkhout AJ (1988) A holographic approach to acoustic control. J Audio Eng Soc 36(12):977–995
Colledanchise M, Ögren P (2018) Behavior trees in robotics and AI: an introduction. CRC Press,

Boca Raton
Cook R, Torrance K (1981) A reflectance model for computer graphics. Computer Graphics

15(3):301–316
Dachselt R, Rukzio E (2003) Behavior 3D: an XML-based framework for 3D graphics behavior.

In: Proceedings of eighth international conference on 3D web technology (Web3D ’03). ACM,
pp 101–112

Deussen O, Lintermann B (2005) Digital design of nature: computer generated plants and organ-
ics. Springer Verlag, Berlin Heidelberg

Fournier A, Fussell D, Carpenter L (1982) Computer rendering of stochastic models. Commun
ACM 25(6):371–384

Gerzon MA (1985) Ambisonics in multichannel broadcasting and video. J Audio Eng Soc
33(11):859–871

Hartley J, Zisserman A (2004) Multiple view geometry in computer vision. Cambridge University
Press, Cambridge

Hoppe H (1996) Progressive meshes. In: Proceedings of 23rd conference on computer graphics
and interactive techniques – SIGGRAPH ‘96. ACM, pp 99–108

Khronos Group (2017) glTF specification, 2.0. https://github.com/KhronosGroup/glTF/blob/mas-
ter/specification/2.0. Accessed 6 Feb 2021

Magnenat-Thalmann N, Thalmann D (2006) An overview of virtual humans. In: Magnenat-
Thalmann N, Thalmann D (eds) Handbook of virtual humans. Wiley, Chichester

Pharr M, Jakob W, Humphreys G (2016) Physically based rendering: from theory to implementa-
tion, 3rd edn. Morgan Kaufmann, Burlington

Phong BT (1975) Illumination for computer generated pictures. Commun ACM 18(6):311–317
Reeves WT (1983) Particle systems – a technique for modeling a class of fuzzy objects. ACM

Trans Graph 2(2):91–108
Reeves WT, Blau R (1985) Approximate and probabilistic algorithms for shading and rendering

structured particle systems. In: Proceedings of SIGGRAPH ’85, pp 313–322
Schroeder WJ, Zarge JA, Lorenson WE (1992) Decimation of triangular meshes. In: Proceedings

of SIGGRAPH ’92, pp 65–70
Torrance KE, Sparrow EM (1967) Theory of off-specular reflection from roughened surfaces. J

Opt Soc Am 57:1105–1114

3 Virtual Worlds

https://github.com/KhronosGroup/glTF/blob/master/specification/2.0
https://github.com/KhronosGroup/glTF/blob/master/specification/2.0

106

Vitzthum A (2005) SSIML/behaviour: designing behaviour and animation of graphical objects
in virtual reality and multimedia applications. In: Proceedings of seventh IEEE international
symposium on multimedia (ISM 2005), pp 159–167

Web 3D Consortium (2013) X3D standards for version V3.3. http://www.web3d.org/standards/
version/V3.3. Accessed 6 Feb 2021

Web 3D Consortium (2019) Humanoid animation (H-ANIM). http://www.web3d.org/working-
groups/humanoid- animation- h- anim. Accessed 6 Feb 2021

Weber J, Penn J (1995) Creation and rendering of realistic trees. In: Proceedings of SIGGRAPH
’95, pp 119–128

B. Jung and A. Vitzthum

http://www.web3d.org/standards/version/V3.3
http://www.web3d.org/standards/version/V3.3
http://www.web3d.org/working-groups/humanoid-animation-h-anim
http://www.web3d.org/working-groups/humanoid-animation-h-anim

107© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
R. Doerner et al. (eds.), Virtual and Augmented Reality (VR/AR),
https://doi.org/10.1007/978-3-030-79062-2_4

Chapter 4
VR/AR Input Devices and Tracking

Paul Grimm, Wolfgang Broll, Rigo Herold, Johannes Hummel,
and Rolf Kruse

Abstract How do Virtual Reality (VR) and Augmented Reality (AR) systems rec-
ognize the actions of users? How does a VR or AR system know where the user is?
How can a system track objects in their movement? What are proven input devices
for VR and AR that increase immersion in virtual or augmented worlds? What are
the technical possibilities and limitations? Based on fundamentals, which explain
terms like degrees of freedom, accuracy, repetition rates, latency and calibration,
methods are considered that are used for continuous tracking or monitoring of
objects. Frequently used input devices are presented and discussed. Finally, exam-
ples of special methods such as finger and eye tracking are discussed.

Input devices are used to record user interactions using sensors, as well as other
objects and the environment. The data obtained in this way are summarized, if nec-
essary, semantically interpreted and forwarded to the world simulation. There is a
wide range of VR/AR input devices available and a classification of these can be
done in different ways. The distinction can be made based on accuracy (fine or
coarse) or range (from an area that can be reached with an outstretched arm, to an
area where one can walk or look around). It is also possible to distinguish between
discrete input devices that generate one-time events, such as a mouse button or
pinch glove (a glove with contacts on the fingertips) and continuous input devices
that generate continuous streams of events (e.g., to continuously transmit the posi-
tion of a moving object). The physical medium used for determination (e.g., sound
waves or electromagnetic fields) can also be used for classification (see Bishop et al.
2001). In the following, the fundamentals of input devices are presented. Then, in
Sect. 4.2 tracking techniques are presented in general before a more detailed

P. Grimm (*)
Department of Media, Darmstadt University of Applied Sciences, Darmstadt, Germany
e-mail: springer@paul-grimm.de

Dedicated website for additional material: vr-ar-book.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79062-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-79062-2_4#DOI
mailto:springer@paul-grimm.de
http://vr-ar-book.org

108

discussion of camera-based tracking approaches in Sect. 4.3. Sections 4.4 and 4.5
give examples of finger and eye tracking to show how natural user interactions can
be detected using specialized input devices. Afterwards (Sect. 4.6) further input
devices are presented, which are often used in VR systems. Finally, the chapter is
summarized and example questions as well as literature recommendations are given.

4.1 Fundamentals of Input Devices

The interaction of a user with a VR or AR system can be manifold. In a simple case,
a conscious action of the user takes place in the form of a push of a button, which is
recognized as a unique event by the system in such a way that it can react to it. More
difficult are more complex interactions, such as hand movements (e.g., to point at
something) or to direct the gaze at something.

This section explains the foundation to describe input devices in more detail. In
the case of interactions, a distinction can be made between whether the interaction
should be continuous (e.g., in continuous pursuit of a finger pointing at something)
or whether part of a movement should be recognized as a gesture (e.g., when point-
ing at an object in the virtual world to select it). In both cases, however, the system
must be able to track the user, as gestures can only be extracted from recorded data
in a subsequent step. It must be determined what exactly is to be tracked by the VR
system. Either interaction devices, such as VR controllers or a flystick (see Fig. 4.4),
or the user directly can be used. In the latter case, it must then be determined what
kind of movements a VR/AR system should detect, or which parts of the body
should be considered for interaction (e.g., only the hand, the arm, the head or per-
haps the movement of the whole body, as shown in Fig. 4.1 as an example).

Technically speaking, continuous tracking by an input device continuously
determines the position and orientation of an object (e.g., hand or head, controller).
This process is called tracking. For simplification, an object is usually regarded as a
so-called rigid body that cannot be deformed.

The movement of a rigid body can be broken down into a displacement (transla-
tion) in space and a rotation around three perpendicular axes. Thus, the movement of
a rigid body can be specified by giving six values (three coordinates as position and
three angles to describe the orientation) for each time step. These independent move-
ment possibilities are called degrees of freedom. Generally, a system with N points
has 3 × N degrees of freedom (each point in space has three degrees of freedom, N
points in space corresponding to 3 × N degrees of freedom), which in turn are
reduced by the number of constraints. In the case of rigid bodies, where all distances
between points are constant, there are always six degrees of freedom left (Goldstein
1980). As an example, a cube can be used that has eight vertices and thus 3 × 8 = 24
degrees of freedom. If the cube is considered to be non-deformable, the constraints
are that the respective distances between the eight points remain unchanged. For
eight points, this means 6 + 5 + 4 + 2 + 1 = 18 constraints (4 + 2 for the distances
including the diagonals of the flat base surface, 3 + 2 for the first side surface includ-
ing the diagonals, two for the next side surface and one for the last side surface).

P. Grimm et al.

109

The goal of tracking is to determine or estimate the values corresponding to these
six degrees of freedom (6DOF) of the tracked objects for continuous interaction.
The data acquisition is usually performed in the reference system of the respective
tracking system. If several or even different systems are used, the tracking data must
be transferred to a common reference system.

Fig. 4.1 Recording of
body movements (© ART
2013, all rights reserved)

Degrees of Freedom (DOF) are the independent movement possibilities of a
physical system. A rigid body has six degrees of freedom: three each for trans-
lation and rotation.

4 VR/AR Input Devices and Tracking

110

Starting with mechanical tracking systems (see Sect. 4.6.2), through the use of
strain gauges to camera-based approaches (see Sect. 4.3), data was recorded in dif-
ferent ways, as was data transmission by cable or radio. Correspondingly, very dif-
ferent input devices are available, which have different advantages and disadvantages.
Input devices can be described by the following characteristics.

 Number of Degrees of Freedom Per Tracked Object
The number of specific degrees of freedom per tracked object varies depending on
the input device. Usually, the determination of all six degrees of freedom by an
input device is desirable. However, it also happens that only the position – equiva-
lent to the three degrees of freedom of translation – or only the orientation – equiva-
lent to the three degrees of freedom of rotation – is determined. Examples of the
limited determination of degrees of freedom are the compass (one degree of free-
dom, determination of the orientation in the plane) and GPS, which, depending on
the number of visible satellites, determines two to three degrees of freedom of trans-
lation. It is also possible that the accuracy of the determination of individual degrees
of freedom is different (in the case of GPS, the position on the Earth’s surface is
recorded more accurately than the height above it).

 Number of Objects Tracked Simultaneously
Depending on the application, it is important to consider how many objects are to be
tracked simultaneously. In addition to tracking the user or recording the viewer’s
point of view, other objects (e.g., one or more input devices) often need to be
tracked. For the use of several objects it is helpful if they can not only be tracked,
but they can be uniquely identified by an ID. It is helpful if these IDs are retained,
even if individual objects are temporarily out of monitoring.

 Size of the Monitored Area or Volume
The size of the monitored area or volume varies greatly depending on the type of
input device used. It must be ensured that the selected input devices offer an area
that is large enough for the requirements.

Depending on the application, this can mean that it is sufficient to cover an area
that can be reached with the arm or that corresponds to the movements of a head in
front of the monitor. There are also applications where it is necessary to be able to
walk around. The reason for the size restrictions may be that the input device is
wired, has a mechanical construction or (in the case of camera-based input devices)
the resolution is too low. Depending on the technology used, the shape of the moni-
tored area may vary (e.g., similar to a circle in the case of wired technologies or simi-
lar to a truncated pyramid in the case of camera-based technologies with one camera).

 Accuracy
Not only because of the physical limitations of the input devices, high accuracy is
not always achievable. Sometimes it is also a question of cost. For example, in opti-
cal tracking a change of camera can increase the accuracy. However, if an expensive
industrial camera is used instead of a simple webcam, the price can easily increase
by a factor of 10 or more. Depending on the application, it must be considered what
accuracy is necessary or what budget is available. The usual range in spatial

P. Grimm et al.

111

resolution is between millimeter accuracy (e.g., optical finger tracking) up to an
inaccuracy of several meters (e.g., when using GPS). The accuracy can also vary
with different types of degrees of freedom (translation or rotation), e.g., as in the
case of GPS, where altitude determination is not as accurate as position determina-
tion. The accuracy can also be position-dependent: for example, the accuracy may
be lower at the edge of the monitored area than at its center. During digitization, the
measured values are quantized, e.g., to 8 bits or 16 bits. With regard to the measure-
ment technology, noise (addition of an interfering signal), jitter (temporal inaccu-
racy of the time of measurement or of the sampling time) or interpolation errors can
also be assumed to be interfering influences.

 Update Rate
The update rate describes the resolution of an input device in time. The degrees of
freedom are determined in discrete time steps. The number of these measurement
points per second is called the update rate. Thus, monitoring the real continuous
motion of an object (shown as a black line in Fig. 4.2) results in corresponding
measuring points. Basically, a time-discrete signal is obtained, which will usually
have errors. Figure 4.2 shows some of the possible errors.

 Latency
Each input device requires a certain amount of time to react (e.g., time until the next
scan, due to signal propagation times in cables or due to the processing of data by
algorithms), which causes a delay. This is called latency. An example of the effect
can be seen in Fig. 4.2. The significance of latency for VR systems is discussed in
more detail in Sect. 7.1.

Fig. 4.2 Possible errors during data acquisition of the position of a moving object (black line):
acquisition with latency (blue dots), with drift (orange squares) and with noise (green triangles),
displayed over time (horizontal axis)

4 VR/AR Input Devices and Tracking

112

 Drift
Errors that keep adding up can cause drift. If input devices record relative changes
(e.g., change in position compared to the previous scanning or the previous measur-
ing point), errors can increase over time. An example of drift is shown in Fig. 4.2.

 Sensitivity to External Conditions
Depending on the technology used, the external conditions must be observed.
Lighting or temperature can have just as much influence as the furnishing of the
room in which the VR system is set up. Uniform lighting can be of great advantage,
especially with optical methods, compared with hard transitions from direct sun-
shine to shaded areas. It would be annoying not to be able to use a tested application
because the sun appeared from behind a cloud. A problem has often been reported
to have arisen in trade fair construction, where before the opening usually only
some working lights were used, but during trade fair operations there were often
many other spotlights, which then led to disturbing influences.

With optical tracking systems it can be helpful to work in darkened rooms and to
create the desired lighting situation with artificial light. It should be noted that direct
light sources can interfere with camera sensors. Methods based on sound are often
susceptible to different temperatures or different air pressures, as this changes the
speed of sound (on which the measurement is based). Electromagnetic methods in
turn react sensitively to (ferro-)magnetic materials and electromagnetic fields in the
rooms (e.g., metallic table frames or the power supplies of other devices).

 Calibration
Calibration is the adjustment of measured values to a given model. For both virtual
reality and augmented reality, the measured values must be adjusted to the real
objects used, so that the real movements that are tracked also correspond to the
dimensions in the virtual world. With optical methods, this also includes the deter-
mination of imaging errors of the optics (e.g., distortions).

 Usability
For the application it can be decisive to what extent a user is restricted by the input
devices. For example, it may be necessary to put on glasses or shoes or hold VR
controllers. It also makes a difference for the application whether the respective
devices are wired or connected via radio technologies. The size of the room in
which a user is allowed to interact also influences whether the user can immerse
himself or herself in the application or whether he or she must constantly ensure that
he or she does not exceed predetermined interaction areas. It may also be necessary
that the user is always oriented towards the output device to enable good tracking.
A detailed consideration of usability is given in the framework of the consideration
of basics from the field of human–computer interaction in Sect. 6.1.

The obtrusiveness of an input device can be seen as a measure of the extent to
which it is considered to be disruptive. For example, it makes a big difference
whether a head-mounted display can be worn like sunglasses or whether it can be
used like a bicycle helmet due to its weight and dimensions.

P. Grimm et al.

113

4.2 Tracking Techniques

As explained in the introduction, tracking is the continuous estimation of the posi-
tion and orientation of an object. Generally, we may distinguish between systems in
which the measuring sensors are located on the tracked objects themselves and
determine their position and location in relation to their surroundings (inside-out
tracking), and systems in which the measuring sensors are distributed in the envi-
ronment and interact to measure an object from outside (outside-in tracking) (see
Sect. 4.3 on camera-based tracking). The determination or estimation of the position
of an object is carried out in a defined coordinate system. One possibility is the
estimation in relation to individual objects. Here, the relative transformation
between the user or camera coordinate system and the object coordinate system is
determined for each object. Another possibility is that several objects use a common
coordinate system. In this case, the transformations between the individual objects
within the coordinate system must be known, and the transformation between the
camera and this coordinate system is estimated. If only the position of some objects
in a global coordinate system is known, while others can change their position and
orientation within it, you get mixed forms of both scenarios.

In the following, different tracking techniques are presented with their advan-
tages and disadvantages. Camera-based tracking techniques will be presented in
Sect. 4.3 due to their diversity.

4.2.1 Acoustic Tracking

Acoustic-based input devices use the differences in the time of flight (TOF) or phase
of sound waves. Ultrasound that is inaudible to humans (sound waves with a fre-
quency of more than 20,000 Hz) is used. The measurement uses a transmitter and a
receiver, where one of them is connected to the tracked object. This allows for the
determination of the distance between them. By that, the position of an object can
be limited to a spherical surface around the transmitter. By adding a second trans-
mitter or a second receiver, the position can already be limited to a circular path (as
an intersection of two spheres). Adding a third transmitter or receiver then limits the
position to two points (as an intersection of three spheres or as an intersection of two
circles). A plausibility check is then used to determine the actual position from these
two points. A setup with one transmitter and three receivers (or three transmitters
and one microphone) thus allows for the determination of all three degrees of free-
dom of the translation (3 DOF). If the orientation is also to be determined (6 DOF),
three transmitters and three receivers must be used.

Compared to other 3D tracking systems, acoustic systems are rather cheap. A
disadvantage of acoustic tracking is its sensitivity to changes in temperature or air
pressure. Any change in temperature or air pressure requires a (re)calibration of
the system.

4 VR/AR Input Devices and Tracking

114

4.2.2 Magnetic Field-Based Tracking

Magnetic fields can be used for tracking. However, a distinction must be made
between artificial magnetic fields and the Earth’s magnetic field. In mobile systems,
so-called fluxgate magnetometers (also known as Förster probes) are usually used
for electronic measurement of the Earth’s magnetic field. Based on the individual
sensor orientation, both the horizontal and vertical components are measured. This
gives two degrees of freedom of the current position. Sensors for magnetic field
measurement are disturbed easily by artificial magnetic fields in their environment.
Especially indoors, electromagnetic fields (e.g., from installed cables) can falsify
the recorded data to such an extent that they become useless for determining the
position. In smartphones and tablets, three orthogonal magnetometers are usually
combined with three linear inertial sensors and three angular rate sensors each (cf.
Section 4.2.3) to compensate for measurement errors through redundancy.

For indoor systems, the use of the Earth’s magnetic field is usually not possible
due to disturbing influences. However, with the help of current-carrying coils, arti-
ficial magnetic fields can be created which can then be used for tracking. Coils are
also used as sensors. Depending on whether a static magnetic field (direct current,
DC) or a dynamic magnetic field (alternating current, AC) is used for the measure-
ment, different measuring methods are used. With alternating magnetic fields, the
magnetic field induces currents in the coils, which are used as a measure of the posi-
tion and orientation in the magnetic field (or in space). In DC magnetic fields, a
current flow through the receiver coils and a voltage drop can be observed perpen-
dicular to both the direction of current flow and the magnetic field direction when
the coils are moved through the magnetic field. This so-called Hall effect also allows
tracking by measuring the Hall voltage. The combination of three orthogonal trans-
mitters and three orthogonal receiving coils allows one to determine the position
and orientation in space. The advantages of electromagnetic tracking systems are
that the receivers are small and that they are insensitive to occlusion by the user or
other non-conductive objects. The major disadvantage is that no (ferro-)magnetic
materials must be used in the room (up to the use of plastic screws for fastening the
sensors) and no electromagnetic fields should exist, as these interfere with the mag-
netic field, introducing measurement errors. Since interference influences, espe-
cially in a room with other electromagnetic components of a VR or AR system, can
usually not be avoided, complex calibration procedures are necessary to compen-
sate for disturbing interference. However, this assumes that the interference is
exclusively based on static, permanently mounted objects.

4.2.3 Inertial Tracking

Inertial tracking is based on sensors that measure acceleration (called inertial sen-
sors or acceleration sensors). Inertial tracking is primarily used to determine orien-
tation. One area of application is, among others, the detection of the joint positions
of a user by attaching appropriate sensors to the individual limbs.

P. Grimm et al.

115

Depending on the design, a distinction is made between linear inertial sensors,
which measure the acceleration along an axis, and angular rate sensors, which mea-
sure the angular acceleration around an axis. Since the latter behave like a gyrocom-
pass (gyroscope), they are sometimes also called gyro sensors. Together they form
a so-called Inertial Navigation System (INS). Typically, three linear inertial sensors
(translation sensors) and three angular rate sensors, arranged orthogonally to each
other, are integrated into an inertial measurement unit (IMU). Such units often also
include three magnetometers, which are also arranged orthogonally to each other
(see Sect. 4.2.2).

Linear accelerometers can be used to determine the orientation, but only in the
idle state. Then, the inclination to the vertical can be measured due to the direction
of gravity. Since the orientation in the horizontal is perpendicular to gravity, this
cannot be measured by linear inertial sensors. For input devices that can be moved
freely, three orthogonal sensors are nevertheless installed so that at least two can be
used for measurement at any time. However, linear inertial sensors may also be used
for position determination. Based on the linear acceleration values in the three
orthogonal sensors, the current speed can be estimated by integration and the change
in position by a second integration. However, due to measurement inaccuracies
(usually amplified by a relatively low accuracy in converting the analog measured
values into digital values), drift effects often occur. This means that if, for example,
a sensor is moved out of its resting state and then stopped again, the sums of the
recorded acceleration values would have to add up to zero at the end, resulting also
in zero velocity. However, this is usually not the case, so that the measurement
results in a low residual speed even in the idle state. This leads to an increasing
deviation between the measured and actual positions over time.

In the case of acceleration sensors for measuring angular velocity, the accelera-
tion values are integrated twice analogously to obtain the angle of rotation. This also
causes the problem of drift. It is therefore recommended to recalibrate in the idle
state using the linear accelerometers. For the detection of rotations over all three
axes, three sensors are usually installed orthogonally to each other, even with gyro
sensors.

4.2.4 Laser-Based Tracking

In laser-based tracking, the tracked objects are equipped with several photosensors
that detect laser beams emitted from a base by two rotating lasers. If only one base
is used, the photosensors are often occluded, e.g., by the user’s own body. Most
systems therefore use several base stations. This also allows a larger tracking vol-
ume to be covered. For synchronization between the base stations and the objects,
either additional infrared signals are used, or the sync signal is transmitted via the
laser beam itself. The lasers rotate around a horizontal or vertical axis, whereby the
laser beam is emitted only in one direction with a certain aperture angle (e.g., 120°).
The position and orientation of the object can be calculated based on the time

4 VR/AR Input Devices and Tracking

116

difference between the detection of the laser light by the individual photosensors. At
a defined rotation speed of the lasers (e.g., 1000 Hz), the position is determined by
the time difference between the infrared flash, which is emitted before the start of a
laser rotation, and the impact on one of the sensors. At a rotation frequency of
1000 Hz, an aperture angle of 120° and a time difference of 1/6 ms from the infrared
synchronizing flash, this results in a position at the center of the monitored space.

4.2.5 Outdoor Position Tracking

In the field of mobile outdoor applications, global satellite-based systems such as
GPS, Glonass or Galileo are used for positioning. Mobile position tracking is espe-
cially relevant for AR, since VR applications are typically not used outdoors.
However, in contrast to navigation applications, where satellite data can be com-
pared with existing roads and paths, the position of an AR system is almost arbi-
trary. Thus, deviations of 10 m and more are not uncommon. Especially under poor
reception conditions, the accuracy can be reduced even further. Global satellite-
based systems usually require a view of at least four satellites to determine their
position. While this is usually not a problem outdoors, reception inside buildings
with conventional receivers is not suitable for AR. But even in forests and deep val-
leys the reception quality can be significantly impaired, so that positioning is not
possible or only possible to a limited extent. A particular problem is the use in inner
city areas. Due to high buildings and narrow alleys, the free view of the satellites
may be so limited that proper positioning cannot always be guaranteed. Here, one
also speaks of ‘urban canyons’ (see Fig. 4.3).

While conventional GPS signals are not sufficient for AR in most cases, the
accuracy can be significantly increased by using differential methods. A distinction
is made between Differential GPS (DGPS) and Satellite Based Augmentation
System (SBAS). With DGPS, a correction signal is calculated based on a local refer-
ence receiver whose position is known. This correction (received by radio or via the
Internet) is then applied to the locally received GPS signal, allowing accuracies
down to a few centimeters. In SBAS, the reference system is formed by several
geostationary satellites. These reference satellites each provide correction data for
specific areas (WAAS in North America or EGNOS in Europe). Based on SBAS,
accuracies of about one meter can be achieved. However, SBAS (in particular) in
city centers is again sometimes problematic due to the often limited visibility to the
south (geostationary satellites have an orbit above the equator). For outdoor AR
applications, however, the use of SBAS is usually the only way to achieve an accept-
able positioning accuracy. This is already sufficient for the augmentation of objects
and buildings that are not in the immediate vicinity of the observer. If DGPS is used,
augmentation can usually be achieved even at a short distance without any notice-
able deviation from the actual position. However, the objectively perceived quality
of the positioning strongly depends on whether the virtual object must fit seamlessly

P. Grimm et al.

117

to a real object or can be positioned rather freely (for example, a virtual fountain on
a real site).

In addition to DGPS and SBAS, Assisted GPS (A-GPS) and WLAN positioning
are also frequently used, especially in smartphones and tablets. With A-GPS, an
approximate position is determined on the basis of the current mobile radio cell
(possibly refined by measuring the signal propagation times to neighboring mobile
radio masts), whereas WLAN positioning uses known WLAN networks (these do
not have to be open, but only uniquely identifiable). Neither method provides suf-
ficiently accurate position data for AR. However, A-GPS can also significantly
accelerate the start-up phase of an ordinary GPS receiver by transmitting satellite
information (especially current orbit data and correction data). This is particularly
relevant for AR applications if the users are frequently in areas where there is no
satellite reception – for example in buildings.

Fig. 4.3 Buildings block
GPS signals in so-called
urban canyons

4 VR/AR Input Devices and Tracking

118

4.3 Camera-Based Tracking

In recent years, camera-based tracking, also known as optical tracking, has become
increasingly popular because it enables high accuracy and flexible use. In the field
of optical tracking different techniques are used. They are based on the idea of using
objects recorded in the video stream to determine the relative positioning and orien-
tation of the objects to the camera (the so-called extrinsic camera parameters)
(Hartley and Zisserman 2000).

Basically, techniques can be distinguished according to whether markers (see
Fig. 4.8) are used for tracking which are easily recognizable in the recorded video
stream (by their color, shape, contrast, brightness, reflective properties, etc.), or
whether the method also works without markers (markerless). In the latter case,
either lasers are used, or cameras capture features within the camera image (see
Sect. 4.3.3). It is also possible to distinguish between methods in which the cameras
are directed at the object to be monitored from the outside (outside-in), or whether
the cameras are mounted to the object to be monitored and record the surroundings
(inside-out). In most cases, outside-in methods combine several cameras with the
aim of increasing the area of interaction or making it less susceptible to occlusion.
The disadvantage of outside-in methods is that a (very) large number of cameras
may be required to monitor large interaction areas and that the overall costs may rise
rapidly, especially when using special cameras. The disadvantage of inside-out pro-
cedures is that the user must accept restrictions by carrying cameras around. Even
though camera modules have become very small nowadays, the total package of
camera and possibly battery and transmission or evaluation logic is relatively heavy.
The advantage is that users are not restricted to a certain interaction space and can
therefore move around more freely.

From the user’s point of view, a markerless outside-in method would of course
be desirable, as this is where the restrictions for the user are least severe. Users do
not have to hold anything in their hands, do not need markers (e.g., on clothing) and
can move freely and walk freely through the room. In practice, however, it has been
shown that markerless tracking systems are more susceptible to interference (e.g.,
additional people in the room or changing lighting conditions) than marker-based
systems, and that the accuracy of marker-based systems is often higher.

4.3.1 Marker-Based Methods

To reduce the complexity of calculations and to avoid errors in different lighting
situations, optical tracking techniques often use clearly specified markers whose
image can be quickly identified in the video stream via threshold filters. Basically,
active and passive marker can be distinguished, depending on whether the markers
passively reflect the light or they themselves actively radiate light. Figure 4.4 (top)
shows an example of a six degrees of freedom controller with active markers (18

P. Grimm et al.

119

white LEDs arranged in a given pattern). Figure 4.16 shows a similar controller with
active infrared LEDs.

When using RGB cameras, black and white markers with defined sizes are often
used for this purpose. These are discussed in detail in Sect. 4.3.2. There are also
different approaches with colored markers. However, due to the lighting situation
and possibly also due to inferior cameras, even areas that are actually monochrome
are usually no longer monochrome in the video stream, so that the susceptibility to
errors increases when searching for a colored area. Better results can be achieved
using color-based tracking with active markers, i.e., self-luminous markers. Electric
lights (with the disadvantage of the power supply) such as the PlayStation Move
controller or glow sticks (also known as bend lights, which use chemiluminescence)
have proven to be very useful for this purpose.

To allow illumination of a scene without dazzling the users, infrared cameras are
often used in VR. The markers used here are either passive reflectors in combination
with infrared lights or active infrared LEDs such as the Nintendo Wii (see Lee
2008). Figure 4.4 (bottom) shows the infrared LEDs used for illumination. In the
video stream, small very bright round areas can be seen for each marker. The

Fig. 4.4 (Top) VR controller with active marker; (bottom) cameras with infrared LEDs for illumi-
nation and flysticks with reflective markers

4 VR/AR Input Devices and Tracking

120

visibility of a marker in several camera views allows the three-dimensional position
to be calculated.

Single markers are sufficient if tracking is only to provide the position (3 DOF).
However, a rigid body (also called a target in some tracking systems) typically
requires the calculation of its position and orientation. Consequently, a target is
composed of several individual markers. In a calibration step, the geometric struc-
ture of the targets (e.g., the distances of the individual reflection spheres) must be
communicated to the tracking system. If all targets differ in their geometric struc-
ture, identification can be made based on these characteristics. In Fig. 4.4 (right
side) two input devices with targets are shown, which take over the function of a 3D
joystick, and with which the user can indicate positions and orientations in 3D space
(so-called flysticks).

To make the reflection of passive markers as efficient as possible, retroreflection
is usually used. Retroreflection means that the beams of light are reflected specifi-
cally in the direction of the incident light and is based on two basic optical princi-
ples: in the case of reflection by triple mirrors, the mirrors are arranged with a right
angle in between, as shown in Fig. 4.5 (left). When reflected by glass spheres, the
spheres focus the incoming light approximately on the opposite surface of the glass
sphere (see Fig. 4.5, right). A layer of microscopically small glass spheres applied
to reflective material acts as a retroreflector. These foils can be produced on flexible
carrier material and are therefore used to produce ball markers as shown in Fig. 4.6
and Fig. 4.7.

Fig. 4.5 Retroreflection of protected triple mirrors and glass spheres. (© ART 2013, all rights
reserved)

Fig. 4.6 Tracking a target
from two cameras

P. Grimm et al.

121

Active markers often use infrared LEDs that must be synchronized with the cam-
eras. This synchronization can be done with active markers via an IR flash. The
cameras emit IR flashes that are reflected by the markers towards the camera lens.
Due to the IR flashes, it is possible that opposite cameras are blinded. A common
solution for this is to divide the cameras into so-called flash groups that work alter-
nately, so that the opposite camera is inactive when taking the picture.

The tracking cameras that scan a specific area register the reflected radiation in a
grayscale image. The pre-processing of this image data takes place in the camera
and provides 2D marker positions with high accuracy using pattern recognition
algorithms optimized for circular surface detection. To be able to determine the
coordinates of a marker or target in space at all, it is necessary that at least two cam-
eras scan the same area simultaneously (cf. Figure 4.6). Larger volumes are accord-
ingly built up with more cameras, whereby it must also be ensured that partial areas
of overlap are scanned by additional cameras. It is therefore important to ensure that
the individual areas are linked.

The calibration of outside-in procedures with markers is usually carried out with
the aid of test objects known in shape and size, which are moved in the monitored
room. The test data obtained in this way allows the coordinate systems of the indi-
vidual cameras to be aligned with each other such that tracked objects can be
described in a uniform coordinate system.

The camera 2D data is transmitted to the central tracking controller, which cal-
culates the 3D positions of the marker or the 6D data of the rigid bodies by triangu-
lation and passes them on to the user. To enable the tracking software to perform this
triangulation, the exact positions and orientations of the tracking cameras must be
known. In a typical VR system, the accuracy requirement for this is less than 1 mm
in position and less than 0.1° in angle. To determine the position and orientation of
the tracking cameras with this precision, the tracking software provides a simple
calibration step whose basic mathematics (bundle adjustment) is derived from pho-
togrammetry (Hartley and Zisserman 2000) and which allows the calibration in a
short time. To achieve a coverage of the tracking volume according to the

Fig. 4.7 Optical tracking of a person with reflective markers (the markers appear to be illuminated
by the flashlight used) and several infrared cameras (infrared LEDs appear red)

4 VR/AR Input Devices and Tracking

122

requirements, the tracking cameras are equipped with lenses of different focal
lengths. This allows a variation in the field of view (FOV). To allow unrestricted
working in front of power walls or in multi-side projections, wide-angle lenses for
the tracking cameras are selected. It is important that the user can get close to the
projection screens to achieve high immersion. Figure 4.7 shows an example where
an optical tracking system is used to capture the movement of a user, so-called
motion capturing.

Optical tracking in closed multi-sided projections (such as 5- or 6-sided CAVEs;
see Sect. 5.4.2) presents a special problem. Optical tracking through projection
screens is not possible because these screens have a highly scattering surface and
optical imaging through a scattering surface is generally difficult. Therefore, track-
ing cameras must be installed inside the CAVE, which leads to an impairment of the
spatial impression in the virtual environment by these camera bodies. For multi-
sided projections in particular there are special cameras that are installed in the
corners of the multi-sided projection, looking through a hole of about 40 mm diam-
eter. This allows precise optical tracking in CAVEs to be used, whereby the optical
interference caused by the holes in the corners is negligible according to the users.

4.3.2 Tracking Using Black and White Markers

Camera-based tracking using markers has been used for AR since the late 1990s and
the technique is still in use today. In most cases, markers with black and white pat-
terns are used (see Fig. 4.8). Compared to colored markers, these offer the advan-
tage that they can be extracted from images with the aid of simple threshold values,
even under varying brightness conditions.

The markers used are usually either square or round and bordered by a com-
pletely black or completely white border. Criteria for selecting one of the systems
can be stability, recognition speed or the number of distinguishable marks. Some of
the better-known marker-based tracking approaches include ARToolkit, ARTag,
ARToolkit+ or the IS 1200 VisTracker. For a detailed comparison between different
marker-based approaches, see Köhler et al. (2010).

Fig. 4.8 Typical markers as used for camera-based tracking

P. Grimm et al.

123

 Use of Marker Tracking

For marker tracking, the pattern and size of the individual marker must be known in
advance. While some methods (such as ARToolkit, cf. Berry et al. 2002) allow any
black and white patterns for the inner part of the marker, the possible patterns are
predefined in other methods (such as ARToolkit+). The latter prevents performance
losses with many markers. As a rule, markers must be completely visible in the
captured camera image to be recognized. With predefined patterns, however, redun-
dancy can often still be used to detect a marker that is not completely visible. If
markers are too large, it can also happen that only a part of the marker is visible
when the camera is very close to it and tracking is therefore not possible or only
possible to a limited extent. Conversely, if the marker is too small in the camera
image, this leads to both faulty pattern recognition due to the too small number of
detected marker pixels and to a significant reduction of the tracking accuracy, such
that even with static objects and a practically motionless camera, transformation
values can vary greatly. In addition to the size of the marker, the resolution of the
camera is a decisive factor. If the AR application requires that users look at an object
from very different distances, it can be advantageous to use markers of different
sizes in parallel. A universal solution for this problem is the use of fractal markers
(Herout et al. 2012). In addition to the distance, the angle between camera and
marker as well as the current lighting situation have a major impact on the quality
of the tracking results. If the angle becomes too flat, the calculated transformation
values often start to vary greatly (Abawi et al. 2004). If the lighting is too bright
(also due to reflections) or too dark (also due to shadows), white and black marker
areas are ultimately no longer recognized sufficiently clearly from each other, mak-
ing tracking no longer possible.

The main advantages of marker-based tracking are that the markers can be cre-
ated quickly and easily by printing them out and can be applied to objects, walls and
ceilings, or can be easily integrated into books and magazines. Even though AR
markers may look similar in parts, they should not be confused with QR codes,
which are used to encode strings of characters, especially URLs.

The main disadvantage of markers is that they usually must be applied directly to
or on the object to be augmented. This is due to the fact that the markers would
otherwise often not be visible when looking at the object (more closely) as well as
because tracking inaccuracies have a much stronger effect on augmented objects if
the distance from the marker to an augmented object get bigger. The markers are
therefore often disturbing with respect to the real object. Another aspect is that it is
not possible or not appropriate to place markers on many real objects (for example
on a statue). An aggravating factor for smaller objects is that when interacting with
the object (for example, by touching it), the markers are easily covered by the user’s
hand or arm, either completely or partially, so that tracking is no longer possible.
There are numerous other factors that influence the quality of tracking. An essential
aspect is the quality of the camera and the camera calibration (see Szeliski 2011).
Another problem is that with some methods (such as ARToolkit) the performance
decreases reciprocally quadratic with the number of patterns to be detected.

4 VR/AR Input Devices and Tracking

124

 Basic Operation

In the following, the basic procedure of marker-based tracking will be outlined
using ARToolkit (Kato and Billinghurst 1999) as an example. The tracking is basi-
cally done in four steps:

 1. Camera captures video image
 2. In the picture, the system searches for areas with four connected line segments
 3. It is checked whether the detected areas represent one of the predefined markers
 4. If a marker was found, the position and orientation of the camera to the marker

are calculated from the position of the vertices in the image

After obtaining the current camera image, it is first converted to a grayscale
image. A black and white image is then generated based on a threshold value,
whereby all values below the threshold value are displayed in black and those above
the threshold value in white. All line segments in the image are now identified and
then all contours are extracted from line segments with four lines. The parameters
of the line segments and the positions of the corner points are temporarily stored for
later calculation (see Fig. 4.9).

The region found within the four vertices is then normalized. As the surrounding
black border has a uniform width of 25% of the edge length, the image to be com-
pared can be easily extracted from the center of the image. The image is then tested
for matching with the stored patterns (see Fig. 4.10). For the comparison of each
stored pattern, the four possible orientations at three brightness levels each are used.
The pattern with the highest degree of similarity is recognized if a defined threshold
value for similarity is exceeded. It is therefore also important to select patterns with
the lowest possible similarity between them to avoid false positives. Based on the
orientation of the pattern, the recognized vertices can easily be assigned to the cor-
responding coordinates in the marker’s coordinate system.

Fig. 4.9 Single steps in the recognition of the marker boundaries in the camera image: conversion
to grayscale image, black and white image based on a threshold value, segmentation, identification
of lines, identification of contours from four lines and storage of the corner points

P. Grimm et al.

125

 Intrinsic and Extrinsic Camera Parameters

The calculation of the pose of the marker in relation to the camera is based on the
mapping of the marker’s corner point coordinates to pixels. The size of the marker
must be known.

Tcm is the transformation matrix from the marker coordinate system M to the
camera coordinate system C. The position of the camera corresponds to the optical
center and thus the origin of the camera coordinate system. The viewing direction
of the camera is along the negative z-axis of this coordinate system.

vm is a coordi-
nate in the marker coordinate system M and

vc the coordinate transformed into the
camera coordinate system C. For a detailed representation of the relationships see
Fig. 4.11. Thus, the following applies:

v T vc cm m= ·

and

x

y

z

r r r t

r r r t

r r r t

c

c

c

x

y

z

1 0 0 0 1

11 12 13

21 22 23

31 32 33

�

�

�
�
�
�

�

�

�
�
�
�

�

�

��

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

·

x

y

z

m

m

m

1

wherein the homogenous matrix Tcm is composed of a 3 × 3 rotation matrix R and a
translation vector

t . Both components have three degrees of freedom each; the
whole transformation thus has six. Camera calibration (cf. Szeliski 2011) yields the
intrinsic camera parameters and thus the calibration matrix K, which determines the
mapping of the camera coordinates to the image plane S. Here applies:

K =

f c

f c
x

y

0

0

0 0 1

�

�

�
�
�

�

�

�
�
�

Fig. 4.10 Recognized marker, normalized marker, normalized original

4 VR/AR Input Devices and Tracking

126

where f is the focal length of the camera (distance from the image plane) and (cx, cy)
is the optical center of the image in image coordinates. Strictly speaking, this is an
idealized (pinhole) camera, where it is assumed that the focal length is the same in
both sensor dimensions and that there is no distortion due to a non-perpendicular
installation of the camera sensor (cf. Szeliski 2011, p. 47). Thus, the relation
between a camera coordinate

vc and an image pixel

vs can be described by

 v

s

vs

w

c�

�

�

�
�
�
�

�

�

�
�
�
�

�
�

�
�

�

�
� �

s

s

s

x

y

z

K 0

0 1

where

vs the must be normalized so that sz = 1 (Fig. 4.11).
By inserting the detected pixels and using the calibration matrix K and the known

distance between the vertices, and taking into account the orientation known from
the marker orientation, the 3 × 3 rotation matrix R and the translation vector of Tcm
can thus be determined. These are called extrinsic camera parameters. For further
details of the method see Kato and Billinghurst (1999) and Schmalstieg and
Höllerer (2016).

Fig. 4.11 Camera coordinate system C, image coordinate system S and marker coordinate system
M (position of image plane flipped for illustration)

P. Grimm et al.

127

4.3.3 Feature-Based Tracking Techniques

In addition to marker-based tracking techniques, there are also camera-based track-
ing techniques that recognize features in the camera image and assign these to mod-
els. The models, which can be 2D or 3D, can be built on the fly or could be already
known from a database. Feature-based tracking techniques represent a generaliza-
tion of the marker-based approach.

 Geometry-Based Tracking

In geometry-based tracking, features such as edges and/or vertices are extracted
from the camera image. Based on an extrapolation of the transformation extracted
from the previous camera image, the distances between the lines and corners of the
calculated and the current image are used as the basis for the modification of the
transformation.

As can easily be seen from the example of a cube with six identical sides, in
many cases the individual features are not unique, i.e., there are often several valid
poses for a current camera image. Thus, based on the last used pose, one of several
possible transformations is always used: the one that has the smallest change to the
previously calculated transformation. The correct initialization of the tracking is
therefore crucial, as further poses are calculated incrementally. For a unique initial-
ization, additional tracking techniques (such as the already described marker-based
method) can be used. Neural networks are also increasingly used for matching with
a given model (cf. Klomann et al. 2018).

Feature-based approaches using edges and/or corners are particularly suitable in
areas of uniform geometric shapes, especially when the areas have few other fea-
tures for extraction.

 Other Feature-Based Tracking Techniques

Unlike corners and edges, other visual features are often not easily recognizable to
a human observer. However, they offer the advantage that they can be found quickly
and reliably in a camera image using corresponding feature detectors. As far as is
possible to extract enough of such features from the camera image, they will be
compared with existing 2D or 3D descriptions of the features (the so-called descrip-
tor). After outliers have been sorted out – usually using a RANSAC method (Fischler
and Bolles 1981) – the pose of the camera in relation to the known feature groups
can be calculated on the basis of the correct assignments (see Fig. 4.12).

Feature detectors differ significantly in their speed and reliability. Not all detec-
tors offer corresponding descriptors. It is advantageous here if the detection of the
features is independent of rotation (rotation invariance) and distance (scale invari-
ance). If this is not the case, corresponding features must be calculated from

4 VR/AR Input Devices and Tracking

128

different angles and in different resolutions. Detectors used for feature-based track-
ing include SIFT – Scale Invariant Feature Transform (Lowe 1999, 2004) – and
SURF – Speeded Up Robust Features (Bay et al. 2006). A basic description of fea-
ture-based tracking for AR can be found in (Herling and Broll 2011). Figure 4.13
shows the robustness of feature-based methods using a SURF-based approach:
despite numerous occluding objects, the remaining features visible allow for a sta-
ble pose estimation.

Another possibility to implement camera-based tracking is the combined use of
color cameras and depth cameras in the form of so-called RGBD cameras. Here, the
depth information can be used for tracking the camera position as well as for track-
ing user interactions. The latter is done by estimating to what extent skeletons can
fit into the recorded depth data and thus allow the recording of user movements such
as the movement of an arm. RGBD cameras usually use an infrared projected

Fig. 4.12 Assignment of
feature points in the
current camera image to
those of an existing
feature map

P. Grimm et al.

129

pattern (see Fig. 4.14) or a Time of Flight (TOF) method for depth detection, where
the travel times of the reflected light are determined. The technology of RGBD
cameras has become particularly well known through the great success of the first
generation of Kinect, which was sold as an input device for a game console.

Fig. 4.13 Tracking based on features is much more robust against interference than marker-based
tracking: despite numerous objects obscuring the image used for tracking, the virtual object can be
registered correctly

Fig. 4.14 Projected infrared pattern for depth detection of an RGBD camera. (© DLR 2013, all
rights reserved)

4 VR/AR Input Devices and Tracking

130

4.3.4 Visual SLAM

In the tracking techniques presented so far, it was assumed that markers, images, or
objects are known regarding their characteristics. This made it possible to determine
the relative position and orientation of the camera. If either the position and location
of the markers or the camera(s) in the surrounding (spatial) coordinate system was
known (e.g., in the form of a map), this information could also be used for absolute
location (position estimation) in the spatial coordinate system. But how to realize a
tracking in an unknown environment, i.e., without known markers, images or
objects and without any information about the arrangement these in space?

In this case, SLAM (simultaneous localization and mapping) – a method origi-
nating from robotics – is used. Initially, neither the position and orientation of the
camera nor the environment are known. SLAM approaches primarily based on cam-
eras observing the environments are also referred to as Visual SLAM. For SLAM-
based tracking in the AR context, either features (SIFT, SURF, FAST, etc.) and/or
depth information (e.g., Kinect, Intel RealSense, Google Tango, Structure.io)
are used.

More recent handheld devices may also apply LiDAR (light detection and rang-
ing), originally used in robotics and automated driving only, providing high-quality
depth estimation of the environment. While the former produce sparse maps with
comparatively few feature points (cf. PTAM, Klein and Murray 2007), the latter
generally use dense maps of volume. Since initially no map exists, the coordinate
system can be freely selected based on the starting position. The map is then succes-
sively created based on the movement of the camera, i.e., features found in the cur-
rent camera image are compared with the existing map and new features are located
in the map. Based on the already known parts of the map, the position and location
of the camera are simultaneously reassessed based on detected features.

The simultaneous reconstruction of the environment in the form of a map as well
as the estimation of the position based on this still incomplete information usually
leads to increasing errors (both with regard to the quality of the map and the position
estimation based on it) as long as new unknown areas are continuously added. It is
crucial that known surrounding areas are reliably recognized, even if their position
and location are different from the current map information. In this so-called loop
closing, all map data must be adjusted to ensure that the current and stored informa-
tion are consistent.

Dynamic objects represent an additional difficulty with SLAM methods. Since
the resulting features change their position and location, they must be identified and
then ignored in the processing, otherwise they lead to both a faulty map and faulty
tracking.

P. Grimm et al.

131

4.3.5 Hybrid Tracking Techniques

For augmented reality applications it is common to use combinations of different
tracking techniques. The reason for this is usually that the individual methods pro-
vide different results, depending on the situation. A typical example is a marker-
based approach: this approach usually works well if the position and location in
relation to the camera can be determined for all virtual content via at least one
marker. However, if an occlusion occurs even for a short time, the marker is not
recognized and registration of the virtual object(s) in the real scene is no longer pos-
sible. In order not to immediately lose the illusion of an augmented reality, it is
therefore recommended to estimate the change of position and attitude based on
alternative tracking techniques. If, for example, a tablet or smartphone is used, the
change in position could also be determined by the integrated position sensors (see
Sect. 4.2.3). This can be used to ensure that in situations where the brand tracking
does not provide any information, a transformation can be specified that is correct
at least regarding the position. If the user does not change his or her position until
the corresponding marker is visible again, or only changes it slightly, the illusion
can be maintained in this way.

Another way to compensate for short-term failures or even latency of the track-
ing technique is to use prediction techniques. While simple extrapolation methods
are basically also suitable for this purpose, Kalman filters (cf. Bishop et al. 2001,
p. 81) are a widely used and significantly better alternative. Depending on whether
the position or the rotation must be estimated, ordinary or advanced Kalman filters
are used. Another possibility is the use of particle filters (cf. Arulampalam
et al. 2002).

 Cloud-Based Tracking

Hybrid tracking techniques can also be used for multiuser experiences. The first
step is to build a tracking reference (called an anchor) within a spatial environment
or context. Feature maps in combination with additional information like GPS data
(for outdoor applications) or room information (for indoor applications) can be used
for this. The second step is to send to a cloud service. By downloading this cloud
anchor, applications on other devices can align virtual objects to the same spatial
context, enabling users to view the same content at the same location but from an
individual perspective (see Fig. 4.15, left).

In visions of the near future of computing – coined as AR Cloud, Spatial Web,
Mirror World or Digital Twin – a large amount of constantly updated digital content
(e.g., construction, IoT, traffic, shops, artists) is spatially anchored and can be per-
ceived and shared by many users as a persistent, dynamic overlay of the real world
(see Fig. 4.15, right). Reliable, precise and easily functioning tracking and localiza-
tion technologies are an essential part of the implementation of these concepts.
Organizations are developing universal open standards to ensure open, free and

4 VR/AR Input Devices and Tracking

132

interoperable use of the deeply linked partial technologies. For example, the Open
AR Cloud organization (OpenAR 2021) together with the Open Geospatial
Consortium (OGC), is developing a standard for a geographically anchored poses
with six degrees of freedom (GeoPose 2021) referenced to standardized Coordinate
Reference Systems (CRSs). Since these tracking and immersive visualization tech-
nologies capture and operate with many personal and potentially protected private
data, for long-term acceptance it is important to take care of privacy and data secu-
rity issues and to respect possible ethical, legal and social impacts (CyberXR 2021)
as part of development and operation.

 Microsoft Hololens Tracking

The SLAM approach used in Microsoft’s Hololens 2 (see Hololens 1 in Fig. 5.10)
has several special features regarding the combination of different hardware sen-
sors. It uses a total of four cameras exclusively for tracking. The four cameras work
with a comparatively low frame rate of only 30 Hz. This means that fast head move-
ments cannot be detected without noticeable latency. To compensate for fast move-
ments, the tracking data is therefore combined with those of an IMU (see Sect.
4.2.3) with an update rate of 1000 Hz. This allows not only the calculation of inter-
mediate values between the determined camera poses at 240 Hz, but also compensa-
tion of color shifts (late-stage reprojection) due to the color sequential output (see
Sect. 5.3.2). Instead of a global coordinate system, a graph of position estimations
is used, whereby the individual local coordinate systems are connected by relative
poses. If relative poses are not, or not yet, available, the graph may break up into
several subgraphs. A loop closing does not take place, so that the graph is not neces-
sarily globally consistent.

Fig. 4.15 (Left) Simplified concept of cloud anchors: 1) One device captures peculiar features
from the environment. 2) It saves these and an object anchor in cloud storage. 3) Another device
downloads this information and 4) tries to find the same features in its view to position a virtual
object at the same anchor position. (Right) The AR Cloud concept: different layers of dynamic
georeferenced information augment the real world

P. Grimm et al.

133

In addition, data from a depth camera (1-MP Time-of-Flight depth sensor) is
used for spatial mapping with a framerate of 1–5 fps. If a user’s hand is recognized
the modus of the depth camera will change to high-frame rate (45 fps) near depth
sensing, which is used for hand tracking in an area up to 1 m (see also Sect. 4.4). For
power saving, it reduces the number of illuminations while doing the hand tracking.

Furthermore, the Hololens has a high-resolution front camera with a FOV of 65°,
a five-channel microphone array with noise cancellation to allow voice input even
in loud environments, and eye tracking (see Sect. 4.5). The eye tracking is espe-
cially used for the rendering using the waveguide displays (see Sect. 5.3.2).

4.4 Finger Tracking

Although the interaction with standard input devices and the corresponding interac-
tion methods are usually sufficient, these devices and methods hardly reproduce the
natural interaction of a human being with the virtual world. New types of interaction
(e.g., by pointing gestures) must first be explained to the user.

One example is the virtual assembly simulation. Using a standard interaction
device such as a VR controller, a component can be easily moved from one location
to another by detecting its position and orientation and by pressing a button.
However, it is not possible (or very difficult) to check whether a user is able to
install a component with only one hand or whether the user needs both hands for
this action. Figure 4.16 left shows a user in front of a VR display during a virtual
assembly simulation of a satellite. The user is equipped with optically tracked 3D
glasses and a finger tracking device and tries to insert a module of the satellite with
only one hand into the corresponding module slot. Other scenarios in the field of
virtual assembly simulation are testing for the general tangibility of objects or the

Fig. 4.16 (Left) User with tracked 3D glasses and finger tracking during an installation test of a
satellite module in a virtual assembly simulation (© DLR 2013, all rights reserved). (Right)
Grasping a virtual apple with a tracked hand (© ART 2013, all rights reserved)

4 VR/AR Input Devices and Tracking

134

transfer of objects from one hand to the other. The use of standard interaction
devices like VR Controller is not suitable for this kind of applications.

In general, the direct interaction of users with their environment by tracking their
hands and fingers in the virtual world is easier and more intuitive for them (Bowman
et al. 2004). In contrast, interactions with VR are faster when using indirect interac-
tion methods in combination with simple or standard interaction devices (Möhring
and Fröhlich 2011; Hummel et al. 2012).

In general, the term finger tracking is used to describe the detection of the posi-
tion and usually also the orientation of a hand and its fingers. Depending on the
application, the required accuracy varies. Relatively low accuracy and only the
detection of the position of the back of the hand or a finger is already sufficient to
emulate a mouse or to interact with a user interface in a virtual world. However, low
to medium accuracy and the relative position of individual fingers to each other is
already necessary to recognize gestures. For application areas such as virtual assem-
bly simulation in the automotive, aerospace and aviation industries, which require
direct interaction, not only the position and orientation of the back of the hand and
all fingertips are important for tracking, but also the lengths of the individual finger
links and the angles of the corresponding finger joints. Only this accuracy enables a
perfect image of the real hand.

There are two major challenges in finger tracking. First, the human hand has
many degrees of freedom. The back of the hand is usually seen as a rigid body with
six DOF: three translational and three rotational (see Fig. 4.17). Each finger has
another four DOFs, two rotational DOFs at the root of the finger and one rotational
DOF each for the joints to the middle and outer phalanx. The thumb has a special
role because it has an additional DOF at the root. Therefore, five DOFs are required
for the thumb, three rotatory DOFs at the wrist and one for each additional finger
joint. Added up, this results in 27 DOF for one hand (Lin et al. 2000). Second, the
tight position of the fingers in relation to each other is a great challenge for the
tracking system. For optical systems in particular this is a non-trivial problem to

Fig. 4.17 Data model of a hand to implement finger tracking (the circles symbolize the joints of
the hand and fingers with their respective degrees of freedom; the lines represent the skeleton)

P. Grimm et al.

135

solve because of the occlusion of markers, the small visual difference of the fingers
and the 27 DOF per hand.

In addition, it should not be forgotten that each person’s hands and fingers are
different. This includes not only the length and thickness of the individual phalan-
ges, but also the joints and joint angles between them. A physical handicap or even
the absence of one or more fingers must not be ignored either. The respective track-
ing devices must take this into account and be adaptable to it.

Since finger tracking has high requirements on the tracking hardware, a wide
variety of techniques are employed. In earlier days mechanical tracking techniques
were most common, for example optical fibers, strain gauges or potentiometers
(variable resistors). The Sayre Glove (DeFanti and Sandin 1977) has bendable tubes
that run along each finger inside a glove. The Data Glove (Zimmermann et al. 1986)
uses two optical fibers per finger. At one end of this fiber optic cable is a light
source; at the other end is a photocell. Depending on the bending of the finger, a
different amount of light hits the photocell. This allows the joint angles of the fin-
gers to be approximately determined. The CyberGlove (Kramer and Leifer 1989)
uses 22 thin, metallic strain gauges to measure the joint angles of the fingers. In the
Dexterous Hand Master (Bouzit et al. 1993), an exoskeleton is pulled over the hand
and fingers. Using cable pulls, potentiometers are then activated, from whose resis-
tance values the positions of the fingers can be determined by analog/digital con-
verters. With mechanical methods, however, only a relative measurement of the
fingers to the back of the hand is possible. The position and orientation of the back
of the hand must be measured using a different tracking technique.

More rarely, magnetic trackers are used for finger tracking. These can detect up
to 16 individual 6-DOF sensors. This means there is one sensor for each of the
three-finger links and one sensor for the back of the hand. The disadvantage of mag-
netic tracking is the slight susceptibility to interference from metallic or electro-
magnetic sources. In addition, most magnetic trackers are wired due to their design.

Optical finger-tracking devices predominate in the non-mechanical tracking
techniques. The MIT LED Glove (Ginsberg and Maxwell 1983) is equipped with
light-emitting diodes (LEDs), which are recorded by an external camera system. To
distinguish individual fingers from each other, the LEDs flash alternately one after
the other (Hillebrand et al. 2006). At a recording rate of 60 Hz, for example, the
alternate flashing of the LEDs reduces the repetition frequency to 20 Hz for a three-
finger system and to 12 Hz for a five-finger system. The use of optical tracking
enables high accuracy and lightweight wireless interaction devices, but usually at
least four expensive special cameras are required to ensure triangulation of each
LED used. Some optical finger tracking devices are additionally equipped with iner-
tial sensors to temporarily bridge any obscurations of the LEDs, which often occur
due to the small distances between the fingers. In Hackenberg et al. (2011) a method
was presented that is based on depth cameras and uses special feature detectors for
finger phalanges and fingertips.

There are inexpensive camera-based finger trackers available, which neverthe-
less offer high accuracy and low latency and can be easily integrated into VR appli-
cations. Leap Motion, as an example, uses two cameras in combination with infrared

4 VR/AR Input Devices and Tracking

136

LEDs (wavelength 850 nm). The hardware covers an interaction space of up to
80 cm by 80 cm, with the brightness of the infrared LEDs being the limiting factor.
The controller transmits two grayscale videos to the software, which in turn deter-
mines the finger positions from this data. Usually, the controller is used while lying
on a table. With the help of an adapter, however, it is also possible to attach the
controller to VR glasses to use finger gestures as input for VR applications.

Using touch-sensitive surfaces it is also possible to track fingers using a VR con-
troller (see Fig. 4.18).

4.5 Eye Tracking

4.5.1 Eye Movements

Eye-tracking, or gaze registration, generally refers to tracking the movement of the
human eye. The procedure is used to record and evaluate the course of a per-
son’s gaze.

If a user views an image, he focuses by changing the focal length of his lens and
depicts the image onto light-sensitive cells of the retina. The amount of incident
light can be varied through the iris. The iris works like an aperture and changes the
diameter of the pupil. The eye muscles that move the eye in the eye socket are
attached to the sclera. The types of movement of the eye are differentiated into drift-
ing, following, trembling, rotating, fixing and saccades. However, only the last two
are interesting for tracking the eye. During fixation, e.g., while reading, the eye
concentrates on one point and collects information. Saccades are jumps that take
place between fixation and last about 20 ms to 40 ms.

4.5.2 Methods

Various technical methods have been developed in recent decades to determine the
direction of gazes. An overview of these methods and sub methods is given in
Fig. 4.19. In principle, a distinction is made between invasive and non-invasive

Fig. 4.18 3D model of a hand controlled by a VR controller with touch sensors

P. Grimm et al.

137

procedures. Invasive procedures always require a direct intervention on the user’s
body, e.g., with electrodes.

With non-invasive procedures the user’s gaze can be followed without contact.
The first developed eye-tracking techniques were purely invasive. Electrooculography
was developed more than 40 years ago. In electrooculography, the electrical poten-
tials of the skin around the eye are measured. These potentials range from 15 μV to
200 μV. The sensitivity for eye-tracking is about 20 μV/angle degree (Duchowski
2007). With this technique the relative eye movement to the head can be recorded.
However, it is not possible to determine an absolute point of view of the eye on an
object. Another invasive eye-tracking technique is the contact lens method. Here,
contact lenses are used either with small coils or with reflectors. For contact lenses
with coils, the change of the magnetic field is measured, and from this the relative
movement of the eye is derived. If there are reflectors on the contact lenses, the
reflected light can be used to deduce the relative direction of vision.

Fig. 4.19 Overview of methods for eye tracking

4 VR/AR Input Devices and Tracking

138

In recent years non-invasive video-based eye-tracking techniques have been
used. Here, the eye is captured by a camera and the gaze direction is determined by
image processing algorithms. In video-based methods, a distinction is made between
passive and active eye irradiation. Passive methods use ambient light to irradiate the
eye scene. Due to the undefined irradiation conditions of an environment, there are
high requirements for precise feature identification of the eye components.

With passive irradiation, the contour between the dermis and iris is used to iden-
tify features. A more precise method is the active irradiation of the eye scene by an
infrared light source. Figure 4.20 illustrates the more favorable contrast ratios of the
active method, which enables robust feature identification between pupil and iris.

Depending on the arrangement of the IR irradiation source, a distinction is made
in active irradiation procedures between the light and dark pupil technique. If the
irradiation source is located outside the optical axis of the eye-tracking camera, the
radiation is reflected by the iris and sclera; thus, the pupil is the darkest object
within the recorded eye scene. If the light source and the camera are arranged in the
same optical axis, the radiation is reflected at the retina inside the eye, making the
pupil the brightest object.

Hybrid processes require optics with different arrangements of the IR irradiation
sources. Regardless of whether active or passive eye irradiation is used, the evalua-
tion of the direction of gaze is based on features on the one hand and on models on
the other. Combined methods are also used. Feature-based methods detect contours,
e.g., the pupil geometry, and calculate the center point and the relative gaze
coordinates. Side effects, such as reflections, can cause other features to be inter-
preted as the pupil; this property reduces the accuracy of feature-based methods.
Model- based methods, on the other hand, compare the image information of the
recorded eye scene with a corresponding model of an eye. By varying the parame-
ters, an iterative attempt is made to adapt the model to the real eye scene. If the
model could be adapted with a certain error, the relative gaze coordinates are
obtained. Model- based procedures belong to the more precise, but also to the more
computationally intensive, approaches. Video-based eye-tracking techniques not

Fig. 4.20 Recorded eye scene with passive and active irradiation

P. Grimm et al.

139

only allow the relative direction of gaze to be determined. With calibration, the cor-
respondence between the direction of gaze and regions in the virtual image (e.g., a
button) can be found.

4.5.3 Functionality of an Eye Tracker

Figure 4.21 shows the basic procedure of an eye-tracking routine with active illumi-
nation and bright pupil technique. An eye-tracking camera, which is focused on the
user’s eye, captures a digital grayscale image. This image is passed to the eye-
tracking image processing system. First, an adjustment of the gray values is applied
and then the image is pre-filtered, e.g., to improve a noisy image. Furthermore, a

Fig. 4.21 Image processing process for eye tracking

4 VR/AR Input Devices and Tracking

140

histogram spread is performed to highlight the object contours of the eye such as the
pupil or iris. In the next step, the contour of the pupil is detected by edge detection,
and the pupil center is calculated. Furthermore, in the case of active illumination,
the reflections at the cornea are used as additional information. With a Head-
Mounted Display (HMD; see Chap. 5) with integrated eye tracking, these reflec-
tions are often used as a reference point. The eye-tracking image processing finally
outputs the coordinates of the pupil center in horizontal and vertical direction. If the
corneal reflections are also evaluated, the eye-tracking image processing outputs a
difference vector between the pupil center and the center of the corneal reflection,
from which it can be concluded where the user focuses.

4.5.4 Calibration

To enable user interaction with virtual objects in addition to the actual eye-tracking,
an assignment between the camera’s detection range and the displayed image is
necessary.

Figure 4.22 shows the nested coordinate systems of the eye-tracking camera and
the virtual image. To be able to establish a connection between the pair of coordi-
nates in the camera coordinate system

xc ,

vc and the coordinates of the virtual
image

xvirt ,

vvirt , there are various assignment methods. In Duchowski (2007) a
simple linear analytical mapping function is presented. Equations (4.1) and (4.2)
describe the linear mapping functions for the horizontal and vertical direction. In eq.
(4.1) the horizontal coordinate

xc is set by subtracting from

xc _ min to its origin.
Then this coordinate is scaled to the virtual image by the horizontal resolution ratio
between the virtual coordinate system and the camera coordinate system. Then the
relative position in the virtual image is calculated by adding the minimum coordi-
nate of the virtual image. For the vertical coordinate assignment, the calculation
method described in eq. (4.2) is analogous to eq. (4.1).

x x
x x x x

xvirt virt

c c virt virt

c

� �
�� � �� �

_ min

_ min _ max _ min

_ mmax _ min�� �

xc

(4.1)

y y
y y y y

yvirt virt

k c virt virt

c

� �
�� � �� �

_ min

_ min _ max _ min

_ mmax _ min�� �

yc

(4.2)

In practice, more complex assignment procedures, such as the second and third-
order polynomial procedure or the homographic procedure, are usually used. These
assignment procedures require several parameters. The parameters are obtained by
a calibration routine. In this calibration routine the user has to select points that are
distributed over the virtual image (e.g., in the corners and in the middle). The user
must look at these points one after the other. Using these parameters, the calibration
routine can now determine the parameters for the complex assignment functions.

P. Grimm et al.

141

4.5.5 Eye Tracking in Head-Mounted Displays

If you want to use gaze control, you can use an eye-tracking HMD. Figure 4.23
shows the basic procedure of an eye-tracking HMD. As already mentioned in Sect.
4.5.2, a camera is required for a video-based procedure. The camera is attached to
the HMD in a way that it can focus on the eye. The captured image of the eye scene
is then transmitted to the computer or to the HMD electronics and an eye-tracking
algorithm calculates the direction of the eye (see Sect. 4.5.3).

Eye-tracking HMDs evaluate either both eyes simultaneously or only one eye. If,
for example, the gaze direction of both eyes is determined, the 3D viewpoint of the
user can be determined from the intersection of both vectors.

As already explained in Sect. 4.5.4, there must be a correspondence between the
coverage area of the camera and the display area of the virtual projection. Therefore,
a calibration must be carried out. Compared to the remote eye trackers presented in
Sect. 4.5.6, eye tracking HMDs have better conditions for recalibration due to the
tight fit of the glasses. If the HMD moves only slightly, the calibration does not have
to be repeated during operation.

Fig. 4.22 Camera coordinate system of the virtual image and the camera

4 VR/AR Input Devices and Tracking

142

4.5.6 Remote Eye Tracker

A remote eye tracker has essentially the same components as the eye-tracking HMD
presented in Sect. 4.5.5. With a remote eye tracker, the user sits in front of a monitor.
A camera mounted near the monitor focuses on the user’s head. There are two meth-
ods to capture one or both eyes. On the one hand the camera captures a large area
where the user’s head is located. The image processing locates the area of the eye
and calculates the position of the pupil in this section. With this method, only a few
pixels are available to calculate the pupil position. This low resolution of the pupil
area also reduces the accuracy. With a second method, the eye-tracking camera cap-
tures only a small area, but this area is captured with high resolution. This camera
automatically aligns itself so that the current position of the eye is recorded. As
mentioned in Sect. 4.5.4 a calibration must be performed for the remote eye tracker
to assign the calculated coordinates of the gaze direction to the display area of the
monitor. Unlike eye-tracking HMDs, remote eye trackers often need to be recali-
brated during operation because the user changes their sitting position relative to the
monitor and the eye-tracking camera.

4.6 Further Input Devices

In this section we will consider other input devices that are often used to build VR
systems, in addition to standard PC input devices (such as 2D mouse, keyboard,
microphone or touch monitors).

Fig. 4.23 Basic procedure of an eye-tracking HMD

P. Grimm et al.

143

4.6.1 3D Mouse

One of the simplest input devices is the 3D mouse (see Fig. 4.24). This enables
direct navigation according to the six degrees of freedom as well as interaction via
freely assignable buttons. By shifting the mouse sideways and pushing and pulling
it vertically, a translation in 3D space can be performed; by turning or tilting it, a
corresponding rotation is achieved.

Versions of the 3D mouse differ not only in size but also in the integration of
additional buttons, which are usually freely assignable. The advantage of a 3D
mouse is its high accuracy. Because a 3D mouse is usually placed on a table, it is
more suitable for desktop VR. Sometimes it is also used as a control unit perma-
nently mounted on a column, which limits the user’s working range.

4.6.2 Mechanical Input Devices

Mechanical input devices record the movements of a user via a mechanism (e.g., via
a linkage or cable pulls). The advantage of mechanical input devices is that, on the
one hand that they can be highly accurate, and on the other hand that they are well
suited to provide haptic feedback to the user. The disadvantages are that the user
always has something in his or her hand or has to be connected in some way to the
mechanical input device and that the mechanics may be a disruptive object.
Figure 4.25 shows an example of a mechanical input device where the user holds a
pen in his or her hand. The fact that the user is used to holding pens means that the
use of the device can become part of normal habits, provided that the actual applica-
tion supports this usage scenario.

Mechanical input devices use angle or distance measurements at the joints to
obtain users interactions. The high accuracy is achieved by correspondingly accu-
rate angle measurements, which are usually carried out using gear wheels or gears,
potentiometers, or strain gauges. In some cases, similar measuring methods are used
as in computer mice, which are known to allow high resolution. The latency of
mechanical input devices is low due to the direct measurement. Smooth operation is
particularly important for use (Salisbury and Srinivasan 1997) in order not to be

Fig. 4.24 Different variants of a 3D mouse

4 VR/AR Input Devices and Tracking

144

restricted by the input device and thus to perceive it as disturbing. By integrating
haptic feedback, a mechanical input device becomes an output device at the same
time (see end effector displays in Sect. 5.5).

4.6.3 Treadmills for Virtual Reality

Due to the limited size of a VR system, it is difficult to allow walking or running
around in a virtual environment. In most cases the user reaches the edge of the inter-
action area after a few steps. Accordingly, control techniques for navigation have
established themselves, using different input devices such as VR controllers or a
flystick (see Sect. 4.3.1). In addition, input devices have been developed that allow
walking or a walk-like movement for navigation in virtual worlds. Many approaches
are based on the idea of treadmills on which users move and whose speed is con-
trolled by the VR system. By means of a mechanism for tilting, it is possible to walk
uphill or downhill. The disadvantage of treadmills, which are used in a similar way
in gyms, is that they only allow walking or running in one direction, which is a
significant limitation for use in VR systems.

In recent years, so-called omnidirectional treadmills have been developed
using different approaches. One possibility is to construct the treadmill from
small treadmills that are arranged orthogonally to the main direction. This cre-
ates a surface on which the user can move in all directions. By tracking the user,
the individual treadmills can be controlled so that the user always moves in the
middle of the surface. The CyberWalk Treadmill (Souman et al. 2008) is an

Fig. 4.25 Mechanical input device in pen form with haptic feedback

P. Grimm et al.

145

example of this. Large balls, in which the user moves and which are themselves
supported so that they remain in one place, are another possibility. The problem
with this approach is that the perceived floor for the user is not flat but curved by
the shape of the sphere. This can make walking more difficult. The Cybersphere
(Fernandes et al. 2003) is an example of this type. Other variants are based on
constructing the floor from appropriately arranged castors to allow walking
around. More cost-effective approaches are based on the idea of holding the user
in place by means of a retaining ring and allowing him or her to walk on a smooth
or slippery floor. The Virtuix Omni (see Fig. 4.26) and the Cyberith Virtualizer
are examples of this.

Fig. 4.26 User with VR
glasses on an
omnidirectional treadmill

4 VR/AR Input Devices and Tracking

146

4.7 Summary and Questions

In this chapter you have acquired basic knowledge in the field of tracking and VR/
AR input devices. Starting from the consideration of how many degrees of freedom
an object has, basic terms such as accuracy, repetition rates, latency and calibration
were introduced with respect to their applicability in the fields of VR and
AR. Following the presentation of different tracking techniques for the continuous
determination of 3D data, further input devices were introduced.

Check your understanding of the chapter by answering the following questions:

• Why is high accuracy not sufficient as a requirement for VR/AR input devices?
• Which effects can cause problems during data acquisition?
• What is determined by a tracking system and what are the characteristics of

tracking systems?
• What effects can interfere with a tracking system?
• What problems arise with outdoor tracking in city centers and what alterna-

tives exist?
• Find an application example for hybrid tracking techniques.
• What is the difference between inside-out and outside-in tracking techniques and

what are their advantages and disadvantages?
• What are the advantages of camera-based tracking?
• Why should you actively illuminate the eyes of a user during eye tracking and

what should be considered?
• How many degrees of freedom must be determined for finger tracking?

 Recommended Readings

Bishop G, Allen D, Welch G (2001) Tracking: beyond 15 minutes of thought.
SIGGRAPH 2001, Course 11, http://www.cs.unc.edu/~tracker/media/pdf/
SIGGRAPH2001_CoursePack_11.pdf. Accessed 18 October 2021 – The authors
of this course at SIGGRAPH presented a good overview of the technical funda-
mentals of input devices.

Szeliski R (2011) Computer vision - algorithms and applications, Springer, DOI
https://doi.org/10.1007/978- 1- 84,882- 935- 0. – This book gives a good overview
of the basics of computer vision, which is used for VR and AR.

P. Grimm et al.

http://www.cs.unc.edu/~tracker/media/pdf/SIGGRAPH2001_CoursePack_11.pdf
http://www.cs.unc.edu/~tracker/media/pdf/SIGGRAPH2001_CoursePack_11.pdf
https://doi.org/10.1007/978-1-84,882-935-0

147

References

Abawi FA, Bienwald J, Dörner R (2004) Accuracy in optical tracking with fiducial markers: an
accuracy function for ARToolKit. In: Proceedings of the 3rd IEEE/ACM international sympo-
sium on mixed and augmented reality (ISMAR ‘04). IEEE Computer Society, Washington, DC,
USA, pp 260–261. https://doi.org/10.1109/ISMAR.2004.8

Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188

Bay H, Tuytelaars T, Van Gool L (2006) SURF: speeded up robust features. In: Computer vision–
ECCV 2006. Springer, Berlin Heidelberg, pp 404–417

Berry R, Billinghurst M, Cheok AD, Geiger C, Grimm P, Haller M, Kato H, Leyman R, Paelke V,
Reimann C, Schmalstieg D, Thomas B (2002) The First IEEE international augmented reality
toolkit workshop. IEEE Catalog Number 02EX632

Bishop G, Allen D, Welch G (2001) Tracking: Beyond 15 minutes of thought, SIGGRAPH 2001,
Course 11. http://www.cs.unc.edu/~tracker/media/pdf/SIGGRAPH2001_CoursePack_11.pdf.
Accessed 18 March 2021

Bouzit M, Coiffet P, Burdea G (1993) The LRP Dextrous Hand Master. Proceedings of Virtual
Reality Systems Fall ‘93, New York

Bowman DA, Kruijff E, LaViola JJ, Poupyrev I (2004) 3D-user interfaces: theory and practice.
Addison Wesley Longman Publishing Co., Inc., Redwood City

CyberXR (2021) Cyber-XR Coalition: Immersive technology standards for accessibility, inclu-
sion, ethics and safety. https://www.cyberxr.org, Accessed 18 Mar 2021

DeFanti IA, Sandin DJ (1977) Final report to the National Endowment of the Arts. US NEA
R60–34-163, University of Illinois at Chicago Circle, Chicago, IL

Duchowski A (2007) Eye tracking methodology: theory and practice. Springer, London
Fernandes KJ, Raja V, Eyre J (2003) Cybersphere: The fully immersive spherical projection sys-

tem. Communications of the ACM, 46(9), 141–146. ACM, New York
Fischler MA, Bolles RC (1981) Random sample consensus: A paradigm for model fitting with

applications to image analysis and automated cartography. Communications of the ACM,
24(6), 381–395. ACM, New York

GeoPose (2021) GeoPose Standards Working Group, https://www.ogc.org, Accessed 18 Mar 2021
Ginsberg CM, Maxwell D (1983) Graphical marionette. Proceedings of SIGGRAPH Computer

Graphics 18(1):26–27
Goldstein H (1980) Classical mechanics. Addison-Wesley
Hackenberg G, McCall R, Broll W (2011) Lightweight palm and finger tracking for real-time 3D

gesture control. In Proceedings of IEEE Virtual Reality Symposium 2011 (IEEE VR 2011),
pp. 19–26

Hartley R, Zisserman A (2000) Multiple view geometry in computer vision. Cambridge University
Press, Cambridge

Herling J, Broll W (2011) Markerless tracking for augmented reality. In: Handbook of augmented
reality. Springer, New York, pp 255–272

Herout A, Zacharias M, Dubská M, Havel J (2012) Fractal marker fields: No more scale limitations
for fiduciary markers. In IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), pp. 285–286. IEEE

Hillebrand G, Bauer M, Achatz K, Klinker G (2006) Inverse kinematic infrared optical finger
tracking. 9th International Conference on Humans and Computers (HC 2006). Key 1045432

Hummel J, Wolff R, Dodiya J, Gerndt A, Kuhlen T (2012) Towards interacting with force-sensitive
thin deformable virtual objects. Joint Virtual Reality Conference of ICAT – EGVE – EuroVR,
2012 Eurographics Association, pp. 17–20. https://doi.org/10.2312/EGVE/ JVRC12/017–020

Kato H, Billinghurst M (1999) Marker tracking and HMD calibration for a video-based augmented
reality conferencing system. In 2nd IEEE and ACM International Workshop on Augmented
Reality (IWAR), pp. 85–94. IEEE

4 VR/AR Input Devices and Tracking

https://doi.org/10.1109/ISMAR.2004.8
http://www.cs.unc.edu/~tracker/media/pdf/SIGGRAPH2001_CoursePack_11.pdf
https://www.cyberxr.org
https://www.ogc.org
https://doi.org/10.2312/EGVE/

148

Klein G, Murray D (2007) Parallel tracking and mapping for small AR workspaces. In 6th IEEE
and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234, IEEE

Klomann M, Englert M, Weber K, Grimm P, Jung Y (2018) Improving mobile MR applications
using a cloud-based image segmentation approach with synthetic training data. In Proceedings
of the 23rd International Conference on 3D Web Technology, Web3D 2018, pp. 4:1–4:7. ACM

Köhler J, Pagani A, Stricker D (2010) Detection and identification techniques for markers used in
computer vision visualization of large and unstructured data sets. In Applications in Geospatial
Planning, Modeling and Engineering (IRTG 1131 Workshop)

Kramer J, Leifer L (1989) The talking glove: An expressive and receptive ‘verbal’ communica-
tion aid for the deaf, deaf-blind, and non-vocal. Proceedings of the 3rd Annual Conference on
Computer Technology, Special Education, Rehabilitation. California State University Press,
Northridge

Lee JC (2008) Hacking the Nintendo Wii remote. Pervasive Computing 7(3):39–45. https://doi.
org/10.1109/MPRV.2008.53

Lin J, Wu Y, Huang TS (2000) Modeling the constraints of human hand motion. In Proceedings of
the Workshop on Human Motion (HUMO ‘00), IEEE Computer Society, Washington, DC, USA

Lowe DG (1999) Object recognition from local scale-invariant features. In Proceedings of the
Seventh IEEE International Conference on Computer Vision, Vol. 2, pp. 1150–1157. IEEE

Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis
60(2):91–110

Möhring M, Fröhlich B (2011) Effective manipulation of virtual objects within arm’s reach.
2011 IEEE Virtual Reality Conference, 2011, pp. 131–138. IEEE. https://doi.org/10.1109/
VR.2011.5759451

OpenAR (2021) Open AR Cloud. https://www.openarcloud.org/. Accessed 18 March 2021
Salisbury JK, Srinivasan MA (1997) Phantom-based haptic interaction with virtual objects.

Computer Graphics and Applications. IEEE. https://doi.org/10.1109/MCG.1997.1626171
Schmalstieg D, Höllerer T (2016) Augmented reality: Principles and practice. Pearson
Souman JL, Robuffo Giordano P, Schwaiger M, Frissen I, Thümmel T, Ulbrich H, Bülthoff

HH, Erst MO (2008) Cyberwalk: Enabling unconstrained omnidirectional walking
through virtual environments. ACM Transactions on Applied Perception. https://doi.
org/10.1145/2043603.2043607

Szeliski R (2011) Computer vision - algorithms and applications, Springer. https://doi.
org/10.1007/978-1-84,882-935-0

Zimmerman TG, Lanier J, Blanchard C, Bryson S, Harvill Y (1986) A hand gesture interface
device. Proceedings of SIGCHI Bulletin, 17, SI(May 1987), 189–192

P. Grimm et al.

https://doi.org/10.1109/MPRV.2008.53
https://doi.org/10.1109/MPRV.2008.53
https://doi.org/10.1109/VR.2011.5759451
https://doi.org/10.1109/VR.2011.5759451
https://www.openarcloud.org/
https://doi.org/10.1109/MCG.1997.1626171
https://doi.org/10.1145/2043603.2043607
https://doi.org/10.1145/2043603.2043607
https://doi.org/10.1007/978-1-84,882-935-0
https://doi.org/10.1007/978-1-84,882-935-0

149© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
R. Doerner et al. (eds.), Virtual and Augmented Reality (VR/AR),
https://doi.org/10.1007/978-3-030-79062-2_5

Chapter 5
VR/AR Output Devices

Wolfgang Broll, Paul Grimm, Rigo Herold, Dirk Reiners,
and Carolina Cruz-Neira

Abstract This chapter discusses output devices and technologies for Virtual
Reality (VR) and Augmented Reality (AR). The goal of using output devices is to
enable the user to dive into the virtual world or to perceive the augmented world.
Devices for visual output play a crucial role here, they are of central importance for
the use of VR and AR. First and foremost, Head-Mounted Displays (HMD) must be
mentioned, the different types of which are discussed in detail here. However, VR
also uses different forms of stationary displays, which are another major topic of
this chapter. Finally, output devices for other senses are reviewed, namely acoustic
and haptic outputs.

5.1 Introduction

How can virtual content be transformed into sensory experiences? What possibili-
ties and alternatives exist to address individual senses? Output devices serve to pres-
ent the virtual world to users or to expand the real world by generating appropriate
stimuli. In this chapter, output devices for VR and AR are presented. A VR or AR
system must react to user actions, which are recognized by the use of suitable input
devices (see Chap. 4), and generate a corresponding representation, which in turn
appeals to the senses of the users (see Sect. 2.1). Commercially available output
devices address in particular the visual, acoustic and haptic senses. Here, we will
focus on the visual output of the output devices, because it is of outstanding
importance for VR and AR. Figures 5.1 and 5.2 show two typical representatives of
the most important visual device categories: an HMD and a CAVE-like large

W. Broll (*)
Department of Computer Science and Automation / Department of Economic Science
and Media, Ilmenau University of Technology, Ilmenau, Germany
e-mail: wolfgang.broll@tu-ilmenau.de

Dedicated website for additional material: vr-ar-book.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79062-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-79062-2_5#DOI
mailto:wolfgang.broll@tu-ilmenau.de
http://vr-ar-book.org

150

projection. We will then provide an overview of acoustic output devices and some
haptic output devices used in VR and AR. In addition, there is a multitude of other,
sometimes very special, output devices in the form of prototypes and demonstrators,

Fig. 5.1 Typical consumer HMD with integrated head-tracking and accompanying controllers (©
TU Ilmenau 2019, all rights reserved)

Fig. 5.2 CAVE-like multi-sided projection to visualize a design study (© RWTH Aachen 2013, all
rights reserved)

W. Broll et al.

151

which address further senses. For example, there are olfactory displays, acceleration
simulators based on galvanic-vestibular stimulation and specific solutions such as
the event-controlled generation of wind or the splashing of water, which will not be
considered further here due to their limited popularity so far. Pure motion platforms,
such as those used for driving and flight simulators, or in amusement parks, are also
not discussed here, although one might consider them a large-scale VR out-
put device.

Sect. 5.2 introduces basic aspects of visual output for better understanding of the
following sections. Section 5.3 deals with Head-Mounted Displays (HMDs). This
includes those for VR as well as for AR. Furthermore, part of it deals with the tech-
nical properties of HMDs. In Section 5.4 stationary VR systems are considered.
This also includes multi-sided projections such as CAVEs and tiled displays, and
their technical challenges as well as technologies for stereo presentation. Sections
5.5 and 5.6 deal with audio output and haptic output devices for VR and AR, respec-
tively. The chapter concludes with a short summary, including a list of questions, a
list of recommended literature and the list of references.

5.2 Basics of Visual Output

The basic goal of the visual output is to present the virtual world (in the case of a
VR system) or the augmented world (in the case of an AR system) to users in such
a way that they can perceive it in a similar way to the real world. The term display
is used in the following as an umbrella term for monitors, projection systems (i.e.,
projector with projection surface or canvas) and head-mounted displays (HMDs).
Monitors and projection systems are used in stationary systems. HMDs refer to
displays mounted on the head, which can usually be viewed by both eyes, or some-
times only by one eye. In the following, HMD is used as a generic term for both VR
and AR glasses. Smart glasses, which are also HMDs, but are primarily used to
display information in a small area of the field of view, should be distinguished from
HMDs as they are not suitable for VR or AR.

The classification of visual output devices can be based on different criteria.
Possible criteria include quality, brightness, field of vision or perception, size of the
area of use, uniformity, freedom of movement, usability or location. The following
aspects can thus be used to describe visual VR/AR output devices. Starting with
viewpoint-related aspects, we will look into the technical parameters of such sys-
tems before discussing more user- or usage-oriented aspects.

Visual Field
The visual field is the area that can be perceived by the eyes of a user without mov-
ing the eyes or head. The human visual field is about 214° horizontally (see Fig. 5.3).
Each eye covers an angle of approximately 60° towards the nose and 107° towards
the outside. The area that can be perceived with both eyes, the so-called binocular
cover field, is thus approximately 120° (horizontal). Vertically, the visual field is
generally much smaller (approximately 130°–150°).

5 VR/AR Output Devices

152

Field of View
The field of view (FOV) is the angle of view that can be perceived using a technical
device (e.g., an HMD). It is usually specified separately for horizontal and vertical
angles (see Fig. 5.4); sometimes the diagonal angle of view is also used. When using
the device, the visual field is either reduced to the field of view (e.g., in the case of
HMDs) or the field of view covers only a part of the visual field. Thus, one criterion
for evaluating visual output devices is the size of the field of view. Here, the absolute
size of the display is irrelevant. For example, a smartphone has a very small display
in relation to a large screen as a projection surface. However, if the smartphone is
used in an HMD (see Sect. 5.3.1), the field of view can be much larger than when

Fig. 5.3 Human visual field

Fig. 5.4 Horizontal and vertical field of view (FoV)

W. Broll et al.

153

standing several meters in front of a screen. The size of the field of view has a major
influence on the degree of immersion and thus the sense of presence.

Frame Update Rate
The update rate describes the resolution of an output device in time. The output is
done in discrete time steps and is specified either in Hertz [Hz] or in frames per
second (fps). The repetition rate can be different depending on the sensory channel.

Latency
Each output device needs a certain amount of time to output the transferred data
(e.g., time until the output is refreshed, due to signal propagation delays in cables or
due to the processing of data by algorithms), causing a delay. This is called latency
(see Chap. 7).

Brightness, Luminance and Dynamic Range
Brightness is a subjective measure of the amount of light a user perceives. It is there-
fore only of limited use for the evaluation of displays. For projectors, the luminous
flux (in lumen) is usually specified. However, the resulting impression of the user is
significantly influenced by the size and nature of the canvas. Luminous intensity
describes the luminous flux per solid angle (measured in candela). A better way to
describe the brightness of planar light sources is therefore the luminous intensity in
relation to the area. This describes the luminance (measured in candela per square
meter). Contrast is a measure to differentiate the luminance. The dynamic range
(DR) or contrast ratio describes the ratio between the minimum luminance to the
maximum luminance of a display. For visual output devices, luminance and dynamic
range are crucial for the capabilities of VR and AR applications: if they are too low,
they can only be used in darkened areas (e.g., in a laboratory without direct sun-
light). If they are large enough, they can even be used in daylight.

Ambient Light
The ambient light represents the light in the environment of a user or a display.
Here, this includes all light in the scene except that emanating from the display itself
(i.e., the screen or projector), whether it is sunlight or lamps, directional or non-
directional. A bright ambient light usually leads to reduced brightness of the dis-
play. Even though the luminance of the light source does not change as a result of
this, of course, the perceived amount of light becomes less due to the lower contrast
ratio. This more traditional view of ambient light should not be confused with ambi-
ent lighting in virtual worlds.

Color Reproduction
To evaluate the quality of a display in terms of colors that can be displayed, the CIE
Yxy color system can be used. Figure 5.5 shows this color space. In order to describe
the display colors, a triangle is drawn in the color system, where the vertices cor-
respond to the three basic colors of the display. The triangle includes all colors that
can be displayed (called the gamut of the display).

The gamut always covers only a part of the colors perceived by the human eye,
which are represented by the area enclosed by the curve. Here, the points on the

5 VR/AR Output Devices

154

curve correspond to the wavelengths of light visible to the human eye, e.g., the
wavelength 555 nm corresponds to a bright green color. So you can describe a color
in the color system by xy coordinates. Displays with more than three primary colors
exist, covering a larger part of the visible color spectrum. These are not in common
use though, and therefore will not be discussed further here.

Resolution
A visual display presents content using pixels. The resolution of visual displays is
specified either by specifying the total number of pixels in (mega) pixels (similar to
photos) or by specifying the horizontal and vertical number of pixels separately. The
resolution of output devices is crucial for the details that can be displayed.

Homogeneity
Output devices should reproduce the virtual world or the virtual parts of an aug-
mented world in homogeneous quality independent of position and direction. With
regard to visual output devices, this means that brightness uniformity is maintained
as well as that the image sharpness and color reproduction are of constant quality.

Fig. 5.5 The CIE chromaticity diagram of the colors perceived by humans with the indicated color
space of a display (gamut)

W. Broll et al.

155

Location (in-)Dependence
Depending on their structure, VR/AR systems can be described as stationary, i.e.,
location-bound, or mobile systems. Stationary systems are usually permanently
installed and cannot be used at another location (or only with substantial effort). An
example of a stationary system would be a large multi-sided projection as shown in
Fig. 5.2. Reasons for a stationary use can be, size, weight, dependence on connec-
tions (e.g., power supply), or the overall effort required for installation (e.g., a com-
plex calibration process – see also Sect. 5.4.3). Mobile systems can be used
independent of location. Systems that are used in stationary location, but can in
principle be set up at another location with very little effort are called nomadic sys-
tems. An example would be a VR system consisting of an HMD, two controllers and
a tracking system on tripods.

Personal output devices vs. multi-user output devices
Generally, a distinction can be made between personal output devices that can only be
used by one person (e.g., HMDs or headphones) and multi-user output devices that
can be used by several people at the same time (e.g., projections). However, real multi-
user output devices further require consideration of each user’s individual viewpoint,
which typically is not the case for most projection-based systems, where at most the
viewpoint of a single (tracked) user is considered. Additionally, software can be used
to give multiple personal output devices access to a shared virtual or augmented world
(Collabative Virtual Environment – CVE – or Collaborative Augmented Environment).

Usability
For the application it can be important to what extent users are restricted by the
output devices. For example, it may be necessary to put on glasses or attach an
HMD to the head. It also makes a difference for the application whether the respec-
tive devices are wired or connected via RF technology. The supported room size
also has an influence on whether the user can immerse herself in the application or
whether she must constantly take care not to exceed predetermined interaction
areas. It can also be necessary for the user to always be oriented towards the output
device in order to be able to see something. A detailed examination of usability is
carried out in the context of the consideration of basics from the area of human–
computer interaction in Sect. 6.1. The obtrusiveness of an output device can be seen
as a measure of the extent to which it is considered disturbing. It makes a big differ-
ence whether a head-mounted display can be worn like a pair of sunglasses, or
whether it can be used like a bicycle helmet due to its weight and dimensions.
Ergonomics such as grip or weight distribution can also be critical.

5.3 Head-Mounted Displays (HMDs)

Head-mounted displays (HMDs) are generally understood to be personal displays
that are worn on the head directly in front of the user’s eyes. Depending on their
design and weight, they are worn like glasses or more like a bicycle helmet. HMDs

5 VR/AR Output Devices

156

often have an integrated tracking system or are combined with a tracking system
(see Chap. 4) to continuously adjust the viewing direction and viewing position of
the virtual camera according to the current position and orientation of the
HMD. HMDs usually use binocular optics, so that the user can perceive the contents
stereoscopically. A distinction is made between VR glasses, which isolate the user
from the outside world and thus facilitate immersion in a virtual world, and AR
glasses, which enrich the user’s real environment by adding virtual content.

5.3.1 VR Glasses

This section deals with HMDs for VR applications. Figure 5.6 shows typical con-
sumer VR glasses. VR glasses usually use a closed design so that the user is visually
completely isolated from his environment, only allowing him to see the virtual
world. The field of view here sometimes almost matches the natural visual field.
This may result in complete immersion.

Consumer HMDs are often based on a simple magnifier design. Here, a simple
magnifying optic is used for each eye, allowing the user to focus on the actual dis-
play (see Fig. 5.7). Depending on the individual design, a single display or two
separate displays are used.

In a single display, the eyes see different areas of the same display, allowing
stereo vision. In two separate displays, they are often slightly tilted towards each
other to cover a larger field of view. Through the use of LCD or OLED displays,
which are also used in smartphones, such displays now achieve high resolutions
combined with high luminosity and reasonable prices.

Fig. 5.6 Typical representative of consumer VR glasses with integrated sensors for tracking (©
TU Ilmenau 2019, all rights reserved)

W. Broll et al.

157

Low-cost versions do not have their own display. Instead, a smartphone is used
as the display, which is inserted into an HMD rack. Cardboard displays (see Fig. 5.8)
use only a holder made of cardboard in which two lenses are inserted for the optics.

In contrast, high-end systems may even use multiple displays per eye. See also
Sect. 5.3.4. for such an approach. Besides the simple magnifying glass design, alter-
native designs exist. For example, prism-based VR glasses allow a very compact
design because the prism optics significantly reduce the overall depth (see also
Fig. 5.11). However, commercially available smartphone displays cannot be used
for this purpose. Therefore, displays of this type are not very common for more
recent HMDs.

Fig. 5.7 Simple magnifier principle as typical design of current VR glasses

Fig. 5.8 Simple Cardboard HMD using the magnifying glass principle

5 VR/AR Output Devices

158

The classical design of HMDs often used optics with mirrors. Here, a mirror and
possibly an additional semi-transparent mirror were used to make the virtual con-
tent of the display visible to the eye.

5.3.2 AR Glasses

There are two basic approaches to glasses for Augmented Reality, or AR glasses for
short: optical see-through displays (OST displays) and video see-through displays
(VST displays). While the first type optically superimposes real and virtual images
in the user’s view, the latter type uses video cameras to capture the environment and
then superimpose it with virtual content during rendering (see Chap. 8). In the fol-
lowing sections, we will first take a closer look at OST displays and their construc-
tion methods, before we go on to discuss VST displays in more detail.

Optical AR Glasses
When we talk about AR glasses, we usually mean such OST displays. While the
view of reality is always direct and thus immediate, the virtual contents are only
optically superimposed. Thus, in contrast to VST displays, there are no limitations
in terms of quality and resolution when viewing the real environment. As with VR
glasses, a virtual image is generated by a display and enlarged by a lens. However,
here it is projected into the user’s eye with the help of a beam splitter. A major prob-
lem is that the virtual image is projected at a fixed distance, which may differ from
the distance of real-world content currently focused by the user.

A general problem of OST-HMDs is the insufficient background contrast ratio in
bright environments. Due to the low luminance ratio of the display with respect to
ambient light, virtual content is perceived only faintly, i.e., it appears increasingly
transparent to reality. In practice, the transparency is reduced accordingly in bright
environments to provide the required background contrast ratio for a given front
luminance. The different superimposition methods usually lead to a significant
reduction of the amount of incident light, so that the surrounding reality appears
darkened to the observer. In comparison to viewing without a display, in some cases
only about 25% of the light reaches the eye of the observer. This corresponds
approximately to sunglasses with a medium protection factor (S2). Due to the low
light intensity, most HMDs of this type are not, or are only partially, suitable for
sunlight use, even if the transparency is reduced by means of appropriate filters.
There are a large number of different designs of OST displays, the most important
of which will be briefly explained in the following.

Waveguide Optics Glasses
Strictly speaking, this refers to a whole range of different approaches. These
approaches have in common that the light is fed into a largely planar glass body,
which acts as waveguide optics, and then travels through it as in a fiber optic cable
by being reflected from the outside of the glass body. The decisive factor now is how
the light enters the glass body (coupling-in) and how it exits it (coupling-out).

W. Broll et al.

159

Special optical elements are used for this purpose. These result in the light being
transmitted and radiated in a previously predefined direction. If the light is fed into
the waveguide from the side, there is no need for corresponding elements for cou-
pling- in (see Fig. 5.9). The elements for coupling-out are arranged in such a way
that the light leaves the waveguide at the appropriate point in the direction towards
the eye. In this way HMDs are possible that look more like conventional glasses due
to their flat optics. For a full color display, three layers of light guides must be
arranged one above the other, since the individual color channels must be transmit-
ted separately due to the dependence of the refraction on the wavelength of the light.
Holographic waveguides applying holographic optical elements (HOE) are among
the best known representatives of this approach (see Fig. 5.9). By analogy with
holograms, light beams impinging on the HOEs generate a secondary light beam in
a predefined direction, while the ambient light passes through them without inter-
ference. Other approaches include diffractive, polarized, and reflective waveguides.

For AR displays like the Microsoft Hololens (see Fig. 5.10) or Hololens 2, the
Meta 2 or the display from Daqri, waveguides are used. However, another, mostly
curved glass is often used before the actual light guide for protection and shading.

Prism-Based Glasses
Prism-based glasses, which are also used for VR, enable a relatively high light out-
put with a more compact design when compared to other designs. For use as a see-
through display, the prism is complemented by a glass body with parallel outer
surfaces, so that the ambient light can pass through the glass without being refracted
(see Fig. 5.11).

Fig. 5.9 Schematic principle of operation of an OST display based on waveguides (here applying
holographic optical elements)

5 VR/AR Output Devices

160

The best known representative of this type of display so far has been Google
Glass, although as a so-called SmartGlass it was not really suitable for AR applica-
tions due to its small field of view.

Mirror-Based Glasses
The use of semi-transparent mirrors has been the preferred design for OST displays
for a long time. The content was displayed on an LCD or OLED display and was
magnified by means of magnifying optics located directly beneath or above the
display. The classic approach used to apply two semi-transparent mirrors, one
mounted vertically at the front and a second mirror at a 45° angle right behind it
towards the eye. Thus, the ambient light simply passed both mirrors, while the light

Fig. 5.11 Schematic principle of a prism-based OST display consisting of two glass bodies. The
complement is shown as a dashed line

Fig. 5.10 HMD with clearly visible waveguides for the individual color channels (see magnifica-
tion) (© TU Ilmenau 2019, all rights reserved)

W. Broll et al.

161

from the display was reflected by the diagonal mirror towards the front face, then
reflected back towards the eye, passing the diagonal mirror (see Fig. 5.12). A sim-
pler approach would use just a single semi-transparent mirror (with the back mirror
flipped by 90°). While this also allows for better light output, it requires stronger
magnification, which typically results in less compact HMDs.

More recently, mirror-based approaches have regained popularity, as they enable
the realization of a simple OST display using a smartphone. The smartphone is usu-
ally inserted vertically into a holder in the area in front of the user’s forehead. A
mirror reflects the image downwards into the area in front of the eyes. Here, there is
usually also an optical system in the form of one magnifying lens for each eye.
There are also models without lenses, but as the eyes then have to focus on the
smartphone display, they do not allow for a relaxed viewing position of the virtual
image in space. In the area in front of the eyes there is a diagonally aligned semi-
transparent mirror, which on the one hand reflects the image of the display towards
the eyes and on the other hand allows a view of the environment. In cheap models a
perspex panel is used for this purpose. There are also versions where the upper mir-
ror is omitted so that the smartphone is inserted horizontally. Similar models, but
without a semi-transparent mirror, use the smartphone camera to realize VST AR
glasses.

Retinal Glasses
Retinal HMDs do not have a display in the actual sense, since the content is pro-
jected directly onto the retina (see Fig. 5.13). This is also called a virtual display.
This approach offers two major advantages: on the one hand, a complex optical
system is avoided, and on the other hand, despite an extremely compact design, very
large fields of view can be generated because no optics in front of the eye have to
cover the displayed field of view. Modulated laser light is used as the light source,
which is directed into the eye via a semitransparent mirror or prism. Until now, only
monochromatic OST glasses of this type have been commercially available. For a
full color display three separate lasers (RGB) would be necessary.

Fig. 5.12 Schematic structure of a classic mirror-based OST display

5 VR/AR Output Devices

162

An alternative design approach replaces the laser projector by an RGB light
source and the mirror by a DLP (Digital Light Projector) microdisplay.

Video AR Glasses
Video AR glasses, more precisely Video See Through (VST) displays are basically
HMDs as they are used for VR (see Sect. 5.3.1). This means that the user is com-
pletely isolated from the environment, at least when the device is completely closed.
In contrast to their use for VR, however, a video image of reality is inserted in such
a way that the user has the impression that she can look at the world around her
through glasses. For this purpose one or two video cameras are attached to the HMD
or are directly integrated into it (see Fig. 5.15).

Fig. 5.13 Schematic principle of a retinal virtual OST display (here with mirror)

Fig. 5.14 Optical principle of recent HMDs with integrated cameras. Since the cameras are
mounted right in front of the eyes, their point of view is almost identical

W. Broll et al.

163

Since the human eye only sees the information projected by the display, the real
and virtual content are always in the same focusing plane. Thus, those parts of the
real world that are not in focus for the camera cannot be focused by the user either.
Furthermore, the perception of the real world is in a reduced resolution and has
limited dynamic range due to the camera as well as the display used, when com-
pared to the direct view by the human eye.

The captured video image is correctly inserted as a background image when
rendering the scene. Basically, the field of view of the camera must be larger than
that of the HMD used. In most cases, it is not possible to position the video cameras
directly in the area of the beam path in front of the eyes. Therefore, when correcting
the perspective of the camera image, translational and/or rotational offsets often
have to be deducted in addition to the rectification and restriction of the viewing
angle. Without this, the user will have difficulty in estimating distances, and propor-
tions correctly (at least temporarily until his visual system has adapted). HMDs in
which the lens of the camera is positioned directly in front of the eye in the direction
of vision, or the light rays arriving there are deflected into the camera, avoid this
problem (see Figs. 5.14 and 5.16).

5.3.3 General Characteristics and Properties of HMDs

In this subsection some basic characteristics and properties of HMDs will be
reviewed and discussed. Depending on the type of application planned, these can
sometimes be decisive for the selection of an HMD to be used.

As already introduced in Sect. 5.3.1 the basic optical principle of VR glasses is
that of a magnifying glass. Let us have closer look at its general characterics accord-
ing to Melzer and Moffitt (1997). The display, which the user looks at through the
lens, is positioned at the distance of the focal length to the lens (see Fig. 5.17).

Fig. 5.15 Example of an
HMD with integrated
cameras

5 VR/AR Output Devices

164

Pupil Forming Vs. Non-pupil Forming HMDs
On the optical side, there are two basic approaches to realize an HMD. On the one
hand, non-pupil forming HMDs are used, which are based on the principle of a
simple magnifying glass. On the other hand, we have pupil forming HMDs, which
are based on a projection (Cakmakci and Rolland 2006). An important parameter,
which refers to the use of the HMD and is specified for non-pupil forming HMDs,
is the so-called eye motion box (sometimes also called the head motion box or just
eyebox) in its vertical and horizontal dimensions. This is the size of the optical
opening of the HMD on the eye side. The larger the eye motion box, the further the
position of the HMD can be shifted in relation to the user’s eye without restricting
the visibility of the virtually projected image. In pupil forming systems, however, a
diameter is specified at the optical output of the HMD within which the viewer can
see the virtual image. This parameter is called the exit pupil. In contrast to the eye
motion box, this diameter remains constant regardless of the distance between the
user’s eye and the HMD optics.

Field of View (FoV)
Based on the optics shown in Fig. 5.17, the field of view can be calculated for the
horizontal, vertical and diagonal by eq. 5.1, where F represents the focal length of
the lens and S is the size of the display horizontally, vertically or diagonally,
respectively.

FoV

S

F
=

2

2
arctan

(5.1)

Theoretically, the FoV calculated according to eq. 5.1 is independent of the
diameter of the lens D. In practice, however, there is the problem that at a higher
distance between the eye and the magnifying lens (the so-called eye relief L) not all
light rays of the display can reach the eye via the lens. In this case, for technical

Fig. 5.16 Schematic principle of a prism-based video see-through display with cameras for
recording in the viewing direction

W. Broll et al.

165

reasons, the lens diameter and the eye relief according to eq. 5.2 determine the
maximum possible field of view.

FoV

D

Lmax arctan=

2

2
(5.2)

Eq. 5.2 is valid for D < L (S/F). HMDs, which optically follow the simple mag-
nifying principle, have an eye motion box E instead of an exit pupil. The size of the
eye motion box for the horizontal, vertical and diagonal direction can be determined
according to Eq. 5.3 (Melzer and Moffitt 1997).

E D

L S

F
= −

(5.3)

Accomodation Distance
The accommodation distance indicates the distance from the user’s eye at which the
virtual image appears. Most optical see-through HMDs have a virtual image at
infinity. For a simple HMD using the magnifying glass principle, the relation
between the lens position and the distance of the virtual image Dvirt can be described
by eq. 5.4:

D

d F

F d
Lvirt = −

+

(5.4)

Here the parameter d is the distance between the lens and the display. If the dis-
play is within the focal length of the lens, as shown in Fig. 5.18, the denominator in

Fig. 5.17 Optical principle of VR glasses, where F represents the focal length, S the size of the
display, D the diameter of the lens, E the eye motion box and L the eye relief

5 VR/AR Output Devices

166

eq. 5.4 becomes zero and the virtual image is at infinity. If d is smaller than F, the
virtual image is projected enlarged. This means that the projection is larger than the
illuminated area of the display. If d is larger than F, the virtual image is projected
scaled down.

Interpupilary Distance (IPD)
The interpupillary distance (IPD) is the distance between the two eyes of an observer.
It is usually measured from pupil to pupil and in the range of 6 to 8 cm for an adult.
Many, though not all, HMDs allow the eye distance to be adjusted to suit the indi-
vidual user. Otherwise, especially in combination with a small eye motion box,
parts of the displayed image may be cut off. The eye distance also has a direct influ-
ence on the perception of sizes and distances of the virtual content (see Chap. 2).

Monocular vs. binocular HMDs.
With HMDs, one can basically distinguish between monocular and binocular vari-
ants. Monocular HMDs have only one display with associated optics for one eye,
while the other eye usually remains free. While this can be useful for certain AR
applications, it drastically reduces immersion in VR. Binocular HMDs have sepa-
rate optics for each eye, allowing different content to be viewed. Only this enables
stereoscopic perception and thus a spatial impression. In contrast to binocular dis-
plays, there are also biocular displays in which both eyes look at the same image
through separate optics. However, this does not allow stereoscopic perception. If
both eyes look at different areas of one and the same display via separate optics
(e.g., in smartphone-based HMDs), they usually see different images nevertheless.

Fig. 5.18 Field of view of an HMD compared to the user’s visual field when using binocular
AR-glasses in a closed design

W. Broll et al.

167

Open Vs. Closed HMDs
The design of an HMD also affects the perception of the virtual environment (for
VR) or the augmented environment (for AR). Basically, one can distinguish between
open and closed designs of HMDs. While the closed design limits the visual field of
the observer to the field of view of the HMD, the open design allows unrestricted
perception of the environment outside the display. Figure 5.18 illustrates an HMD
of closed design using OST AR-glasses as an example.

The illustration clearly shows how much the visual field of the observer is
restricted by the field of view of the HMD. Stereoscopic vision is only possible in
the area where the fields of view of the display for left and right eyes overlap. This
is called the stereoscopic or binocular field of view. Its size in VR glasses depends
on the distance at which the display appears to the viewer due to the optics. It can
therefore vary between 0 and 100% of the individual fields of view.

Small fields of view are problematic for several reasons. With VR glasses as well
as with closed AR glasses they lead to tunnel vision and thus to increased cybersick-
ness due to the lack of peripheral perception. An additional complication is that
closed AR-glasses shield the viewer from the perception of a large part of his real
environment. This is particularly problematic when used in unprotected areas (such
as mostly outdoors), since the perception of stairs, cars, bicyclists, etc. occurs much
later than normal.

Monocular HMDs, i.e., those that only superimpose the vision of one eye, allow
an unrestricted view of the surroundings, at least with the other eye. In the field of
working environments and military application scenarios, such designs (see
Fig. 5.19) are therefore strongly represented, whereby a largely open design is usu-
ally used here, so that only the display mounting causes a certain restriction of the
visual field.

Fig. 5.19 Field of view and visual field for a monocular display (right) in a closed design

5 VR/AR Output Devices

168

HMDs in an open design enable users to directly perceive the environment out-
side the HMD’s field of view. Thus, the peripheral vision of the user is not restricted,
although virtual content remains limited to the area of the HMD’s field of view (see
Fig. 5.20). With open AR glasses, it can be disturbing that the area covered by the
HMD usually appears significantly darker than the part that is not covered.
Furthermore, the limited field of view in comparison to the field of vision causes the
problem that virtual objects leaving the field of view of the AR glasses, are only
partially displayed at its edges, while the real background remains continuously vis-
ible (cf. Figure 5.21). This effect immediately destroys the viewer’s impression of a
correct registration of the corresponding virtual object in the real world (see frame
cancellation, Chap. 2).

Contrast Ratio
As we have previously learned, the dynamic range or contrast ratio CR is the ratio
between the brightest and darkest representation. For VR glasses, this is the ratio
between the luminance of a maximally bright pixel and a completely dark pixel:

CR

L

L
= max

min
(5.5)

For OST-AR glasses (see Sect. 5.3.2), however, the contrast ratio between the
luminance of the display (the so-called front luminance) and the background of the
real environment is of particular interest. The contrast ratio of the background CRback
is thus the ratio of the front luminance Lfront minus the background luminance Lback
to the background luminance:

Fig. 5.20 Fields of vision of a binocular HMD with an open design

W. Broll et al.

169

CR

L L

Lback
back=

−front

back
(5.6)

When using OST-AR glasses outdoors, especially in bright sunshine (e.g., on an
unclouded day), the brightness of the projected image must be correspondingly high
so that the virtual content stands out sufficiently from the background (see also Sect.
8.1.2). Indoors, on the other hand, for example, AR-supported assembly work in a
factory building, a significantly lower front luminance may be sufficient to provide
the same contrast ratio with respect to the surroundings. With OST-AR glasses, the
see-through transparency Tsee-through indicates how bright the user can perceive the
real environment or by how much the brightness of the environment is reduced by
the HMD, similar to sunglasses.

Distortion
Due to the highly distorting simple magnifying optics used especially in recent
consumer VR glasses, the displayed images must be pre-processed (see Fig. 5.22).
This is done by applying an appropriately parameterized equirectangular function to
the images with the aim of providing the user with an undistorted image after being
distorted by the lens. For this purpose, manufacturers often provide corresponding
distortion maps.

Fig. 5.21 Problems with the display of virtual objects at the boundaries of the field of view with
an open design

5 VR/AR Output Devices

170

In order to be able to judge the image quality of the virtually projected image, the
horizontal, vertical and diagonal distortions of the virtual image in relation to the
original image are compared. Distortions occur if the virtual image does not have
the same projection scale in every area. Distortions become noticeable, for example,
when the virtual image has the outer shape of a cushion.

5.3.4 Special HMDs

Eye Tracking for VR and AR Glasses
With the availability of VR glasses for the consumer sector, a need to capture where
the user is looking in virtual worlds quickly arose. This information can be used for
investigations of user behavior in user tests as well as for the fixation of virtual
objects for selection and manipulation. A further application area is Foveated
Rendering (see Sect. 7.1.4), in which different display areas are shown in different
detail depending on the retinal area on which they are perceived. While a rigid divi-
sion of the field of view can lead to disturbing effects when focusing on peripheral
areas, in combination with eye-tracking it can be ensured that the rendering always
takes place in the center of the current viewing direction at the highest quality.

On the one hand, various commercial eye-tracking systems are now available for
direct installation in consumer VR glasses. On the other hand, HMDs are increas-
ingly being delivered directly with integrated eye-tracking for user interaction.
Examples are the Hololens 2, the Magic Leap One (see Fig. 5.23) or the HTC Vive
Pro Eye. Commercial systems are usually based on the fact that for each eye several
infrared LEDs are arranged mostly in a ring around the HMD’s optics. The positions
of the reflections of the LEDs are then recorded by a camera, which is also mounted
directly next to the HMD’s optics. Based on the points identified in the camera
image, the direction of vision of the eye can then be calculated (see also Sect. 4.5.5).

Fig. 5.22 Display of the two partial images for the left and right eyes of the viewer (left without,
right with perspective predistortion for HMD)

W. Broll et al.

171

Multi-Display Glasses
Some high-end systems, like the Varjo glasses, combine multiple displays to achieve
very high perceived resolutions (Lang, 2018). The basic idea is to combine a regu-
lar, large field-of-view display with a much smaller foveal display that only covers
the center of the field-of-view (the fovea). The approach extends Foveated Rendering
to the usage of high-res foveal displays. The perceived quality is significantly better
than one display systems, but the additional effort in design and production results
in significantly higher prices. One approach to realize this is the application of a
semi-transparent mirror in combination with eye-tracking (see Fig. 5.24).

Adaptive HMDs
All currently commercially available HMDs have the problem that due to static
optical elements the virtual image always has a fixed distance to the eyes of the user.
However, the distances of the real objects the user is looking at vary. Since the
human eye cannot focus on different distances at the same time, one of them is usu-
ally out of focus. One possible solution is an adaptive HMD (Herold et al. 2015).
Such adaptive HMDs are based on a liquid lens, which makes it possible to adjust
the focal length and thus also the distance of the virtual image to the user.

Fig. 5.23 Optical
see-through AR glasses
with integrated eye
tracking (© W. Broll, all
rights reserved)

5 VR/AR Output Devices

172

Fig. 5.24 Multi-display system supporting foveated rendering

W. Broll et al.

173

5.4 Stationary VR Systems

Stationary VR systems use one or more mostly vertically oriented (i.e., standing
upright) displays (projection screens or large monitors) for visual output. Depending
on the type of system, alternatively or additionally horizontally oriented projection
surfaces or monitors or even spherical projection surfaces are used. The output is
usually stereoscopic. For the correct calculation of perspective, the user’s head is
usually tracked. The necessity is easily recognized by the following example: if the
user bends to the right or left to look past a virtually represented column, the virtual
world must be displayed accordingly. This requires an individual calculation of the
images shown on the displays from the user’s perspective. This is also the reason
why even stationary VR systems are still single-user systems almost without excep-
tion (and despite the fact that they are often used by several users in parallel). The
one exception is new systems that use extremely high-speed projectors that can
display a sufficient number of images per second (a typical example would be 360
fps) to display separate stereo pairs for multiple users.

In principle, AR systems can also be stationary. In particular, spatial AR systems
such as projection-based AR are usually stationary. While most of the technical
aspects discussed here also apply to them, they are dealt with in Sect. 8.4.

5.4.1 Single-Sided Displays

Many stationary VR systems are simple single-sided displays, i.e., a single projec-
tion surface as large as possible is used on which the virtual world is displayed ste-
reoscopically. In the simplest case this can also be just a large monitor.

It is crucial for a high level of user immersion that the display’s field of view
covers as much of the user’s visual field as possible. The larger the field of view
(FOV), the less often a virtual object from the user’s perspective will reach the edge
of the display, destroying the spatial (stereoscopic) impression by frame cancella-
tion (see Sect. 2.4.3). This means that the smaller a display area is, the closer the
user has to be in front of it, or the larger the display area, the further away the user
can be (cf. Figure 5.25).

Vertical and Horizontal Displays
Single-sided displays are usually oriented vertically (upright) so that the user(s) can
stand or sit in front of the display, comparable to a 3D cinema. Depending on the
application, however, horizontal (lying/tabletop/floor) displays are also useful (as
an example see Responsive Workbench; Krüger and Fröhlich (1994)). In tabletop
systems, virtual objects usually appear to lie on the table or hover above it. Users
have to stand very close to the display to avoid frame cancellation.

Both single-sided vertically and horizontally arranged displays can be used to view
virtual content with multiple users at the same time (see Fig. 5.26). Usually, however,
a perspective correct stereo view is only generated for one user. All other users see

5 VR/AR Output Devices

174

virtual content stereoscopically, but in a different position. For an interaction with
virtual objects in particular, perspective correct stereo presentation is essential.

Front and Rear Projections
If no monitors but projection systems are used for a display, the projector can basi-
cally illuminate the projection surface (screen) from the user’s side or from the side
opposite to the user. If the projection is made from the same side from which the

Fig. 5.25 Dependence of the field of view on the size and distance of the display or projec-
tion surface

Fig. 5.26 Vertically and horizontally arranged single-sided displays and projections

W. Broll et al.

175

user looks at the projection surface, this is called front projection. If, on the other
hand, the projection is made from the opposite side, i.e., the rear side, it is called
rear projection. With front projections, the user must maintain sufficient distance
from the projection surface to avoid obstructing the beam path of the projector. The
shadows cast on the projection surface can also lead to frame cancellation.

However, if the user has to maintain a greater distance from the display, this inevi-
tably leads to a restriction of her interaction space (see Fig. 5.27) and at the same time
increases the risk of frame cancellation. With rear projection systems, these disadvan-
tages are generally avoided, but a correspondingly larger space is required for the
beam path of the projector behind the projection surface. Furthermore, specific, usu-
ally more costly, canvases must be used for rear projection. By employing mirrors in
combination with ultra wide angle projector lenses or ultra short throw (UST) projec-
tors, the space required for both front and rear projections can be significantly
reduced, whereby front projections also benefit from an increased interaction space.

5.4.2 Multi-Sided Displays

With a single flat display, it is difficult if not impossible to achieve complete cover-
age of the user’s visual field by the field of view and thus a high degree of immer-
sion. Accordingly, there are numerous approaches that combine several display
surfaces or realize curved display surfaces. Well-known representatives of the first
group are so-called CAVEs (Cave Automatic Virtual Environments) and L-Shapes;
the second group particularly includes spherical displays.

Fig. 5.27 While front projections limit the interaction space of the user, rear projections require
considerably more space. Usage of mirrors or ultra short throw projectors can significantly reduce
space requirements

5 VR/AR Output Devices

176

L-Shapes
An L-shape uses two displays. One display is usually mounted vertically, while the
second display is usually placed horizontally and has an edge directly adjacent to
the first display (in side view, the two displays placed next to each other thus resem-
ble the letter L; hence the name). L-Shapes offer the great advantage over single-
sided displays, especially in stereoscopic presentation, that the volume for displaying
virtual content is significantly larger. Thus, virtual objects can be displayed up to the
immediate vicinity of the user, e.g., for hand-based interactions. Frame cancella-
tion, which often occurs in the lower part of a vertically arranged display in single-
sided displays, is thus effectively prevented by the second horizontally arranged
display (see Fig. 5.28). Similarly, in the case of primarily horizontal displays (e.g.,
Responsive Workbench; Krüger and Fröhlich (1994)), a second vertically arranged
display prevents frame cancellation when viewing virtual objects close to the oppo-
site side of the horizontal display.

For larger L-shapes it may be necessary for the user to stand on the horizontal
display. If this is a monitor or panel, the challenge is that the display must not only
have sufficient optical properties but also sufficient static stability to reliably sup-
port one or even several users.

Spherical Displays
Spherical displays or curved screens (also known as dome projection when covering
360°) consist of a curved screen on which the image is usually displayed with the
aid of several projectors (see Fig. 5.29). The projection surface has the shape of a
sphere, a cylinder or a cone, or a cutout of these basic shapes. The projector image
must be distorted according to the shape of the projection surface. If several projec-
tors are used (see also the next section on tiled displays), their images cannot be
projected without any overlapping. The overlapping image areas must therefore
always be adjusted accordingly, i.e., masked by software or physical barriers, mak-
ing these transitions appear seamless to the user.

Cave
A CAVE (Cave Automatic Virtual Environment) is a cube-shaped arrangement of
displays with the user standing inside the cube (Cruz-Neira et al. 1992). Figures 5.2
and 5.29 show two installations of CAVE-like displays. Depending on how many
sides of the cube are designed as displays, we speak of three- to six-sided CAVEs.

Fig. 5.28 L-shapes expand the working space available for stereo vision and reduce frame
cancellation

W. Broll et al.

177

In a six-sided CAVE the user is completely surrounded by the virtual world. In this
case, only rear projections can be used, which not only requires a sufficiently large
space behind each of the projection surfaces, but also, due to the ceiling and floor
projections, equally large space above and below the CAVE (see Fig. 5.30). If a
projection from above is used for the floor, this first implies that a ceiling projection
is no longer possible and second that the users are right in the beam path of the
projector. However, such floor shadows are often perceived as less disturbing, since
users are used to casting a shadow on the floor in reality. Also, stereoscopic repre-
sentation is sometimes omitted for floor projection. For stereoscopic representation,
CAVEs mostly use active methods, i.e., shutter glasses (see Sect. 5.4.4). Case study
9.7 describes some of the challenges involved in the construction of a CAVE.

An advantage of a CAVE is that the user can move around in it as in reality (at
least within the limits given by the surrounding projection surfaces). Another advan-
tage of the CAVE compared to VR glasses is the self-perception of the user’s own
body. A fundamental problem of CAVEs is that the representation can generally
only be calculated correctly only for the position of a single user based on their
point of view. For all other users inside a CAVE, this results in a disturbing offset at
the boundaries between the projection surfaces (i.e., the edges of the cube). In the
best case, this will only lead to frame cancellation if parts of a virtual object extend
over several projection surfaces. For many of these users, however, this increases
the probability of developing symptoms of cybersickness (see also Sect. 2.4.7). One
way to overcome this limitation is to use high-framerate projectors and custom ste-
reo glasses (see also Sect. 5.4.4). In this configuration the projectors can display
enough images for multiple (typically two or three) users to provide each user with
their own pair of stereo images, in combination with tracking everybody’s head

Fig. 5.29 Example of a curved screen projection. (© Fraunhofer IFF 2013. All rights reserved)

5 VR/AR Output Devices

178

resulting in the correct depth perception for each user. As of today, no CAVEs using
these projectors have been built, but several are under construction.

5.4.3 Tiled Displays

Stationary VR systems often use displays that are as large as possible. The reasons
for this are on the one hand that a large display offers a larger field of view at the
same distance from the user and thus results in higher immersion, while on the other
hand a larger number of users are able to use such a system at the same time. Since
the resolution and brightness of projectors as well as the resolution and size of
monitors cannot be increased at will, the size that can be achieved with a single
display of a certain quality are limited.

To increase the resolution or to realize large projection and monitor surfaces with
high resolution and/or high luminous intensity, a division into several displays (i.e.,

Fig. 5.30 Layout of a six-sided CAVE

W. Broll et al.

179

several projection systems or monitors) appears reasonable. We refer to this as tiled
displays.

The main idea here is to combine several display systems in such a way that the
user perceives them as a single, larger system. The idea as such is not new and has
been used for a long time in military flight simulators (here to completely cover a
dome projection) or for so-called video walls. With this approach, the limitations of
a single display can be bypassed to achieve larger sizes and/or higher resolutions.

As the number of individual tiles usually quickly exceeds the number of outputs
of a graphics card, tiled display systems usually use a cluster of computers to calcu-
late the output images. Generally, the fewer tiles a computer has to serve, the higher
the performance can be. Conversely, the synchronization effort increases with the
number of computers used.

Tiled displays can occur with both projection systems and monitors. Both
approaches are presented in more detail in the following. Also, tiled displays always
have to be calibrated to create the impression of a single display surface. Basic cali-
bration methods for geometric calibration and for achieving brightness and color
uniformity are therefore also briefly discussed in the following sections. Various
approaches to specific setups exist, e.g., Bajestani (2019) and Okatani and
Deguchi (2009).

Tiled Projections
Figure 5.31 shows the C6, a six-sided CAVE built at Iowa State University in 2006
using tiled projections. It was built using 24 projectors with 4096 × 2160 pixels
each. A 2 × 2 raster per side with two projectors per tile is used for the stereo dis-
play, which combined can display a stereo image with over 100 million pixels. Each

Fig. 5.31 CAVE C6 at the Iowa State University

5 VR/AR Output Devices

180

individual pixel is only 0.7 mm in size, a size that is close to the resolution of the
human eye at typical viewing distances of 1–5 m.

Instead of fewer very high-resolution and light-intensive projectors, smaller tiles
can be used with a correspondingly higher number of projectors, but with lower
resolution and light intensity. An early example of such an approach was the
HEyeWall shown in Fig. 5.32, a system with 48 standard projectors installed at
Fraunhofer IGD in Darmstadt in 2003. Figure 5.33 shows the view behind the
screen so that the arrangement of the projectors is visible as a 6 × 4 grid with two
projectors per tile.

Tiled Monitors
Tiled displays consisting of monitors can also be used to realize large display areas
with a high resolution. Compared to projectors, monitors have a significantly lower
price per pixel and, due to their small installation depth, allow high-resolution sys-
tems, even if there is significantly less space available. Figure 5.34 shows the Reality
Deck at Stony Brook University, which was built in 2012. The system used 416
standard monitors, each with 2560 × 1440 pixels, so together the whole system can
display 1.5 billion pixels simultaneously. As shown by the figure, it is important that
the individual monitors have a seamless display. Otherwise, the impression is
quickly created that the user is looking through a grid at the virtual world. With
stereoscopic displays, a gap between the monitors, which is clearly perceived by the
user, very quickly results in frame cancellation. Tiled monitors are suitable for
single- sided display surfaces as well as for CAVEs, L-shapes and cylindrical spheri-
cal VR systems.

The tile approach is very well suited to overcoming the limitations of individual
display systems in terms of resolution, brightness or price. But while the basic idea

Fig. 5.32 Tiled wall using the example of the HEyeWall with 48 projectors. (© Fraunhofer IGD
2013, all rights reserved)

W. Broll et al.

181

Fig. 5.33 HEyeWall setup. (© Fraunhofer IGD 2013, all rights reserved)

Fig. 5.34 Tiled wall of monitors illustrated by the Reality Deck at Stony Brook University

5 VR/AR Output Devices

182

is very simple, the details require a lot of effort. As a result, the use of tile systems
for high-quality applications is either limited or relatively costly. In particular, the
calibration of the different display tiles in terms of geometric alignment as well as
homogeneity and color representation can very quickly become a significant time
and cost factor that is quickly overlooked, or at least underestimated. However, if
the method is applied correctly and carefully, extremely impressive display systems
can be developed, showing where the journey into virtual worlds may lead.

Geometric Calibration
As soon as several individual displays are to be tiled, geometric consistency is no
longer automatically given. A horizontal line that is one pixel wide and runs across
all display tiles is not automatically at the same height on each tile. This continuity
must be explicitly established.

Under favorable conditions the geometric calibration can be solved purely
mechanically. For this purpose, a fixture is used that allows exact mechanical posi-
tioning and orientation of the individual display tiles. This requires accuracies in the
sub-millimeter range, corresponding to the pixel sizes for high-resolution displays.
Obtaining this mechanical accuracy over a large display such as a HEyeWall is a
considerable amount of work, which can cancel out a significant part of the price
advantage due to installation costs.

This task is further complicated by the inherent assumption that the display tile
is geometrically correct in itself. In a conference room it is virtually impossible to
see whether the center of the projection is a few pixels higher or lower than the
edges, or whether the left edge is a few millimeters larger than the right edge. When
several projections are put together, such inaccuracies quickly become obvious. A
purely geometric-mechanical calibration cannot always correct such errors, since
many variables, such as image border size, squareness and line straightness, depend
on each other and cannot be changed independently.

This is especially important if the projection is to be made on an uneven surface
(e.g., for spherical displays). A mechanical correction is no longer possible here.
The alternative is a correction in the image creation software. There are different
approaches possible. The most common is the texture distortion method, in which
the image to be displayed is first rendered into a texture and this texture is then dis-
played on a grid that corrects the geometric inaccuracies of the display. This method
is extremely flexible and can correct a wide range of geometric problems. However,
it also has some disadvantages. First, the correction must be done within the image
creation software, i.e., only software that has knowledge about the display can be
used. On the other hand, it involves a (slightly) increased rendering effort, since the
image must first be rendered into a texture and then displayed. In many modern
systems, however, this is done anyway to produce high-quality images (e.g., in High
Dynamic Range Rendering), which is even possible without reducing the refresh
rate. Due to the fact that the image is displayed using a texture, however, texture
filtering must also be performed, which may result in a certain degree of inaccuracy
and image blur.

W. Broll et al.

183

The biggest challenge, however, is to create an appropriate correction grid. For
small systems this can be done manually (and especially in flight simulators this is
not uncommon). For larger systems, however, the effort quickly becomes unreason-
ably high. In such cases, image processing methods that automatically generate
corresponding correction grids from test images can help. Nevertheless, this is not a
trivial problem and corresponding calibration systems are a price factor that (again)
should not be underestimated.

After all these steps the system is now geometrically correct. Straight lines are
straight, objects of the same size on all tiles are the same size, etc. Nevertheless,
there remain other problems that have to be solved to get a uniform display.

Brightness and Color Uniformity
Besides geometrical problems, projectors also have problems with the uniformity of
their brightness distribution. These stem from the geometric properties of the light
source-lens-screen system, such as vignetting, where the image becomes darker
towards the edges. With a single projector, this effect is much less noticeable, since
there is no comparison image past the edge of the screen. However, if several tiles
are arranged next to each other, the bright-dark-bright transition becomes much
more visible. Vignetting is only caused by the projector and lens: it is independent
of the viewer’s point of view.

Vignetting already occurs with a single projector. When several projectors are
used together, production variations in the projectors and especially in the lamps are
added. Two identical projectors placed next to each other with the same settings do
not necessarily have to be equally bright (and they usually are not). To achieve the
impression of uniform brightness, each projector must therefore be individually
adjusted. While this is possible using the naked eye, it will not give very accurate
results, because the eye can adapt very quickly to different brightness levels. Good
results can only be achieved with special light meters.

Another brightness effect comes from the properties of the canvas. Most screens
for projections are not perfectly diffuse, i.e., light coming from behind is not emit-
ted uniformly in all directions (see Fig. 5.35). Almost all commercially used screens
have a gain factor that ensures that more light is emitted to the front than to the sides.

Since the viewer of a normal projection practically never looks very oblique
from the side, this arrangement makes sense, because more light reaches the viewer.
In the case of tiled projections, however, this ensures that in the transition area
between two tiles there are very clear differences in brightness, even if both projec-
tors emit exactly the same amount of light. In Fig. 5.35, the viewer looks directly
into the left projector and therefore sees an area of the screen with high gain. The
area of the right projector is seen at a much larger angle and therefore in an area of
the canvas with low gain. Thus, at the point where the projection areas meet, a clear
difference in brightness becomes visible. To make matters worse, this difference is
dependent on the angle of viewing: when the viewer moves in front of the screen,
one area becomes brighter while the other becomes darker. This makes a uniform
image impression practically impossible, the only solution is to use extremely dif-
fuse canvases, which then result in a rather dark projection.

5 VR/AR Output Devices

184

The transition area between tiles is also critical for another aspect, that of over-
lapping. There are two alternatives for creating the transition between two tiles:
either without overlap (hard edge) or with overlap (soft edge or blending). With hard
edge, the projectors are arranged in such a way that the transition from one projector
to the next is hard: the last pixel of one projector is immediately followed by the first
pixel of the other projector. To make this possible, all components of the system
(projectors, projector mounts, canvas, etc.) must be extremely stable. Even the
slightest movement in the sub-millimeter range can cause a gap to appear between
the two projections, which is clearly visible as a black line, or the projectors can
overlap and the result can be seen as a bright line in the image. The HEyeWall
(Figs. 5.32 and 5.33) was a hard edge system, so special attention had to be paid to
the stability of the screen. For this purpose, precisely adjustable baffles were
installed, which made it possible to avoid overlapping.

The alternative is to allow overlapping of the projection areas. This creates an
area where both projectors beam onto the canvas. To prevent this area from appear-
ing artificially brighter, the displayed image must be adjusted so that one projector
is increasingly faded in and the other is faded out in the overlap area. This adjust-
ment is usually achieved by a blend mask that is placed over the image after the
rendering process. The C6 is a soft-edge system in which the two projectors per side
overlap by approximately 220 pixels.

Fig. 5.35 Brightness discrepancy in the transition area between the images of two projectors due
to non-diffuse projection canvas

W. Broll et al.

185

The overlap prevents the formation of gaps when the canvas is deformed or
moved, and reduces the gain problem. In the transition area, the user no longer sees
only the image of a single projector, as the projector images merge seamlessly. The
main problem with overlap is when dark images or backgrounds are displayed.
Modern LCD or DLP projectors cannot display true black because they rely on fil-
ters that attenuate the light from the lamp. These filters are never perfect, so a certain
amount of residual light always penetrates. In the overlapping areas a double (at the
inner corners a quadruple) residual light is therefore visible. As long as only bright
images are displayed, this can be masked, but as soon as darker areas appear at the
edges/corners, the overlapping and thus the tiling becomes clearly visible, which
considerably disturbs a uniform image impression.

While brightness is only a one-dimensional problem, color uniformity requires
three dimensions to be matched. This is already apparent within a single projector.
LCD projectors in particular often show significant color differences between dif-
ferent areas of an image. If color differences already occur within an image, it is not
surprising that massive color differences often occur between several projectors. To
achieve a high quality result, these differences must be compensated. This is a much
more complex process than brightness calibration and is practically impossible to
do effectively manually.

5.4.4 Stereo Output Methods

To support stereoscopic vision (see Sect. 2.2.1) with the goal of making a virtual
world stereoscopically experienceable for the user, each eye of a user must be pro-
vided with an individual view. While in binocular HMDs this is done by separate
optics for each eye, in monitors or projection systems both eyes basically see the
same display. Therefore, additional methods for channel separation between the left
and right eyes have to be applied. The individual methods used for this purpose are
therefore briefly presented below, whereby individual advantages and disadvan-
tages in each case will be highlighted.

Anaglyphs
Anaglyphs are an approach to stereo imaging in which the two partial images are
colored differently for the left and right eye – in the original approach, one in red,
the other in green. Both images are then combined into one image by superimposi-
tion. Red-green glasses are used for viewing. Here, a red filter is placed in front of
one eye and a green filter in front of the other, so that each eye only sees its respec-
tive partial image. The two colored partial images complement each other to form a
stereoscopic grayscale image. For the observation of a usually colored virtual world
the approach is therefore not suitable in this original form.

However, the approach can be extended to color image pairs. In this case, red-
cyan glasses are usually used instead of the red-green glasses mentioned above. In
a display or projection, each individual pixel usually consists of one red, green and

5 VR/AR Output Devices

186

blue subpixel (RGB). For the color anaglyph process, the two images are now
divided according to their subpixel assignment (see Fig. 5.36). For one image, only
the red channel is used, while the green and blue channels (green + blue = cyan) are
used for the other image. The problem is that objects whose color values are only
displayed in one subframe cannot be perceived stereoscopically (see also Fig. 5.36).
The problem of a unilateral representation can be reduced by a suitable color selec-
tion of the objects.

The division does not necessarily have to be along the subpixel boundaries, but a
color image can be divided along any complementary colors (e.g., yellow/blue or
green/magenta). Of course, the corresponding color filters must then be available
for the glasses (see Fig. 5.37). To calculate the partial images, the RGB color value
is linked to the respective filter color by a bitwise AND operation with each pixel of
the corresponding image.

Polarization
Polarization is a widely used approach to realize stereo vision using channel separa-
tion. The method is used in the majority of 3D cinemas. The approach uses the
characteristic of light waves to oscillate in different directions. Polarization filters
allow only light waves with a certain oscillation direction to pass through. In

Fig. 5.36 Distribution of pixels along the RGB subpixels (left) and color anaglyph display of a 3D
scene with red-cyan channel separation. The problem with this approach can be seen in the dark
blue table legs, which are only present in the left subframe. (© Rolf Kruse, FH Erfurt 2019, all
rights reserved)

W. Broll et al.

187

general, there is a distinction between systems that use linear polarization filters and
those that use circular polarization filters.

For channel separation, typically two projectors (or possibly one projector with
two lenses) are required per screen. A polarizing filter is mounted in front of each
lens, whereby these are rotated 90° to each other. Thus, one polarizing filter, for
example, only allows the horizontally oscillating part of the light to pass, while the
second only allows the vertically oscillating part to pass. Since the two partial
images overlap on the projection surface, they are perceived simultaneously by the
viewer. Polarization glasses are now used to separate the channels of the images for
the left and right eyes. Here, the two polarizing filters in front of the eyes are aligned
in the same way as those on the lenses. If the polarization axes are exactly the same,
each eye only sees the corresponding partial image, enabling stereo vision (see
Fig. 5.38).

Due to this approach, however, the procedure is very susceptible to crosstalk. If
the user tilts the head just a little to the side, the polarization axis changes and a
ghosting of the other channel results. Instead of a horizontal and vertical alignment,
combinations of 45°/135° are often used, which, however, has no advantage with
regard to the problems described above.

The use of circular polarization filters solves this problem. Here, a distinction is
made between left- and right-turning light waves. This is not influenced by the head

Fig. 5.37 Superimposition of partial images and channel separation by means of color filters for
the anaglyph method

5 VR/AR Output Devices

188

tilt, so that crosstalk can be avoided as far as possible. However, circular polariza-
tion filters are much more expensive. Therefore, only linear polarization filters are
used for “disposable” (cardboard) glasses. A further disadvantage of polarization-
based approaches is that the projection surface must retain the polarization. This is
only the case with high-quality metal-coated screens, which limits their use and,
like the requirement for two projectors per projection surface, increases the costs
even further. Since polarization filters generally filter out at least half of the light,
only 50% of the light from a projector reaches each eye.

Wavelength Multiplex
The wavelength multiplex method, also known as interference filter method, uses
dielectric interference filters for channel separation. Each filter is based on several
coupled resonators, which filter out three very narrow frequency ranges in the three
primary colors red, green and blue (see Fig. 5.39).

By mixing the respective primary colors, full color images can be created. By
using different frequencies for the three primary colors, the superimposed partial
images can then be separated again into two channels, i.e., one for each eye. Similar
to a polarization-based channel separation, a filter pair is used for each of the two
projectors (or a projector with two lenses) and an identical filter pair for one pair of
glasses. In contrast to polarization methods, the wavelength multiplexing method
does not require any special characteristics of the projection surfaces. A further
advantage is the low susceptibility to crosstalk. A disadvantage is the color shift

Fig. 5.38 Superimposition of the partial images and channel separation by means of linear polar-
ization filters

W. Broll et al.

189

between the image for the left and right eyes due to the three different primary col-
ors. To avoid this, the color of the images to be output can be adjusted so that they
lie exclusively within the range that can be displayed with both primary color triples
(see Fig. 5.40).

However, this further limits the total color space available. The wavelength mul-
tiplexing method also allows the independent display of more than two channels. In
this case, there are always two channels used for each user, which allows n users to
see a stereo image correctly calculated for their individual point of view. For these
n users, 2 × n different basic color triples are required and thus a corresponding
number of filter types as well as projectors and n different types of glasses with two
different filters each.

Shutter Glasses
Besides polarization glasses, shutter glasses are another widely used method for
stereo output. They are also partly used in 3D cinemas and for 3D TV sets. While
the methods presented so far were based on superimposition and subsequent chan-
nel separation based on filters, shutter glasses display the partial images in time
sequence. Here, the left eye sees its partial image for a short time and shortly after-
wards the right eye sees its corresponding partial image. Because the change occurs

Fig. 5.39 Composition of the two partial images from three different base colors each

5 VR/AR Output Devices

190

at a high frequency, the brain is still able to fuse the two partial images into one
stereoscopic image, even though they are not perceived simultaneously at any time.
To ensure that each eye only sees the partial image intended for it, shutter glasses
use two LCD shutters (hence the name). This always covers the eye whose partial
image is currently not displayed, so that it cannot perceive any image (see Fig. 5.41).
Synchronously to the change of the partial image, the corresponding LCD shutter is
opened while the shutter of the other eye is closed. Due to the active switching, this
is called an active stereo method (in contrast to the passive stereo methods using
filters). Due to the time-sequential display of the two partial images, their frame rate
has to be twice as high to achieve the same overall frame rate as with the passive
methods.

Proper synchronization between the shutter glasses and the image output is cru-
cial for channel separation. While earlier systems were primarily synchronized via

Fig. 5.40 CIE standard valence system with the primary colors of two filters using the wavelength
multiplexing method

W. Broll et al.

191

infrared, which is in principle susceptible to occlusion or further interference, nowa-
days synchronization via radio-based procedures, especially based on Bluetooth,
has become generally accepted. An alternative is synchronization via a white flash
(known as DLP link). Here a very short, completely white image is shown, which is
detected by a photo diode attached to the shutter glasses and used for synchroniza-
tion. The duration is so short that the user is not consciously aware of this white flash.

Lenticular Lenses
Lenticular lenses are a method to make different (partial) images visible depending
on their direction of view. The simplest variant of this are so called “wobble images”,
which allow you to view simple animations consisting of very few frames. 3D post-
cards are based on the same principle. In both cases a prismatic grid consisting of
lenticular lenses arranged in vertical rows is used. Each prism covers at least two
pixels. Depending on the viewing angle, one or the other pixel becomes visible (see
Fig. 5.42).

For stereoscopic output, a prism foil is glued to a screen with pixel accuracy. If
the observer is vertically in front of the display at the correct distance, he sees one
subframe with one eye and the other subframe with the other eye (see Fig. 5.42).

The advantage of this method is that it does not require any form of glasses,
which is why it belongs to the so-called autostereoscopic methods. A disadvantage
of this method, however, is that the resolution of the display is reduced by half hori-
zontally. Another problem occurs when the user moves to the side or changes their
distance to the display. This can lead to the channel separation not working or only
working in a limited way (the already mentioned crosstalk). Tilting the head may
also cause crosstalk. In principle, the procedure also works for several users at the
same time. However, if several users are grouped around such a display, it must be
ensured that an individual view is also possible with each eye from other viewing
angles. This is achieved by using larger prismatic grids in which each lenticular lens

Fig. 5.41 Time-sequential display of the left and right partial image synchronously to the alternat-
ing opening and closing of the shutter LCD in front of the left and right eye, so that each eye only
sees the partial image intended for it

5 VR/AR Output Devices

192

covers more than two pixels. For example, seven different stereo views can be cre-
ated by using eight pixels. The disadvantage here is that the horizontal resolution is
reduced even more (in this case to one eighth!).

Parallax Barriers
Parallax barriers represent another autostereoscopic method. Here, a shadow mask
is placed in front of the display or the projection surface. Due to the arrangement of
the holes in the shadow mask, each eye of the observer sees different pixels, which

Fig. 5.42 Prismatic grid of lenticular lenses with detail magnification of a lenticular lens for chan-
nel separation

W. Broll et al.

193

are then used to display the different subframe for the left and right eyes
(see Fig. 5.43).

While rigid parallax barriers also only work within a certain distance from the
display, movable parallax barriers allow for adjustment to the distance of the viewer.
Either two slit masks are mechanically moved against each other so that the position
and size of the holes change accordingly, or an additional LCD layer is used for this
purpose. Parallax barriers also reduce the resolution by at least a factor of two and
are susceptible to head tilting. In LCD-based systems, if detected, this can be solved
by software. Software parallax barriers are used as masks to generate the two sub-
frames, so that ultimately only the pixels visible to the respective eye from each
perspective are included in the overall image to be displayed. In principle, the
approach can also be extended to more than one user, as Ye et al. (2010) have shown
with a display in which they used randomly distributed holes in well known
locations.

5.5 Audio Output Devices

The goal of acoustic or audible output is to reproduce the sounds and tones of the
virtual world in such a way that the user can perceive them in the same way as in the
real world. Even though the spatial resolution of human audio perception is lower
compared to the visual sense (see Sect. 2.3.1), it clearly supports spatial orientation.
A simple audio system at least is also important for the temporal assignment of
events that happen in the virtual world: for example, the user can be given audible
feedback when selecting objects or controlling a menu.

Fig. 5.43 Parallax barrier for channel separation

5 VR/AR Output Devices

194

Stereo Speakers
A simple spatial audio model, such as the one used in X3D, only influences the
volume of the output for the left and right ear depending on the distance of the
sound source to the virtual position of the ears (whereby this is only taken into
account due to the position and orientation of the virtual camera, i.e., the position of
the loudspeakers to the real ear has no influence here). For more realistic effects, the
individual signal delay due to the distance to the sound source can be included. With
this form it is not possible to distinguish between audio sources in front of or behind
the user, which is usually not sufficient for VR or AR. Also sound sources above or
below the user cannot be determined from their direction.

Multi-Channel Systems
For better spatial orientation the use of more complex audio installations is neces-
sary. Often, multi-channel audio systems are sufficient to provide orientation for the
user of a virtual world. In multi-channel systems one or more main loudspeakers are
usually available as the actual sound source, while several additional loudspeakers
are used to support the spatial effects. When installing multi-channel audio systems,
it is important to ensure that appropriate loudspeakers are also installed behind the
user. The disadvantage of multi-channel audio systems is that spatial perception is
really good only in a small area (the so-called sweet spot). If the user is able to
move, the limits of such a system are quickly reached. Furthermore, although the
horizontal direction of a sound source can be well simulated, the height of the sound
source usually cannot be reproduced.

Binaural Sound
One way to achieve a more realistic audio impression is binaural sound. This is an
attempt to imitate natural, spatial hearing. The output is only possible via head-
phones. For an optimal hearing impression, the Head Related Transfer Function
(HRTF) of the user must be known. If this is not known, the HRTF of a standard
head is usually used, which can provide very good or even bad results depending on
the individual user. The advantage of binaural sound is that with correct HRTF not
only audio sources in front of and behind the user, but also below and above the
user, can be clearly identified with regard to their direction.

Ambisonics
Ambisonics usually uses four channels to record and play back three-dimensional
sound sources in the form of a sound field. Although the technology is over 50 years
old, it has only recently gained some popularity through its use in conjunction with
360° video and VR. In the meantime, relatively inexpensive commercial micro-
phones and software for mixing ambisonic recordings are available. The four chan-
nels represent the sound pressure gradients in the X, Y and Z directions and the
sound pressure. For these second-order ambisonics, eight capsule microsphones are
used. Higher-order ambisonics are rarely used.

Wave Field Synthesis
Another way to create more realistic spatial sound is wave field synthesis (Bertino
and Ferrari 1998; Brandenburg 2006). The goal of wave field synthesis is to record

W. Broll et al.

195

the wave field of a real event (e.g., the playing of an orchestra) and to be able to
reproduce it at any time as a synthetic wave field. Thus it is possible to position
sound sources freely, within certain physical limits. For this purpose, the wave field
is generated by a large number of loudspeakers that have to be arranged around the
playback area. These loudspeakers are operated by a central computer, controlling
the reproduction of the sounds together with their positioning.

Application to Stationary VR Systems
Often it seems to make sense to position the speakers of an audio system behind the
display. In principle, this is possible for projection systems with permeable screens.
However, with multi-sided projection systems such as CAVEs, the sound is partially
reflected by the projection surfaces, reducing the quality of the audio simulation. A
further problem with loudspeakers located behind the projection surface is that the
sound causes the canvas to vibrate. This can sometimes have a negative effect on the
quality of the visual impression. When using glass panels as projection surfaces and
in the case of monitor-based solutions (see Fig. 5.32), it may be necessary to place
the loudspeakers under, above or next to the displays.

A comprehensive overview of sound, especially in the context of VR, is given by
Vorländer (2008).

5.6 Haptic Output Devices

Haptic output devices make virtual objects tangible for the user by means of
mechanical, pneumatic or electrical stimuli, vibration or the application of force.
Haptic output is mostly integrated into input devices like gloves (see also Sect. 4.4)
and mechanical input devices (see Sect. 4.6.2).

Generally, haptic output devices are divided into those that generate tactile feed-
back and those with force feedback. Tactile feedback generates a haptic sensation
for the user when touching a virtual object, without necessarily corresponding to the
sensation when touching a similar real object. Force feedback usually requires an
external skeleton structure (exoskeleton), which restricts the freedom of movement
of fingers or other limbs.

Haptic Loop
While haptic output basically uses the same information about the virtual world as
graphical output, haptic rendering differs significantly from normal (graphical) ren-
dering. A haptic output device is usually combined with an input device, since the
haptic output is typically the result of a movement of the user. Of course, a virtual
object can also move towards the user and thus initiate a haptic output. An example
would be a virtual bullet in a VR game. If the initiation is done by the user, this
results in a so-called haptic loop (or haptic rendering loop) (see Fig. 5.44). For the
user’s movement to result in a haptic output, it must first trigger a collision between
the user’s representation (i.e., their avatar) and an object of the virtual world. This
collision is detected by collision detection (see Chap. 7). The resulting collision

5 VR/AR Output Devices

196

response induces on the one hand a modification of the VR simulation, while on the
other hand the ideal force feedback is calculated as response. The extent to which
this can now be (re)transmitted to the user depends in particular on the specific
haptic output device used. Appropriate control algorithms are used to convert the
ideal force into an actual output reaction. Correspondingly, a massive resistance
may end up in a rather soft tactile perception. In contrast to the graphics render loop,
which should reach at least 60 frames per second, the haptic render loop typically
operates at a much higher frequency. 1000 Hz (or 1000 fps) is not uncommon at this
point. An overview of haptic rendering can be found in Salisbury et al. (2004).

Data Gloves with Tactile Feedback or Force Feedback
While data gloves are primarily input devices, a number of models have been devel-
oped over time that involve a haptic output component. However, most of them are
limited to simple tactile feedback. For example, small vibration motors are placed
on the fingertips, the fingertips are mechanically contracted by small bands or elec-
trical impulses are generated. However, some also use external skeletal structures to
actually restrict the freedom of movement of the fingers. The HGlove uses an exo-
skeleton for the thumb, index finger and middle finger. The HaptX glove (see
Fig. 5.45), for example, uses a combination of a miniaturized pneumatic actuator
consisting of 12 elements at each fingertip and an exoskeleton.

Fig. 5.44 The haptic rendering loop

W. Broll et al.

197

Air and Ultrasound-Based Systems
Vortex rings use air over a certain distance to create a short haptic stimulus. If a grid
of actuators is used to generate the stimuli, this allows the simulation of even more
complex virtual objects.

Similar in effect are haptic output devices based on ultrasound. Those devices
use up to several hundred sound generators arranged in arrays. At update rates of up
to 40 kHz, a haptic output can be generated at a distance of up to 70 cm.

Vests and Suits
In games and military simulations especially, vests and whole suits for haptic output
have been developed. The Teslasuit full body suit is an example of an individual,
haptic output device that uses electrical impulses to perform transcutaneous electri-
cal nerve stimulation and electrical muscle stimulation. Furthermore, the suit can
influence the temperature sensation of the user. A motion capture system is also
integrated for input. Haption’s Able is another example, providing an exoskeleton
for shoulders, arms and hands (see Fig. 5.46).

End Effector Displays
An end effector is a device that is typically mounted on a robot arm (see Fig. 5.47).
End effector displays are haptic output devices for tactile stimulation, which a user
can grasp or otherwise manipulate with hands or feet. In contrast to an input device,
an end effector display is not passive, but reacts actively through resistance or force
feedback. The best-known representative of this device class is the Phantom Omni
as a desktop device. Larger versions can easily cover volumes of several cubic meters.

Fig. 5.45 Glove with pneumatic finger actuators and external skeletal structure. (© HaptX Inc.
2021. All rights reserved)

5 VR/AR Output Devices

Fig. 5.46 Example of a
vest-based system. (©
Haption SA/Laval Virtual,
2020. All rights reserved)

Fig. 5.47 Example of an end effector display. (© Haption SA, 2020. All rights reserved)

199

5.7 Summary and Questions

VR/AR output devices are used to present the virtual world or the augmented world
to the user via appropriate stimulus generation, i.e., to convert the virtual content
into something that can be experienced by the user’s senses. The visual output can
be done with HMDs, monitors or projection systems. To cover the field of vision of
stationary VR systems as much as possible, display systems are often composed of
several individual displays, which are arranged in different forms: examples are
walls, L-shapes, curved screens or CAVEs. The tiling of displays (in the form of
tiled displays) is especially used to improve resolution and luminous intensity, but
leads to a considerably higher calibration effort. Using active or passive stereoscopy
methods, monitors and projection systems can also spatially represent virtual
worlds. Although the optical sense is the most important one, a high degree of
immersion can only be achieved by addressing additional senses. While there are
almost no VR or AR systems without acoustic output and therefore the question of
the quality of the effects to be produced is primarily concerned here, haptic output
devices are much less common.

Check your understanding of the chapter by answering the following questions:

• What difficulties can occur when using tiled displays and what are the solutions?
• What advantages do multi-sided displays offer compared to single-sided

displays?
• When should optical AR glasses (OST) be used for an AR application and when

should video AR glasses (VST) be used?
• Explain the basic differences between active, passive and autostereoscopic stereo

methods.
• Which audio technologies are suitable for realistic surround sound?
• Explain the difference between tactile and force feedback using a simple example

 Recommended Reading

Bajestani SA, Pourreza H, Nalbandian S (2019) Scalable and view-independent
calibration of multi-projector display for arbitrary uneven surfaces. Machine
Vision and Applications, 7–8, Springer.

Burdea GC, Coiffet P (2003) Virtual reality technology, John Wiley & Sons,
Hoboken, New Jersey.

Okatani, T., Deguchi, K. (2009) Easy calibration of a multi-projector display sys-
tem. International Journal of Computer Vision, 85, 1–18. https://doi.org/10.1007/
s11263- 009- 0242- 0

Sherman W, Craig A (2019) Understanding virtual reality, second edn. Morgan
Kaufmann.

Vorländer M (2008) Auralization – fundamentals of acoustics, simulation, algo-
rithms and acoustic virtual reality. Springer.

5 VR/AR Output Devices

https://doi.org/10.1007/s11263-009-0242-0
https://doi.org/10.1007/s11263-009-0242-0

200

References

Bajestani SA, Pourreza H, Nalbandian S (2019) Scalable and view-independent calibration of
multi-projector display for arbitrary uneven surfaces. Machine Vision and Applications, 7–8,
Springer

Bertino E, Ferrari E (1998) Temporal synchronization models for multimedia data. TKDE
10(4):612–631

Brandenburg K (2006) Digital entertainment: Media technologies for the future. In Second
International Conference on Automated Production of Cross Media Content for Multi-Channel
Distribution (AXMEDIS ‘06), 4–5

Cakmakci O, Rolland J (2006) Head-worn displays: a review. J Disp Technol 2(3):199–216.
https://doi.org/10.1109/jdt.2006.879846

Cruz-Neira C, Sandin DJ, DeFanti TA, Kenyon RV, Hart JC (1992) The cave: audio visual experi-
ence automatic virtual environment. Commun ACM 35(6):64–72

Herold R, Weidenmüller F, Penzel M, Ebert M (2015) Data-glasses for improved user interaction
in 3D. In: Proceedings of SID 2015 International Symposium, pp. 189–191

Krüger W, Fröhlich B (1994) The responsive workbench. IEEE Comput Graph Appl 14(3):12–15
Lang B (2018) The key technology behind Varjo’s high-res ‘Bionic Display’ headset. https://www.

roadtovr.com/graphic- illustrates- key- technology- behind- varjos- high- res- bionic- display/.
Accessed 28 Mar 2021

Melzer J, Moffitt K (1997) Head-mounted displays: designing for the users. McGraw Hill,
New York

Okatani T, Deguchi K (2009) Easy calibration of a multi-projector display system. Int J Comput
Vis 85:1–18. https://doi.org/10.1007/s11263- 009- 0242- 0

Salisbury K, Conti F, Barbagli F (2004) Haptic rendering: introductory concepts. IEEE Computer
Graphics & Applications, Jan/Feb, pp 24–32

Vorländer M (2008) Auralization – fundamentals of acoustics, simulation, algorithms and acoustic
virtual reality. Springer

Ye G, State A, Fuchs H (2010) A practical multi-viewer tabletop autostereoscopic display.
Proceedings of the International Symposium on Mixed and Augmented Reality (ISMAR)
2010. Seoul, South Korea, October 13–16

W. Broll et al.

https://doi.org/10.1109/jdt.2006.879846
https://www.roadtovr.com/graphic-illustrates-key-technology-behind-varjos-high-res-bionic-display/
https://www.roadtovr.com/graphic-illustrates-key-technology-behind-varjos-high-res-bionic-display/
https://doi.org/10.1007/s11263-009-0242-0

201© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
R. Doerner et al. (eds.), Virtual and Augmented Reality (VR/AR),
https://doi.org/10.1007/978-3-030-79062-2_6

Chapter 6
Interaction in Virtual Worlds

Ralf Doerner, Christian Geiger, Leif Oppermann, Volker Paelke,
and Steffi Beckhaus

Abstract In Chap. 1, VR and AR have already been introduced as innovative forms
of human–computer interaction. This chapter deals in detail with the design and
realization of interaction and the resulting user interface of a VR/AR system. A user
interacts with a virtual world to select (selection) and change (manipulation) virtual
objects and to control the position and viewing direction in the virtual environment
(navigation). In addition, the user interacts with the system itself (system control) to
perform functions outside the virtual environment on a meta-level (e.g., loading a
new virtual world). These basic tasks of system control, selection, manipulation and
navigation are each dealt with in a subsection. Solutions for the realization of cor-
responding interactions are presented. It is essential to achieve good usability. This
is a core issue of human–computer interaction in general. Therefore, the basics of
human–computer interaction are discussed at the beginning of the chapter. Moreover,
a subsection considers special design processes that guide a developer in the design
and realization of VR/AR interactions. An essential aspect here is the repeated vali-
dation of interactions with users in the form of user tests. Methods for the execution
and evaluation of user tests are therefore dealt with separately in a subsection.
Interactions with VR/AR systems always have effects on the user. The related ethi-
cal and legal aspects are discussed in the last subsection.

R. Doerner (*)
Department of Design, Computer Science, Media, RheinMain University of Applied
Sciences, Wiesbaden, Germany
e-mail: ralf.doerner@hs-rm.de

Dedicated website for additional material: vr-ar-book.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79062-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-79062-2_6#DOI
mailto:ralf.doerner@hs-rm.de
http://vr-ar-book.org

202

6.1 Fundamentals of Human–Computer Interaction

A virtual world or a world extended with virtual elements employing AR can be
made interactive for users. This means enabling users to interact with this environ-
ment under real-time conditions. It is thus about an exchange of information
between the human users and the computer, which controls the virtual part of the
user’s environment; in other words, it is about communication between humans and
computers. Technically, this is known as Human–Computer Interaction (HCI). HCI
is concerned with the design, evaluation, and implementation of interactive
computer- based systems and the phenomena involved. An essential aspect is the
user-oriented design of interfaces based on findings in computer science, but also in
other fields such as psychology and cognitive science, ergonomics, sociology
and design.

An important concept of HCI is usability, which is most aptly described as “fit-
ness for purpose” and defined according to ISO 9241.

Aspects of usability include usefulness, efficiency (effort in relation to the
achieved goal), effectiveness (achievement of goals, avoidance of errors), learnabil-
ity, or training effort as well as subjective satisfaction. For some time now, HCI
research has also been looking at interaction with a technical system in a wider
context and taking into account all the experiences a person has had when using an
interactive product. In addition to classic usability, this user experience includes, for
example, the elegance and aesthetics of the interface or the joy of use.

Human–computer interaction aims at supporting the user to utilize a technical
system to perform the tasks they are pursuing well, e.g., effectively and efficiently.
In doing so, information is explicitly exchanged between humans and computers.
Besides, there are context knowledge and assumptions that implicitly provide infor-
mation for communication with the computer. HCI uses metaphors and mental
models to support this implicit knowledge. A metaphor is a linguistic image that is
used to explain complicated relationships. One uses knowledge from a known area,
e.g., waterways in nature, to explain an unknown area, e.g., the flow of data in com-
puter programs. Metaphors are used so that a user can get an idea of the technical
system. The reaction of the system to an action of the user should be predictable or
at least explainable. Such a mental simulation model that a person’s brain uses to
make predictions about the system behavior is also called a mental model.

While classical user interfaces based on the WIMP (Windows, Icon, Menu,
Pointer) paradigm have been established for many years and guidelines for their

“Usability is the extent to which a product can be used by specified users to
achieve specified goals with effectiveness, efficiency, and satisfaction in a
specified context of use.” (Source: DIN EN ISO 9241,11: Software
Ergonomics)

R. Doerner et al.

203

effective development are available, nothing comparable exists in VR/AR. It is,
therefore, necessary to develop prototypical solutions for the respective tasks of the
users and to evaluate their suitability. HCI’s popular approach of designing
hardware- independent user interfaces by abstracting the available hardware to its
function, e.g., as logical input devices (Foley et al. 1993), is of only limited use in
VR/AR user interfaces. Due to the wide range of VR/AR hardware and a broad
range of interaction techniques that a single piece of hardware can support, such an
abstraction is difficult. Nevertheless, classical user interfaces are often taken as a
starting point for VR/AR interaction. Also, other classes of user interfaces that are
not based on the WIMP paradigm have become classical user interfaces due to their
widespread use: for instance, user interfaces based on voice or touch-based user
interfaces. These can be useful since users have usually already acquired significant
competencies with classical user interfaces. This is also true for developers, who
should rely on their own real experience in dealing with computers when imple-
menting interaction techniques in virtual environments (Winograd and Flores 1986).

When designing the “best” interaction technique, it is important to consider
whether a technique should be as natural as possible or can also be magical. A natu-
ral 3D interaction in a virtual environment tries to simulate the interaction known
from the real world as exactly as possible. For example, users move through a vir-
tual city at walking speed by real walking and can only manipulate objects within
reach of their own arms. A magical 3D interaction, on the other hand, allows tele-
porting to any position or modifying objects that are far away by extending the arms
at will. If one follows the approach that a virtual environment should reflect reality
as closely as possible, one is inclined to make the 3D interaction more natural.
However, a magical 3D interaction allows more possibilities and new functional-
ities. Here, the context of use, the user experience and the degree of naturalness play
a role (Bowman et al. 2004).

Even if one chooses a high degree of naturalness, the interaction of humans with
virtual objects is never as direct as with real objects, mostly due to technical inter-
mediate layers. User interfaces are said to support direct manipulation if the user
can modify a graphical representation of an object with input devices and receives
immediate and continuous visible feedback about these actions (Shneiderman et al.
2016). Direct manipulation is a key concept in the design of interaction techniques
in VR. In AR, direct manipulation enables the equal treatment of interaction with
real and virtual objects.

6.2 System Control

The system control of a VR/AR system triggers actions that change the interaction
mode or the system state. For example, these can be commands that cause the sys-
tem to load a new scene, to change the navigation mode through the virtual environ-
ment or to set up the display. Conventional graphical user interfaces mainly use
elements such as menus, buttons or toolbars to execute such commands. Drag &

6 Interaction in Virtual Worlds

204

Drop, text commands and double-clicks are also common techniques. These tech-
niques from 2D user interfaces can only be transferred to virtual environments to a
limited extent (for example, on which 2D surface in the virtual world does a button
appear and how is it operated?). In the following consideration, use cases in which
the system control is carried out by another exterior user (e.g., the instructor in a
flight simulation) will not be considered further, since techniques from 2D user
interfaces can be used for this purpose.

A conceptual problem of system control by the user of a virtual environment is
the inherent conflict with the intended “willful suspension of disbelief” (cf. Chap.
1), because the commands often have no equivalent in the real world or a realistic
1:1 implementation is not practicable. Particularly in the early phase of VR, when a
faithful reproduction of reality was key, the proper development of techniques for
system control was therefore neglected. Many systems work with ad hoc solutions
because selection techniques in combination with a representation of the possible
actions in a (3D-) menu are a possible solution for system control, and thus the
development effort can be minimized. In some systems, for example, a large button
suddenly floats in the middle of the virtual environment and is activated by moving
a hand to select it. There is only limited scientific knowledge about the usability of
such approaches. The development of powerful algorithms for speech and gesture
recognition expands the spectrum of available techniques and allows for better
adaptation to user requirements. A good source of inspiration for techniques for
system control is often computer games, in which many interesting implementa-
tions of menu techniques can be found. Five concepts for system control are widely
used: menus, 3D widgets, tangibles, voice commands and gestures.

Menus are the most widespread technique. Menu techniques can be structured
systematically, e.g., by their positioning (or spatial reference system), the way they
are presented and the selection technique used. For example, the position of a menu
in the virtual environment can be fixed or it can be linked to the position of an object
in the virtual environment (context menu)–or it can be linked to the user (e.g., to the
hand) or real objects. The representation can be structured in one dimension (e.g.,
list, ring), in two dimensions (e.g., color space, table), or in three dimensions (e.g.,
matrix). Depending on the positioning and representation, different techniques can
be used to select a menu item. Dachselt and Hübner (2007) give an overview of cor-
responding 3D menu techniques.

3D widgets are closely related to menu techniques. 3D widgets are 3D objects in
the virtual environment that are coupled with interaction behavior. Their 3D geom-
etry makes interactive functionality visible for the user. Moreover, their 3D geom-
etry provides affordances for using the underlying functionality. These 3D objects
do not represent the content of the actual virtual world to be displayed but are addi-
tionally inserted to control the VR system. 3D widgets can be inspired by real
objects (e.g., some widgets are based on a 3D representation of light sources or
cameras–these are manipulated as 3D objects and influence the representation of the
scene accordingly). Alternatively, 3D widgets can be abstract objects whose func-
tion the user must learn.

R. Doerner et al.

205

Tangibles (sometimes called props) are real objects that the user can use as tools
in the virtual environment. If the user reaches for such a “tool”, a new mode of
interaction is chosen and the tangible itself can give the user immediate physical
feedback about this interaction. An example: the user wants to position a power tool
in the virtual environment and has the handle of a real tool available for this pur-
pose. However, the number of tangibles that can be used in an application is limited
and their assignment to interaction tasks is less flexible.

Voice commands can be used hands-free. Thus, they can be combined well with
other interaction styles. An advantage of voice commands is that no part of the vir-
tual environment is hidden by additional objects that are needed for facilitating
interaction. However, the user has to learn the possible commands, since there is no
direct representation of the possible interactions in the virtual environment.
Advances in speech recognition make the use of voice input increasingly attractive,
but the developer of a virtual environment should also keep in mind that the perma-
nent use of voice input can be tiring. Environmental noise and use in collaborative
work environments can also be problematic.

Gestures provide another powerful technique for system control and can be com-
bined with voice input and other techniques. As with voice input, no part of the
scene is hidden, but the available functionality becomes more difficult for the user
to “discover” and must be learned. Often there is also no graphical representation in
the user interface that can serve as a memory aid. The availability of inexpensive
sensors and improvements in recognition algorithms make the use of gestures for
controlling VR/AR applications interesting.

6.3 Selection

Selection is one of the essential tasks in the interaction of a user with a virtual world
or the real world augmented with virtual elements.

This task is much more difficult for the user to perform in a 3D context than with
2D user interfaces. First, there are more degrees of freedom in the input (it can be
especially difficult to perform a selection in 3D space with a 2D input device).
Second, occlusion can become a severe problem. Third, most users have less experi-
ence with specific VR interaction techniques. Fourth, there can be more usability
problems undiscovered by developers because user interfaces are often not as stan-
dardized or tested as in the 2D case. To mitigate these difficulties, one can limit the

Selection means that the user determines a point, area or volume in the sur-
rounding world (e.g., to insert an object there) or selects a semantically mean-
ingful subset of the surrounding world (e.g., a specific virtual object or
sub-object to move it).

6 Interaction in Virtual Worlds

206

selection to an interaction surface (parallel to the image plane or spatially embedded
on a 2D surface in the virtual world), which is often even more effective due to the
similarity to the usual computer operation. However, VR/AR also allows us to break
away from tradition and to introduce new interaction techniques that are more ori-
ented towards our everyday real experiences – or even go beyond.

In the first subsection, pointing devices, their classification and targeting are dis-
cussed in more detail, since pointing is often used for selection in VR/AR (and not,
for example, naming by voice input or typing in coordinates of the object to be
selected). When designing the corresponding interaction technique, one basically
has the choice of either restricting the user’s degrees of freedom or working with
different modes. These choices are discussed in the second subsection. Finally, the
last subsection contains examples of selection techniques frequently used in VR/AR.

6.3.1 Pointing in Virtual Worlds

A common feature of many interaction techniques for selection is that they require
a pointing device with which the user can make the selection. This can be the index
finger or a special input device such as a hand controller or a 3D mouse (see Chap.
4). With this pointing device, the user must aim at the target to be selected and make
the selection. In the VR/AR system, corresponding algorithms from Computer
Graphics have to be implemented which identify the selected 3D entity from the
user’s input. This task is not trivial. On the one hand, it may be necessary to calcu-
late back from a 2D input into 3D space. On the other hand, which object can be
found at the calculated 3D position must be determined. This basic task of deducing
the selection in the displayed 3D space from a 2D interaction of the user with the
image of a 3D scene is called picking. A simple solution is to create an image of the
3D scene (which is not shown to the user) where each object is displayed with a
different color and no lighting calculation is performed. You determine the pixel in
the image that the user points to and determine the color of the pixel, which allows
you to draw conclusions about the selected object (“color picking”). An alternative
method, often used today because of its higher accuracy, calculates the intersections
of a beam with the 3D geometry of the objects in the scene (ray-casting). The ray
can emanate from the eyepoint of the observer through the pixel selected in the
image. Alternatively, the ray can be an extension of the user’s index finger (see
Fig. 6.1, left). The object that has the point of intersection closest to the observer’s
eye is selected. By clever optimization, e.g., by employing bounding volume hierar-
chies (cf. Chap. 7), this picking can be realized in real time through ray-casting.
Like collision detection, ray-casting has become a fundamental technique to realize
interaction in VR and AR in general.

Picking can be complicated by the fact that the VR/AR system does not perform
it with the selection granularity desired by the user because of semantic ambiguities
(example: the user points to the head of a virtual person–does the user want to select
the whole person, only the head or even a part of the head, such as the left eye?). In

R. Doerner et al.

207

AR, knowledge of the real objects in the user’s environment is required to enable the
selection of real objects. Here, methods of digital image processing and 3D scene
reconstruction are usually applied which are based on the analysis of current video
recordings of reality.

It is essential to support the user during the selection process with visual feed-
back. This can be realized by highlighting the selected object (or point, area, or
volume) or in the form of a target point (cursor) (see Fig. 6.1). In VR, the 3D cursor
is the counterpart of the mouse pointer of the two-dimensional desktop metaphor
and allows pointing to a virtual object, even if it is further away. Typically, suitable
input devices like a flystick, 3D mouse or magic wand are used and their real posi-
tion and orientation are mapped to the values of the 3D cursor (cf. Chap. 4). A dif-
ferent technique is the virtual hand, which allows a direct touch of the objects to be
selected near the user. For this purpose, a 3D representation of the user’s hand in the
virtual world is used to select objects (see Fig. 6.1, right). Selection utilizing a vir-
tual hand is a more natural selection technique, while the use of a 3D cursor tends
more towards magical interaction techniques.

The physical pointing devices of human–computer interaction can be divided
into the categories “direct” and “indirect”. Direct pointing devices (e.g., a pointing
stick) can be used to position a 3D cursor directly (e.g., at the tip of the stick). Direct
pointing devices are therefore able to define absolute coordinates. Thus, the opera-
tion is easy but may be tiring or inaccurate over time. In addition, the user may
cover parts of the virtual world relevant to the selection task with a hand or arm
when operating the device. Indirect pointing devices (such as a mouse) can reduce
these disadvantages. They change the position of a cursor using direction vectors,
i.e., its position is determined relative to the previous position. Indirect pointing
devices, however, require a period of familiarization, as they require hand–eye

Fig. 6.1 Selection in VR and visual feedback. The selection process is realized (left) with a beam
from the finger using ray-casting, or (right) by a virtual hand using collision detection

6 Interaction in Virtual Worlds

208

coordination training from the user. The user’s attention is always limited to only
one part of the overall space, the focus. The interaction activities, on the other hand,
take place in another sub-area, which will be called the nimbus, following Benford
and Fahlen (1993). In direct pointing devices both areas coincide and hand–eye
coordination is therefore easy. With indirect pointing devices, however, the intersec-
tion of both areas can be empty. If the activity in the nimbus is disturbed or does not
lead to the desired result, the attention is distracted and directed to the device itself.
The focus of the user is then no longer on the actual task but turns to the interaction
device. An everyday example of this is a mouse that encounters a physical obstacle
during operation and has to be repositioned by the user. This is also a good example
of a phenomenon formulated by Winograd and Flores (1986), namely that people
only consciously perceive basic technologies and devices when they simply refuse
to work.

When selecting in virtual environments, it is also possible to distinguish near
interaction techniques, local interaction techniques and remote interaction tech-
niques. The close interaction enables users to orientate themselves quickly based on
their everyday experiences, which can often be helpful. In VR systems, however, it
is also possible to realize interactions over a virtual distance that would normally be
beyond human reach (as special cases of magical 3D interactions). When designing
these interactions at a distance, it is now mainly a question of their manageability or
the accuracy that the user can achieve with them. In HCI, accuracy in the selection
of targets in connection with the time required for this and the size of the target
could be related in the form of Fitts’ Law. Although it is mainly used in the evalua-
tion of traditional 2D graphical user interfaces, there are also references to the 3D
context. Fitts’ Law states that the smaller the target is and the further it is from the
current cursor position, the longer it takes to select it. A logarithmic function is used
to mathematically model this relation.

6.3.2 Interaction Design

To control interaction in virtual environments, input devices are required that cover
the necessary degrees of freedom. In three-dimensional environments, there are six
degrees of freedom: three for positioning along the x-axis, y-axis, and z-axis and
three additional degrees of freedom for rotation around these axes. In many cases,
however, fewer degrees of freedom can be used. For example, not all six degrees of
freedom are required to aim at any point B from any point A (for example, because
the imaginary connecting line from A to B can be rotated around itself without
changing the target, this axis of rotation is not significant). It might also be desirable
to deliberately limit the number of degrees of freedom in interaction by introducing
constraints, e.g., to avoid accidentally changing the orientation of a 3D cursor when
it is moved.

R. Doerner et al.

209

The Midas touch problem shows that different modes should be distinguished in
the design of some interaction techniques for selection. However, this has the draw-
back of increased complexity. The users – based on their own previous experience –
often have certain expectations regarding the operation of a system. If the operation
corresponds to their expectations or the general conventions, the system is in line
with expectations. If it does not, the users are typically disoriented because they
have unintentionally triggered actions or cannot trigger desired actions. If there are
several modes, a user can inadvertently switch the system to another mode or does
not notice a change of mode, which can lead to confusion. Problems of this type are
referred to as mode errors. They are not errors in the traditional sense of software
technology, but errors in interaction design. They require different measures for
detection and correction than the usual debugging of software. When designing
interactions, it is advisable to limit the use of modes. Some designers suggest that
modes should be removed from user interfaces completely and that, only if neces-
sary, temporary quasimodes knowingly activated by the user should be used (Raskin
2000). Interaction designers in the VR area should be sensitized to these and similar
problems, e.g., about the frustration of users when they are doubtful what is not
selectable and they can only find out by unsuccessful trial and error. (Bellotti et al.
2002) posed five questions that designers of interactive systems should always ask
themselves:

If I address the system, how does the system know that I am addressing it?
If I call the system, how do I know it will listen to me?
If I give a command, how does the system know what it is referring to?
How do I know that the system understands me and will carry out the action I want?
How can I correct a mistake?

The Midas Touch Problem
One could come up with the idea of making the selection with the eyes, espe-
cially over longer distances; after all, one can look further than one can grasp
and can focus very quickly. However, it has turned out that a general selection
only with the eyes is not comfortable for the user, because if a VR system tries
to attach importance to these glances by continuously pointing them towards
the selection of virtual objects, the user would not be able to look anywhere
without unintentionally selecting something. This is the classic Midas touch
problem (Jacob 1990). The name for this problem comes from mythology.
According to legend, King Midas of Phrygia received the supposed gift of
being able to turn everything he touched into gold. However, this proved to be
a hindrance when it came to eating, and he also supposedly turned his daugh-
ter into gold by mistake. To work around the problem, you can work with
modes – the “system responds at glances” mode and the “system does not
respond at glances” mode.

6 Interaction in Virtual Worlds

210

6.3.3 Examples of Selection Techniques

In the following, some examples of selection techniques are considered: ray- casting,
the flashlight technique, the go-go technique, the HOMER technique, the image
plane technique and the world-in-miniature technique.

In ray-casting, objects are selected using a beam that points from the 3D cursor
into the environment. The position and orientation of the beam are controlled by the
user, although degrees of freedom in control can be deliberately limited by setting
constraints. All objects cut by the beam are candidates for selection. If there is more
than one candidate, the object closest to the user is selected. The manageable accu-
racy of ray-casting decreases with distance because the angle to be set on the virtual
hand becomes smaller and smaller and possibly falls below the resolution to be
achieved by the input method. Ray-casting is considered the most important and
effective selection technique. However, it is less suitable for longer distances.

A variation of ray-casting is the flashlight technique. Here, instead of a beam, a
cone is projected that resembles that of a flashlight. Again, all objects that intersect
the geometry are collected as candidates. As an additional selection criterion, the
distance from the center of the cone is also considered.

Possibly inspired by the television series Inspector Gadget, the go-go technique
allows the infinite extension of a virtual arm to which a virtual hand is attached. It
thus allows the hand to be moved to the place of interest. Within the normal interac-
tion distance, i.e., within arm’s reach, the virtual hand behaves analogously to the real
hand, i.e., the movement is scaled linearly. Beyond this distance, the movement of the
real hand is mapped to the movement of the virtual hand by a usually non- linear scal-
ing in such a way that with increasing distance from the user, increasingly larger
distances are bridged with the same hand movement. Similar to ray-casting, however,
it is only partially suitable for selection at a distance due to its angle dependence.

In the term HOMER technique, HOMER stands for “Hand-centered Object
Manipulation Extending Ray-casting”. With HOMER, a beam is also extrapolated
from the current hand position. However, if the ray hits an object, the object is not
manipulated as the endpoint of the ray, but the virtual hand is moved to the position
of the object. This eliminates the dependence on angular accuracy and allows finer
selections and manipulations of the target object.

The image layer technique uses virtual image layers on which the users make
their selection, similar to a mouse pointer. The objects behind the image plane are
projected onto them, just as they are projected onto the screen plane. The distance
between users and the image plane is reduced for interaction. With their pointing
device, the users now control a 2D cursor on this virtual plane. While this plane is
within their reach, they are also able to select out-of-reach objects behind this plane,
as these objects are projected on the plane. Because a user only has to control two
degrees of freedom and the metaphor is known, this technique allows for easier
control during selection.

An alternative approach to changing the reach of the user is the world-in-
miniature (WIM) technique. This involves scaling down the entire virtual environ-
ment to such an extent that it fits into the user’s field of view as a miniature model.

R. Doerner et al.

211

The user can now select interaction targets in the model. Since the user leaves their
own, egocentric perspective within the environment, this technique is also called an
exocentric technique. An example of WIM is shown in Fig. 6.2. In contrast, tech-
niques like ray-casting or the flashlight technique are egocentric techniques. There
exist also mixed forms between egocentric and exocentric techniques, which are
called tethered.

6.4 Manipulation of Objects

After a suitable object has been selected, its properties can now be changed by
manipulation. Selection and manipulation techniques should not be addressed indi-
vidually when designing a specific VR or AR interaction, but should be matched to
each other. Already presented techniques like the HOMER technique or the WIM
technique are suitable not only for selection but also for manipulation. For instance,
using the go-go technique, objects can be moved very well. Moreover, the insights
about interaction design discussed in Sect. 6.3.2 and illustrated with the example of
a selection technique also extend to manipulation techniques.

Manipulation of a virtual object in a VR/AR environment is defined as an
interactive change of the parameters characterizing the object, such as its
location, its orientation in space, its size, its shape, its weight, its velocity or
its appearance (which is determined by object parameters such as color, tex-
ture or shading).

Fig. 6.2 Example of the selection of remote objects by a world-in-miniature. With this technique,
users can select objects even if they are not in their field of view

6 Interaction in Virtual Worlds

212

Manipulations of virtual objects may not have a direct equivalent in the real
world. For example, virtual objects can be manipulated by any affine mapping (e.g.,
shearing or scaling). To implement the manipulation, developers can fall back on a
wide range of techniques that cover the entire spectrum from realistic interactions
oriented on the user’s everyday experiences to magical techniques that can only be
realized in a virtual environment. Therefore, the choice of a suitable manipulation
technique should be made by the developers with regard to the desired functionality
and the concept underlying an application.

In simulations and training applications, for example, it is often desirable to have
a reference to reality that is also supported by a realistic interaction technique. This
means that the virtual objects should behave like real objects as far as possible and
the manipulation actions of the user should be based on the corresponding actions
in a real environment. If, on the other hand, the focus is on simple interaction with
the presented content, e.g., in visualization and entertainment applications, interac-
tion techniques can also be used that are not possible with real objects, e.g., manipu-
lation of objects that are beyond the user’s reach.

The manipulation of remote objects has great potential to improve the effective-
ness of a user interface, as it decouples the target-oriented part of the interaction
(e.g., changing the spatial orientation of an object) from the preparatory actions that
are indispensable in a real environment (e.g., positioning the user within reach of
the object). Ideally, users can then limit their actions to the target-oriented part of an
interaction. A variety of manipulation techniques have been proposed and devel-
oped to try to realize this potential advantage of interaction at a distance in virtual
environments. However, since these techniques are not directly based on the users’
everyday experience, they typically have to be learned. The lack of haptics has also
often proved to be problematic (De Boeck et al. 2005). Therefore, the aspects of
intuitive usability and effective interaction must be weighed up in the development
process.

Similar to selection techniques, manipulation techniques can distinguish between
egocentric and exocentric interaction. In egocentric manipulation, the user is con-
ceptually part of the virtual environment, and perception takes place in the first-
person view. This egocentric perspective on content and interaction is particularly
useful if the user is to feel as present as possible in a VR or AR. An interaction
employing pointing gestures can extend the manipulation to more distant objects
(action at a distance). In the literature, there are a multitude of interaction tech-
niques based on pointing gestures for manipulating distant objects. Interaction tech-
niques based on a virtual hand or pointing gestures are characterized by the fact that
they can be applied generically to any content. However, one downside may be that
objects can only be repositioned within arm’s reach, resulting in clumping, i.e., an
aggregation of objects close to the virtual hand that can be perceived as annoying.
Besides, for specific applications (e.g., in simulations and training applications) the
use of dedicated input devices such as a cubic-mouse has become common, which
as “tools” support a specific interaction task.

With exocentric manipulation, the user is conceptually outside the virtual envi-
ronment. The perception of the content is “from outside” and is also called “god’s

R. Doerner et al.

213

eye view”. This exocentric perspective on content and interaction is particularly
useful when simple interaction with complex spatial content is the main focus, for
instance in visualization applications. Typical examples are the world-in-miniature
(WIM) techniques already mentioned. In the following, some frequently used tech-
niques will be presented here.

Arcball: The arcball technique is an example of a manipulation technique that
allows solely the manipulation of the orientation of an object. The object to be
manipulated is conceptually enveloped in a sphere and user interactions are trans-
ferred to rotations of this sphere around its center, which in turn is translated into a
new orientation of the object in space. Thereby, a 2D interaction can also be mapped
to the rotation of the sphere. Such a restriction to two degrees of freedom can be
perceived as helpful by users.

Virtual Hand: The virtual hand technique strives to have users interact with vir-
tual objects in a form that is similar to the interaction with real objects. Since the
interaction is based on everyday experience, such techniques are easy to use and
appear “natural” to the user. User interfaces that use such direct interaction, such as
tapping or wiping, are called natural user interfaces. Here, the operation of artificial
input devices such as the mouse does not have to be learned first. They are particu-
larly suitable for applications where a high degree of realism is desired. This can be
extended beyond reality to worlds, e.g., fantasy worlds, that the user is familiar with
and hence can also appear “natural” or rather “supernatural”. Accordingly, super-
natural user interfaces can be conceived, e.g., interaction techniques that are
inspired by wizard spells. However, such natural techniques may also be subject to
numerous restrictions: for example, users are confined to manipulate objects within
their direct reach if it would be unnatural otherwise. In contrast to the 3D cursor, the
virtual hand can be used to perform gestures with the fingers, which can be mapped
to the manipulation of object parameters. This mapping must be learned by the user.
An example is the pinch gesture, the bringing together of thumb and index finger,
which can be mapped to object parameters, e.g., size.

Pointing Gestures: Techniques based on pointing gestures are suitable not only
for selecting distant objects but also for manipulating them. For this purpose, the
pointing gesture is typically interpreted as a pointing beam (cf. ray-casting) or as a
pointing cone (cf. flashlight technique). Pointing gestures are often used in everyday
experiences to select objects, e.g., in a discourse. Thus, they are an intuitive way for
many users to select objects. The extension from selection to manipulation is then
easy to learn. However, a direct transfer of gestures to manipulation is often diffi-
cult. The obvious option to use the pointer beam as a “lever” for manipulation
makes precise positioning and orientation difficult.

Transmission of Hand Movements: A simple way to increase precision is to first
make the selection using a pointing gesture, and for the subsequent manipulation to
interpret the movements of the user’s hand as if the user had grasped the object.
Conceptually, this can be done in such a way that the object moves into the hand of
the user, is manipulated and returns to its starting point after the interaction is com-
pleted. Alternatively, the user is “teleported” to the location of the selected object
and can then manipulate the object there using the techniques of the virtual hand.

6 Interaction in Virtual Worlds

214

Voodoo Dolls: Another example of an exocentric technique is voodoo dolls.
Similar to the WIM technique, it is based on scaling. The user can interact with
scaled copies of individually selected objects. In contrast to WIM or techniques that
directly transmit hand movements, scaling ensures that the user can effectively
manipulate objects of different sizes.

6.5 Navigation

Navigation is a fundamental and often challenging task, as anyone will discover
who is looking for a gas station in an unknown city and does not have a satellite
navigation system available.

In HCI, navigation is also an important user task: users navigate websites, com-
plex text documents or tables, and stroll through computer game worlds. In a virtual
environment, navigation is a universal interaction task and of central importance.
Presence in VR requires that the user can move around the world as easily as pos-
sible. In this context, a distinction is made between two sub-areas, wayfinding and
traveling.

The goal of wayfinding is always to generate a cognitive map of the virtual
world, i.e., a simplified mental representation of virtual space. The process of way-
finding is usually unconscious, and the resulting cognitive map can be different for
each user. Therefore, it is difficult to develop targeted computer-based support to
enable the user to acquire the necessary spatial knowledge. This knowledge can be
divided into three types. Landmark knowledge includes knowledge about promi-
nent, often unique reference points in space (landmarks), which are easier to remem-
ber than other points and can be used for locating points in space. Landmarks are
easier to remember the longer a user is present in the virtual environment. Thus,
they are an important tool for the development of a cognitive map. Landmarks can

Navigation in the real world can be defined as finding one’s way in space by
determining one’s position and calculating a route to reach the desired loca-
tion as well as the necessary activities to accomplish this.

Wayfinding is the cognitive component of navigation. On a higher level of
abstraction, it comprises analysis, planning and decision about paths in the
virtual world. This requires spatial knowledge of the environment, techniques
for planning and deciding on routes, and the use of appropriate tools such as
landmarks, signs, or maps.

R. Doerner et al.

215

be integrated easily into virtual worlds, but they have to be distinguishable clearly
from other objects in the environment and should be positioned in a suitable place.
In AR, pathfinding is based on the usual pathfinding in reality, since the usual spatial
navigation is available at any time. Nevertheless, this wayfinding in AR can be mod-
ified, e.g., by using virtual objects as landmarks, which can also support wayfinding
in reality.

Route knowledge is also called procedural knowledge and describes the knowl-
edge about the sequence of points in a scene that form a route and what actions are
necessary to follow this route. Thus, route knowledge is an action-driven concept
and does not necessarily require extensive visual information. In a virtual environ-
ment, tools such as a digital compass, signposts or waymarks can support the acqui-
sition of route knowledge.

Knowledge about the topology of the environment is called overview knowledge.
This knowledge is qualitatively the most extensive of the considered types and the
acquisition usually takes the longest. Often existing landmark knowledge and route
knowledge are used to get an overview of the virtual environment. For example,
different routes and different reference points are utilized to get an overview of the
virtual world through a comprehensive cognitive map. This knowledge acquisition
is supported by interactive overview maps or the world-in-miniature technique
already described in Sect. 6.3.3.

In virtual environments, the focus is usually on supporting the user’s abilities
through the technical parameters of the system. Field of view, depth and motion
cues (see Chap. 2), and multimodal input/output techniques that appeal to different
senses can support the user in generating a mental map of the environment.

Interaction techniques for traveling are considered of particular importance
because almost every virtual environment must allow the user to move around the
world or at least look around in it. User movement is also a necessary prerequisite
for other basic 3D interaction techniques, such as manipulation or system control.
Without being able to reach a certain place in the virtual world, the hero in a com-
puter game cannot open the treasure chest and the engineer cannot virtually view
the engine compartment of the new electric vehicle. Bowman et al. (2004) define
three tasks for traveling: exploration, search and maneuvering.
In exploration, the user does not have a concrete goal but explores the virtual envi-
ronment by way of investigation. This is especially used in architectural visualiza-
tions, 3D computer games and information visualization. Typically, this task often
occurs at the beginning when an initial orientation is necessary. Direct control of the
virtual camera is helpful to explore the environment interactively and supports the
creation of cognitive maps.

Traveling is the motor component of navigation, i.e., only the basic actions
needed to change the position and orientation of the virtual camera are
considered.

6 Interaction in Virtual Worlds

216

During the search, the user has the goal of reaching a defined position. Without
additional information this form is called “naïve search”; otherwise this targeted
search is called “primed search”.
Maneuvering is about finding an exact position in the immediate vicinity of the user.
It is characterized by short and precise movements. Maneuvering is an interactive
task that often has to be solved between two other tasks. For example, when reading
a sign in a virtual environment, you will first roughly approach the position before
aligning yourself exactly. Then another task can be solved, e.g., manipulating an
object based on the instructions shown on the sign.

In the following subsections, some examples of interaction techniques facilitat-
ing traveling in virtual environments will be presented. The last subsection deals
with design recommendations for navigation techniques.

6.5.1 Control Techniques for Traveling

While most AR systems rely on the usual motion control in real space and control
techniques for traveling are always implicit, VR systems can employ implicit as
well as explicit techniques. Even a combination of both is feasible.

Many VR systems use virtual reality locomotion where the virtual camera is
controlled by specifying a direction vector. Established 3D input devices such as
flystick, wand and 3D controllers of HMD systems like Oculus or HTC Vive are
especially well suited for hand-based control, as their 3D position and orientation in
space are efficiently detected by a tracking system. The user starts the movement of
the virtual camera through the handheld input device and often uses a vehicle meta-
phor for this type of movement. This means that a movement in the virtual environ-
ment is explained by a device like a car or an airplane that the user controls.
Hand-based techniques are easy to implement but have the disadvantage that one
hand has to be used for movement control and is therefore tied.

Eye-directed control is the basic principle of many first-person shooters and
other 3D computer games. The player rotates a virtual avatar (a graphic representa-
tion as an agent of the user in the virtual world) in the first-person perspective with
an input device in a certain direction and then moves forward in this direction at a
certain speed. In desktop systems, this direction vector is determined and normal-
ized as a beam from the virtual camera through the center of the screen. The user or
the virtual camera in the first-person perspective is then moved along this vector
until the user stops or changes direction again. Moving the virtual camera orthogo-
nally to the viewing direction results in the movement technique known from com-
puter games called “strafing” (originally a military practice for attack), where the
user moves sideways out of a hiding place to fight the opponent. In an immersive
environment with user tracking, the gaze vector can be determined directly, e.g.,
relying on head tracking that might already be used in the virtual environment. The
gaze control is natural and easy to use, but has the disadvantage that users can only
move in their viewing direction.

R. Doerner et al.

217

A decoupling of the view vector and direction of movement is obtained by using
the body or hand to determine the direction. The latter is also the basis of the
“camera- in-hand” technique, in which a physical object is equipped with appropri-
ate sensor technology that serves as an exact reference for the virtual camera. A
disadvantage, however, is that it takes some effort to get used to moving the camera
by hand for an egocentric camera perspective.

A special case of motion control is teleportation, in which a user can move
abruptly to any position. This is achieved by an immediate change in camera posi-
tion and orientation. With the proliferation of consumer HMDs and VR games, tele-
portation has become a standard technique for traveling. A separate Sect. 6.5.4 deals
with teleportation in more detail.

Altogether, there is a wide range of motion-based control techniques that can be
used in the interaction design of a VR application. Boletsis (2017) analyzed 36 stud-
ies on traveling techniques and categorized them based on the typology shown in
Fig. 6.3. A further overview of techniques with selected example applications can
be found in (Reddit 2018).

Control techniques are generally easy to implement and established in VR. For
example, teleportation is directly available as functionality in game engines, which
are also used for the development of VR systems. However, the movement in the
virtual world is often only perceived visually by the user. This is in contradiction to
the various body perceptions such as the sense of balance and proprioception (per-
ception of one’s own movement) in case the user does not move. The use of certain
metaphors such as “driving” or “flying” in the user interface can only partially
diminish the contradictions in these impressions. The use of natural gestures such
as typing, pulling/pushing or arm swinging has proven to help improve user-
friendliness (Ferracani et al. 2016; Wilson et al. 2016). Improved visual feedback
during movement, e.g. by dynamically changing the field of vision or displaying a
virtual nose in the peripheral visual area, reduces cybersickness (Fernandes and
Feiner 2016).

Fig. 6.3 Categorization of control techniques in virtual worlds

6 Interaction in Virtual Worlds

218

6.5.2 Walking Technique for Natural Movement Control

The obvious technique for motion control is physical walking. The advantages of
this natural technique are the vestibular movement cues provided by the human
organ of balance during real movement. However, since many VR systems do not
have the necessary large interaction space, alternative mappings of the real user
movement to changes in the virtual camera position must be found. A simple
approach is to scale a small user movement to large virtual changes but then one
gets quite strong fluctuations for small changes due to tracking inaccuracies.
Another approach has become known as “walking in place” (see Fig. 6.4). The user
moves on the spot and is tracked by a suitable tracking system. Advanced approaches
based on movement platforms also allow for manual or automatic reorientation of
the user. On corresponding devices (such as Omni Virtuix), the user glides back to
the starting position on a concave running surface.

Studies have shown that walking in place increases the feeling of presence com-
pared to a purely virtual technique without body movement. However, real move-
ment in space offers an even greater sense of presence (Usoh et al. 1999), although
the risk of increased cybersickness (cf. Sect. 2.4.7) must be accepted (Suma
et al. 2009).

Fig. 6.4 The figure shows a simple “walking in place” method where a user is tracked by a mobile
motion capturing system. The body movements are detected by inertial sensors at the joints and
control movement and orientation in the virtual environment. On the bottom left, the user’s pre-
distorted view (see Chap. 5), which is generated for both eyes, is shown. (© Christian Geiger, HS
Düsseldorf. All rights reserved)

R. Doerner et al.

219

With HMD-based virtual environments, the problem often arises that the user
can quickly move out of the spatially limited tracking area. Here the technology of
redirected walking (RDW) (Razzaque 2005) offers a solution. While the user physi-
cally moves in one direction, the scene is manipulated in a way that the according
changes are hardly noticeable to the user. The user unconsciously adapts to these
changes, so that redirected walking credibly simulates a straight movement in the
virtual environment for the user, although the user has been walking in circles in the
real world. This effective technique is based on the fact that visual feedback influ-
ences navigation more than a physical sensation. Spatial sound can be even more
supportive in this respect since research has shown that the simulation of a rotating
sound source creates the illusion of self-rotation when visual and acoustic stimuli
coincide (Bowman et al. 2004).

Redirected walking has been a scientifically intensively studied control tech-
nique for more than 15 years. According to Nilsson et al. (2018), the ideal RDW
technique should have four characteristics. Firstly, it must be imperceptible and not
allow the user to detect the manipulation. Secondly, it must guarantee security and
prevent the user from leaving the tracking area or colliding with objects or other
persons. Generalization to multiple users or any virtual environment is the third
requirement. Finally, an RDW technique must not have any undesirable side-effects,
such as cybersickness or distraction from the primary task. These properties also
depend on static parameters such as room size, the number of users or the size of the
tracking area, as well as dynamic parameters such as the previous positions of the
users and their targets.

Most RDW approaches change the rotation, translation or movement on a pre-
defined path in the virtual world in relation to the real environment. For individual
cases of this mapping, it has been observed in relevant studies that users do not
notice a deviation of the virtual rotation in the range of −20% to +50% of the real
rotation angle. For RDW movement along a curve, Langbehn et al. (2017) were able
to simulate a virtual area of 25 m × 25 m with a physical tracking area of 4 m × 4 m.
All previous research results confirm the advantage of smaller, more subtle, and
frequent modifications over larger, less frequent modifications. Therefore, the idea
of using unconscious blinking or saccades – the fast jumps between fixations during
which the visual system is blind – as an opportunity for manipulation of positioning
is interesting. Sun et al. (2018) describe a system that allows dynamic saccadic
repositioning in real time and even evades moving elements, e.g., other users.

However, if the user reaches the edge of the tracking area or an obstacle too
quickly, the cautious countermovement is not fast enough to avoid tracking or colli-
sion problems. In Razzaque (2005) it was suggested that in such cases, the system
should “interrupt” users in navigation by forcing them to turn their heads briefly.
Since after such a distraction one has to re-orientate oneself in the virtual environ-
ment, the system can rotate the virtual scene so that the user then moves away from
the obstacle or the tracking border.

Peck et al. (2011) have presented a three-stage system RFED (“Redirected Free
Exploration with Distractors”), which is designed to prevent users from moving
beyond tracking limits or colliding with real obstacles during free exploration in a

6 Interaction in Virtual Worlds

220

virtual world. In each frame, the system determines the expected user direction and
rotates the scene unnoticed by the user in such a way that the next step really goes
into the middle of the tracking space. If the user gets too close to the tracking limits
by fast movements, a distraction in the VR environment is generated as a second
step. In Peck’s example, a hummingbird flies close in front of the user and provokes
the required head movement. If even this distraction is not enough, a virtual barrier
is faded in, which makes it clear that there is no further movement feasible.

An alternative approach by Suma et al. (2011) subtly changes the virtual archi-
tecture in the scene. This approach makes use of change blindness, a phenomenon
of visual perception in which sometimes large changes in a visual scene are not
perceived by the viewer. Specifically, the position of doors and passageways behind
the users was dynamically changed in the work, so that almost 220 m2 of virtual
space in an 18.5 m2 area was accessible. Only one person out of 77 users noticed this
manipulation.

6.5.3 Leaning Interfaces for Movement Control

In connection with the movement technique of steering, there are special interaction
techniques that stimulate the sense of balance more strongly than movement on the
spot through walking in place. The user leans in the desired direction of movement
and the system calculates the locomotion. This “leaning” is comparable to steering
a motorbike or moving while skiing or skateboarding. Leaning-based interfaces
often provide hands-free, easy-to-learn, space-efficient and economical motion con-
trol that uses the sense of balance as physiological feedback (Wang and Lindeman
2012). Different types are distinguished depending on the input device used and the
type of force applied.

• Isometric interfaces require a holding force, i.e., the muscle tension is not con-
verted into movement. The Wii Balance Board is an example of an isometric
leaning interface because it does not move when in use.

• Isotonic interfaces have practically no noticeable counterforce during use, i.e.,
there is no resistance and the input device moves effortlessly. An example is the
Tony Hawk RIDE game board, which allows users to move in any direction
without feeling any resistance.

• The combination of both approaches is called an elastic interface in VR and
offers a better user experience and a higher presence than a purely isometric
interface (Wang and Lindeman 2011).

An example of such an elastic interface is the input device ChairIO (Beckhaus
et al. 2007; see Fig. 6.5). Such “leaning-based” interfaces have the advantage that
they do not require much space. In contrast to purely virtual techniques, they stimu-
late the sense of balance and thus enable higher presence. Utilizing inexpensive
tracking technologies, unusual interfaces can be realized that enable an attractive
user experience.

R. Doerner et al.

221

6.5.4 Teleportation for Movement Control

One of the simplest approaches to traveling is teleportation in VR. This approach
reduces the susceptibility to cybersickness, as the path to the new position is not
perceived. However, at the same time, the user’s orientation is limited as it is diffi-
cult to figure out their location on their own cognitive map. On the other hand, users
are used to cuts from traditional film, in which there is also an abrupt change of
environment based on the narrated content. The only essential difference is that in
VR the user actively causes the abrupt change and also chooses the target. While
classical film editing has rules such as the 180° rule (the orientation of the camera
before and after the cut should avoid crossing an imaginary line that would result in
the “swapping” of right and left), comparable design guidelines are still lacking in
teleportation.

A special form is the point & teleport method, where users are teleported to a
point in the field of vision, which they have previously selected by a selection
method like pointing (Bozgeyikli 2016). To do this, the user points to the desired
point, activates the process, and is immediately at the chosen location. The orienta-
tion remains the same. One reason for the popularity of this method is that the user
can move freely within a limited tracking area (room-scale VR, approx.
10 m2–20 m2). In addition, the point & teleport method, in combination with walk-
ing, in room-scale VR allows both exact movements near the user’s position and
movement over long distances. In studies comparing different methods, such as
teleportation, joystick and redirected walking for room-scale VR, subjects attest that
teleportation is intuitive and user-friendly, while the use of joysticks often leads to
cybersickness (Langbehn et al. 2018).

Fig. 6.5 The ChairIO allows navigation in a virtual environment by leaning in the desired direc-
tion of movement. To implement this concept, a special chair was equipped with additional sensors
according to Beckhaus et al. (2007). (© Steffi Beckhaus. All rights reserved)

6 Interaction in Virtual Worlds

222

Another special form is the speed teleporting method. It was added to the VR
version of the well-known first-person shooter Doom because the speed of the game
poses special challenges to the player’s movement. In speed teleporting, the camera
is not changed abruptly nor does the user see a black intermediate image when
changing location. Instead, images are shown of how the user moves at high speed
on the path from the start position of the teleportation to its end position. Therefore,
the user can continue to act during the teleportation. However, this form of telepor-
tation is more prone to the occurrence of cybersickness.

6.5.5 Route Plan, Goal-Based and Guided
Movement Techniques

The interaction techniques discussed in this section differ from the direct motion
controls mentioned so far because the users partly give up control of their move-
ment. In guided navigation, a user makes use of a moving entity (e.g., uses a train,
steps on an escalator, hops on a conveyer belt) and is moved by it. In route plan or
goal-based movement techniques, users specify only one path to the target, which is
then followed. This two-step approach of path planning and execution of movement
is less common in virtual environments. The user defines the path by directly speci-
fying the path on a map, by specifying waypoints through which a path is interpo-
lated or by specifying a destination while the system automatically determines the
optimal path to that destination. An advantage of losing control over one’s own
movement is that the path animation can be optimized by motion smoothing. This
also includes goal-based techniques where the user only specifies the desired end-
point and the system determines and executes the path to that point itself. For an
easy selection of possible targets, 2D maps or the three-dimensional world-in-
miniature (WIM) technique already presented in Sect. 6.3.3 can be used. For large
virtual worlds, especially, a three-dimensional miniature is a good approach to
select the desired target. The manipulation of the WIM must be done with suitable
tracking technologies and the WIM must be able to be displayed in the virtual envi-
ronment properly. In large installations such as a CAVE or a powerwall, only a
display surface can be utilized, which is far away from the user. With the availability
of mobile devices and tablets with good position sensors, this hardware is particu-
larly suitable for use as a WIM, as the necessary movements can be easily regis-
tered, direct touch with finger, pen or keystroke is possible, and the WIM can be
rendered directly on a screen close to the user.

R. Doerner et al.

223

6.5.6 Criteria for Navigation Techniques

At this point an overview of important design recommendations is given. These are
essentially based on Bowman et al. (2004).

• Virtual landmarks should stand out clearly in the scene and be located at a suit-
able, clearly visible position.

• The motion control should use techniques and input devices that support physi-
ological movement cues.

• Maps support orientation very well if they are readable, represent the environ-
ment with the current position of the user, and are suitably oriented. It is impor-
tant to choose the right size so that the map does not obscure the surroundings.

• Maneuvering techniques must first be easy to use to facilitate rough positioning
and later also allow for exact alignment.

• The motion control should be selected according to the application, the goal of
the user and the technical conditions (e.g., I/O devices) of the virtual environment.

• Natural and magical interaction techniques can be equally helpful. Therefore,
one should always consider both possibilities in interaction design. Compatibility
with other techniques (e.g., for manipulation) should be considered.

• Different interaction techniques may also be useful for different motion control
tasks. It should be taken into account that users may have different abilities. It is
helpful to offer simple and complex navigation techniques when the user profiles
differ greatly.

• For exploration and search, steering techniques and walking are well suited; for
goal-based tasks (“Go to X”), procedures based on route plans are better.

• If navigation is only a secondary user task, the interaction technique should be as
simple as possible so that the user can focus on the important tasks.

• In the case of complex interaction techniques, users should be trained in order to
generate overview knowledge.

6.6 Processes for the Design and Implementation
of Interaction

It is essential for the success of a VR/AR system that the applied interaction tech-
niques allow for a system with good usability. How can this be achieved during the
development of the system? How should one proceed when designing VR/AR inter-
action techniques? How can one ensure that not only technical requirements are
considered in the development processes? Here it makes sense to draw on previous
experience and results in the development of human–computer interfaces in gen-
eral. VR/AR can be regarded as a special case. Therefore, the following section will
highlight the special features of VR/AR, before the next section focuses on the

6 Interaction in Virtual Worlds

224

general software engineering concept of human-centered design as a starting point
for a successful approach to the design and development of VR/AR interaction.

6.6.1 Characteristics of VR/AR User Interfaces

Human–computer interaction is important for many software systems, for example
in the desktop or web area. Over time, design processes have been established in
these domains that are also applicable in principle to the design of user interfaces in
VR. In practice, however, some special features of VR need to be considered in the
design process. A crucial difference is the lack of standardization. For desktop
applications and the design of websites, the available hardware (and the interaction
techniques that can be used based on it) has long been assumed to be largely stan-
dardized. However, these prerequisites do not apply to the field of VR/AR. In par-
ticular, standardized hardware platforms have been developing only recently.
Experience has shown that careful coordination between hardware and software is
necessary to arrive at highly usable solutions. Thus, the development or the selec-
tion of interaction hardware in the design process must be considered equivalent to
software development. Specifically, the following differences arise for VR/AR
applications compared to other domains:

• Development processes: The established human-centered design processes can
in principle be transferred to VR/AR applications. Differences arise primarily for
individual design activities within these processes. Furthermore, the develop-
ment/selection of suitable hardware must be included in the process.

• Authoring kits: In the desktop and web area, developers have access to estab-
lished and largely standardized authoring kits of interaction and presentation
elements (widgets or controls). Since their visual design and function has been
optimized over the years, the developer can concentrate on the problems arising
from the interaction of several widgets in a user interface. In the field of VR/AR,
on the other hand, even basic interaction techniques often have to be reimple-
mented, so that problems can already be expected here.

• Tools: In the desktop area, rapid prototyping tools are widely used to quickly
create user interface designs. They allow authors to compare different designs at
an early stage and involve end-users in the design without programming effort.
Comparable tools are only available to a limited extent for VR/AR applications.
Furthermore, there are hardly any special test tools that help developers to evalu-
ate and test.

Due to these specifics, different approaches have been developed in the past to
support the design of VR/AR interactions. A common concept is to develop com-
plex interactions based on simple building blocks provided by an appropriate tool-
kit. A systematic approach to this was presented e.g. by Card et al. (1990). The basis
is formed by the available sensor data and a series of operators for linking, which

R. Doerner et al.

225

together span a design space for interaction techniques. This concept of the design
space supports the developer in the systematic consideration of different design
options. The physical properties that can be detected by input sensors (e.g., absolute
and relative position, absolute and relative force) are combined with linking opera-
tors (e.g., merge, layout, connection). An interaction technique is realized by com-
bining physical sensor data with logic operators and mapping the resulting data into
the application domain. In practice, this approach is well suited to specify interac-
tion techniques but does not provide much support for (creative) design and practi-
cal implementation. Another well-known approach to systematize the development
of VR/AR interactions goes back to Bowman and Hodges (1999). It is based on a
taxonomy of typical recurring interaction tasks (such as selection, positioning or
manipulation of 3D objects). Based on these general interaction tasks, a division
into individual subtasks is made. The technical implementation of these subtasks
can then be carried out by one or more technical components. For example, the
interaction task “coloring a 3D object” can be divided into the following subtasks:
selection of an object, selection of a coloring tool and application of the tool to the
object. The taxonomy is supplemented by various metrics that describe the suitabil-
ity of a specific interaction technique in a concrete application context. In the above
example, the metrics can then, for instance, provide developers with information on
the advantages and disadvantages of different potential components for implement-
ing the subtask “selecting an object”.

6.6.2 Human-Centered Design of VR/AR Interactions

A systematic approach that is central to human-centered design is suitable for devel-
oping both individual interaction techniques and complete systems with good
usability. Iterative procedures have established themselves as “best practice”, which
divide the development into several phases and are iterated taking the results of user
tests into account. In the literature, there are various iterative process models, some
of which have the status of ISO standards (e.g. DIN EN ISO 9241-210, often
referred to as its outdated predecessor ISO-13407, or ISO/PAS 18152). In practice,
VR/AR projects often use a procedure adapted to the specifics of the current project.

Iterative development processes are based on a cyclical sequence of design activ-
ities (see Fig. 6.6). The sequence of these activities is repeated until a satisfactory
result is achieved. The goal is to obtain feedback from users as early and repeatedly
as possible and to be guided by this feedback in the development process. The actual
iterative design process is often preceded by project preparation. The following
points should be addressed during project preparation:

• Defining the development goal
• Specifying a (possibly modified) development process
• Putting together the development team
• Selecting the development tools

6 Interaction in Virtual Worlds

226

• Planning of user participation
• Defining quality criteria, e.g. learnability, efficiency, effectiveness, error rate,

user satisfaction, user experience

In DIN EN ISO 9241-210, the procedure is structured into four central design
activities (see Fig. 6.6), which are considered in more detail below:

• Analysis of the context of use
• Specification of requirements
• Concept, design, and implementation
• Evaluation (especially user tests)

 Analysis of the Context of Use

The analysis and documentation of the context of use, for example through inter-
views, field studies and user workshops form the basis for the following develop-
ment. In this activity, the user groups, the tasks to be supported and the application
environment are analyzed and documented. It is important in the development of
VR/AR applications that the technical environment is also analyzed here, for exam-
ple, to identify the available sensors and input modalities. The specification of the
usage context is not a static document in an iterative process, but is continuously
checked, updated and refined during the development. Especially in VR/AR appli-
cations, in which new interaction techniques based on additional sensors are inte-
grated, significant changes can occur during development.

Fig. 6.6 Iterative development process according to ISO 9241-210

R. Doerner et al.

227

 Specification of Requirements

In this design activity, specific requirements for the system are identified taking into
account the context of use. In addition to the requirements of the customer and the
end-user, other framework conditions such as goals regarding usability, regulations
for occupational safety, etc. must also be considered. As the development of VR/AR
systems often involves breaking new technical and thematic ground, explorative
techniques such as scenario-based design (Carroll 2000) have proven effective.
Here, short stories are used as “scenarios” to describe a hypothetical interaction.
These quickly created and easily modified prototypes enable potential users and
content experts to provide feedback on the planned processes early in the design
phase, even if the system (and possibly even the necessary technology) is not yet
available. Since these prototypes can be created and modified quickly, it is possible
to explore a wide range of different concepts at low cost. More formal approaches,
such as functional decomposition and task analysis, are often more difficult to apply
in VR, as with novel interaction techniques and applications the detailed require-
ments can often only be identified iteratively during development.

The concept of use cases is closely related to the scenarios in scenario-based
design. Use cases also describe the interaction of users with a system. The term use
case is sometimes used differently. One view (particularly common among design-
ers) interprets use cases in terms of goals that are supported by an application. A
VR/AR application of a complex technical system could support, for example, the
use cases “trade show presentation” and “interactive training”, each of which con-
tains different functionalities. A scenario then describes an interaction sequence in
one of these use cases, for example, an interactive sequence for presenting content
in the “trade show presentation” use case.

The second view (especially in software engineering) employs use cases to
define an interactive system in detail. In this view, a use case consists of a list of
steps (both user and system) that lead to the achievement of a goal. A central differ-
ence is the stronger formalization. Use cases in software engineering are often for-
mulated in a formal system, e.g., in a UML use case diagram. This view of use cases
is of particular interest if the initial exploration is already completed and an interac-
tion concept is to be implemented.

 Concept, Design and Implementation

This activity is concerned with creating designs. For the development of novel VR/
AR systems, it is useful to apply a rapid prototyping strategy in an iterative process.
In the first iterations, the designs are created as sketches, storyboards or mock-ups
without implementation. Then, they are evaluated in the next step of the iteration
(Buxton 2007). Sketches represent a simple graphical representation of the inter-
face, while storyboards (originally used in film production) represent a dynamic
interaction process as a comic-like sequence of sketches. The concept of mock-ups
was taken from industrial design, where scale models have a long tradition. In the

6 Interaction in Virtual Worlds

228

context of user interfaces, the term mock-up can refer to both purely visual dummies
and partially functional prototypes. The aim is to explore a wide range of design
alternatives at a reasonable cost. This approach is particularly important for new
types of user interfaces as less experience can be drawn on and design decisions
should be based on user feedback – and users can only give limited feedback on a
purely textual description of a user interface. In later iterations, the design represen-
tation is then increasingly refined until the implementation has become mature
enough to be released.

 Evaluation (Especially User Tests)

In the following activity, the designs are evaluated or the implemented solutions are
tested with real users. Based on the results, all or individual design activities are
then iterated to improve and refine the design. Since evaluation in the form of user
tests is of central importance for the development of attractive VR/AR applications,
it is discussed in detail in the following section.

6.7 User Tests

Testing interactions in virtual environments is essential, especially because the
complex behavior of humans cannot be modeled mathematically in such a way that
the results of these tests are predictable. Therefore, user interaction in the virtual
environment, as well as the user interface as a whole, is mostly designed and devel-
oped iteratively. Each iteration ends with a test. The evaluation of the test gives hints
about what to change in the next iteration. Therefore, tests are not carried out only
with the completely developed VR/AR system but in all development phases. The
earlier that problems are detected by tests, the easier they can be solved. Testing

“The purpose of the prototype is to make real the conceptual structure speci-
fied, so that the client can test it for consistency and usability.” Frederick
P. Brooks Jr. (1995)

A prototype of a software application is a working software program that
simulates some aspects of this software application while being less complex
(e.g., by being less robust, by supporting only one specific type of hardware,
or by omitting the implementation of data security requirements). Nielsen
(1994) distinguishes between horizontal prototypes that simulate a broad
range of the software application’s features and vertical prototypes that focus
on simulating a smaller subset of features more in-depth with increasing
functionality.

R. Doerner et al.

229

usability is of particular importance. Other aspects of software ergonomics can also
be checked by tests, e.g., the user’s exposure to unnatural body poses in a virtual
environment and the resulting fatigue.

Participants (also called test subjects) must be carefully selected so that they
represent the later users of the VR/AR system well. An alternative to relying on
participants is heuristic evaluation, in which a system is evaluated by at least two
experts working separately from each other based on guidelines (general guidelines
such as standards and norms, for example, DIN EN ISO 9421 “software ergonom-
ics”, or product-specific guidelines).

A test plan must be drawn up so that the individual tests can be carried out effec-
tively and are comparable. For this purpose, the test procedure is divided into
phases. The first phase is test preparation, which should take place before the par-
ticipant appears. After a test introduction (greeting, providing information on the
purpose, procedure and duration of the test, and obtaining each participant’s consent
to take part in the test), the actual test execution is conducted. A participant can
execute several tests one after the other (within-group design). This has the advan-
tage that fewer participants are required and individual differences do not have such
a strong impact. However, the participant tires more quickly, and learning effects
occur, for example, if a task needs to be solved several times in different variations.
Here, a test in which each participant tests only one variation (between-group
design) is better suited. A between-group design is unavoidable if one wants to take
into account characteristics (e.g., age, handiness, gender) of the users in the test –
after all, a participant cannot take the test once as a young child and then minutes
later as an adult. Assignments in a user test must be made randomly. For instance,
in a within-group design, the order of the variants is determined randomly or accord-
ing to a fixed variation scheme (e.g., a Latin square). The test instructions should be
specific and should not leave room for interpretation or be sub-specified (for exam-
ple, is the participant standing or sitting?). The last phase of the test is the debrief-
ing, where, in addition to thanks and possible rewards, the participant should be
asked for free comments. In total, the test duration should not exceed 45 min. Before
the test is conducted with a large number of participants, a pilot (also called pre-test)
with two to three participants should be conducted. This serves to better estimate the
time required and to detect problems in the test plan (e.g., test instructions are
ambiguous) at an early stage. Throughout the entire test, the test conductor should
bear in mind that ethical aspects must be taken into account. After all, this is a test
involving human beings as test subjects, so it is essential to protect privacy, be
friendly and allow the test to be stopped immediately at the request of a participant.
Some organizations require that a user test be approved by an ethics committee. In
general, it is necessary to sign a declaration of consent or informed consent, which
contains information on confidentiality, anonymization, utilization of data or pos-
sible risks, such as cybersickness, among other things.

Errors occur during the execution of the test and during measurement that can
hardly be avoided. However, one should work towards minimizing systematic errors
(bias). The mere fact that the participants are aware that they are being tested
changes their behavior and falsifies the test results (Hawthorne effect). This can be

6 Interaction in Virtual Worlds

230

counteracted by creating a calm and relaxed test atmosphere. To avoid bias, tests
should always be performed in the same way – it helps to adhere strictly to the test
plan and to keep the environmental conditions (brightness in the room, temperature,
volume, presence of an audience etc.) constant during all tests. The test leader
should be neutral so that his or her opinion does not influence the participants. Thus,
comments such as “I have worked very hard on my virtual world for three months,
you will find it awesome” should be avoided. Bias can also be caused by learning
effects that occur during the test. Over time, the participant becomes more and more
familiar with the VR/AR system. Since the learning curve is usually steep at the
beginning and then flattens out, it is advisable to first plan an introductory training
session during the test – the first learning effects will then take place in this phase,
in which measurements are not yet taken.

A simple test is to set tasks for participants and watch them perform them (record
them on video if necessary or use logging tools like Morae and analyze them later).
It is particularly effective to have the participants constantly say what they are think-
ing and what they are about to do (thinking aloud test). This helps to understand the
thoughts of the participants. The test leader does not comment on the participants’
statements but just reminds the participants to verbalize. It is also helpful if the test
leader demonstrates the verbalization at the beginning of the test so that it does not
seem awkward or embarrassing to the participants. During the evaluation, phenom-
ena observed throughout the interaction of participants with the VR/AR system can
be described (anecdotal data) or qualitative data can be collected. A technique for
qualitative analysis is coding, where a code is assigned for an incidence (e.g., “par-
ticipant is frustrated”). In the end, the occurrences of the codes are analyzed. If
several people independently code the same recording of a user test and the results
are consistent, the observations have been objectified. Cohen’s kappa, a statistical
measure, is used as a measure of agreement. The analysis of qualitative data is often
based on the grounded theory of Glaser and Strauss (1967).

Interviews and questionnaires are further techniques to collect more data about a
VR/AR system in a test. For this purpose, already existing carefully designed ques-
tionnaires can be used. Examples are the ISONORM questionnaire for usability
(Prümper 1993), the AttrakDiff questionnaire for measuring user experience (prag-
matic as well as hedonistic quality), the QUIS questionnaire (Questionnaire for
User Interaction Satisfaction), the task load index of NASA (NASA-TLX), which
deals with the stress and load users feel, or questionnaires for assessing presence
such as WS (Wittmer and Singer 1998) and SUS (Slater et al. 1994). Questionnaires
allow the test to be performed without the presence of a test leader. Special attention
must be paid to the clear formulation of test instructions and questions (e.g., no
double negations) because further questions are not possible. Questions that charac-
terize the participant (age, gender, previous knowledge, etc.) should be asked at the
end of the questionnaire, as even a participant who is tired at the end of the test can
still answer these questions easily. Open-ended questions (such as “What did you
find disturbing when using the VR system?”) are often not answered or not answered
in detail. Nevertheless, at least one open question of the type “Do you have any
further comments or remarks?” should always be included. If a test leader is

R. Doerner et al.

231

present, he or she can also ask the open questions in the form of an interview, as this
gives better chances for a detailed answer. Multiple-choice questions are often used
in questionnaires. A special form is a Likert scale. Here statements are made (e.g.
“The navigation was easy to learn.”) and the participants can choose one of several
alternative answers to express their degree of agreement with the statement (e.g.,
1 – “agree fully”, 2 – “agree”, 3 – “don’t know”, 4 – “don’t agree”, 5 – “don’t agree
at all”). Another special form is the semantic differential scale. Here, pairs of oppo-
sites are used in a statement and the users can indicate their position on a scale (usu-
ally 5 or 7 parts), for instance, “The learning of the navigation was: easy _ _ _ _ _
difficult”.

Scales such as the Likert scale in a questionnaire allow quantitative data to be
collected. Quantitative data can also be obtained by taking further measurements in
the test, such as the time taken to solve a task or the number of errors made. Three
cases are distinguished for the evaluation of these data. In the first case, nominal
data are available, i.e., data that cannot be ordered (e.g., the participant was right-
handed/left-handed). In the evaluation, these data are described by their ratio (e.g.,
in the user test 12% of the persons were male, 88% female). They can be visualized
with a pie chart. In the second case, the data is either ordinal, i.e., the data can be
put in a sequence (e.g., interaction technique A is rated better than interaction tech-
nique B – but no statement is made as to whether it was better by a short margin or
by lengths), or rational, i.e., here differences between the values have a meaning
and the values can be put into a ratio (e.g., a participant needed twice as long (80 s)
to complete a task with interaction technique A than with interaction technique B,
where it took 40 s). The data is evaluated by determining q% quantiles, where q lies
in the interval from 0 to 100. For example, the 30% quantile is the observed value w
where 30% of all values are smaller than w. The 50% quantile, the median, is always
determined. The data can be visualized in a bar chart or a box plot (also called a
Tukey box plot or a box-and-whisker diagram); see Fig. 6.7. The values of scales

Fig. 6.7 Visualization of the test results with a box plot

6 Interaction in Virtual Worlds

232

from questionnaires such as the Likert scale are ordinal. It is controversially dis-
cussed whether they can also be treated as rational data – this would mean, for
example, that the difference in agreement between “fully agree” and “agree” is as
great as the difference between “don’t know” and “don’t agree”. The third case is
when data is both rational and normally distributed, i.e. the distribution function of
the data is in the form of a Gaussian bell curve. In this case, it is sufficient to calcu-
late the arithmetic mean μ and the standard deviation σ. As a rule of thumb, a nor-
mal distribution can be assumed if the number of measured values is large (usually
greater than 50) or if more than 99.7% of all measured values lie in the interval
[μ – 3σ, μ + 3σ]. The presence of a normal distribution can be checked more pre-
cisely with a statistical test, the Shapiro-Wilks test.

Since usually not all potential users of the VR system are tested, but only a
sample instead of a complete survey, the question remains how meaningful the test
result is. Let us assume that four tests have been carried out and all participants rate
the VR system A better than B. Can we conclude that A is actually better? Assuming
that both systems are equivalent on average (null hypothesis), 50% of all users
would have to prefer A. Of course, it could be that we have accidentally caught four
people among our participants who prefer A – just as a perfect coin can be flipped
four times in a row and show “heads” four times. The probability for this case, if the
null hypothesis holds, is (0.5)4 = 6.25%. In other words, if we answer the initial
question with “yes”, i.e., reject the null hypothesis, the probability is 6.25% that we
are wrong (and A is not better in reality after all, and we were unlucky in our sample

User Test Example 1: In a user test, nine users had the task to perform a task
once with VR system A and once with VR system B (whereby it was ran-
domly determined which VR system was used first). The times for task com-
pletion were measured. The following results were obtained (the first number
in the tuple indicates the time in seconds for A, the second the time for B):
(66,102), (75,80), (62,81), (74,46), (71,105), (76,70), (70,100), (68,99),
(75,102). We formulate our null hypothesis: “There is no difference in task
processing time between the two systems”. Our hypothesis to be tested, “A is
faster than B, or B is faster than A” comprises two possibilities. Hence, we
must perform a two-tailed test. There is a within-group design (connected
sample) with two groups and rational data. Therefore, we carry out a Wilcoxon
signed rank test and obtain a p-value of 7.422%. The p-value is higher than
our threshold of 5%. Due to the small number of participants, we cannot
assume normally distributed data. In fact, the Shapiro-Wilks test shows that
our data is not normally distributed. As a result, we must not use the paired
t-test. All in all, we cannot make any statements regarding the hypothesis in
our user test.

R. Doerner et al.

233

and happened to test an unrepresentative selection of users). As a rule, a probability
value (p-value) of at most 5% is required. In our example, based on the test, we can-
not prove that A is better than B in a statistically significant way at the significance
level of 5%. No statement can be made. There are several statistical methods to
calculate this p-value, which are shown in Table 6.1. Different tests are used depend-
ing on the type of data and the question. A distinction is also made as to whether a
within-group design (paired groups) or a between-group design (unpaired groups)
was used in the test. If you have more than two groups (e.g., five interaction tech-
niques) that you want to compare, you can compare two groups in pairs. However,
the significance level should be divided by n when statistically evaluating test data
n-fold (Bonferroni correction). Therefore, there are special tests such as ANOVA
(analysis of variances) which look at several groups simultaneously. The p-values
for the individual statistical tests can be calculated with software, e.g., with spread-
sheet programs such as Microsoft Excel or with statistical packages such as the
commercial SPSS or the free software R (r- project.org).

If one wants to determine whether two variables are related in measurements
(e.g., the evaluation of an interaction technique with the handedness of a person),
correlations can be calculated (see Table 6.1) to quantify this relationship. If there
are more than two variables, a regression analysis is carried out. Especially in sci-
entific studies, one is not only interested in correlations, but also in causations (and
correlation does not imply causation). For this purpose, the methodology of the
controlled experiment is used. Here, all factors are identified that can influence a
measurable result, the score. In the experiment, all factors except one, the treatment
factor, are kept constant. In this way, cause–effect relationships between changes in
the treatment factor and changes in the score can be examined.

User Test Example 2: In a user test, 10 participants had tested VR system M
and 12 further participants had tested VR system N. All participants evaluated
the system in a questionnaire with school grades (A to F). As a result M
received the following grades: 3 × “A”, 2 × “B”, 3 × “C”, 2 × “D”, N received
the following grades: 1 × “A”, 3 × “C”, 5 × “D”, 3 × “E”. The data are ordinal
and there is a between-group design (unpaired groups). We apply the Mann-
Whitney U-Test (also called the Wilcoxon rank sum test) as a one-tailed test.
To conduct the test, we code grade “A” as “1”, grade “B” as “2” and so forth.
We formulate the following hypothesis: “M was rated better than N”. We
obtain a p-value of 0.789%, which is less than 5%. As a result, we can say that
our test confirmed the statement “M was rated better than N” in a statistically
significant way.

6 Interaction in Virtual Worlds

http://r-project.org

234

6.8 Ethical, Social and Legal Aspects of VR/AR

Why is it essential to actively deal with ethical or legal aspects when designing or
providing interactive VR/AR systems to users? Why can it have moral or legal con-
sequences if you fail to do so? An essential answer to these questions is that VR/AR
can have significant effects on users. This becomes very obvious when users of a

User Test Example 3: In a user test with two interaction techniques A and B,
the following results are obtained: 12 right-handed persons prefer A, 23 right-
handed persons prefer B, 18 left-handed persons prefer A, and 9 left-handed
persons prefer B. Our hypothesis is: “There is a connection between handed-
ness and preference of an interaction technique”. We have nominal data avail-
able with two unpaired groups. We run Fisher’s exact test and get a p-value of
2.036%. This is less than 5% and our data show statistically significantly that
there is a correlation between handedness and interaction technique. By cal-
culating the contingency coefficient (according to Pearson) we can quantify
the strength of the correlation. In our example, it has a value of 0.306. A value
of 0 would mean no correlation, a value of 1 would mean maximum
correlation.

Table 6.1 Application of statistical methods in the evaluation of user tests

Task Nominal Ordinal or rational

Rational and
Normally
distributed

Statistic description Relative frequencies q% quantiles, especially
median

Arithmetic mean,
standard deviation

Compare 1 group with
hypothetical value

Chi-square test Wilcoxon signed rank
test

One-sample t-test

Compare 2 groups,
unpaired

Fisher’s test Mann-Whitney-U-test
(Wilcoxon rank sum
test)

Unpaired t-test

Compare > 2 groups,
unpaired

Chi-square test Kruskal-Wallis test One-way ANOVA

Compare 2 groups,
paired

McNemar’s test Wilcoxon signed rank
test

Paired t-test

Compare > 2 groups,
paired

Cochran’s Q test Friedman test Repeated measures
ANOVA

Quantify the relationship
between two variables

Contingency
coefficient (after
Pearson)

Spearman correlation Pearson correlation

R. Doerner et al.

235

VR system vomit due to cybersickness or when users of AR stumble and fall down
because they perceive reality only partially. There are also less direct and visible
effects. It is easier to distance oneself emotionally from a movie when watching it
sitting at a certain distance to the screen than being fully immersed in a virtual envi-
ronment. Users experience themselves as part of the virtual world (as opposed to as
an observer of movies) and as part of the events. The more actively the user can
interact with the virtual world and the more physical stimuli are experienced con-
gruently with the virtual environment, the more credibly and “real” this world is
experienced. Thus, the experiences potentially have a stronger effect on the psyche
and self-model (Madary and Metzinger 2016) and thus also, often unconsciously,
on current thoughts, feelings and behavior.

Behavioral changes can be induced, for example, by choosing an avatar with a
certain size, skin color, gender and body dimensions. Research has shown the effect
of priming through stereotypes, i.e., ideas and images typically associated with cer-
tain social groups (e.g., defined by race or gender) such as their behavior and abili-
ties. People react differently to such priming in social contexts. The extent to which
people are confident in themselves and perform also depends on this. The choice of
a certain type of avatar in a virtual world can be a form of priming and can lead to a
change of behavior later on in reality, even if the virtual world has already been left.
Peck et al. (2013) have shown in an immersive experiment that after a stay in a vir-
tual world in the body of a dark-skinned avatar, implicit racial prejudices decreased
significantly, in contrast to the control groups without a dark-skinned VR avatar.
Piryankova et al. (2014) were able to show the effect of experienced altered versions
of one’s own body (thicker, thinner) on the self-image.

The term “rubber hand illusion” describes the phenomenon of triggering a sub-
jective perception with VR/AR in which we are no longer our own body, but iden-
tify with an avatar, at least in partial aspects (Lenggenhager et al. 2007; Metzinger
2014) – just as one can trick people to integrate a rubber hand into their own body
awareness. This transformation is created, for example, when a user feels a stimu-
lus on his or her own back but can only see it on the distant avatar (see Fig. 6.8). In
doing so, the sense of self can, so to speak, extend in the direction of the avatar.
This is called a whole-body illusion. Other methods, for example, showing your
own physical heartbeat as a pulsating aura around the avatar, can lead to similar
effects. If one investigates the virtual environment from the perspective of an ava-
tar, tactile sensations can be induced with visual methods. With these methods,
events that happen to the avatar in the virtual world can be experienced more
strongly as “happening to ourselves”, with all the possible consequences that can
result from this.

These and other presentations of illusory content and contexts that cannot be
experienced in the real world can lead to a change in the inner models of “how the
world works” (Madary and Metzinger 2016) and thus to manipulation of internal
assumptions and models. These modified internal models, no longer learned in the
“real” world alone, may then possibly determine the user’s actions in the real world.

6 Interaction in Virtual Worlds

236

An example of this can be found in clinical psychology. Rizzo and Koenig (2017)
show the progress made since the mid-1990s in the use of VR to treat post-traumatic
stress disorders and many types of other psychological, motor and functional
impairments. It becomes clear that such “manipulations” of people by VR can later
lead to dysfunctions in the real world if VR therapy is not professionally accompa-
nied, used responsibly and in full knowledge of possible consequences. The decep-
tive presentation and misleading of senses can have dire consequences, such as
depersonalization. Cases of cyberbullying, immoral assaults or violence are known
from non-regulated social VR worlds. A further problem area is an escape from
reality (escapism).

Consequently, VR/AR can have diverse effects on users, including long-term
effects, both obvious and not so obvious. This raises a lot of questions: How is the
physical and mental health of users guaranteed? What are the effects of permanent
residence in an immersive environment? If a user of AR can no longer distinguish
between real and virtual content, what ethical and legal rules should apply in such
an environment? What responsibility do developers, operators and users of VR/AR
systems take? How do you make sure that this responsibility is accepted? Technology
in general, and VR/AR in particular, is neither good nor bad. It is the effects of use
on people and society that can become problematic, that must be estimated in time –
and that must be considered when implementing and using VR/AR. It must be

Fig. 6.8 Synchronous
stroking of the user’s and
avatar’s backs can cause a
“(partial) transfer of the
sense of self” to the remote
avatar. (© Steffi Beckhaus.
All rights reserved)

R. Doerner et al.

237

considered that people not only create new technologies such as VR/AR and thus
change their environment, but that they themselves are also changed, individually
and as a society (e.g., with regard to self-perception, world view and judgment).

First indications of how to answer the questions raised above are available from
various sources. The ethics guidelines of renowned computer science and engineer-
ing associations, such as ACM (2018), point out the essential aspects of ethical and
social development of technology and its applications. Legal regulations that are
significant for information technology systems can be found in many different
places in the legal system, including data protection law (including employee data
protection), freedom of information law, computer criminal law, intellectual prop-
erty law, IT security law, telecommunications law, media law, youth protection law
and consumer protection law. Certification standards attempt to ensure the safety of
commercial products. For example, IEC 62366-1:2015 obliges manufacturers of
medical products to prove through evaluation that users are not jeopardized by
incorrect operation. This means that there are implicit regulations for VR/AR appli-
cations, but these are usually only formulated in general terms and do not cover all

Values: internalized ideas in a socio-cultural unit that are recognized as desir-
able (e.g., sincerity, justice, loyalty).

Morality: The actual principles of action of a community, based on com-
mon values and traditional customs and traditions; they enable an intuitive
distinction to be made between “good” and “evil” and provide practical guid-
ance on alternative courses of action.

Ethics: Scientific discipline of philosophy that deals with the recogniz-
ability of values and the argumentative substantiation and precise formulation
of moral principles. In everyday use, it is usually erroneously used synony-
mously with “morality”.

Law: External obligations of a party to act, which are usually sanctioned
in case of violation. Law often has a moral quality, but does not regulate all
ethical questions and also considers other issues (e.g., right/left-hand driving
in road traffic).

ELSI/ELSA: Ethical, legal and social implications/aspects. Research
activities that consider the non-technical aspects as an integral part of project
work, especially in human–technology interaction projects.

Technology Assessment (TA): A research area in the philosophy of tech-
nology that considers developments in science and technology. Ideally, TA
should support the public to form an opinion on the implications and conse-
quences of using technology. TA should also formulate recommendations for
action to avoid risks and to exploit opportunities for society.

6 Interaction in Virtual Worlds

238

aspects. For example, effects regarding possible changes in the personality of users
are currently not regulated at all.

There are further indications from initial research articles on ethics and VR/AR,
for example in the area of possible legal guidelines concerning VR (Spiegel 2017)
or the ethical aspects of the use of VR in clinical psychology already mentioned
(Rizzo and Koenig 2017). A largely unexplored aspect is the question of long-term
consequences for the individual, but also society as a whole. This includes ques-
tions like:
What happens if we repeatedly do not experience real things through our senses but
only perceive simulated stimuli? We know that humans adapt quickly to sensory
inconsistencies. What happens if we are successful with actions that were previ-
ously impossible in reality? How do we deal in the real world with the habit acquired
in VR that virtual actions have no real consequences?
How does the self-image change through the possibility/experience of one or many
alternative self-representations (avatars) each with their own physical appearance,
movement and behavior (identity tourism)? What effect do incongruent, distorted,
or for the real world wrong, physiological and psychological stimuli have on the
internal models of the human being?
What are the consequences of excessive use (overuse), escapism, physical neglect
and self-image change on society, e.g., follow-up costs in the health care system?
What is the influence on people and societies through the realistic experience of
fictional cultures, behavior and moral standards?

In this field of guidelines, laws, opportunities, risks and open questions, it is
crucial that researchers, developers and product manufacturers should now be able
to assess the advantages and risks of their developments in an informed and compre-
hensive manner – to meet their responsibilities. Otherwise, they could harm their
users and possibly be sued for this. This is not an easy task when given the complex-
ity of the subject matter. In addition, the effects of VR/AR on people and society are
not always obvious. It is also often difficult to causally attribute observed actions of
users to VR/AR.

The five perspectives shown in Fig. 6.9 help to get an overview of the topics to
be considered, the complex interrelationships, and possible effects of VR/AR for
own research and project developments. A forward-looking risk assessment, a tech-
nology impact assessment and a social cost-benefit assessment are also necessary.
Contents, procedures, forms of presentation, interaction possibilities, explanations
and consent must be considered responsibly from each of these perspectives. The
overarching view should be that VR/AR technologies are not developed and used as
an end in themselves but should clearly serve people and their interests in the con-
text of use. In certain cases, the deliberate violation of such guidelines may be
necessary, for example in the course of research on humans. However, this must be
appropriately reflected and documented. Ethics committees, such as those that exist
at most universities, can provide support in this regard.

R. Doerner et al.

239

Fig. 6.9 Five perspectives that can show the effects of VR/AR and corresponding fields of action

6 Interaction in Virtual Worlds

240

6.9 Summary and Questions

To ensure that users do not feel like apathetic or even paralyzed persons in a virtual
environment, it is essential to enable interaction between the users and the virtual
world in VR or virtual elements in AR. Thus, designing and creating a user interface
is a standard task. This interface uses interaction techniques. With some of them, the
user might already be familiar, as they stem from traditional user interfaces. Some
interface techniques, however, are specific to VR, such as the world-in-miniature
technique or the camera-in-hand technique. Another novel aspect of interaction in
VR and AR is that it opens up unusual design possibilities: for example, interactions
can be natural or magical. In every VR and AR, there are typical basic tasks that can
be solved by suitable interaction techniques: selection (of objects or places, sur-
faces, volumes), manipulation, navigation and system control. The individual basic
tasks can be refined so that navigation can be separated into wayfinding and travel-
ing – and traveling again can be separated into exploration, search and maneuver-
ing. Overall, the selected interaction techniques are to be integrated into an overall
concept of a consistent user interface and design decisions are to be made, e.g.,
whether constraints or modes are to be introduced. Here, results from the field of
human–computer interaction can be helpful. Thus, especially in the field of HCI,
process models developed for the design and realization of user interfaces can gen-
erally be transferred to interaction in VR and AR. Early involvement of the users,
the execution of user tests (and their careful evaluation, especially with statistical
methods) and an iterative procedure can also be advantageously applied to VR/AR
systems to achieve a high level of usability. So far, there are hardly any empirical
values on how VR/AR affects the individual user. Ethical, legal and social implica-
tions have to be considered continuously with their different perspectives.

Check your understanding of the chapter by answering the following questions:

• Find examples of interaction techniques that can be classified as tethered!
• In a virtual operating room, the user has the task of selecting the right instru-

ments from a shelf with surgical instruments and handing them to the surgeon in
a suitable orientation. Select a suitable selection technique and a suitable manip-
ulation technique. How can feedback be given to the user (as required for direct
manipulation)?

• The limitation to five instead of six degrees of freedom in interaction in virtual
environments, as mentioned in Sect. 6.3.2, can also be seen in the first-person
shooter computer games available on the market. Which degree of freedom is
usually not used here? With regard to the input devices used: Why is this the case
and how would you integrate the sixth degree of freedom into such games?
Which input devices would you use for the realization?

• Develop a navigation technique based on the metaphor of a “flying carpet”. What
constraints are you introducing? Which modes could be useful here? How do you
classify this navigation technique? Which navigation tasks can be covered?

R. Doerner et al.

241

• You are developing a VR application for spatial planning. The users should be
able to freely position furniture in a room and manipulate its dimensions and
materials. Which questions should be answered in the analysis of the usage con-
text? Develop the first specification of requirements!

• Two important aspects of your VR application for spatial planning are loading
room geometry and placing furniture there. In which categories of basic interac-
tion tasks are you looking for suitable techniques? Which techniques would be
your first choice to implement these tasks?

• How would you change the concept of the spatial planning application if you use
AR instead of VR, i.e., you place virtual furniture in a real room?

• To move to a very distant destination in a virtual world, one does not want to ask
the user to walk for 20 min. One considers (a) displaying a selection list perma-
nently at the bottom of the screen from which the user can choose a destination
or (b) recognizing a gesture (crossing the arms behind the head) of the user and
interpreting the following voice input as a destination. What are the advantages
and disadvantages of these two alternatives? Suggest your own implementation
alternative (c). How can you find out which of the three alternatives (a), (b) and
(c) least impairs the feeling of user presence in the virtual environment?

• How high would the p-value be in user test example 1 if the values did not come
from 9 users, but from 18 participants, of which 9 users tested system A and 9
users system B? [Answer: 2.412%]

• Which p-value would have been obtained in user test example 1 if the hypothesis
“With A you are faster than with B” had been chosen (i.e., if a one-sided test had
been performed)? [Answer: 3.711%]

• You are designing a VR application in which users control an avatar on a catwalk
in order to show self-designed fashion to other users, who are also represented in
the virtual world as avatars. Based on the five views in Fig. 6.9, consider which
ELSI aspects are to be considered here, for what reason, and how. To what extent
does it make a difference whether mirrors are present in the virtual world or not?
What changes when AR is used to show an avatar on a real catwalk?

 Recommended Reading

Bowman DA, Kruijff E, Laviola JJ (2004) 3D user interfaces: theory and practice.
Addison-Wesley, Amsterdam – Standard textbook that discusses user inter-
faces in 3D.

Lazar J, Feng JH, Hochheiser H (2017) Research methods in human–computer
interaction, 2nd edn. Morgan Kaufmann, San Francisco – Detailed presentation
of various research methods relevant to VR interaction, including controlled
experiments and ethnography.

Rubin J, Chisnell D (2008) Handbook of usability testing, 2nd edn. Wiley,
New York – Practice-oriented book that shows how to plan, conduct and evaluate
usability tests.

6 Interaction in Virtual Worlds

242

Shneiderman B, Plaisant C, Cohen M (2016) Designing the user interface: Strategies
for effective human–computer interaction (6th revised edn). Addison- Wesley
Longman, Amsterdam – Standard textbook for the field of human–computer
interaction.

Tullis T, Albert W (2013) Measuring the user experience, 2nd edn. Morgan
Kaufman, San Francisco – Book that focuses on measuring in the field of human–
computer interaction and presents a variety of metrics.

Further information on the topic of interaction in VR can be found on the numer-
ous websites of research institutions and especially in the conference proceedings of
the corresponding conferences and workshops, e.g., IEEE Virtual Reality (IEEE
VR), IEEE Symposium on 3D User Interfaces (3DUI), ACM Symposium on Virtual
Reality Software and Technology (VRST), ACM Symposium on User Interface
Software and Technology (UIST), ACM SIGCHI Conference on Human Factors in
Computing Systems (CHI), IEEE Symposium on Mixed and Augmented Reality
(ISMAR), Eurographics Symposium on Virtual Environments (EGVE), and the
EuroVR Conference.

References

ACM (2018) The ACM code of ethics: guiding members with a framework of ethical conduct.
Association for Computing Machinery. https://www.acm.org/about- acm/code- of- ethics.
Accessed 1 Apr 2018

Beckhaus S, Blom K, Haringer M (2007) ChairIO – the chair-based interface. In: Magerkurth C,
Rötzler C (eds) Concepts and technologies for pervasive games: a reader for pervasive gaming
research. Shaker Verlag, Aachen

Bellotti V, Back M, Edwards WK, Grinter RE, Henderson A, Lopes C (2002) Making sense of
sensing systems: five questions for designers and researchers. In: Proceedings of CHI 2002,
pp 415–422

Benford S, Fahlen L (1993) A spatial model of interaction in large virtual environments. In:
Proceedings of ESCW 1993, pp 109–124

Boletsis C (2017) The new era of virtual reality locomotion: a systematic literature review of tech-
niques and a proposed typology. Multimodal Technol Interact 1(4):24

Bowman DA, Hodges LF (1999) Formalizing the design, evaluation, and application of interaction
techniques for immersive virtual environments. J Vis Lang Comput 10:37–53

Bowman DA, Kruijff E, Laviola JJ (2004) 3D user interfaces: theory and practice. Addison-
Wesley, Amsterdam

Bozgeyikli E (2016) Locomotion in virtual reality for room scale tracked areas. Graduate theses
and Dissertations, University of South Florida, Scholar Commons. http://scholarcommons.usf.
edu/etd/6470. Accessed 31 Aug 2018

Brooks Jr FP (1995) The mythical man-month (Anniversary edn). Addison-Wesley, London
Buxton B (2007) Sketching user experiences: getting the design right and the right design. Morgan

Kaufmann, San Francisco
Card S, Mackinlay J, Robertson G (1990) The design space of input devices. In: Proceedings of

CHI 1990, pp 117–124
Carroll JM (2000) Making use: scenario-based design of human–computer interactions. MIT

Press, Cambridge

R. Doerner et al.

https://www.acm.org/about-acm/code-of-ethics
http://scholarcommons.usf.edu/etd/6470
http://scholarcommons.usf.edu/etd/6470

243

Dachselt R, Hübner A (2007) Virtual environments: three-dimensional menus: a survey and tax-
onomy. Comput Graph 31(1):53–65

De Boeck J, Raymaekers C, Coninx K (2005) Are existing metaphors in virtual environments suit-
able for haptic interaction. In: Proceedings of VRIC 2005, pp 261–268

Fernandes AS, Feiner SK (2016) Combating VR sickness through subtle dynamic field-of-view
modification. In: IEEE symposium on 3D user interfaces, pp 201–210

Ferracani D, Pezzatini D, Bianchini J, Biscini G, Del Bimbo A (2016) Locomotion by natural
gestures for immersive virtual environments. In: Proceedings of 1st international workshop on
multimedia alternate realities. ACM, New York, pp 21–24

Foley JD, van Dam A, Feiner SK, Hughes JF (1993) Computer graphics: principles and practice.
Addison-Wesley, Boston

Glaser BG, Strauss AL (1967) The discovery of the grounded theory: strategies for qualitative
research. Transaction Publishers, Rutgers

Jacob RJK (1990) What you look at is what you get: eye movement-based interaction techniques.
In: Proceedings of CHI 1990, pp 11–18

Langbehn E, Lubos P, Bruder G, Steinicke F (2017) Bending the curve: sensitivity to bend-
ing of curved paths and application in room-scale VR. IEEE Trans Vis Comput Graph
23(4):1389–1398

Langbehn E, Lubos P, Steinicke F (2018) Evaluation of locomotion techniques for room-scale
VR. Joystick, teleportation, and redirected walking. In: Proceedings of virtual reality interna-
tional conference (VRIC), pp 1–9. https://doi.org/10.1145/3234253.3234291

Lenggenhager B, Tadi T, Metzinger T, Blanke O (2007) Video ergo sum: manipulating bodily self-
consciousness. Science 317:1096–1099

Madary M, Metzinger TK (2016) Real virtuality: a code of ethical conduct. Recommendations for
good scientific practice and the consumers of VR-technology. Front Robot AI 3:3

Metzinger T (2014) Der Ego Tunnel. Piper, München
Nielsen J (1994) Usability engineering. Morgan Kaufmann, San Francisco
Nilsson NC, Peck T, Bruder G, Hodgson E, Serafin S, Whitton M, Rosenberg ES, Steinicke F

(2018) 15 years of research on redirected walking in immersive virtual environments. IEEE
Comput Graph Appl 38(2):44–56

Peck TC, Fuchs H, Whitton MC (2011) An evaluation of navigational ability comparing redirected
free exploration with distractors to walking-in-place and joystick locomotion interfaces. In:
Proceedings of IEEE virtual reality, pp 55–62

Peck TC, Seinfeld S, Aglioti SM, Slater M (2013) Putting yourself in the skin of a black avatar
reduces implicit racial bias. Conscious Cogn 22(3):779–787

Piryankova IV, Stefanucci JK, Romero J, de la Rosa S, Black MJ, Mohler BJ (2014) Can I rec-
ognize my body’s weight? The influence of shape and texture on the perception of self. ACM
Trans Appl Percept 11(3):1–18

Prümper J (1993) Software-evaluation based upon ISO 9241 part 10. In: Greching T, Tschegli M
(eds) Human computer interaction. Springer, Berlin

Raskin J (2000) The humane interface. New directions for designing interactive systems. Addison-
Wesley Longman, Amsterdam

Razzaque S (2005) Redirected walking. Dissertation, University of North Carolina at Chapel Hill
Reddit (2018) List of VR locomotion techniques. https://www.reddit.com/r/Vive/wiki/locomo-

tion_methods. Accessed 31 Aug 2018
Rizzo A, Koenig ST (2017) Is clinical virtual reality ready for prime time? Neuropsychology

31(8):877–899
Shneiderman B, Plaisant C, Cohen M (2016) Designing the user interface: strategies for effective

human–computer interaction, 6th revised edn. Addison-Wesley Longman, Amsterdam
Slater M, Usoh M, Steed A (1994) Depth of presence in a virtual environment. Presence

3(2):130–144
Spiegel JS (2017) The ethics of virtual reality technology: social hazards and public policy recom-

mendations. Sci Eng Ethics 24:1537–1550

6 Interaction in Virtual Worlds

https://doi.org/10.1145/3234253.3234291
https://www.reddit.com/r/Vive/wiki/locomotion_methods
https://www.reddit.com/r/Vive/wiki/locomotion_methods

244

Suma E, Finkelstein SL, Reid M, Ulinski A, Hodges LF (2009) Real walking increases simulator
sickness in navigationally complex virtual environments. In: Proceedings of IEEE VR 2009,
pp 245–246

Suma E, Clark S, Krum D, Finkelstein S, Bolas M, Warte Z (2011) Leveraging change blindness
for redirection in virtual environments. In: Proceedings of IEEE virtual reality, pp 159–166

Sun Q, Patney A, Wei LY, Shapira O, Lu J, Asente P, Zhu S, Mcguire M, Luebke D, Kaufman
A (2018) Towards virtual reality infinite walking: dynamic saccadic redirection. ACM Trans
Graph 37(4):1–13

Usoh M, Arthur K, Whitton MC, Bastos R, Steed A, Slater M, Brooks FP Jr (1999) Walking
> walking-in-place > flying, in virtual environments. In: Proceedings of SIGGRAPH 1999,
pp 359–364

Wang J, Lindeman RW (2011) Comparing isometric and elastic surfboard interfaces for leaning-
based travel in 3D virtual environments. In: IEEE symposium on 3D user interfaces, pp 31–38

Wang J, Lindeman RW (2012) Leaning-based travel interfaces revisited: frontal versus sidewise
stances for flying in 3D virtual spaces. In: Proceedings of VRST 2012, pp 121–128

Wilson PT, Kalescky W, MacLaughlin A, Williams B (2016) VR locomotion: walking > walking
in place > arm swinging. In: Proceedings of 15th ACM conference on virtual-reality continuum
and its applications in industry, vol 1, pp 243–249

Winograd T, Flores F (1986) Understanding computers and cognition: a new foundation for design.
Addison-Wesley, Boston

Wittmer BG, Singer MJ (1998) Measuring presence in virtual environments: a presence question-
naire. Presence 7(3):225–240

R. Doerner et al.

245© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
R. Doerner et al. (eds.), Virtual and Augmented Reality (VR/AR),
https://doi.org/10.1007/978-3-030-79062-2_7

Chapter 7
Real-Time Aspects of VR Systems

Mathias Buhr, Thies Pfeiffer, Dirk Reiners, Carolina Cruz-Neira,
and Bernhard Jung

Abstract The term real-time refers to the ability of computer systems to deliver
results reliably within a predictable – usually as short as possible – time span. Real-
time capability is one of the most difficult requirements for VR systems: users expect
a VR system to let them experience the effects of interactions without noticeable
delays. This chapter deals with selected topics concerning the real-time capability of
VR systems. In the first section, an overall view of VR systems shows which types of
latencies occur between user input and system reaction. It also discusses how laten-
cies of the sub-components of VR systems can be estimated or measured. The second
section presents common methods for efficient collision detection, such as the use of
bounding volumes, which are important in real-time simulation of dynamic virtual
worlds. The third section deals with real-time aspects when rendering virtual worlds.

7.1 Latency in VR Systems

A fundamental characteristic of VR systems is their interactivity. Realistic immer-
sive experiences in a virtual world are only possible when users can immediately
perceive the consequences of their actions and relate them to their own behavior.
For example, when a user pushes a real button of an input device or a virtual switch
in the simulation, the effects of this action must be experienced within a response
time that corresponds to the user’s expectations. The time span between action
(input) and reaction (system response) is called latency. The greater the latency of
the system, i.e., the greater the time interval between an action and its perceivable
consequences, the less likely it is that users will associate the new world state with
their own actions. This effect can also be observed in the real world: when

B. Jung (*)
Institute for Informatics, Technical University Bergakademie Freiberg, Freiberg, Germany
e-mail: jung@informatik.tu-freiberg.de

Dedicated website for additional material: vr-ar-book.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79062-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-79062-2_7#DOI
mailto:jung@informatik.tu-freiberg.de
http://vr-ar-book.org

246

energy- saving light bulbs were first introduced, they had a rather long latency. In the
transition phase, it happened quite often to the author of this section that after flip-
ping a light switch and observing no immediate reaction, he flipped the switch off
and on again – this of course had the opposite effect: the waiting time for the light
to turn on increased significantly, and thus also the frustration with the system.

In the context of this book, the frequently used term real-time capability also
describes this relationship. A system is called real-time capable if it is able to deliver
results to an input reliably within a predictable time period. In VR systems the
latency should be below the human perception threshold. For the visual sense, for
example, 1/60 of a second is usually considered sufficient. In some other areas of
information technology, the term “real-time” is interpreted more strictly, in that a
guaranteed reliability is demanded: a system is considered to be real-time capable if
it guarantees to be able to respond to an input within a defined period of time.
Although this interpretation would also be desirable for VR systems, constant laten-
cies cannot usually be guaranteed.

An example of an undesired effect in VR caused by latency occurs when moving
a virtual tool that is coupled to the user’s hand movements via a tracking system:
due to latency, the tool is not directly carried along with the hand, but rather, espe-
cially in the case of fast movements, is pulled at a greater or lesser distance. In this
case, the total latency is made up of delays from the tracking system, network com-
munication and graphics output. For the graphical output part, real-time capability
means, for example, that images can always be rendered and displayed at such
speed that the user cannot perceive any single image sequence. However, this state
is difficult to achieve in practice, as a simple change of perspective by the user can
lead to situations in which the graphical system (the graphics hardware) is no longer
able to compute the next image fast enough because the complexity of the now vis-
ible scene is too large or the required data is not directly available.

The graphics system and the communication network of the tracker are only two
of many parts of a VR system where latencies occur. In order to operate an interac-
tive VR system, it is important to be aware of and, ideally, quantify all latencies that
occur. Knowing the potential sources of latencies and how to determine these laten-
cies should already inform the design of VR systems and applications but is also
useful for optimizations in later stages of development. This section first discusses
the concept of latency in the context of VR systems by addressing the requirements,
sources and methods for estimation and measurement of latencies. Sections 7.2 and
7.3 show possible solutions for VR-related subproblems, which can be used to
design real-time capable, and thus low-latency, VR systems.

7.1.1 What Are the Requirements on Latency?

A specific feature of VR/AR systems is view-dependent image generation based on
head tracking. Here, strong requirements exist on latency, especially when head-
mounted displays (HMDs) are used. As users can only see the virtual world but no

M. Buhr et al.

247

longer their own body, high latency has a particularly negative effect on the users’
well-being. This can lead to dizziness and cybersickness (see Chap. 2). Meehan
et al. (2003), for example, found a significantly higher number of people suffering
from vertigo when they increased the latency of an HMD from 50 ms to 90 ms. A
latency below 50 ms is recommended for HMDs (Brooks 1999; Ellis 2009). In sta-
tionary projection systems, such as CAVEs, latency requirements are not as hard
compared with HMDs. Here, when users turn their head, an image with the approxi-
mately correct perspective is already displayed, thus reducing the dissonance
between the expected image and the presented image. A more detailed analysis of
the interaction between different parameters of a simulation and the still perceivable
latency can be found in Jerald et al. (2012).

When it comes to VR and AR, latency is fundamental – if you don’t have low enough
latency, it’s impossible to deliver good experiences, by which I mean virtual objects that
your eyes and brain accept as real. By “real,” I don’t mean that you can’t tell they’re virtual
by looking at them, but rather that your perception of them as part of the world as you move
your eyes, head, and body is indistinguishable from your perception of real objects. […] I
can tell you from personal experience that more than 20 ms is too much for VR and espe-
cially AR, but research indicates that 15 ms might be the threshold, or even 7 ms.
(Abrash 2012).

The blog post by Michael Abrash quoted above was written at the time (December
2012) when the Oculus Rift was first announced. The article received a lot of atten-
tion and inspired several extensive comments and discussions. Among others, John
Carmack (co-founder of id Software, in a leading position at Oculus VR since 2013)
reacted and discussed in a blog post of his own (Carmack 2013) problems and pos-
sible solutions in the areas of rendering and displays.

That such low latencies are called for may be surprising at first. A latency of 20
ms corresponds to an update rate of 50 Hz. One often hears that a rate of only 24 Hz
is needed to display moving images, and this is still the most common capturing rate
in the movie industry today. Typically, however, images are projected in the movie
theater at 48 Hz (i.e., each image is displayed twice). Actually, an update rate of as
little as 14 Hz already suffices, for humans, for the illusion of continuous motion
from individual images to appear. However, this does not mean that we cannot per-
ceive or distinguish between images at higher frequencies. At this point, it becomes
useful to differentiate between the refresh rate (even of the same images) and the
update frequency or frame rate (different images). The critical refresh rate at which
one can no longer perceive the individual images of an image sequence starts just
below 50 Hz, but depends on external factors (Bauer et al. 2009). Only with a refresh
rate above 100 Hz is an image considered to be truly flicker-free. With HMDs, the
frame rate plays a greater role, since the pixels of LCDs, for example, do not need
to be refreshed as frequently as is the case for projectors and CRTs. Here, it is more
important that the latency of the screen is low, so that the content can be updated in
the shortest possible time. Also important, although often overlooked, are issues
with fluctuations in the frame rate. 100 Hz (i.e. frames per second) are of little use
if 99 of the frames are rendered and displayed within the first 5 ms and the last
frame is only displayed after another 995 ms.

7 Real-Time Aspects of VR Systems

248

Besides the effects of latencies that can be perceived consciously, unconscious
effects also play a role. In a simulation, different latencies can arise in different
presentation channels, e.g., visual, auditory and haptic. The presentation can then
become asynchronous. Such incongruencies can, however, be perceived by humans
and may lead to discomfort. The vestibulo-ocular reflex ensures, for example, that
the eyes are automatically moved to counter a head movement (intentionally or
unintentionally) while looking at objects to enable continuous perception. If the
image generation in a head-mounted display has too much latency, the learned
motion reflex of the eyes no longer fits and a refixation must be performed. This
effect occurs similarly under the influence of alcohol or narcotics. In some people,
it is precisely this incongruity that causes discomfort or even nausea.

7.1.2 Where Do Latencies Actually Arise?

Figure 7.1 shows the structure of a typical VR system. Various input sensors, shown
on the upper left of the figure, capture the user’s behavior. Tracking latency occurs
between the time of the user’s movement and the availability of the movement data
as an event for the world simulation. The transport medium exhibits another latency
to be considered separately, the transport latency. An important task of sensor
fusion is to make provisions regarding the latency differences between multiple

Fig. 7.1 Latencies occur at various points in a VR system

M. Buhr et al.

249

tracking systems. Often the weakest link, i.e., the slowest tracker, determines the
overall latency of tracking as a whole.

In the world simulation, incoming tracking events are processed to simulate the
effects of user interactions. The simulation latencies that occur here result from the
necessary calculations and possible waiting times, e.g., for incoming tracking data.
Simulation latencies may vary widely depending on the application.

After a new world state has been calculated by the simulation, the new state must
be rendered into a format suitable for the respective output device. Rendering occurs
not only for visual but also for other kinds of displays, such as auditory and haptic
displays. The time necessary for rendering induces the rendering latency. Finally,
the rendered data is displayed on the output devices, which also does not happen
instantly and thus induces a display latency.

The total latency of the system is also known as end-to-end latency or, when
focusing on visual displays, motion-to-photon latency. A similar categorization of
latencies is proposed by Mine (1993).

When the virtual world, which has changed due to interaction, is (finally) pre-
sented to the user, a certain amount of time has already passed and the presentation
is therefore already outdated. Depending on the frame rate of the system, it will now
take a further amount of time until the currently presented content is overwritten
with new content (frame-rate induced delay).

To assess the total duration of an interaction, it may be appropriate to also mea-
sure the reaction time of users, i.e., the time users need to recognize a newly pre-
sented stimulus, plan their reaction to it and, for example, respond to it with body
movements. Here major fluctuations of latencies between users (e.g., age) but also
within one and the same user (e.g., fatigue) may occur. Of course, the reaction time
of a user is also a relevant factor for interactions in the real world. However, the fol-
lowing explanations refer exclusively to technology-induced latencies of VR
systems.

7.1.3 Is Latency in a VR System Constant?

The combined latency of the entire VR system depends on, among other things, the
update rates of the involved processes. For example, if a tracking system has a sam-
pling rate of 60 Hz, the individual recording times are 16.7 ms apart. On average, a
latency of 8.35 ms is already generated, as physical events (e.g., movements) that
occur up to 16.7 ms later are not detected or passed on until the tracking system
detects them. The same applies to the frame rate. If a projector is able to update the
image at 100 Hz, a change that was not fully rendered until shortly after the last
update will be displayed up to 10 ms later (on average 5 ms).

In a complex VR system with many concurrent subprocesses, update rates may
vary a lot between its individual components. Therefore, the latencies of the overall
system can be subject to significant fluctuations. Thus, in addition to minimizing the
latency of the individual subsystems or the overall system, there is also the goal of

7 Real-Time Aspects of VR Systems

250

ensuring that latency is as constant as possible. Strong fluctuations in the overall
latency can easily be perceived by users as jerking and can have a more disturbing
effect than an overall higher but constant latency.

7.1.4 What Are the Approaches to Determining Latency?

Various approaches to latency determination are presented below. First, it is dis-
cussed to what extent the latency of a system can be estimated from datasheets of
the individual components. This approach is primarily helpful in the planning phase
of VR systems, but it can also give hints for potential optimizations later on. Then,
various methods are presented with which the latency of a running system can be
systematically measured.

 Latency Estimation from Datasheets

To measure latencies, the VR system must already be operational and all relevant
components accessible. However, this cannot be achieved in the planning phase of
new installations. In this phase, the system designer must therefore rely on the infor-
mation provided by manufacturers, on data from comparable systems and on expert
experiences.

Table 7.1 shows examples of the tracking latencies for different types of tracking
systems. The listed examples are based on real system data and are exemplary for
commercially available systems. The data in the table are based either on statements

Table 7.1 Overview of frame rates and latencies of various existing tracking systems, the
manufacturers were anonymized

Type Frame rate Latency

Optical Tracking Systems
Example System A 30 Hz 90 ms–300 ms
Example System B 60 Hz 15 ms–20 ms
Example System C Up to 10,000 Hz with reduced field-of-view 4.2 ms
Example System D 30–2000 Hz, depending on spatial resolution > 2.5 ms
Electromagnetic Tracking Systems
Example System E, wireless 120 Hz < 10 ms
Example System F, wired 240 Hz 3.5 ms
Inertial Tracking Systems
Example System G 60–120 Hz 10 ms with USBa

Hybrid Tracking Systems
Example System H 180 Hz 1–2 ms RS-232;

5–8 ms USB
aSkogstad et al. (2011) report a latency difference of 15 ms between the fast USB connection and
the slower but mobile Bluetooth connection.

M. Buhr et al.

251

by professional users or on information provided by the manufacturers on websites
or in product brochures. A similar, somewhat older, list can be found in (Ellis 1994).
The concrete values are mainly to be understood as rough reference points, since
there is no exact specification of how the measurement process should be designed
and, for example, how many objects were measured simultaneously to collect
the values.

Transport latencies occur during network communication between input devices,
computers with VR software and output devices. In collaborative or multi-player
applications, further, hardly predictable transport latencies occur during communi-
cation with remote computers. With wireless transmission technologies such as
Bluetooth and WLAN, which are often used for communication between input
devices and control computers, transport latencies of > 1 ms occur for individual
messages. With wired transmission, e.g., via Ethernet or InfiniBand, the transport
latencies are generally lower, for example in the range of 0.001 ms to 0.03 ms. The
actual transport latencies depend on the data volume to be transmitted: a network
level event is a single data packet sent from A to B. In the best case, for example, a
message describing a 6 DOF movement event fits into a single such data packet.
Generally, however, this is not the case because some tracking systems send much
larger amounts of data per time step, for example, 3D point clouds. For calculating
the transmission time for all data, the number of packets that are sent over the net-
work would then have to be known. Depending on the network topology, a parallel
transport may be possible but also collision with other data services, e.g., file server
accesses (best to use different network channels here). The actual latency at the
network level is therefore difficult to estimate. For example, in scientific visualiza-
tion very large amounts of data have to be moved. Here VR systems should be
designed whose network components feature transmission rates in the multi-digit
gigabit range, which then usually also offer very good latency characteristics.

Simulation latencies and tolerable threshold values strongly depend on the
respective application and are therefore excluded from this analysis.

Rendering latencies are closely related to the complexity of the scene to be ren-
dered (visually, acoustically, haptically). If the time needed for rendering dominates
the overall latency of the VR system, multi-GPU systems may be considered.
Hardware approaches for multi-GPU rendering include Nvidia SLI and AMD
Crossfire, but software solutions also exist. For an overview of multi-GPU render-
ing see Dong and Peng (2019). For stereoscopic rendering, two images must be
calculated per time step. If the images for the left and right eyes are computed one
after the other, i.e., in two independent passes, the rendering frame rate is effectively
halved compared with monoscopic rendering (as a counter measure one may need
to halve the geometric complexity of the scene). A rendering technique known as
single pass stereo reduces the computational effort for stereoscopic image genera-
tion (Hübner et al. 2007). This method takes advantage of the fact that the positions
of the left and right eyes are close together and therefore see largely identical sec-
tions of the virtual world. By parallel geometry processing during rendering for the
left and right eyes, scenes can be rendered almost as fast as in the monoscopic case.
Single pass stereo can also be extended to more than two displays (single pass

7 Real-Time Aspects of VR Systems

252

multi-view rendering or multi-view rendering for short), e.g., to support tiled dis-
plays with multiple projectors (see Sect. 5.4.3) or multi-display HMDs (see Sect.
5.3.4). Another optimization possibility arises when VR or AR is used in combina-
tion with eye tracking: foveated rendering draws high-resolution images only in
regions that the user is looking at. Other regions can be displayed in low resolution,
as there is no detailed visual perception possible anyway (see Sect. 2.2). Section 7.3
discusses further methods for real-time rendering in more detail.

At the end of the 1990s, when CRT screens were still standard, display latency
was unproblematic, at least on the desktop, as refresh rates of up to 200 Hz were
achievable. This also made it possible to display content in stereo on the screens
using shutter technology. However, the success of flat screens has largely pushed
CRT screens out of the market – unfortunately without initially being able to offer
similarly high refresh rates. In the meantime, however, flat screens have reached a
comparable level of performance in terms of refresh rates, with current models
exceeding 200 Hz. However, stereo solutions based on shutter technology are not
offered broadly on the consumer market for desktop systems. In addition to the
worse refresh rate, some LCD screens also have an input delay, which can some-
times be reduced by turning on a special low-latency gaming mode.

A precise determination of the latency can ultimately only be made on the real
system. Therefore, in the following, different approaches are presented for how
latency can be determined by experimental measurement.

 Measuring the Latency of Tracking Systems

Most VR systems include some type of spatial tracking system. Viewer-dependent
rendering, for example, relies on head tracking and many spatial interactions are
based on 3D tracked controllers. Tracking latency is the time needed by the tracking
system to detect and report the position and/or orientation of the tracked user or
devices.

A very simple way to measure latency exists for the widely used marker-based
optical tracking systems. These markers are usually attached to the user’s body or
an interaction device and either reflect or actively emit infrared light (see Sect.
4.3.1). The tracking latency can be easily determined with a setup where an infrared
LED is placed in the tracking area. A computer that is connected to the tracking
system controls the LED. The time difference between a strobe pulse of the LED
and the reception of a corresponding event by the tracking system is the tracking
latency.

While this method is very easy to implement, it also has a disadvantage: a robust
tracking system may include filter mechanisms to eliminate short-term disturbances,
e.g., due to reflections from clothing or jewelry. If these filters cannot be switched
off in the system to be measured, the measured latency will be higher than later in
the running system, where reflective markers usually move continuously and thus
more predictably. A reasonable extension is therefore the use of an LED array,

M. Buhr et al.

253

where the LEDs can be controlled individually and thus any movement pattern can
be simulated.

Instead of simulated movements, real movements can of course also be used for
latency measurement. Periodically oscillating physical systems, such as pendulum
systems, have proven to be particularly suitable (see Liang et al. 1991; Mine 1993).
The basic setup could look like Fig. 7.2, where two pendulums are installed cen-
trally in the tracked area. One pendulum serves as a reference for the direction of
gravity. A tracking marker is attached to the second pendulum. This pendulum is
made to swing during the measurement.

The measured position data of the marker and the current time stamp are dis-
played on a separate monitor (the monitor should feature a low display latency). The
whole installation is recorded by a camera, which is positioned in such a way that
the two pendulums are aligned in rest position (one occludes the other) and the
monitor is also in view.

If one now starts the video recording and sets the pendulum in oscillation, it is
later easy to navigate to the video frames where either the displayed y-position
(y-axis in the direction opposite to gravity) is at a minimum or the two pendulums
are fully aligned. The time difference between pendulum alignment and the subse-
quent minimum of the y-position is the latency of the tracking system. As an alterna-
tive to a purely visual comparison, and provided that a temporal synchronization
between video camera and tracking system has been established beforehand, one

Fig. 7.2 Typical setup of a pendulum system for measuring the latency of an optical track-
ing system

7 Real-Time Aspects of VR Systems

254

may also analyze the recorded (and time-stamped) tracking data directly instead of
their display on the monitor. This is advisable, for example, if the video camera has
a significantly slower capturing rate than the tracking system.

With this setup, it must be considered that latencies for camera recording and
displaying the time stamp and tracking data on the monitor may influence the result.

If one has more technology available, such as a precisely controllable robot arm,
the measurement can also be carried out in an automated closed-loop setup where
visual inspection of video recordings by a human is no longer necessary and thus
larger quantities of data can be generated and analyzed. The idea is to attach a track-
ing marker to the robot’s end effector. Tracking data then can be compared easily to
the positions calculated from the robot’s joint angle data (the robot in this sense acts
a mechanical tracking system with close to zero latency). For example, Adelstein
et al. (1996) used a motorized swing arm – a simple robot arm with one degree of
freedom – that swings back and forth in the horizontal plane to evaluate the laten-
cies of different tracking systems. Modern industrial robot arms with six degrees of
freedoms also offer high precision and the additional advantage that they can per-
form movements resembling those of human VR users. Further, such robots have
also been used to evaluate the inside-out tracking capabilities of mobile XR devices,
such as AR-enabled smartphones and certain HMDs. Inside-out tracking uses a
combination of visual camera images and other internal sensors (particularly the
IMU – inertial measurement unit) to track the movement of the device. Instead of
attaching a marker to the end-effector, the XR device is attached to – or simply held
by – the robot arm (Eger Passos and Jung 2020).

 Measuring End-to-End Latency

Uniform and very well controllable periodic motions can also be produced with a
record player (Swindells et al. 2000). The idea is similar to that of the pendulum (cf.
preceding section). An infrared LED is placed on a physical turntable to generate a
live animation of a virtual turntable. The virtual turntable is projected onto the phys-
ical turntable. From the angular differences between the real and virtual rotating
turntables, the latency of the entire setup, i.e., the end-to-end latency, can then be
determined.

He et al. (2000) pursue a similar idea with their approach to determining the end-
to- end latency in CAVEs and similar projection-based setups. A tracked input device
(they used a wand) is moved by hand back and forth directly in front of one of the
CAVE’s projection screens. The tracked position is displayed on the screen as a
virtual cursor along with a grid. During controller movements, the virtual cursor
may lag the physical controller by several grid cells, depending on the speed of
movement. A video camera records the whole setup. During video analysis, the field
differences between the physical input device and the virtual cursor are counted
from which the end-to-end latency is determined by simple calculations.

This method can also be easily combined with a pendulum to eliminate the need
for manual movement of the physical controller (or marker). It is also easier to

M. Buhr et al.

255

determine the speed of the pendulum. Steed (2008) describes two approaches for
determining the latency between the real and virtual pendulum. In the one approach,
he counts the number of video frames between the extreme positions of the real and
virtual pendulums. In the other variant, he analyzes the trajectories of the two pen-
dulums by means of image processing methods and tries to find the most accurate
mathematical approximation of the respective oscillation. Once this has been done,
the phase shift and thus the latency can be easily determined. Steed reports that he
achieves greater accuracy with the analytical method than by counting video frames.

7.1.5 Summary of Latency

In VR systems, low latency is a decisive factor for the creation of believable experi-
ences of virtual worlds. Low latency is especially important when HMDs are used,
since the scene portion to be displayed depends on the current head orientation of
the user. In projection-based VR systems, where the displayed scene portion does
not depend on the head orientation, latency requirements are less strict but still high.
AR applications have even higher latency requirements, as virtual objects need to be
anchored in the real world and the real world always has zero latency.

If the latency of an optical tracking system, as often found in VR installations, is
too high, a combination with a low-latency inertial tracking system may be advanta-
geous (You and Neumann 2001). Between phases of stable position tracking by the
optical system, the inertial system can provide the necessary data for extrapolation
of the new positions and orientations until stable data from the optical tracking sys-
tem are available again. In this way, gaps can be bridged, e.g., when optical markers
are occluded from the tracking cameras’ views.

In practical operation, network management in particular has a major influence
on transport latencies. For example, the VR system should be operated in a separate
subnet to avoid collisions with other applications. Frequency range and channel of
wireless access points should be selected in such a way that, if possible, no interac-
tions with other wireless networks in the environment occur.

7.2 Efficient Collision Detection in Virtual Worlds

Where one body is, there can be no other. This simple physical fact poses a serious
problem for VR/AR systems and real-time computer graphics in general. Virtual
objects may in principle be placed at arbitrary locations in the virtual world and
therefore may also penetrate each other if no precautions are taken. In the case of
statically arranged objects, the programmer, or designer, can take the necessary care
to ensure that no penetrations are visible to the observer of the scene. For a realistic
and immersive representation of dynamic content, however, it would be helpful if
the objects in the scene showed (approximately) physically correct behavior. Objects

7 Real-Time Aspects of VR Systems

256

should therefore be able to collide with and exert forces on each other. In the case
of simulating the physics of the real world, not only the mere question of whether a
collision occurred or not is relevant. To simulate a suitable reaction to a collision
event, further properties of the collision must often be determined such as penetra-
tion depth, exact penetration locations and exact collision time. In many gaming
applications it often suffices that the simulation provides a plausible approximation
of the real world. In contrast, e.g., CAD, virtual prototyping, scientific applications
and robotics problems usually place higher demands on collision detection and han-
dling. In these cases, aspects such as numerical stability and physical correctness
are often more important than the real-time capability required by VR applications.

The need for efficient collision detection is, however, not limited to physics sim-
ulations in the virtual world, but also occurs in many other areas of VR and AR
systems. Even seemingly simple user interaction tasks like the selection of a scene
object (see also Sect. 6.3) lead to related problems: to detect which object the user
is pointing at, a ray may be generated from the user’s pointing device. The scene
objects are then tested for collision with the pointing ray and the object with the
shortest distance to the user is chosen as the selected one.

Modern 3D computer graphics scenes achieve remarkable visual quality. Which
techniques are used to render these scenes? Part of the reason can be found in the
high performance of modern GPUs. However, the high quality could not be achieved
if the GPU had to process all objects of the virtual world for each image to be gener-
ated. If an object is not at least partially in the view volume (or in other words, if
there is no overlap or collision between the object and the view volume), the object
does not contribute to the result of the image generation and therefore does not need
to be processed further. This process is also called view volume culling and is
described in more detail in Sect. 7.3.1. Given the desired graphical complexity of
modern applications, the removal of non-visible objects based on efficient collision
testing makes an important contribution to maintaining real-time capability of
rendering.

The above-mentioned application areas of collision detection essentially require
that the necessary calculations can be performed “in real time”, i.e., once per image
frame (at least 25 Hz, ideally 60 Hz). View volume culling inserts a new processing
step into the rendering pipeline that requires additional computation time. To justify
the use of this technique, this computation time must be less than the rendering of
the entire scene would otherwise require.

Real-time requirements on collision detection may even be much higher for VR
systems that make use of haptic interfaces: according to Weller (2012), refresh rates
of 1,000 Hz are required to ensure realistic haptic feedback for the user. In this case,
less than 1 ms is available for collision detection.

Efficient algorithms and data structure are key for all the above-mentioned use
cases of collision detection to ensure the central real-time requirement of VR and
AR systems.

Following this introduction, Sect. 7.2.1 introduces common bounding volumes
used for efficient collision detection. Section 7.2.2 then deals with their arrange-
ment in hierarchical or spatial structures before collision detection methods in large

M. Buhr et al.

257

virtual world are discussed in Sect. 7.2.3. Then, in Sect. 7.2.4, the collision detec-
tion techniques are summarized and advanced topics in are addressed.

For more in-depth reading on the topic, we recommend the books by Akenine-
Möller et al. (2018), Lengyel (2002) and Ericson (2005).

7.2.1 Bounding Volumes

Scene objects are constructed from primitives, typically in the form of triangle or
polygon meshes. In a naive collision test between two polygon meshes, each poly-
gon of the first mesh would have to be tested against each polygon of the second
mesh. For example, if the two meshes consist of 500 and 1,000 polygons each, 500
× 1,000 = 500,000 tests would have to be performed between pairs of polygons.
Considering that virtual worlds can consist not only of two objects but perhaps
thousands of objects, it becomes clear that such a naive collision test is not practical
for large virtual worlds.

Bounding volumes (BV) approximate the shape of the actual scene objects to
facilitate efficient collision testing. Bounding volumes are stored in addition to the
visible object geometry but are not rendered in the visual image. The additional
storage requirements of bounding volumes, however, are usually justified by the
reduced computational effort for collision testing. When scene objects are moved or
otherwise transformed (e.g., translation, rotation, scaling), their bounding volumes
must be updated too. The computational costs for such updates must also be consid-
ered when choosing appropriate bounding volumes. Generally, it is often desirable
for a bounding volume to tightly fit a scene object such that the number of falsely
reported collisions is minimized.

For some applications, e.g., gaming, bounding volumes may already provide for
sufficiently precise collision testing. This is especially the case when the bounding
volumes closely approximate the scene objects’ shapes.

Even if approximated collision testing based on bounding volumes alone is not
sufficient for the demands of the application (e.g., CAD, virtual prototyping, hap-
tics, robotics), bounding volumes can still be used advantageously. In most virtual
worlds, only a few objects will actually collide at a given time. Fast approximate
collision tests based on bounding volumes can be used to determine that collisions
between two objects do not occur. Only in cases where the approximate bounding
volume-based test reports a collision is exact collision testing on the polygon
meshes necessary.

Furthermore, hierarchal data structures may be used to quickly exclude large
groups of scene objects from further collision testing. Examples of such data struc-
tures are Bounding Volume Hierarchies (BVH) and Binary Space Partitioning (BSP)
discussed in Sect. 7.2.2.

Summarizing the above, desirable properties of bounding volumes include:

• simple and fast collision testing

7 Real-Time Aspects of VR Systems

258

• tight fit/good approximation of the detail geometry (otherwise false positives are
possible)

• easy update in case of dynamic objects
• memory efficiency

These properties are partly contradictory. For example, two spheres are easy to
test for collision and the memory requirement is minimal (position and radius).
However, if you look at the fit, it is easy to see that not every object can be approxi-
mated as a sphere in a meaningful way.

The following typical bounding volume and their most important properties are
discussed in the next sections:

• Axis-Aligned Bounding Box (AABB)
• Bounding sphere
• Oriented Bounding Box (OBB)
• (k-dimensional) discrete oriented polytope (k-DOP)

The text mostly discusses these bounding volumes for the two-dimensional case.
This can easily be extended to three dimensions.

 Axis-Aligned Bounding Box (AABB)

An AABB is a rectangle or cuboid whose edges are parallel to the axes of the global
coordinate system and which encloses a given object with a minimum area. For
three or more dimensions, this body is also called an axis-parallel (hyper-) cube.
The orientation of the AABB is independent of the enclosed object and always the
same (i.e., aligned to the global coordinate system). When the enclosed object
changes its position, the new position must be applied to the AABB too. When the
enclosed object is rotated or scaled, it is also necessary to update the shape of
the AABB.

Memory space is required for four values in the two-dimensional case:

• positions (x,y) of two opposite corners; or
• position (x,y) of one corner + width and height; or
• center point + (half) width and height

To test two AABBs for collision, the boxes are projected onto the axes of the
global coordinate system. For each axis, the projection intervals are tested for over-
lap separately. A collision occurs only if projections overlap on all axes. Conversely,
the collision test can be aborted if a non-overlapping axis is found. Fig. 7.3 shows
different configurations for AABBs and illustrates the collision test between
two AABBs.

An AABB can be constructed in different ways. A simple approach is to deter-
mine the minima and maxima of all corner point coordinates along each axis.
However, if the AABB needs to be updated frequently due to rotations of the
enclosed object, this simple approach is inefficient for large meshes. In principle,

M. Buhr et al.

259

only the vertices of the mesh that form its convex hull need to be considered for the
construction of the AABB. This fact can be exploited, for example, by calculating
the vertices of the convex hull once and saving them. To update the AABB it is then
sufficient to consider the convex hull only. For further details see Ericson (2005).

 Bounding Spheres

Bounding spheres are very simple, easy-to-implement types of bounding volumes.
They can be stored very efficiently (center point and radius) and collision testing
can be carried out in a few steps: if the distance between the two center points is less
than the sum of the two radii, then the two spheres collide. Otherwise, there is no
collision.

A bounding sphere can be constructed by constructing an AABB first. The center
of the AABB equals the center of the sphere and the distance to one of its corners
gives the radius of the sphere. Alternatively, the sphere’s center can be calculated by
averaging of all vertex positions of the enclosed object’s mesh. However, this
approach does not necessarily result in a minimal envelope for any polygon mesh.
In the worst case, the resulting bounding sphere could have twice the radius of a
minimal variant and would therefore not be an optimal fit. The determination of a
minimal bounding sphere from a point set has been the subject of various research.
Welzl (1991) presents an algorithm for determining minimal circles and spheres
from point clouds.

Due to the rotational symmetry of spheres, rotations of the enclosed object do not
have to be transferred to the bounding sphere. Scaling and translations can be
applied directly to the bounding sphere.

 Oriented Bounding Boxes (OBBs)

OBBs can be seen as an extension of AABBs. However, the edges of the bounding
cuboid, or in the 2D case bounding rectangle, are not aligned to the global coordi-
nate system but oriented in such a way that the object is minimally enclosed. In

Fig. 7.3 Collision testing with AABBs. Left: 2D objects A and B with overlap on one axis only
(no collision). Right: A & B with overlap on both axes (collision)

7 Real-Time Aspects of VR Systems

260

contrast to AABBs, the orientation of an OBB must therefore be saved explicitly. In
the 2D case, this can be done using one of the following variants:

• positions of three corners (the fourth corner can be calculated from the
three others)

• one corner + two orthogonal vectors
• center point + two orthogonal vectors
• center point + rotation (e.g., as rotation matrix, Euler angles or quaternion) +

(half) edge lengths

These variants differ not only in terms of memory requirements but also in the
amount of work required for collision testing. To save memory space in the two
variants involving two orthogonal vectors, one of the vectors may be determined at
runtime (using the cross product, see Chap. 11). However, in this case it is still nec-
essary to store the length of the vector explicitly.

Collision testing for OBBs can be performed based on the Separating Axis
Theorem (SAT). This theorem states that two convex sets have no intersection
exactly when a straight line/plane can be placed between them in such a way that
one set lies in the positive half space and the other in the negative half space. The
orthogonal projection of both sets onto an axis parallel to the normal of this line/
plane is then called the separating axis, because the projections onto this axis do not
overlap (see Fig. 7.4). If a single separating axis can be found, a collision of the two
sets can be excluded.

To apply the theorem in practice, it is obviously necessary to clarify how a sepa-
rating axis can be found. For three-dimensional OBBs it can be shown that 15 can-
didate axes have to be tested:

• The six axes orthogonal to the side faces of the OBBs (see Fig. 7.4, axes of the
coordinate systems of the OBBs).

• The nine axes created by the cross product of one of the coordinate axes of each
of the two OBBs.

Fig. 7.4 Collision test of two OBBs and a separating axis

M. Buhr et al.

261

Similarly complex as the intersection test calculations is the generation of OBBs
with a good fit. Exact algorithms for generating a minimal OBB typically belong to
complexity class O(n3) and are therefore hardly applicable in practice. For this rea-
son, algorithms are often used that only provide an approximation of the minimal
OBB but can be calculated easily and at runtime. In Ericson (2005) different
approaches to the solution are discussed. The update costs for OBBs are lower as
compared to AABBs (and k-DOPS), as in addition to translations and scaling, rota-
tions can also be applied directly to OBBs.

 Discrete-Oriented Polytopes (k-DOPs)

Discrete-oriented polytopes (k-DOPs) or fixed-directions hulls (FDH) are a gener-
alization of AABBs, as they are also always aligned to the global coordinate system.
The term polytope refers to a polygon in the 2D case and, respectively, a polyhedron
in the 3D case. A k-DOP is constructed from k half-spaces whose normals each take
one of k discrete orientations. Opposite half-spaces are antiparallel, i.e., their nor-
mals point in opposite directions. The normals are usually formed from the value
range M = {–1, 0, 1}. Since only the direction of the normals but not their length is
relevant for further calculations, the normals do not have to be in normalized form
(unit vector).

For the two-dimensional case, a 4-DOP (6-DOP for 3D) corresponds to an AABB,
where the normals are parallel to the axes of the coordinate system. Different two-
dimensional k-DOPs are shown in Fig. 7.5.

As the normals are identical for all k-DOPs of different objects, the memory
requirements per object are reduced to the extension along each normal. For an
8-DOP, for example, eight values must be stored.

Collision tests between two k-DOPs are again performed based on the separating
axis theorem. Since the normals are known and are the same for all objects, the great
advantage of k-DOPs over OBBs is that only k/2 candidate axes must be considered
as separating axis (opposite normals are antiparallel and thus yield the same axis).
Accordingly, a maximum of four potentially separating axes must be tested for an
8-DOP. Collision tests can therefore be performed very quickly and easily.

Fig. 7.5 Two-dimensional k-DOPs in different variants

7 Real-Time Aspects of VR Systems

262

The construction of a k-DOP is similar to that of an AABB: along each of the k/2
axes, minimal and maximal extensions of the object must be found. Although in
principle any axis (or orientation) could be used, in practice the normals/orienta-
tions are usually chosen from the discrete number of values mentioned above. For
collision testing it is only important that the same orientations of the half spaces
must be chosen for all objects.

A disadvantage of k-DOPs is caused by the time-consuming updates that become
necessary when the enclosed polygon mesh is rotated (translations can be trans-
ferred directly to the k-DOP), as the minima and maxima along the k/2 axes must be
recalculated. To avoid cost-intensive iterations over all vertices of the enclosed
polygon mesh (or its convex hull), additional optimizations are often applied at this
point (e.g., hill climbing and caching; see Ericson (2005)).

Summarizing, k-DOPs offer efficient collision testing and low memory require-
ments without sacrificing a good fit. However, the high update costs imply that
k-DOPs are often only of limited use for dynamic objects.

7.2.2 Bounding Volume Hierarchies and Space
Partitioning Techniques

Although the creation of bounding volumes will simplify and accelerate collision
testing between two objects, the total number of collision tests required (object
against object) remains unchanged. For a scene consisting of n objects still
n(n − 1)/2 ∈ O(n2) collision tests must be performed in the worst case. To reduce the
number of tests, several methods may be applied as discussed in the following.

 Bounding Volume Hierarchies (BVHs)

Bounding volume hierarchies (BVHs) are created by arranging bounding volumes in
trees. The hierarchies are created by calculating new bounding volumes for several
geometric objects (or their bounding volumes). These new bounding volumes can in
turn be combined with neighboring objects (or their bounding volumes). The parent
nodes do not necessarily have to completely surround the hulls of the child nodes.
It is sufficient that the geometric objects at the leaf nodes are completely enclosed.
However, the construction of BVHs is often easier in practice if the bounding vol-
umes are used for this process at each level of the tree. The granularity or depth of
the tree is application-specific and can in principle be managed to such an extent
that individual polygons and their bounding volumes are stored at the leaf nodes.

Examples of BVHs are AABB trees, OBB trees and sphere trees. An example of
a sphere tree is shown in Fig. 7.6. The runtime gain of BVHs is due to the fact that
the tree is tested against other objects, starting from the root. As an illustrative
example, imagine a complex vehicle simulator that can display high-resolution

M. Buhr et al.

263

models with several million polygons. The user points at the scene and the system
has to quickly determine which component of the vehicle intersects with the point-
ing ray. To do this, the root node of a sphere tree could be placed around the entire
vehicle (the user may miss the vehicle while pointing). If the vehicle was hit, bound-
ing spheres of large components such as side/doors, rear/boot, front/engine com-
partment and tires may be tested on the second level of the tree. On the third level,
individual parts of the respective branch could then be tested (e.g., for front/engine
compartment: lights, air filter, battery, etc.). On each level, the collision test must be
carried out only against a small number of bounding spheres, whereby the set of
enclosed polygons becomes smaller and smaller. If no collision has been detected
on one level (i.e., in all branches), the test can be aborted without testing lower lev-
els. If necessary for the application, the remaining part of the polygon mesh (i.e.,
enclosed polygons of leaf BVs) can be used as a last step for exact collision
determination.

BVHs require extra memory space whose size depends on the depth of the tree
and the type of bounding volume. For static objects, BVHs can be calculated once
at the beginning of the simulation. If dynamic objects come into play, updating the
tree can become a problem. In these cases, it is advisable to manage dynamic and
static components separately to avoid the need for updating where possible.

 Space Partitioning Techniques

Space partitioning aims to minimize the number of collision tests required by
assigning scene objects to spatial regions. With well-chosen partitioning strategies,
collision testing can be reduced to objects known to be in the same or a close spa-
tial region.

Fig. 7.6 Sphere tree for a complex object. Left: Geometric data and corresponding bounding
spheres. Right: Hierarchy of bounding spheres (sphere tree)

7 Real-Time Aspects of VR Systems

264

World space can be divided in different ways. Quite common are regular grids,
as they are easy to implement and grid cells can be addressed with simple modulo
operations. Space partitioning into a regular grid is also called spatial hashing.

The choice of a good spatial resolution depends strongly on the application.
Fig. 7.7 depicts three cases for different cell sizes. If the cell size is chosen too small,
objects must be assigned to multiple cells. This case results in high update costs when
the object is moved. In contrast, if the cell size is too large, many objects will be
assigned to the same cell, which is the very situation that the space partitioning actu-
ally tried to avoid. In the ideal case, each object can be assigned to exactly one cell.
The cell size should be chosen in such a way that there are always only small num-
bers of objects in a cell. Nevertheless, it should be noted that multiple assignments (at
most four cells per object in 2D) cannot be avoided, even with favorable cell sizes.

The practical applicability of spatial hashing therefore depends strongly on the
cell size and the memory space required for the necessary data structures. The
method is less suitable for scenes with objects of very different sizes or resizable
objects. A positive feature of spatial hashing is that it can be implemented
quite easily.

In addition to regular grids, space partitioning hierarchies or trees can be con-
structed. One method is the binary space partitioning tree (BSP tree). Here, the
space is recursively cut into two half spaces by a hyperplane at each recursion level.
The two half spaces are also called positive and negative half spaces. When applied
in two or three dimensions, the hyperplane is a straight line or, respectively, a plane.
The space is usually recursively subdivided until only one primitive (triangle or
polygon) can be assigned to a node. If a cutting plane intersects an individual poly-
gon, the polygon must be split into fragments. Fig. 7.8 shows an example of how a
space containing one polygon could be partitioned by a BSP tree. Each inner node
of the tree defines a cutting plane that partitions the space associated with the node
into two halves and, thus, also the set of vertices enclosed by the node. During the
subdivision process, new vertices/polygons may also be created. In Fig. 7.8, for
example, the orange vertices are newly created during the subdivision. The original
polygon in Fig. 7.8 could be further divided by additional half spaces. However, this
has been omitted in favor of better readability. It should also be mentioned that other
partitions are possible and could be considered for optimization of collision testing.

Fig. 7.7 Regular grids with different cell sizes. From left to right: grid too fine, grid too coarse,
good grid size for the given objects

M. Buhr et al.

265

The positions of the hyperplanes and the depth (granularity) of the tree can be
freely chosen in the case of general BSPs. If all cutting planes are chosen to coin-
cide with one side of the object (edge of the polygon), the tree is also called autopar-
titioning, since there is no explicit calculation of the cutting planes.

Depending on the intended use, different forms of the tree are conceivable. For
example, individual polygons or larger groups of polygons may be stored in the leaf
nodes. Also, geometry data may be stored exclusively in the inner nodes of the tree
(node-storing BSP trees). However, leaf-storing BSP trees are more relevant for
collision testing. As the name suggests, they store geometry data in the leaf nodes.
The BSP tree shown in Fig. 7.8 is an example. This form of data storage leads to a
tree structure in which the positional relationships of the geometry data are reflected
in the arrangement of the tree nodes. This property is particularly useful for colli-
sion queries.

In general, the cutting planes should be chosen in such a way that the following
requirements are fulfilled as well as possible:

• The result is a balanced tree (all branches have equal or similar depth; for leaf-
storing BSP trees each leaf node contains a similar number of objects).

• The number of half planes that cut through individual polygons (thus creating
new vertices and polygon fragments) is minimal.

BSP trees can be constructed in various ways. The determination of the cutting
planes according to the above requirements is often a non-trivial problem. Although
the autopartitioning variant is easy to implement, it does not necessarily yield opti-
mal results. In addition to collision detection, BSP trees are also used to determine
visibility, among other things (see Ericson (2005) for details).

BSP trees can be understood as a generalized form of a k-d tree (see Fig. 7.9). A
k-d tree is also a binary tree that subdivides a space recursively. In the variant of a
k-d tree presented in the following, the spatial subdivision is driven by the input
data, a k-dimensional set of points. All inner nodes of the tree define a dividing

Fig. 7.8 BSP tree. Left: Binary space partitioning of a space containing one complex polygon
(green: vertices of the original polygon, orange: newly created vertices during decomposition).
Right: Binary tree defining half-spaces 1, 2, 3, 4 with fragments A, B, C, D, E of the origi-
nal polygon

7 Real-Time Aspects of VR Systems

266

hyperplane (straight line for 2D case, plane for 3D case). Fig. 7.9 (left) illustrates
the construction of a k-d tree: (1) A set of k-dimensional (k = 2 in the example)
points serves as input data. At each level of the tree one dimension – here: x or y – is
selected for spatial partitioning. The cutting plane is perpendicular to the selected
dimension. (2) An element of the input data, shown in orange in Fig. 7.9 (left), is
now stored as the inner node of the tree and defines the position of this cutting plane
by its coordinate value. (3) and (4) The newly created half spaces are subdivided
further. At each tree level, a dimension different from the dimension in the level
above is chosen – in the example, alternately x and y. To create a balanced tree, the
position of the cut is chosen such that the same amount of data (approximately)
remains in the positive and negative half spaces. Other k-d tree variants create the
cutting planes explicitly and store data only in the leaf nodes.

When traversing a k-d tree from the root to a leaf node, only a single value needs
to be compared at each level of the tree. For example, if a node of the tree defines a
cutting plane orthogonal to the x-axis, then only the x-coordinate of the requested
point needs to be compared with the value stored in the node. This process is there-
fore much easier to implement than for a BSP tree. Since the subdivision dimension
can be anchored in the traversal algorithm, for example, dimension = depth modulo
k, it does not have to be stored explicitly.

Quadtrees (or octrees for 3D) use two (or three) axis aligned cutting planes per
recursion level and thus create four (or eight) child nodes each. This decomposition
is usually done in such a way that a given maximum number of objects is assigned
to a quadrant. Fig. 7.9 (right) shows a two-dimensional quadtree for a given set
of points.

The discussed variants of space partitioning trees differ in their memory require-
ments, their update costs and the computational effort for collision queries. In the
case of BSP trees, for example, the position and orientation of the cutting planes
must be stored, whereas for a k-d tree only a single value (position of the plane,
orientation is implicit) must be stored. Similarly, for a query in the k-d tree, only a

Fig. 7.9 k-d tree and quadtree. Left: The first four levels of a k-d tree. Right: Complete quadtree
for a given point set

M. Buhr et al.

267

single comparison has to be made at each tree level (is the queried coordinate in this
dimension greater or less than the stored value?).

It is quite common that dynamic objects are not integrated into the space parti-
tions discussed above, as the computational effort for updating them would be too
large. Dynamic objects are usually managed separately.

7.2.3 Collision Detection in Large Environments

The collision detection methods presented so far may or may not be sufficient for a
given application and use case. Whereas in a simple bowling simulation it might be
possible to test polygon meshes directly against each other, a complex vehicle simu-
lator likely requires both bounding volumes and space partitioning – and possibly
additional methods – to ensure real-time capability. In large environments with very
high numbers of objects, the task of collision detection is often split into two phases:
a global broad phase and a local narrow phase.

 Broad Phase Collision Detection

In a virtual world with thousands of objects, the vast majority of objects may collide
with one or a small number of other objects but not with thousands. For any given
pair of two objects, it is often easy to establish that they do not collide with each
other, for example, because they are located far away from each other.

The goal of the broad phase is thus to quickly determine which objects certainly
do not collide with each other. The result of the broad phase is a set of potentially
colliding object pairs. As the tests are not exact, non-colliding object pairs can still
be contained in the set.

Besides bounding volume hierarchies and space partitioning, depending on the
granularity and size of the object set, the use of bounding volumes may also be
considered a method of the broad phase. Only when the bounding volumes of two
objects collide is it necessary to examine this object pair more closely in a detail
phase. The classical algorithms of the broad phase, however, include spatial hash-
ing, bounding volume hierarchies, and especially the Sort & Sweep (or Sweep &
Prune) algorithm by David Baraff (1992). All techniques except for the latter have
already been explained in the previous sections.

Sweep & Prune first projects the extents of the AABB of each scene object onto
an axis, say the x-axis, of the global coordinate system. Since the axes for AABBs
are aligned with the global coordinate system, this process is trivial. For each object
i this yields an interval on this axis with the start value Si and the end value Ei. The
start and end values generated in this way are inserted into a list, which is then
sorted by value (Sort). Two objects only form a potential collision pair if the pro-
jected intervals overlap. These collision candidates can be easily read out from the
list by iterating over the list from left to right (Sweep). If a start value is encountered

7 Real-Time Aspects of VR Systems

268

during the sweep, object i is marked as “active”. The object becomes inactive when
the end value Ei is encountered. If a second start value Sj is encountered while object
i is active, the objects i and j form a potential collision pair. This procedure – project
objects’ extents onto an axis, sort, sweep – is then repeated for the other axes of the
global coordinate system. Only if the projections of objects i and j intersect on all
axes will the algorithm report the two objects as potentially colliding. The result set
of the algorithm is therefore a list of potentially colliding object pairs, which can be
examined more closely in a subsequent detail step that uses more complex methods
(exact polygon test or GJK for convex hulls; see the subsection below on the narrow
phase). Fig. 7.10 shows a schematic diagram of the Sweep & Prune algorithm.

A key idea of Sweep & Prune is the exploitation of temporal coherence. Under
the reasonable assumption that objects do not move erratically but will be roughly
at the same position as in the previous time step, the sort orders from the previous
time step can be reused. That is, after initial and one-time sorting for the first time-
step, the lists are already presorted for the next time step. Certain sorting algorithms
can update the list very efficiently when a presorted list is available as an extra
input. Insertion Sort, for example, exhibits basically linear runtime behavior in
these “best case” situations and is therefore particularly suitable.

However, it is precisely this temporal coherence that may also cause problems
when scene objects form heaps. In these situations, small object movements can
cause the list items of the intervals to be subject to major changes. As a result, sort-
ing operations often have to be performed in full, and temporal coherence can hardly
be exploited. In Fig. 7.10 this situation occurs on the y-axis.

 Narrow Phase Collision Detection

After potential collision pairs have been found in the broad phase, the narrow phase
performs exact collision tests on the objects’ detail geometry. Pairwise testing of all
polygons of the two objects, however, has an algorithmic effort of O(n2) and would
become inefficient for complex geometries. One possible measure is the insertion of
an additional middle phase using bounding volume hierarchies, where parts of the

Fig. 7.10 Sweep & Prune: Objects A, B, C and D with AABB and projected intervals on the x-
and y-axes

M. Buhr et al.

269

polygon meshes are approximated by bounding volumes. In this way, the set of
polygons to be tested can be quickly limited to the relevant parts. However, depend-
ing on the type and objective of the application, other strategies may also be useful.

The near phase of collision detection can be broken down into subproblems:

• Removal of all false positives reported by the broad phase.
• Determination of the application-relevant collision parameters (e.g., contact

points, penetration depth).

In practice, a third subproblem should be considered: objects may be in a state of
permanent contact or collision. This state may occur, for example, when a thrown
object comes to rest on the virtual floor. As long as no external forces other than
gravity are applied, this state remains unchanged and, consequently, the two objects
will be reported by the broad phase as a potential collision pair in all future time
steps. Therefore, object pairs with similar contact information as in previous time
steps should be marked as inactive, so that they are not examined by narrow phase
collision detection over and over again.

A method often associated with the narrow phase is the GJK algorithm, named
after its authors, Gilbert, Johnson and Keerthi (Gilbert et al. 1988). This algorithm
determines the minimum distance between the convex hulls of two given point sets.
If this distance is less than or equal to zero, the point sets collide with each other.

The GJK algorithm exploits the useful property of a Minkowski difference (see
Fig. 7.11), i.e., that it contains the coordinate origin exactly when the convex hulls
of the objects overlap. In this way, the collision detection between two point sets of
size n and resp. m (number of vertices in the convex hulls of the two polygon
meshes) can be reduced to calculating the distance of a single point set (the
Minkowski difference of size n × m) to the coordinate origin. The explicit calcula-
tion of this large point set is avoided by iteratively checking whether the difference

Minkowski Sum and Difference

The Minkowski sum is defined as: A B a b a A b B� � � � �� �

|, |, ,

the Minkowski difference is defined as: A B a b a A b B� � � � �� �

|, |, ,

where A and B are two subsets of a vector space.

The result of the Minkowski sum is thus a set which contains the sum of each
element from A with each element from B. The result set does not contain any
element twice. Under a graphical interpretation, the result is obtained by mov-
ing B along the border of A. In Fig. 7.11 a graphical interpretation of both the
Minkowski sum and the Minkowski difference is given. The latter is often
used in the field of collision detection, where one of the properties of the
Minkowski difference turns out to be especially useful: the Minkowski differ-
ence contains the coordinate origin if and only if the intersection of the two
sets is not empty.

7 Real-Time Aspects of VR Systems

270

can contain the coordinate origin. For this purpose, starting from any point of the
difference a new point is searched for in each step, which is closer to the coordinate
origin. If a point set containing the origin is found, a collision can be confirmed and
the algorithm can be terminated. This method can further be used to determine the
Euclidean distance of the convex hulls of the two polygon meshes as well as the
points where the distance is minimal. This information can be used to determine
contact points and collision depth. There are many publications around this algo-
rithm in the scientific literature. Some address improvements of particular aspects
of the original algorithm, e.g., hill-climbing for vertex search (Cameron 1997; Lin
and Canny 1991) while others examine the case of moving objects (Xavier 1997).

Thus, the GJK algorithm cannot only be used to answer the question of whether
a collision has occurred. It can also provide the contact parameters for generation of
a suitable collision response. The method is very efficient and can be used for a wide
range of object configurations.

The result of the narrow phase is a list that contains definitely colliding object
pairs and associated contact information. These results can then be used to resolve
the collisions. This process is called collision response. However, not every applica-
tion area of collision detection requires the calculation of a collision response. For
example, in the case of view volume culling, objects colliding with the view volume
are displayed visually. All other objects are not rendered. Here, a spatial separation
of the objects is not necessary. A physics simulation could, however, use the contact
information to determine the forces necessary to separate the colliding objects.

7.2.4 Summary and Advanced Techniques

This section has examined basic procedures and strategies for collision detection
between rigid bodies. Different types of bounding volumes were presented and their
properties were discussed. Furthermore, it was shown how space partitioning and
bounding volume hierarchies can be used to reduce the total number of collision
tests required. In Sect. 7.2.3, the basic collision detection methods were put into the
context of large environments with potentially thousands of objects.

Fig. 7.11 Minkowski sum and difference: (from left to right) Objects A, B, C defined in a 2D
coordinate system; Minkowski sum A + B; Minkowski difference A − C

M. Buhr et al.

271

The preceding subsections give an idea of how broadly the subject of collision
detection can be approached. In the discussion it was always assumed that the simu-
lation of the objects is carried out time step by time step (i.e., discretely). Although
this process is easy to understand and implement, it involves some risks. If the
movement of an object in one time step is larger than its extension, situations may
arise where a “tunnel effect” occurs. As a practical example a soccer shot at the goal
can be used: in the time step t the soccer ball is in front of the goal. However, due to
the high speed of the ball, there is a high probability that the ball is already com-
pletely behind the goal in time step t + 1. The presented methods for collision detec-
tion do not report a collision for either time step. The ball has “tunneled” through
the goal. To avoid this effect, various solutions may be pursued:

• Smaller time steps (= more computational effort at runtime).
• Determine the motion volume or motion vector and test for collision.
• Continuous collision detection.

The latter approach takes a completely different perspective on the problem:
instead of examining objects present in each time step for collision testing, continu-
ous collision detection calculates the exact place and time of a collision. An imple-
mentation of this technique can be found in the freely available 2D physics engine
box2d (Catto 2020). Continuous approaches are also called a priori while discrete
approaches are called a posteriori.

Modern applications and simulations increasingly require methods that can han-
dle not only rigid bodies but also soft bodies such as clothes and fluids. These
objects pose completely different challenges. For example, bounding volume hier-
archies are rarely applicable for deformable objects, because costs for their initial
creation and repeated updates at runtime would be too high. However, this problem
can be addressed with the help of powerful, programmable GPUs. Research work
on this topic has already existed for some time, for example (Sathe and Lake 2006).
The Nvidia Flex simulation framework provides collision detection methods for
soft bodies as well as support for popular game engines such as Unity and
Unreal Engine.

7.3 Real-Time Rendering of Virtual Worlds

The visual sense is the most important one for human perception. Consequently, VR
systems place particularly high demands on the real-time rendering of virtual
worlds. In the literature it is generally assumed that the temporal resolution of our
visual system is 60–90 Hz. A visual rendering system should therefore be able to
provide at least 60 frames per second, so that the user is not able to perceive a
sequence of individual images.

At present, typical display devices have resolutions of at least 1920 × 1080 pix-
els. If these are to be redrawn 60 times per second, almost 125 million pixels per
second must be computed. This requires very powerful hardware to be able to

7 Real-Time Aspects of VR Systems

272

output the high-resolution content in real-time. The basic problem is to fill the pixel
matrix in short time intervals. As this problem can be solved mostly independently
for each pixel, special parallel computers are used for this task: the graphics pro-
cessing unit (GPU). Today’s GPUs often exceed the performance of CPUs many
times over.

A naive program for the representation of virtual worlds could follow the follow-
ing procedure:

 1. Load the scene objects and build the virtual world.
 2. As long as the program is not terminated:

 (a) read the user input
 (b) change the virtual world according to the user input
 (c) pass the scene to the GPU
 (d) draw the scene on the GPU

In this naive approach, for each image to be drawn, the entire content of the vir-
tual world must be manipulated, transferred to the GPU and drawn. Despite the
impressive computing capacity of today’s graphics hardware, it is not capable of
providing an appropriate amount of visual detail at sufficiently high frame rates
with this approach. A part of the VR system’s design should therefore include meth-
ods that support the rendering of visual images for high-resolution content, high-
resolution displays, and in high temporal resolution, i.e., in real time.

General approaches for making the visual rendering as efficient as possible
include:

• Draw only necessary, i.e., visible and perceptible, data.
• Use compact representations of the graphical data and avoid memory movement

of the data whenever possible (time and energy costs).
• Use the available hardware as effectively as possible.

This section presents several methods for how these approaches can be
implemented.

7.3.1 Algorithmic Strategies

Concerning the computational load of the graphics hardware, the best scene objects
are those that do not need to be drawn at all. In the naive method above, all scene
content is passed through the entire rendering pipeline, regardless of whether or not
it can be seen by the viewer. For large virtual words with high-detail content, this is
neither necessary nor efficient. At any time, large parts of the virtual world will be
outside the user’s field of view, occluded by other objects, or simply too far away to
be seen in full detail. Visibility testing of objects and graphics primitives and the
subsequent removal of invisible ones from the rendering pipeline is called culling.

M. Buhr et al.

273

 View Volume Culling

During rendering, a view volume is specified for each eye which describes a map-
ping of 3D coordinates to 2D image coordinates. In the case of the common per-
spective projection this visual volume is called a frustum (see Fig. 7.12 left). The
basic idea of view volume culling (or view frustum culling) is that only objects that
are at least partially inside the view volume have to be drawn.

Different approaches and methods exist to determine which objects are in view
and which are not. The graphics hardware provides support for this process at the
level of graphics primitives (i.e., points, lines, triangles, polygons, …) where it is
called clipping (in addition to testing if a primitive is visible, partially visible primi-
tives are cropped – or “clipped” – to the view volume). At this point, however, parts
of the graphics pipeline, namely the vertex, tessellation and geometry shaders, have
already been executed. Thus, it might seem like a good idea to perform the clipping
on the CPU. However, graphics processors are able to draw polygons much faster
than it takes the CPU to clip them, so no speed-ups are to be expected.

A more useful level of abstraction for performing many visibility tests is the
object level. As the object level is coarser than the polygon level, some polygons
will be sent to the graphics hardware that will not contribute to the resulting image.
However, culling costs are usually amortized easily as large amounts of polygons
must not be transferred to the GPU. An optimal balance between the computational
costs for culling and the savings in terms of polygons not sent to the GPU depends
on the scenario and the application. It is important, however, that visibility testing
should always be designed conservatively: it should be guaranteed that objects
marked as invisible are truly not visible. Otherwise, there is a risk of removing con-
tent that is relevant for the resulting image.

Section 7.2 has already introduced most of the tools needed to implement view
volume culling efficiently, particularly bounding volumes and bounding volume
hierarchies. Since the view volume is generally not a cuboid but a truncated pyramid
(a frustum), special methods for efficient collision testing with common bounding

Fig. 7.12 View volume culling. Left: View frustum for perspective projection. Right: View vol-
ume culling with objects and bounding spheres (objects A, D, E and F are determined as visible)

7 Real-Time Aspects of VR Systems

274

volumes (spheres, boxes) are required. Gregory (2009) sketches a simple test for
bounding spheres: for each bounding sphere of an object in the virtual world to be
tested, each plane that defines the frustum is shifted outwards by the radius of the
sphere (the normal directions for the frustum planes are indicated in Fig. 7.12 right).
If the center of the bounding sphere is now in the positive half space for all six
planes (or four planes in the 2D case), the bounding sphere is at least partially
within the view volume. Fig. 7.12 (right) illustrates the process of view volume cull-
ing, where the scene objects are enclosed by bounding spheres. The approximation
of objects with bounding volumes may yield results where an object is marked as
visible while actually being outside the view volume. An example for this is object
A in Fig. 7.12 (right).

For bounding volumes other than spheres the following method can be used for
conservative view volume culling (Assarsson and Möller 2000): the six planes
defining the frustum can be specified by a transformation matrix. This matrix is
called a projection matrix and describes the mapping of the view frustum content
onto a unit cube. The inverse matrix of the projection matrix is applied to the bound-
ing volumes of the scene objects. For example, by applying the inverse projection
matrix, a bounding box is “deformed” to the shape of a truncated pyramid (i.e., a
frustum). For this “bounding frustum”, a new AABB (axis-aligned bounding box) is
then constructed and used for intersection testing with the view volume (which is
now a unit cube, after applying the projection matrix). In this way only AABBs have
to be compared against each other.

 Hierarchical View Volume Culling

Hierarchical view volume culling is an extension of view volume culling that takes
bounding volume hierarchies (BVHs) into account. When a separate bounding vol-
ume is used for each scene object, view volume culling may make up a significant
part of the available compute time for large scenes with thousands of objects. The
hierarchy-building techniques presented in Sect. 7.2.2 can lead to significant
improvements in such cases. For example, instead of a list of all scene objects, a tree
can be constructed that structures the scene objects (or their bounding volumes) in
bounding volumes of increasing size. This requires a suitable method for identify-
ing suitable object groupings, and, in turn, groupings of groupings. Ultimately, the
whole scene should be enclosed by a single bounding volume, i.e., the root of the
BVH. In hierarchical view volume culling, the root node of the BVH is tested first.
If it is not visible, no scene object is visible and the culling process finishes.
Otherwise, deeper levels and branches of the tree can be tested recursively to deter-
mine the visible objects.

Other kinds of hierarchies, such as k-d trees and octrees, are also applicable and
widely used for hierarchical view volume culling. Fig. 7.13 illustrates the hierarchi-
cal view volume culling method in 2D using a quadtree as example.

M. Buhr et al.

275

 Occlusion Culling

View volume culling provides a coarse test whether an object is potentially visible
or not. However, just because an object (or its bounding volume) is within the view
volume, this does not mean that it is actually visible in the rendered image: it may
be occluded by other objects, such as walls, that are closer to the viewer. Filtering
out objects that are within the view volume but hidden from the view by other
objects is called occlusion culling.

Implementing occlusion culling in 3D object-space based on the objects’ geom-
etries could provide exact solutions, but is usually too costly. Instead one usually
prefers an image-space solution that exploits a feature of modern GPUs: without
special precautionary measures, the scene objects can be sent to the graphics hard-
ware in arbitrary order where they are automatically drawn with correct occlusions.
A simplified description of the standard rendering pipeline is:

 1. Projection of the three-dimensional input data (primitives: triangles, quadrilater-
als, etc.).

 2. Rasterization of the primitive and generation of a fragment (fragment: data for
one pixel, e.g., depth; also, but not used in simplified pipeline: interpolated color,
normal, texture, etc.).

 3. Fragment-based calculations and writing the pixel to the output buffer.

Without any further mechanism, this pipeline could lead to situations where
scene objects that are close to the viewer are drawn early only to be overwritten,
falsely, by other objects drawn later. To avoid this effect, the so-called Z-buffer (or
depth buffer) of the GPU can be used. For each pixel, this buffer stores the z-
coordinate of the last drawn fragment. If the fragment to be drawn next has a higher
z-value, it lies “deeper” in the scene from the viewer and must not be transferred to
the output buffer. Transparent objects must be handled separately and are usually
sorted according to their depth before drawing. Other, more effective, techniques
based on programmable GPUs are possible.

This Z-buffering can now also be used for occlusion culling. For this purpose, the
scene is rendered once in a pre-processing step, whereby the computationally

Fig. 7.13 Hierarchical view volume culling. Left: A scene and its quadtree. Right: Hierarchical
view volume culling using the quadtree (highlighted objects are determined as visible)

7 Real-Time Aspects of VR Systems

276

expensive steps of the pipeline are deactivated beforehand (illumination, texturing,
blurring, post-processing, etc.) and only the depth buffer is filled. The subsequent
actual drawing process does not manipulate the Z-buffer, but only tests against the
values in the buffer. The advantage of this procedure is that cost-intensive opera-
tions (e.g., illumination) are only carried out for fragments that contribute to the
final image. In the literature, the described occlusion culling procedure is also
referred to as early Z rejection or Z pre-pass.

An alternative occlusion culling method, which is also supported by the hard-
ware, is the so-called occlusion query. For an occlusion query, the primitives of the
object geometry are not sent through the pipeline, but only the primitives of the
associated bounding volume. Visual effects need not be calculated. Without manip-
ulating color or depth buffers, the graphics hardware counts the pixels that would be
drawn for the bounding volume. The early stages of the rendering pipeline per-
formed on the CPU can request this value from the GPU after the request has been
executed. If the number of pixels covered by a bounding volume is zero, it is
occluded by another object and the actual scene object does not need to be drawn.
The problem with this technique, however, is that the CPU has to wait for the pro-
cessing to finish for each request. In addition to sole processing time, a delay due to
the comparatively slow communication channels to the GPU must also be expected.
Fortunately, these requests can also be transferred asynchronously to the hardware,
so that several tests can be processed in the GPU at the same time. Also, the CPU
can process other tasks while waiting.

Occlusion culling is particularly interesting for applications whose runtime
behavior is dominated by the computation time of the fragment shader (texturing,
illumination, postprocessing).

 Backface Culling

When polygon meshes are rendered, it is usually possible to specify if a polygon
should only be visible when seen from one side (one-sided polygon) or when seen
from either front or back (two-sided polygon). Backface culling deals with the
removal of polygons from the rendering pipeline that face away from the viewer. In
general, associated normals are stored for each polygon. If the normals are not
explicitly stored, the direction of the normals can also be derived by using a conven-
tion whereby the vertex order (clockwise or counterclockwise) determines the ori-
entation of the normal (see also Sect. 7.3.2). For backface culling the locally defined
polygons and their normals are transformed into the camera’s coordinate system.
Now the normals of the polygons are compared with the camera’s view direction. If
the scalar product of a polygon’s normal with the view direction is smaller than
zero, the two vectors point in opposite directions, meaning that the front face of the
corresponding polygon is visible from the camera. Otherwise, a backfacing polygon
is encountered and culled from the rendering pipeline. Backface culling is nowa-
days almost exclusively performed on the GPU, since the transformation step is an
integral part of the graphics pipeline.

M. Buhr et al.

277

 Small Feature Culling

In many cases, details of a scene can be omitted without the viewer noticing that
they are missing. The basic idea of small feature culling is that very small or very
distant objects affect only a few pixels in the resulting image. To determine whether
this applies to a given object, its bounding volume can be projected and its size
measured. If the size is below a specified threshold, the object is not drawn. This
process is particularly easy to solve in connection with the occlusion query (see
occlusion culling).

If small feature culling is enabled, the rendered output image will be slightly
inaccurate. However, especially in dynamic scenarios (also including fast viewer
movements, head tracking), the probability is high that the error will not result in
noticeable differences but will give an improved frame rate.

 Portal Culling

The portal culling method is particularly suitable for virtual worlds that simulate
closed rooms or buildings. For this purpose, the world is divided into sectors
(rooms). The user can move from one sector to the next through defined portals
(doors/passages). The sectors do not necessarily have to be spatially connected to
each other. For portal culling it is only important that the polygon describing the
portal is marked as such.

At a given time, the user (the camera) is in a sector. This sector is drawn us usual
according to the camera’s viewing frustum. In addition, a new viewing frustum is
determined for each portal in the field of view, which is defined by the viewer posi-
tion and the edges of the respective portal. With this new viewing frustum the sector
on the other side of the portal is drawn (Fig. 7.14).

Thus, the number of sectors required for rendering is automatically limited to
sectors that are actually visible through a portal. Furthermore, in these sectors, using

Fig. 7.14 Portal culling: the viewer is located in sector A (view volume/frustum of the viewer
drawn in grey). For each visible portal the view volume is highlighted in color

7 Real-Time Aspects of VR Systems

278

view volume culling, only those objects have to be drawn that are located within the
view volumes generated by portal culling.

As this method is very similar to view volume culling, these techniques can be
combined without much effort. This makes portal culling not only easy to imple-
ment, but also very efficient for virtual worlds that are divided into different sectors
or rooms.

 Level of Detail (LOD)

Small feature culling removes small – and therefore hardly visible – objects from
the scene. However, the technique does not solve a problem that quickly arises with
high-resolution objects: with increasing distance to the viewer, the details become
less and less perceptible. Without further measures, possibly millions of polygons
and high-resolution textures must be transferred to the graphics hardware and drawn
completely, even if the object covers only a few pixels in the rendered image. This
situation can be avoided by introducing replacement objects according to the level
of detail (LOD) method (see also Sect. 3.3.4 and Luebke et al. 2003).

According to the LOD method, several simplified versions of decreasing detail
are created offline for high-resolution scene objects and selectively rendered at run-
time. As soon as the object falls below or exceeds a certain distance threshold from
the viewer, the system switches to a more or less detailed version. Alternatively,
instead of the distance, the projected object size in screen space can be used as an
indicator for the LOD level to be selected.

High-detail objects may be simplified in many ways. For example, versions with
reduced polygon count are just as conceivable as versions with low-resolution tex-
tures or quality-reduced lighting. Provided that the switching times and quality lev-
els are correctly selected, the exchange of the levels can be unnoticeable in practice.
Especially for objects with “infinite” detail, such as terrain data, the LOD method
makes a decisive contribution for maintaining interactive frame rates. In general,
scenes with many complex objects benefit most from the use of the LOD technique.

An obvious disadvantage of the LOD technique is the extra memory require-
ment, because in addition to the original model, several other, less detailed models
must also be stored. However, since the low-detail models contain less information
anyway, these costs are usually not a big concern in practice. A bigger problem is
usually the generation of the LOD levels. The automated generation of visually
appealing simplified versions of a high-resolution polygon mesh is a non-trivial
problem. There are algorithms that can reduce the polygon count of given meshes.
However, such algorithms usually require checking of results and manual correc-
tions to achieve appealing results.

In practice, therefore, the detail levels are often modeled by hand, which, how-
ever, significantly increases the effort and costs involved in their creation. Parametric
models such as free-form surfaces allow the automatic creation of versions in differ-
ent resolutions. However, non-parametric, mesh-based modeling tools are much

M. Buhr et al.

279

more widespread and also more intuitive to use. A comprehensive overview of LOD
techniques is given in Luebke et al. (2003).

7.3.2 Hardware-Related Strategies

There are good reasons to hide the complexities of modern (graphics) hardware
from the application developer. Suitable abstraction levels enable the developer to
write programs that can be executed on different devices with similar efficiency.
Nonetheless, a certain knowledge of special hardware features can provide starting
points for performance improvements of the application.

The following strategies for real-time rendering of virtual worlds show ways to
minimize memory consumption, utilize hardware processing units and optimize the
usage of hardware caches.

 Object Size

Current graphics hardware is capable of displaying several hundred million trian-
gles per second. This processing speed is achieved because the problem of image
rendering can be solved mostly independently for each pixel and because the highly
parallel graphics hardware is optimized for this task. Modern GPUs contain dozens
of stream processors where each stream processor in turn consists of many shading
units. For example, an Nvidia Geforce RTX 3080 has 68 stream processors with 128
shading units each, for a total of 8,704 shading units. While all shading units exe-
cute in parallel, shading units within the same stream processor perform the same
operations on different parts of the input data, e.g., projecting vertices to NDC
(Normalized Device Coordinates). It is the task of the graphics driver (or the hard-
ware) to partition the input data, e.g., polygon meshes, into groups and assign them
to the available stream processors. To make a very simplified example: assume a
GPU with four stream processors with 32 shading units each. Now a scene object
consisting of 100 vertices is to be transformed. For this purpose, four subtasks must
be created, which are then assigned to the four available stream processors. Say
three stream processors are tasked to transform 32 vertices each, and the last one the
remaining four vertices. As all threads of a stream processor run the same code, 28
of them are masked so as not to provide invalid results. That is, 28/128 ≈ 22% of
computational resources are wasted! The problem also occurs in the following situ-
ation: 100 cubes of a scene are to be drawn. Since the cubes consist of only eight
vertices each and each cube has to be assigned to a stream processor of its own (each
cube is transformed/projected differently), the utilization of the hardware’s process-
ing resources is very unfavorable. From this it can be concluded that scene objects
should be modeled with sufficient detail if graphics processors are to benefit from
their parallel computing hardware. Another conclusion is that simple scene objects
should be combined to larger objects so that they can be passed as a whole to the

7 Real-Time Aspects of VR Systems

280

GPU. This gives the graphics driver (or the GPU) the opportunity to allocate avail-
able execution and shading units in a resource-efficient way.

 Indexing

Often, the geometry data of scene objects are available as unsorted triangle meshes.
This data representation is often the output of modeling tools and is also known as
triangle soup or polygon soup. These terms highlight that the polygons of the mesh
are completely unstructured and have no explicit relation to each other.
Metaphorically, the triangles “float” at arbitrary places in the soup. The actual data
structure is just a vector (array, list) of vertices. A sequence of three vertices defines
a triangle. However, triangles (and vertices) that are close to each other in the mesh
are not necessarily close to each other in the data vector. Another consequence is
that the vertices of a triangle mesh are typically contained several times in the data
vector (once for each triangle they belong to). The memory requirement for such
triangle soups is actually about three times the size of a memory-optimized variant
(see Sect. 7.3.2 “Stripping”). Furthermore, the disadvantageous fact that a vertex
may be contained in multiple copies in the data vector also means that it must be
processed by the graphics pipeline multiple times (transformation, lighting, projec-
tion, etc.). Without additional measures a previously calculated result of vertex pro-
cessing cannot be reused.

To avoid these inefficiencies, an indexing scheme can be introduced (see also
Sect. 3.3.1: indexed face set or indexed mesh). The vertex coordinates (usually three
floating point values with 4–8 bytes each per vertex) are stored in one data vector. A
second data vector, the index vector, defines which vertices combine to a triangle.
Each sequence of three indices (integer with 2–4 bytes per value) defines a triangle.
While the index vector requires extra memory space, this is more than compensated
by the absence of multiple copies of a vertex in the vertex vector. Overall, the mem-
ory requirements of a polygon mesh can be significantly reduced. Fig. 7.15 (left)
illustrates the indexed mesh data structure.

Software systems for graphical data processing sometimes use not only one
index vector for all vertex data but separate index vectors for vertex coordinates,
normals and other attributes (e.g., colors). This can be useful if a vertex is to use
different attributes depending on the triangle from which it is referenced. However,
this multiple indexing is not supported by typical graphics hardware. If 3D objects
have been modeled in such a representation, they must be re-sorted to a single index
data structure before they are passed to the hardware.

 Caching

Indexing alone does not solve the problem of reusing already computed vertex pro-
cessing results when the vertex is part of more than one triangle. As the index vector
presupposes no particular order of triangles, in particular, geometrically adjacent

M. Buhr et al.

281

triangles may occur at totally different positions in the index vector. To put it in
slightly different words, a vertex shared by two triangles may occur at very different
positions in the index vector. With caching it is possible to reuse recently computed
vertex data. For this, it is necessary that a second occurrence of the vertex is close
to its first one in the index vector. If the distance is too large, the vertex data in the
GPU must be completely recalculated. The sort order of the index vector thus
becomes relevant. A desirable property is a high locality of the index vector, i.e.,
spatially adjacent triangles are also in each other’s neighborhood in the index vector
(see also Fig. 7.15: the geometric positions of the vertices are not reflected in the
index vector, i.e., low locality).

The typical model of a computer – the von Neumann architecture – provides that
data and instructions use the same memory. From the programmer’s point of view,
the flow of a program is therefore strictly sequential. Problematic, however, is the
data transfer between memory and the CPU, the so-called von Neumann bottleneck.
Nowadays it takes much more time to transport the data to the CPU than it takes the
CPU to actually process this data. Without further mitigations, a modern CPU could
never be used to full capacity.

Caches were introduced to compensate for this memory latency. Caches are fast
intermediate memories. Often, they store data in the form of an associative array.
Such caches are also used on the graphics hardware to avoid or minimize memory
latencies. An important limitation of these caches is their storage capacity. To keep
access times to these caches as low as possible, they are physically placed near the
processing units. But especially there, chip area is an expensive commodity.
Therefore, the capacities (compared to RAM/VRAM) are usually very small and
only a few entries can be kept in the cache. Exact data about GPUs is difficult to
access but the capacities are typically in the low megabyte range for level-2 caches

Fig. 7.15 Triangle mesh representation with indexing and stripping. Left: Vertex and index vec-
tors define a triangle mesh. Right: Vertex vector and a convention on vertex ordering yield the tri-
angle mesh

7 Real-Time Aspects of VR Systems

282

and in the kilobyte range for level-1 caches. Since the cache size is usually much
smaller than the GPU RAM, not all data can be cached. A strategy must be imple-
mented that defines the assignment of cache entries to memory entries. Often a
memory entry cannot be placed at any position in the cache (full associativity), but
several memory entries/regions are mapped to the same cache entry (set associativ-
ity). To make a practical example, this means: if a vertex is needed to project a tri-
angle A, it must first be transferred from the slow GPU RAM to the cache. If another
triangle B accesses this same vertex immediately afterwards, it is highly probable
that the vertex data is still available in the fast cache. However, if calculations are
made in the meantime that require other data, these will replace the vertex data in
the cache. Then, for the projection of triangle B, the vertex must be reloaded from
the GPU RAM.

Since cache properties are generally very hardware-specific, it is hardly possible
to define generally applicable procedures. One consequence for real-time rendering
of virtual worlds, though, is that the index vector for a triangle mesh should be
sorted in such a way that it fulfills the locality property well. Furthermore, the pro-
gram code (including shader code) should also take into account the properties of
the available caches and, if possible, access memory sequentially (instead of ran-
domized access patterns).

If the cache size is known, the optimization can be done very well (Hoppe 1999).
However, as Bogomjakov and Gotsman (2002) have shown, good results are pos-
sible even if the cache size is unknown. A concise discussion with sample code can
be found in Forsyth (2006).

 Stripping (Triangle and Quadrilateral Strips)

One way to convert polygon data into a cache-optimized form is stripping. Stripping,
i.e., the transformation of a polygon mesh into triangle strips or quadrilateral strips,
was already introduced in Sect. 3.3.1. In the context of rendering efficiency, their
second advantage, besides the cache-optimized form, is that they explicitly describe
which vertices form a triangle (or quadrilateral). Thus, duplicate vertices or vertex
indices are avoided, making triangle and quadrilateral strips also a very memory-
efficient representation of polygon meshes.

The vertices of a data vector are interpreted according to a fixed convention.
Assume a vector with four vertices A, B, C and D. These data can be interpreted, for
example, in such a way that (ABC) and (BCD) each represent a triangle. The prob-
lem with this interpretation, however, is that the orientation differs between the two
triangles, since by convention the clockwise direction determines the normal direc-
tion. In the interpretation presented here, the normals point to different sides (i.e.,
one triangle is front facing, the other one back facing). A better interpretation is
therefore to specify the second triangle via the vertex sequence (BDC). Fig. 7.15
(right) shows the stripping for a triangle mesh and also shows the orientation of the
triangles. If vertex data are used as triangle strips, the geometric positions of the

M. Buhr et al.

283

associated triangles are also automatically reflected in the data vector. With respect
to caching, the data are thus available in a favorable form.

By means of stripping, n triangles can be specified with only n + 2 vertices. As
compared to indexing, which requires both a data vector and an index vector, strip-
ping is more favorable from a memory consumption perspective. Compared to poly-
gon soups (see Sect. 7.3.2 “Indexing”), stripping even reduces memory consumption
by almost two thirds.

Strips offer a compact geometry presentation (no duplicate vertices, no index
vector) and can positively influence the reuse of data on the GPU side. However, it
is a non-trivial problem (NP-hard computational complexity) to find an optimal
strip representation for an object. Instead, approximative greedy algorithms are usu-
ally used for strip generation that do not yield optimal but still very good results in
very short times. Since, in general, an object cannot be represented by a single strip,
either multiple strips or strips with degenerated triangles (i.e., triangles that degen-
erate into points or lines) must be used. This also results in reduced memory and
display efficiency. To counteract this, modern 3D APIs offer “restart” interfaces
(e.g., glPrimitiveRestartIndex for OpenGL). Instead of transmitting degenerated tri-
angles, this interface can be used to tell the GPU that the strip interpretation should
be restarted from a given index.

In the literature, there are several articles and papers on the subject of calculating
the strips (e.g., Evans et al. 1996; Reuter et al. 2005). Furthermore, programs are
available that generate strips from polygon meshes (e.g., NVTriStrip (NVidia 2004)
or Stripe (Evans 1998)). While polygon soups are easy to handle but memory-
consuming, strips are at the other end of the scale: they are memory efficient but
much more difficult to handle and create.

 Minimizing State Changes

As the saying goes, time is money. For this reason, a contract painter will be inclined
to finish pictures in the shortest possible time. Since he needs different brushes and
colors for the paintings, he will try to change the drawing equipment or the paint
color as rarely as possible. After all, for every change of brush, the old brush has to
be cleaned and stowed away. The graphics hardware is not unlike the painter in this
respect – although an even more accurate metaphor would be a large group of paint-
ers who must all use brushes of the same kind with the same paint color at a time.

As discussed earlier, a GPU is composed of many parallel processing units.
These execute the same instructions at different points of the input data where com-
mon state information specifies how, e.g., with which texture a vertex or fragment
is to be processed. When drawing a given object it is therefore important to make
only those state changes that are actually necessary.

Also, it is advisable to organize the order of object transfer to the graphics hard-
ware in such a way that as few state changes as possible have to be made for an
image to be drawn. If many objects are to be drawn, where some use one material
(textures, colors, shaders), others a second material, and even others are a third

7 Real-Time Aspects of VR Systems

284

material, etc., the objects could, e.g., be sorted by material before transferring them
to the GPU.

Furthermore, changes to the graphics pipeline configuration (e.g., changing the
shader program) can lead to time-consuming operations in the driver or hardware.

Virtual worlds are usually not designed according to the above principles. Which
sort order (e.g., by material or shader program) is useful depends strongly on the
specific virtual world and cannot be prescribed in a generally valid way. While this
task cannot be performed by the graphics driver or the graphics hardware, software
systems for virtual worlds can be helpful tools.

7.3.3 Software Systems for Virtual Worlds

The previous sections described a number of methods that can help to increase the
rendering speed of a virtual world. Ideally, these methods would be part of the
graphics driver or hardware and any application could achieve optimal performance.
However, this is not the case.

The graphics driver (and the APIs provided, e.g., Direct3D, OpenGL, Vulkan)
provides a thin abstraction layer between the actual hardware and the application
program. It mainly serves as a unified interface to the hardware of different manu-
facturers and contains no application-specific optimizations. These are left to the
application developer, who has the freedom and responsibility to flexibly make
design choices that suit the needs of the specific application.

Furthermore, the graphics driver does not have information about the entire
scene (but only of individual objects), so that certain optimizations (e.g., view vol-
ume culling) cannot be implemented in a meaningful way. To support the develop-
ers of VR software, who cannot be expected to completely implement all algorithms
and procedures, software systems exist which take over this task and thus support
and accelerate application development. A widespread principle is the scene graph.

 Scene Graph Systems

The general concept of a scene graph was introduced in Sect. 3.2. This section
focusses on processing aspects of scene graphs that are useful for the real-time
capability of a VR system.

The basic idea of scene graphs is to represent the entire virtual world, including
some metadata, in a hierarchical graph, either a tree or a directed acyclic graph
(DAG). At runtime, the scene graph software then traverses this graph and performs
operations on individual nodes or subgraphs. In many cases, the hierarchy is tra-
versed top-down and depth-first. Examples for these operations are intersection test-
ing during a user interaction, updating the position of dynamic objects, calculation
of bounding volumes for both leaves and inner nodes and visibility testing on the
basis of these bounding volumes.

M. Buhr et al.

285

During a single time step, a scene graph is typically traversed several times. In
this context, one often speaks of different phases:

• APP: Application phase (change structure and states of the graph)
• CULL: View volume culling
• DRAW: Rendering on the GPU

A trivial implementation of a scene graph sends all contained nodes to the graph-
ics hardware, even those representing objects not seen by the camera. However, as
the entire scene and its hierarchy are contained in the graph, the scene graph system
can easily calculate bounding volumes and bounding volume hierarchies. Based on
these data and the view volume specified by a special camera node, the scene graph
system can determine during the CULL phase which objects are within the field of
view. LOD calculations are also easily performed. However, before the objects
within the field of view are sent to the graphics hardware to be finally rendered dur-
ing the DRAW phase, they are usually sorted in such a way as to minimize changes
of the graphics state.

This APP-CULL-DRAW model became popular through Iris Performer and its
successor OpenGL Performer (Rohlf and Helman 1994). The model is particularly
interesting because it provides a good basis for parallelization of scene graph pro-
cessing. This enables scene graph systems to benefit from modern multi-core pro-
cessors and thus to process more complex scenes in real time.

Scene graph systems can significantly accelerate the development of complex
VR applications. They offer a wide range of tools for scene generation, animation,
user interaction and various optimizations (e.g., cache optimization of vertex data,
merging of static structures). They abstract the complexity of these methods and
provide VR developers with accessible interfaces that enable them to achieve their
goals quickly. Many scene graph systems also support special effects that are not
completely performed by the graphics hardware (e.g., shadow calculations).

The price for these benefits is often a somewhat limited flexibility. Adding new
algorithms to a complex system, such as a scene graph system, can be much costlier
than implementing them from scratch. It is therefore not surprising that, for exam-
ple, scientific visualization or virtual communication applications often implement
customized solutions without using a scene graph system.

 Game Engines

Game engines are development and runtime environments for computer games. In
the field of real-time 3D computer games, game engines often combine high visual
quality with comfortable development tools. Besides target platforms such as desk-
top PCs, game consoles and smartphones, many game engines also support the
development of VR/AR applications.

Modern game engines are complex software systems consisting of various sub-
systems, such as a rendering engine, physics engine and audio system. In addition,
game engines offer support for animation, multiplayer play modes, game AI and

7 Real-Time Aspects of VR Systems

286

user interaction. For level design, i.e., the modeling of virtual worlds, some game
engines provide their own development environments, which are usually strongly
customized to the respective functionalities of the game engine. Virtual worlds are
often modeled based on scene graphs. Typically, special modeling systems are also
provided for the creation of vegetation, terrain and particle systems as well as for the
animation of virtual humans (see Chap. 3). Most game engines also offer scripting
support for programming the game logic.

Chapter 10 illustrates the authoring process in game engines as well as their
configuration for VR/AR applications using Unity and the Unreal Engine as
examples.

7.4 Summary and Questions

Real-time capability is of crucial importance for believable VR/AR experiences. In
combination with head-tracking, a latency of at most 50 ms is recommended for
HMD-based systems (Brooks 1999; Ellis 2009). Higher latencies are more tolerable
for projection-based VR systems. Latencies occur in all subsystems of VR/AR sys-
tems. In addition, latencies of data transport between the subsystems must be con-
sidered to minimize the overall latency (end-to-end latency) of a VR/AR system. In
this chapter, methods for measuring the latency of tracking systems as well as end-
to- end latency were presented. Furthermore, typical latencies for different hardware
components of VR/AR systems were discussed, including different types of track-
ing systems and network components. The latencies of other VR/AR subsystems,
such as world simulation and rendering are more dependent on the specific applica-
tion. A generic task during world simulation is collision detection. For this purpose,
a number of methods exist that allow efficient collision detection even in large envi-
ronments with a high number of objects. The scene graphs commonly used in VR
systems support efficient rendering in a variety of ways, e.g., different culling meth-
ods, level of detail techniques, and memory-effective and cache-friendly data struc-
tures for polygonal models, as well as optimization of the rendering order of the 3D
objects in the virtual world.

Check your understanding of the chapter by answering the following questions:

• Why is low end-to-end latency so important for VR/AR systems?
• Where do the latencies of VR/AR systems come from?
• Sketch a concrete VR application and discuss the relevance of different kinds of

latency on this example!
• How can latencies be measured or estimated?
• What are the typical requirements for bounding volumes? What consequences

result from these requirements?
• What is a separating axis and how can one be found for two OBBs?
• Explain the Sweep & Prune procedure using a self-drawn sketch. Explain the

advantages and disadvantages of the procedure!

M. Buhr et al.

287

• Scene graphs can be organized according to different criteria. In a logical or
semantic structure, objects could be grouped according to their type, e.g., by hav-
ing one common group node for all cars, another common group node for all
houses etc. In a spatial structure, on the other hand, objects that are close to each
other would be grouped together. What type of grouping is more efficient for
view volume culling? Also explain hierarchical view volume culling!

• In scene graphs, bounding volumes such as cuboids or spheres are automatically
generated for all inner nodes. How can this be exploited with the different vari-
ants of culling (view volume culling, occlusion culling, small feature culling)?

 Recommended Reading

Jerald JJ (2010) Scene-motion- and latency-perception thresholds for head-mounted
displays. Dissertation, UNC, Chapel Hill, http://www.cs.unc.edu/techreports/10-
 013.pdf. Accessed August 11, 2020 – Jerald’s doctoral thesis deals intensively
with the topic of visual latencies in virtual reality and contains an extensive col-
lection of literature on the subject.

Ericson C (2004) Real-time collision detection. CRC Press – The book provides a
comprehensive and in-depth overview of collision detection methods.

Akenine-Möller T, Haines E, Hoffman N, Pesce A (2018) Real-time rendering, 4th
edn. CRC Press – Textbook on advanced topics in computer graphics, providing
a comprehensive overview of techniques for real-time rendering of 3D worlds.

References

Abrash M (2012) Latency – the sine qua non of AR and VR. http://blogs.valvesoftware.com/
abrash/latency- the- sine- qua- non- of- ar- and- vr/. Archived at https://perma.cc/J29Q- KEQ8.
Accessed 6 Feb 2021

Adelstein BD, Johnston ER, Ellis SR (1996) Dynamic response of electromagnetic spatial dis-
placement trackers. Presence 5(3):302–318

Akenine-Möller T, Haines E, Hoffman N, Pesce A, Iwanicki M, Hillaire S (2018) Real-time ren-
dering, 4th edn. Taylor & Francis

Assarsson U, Möller T (2000) Optimized view frustum culling algorithms for bounding boxes. J
Gr Tool 5(1):9–22

Baraff D (1992) Dynamic simulation of non-penetrating rigid bodies. Dissertation, Cornell
University

Bauer F, Cheadle SW, Parton A, Muller HJ, Usher M (2009) Gamma flicker triggers attentional
selection without awareness. Proc Natl Acad Sci 106(5):1666–1671

Bogomjakov A, Gotsman C (2002) Universal rendering sequences for transparent vertex caching
of progressive meshes. Comp Gr Forum 21(2):137–149

Brooks FP (1999) What’s real about virtual reality? IEEE Comp Gr Appl 19(6):16–27
Cameron S (1997) Enhancing GJK: computing minimum and penetration distances between

convex polyhedral. Proceedings of International Conference on Robotics and Automation,
pp 3112–3117

7 Real-Time Aspects of VR Systems

http://www.cs.unc.edu/techreports/10-013.pdf
http://www.cs.unc.edu/techreports/10-013.pdf
http://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/
http://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/
https://perma.cc/J29Q-KEQ8

288

Carmack J (2013) Latency mitigation strategies. #AltDevBlog. Internet Archive: https://web.
archive.org/web/20140719085135/http://www.altdev.co/2013/02/22/latency- mitigation-
strategies/. Accessed 6 Feb 2021

Catto E (2020) Box2d – a 2D physics engine for games. http://box2d.org/. Accessed 6 Feb 2021
Dong Y, Peng C (2019) Screen partitioning load balancing for parallel rendering on a multi-GPU

multi-display workstation. Eurographics Symposium on Parallel Graphics and Visualization,
Eurographics Association

Eger Passos D, Jung B (2020) Measuring the accuracy of inside-out tracking in XR devices using
a high-precision robotic arm. HCI International 2020 – Posters. HCI International 2020, 22nd
International Conference on Human-Computer Interaction, Proceedings, Part I, pp 19–26

Ellis SR (1994) What are virtual environments? IEEE Comp Gr Appl 14(1):17–22
Ellis SR (2009) Latency and user performance in virtual environments and augmented reality.

Distributed Simulation and Real Time Applications, DS-RT 09, p. 69
Ericson C (2005) Real-time collision detection. Morgan Kaufmann, San Francisco
Evans F (1998) Stripe. http://www.cs.sunysb.edu/~stripe/. Accessed 6 Feb 2021
Evans F, Skiena S, Varshney A (1996). Optimizing triangle strips for fast rendering. In: Proceedings

of Visualization’96, IEEE, pp 319–326
Forsyth T (2006) Linear-speed vertex cache optimisation. https://tomforsyth1000.github.io/papers/

fast_vert_cache_opt.html. Accessed 6 Feb 2021
Gilbert EG, Johnson DW, Keerthi SS (1988) A fast procedure for computing the distance between

complex objects in three-dimensional space. J Robot Autom 4(2):193–203
Gregory J (2009) Game engine architecture. A K Peters, Natick
He D, Liu F, Pape D, Dawe G, Sandin D (2000) Video-based measurement of system latency. In:

Fourth international immersive projection technology workshop (IPT2000)
Hoppe H (1999) Optimization of mesh locality for transparent vertex caching. In: Proceedings of

26th Annual Conference on Computer Graphics and Interactive Techniques, pp 269–276
Hübner T, Zhang Y, Pajarola R (2007) Single pass multi view rendering. IADIS Int J Comp Sci

Infor Syst 2(2):122–140
Jerald J, Whitton M, Brooks FP (2012) Scene-motion thresholds during head yaw for immersive

virtual environments. ACM Trans Appl Percept 9(1):1–23
Lengyel E (2002) Mathematics for 3D game programming and computer graphics, 2nd edn.

Charles River Media, Rockland
Liang J, Shaw C, Green M (1991) On temporal-spatial realism in the virtual reality environment.

In: Proceedings of UIST, pp 19–25
Lin MC, Canny JF (1991) A fast algorithm for incremental distance calculation. Proc IEEE Int

Conf Robot Autom 2:1008–1014
Luebke DP, Reddy M, Cohen J, Varshney A, Watson B, Huebner R (2003) Level of detail for 3D

graphics. Morgan Kaufmann, San Francisco
Meehan M, Razzaque S, Whitton MC, Brooks FP (2003) Effect of latency on presence in stressful

virtual environments. In: Proceedings of IEEE Virtual Reality, pp 141–148
Mine M (1993) Characterization of end-to-end delays in head-mounted display systems. Technical

Report 93–001, University of North Carolina at Chapel Hill
NVidia (2004) NvTriStrip library. https://github.com/turbulenz/NvTriStrip. Accessed 6 Feb 2021
Reuter P, Behr J, Alexa M (2005) An improved adjacency data structure for fast triangle stripping.

J Gr GPU Game Tool 10(2):41–50
Rohlf J, Helman J (1994) Iris performer: a high performance multiprocessing toolkit for real-time

3D graphics. In: Proceedings of 21st annual conference on computer graphics and interactive
techniques. ACM, pp 381–394

Sathe R, Lake A (2006) Rigid body collision detection on the GPU. In: ACM SIGGRAPH 2006
research posters. ACM, New York

Skogstad SA, Nymoen K, Høvin M (2011) Comparing inertial and optical MoCap technologies for
synthesis control. In: Proceedings of the 8th Sound and Music Computing Conference

M. Buhr et al.

https://web.archive.org/web/20140719085135/http://www.altdev.co/2013/02/22/latency-mitigation-strategies/
https://web.archive.org/web/20140719085135/http://www.altdev.co/2013/02/22/latency-mitigation-strategies/
https://web.archive.org/web/20140719085135/http://www.altdev.co/2013/02/22/latency-mitigation-strategies/
http://box2d.org/
http://www.cs.sunysb.edu/~stripe/
https://tomforsyth1000.github.io/papers/fast_vert_cache_opt.html
https://tomforsyth1000.github.io/papers/fast_vert_cache_opt.html
https://github.com/turbulenz/NvTriStrip

289

Steed A (2008) A simple method for estimating the latency of interactive, real-time graphics simu-
lations. Proc VRST:123–129

Swindells C, Dill JC, Booth KS (2000) System lag tests for augmented and virtual environments.
Proc UIST 00:161–170

Weller R (2012) New geometric data structures for collision detection. Dissertation, Universität
Bremen. http://nbn- resolving.de/urn:nbn:de:gbv:46- 00102857- 18. Accessed 11 Aug 2020

Welzl E (1991) Smallest enclosing disks (balls and ellipsoids). In: Results and new trends in com-
puter science. Springer, Berlin/Heidelberg, pp 359–370

Xavier PG (1997) Fast swept-volume distance for robust collision detection. Proc IEEE Int Conf
Robot Autom 2:1162–1169

You S, Neumann U (2001) Fusion of vision and gyro tracking for robust augmented reality regis-
tration. Proceedings of IEEE Virtual Reality, pp 71–78

7 Real-Time Aspects of VR Systems

http://nbn-resolving.de/urn:nbn:de:gbv:46-00102857-18

291© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
R. Doerner et al. (eds.), Virtual and Augmented Reality (VR/AR),
https://doi.org/10.1007/978-3-030-79062-2_8

Chapter 8
Augmented Reality

Wolfgang Broll

Abstract This chapter covers specific topics of Augmented Reality (AR). After an
introduction to the basic components and a review of the different types of AR, the
following sections explain the individual components in more detail, as far as they
were not already part of previous chapters. This includes in particular the different
manifestations of registration, since these are of central importance for an AR expe-
rience. Furthermore, special AR techniques and interaction types are introduced
before discussing individual application areas of AR. Then, Diminished Reality
(DR), the opposite of AR, is discussed, namely the removal of real content. Finally,
Mediated Reality, which allows for altering reality in any form, including the com-
bination of AR and DR, will be discussed.

8.1 Introduction

The following overview provides a quick introduction to the most important aspects
of augmented reality.

8.1.1 Getting Started

In accordance with the definition already given in Chap. 1 (see Sect. 1.3), Augmented
Reality (AR) can generally be understood as the enrichment of reality by artificial
virtual content. In doing so, a fusion of reality and virtuality occurs (see also

W. Broll (*)
Department of Computer Science and Automation/Department of Economic Sciences
and Media, Ilmenau University of Technology, Ilmenau, Germany
e-mail: wolfgang.broll@tu-ilmenau.de

Dedicated website for additional material: vr-ar-book.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79062-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-79062-2_8#DOI
mailto:wolfgang.broll@tu-ilmenau.de
http://vr-ar-book.org

292

Milgram et al. 1995). Figure 8.1 shows an example of a real scene and its augmenta-
tion by a virtual object.

It is crucial that this augmentation does not happen statically and at once, as in
the above illustration, but continuously and adapted to the current point of view of
the respective viewer. In simplified terms and neglecting individual alternatives, AR
can be realized through the following five steps:

 1. Video capturing
 2. Tracking
 3. Registration
 4. Visualization
 5. Output

The individual steps and components are only briefly explained here to give the
reader an initial idea. As far as they were not already considered in previous chap-
ters, they will be discussed in detail in the following sections.

Video Capturing
In the first step, a video image or, more precisely, a video stream of the observer’s
surroundings is usually recorded. The purpose is to capture the reality, i.e., the real
environment of the user (see also Fig. 8.1, left). This can be done using any kind of
camera (webcam, smartphone camera, television camera, etc.). It is important that
the camera has been calibrated accordingly; see also Szeliski (2011). Later we will
introduce other types of AR for which a camera image of the environment is not
necessary (see Sect. 8.1.2).

Tracking
Tracking is generally understood to be the calculation (or more correctly the estima-
tion) of the position and/or pose/orientation (see Chap. 4). In the case of AR, it is
necessary to capture the observer’s point of view continuously and as accurately as
possible. However, when reality is represented by the video image just captured, the
position and orientation of the camera used are usually estimated instead. Nowadays,
pose estimation can usually be obtained quite reliably using hybrid 3-DOF pose
sensors (consisting of inertial sensors, gyro sensors and magnetometers; see also
Sects. 4.2.2 and 4.2.3). Such sensors are now built into all current smartphones and
tablets, but can also be available as separate input devices. In contrast to pose

Fig. 8.1 Fusing a real environment (left) with a virtual object (right) to achieve Augmented
Reality (center). (Single images: © Tobias Schwandt, TU Ilmenau 2018. All rights reserved)

W. Broll

293

estimation, sufficiently exact position estimation is mostly difficult. In outdoor
applications, GPS or one of its alternatives typically provides the basis in the con-
text of AR, while for indoor applications, computer vision-based approaches are
generally applied. The latter have the additional advantage that they can estimate the
position as well as the orientation and may also additionally be used outdoors.
Tracking thus results in a transformation from the user or camera coordinate system
into the coordinate system of the real environment. Tracking in general is intro-
duced in detail in Sect. 4.2.

Registration
Registration (more precisely geometric registration) refers to the anchoring or cor-
rect fitting of the artificial virtual content into reality. On the basis of the position
and orientation estimation from tracking, the coordinate system of the individual
virtual content and the observed reality are put in relation to each other in such a
way that the virtual content appears firmly located (registered) in reality. This leads
to the situation that an artificial object not moving in the virtual world has an appar-
ently fixed place in reality, independent of a changing point of view of the observer
(or the camera). A simple registration scheme is shown in Fig. 8.2. Geometric as
well as photometric registration (the adaptation of the appearance of the virtual
content to the illumination conditions of the environment) is presented in detail in
Sect. 8.3.

Visualization
Based on the transformation resulting from the geometric registration and the
respective camera perspective, the virtual content is rendered. Thereby, the virtual
content is superimposed on the recorded video image in the correct perspective (see
Fig. 8.2). For seamless superimposition, many other aspects, such as resolution,
sharpness, color range and contrast ratio of the virtual image, may have to be

Fig. 8.2 Simple registration using a fiducial marker

8 Augmented Reality

294

adjusted. As an alternative to the video image overlay, an optical overlay of the
observer’s view can also be performed directly – see Sect. 8.1.2 for details. Other
aspects that are important include mutual superimposition of the real and virtual
content (c. Sect. 8.4.2) and the mutual influence between the virtual content and the
real environment, also known as photometric registration (c. Sect. 8.2.2). If some of
these aspects are not sufficiently taken into account, the virtual content can very
quickly appear detached from reality despite correct geometric registration (see
Fig. 8.3).

Output
Finally, the superimposed video images (or the augmented video stream) are shown
on a display to which the camera is usually attached. This can be a handheld device
such as a smartphone (see Fig. 8.4), a tablet or AR glasses. In principle, the output
can also be on a separate monitor or via projection. However, in this case, the
impression of a seamless augmentation of reality is only partially created for the
observer. AR glasses are discussed in detail in Sect. 5.3, while other more specific
AR output techniques are presented in Sect. 8.4.

8.1.2 AR – An Overview

In addition to the examples of AR presented in the first subsection, many other types
exist. However, all types of AR have in common that they are based on a perspective-
correct projection of the virtual content into the user’s environment or onto the
previously recorded video image. The point of view and the direction of view
between the real and virtual environment must always be consistent. Furthermore,
the virtual field of view must correspond to the actual field of view of the respective

Fig. 8.3 Perspective superimposition of an image used for tracking by a 3D object. (Image source:
Jan Herling, TU Ilmenau)

W. Broll

295

display. Finally, the scaling of the virtual content must be adapted to the real
environment.

Ideally, the perspective of the captured image and the perspective of the user
(viewing the augmented image) should match as well, so that the user actually gets
the impression that the real environment is really altered. Then, the user virtually
looks through the display at the reality behind it (even if, depending on the charac-
teristics of the AR, only a video image of the reality may be visible on the display).
In this case we speak of the Magic Lens metaphor (see also Fig. 8.5 and Brown and
Hua (2006)). In practice, this is only achieved when using AR glasses, as handheld
devices typically do not support stereo vision (c. also Sect. 8.3.1).

The individual types of AR are explained below and then compared in terms of
their limitations and capabilities.

Video See-Through AR
So-called video see-through AR (VST-AR), also known as video pass-through AR,
is very similar to the approach described in the introduction. Therefore, first the real
environment is captured by a video camera. Then the video image is superimposed
with virtual content in the correct perspective and displayed on an output device
afterwards (see Fig. 8.6).

To achieve the aforementioned Magic Lens effect, it is crucial that the viewpoint,
viewing direction and field of view of the video camera and the output (i.e., the
virtual camera) match. Otherwise, the viewer will experience a decoupling between
their real environment and the augmented environment observed (see also Sect. 8.4).

Fig. 8.4 Output of an augmented video stream on a smartphone (here from the viewpoint of a
second observer). (Image source: Jan Herling, TU Ilmenau)

8 Augmented Reality

296

Optical See-Through AR
In contrast to the AR technology described above, optical see-through AR (OST-AR)
does not require video capturing of the real environment. Instead, the real environ-
ment is always perceived directly by the observer. For this purpose, virtual content
is optically superimposed on reality by the output device. This requires an output
device with a semi-transparent display, so that both the reality behind it and the

Fig. 8.5 Example of a magic lens effect

Fig. 8.6 Perspectively correct superimposition of a camera image of the real environment by vir-
tual content using video see-through AR – here on a smartphone

W. Broll

297

added virtual content can be perceived simultaneously. To ensure that the perspec-
tive of the real environment and the virtual extension match, the point of view of the
observer in relation to the display must be known. Generally, it is necessary to use
a separate display for each eye. If both eyes look at the same display, it must be
ensured that the areas observed are separated, so that the perspective for each eye
can be adjusted correctly. In monoscopic displays, which are viewed with both eyes
simultaneously, the perspective is at best correct for just one eye.

Projection-Based AR
Projection-based AR is characterized by projecting virtual content onto objects in
the real environment (see Fig. 8.7). When projecting on arbitrary surfaces, this typi-
cally does not allow for the creation of new spatial structures and thus is typically
limited to the manipulation of surface properties (like color or texture) and the dis-
play of additional information on the objects’ surface (explanations, highlights,
symbols, etc.). On suitable surfaces or with suitable channel separation techniques
such as shutter glasses, front or back projections may be used to create objects
before or behind the canvas similar to VR (see Sect. 5.4.4). This, however, also
restricts virtual objects to the field of view covered by such surfaces (e.g., a dash-
board in a driving simulator (Weidner and Broll 2019)).

Projection-based AR is a variant of Spatial AR (SAR) (see Bimber and Raskar
2005), in which the augmentation is not achieved using a display in an HMD or
handheld device, but “in space”. However, in general, Spatial AR setups can also be
based on video see-through or optical see-through AR.

Fig. 8.7 Example of projection-based AR (virtual door, virtual color design of the wall). (© Oliver
Bimber 2005. All rights reserved)

8 Augmented Reality

298

Comparing the Individual Types of AR
Basically, the AR types described above differ in the extent to which they can
expand or change reality. Using optical overlay techniques, dark virtual content and
light backgrounds are particularly problematic. Tables 8.1, 8.2 and 8.3 provide an
overview of the individual display capabilities and limitations.

In contrast to projection-based AR, both the optical see-through technique and
the video see-through technique allow the display of virtual 3D objects at arbitrary
positions within the space covered by the field of view (see Table 8.3, right column).
Nevertheless, the perception of the surrounding reality and the virtual objects differs
considerably between the two techniques, so that the respective other technique
may be more suitable in a particular situation, depending on the application scenario.

When using OST AR as well as projection-based AR, dark virtual objects may
appear completely transparent, as the overlay is purely optical, i.e., it is achieved by
adding light (see Fig. 8.8). This means in particular that no shadows of virtual
objects can be added (see Table 8.3, left column). This considerably limits the pos-
sibilities of photometric registration (see Sect. 8.3). Thus, the suitability of this tech-
nique depends very much on the respective real environment. Further, when
illuminating the virtual scene and selecting the material properties, it must be taken
into account that objects with a (too) low light intensity appear transparent. Such
limitations may be overcome by applying an additional occlusion layer in OST
glasses, which so far has only been demonstrated in research prototypes (see e.g.,
Hamasaki and Itoh 2019).

Table 8.1 Visibility of bright virtual content on different backgrounds depending on the AR type

On bright background On dark background

Optical see-through Partially visible, high transparency Good visibility, low transparency
Video see-through Good visibility Good visibility
Projection Partially visible Good visibility

Table 8.2 Visibility of dark virtual content on different backgrounds depending on AR type

On light background On dark background

Optical
see-through

Not visible, almost complete
transparency

Partially visible, high
transparency

Video see-through Good visibility Good visibility
Projection Not visible Partially visible

Table 8.3 Display of virtual shadows and virtual objects in space depending on the AR type

Virtual
shadows Universal object location

Optical
see-through

Not possible Possible

Video see-through Possible Possible
Projection Not possible Not possible/limited (on surfaces allowing for stereo

projections)

W. Broll

299

In general, it can be said that when using optical see-through technology, reality
is perceived directly, i.e., without a limitation of resolution, but is instead perceived
significantly darkened (see Fig. 8.9, left). Thereby, the virtual objects always appear
partially transparent, i.e., as described above. Depending on the brightness of the
virtual object and the real background, the latter may be clearly visible through
the former.

VST AR, in contrast, allows the real background to be displayed with the same
optical quality and brightness as the virtual content (see Fig. 8.9, right). However,
this leads to a reduced resolution for the representation of the real environment
compared to reality and the optical see-through technique. The reason for this is the
limited resolution of the camera and the display used. For a coherent overall impres-
sion, the camera resolution should not be lower than that of the display. Otherwise,
virtual objects may stand out sharply against the background (see e.g., Fig. 8.18). To
achieve a coherent overall impression, it may therefore be useful to reduce the reso-
lution of the virtual image to that of the camera.

Fig. 8.8 With the OST AR
techniques, dark virtual
objects sometimes appear
transparent (here the less
illuminated lower part of
the red sphere)

Fig. 8.9 Typical perception when using the optical see-through technique (left) compared to the
video see-through technique (right)

8 Augmented Reality

300

8.2 Registration

As already introduced in Sect. 8.1, registration in the context of AR refers to the
correct fitting of virtual content into the real environment. On the one hand, this has
to be made perspective-correct (this is called geometric registration), but on the
other hand it should also be correct with respect to appearance, i.e., in particular
lighting. The latter case is also called photometric registration.

8.2.1 Geometric Registration

Tracking (see Sect. 4.3) provides the basis for geometric registration. Using the
estimated transformation Tmc between the viewpoint of the camera (in the case of
video see-through augmentation) or that of the observer respectively (in the case of
optical see-through augmentation), and the tracked object, the latter is displayed in
the current field of view with correct position and orientation. In other words: geo-
metric registration implies that a virtual object appears to be in the same place in
reality even if the camera perspective is changed, i.e., if it is not an animated virtual
object, it does not move in relation to the real environment (see Fig. 8.10). This is
achieved by compensating for each change of the real camera position and orienta-
tion by a corresponding transformation of the virtual camera pose, and thus the
displayed perspective of the virtual object is subsequently correct again with respect
to the real pose.

The quality of the tracking used is crucial for the visual quality of the registra-
tion. However, the tracking update rate and the latency of the tracking may even
have a larger influence on the visual appearance of the AR application.

Ideally, the tracking update rate exactly matches the frame update rate of the
visual output (i.e., typically at least 60 fps). If the tracking rate is too low, the virtual
objects seem to move with the head for some time (neglecting possible latency – see
below) when the camera or head is moved, and then jump back to their correct posi-
tion in the real world (see also Fig. 8.11).

With video see-through AR, the effect can be mitigated by adjusting the frame
rate to the tracking rate. The effect of the virtual objects jerking or jumping disap-
pears, but the abrupt image changes during strong camera movements can then be
perceived as equally disturbing by the viewer. In addition, a discrepancy between
the perceived motion (vestibular perception) and the optical perception (see also
Chap. 2) is created. With optical see-through AR this possibility does not exist,
because the observer perceives the surrounding and thus every faulty registration at
any time.

Latency (see also Sect. 7.1) is another major problem regarding correct geomet-
ric registration. While the symptoms here are very similar to those of a too low
tracking update rate and the latter also affects the latency, the actual problem is of a
different nature. In tracking, latency is the delay between the moment of movement

W. Broll

301

(of the camera and/or the tracked object) and the moment when the resulting trans-
formation of the virtual objects can actually be observed. Neglecting the delays
caused by the tracking rate (see above) and the actual rendering, here the time
between measuring or estimating the position and orientation and applying it to the
object transformation remains. The longer this time span is, the more noticeable is

Fig. 8.10 Left image: Correct geometric registration of the virtual trash can. Image top right:
Virtual object is displayed at the same position as in the left image, but it is geometrically not
registered with the surrounding reality. Image bottom right: Based on the tracking data, the correct
perspective of the virtual object is displayed from the current viewpoint and the current viewing
direction of the camera; the virtual object is geometrically correctly registered with the surround-
ing reality

8 Augmented Reality

302

the resulting effect. The causes of high latency can be manyfold: mostly it is due to
relatively complex tracking techniques requiring a rather long time for calculation.
In particular, feature-based approaches should be mentioned here. But also, other
causes like long signal runtimes can result in high latency. Similar to a too low
tracking rate, a virtual object will first move with the corresponding movement of
the camera or the head of the observer. However, the movement does not jump or
jerk, but the object remains (in the case of uniform movements) more or less at a
fixed position in relation to reality, but has an offset to the correct position as long
as the movement continues. Not until the movement of the camera or the head stops
again is the virtual object registered correctly again (see Fig. 8.12).

In contrast to too low tracking rates, the problem of too high tracking latency, at
least for video see-through AR, can be mitigated in most cases without serious deg-
radation of the user experience. For this purpose, it is necessary to measure the
resulting latency, and the camera images must be buffered over the corresponding
period of time. If the tracking data is available, the transformed virtual objects are
now combined with the camera image at the time of their capturing (see Fig. 8.13).
Thus, the latency no longer exists between the virtual and real content of the consid-
ered image, but for the entire image. However, as long as this latency does not
become too high (see Sect. 7.1.2), this will not be noticed by the observer and thus
has no disturbing effect. Here, too, a corresponding correction is basically not pos-
sible with OST-AR, since the surrounding is perceived immediately – without any
delay. The only alternative here is estimating the tracking data to be expected. In the

Fig. 8.11 Incorrect geometric registration due to a too low tracking rate: the camera moves from
left to right; due to missing tracking updates, the virtual object (the black bin) first moves along
with the camera (second and fourth images) and then suddenly jumps to the correct position (third
and fifth images) when new tracking data becomes available (actual correct positions shown
in green)

W. Broll

303

past, Kalman filters were used for this purpose. Current approaches also partly use
neural networks in this context.

A temporary incorrect geometric registration, whether caused by too low track-
ing rates or too high latency, destroys the illusion of a seamless integration of the
virtual content into reality for the observer, which means that the corresponding AR
application is only of limited use.

Fig. 8.12 Incorrect geometric registration due to high tracking latency: the camera moves from
left to right; the virtual object first moves with the camera for a short time and then mostly freezes
at a wrong position; only after stopping the movement of the camera does the virtual object move
to its correct position (correct positions in green)

Fig. 8.13 Reduction of latency-related effects through caching of camera images and
parallelization

8 Augmented Reality

304

8.2.2 Photometric Registration

In contrast to geometric registration, which is a basic requirement for the use of AR,
even today the photometric registration of virtual objects in the AR context is mostly
performed only very rudimentarily, if at all. A prerequisite for a successful photo-
metric registration, i.e., a correct adjustment of a virtual objects’ appearance to its
real environment, is – analogous to tracking for geometric registration – the acquisi-
tion or estimation of the respective data.

Generally, various methods can be used to capture the real lighting conditions.
One option is the use of so-called light probes. In most cases, spheres are placed in
the scene (Debevec 1998). Depending on the color and shininess of the spheres,
different information about the lighting of the environment can be acquired. For
diffuse lighting, corresponding virtual light sources are calculated and added to the
virtual scene based on the highlights or bright parts of the image that are reflected
there. For glossy reflections a mirroring sphere is used. While this approach can be
used to adjust the appearance of the virtual objects well to the real environment, it
is also fundamentally limited. On the one hand, it is often not possible or desirable
to introduce corresponding light probes in the environment to be augmented, and on
the other hand, the influence of the virtual objects and their virtual illumination on
the illumination of the surrounding reality is neglected. An example of this is shown
in Fig. 8.14.

Fig. 8.14 Illumination of virtual content influencing the real environment (virtual reflection on
tablet computer). (© Tobias Schwandt, TU Ilmenau 2018. All rights reserved)

W. Broll

305

A complete adaption of the illumination of real objects can only be done using
video see-through AR. A prominent example is the shadow cast by a virtual object
onto the real environment. When using optical see-through AR, changes are
restricted to those adding light (in Fig. 8.14 the reflection of the virtual image on the
tablet would be possible, but not the shadow of the sphere on the desk). For correct
photometric registration, an augmentation of parts of the reality is crucial (see
Fig. 8.15). Therefore, this can already be considered a simple form of Mediated
Reality (as it is limited to lighting) (see Sect. 8.7.2). An incomplete or incorrect
photometric registration can very quickly destroy the illusion of seamless integra-
tion of reality and virtuality. Conversely, correct or at least plausible photometric
registration can dramatically increase the perceived credibility of an AR scene for
the viewer.

Current AR frameworks (e.g., Apple’s ARKit or Google’s ARCore) allow, to a
limited extent, easy analysis and simulation of ambient light using cameras inte-
grated into smartphones and tablets. One of the approaches used here is to estimate
the direction of directional light sources based on face recognition and the bright-
ness distribution in these faces (see Knorr and Kurz 2014). In combination with
camera images from different directions, the local lighting situation can be esti-
mated and simulated using so-called spherical harmonics coefficients (Kautz
et al. 2002).

While a simple approximation of a virtual shadow for a virtual object lying on a
flat surface (such as a table top) can still be done easily, correct shadow casting on
arbitrary geometries requires precise knowledge of the topology of the real environ-
ment. While this knowledge may be available in individual cases, depending on the
AR application (e.g., for projection-based AR or phantom objects; see also Sect. 8.3
or Sect. 8.4.2), such information is often not readily available. The same applies to

Fig. 8.15 Comparison of an AR scene without and with photometric registration: in the right
image, (real) light is reflected by the red sheet onto the virtual object; furthermore, light from the
virtual object is reflected onto the background. (Picture source: Philipp Lensing, TU Ilmenau)

8 Augmented Reality

306

reflections between real and virtual objects. To be able to reproduce them close to
reality, at least basic information about the surfaces or normals of the real environ-
ment of the virtual object must be available. This information can either be derived
from SLAM (Simultaneous Localization and Mapbuilding) methods (see Sect.
4.3.4), from the processing of depth camera images (see Lensing and Broll 2012),
or more recently from LiDAR sensors now available in some tablets and smart-
phones. For example, ARKit uses Light Probes (see above) to realize glossy reflec-
tions. Instead of spheres, the physical objects used are the planar surfaces (or their
illumination) detected by the framework. Unrecognized areas are initially black and
are filled with color information using a neural network. Similar approaches can be
found in Schwandt and Broll (2016) and Schwandt et al. (2018); see Fig. 8.16).

8.3 Visual Output

The visual output of the augmented content can be achieved using various devices.
In Sect. 5.2.2, the use of head-mounted displays for AR has already been intro-
duced. When using the video see-through technique (see Sect. 8.1.2), VR glasses
are used, which capture reality via integrated or external cameras. In contrast, spe-
cial AR glasses are used in order to provide a direct view on reality using the optical
see-through technique (see Sect. 8.1.2) for augmentation. While AR glasses allow
an immediate augmentation of the user’s visual field and thus represent the most
immersive form of AR, most current AR applications use handheld display devices
(smartphones and tablets).

Fig. 8.16 Reflective surfaces of virtual objects. (© TU Ilmenau 2018. All rights reserved)

W. Broll

307

Besides visual output devices, AR usually only adds audio output devices. In
mobile AR systems this is usually limited to stereo headphones, whereas stationary
AR systems can use all kinds of audio output devices (see also Chaps. 2 and 3).

8.3.1 Handheld Devices

Due to the availability of corresponding AR frameworks for handheld devices
(ARCore for Android and ARKit for iOS), handheld devices (tablet computers and
smartphones) are currently the most important and most frequently used output
devices for AR. They are equipped with a rear camera, which is used to capture the
environment and for optical tracking, and mostly with sensors to detect the pose
(see Sects. 4.2.2 and 4.2.3). Analogously to video see-through displays (see below),
augmentation is usually performed correctly in terms of perspective for the position
and orientation of the camera, but not for the actual viewing point of the observer.

The problem is mainly caused by the fact that the field of view of the camera
used for video capturing is typically fixed in relation to the display, whereas the
viewer’s field of view depends on the respective point of view and the viewing
direction in relation to the display (see Fig. 8.17).

As a result, the Magic Lens effect described above is only achieved to a limited
extent (see Fig. 8.18). Due to this and the very small proportion of such displays in
the viewer’s field of view, the immersion is significantly lower.

8.3.2 Projection-Based Output

For realizing projection-based AR, one or more projectors illuminate surfaces of the
environment in such a way that the perception of real objects changes (see Fig. 8.19).
Due to this restriction to existing surfaces, no free positioning of the virtual contents
in space is possible. For the correct projection of the virtual contents onto the real
surfaces, the position and orientation of the individual projector in relation to the
projection surface must be known. This can be achieved, for example, by determin-
ing the position and orientation of the projector. Additionally, a model of the objects
to be projected onto must be available. If these are movable, they must also be
tracked. If the additional content is now projected onto the virtual models (without
having them illuminated otherwise) and the resulting rendered image is output by
the projector, it is geometrically correctly registered (assuming the projector is cor-
rectly calibrated with respect to field of view, distortion, etc.). However, often the
corresponding models of the environment are not available and/or tracking of the
projector is not possible. In this case, other methods must be used to determine the
depth information of the individual projection surfaces. For this purpose, approaches
applying structured light (e.g., patterns like stripes or grids (see also Scharstein and
Szeliski 2003)) can be used, as they are sometimes used in depth cameras. Due to

8 Augmented Reality

308

Fig. 8.17 Different fields of view of viewer and camera in handheld AR

Fig. 8.18 Left: Matching perspective between reality and augmented image (Magic Lens effect).
Right: Camera image and reality are perceived with a deviating perspective

W. Broll

309

the projection by the projector, approaches with structured light only require the
attachment of a camera to the projector. In this case, as with the attachment of other
sensor technology, one often speaks of so-called smart projectors.

In addition to the geometric registration, photometric calibration (not to be con-
fused with photometric registration; see Sect. 8.2.2) plays an important role in
projection- based AR. Since projection surfaces are usually not ideal white diffuse
surfaces, but rather the physical properties of the surface (structure, reflective prop-
erties, color, etc.) and the environment (brightness, shadows, highlights, etc.) influ-
ence the projected image, the resulting variations must be compensated by an
appropriate photometric calibration. Of course, this is only possible within certain
limits determined by the capabilities of the projector, the properties of the surfaces
and the content to be projected. For a detailed discussion of the necessary calibra-
tion steps, please refer to the book by Bimber and Raskar (2005).

A special variant is rear projection on a screen or projection panel that is part of
a real object. An example is a 3D dashboard in a driving simulator. Essentially, this
corresponds to a 3D projection as used for VR (see Chap. 5). In contrast to VR,
however, the projection surface itself is part of reality and its shape is modified by
the projection.

8.3.3 Further Types of Spatial AR

Other forms of spatial AR (SAR) often use glass plates or foils as mirrors instead of
projections onto surfaces to be augmented. Here, the user looks through the glass at
the object to be augmented. However, since the glass is not perpendicular to the
viewing direction, it acts as a mirror on a correspondingly placed display (see

Fig. 8.19 Schematic structure of a system for projection-based AR

8 Augmented Reality

310

Fig. 8.20). This results in a kind of optical see-through AR. For correct geometrical
registration, the head position must be tracked as well. However, due to the fixed
spatial arrangement of the components, the range of movement of the user is
strongly limited. Therefore, only those applications where the user will usually only
change her head position to a small extent are useful.

8.3.4 AR Mirrors

AR mirrors have in particular become popular to simulate the fitting of clothes.
Here the viewer sees himself and his surroundings in a mirror. The mirror image is
enriched by virtual content. Looking at the mirror image, the viewer gets the impres-
sion that the virtual content is part of the real environment. AR mirrors can be real-
ized via the video see-through approach as well as by optical see-through (see
Fig. 8.21). For VST, a camera is attached to a display that represents the mirror,
capturing the environment or the user. This image is then mirrored, superimposed
with virtual content and then displayed (Mottura et al. 2007; Vera et al. 2011). For
OST approaches, a real, semi-transparent mirror is used (Fujinami et al. 2005; Li
and Fu 2012). The environment is perceived in the same manner as with a conven-
tional mirror, while the virtual content is represented by a display located behind the
mirror. Only for the OST approach, are the real, mirrored objects automatically
perceived stereoscopically. For correct localization of the virtual contents (in the
case of VST also of the real contents) an additional technique for stereoscopic view-
ing is required (see also Sect. 5.4.4).

Fig. 8.20 Spatial AR using a transparent, reflective surface

W. Broll

311

8.4 Special AR Techniques

In this section, a number of techniques found in AR applications will be discussed.

8.4.1 Head-Up Content

Head-up content, sometimes called a dashboard, refers to content that is displayed
regardless of the position and orientation of the viewing direction. Typical examples
are status displays or environment maps. Widely used in 3D games played from the
first-person perspective, these techniques are sometimes also found in virtual reality
applications. Here the position and orientation of the content are always unchanged
in relation to the display. Often such content is just 2D objects, but 3D objects are
also used, having a corresponding spatial position in front of the observer’s view-
point, although this is rarely the case. An example of 3D content would be (again in
the tradition of games) the representation of the (apparently in the hand) weapon
held by the user, known from first-person shooters.

Fig. 8.21 VST vs. OST AR mirrors

8 Augmented Reality

312

8.4.2 Occlusions and Phantom Objects

As soon as real objects are closer to the observer than the virtual objects behind
them, the perception and behavior of the virtual object no longer match. The reason
for this is that the virtual content is always visible due to the optics of the HMD (in
the case of optical see-through displays) or the superimposition of the video image
(in the case of video see-through AR). For the observer this results in a conflict
(which of the two objects is actually closer) that cannot be resolved. Hence, it
immediately destroys the impression of the correct location of the virtual object in
reality (see also depth cues in Chap. 2). To prevent this, the real objects, with respect
to the image areas covered by them, which actually should occlude the virtual
objects lying further away (occluders), need to be identified. This then allows for
proper masking and hence removal of those areas of the virtual objects that should
not be visible. The actual recognition and, if necessary, localization of the covering
real objects can be accomplished in different ways. The most common case is occlu-
sion by the hands of the user, because they are typically closer to the point of view
than most virtual objects. Cameras mounted on a handheld device or on HMDs can
be used to identify the corresponding image parts (e.g., based on color segmenta-
tion). The virtual contents can be masked at the appropriate places so that they are
apparently occluded by the hands. In the case of other real objects that could poten-
tially occlude virtual content, we distinguish between static and moving objects.
While the position of static objects can be determined in advance, the position and
orientation of moving objects may have to be tracked. In both cases, the objects
must be available as virtual objects and must be integrated into the virtual scene at
the corresponding position (i.e., correctly located, if necessary based on correspond-
ing tracking data). Since these virtual objects should not be rendered, but only serve
to correctly occlude other virtual content, they are called phantom objects. For cor-
rect visualization, phantom objects are rendered as black, unlit objects in the case of
optical see-through AR. In places where such a phantom object is closer to the
viewer than another virtual object, the content of the frame buffer is replaced by a
completely black pixel. Since black pixels appear transparent in optical see-through
AR, the viewer ultimately sees only the real object here (see Fig. 8.22).

In the case of video see-through AR, the procedure does not work in this way,
because the black object surfaces would stand out from the video background. In
this case, the phantom objects must therefore be rendered in a separate pass before
all other objects. However, only the depth buffer must be modified accordingly.
Therefore, virtual objects behind those areas do not affect the frame buffer in further
render passes and the underlying video image thus remains visible. If there is no
possibility of inserting the occluding real objects as 3D models or to detect their
correct position and location, or if the objects are not rigid objects, such as a person
who is sometimes partly in front and partly behind the virtual objects, phantom
objects cannot be used. The only way to achieve correct masking in this case is to
acquire or calculate the depth information for the field of view. In principle, this can
be done with two cameras, but it is easier to use depth cameras (RGBD cameras).

W. Broll

313

After transformation to the perceived image segment, the image pixels can be set
directly according to the procedures described above to guarantee correct occlusion.
Due to the currently still quite low resolution and quality of most depth cameras,
determination of the boundaries usually does not achieve the same precision as
when using phantom objects.

8.4.3 Crossfading Markers

Due to their straightforward applicability, markers are still used for some AR appli-
cations, despite the alternatives that are meanwhile available. However, due to their
clear distinguishability from the rest of the environment, which is important for
tracking, they often appear to the viewer as particularly disturbing foreign objects.
While the virtual content based on the position and location of the markers is usu-
ally superimposed on the image above them, the markers themselves often remain
clearly visible in the background. A simple and effective way to remove disturbing
markers from the displayed scene (as long as they are not completely covered by
virtual objects anyway) is to superimpose them with a simple flat carmouflage
object. This can visually match the surrounding background. However, since this
background is often not known in advance, the option of a neutral object for cover-
ing should always be considered as well, as it is perceived as less disturbing in
almost all cases. However, there are also AR applications that specifically cover
markers with virtual objects, which in turn look exactly like these markers. This can
be used, for example, to give the impression that the real marker can be removed,
deformed, or otherwise modified, for example to reveal the view of an underlying
(virtual) hole (see Sect. 8.4.4). This often leads to surprising reactions on the part of
the viewer, since he or she (especially with video see-through AR) often cannot
initially recognize the difference between the real and virtual markers.

Fig. 8.22 Phantom objects enable correct mutual occlusion between real and virtual objects.
Without a phantom object, the virtual object seems to float in front of the real objects, whereas with
correct masking by the phantom object it seems to be behind the real objects

8 Augmented Reality

314

8.4.4 Virtual Holes

It is often overlooked that Augmented Reality can also be used to apparently take
away parts of the real environment by adding virtual content. For example, it is very
easy to model a virtual hole that extends through the floor or a tabletop (see
Fig. 8.23), or to make an object such as a cube appear hollow. For a correct repre-
sentation the real parts around the virtual hole must be modeled as phantom objects.
Since the observer can then (apparently) look more or less into the deepening,
depending on the angle of view, the effect is usually much more amazing than a
mere augmentation of reality. Although parts of reality are apparently removed, this
is usually not referred to as Diminished Reality (see Sect. 8.7.1), since the virtual
three-dimensional hole overlays reality, i.e., augments it, and does not allow a view
of the floor beneath the table top.

8.4.5 X-Ray Vision

AR can also be used to look through, or at least into, solid objects, such as walls, as
if looking through them with X-ray vision. Typical applications are the visualization
of pipes and cables in walls (see Fig. 8.24) or under the pavement of streets. Other
applications are in road traffic (viewing through the truck in front, through the forest
to the road behind the bend, through the building at the street corner, etc.) and in the
military application context (visualization of own and foreign units in buildings, in
the forest, under water, etc.). As far as virtual content inside or behind real structures
is just visualized without removing the real content, this is not considered Diminished
Reality (c. also Sect. 8.7.1). However, the transition here is almost seamless.

In this context, occlusion is another problem. As already discussed in the context
of phantom objects, the fusion of reality and virtuality is rendered effectively impos-
sible due to incorrect depth perception (see also Chap. 2) and the resulting conflict.
There are various approaches to resolve this conflict or at least to significantly

Fig. 8.23 By
superimposing a marker on
the table surface with a
virtual object that has a
deepening extending
through the tabletop, the
viewer gets the impression
of an actual hole

W. Broll

315

reduce its effects on perception. A simple option is the use of virtual holes or
trenches (see Sect. 8.4.4) with corresponding phantom objects for the surrounding
(occluding) surfaces. This way, the objects inside or underneath an object are only
visible within the (virtual) hole, so they remain correctly registered in relation to the
real surface. Another possibility is to reproduce the real surfaces by visible but par-
tially transparent virtual objects. In this case, these objects do not serve as phantom
objects but suggest a partially transparent surface to the observer. A similar effect
can also be achieved using spatial AR by projecting hidden (e.g., inner or underly-
ing) structures onto existing surfaces (see Fig. 8.25). If a part of reality is apparently
taken away (e.g., by a previously taken picture), the perceived effect is quite com-
parable to that of Diminished Reality (see also Sect. 8.7.1). A sharp distinction from
the latter is then sometimes difficult, although Diminished Reality would require a
real-time generation of the view (in the simplest case e.g., by a camera).

8.5 Special AR Interaction Techniques

In principle, most interaction techniques from VR may also be used in AR environ-
ments (see Chap. 6). However, it should be noted that the aspect of user interaction
in AR applications is still clearly underdeveloped, with many AR applications still
focusing on visualization aspects.

Fig. 8.24 Pipes and cables behind a cover and in the wall are made visible using AR for X-ray
vision. (© Leif Oppermann, Fraunhofer FIT 2018. All rights reserved)

8 Augmented Reality

316

8.5.1 Interaction by Navigation

With AR, the user navigates through his movement in reality, i.e., an unintentional
decoupling between the real movement and the virtual movement, which often
occurs in VR environments, is not possible here. However, since AR content is inev-
itably closely related to reality, the interaction with virtual content is in turn mostly
bound to its physical proximity. This means that an interaction is only possible
when the user is at a certain location, partly additionally restricted by the user hav-
ing to look in a certain direction so that the objects are within her field of view. In
outdoor AR applications especially, an explicit selection of virtual objects is often
omitted and only a simple user action (for example, a keystroke or voice command)
is used instead. In some cases, even this is waived, i.e., an interaction occurs when
the observer simply approaches the virtual object.

Fig. 8.25 Use of SAR to
represent hidden parts of
reality

W. Broll

317

8.5.2 Gaze-Based Interaction

In AR applications, the selection of objects or menu items is different and often
more difficult than in VR environments, where corresponding input devices are usu-
ally available for hand-operated control. Eye-tracking, i.e., the detection of the point
currently focused on by the viewer, represents a promising approach for realizing
gaze-based interaction, but sufficiently precise mechanisms require either the inte-
gration of appropriate sensor technology into the AR glasses (as, e.g., used by the
Hololens 2 or Magic Leap One) or the simultaneous use of the backward pointing
camera of smartphones or tablets (selfie camera) as well as an appropriate calibra-
tion (see Sect. 4.5). The touch controls available on handheld devices can alleviate
this problem, but at the price of massively obscuring the already quite limited field
of view.

A simpler but robust form of this selection mechanism without the requirements
of eye tracking can be achieved by using the orientation of the head (for AR glasses)
or the camera (for handheld devices) instead of the actual line of sight, since it has
to be tracked anyway. By aligning the orientation so that the object to be selected
comes into the center of the field of view (often supported by a corresponding visual
marker, e.g., a crosshair), simple and fast selection is possible, which only needs to
be supplemented by a trigger action. To avoid additional input mechanisms (like
language or a button press), a dwell time is often used here. When the selection
sticks to an object for a certain time, the corresponding action is triggered. A draw-
back in this context is that even for experienced users this prevents faster operation.

8.5.3 Tangible User Interfaces

Tangible User Interfaces (TUI) (Ullmer and Ishii 2000; Azuma 1997), or Tangibles
for short, are a tangible form of user interface. Here, real objects in the user’s envi-
ronment are linked with virtual objects in such a way that the state of the real object
(placeholder object or proxy) is mapped to the state or a property of the virtual
object. In the context of AR user interfaces, one can distinguish between a direct
and an indirect form of use. In the direct form, the physical properties of a real
object correspond directly to those of a virtual object. This is rather the rule in AR
environments, since this is already the case when a virtual object is displayed on top
of a marker and this marker can be moved by the user (see Fig. 8.26). Here, for
example, the position and orientation of the real object and its virtual counterpart
correspond. However, the approach is not limited to markers, but can be extended
more generally to any objects whose properties can be captured and transferred to
the corresponding properties of a virtual object.

In the indirect form of a TUI, however, the physical properties of the real object
are mapped to the other attributes of one or more virtual objects. A simple example
here would be a (real) cube whose position affects the color or size of a virtual

8 Augmented Reality

318

object. Ultimately, the interaction techniques possible in the context of AR are only
limited by the possibilities to capture the physical properties of real objects. Further
examples are a real pen, through which virtual writing is applied, or a real spray can
for virtual graffiti as well as an orange as a real representative of a virtual ball.

8.6 AR Applications

AR applications are manyfold and, due to their often mobile or at least nomadic
usage (see also Sect. 5.2) and their use on a large number of widely used mobile
devices, they now clearly exceed those of VR. The following compilation of AR
application areas can therefore only represent a selection giving an impression of
the variety of possible applications.

 Training and Maintenance
The training of workers in the installation of wiring harnesses in aircraft at Boeing
was the first known use of AR in a commercial environment. In the area of training

Fig. 8.26 Tangible User Interfaces: a real proxy object is used to interact with a virtual object

W. Broll

319

and maintenance, AR provides assistance by displaying appropriate hints, direc-
tions, etc., for the execution of work steps until they have been sufficiently learned.
Furthermore, AR can also be used in the area of maintenance. This is particularly
useful in cases where systems are extremely complex and many different variants
exist, so that an individual cannot be sufficiently trained for all cases that occur. This
occurs, for example, with cars and airplanes, as well as large machines and indus-
trial plants. AR can support necessary work processes by visualizing the work steps
and, if applicable, the required tools and spare parts (see also Chap. 9).

 Television Broadcasting
One of the best known fields for the application of AR, which at the same time is the
least associated with it, is the overlay of auxiliary information, especially in sports
broadcasts. It is now state of the art that virtual help lines are drawn into television
pictures in the correct perspective for sports such as soccer, American football and
ski jumping, so that the viewer sees distances, offside positions or world records
directly in the context of the current situation.

 Military Applications
AR has been used for many years in the helmets of fighter pilots. Graphics are typi-
cally restricted to line graphics. However, in particular for mobile units, AR offers
new possibilities to combine information based on the knowledge of other units
with reconnaissance data (from satellites, drones and airplanes) as well as terrain
information into the visual field, depending on the individual viewing position and
direction. Although recent developments can only be speculated about due to mili-
tary confidentiality, the lack of full daylight capability of optical see-through dis-
plays is probably one of the main obstacles to widespread use. It should be noted
that Smartglasses are often used in the military context. However, as information
displayed there is not really geometrically registered to the environment in 3D, this
should not be considered as AR.

 Teaching, Education and Museums
In the field of teaching and learning, AR opens up completely new possibilities for
teaching complex contexts. Physical as well as macroscopic or microscopic experi-
ments, which are otherwise often only taught through literature and video material,
can be experienced interactively with AR. This increases understanding sustainably.
Similarly, AR can be used in science centers and technical museums to explain
effects directly at the exhibit instead of separating exhibit and explanation.

 Architecture and Urban Planning
While in the field of architecture and urban planning real models and sophisticat-
edly rendered films still dominate in large projects, the use of AR allows you to get
a picture of future buildings or urban development changes on site, taking into
account the real environment.

 Medicine
In the medical field, AR is particularly suitable for supporting surgical procedures,
especially in the minimally invasive area. By combining different measurement data

8 Augmented Reality

320

(camera images, X-rays, previous model data from nuclear spin tomography, etc.),
information that is otherwise only available separately can be displayed in parallel
and in the correct perspective in the surgeon’s field of vision. However, so far, AR
has been used mainly in the field of education and training.

 Information, Navigation and Tourism
With the spread of powerful smartphones and tablets, AR-enabled handheld devices
are available to a wide range of users in virtually any location. This makes it possi-
ble to display general information, navigation instructions or descriptions of tourist
attractions directly on top of the current video image. Often, however, the content
here is limited to text, images and graphic symbols, where precise registration is not
required. A prominent example is Google Maps’ “Live View” mode.

 Archaeology and History
AR here allows us to virtually complete buildings and objects that are only partially
preserved and thus show the viewer the former state in context. Another possibility
is the addition of further buildings or other objects or persons important for the
historical context of a scenario. The augmentation here does not have to be limited
to visual impressions, but usually conveys these impressions more easily if further
senses are also addressed. It is sometimes the case that buildings and places still
exist today, but their appearance has changed over time. Here, AR can be used to
superimpose the former appearance on the present one.

 Games and Entertainment
Since the recent hype about Pokémon Go, AR games have become known to the
general public. However, a real breakthrough in the distribution of AR games came
with the availability of corresponding development frameworks from 2017 onwards.
ARKit and ARCore made it possible for game developers to create AR games for
the most important mobile platforms (iOS and Android) with relatively little effort.
Meanwhile hundreds of AR games already exist in the respective online stores.

 In-Car AR
Many people associate AR in cars with Head-up Displays (HUD) (see also Sect.
9.3). However, as these displays do not yet have the capability to provide individual
images to each of the driver’s eyes, they do not allow stereo vision. Thus, correct
geometric registration of the virtual content is not possible, which can be critical,
e.g., when visually highlighting lane boundaries. Stereoscopic HUDs are currently
still under development and it will probably be a few more years before we see them
in standard vehicles. They will enable augmentation of other cars, pedestrians or
traffic signs, as well as the perspective-correct projection of navigation instructions
onto the road. Currently, however, AR is already being used almost universally in
conjunction with rear-view cameras, for example to display lanes depending on the
steering angle.

W. Broll

321

8.7 Diminished and Mediated Reality

Of course, Diminished and Mediated Reality are not AR (see Fig. 1.6). Thus, why
is there a section on them within the AR chapter of this book? As we have seen
throughout this chapter, it can sometimes be difficult to tell the difference. For this
reason, we will take a closer look at these concepts and show how they are related
to AR with respect to how AR is part of them.

8.7.1 Diminished Reality

As already introduced in Chap. 1, Diminished Reality (DR) refers to the removal of
parts of reality (see Fig. 8.27). For this purpose, an area – usually a specific object –
is removed in real time from the view of the observer. This is done in such a manner
that the compiled view provides a view of otherwise not visible content. Basically,
one can distinguish between two different types of Diminished Reality: approaches
that attempt to reconstruct the actual real background and approaches that merely
create a plausible overall impression, i.e., showing some alternative content for the
object removed.

Retrospective removal of persons from pictures has a long tradition – almost a
century. Nowadays, context-sensitive or context-aware filling is a standard function
in image editing software and therefore simplifies this process drastically in most
cases. However, removing objects, buildings, backgrounds and people from videos
is still relatively new. In motion picture productions especially, image areas have
been and still are processed frame by frame to remove cameras, microphones,

Fig. 8.27 Example of diminished reality: the sink drain is removed from the live video stream in
real time. (© TU Ilmenau 2018. All rights reserved)

8 Augmented Reality

322

holding ropes, etc. Automated removal of content from videos was shown by Wexler
et al. (2007) and for more complex scenes by Granados et al. (2012). However, due
to their computational time of up to several days in some cases, these approaches
were not suitable for real-time representation and thereby Diminished Reality. The
first approaches to real Diminished Reality were based on reconstructing the back-
ground of an obscuring object by further views, usually by additional cameras,
using homographies (Zokai et al. 2003; Enomoto and Saito 2007). The areas cov-
ered by the objects to be removed are identified in other views and then transformed
into the view to be diminished (see Fig. 8.28).

Another application area for DR was the removal of tracking markers (see Sect.
8.4.3). Since these markers are often perceived as disturbing for the observer, the
image area covered by them was superimposed by a background texture (Siltanen
2006; Kawai et al. 2013). The approaches of Herling and Broll (2010, 2014) are
among those that do not attempt to reconstruct the real background, but only a plau-
sible one. In this approach, an object to be removed is first marked and then tracked
in each frame to find its silhouette in the current image. This silhouette is then
masked and filled using context-sensitive filling (see Fig. 8.29).

It is crucial that tracking and filling are done in real time and that coherence is
ensured not only with respect to the surrounding image areas, but also with respect

Fig. 8.28 Reconstruction of the real background using several camera views. (Individual images:
© TU Ilmenau 2018. All rights reserved)

W. Broll

323

to the previous frame. This is possible by a randomized approach, which randomly
selects image patches from the surrounding image areas (see Fig. 8.30) and opti-
mizes those selections using a combination of several cost functions, which can be
taken as a measure of incoherence. Due to the required real-time capability, typi-
cally not an optimal but only a sufficiently good solution is found. Since the calcula-
tion is based exclusively on 2D image data (current and previous frame), the
approach for removing 3D structures is problematic. It may happen that a previ-
ously hidden real background becomes visible by the camera movement and is not
coherent with the previously synthetically assembled content. Due to the

Fig. 8.29 Diminished reality by masking and context sensitive filling. (Individual images: ©
Tobias Schwandt, TU Ilmenau 2018. All rights reserved)

Fig. 8.30 Using information from the surrounding frame areas to fill the masked area. (© Jan
Herling 2013. All rights reserved)

8 Augmented Reality

324

homography used here, the approach basically only works if the background is on a
single plane. Kawai et al. (2016) extended the approach to several planes, making it
possible to remove objects on walls or in corners of rooms, for example. However,
this does not allow the removal of arbitrary 3D backgrounds either. Thus, more
recent approaches (Kunert et al. 2019; Mori et al. 2020) are based on a 3D recon-
struction of the real environment.

It can be assumed that deep learning approaches will increasingly be used for
advanced forms of DR in the future (Kido et al. 2020). This will make it possible to
create a plausible and coherent overall picture even without information available in
the immediate vicinity of the object to be removed, especially when information is
included that is not available in the original video stream.

8.7.2 Mediated Reality

As already introduced in Chap. 1, Mediated Reality involves altering the perception
of reality in any form (Man 2001). This means in particular that both AR and
Diminished Reality are partial aspects of Mediated Reality. However, Mediated
Reality is in principle not limited to adding or removing content. Rather, it also
enables the replacement of parts of reality. Finally, we can define a Mediated Reality
continuum in analogy to Milgram’s Reality-Virtuality Continuum. In contrast to the
former, however, it has two dimensions: one dimension where reality is increasingly
replaced by virtuality, and a second dimension where reality is increasingly removed
(diminished) (see Fig. 8.31).

If, for example, you want to see what a suite would look like in your own living
room, the furnishing apps already available using AR are often of little help here, as
they merely project the selected new furniture additionally into the current environ-
ment. However, since the existing furniture usually must remain in the room (Who
wants to clear it out for this purpose?), the resulting overall impression is often
unsatisfactory. If, however, the existing furniture is first removed virtually using
Diminished Reality and then the new furniture is inserted using AR in a second step,
the overall impression corresponds much more to the users’ expectations (see
Fig. 8.32). The approach can be directly extended to other areas, such as new build-
ings in existing developments or the renewal of a machine in a factory.

Beyond that, Mediated Reality also allows us to change reality directly. The first
examples of this have already been presented in the section on photometric registra-
tion (see Sect. 8.3), where parts of reality were changed in their illumination by
virtual light sources, reflections from or on virtual objects, and shadows or caustics
of virtual objects. However, changes can also affect the geometry of reality, which
is modified in its spatial position or structure (see Figs. 8.31 and 8.33).

W. Broll

325

Fig. 8.31 The mediated reality continuum: reality may be augmented (AR) by adding virtual
content as well as diminished (DR) by removing real content. In combination, this allows both the
replacement of real content with virtual content as well as its modification (Mediated Reality).
(Still images: © Tobias Schwandt, TU Ilmenau 2018. All rights reserved)

Fig. 8.32 Combining dimished reality and AR. (© Christian Kunert, TU Ilmenau 2018. All rights
reserved)

8 Augmented Reality

326

8.8 Summary and Questions

Augmented Reality combines VR technologies with reality and thus enables users
to seamlessly integrate virtual content into their natural (real) environment. Most
AR applications are nowadays created on mobile handheld devices such as smart-
phones and tablets, as they already come with the necessary hardware (including
appropriate sensor technology) and software. However, these are limited to video
see-through AR. Optical see-through AR (based on HMDs) as well as spatial AR are
further possibilities for augmenting the environment. The tracking methods used are
in part similar to those used for VR, but here too the focus is very clearly on mobile
use and therefore on a combination of sensors for position measurement and usually
camera-based approaches. Crucial for the impression of seamless fusion between
virtuality and reality is the correct registration of virtual content in the real environ-
ment. This must be done with respect to their position and orientation (geometric
registration), but also with respect to correct illumination (photometric registration).
While many VR interaction techniques can basically be used in AR applications,
otherwise rather simple techniques (such as gaze-based selection) or techniques
involving reality (such as tangibles) are used here, since the users must still (in par-
allel) continue to act in reality. In contrast to VR, AR can be used almost always and
everywhere. On the one hand, this opens up a wide range of possibilities, but on the
other hand it is also one of the biggest challenges, since AR systems have to work
in very different environments.

With Diminished Reality, parts of reality can be specifically removed in real
time. Although this functionality is not yet supported in commercial software, it is
foreseeable that it will become available within the coming years, especially with
regard to its use for Mediated Reality.

After working through the chapter, you can check your knowledge by answering
the following questions. The questions are sorted by topic.

Fig. 8.33 Examples of changing real geometry using Mediated Reality. Left: virtual elevation of
the tabletop and face on tablet. (© Tobias Schwandt, TU Ilmenau 2018. All rights reserved.) Right:
virtual door in the monitor. (© Jan Herling 2017. All rights reserved)

W. Broll

327

Magic Lens
• What is the Magic Lens metaphor and how does it relate to AR?
• What are the limitations of handheld AR and why?
• How could these limitations be mitigated or circumvented?

Registration
• What is the difference between tracking and registration?
• What is meant by geometric registration, and what by photometric registration?
• How are those realized?
• Which one is unidirectional and which one is bidirectional, and why?
• What are the effects on the user experience of an incorrect geometric or photo-

metric registration?

Visualization
• Which AR techniques can be used to create shadows of virtual objects?
• Should I use an OST or VST display in bright sunlight outside?
• Does this assessment change if the view of the (real) environment can be critical

to safety (construction site, road traffic, etc.)?
• What aspects need to be considered for seamless visual integration of virtual

objects into the real environment?

Tangible User Interfaces
• What do you understand by Tangible User Interfaces?
• Give an example of their usage, applying both direct and indirect interaction

techniques.
• Are Tangible User Interfaces also suitable to be used in VR? Why or why not?

Occlusion Handling
• Why do you need phantom objects for AR?
• Why do they have to be realized differently depending on the type of

augmentation?
• What is the consequence of missing or faulty phantom objects?
• What is the relationship between phantom objects and virtual holes?

Diminished Reality/Mediated Reality
• What are the two fundamental approaches to Diminished Reality? Why do they

only make sense for certain scenarios?
• An application allows you to remove the facade of a real building and thus to

have a look inside. Is this an AR or a Mediated Reality application?
• You would like to create a “Good Weather App” based on Mediated Reality, in

which the sky is always blue and sunny during the day and full of stars at night.
How would you proceed?

8 Augmented Reality

328

 Recommended Reading

Bimber O, Raskar R (2005) Spatial augmented reality: merging real and virtual
worlds: a modern approach to augmented reality. AK Peters. The book gives a
comprehensive overview about Spatial AR

Furt B (2011) Handbook of augmented reality. Springer, New York. A collection of
articles on various topics of AR, covering both the technical aspects and the
application side. It is advisable to check beforehand which articles are of interest
to the reader and to purchase only these

Szeliski R (2011) Computer vision: algorithms and applications. Springer. A must
for all who are concerned with camera-based procedures, be it camera calibra-
tion or camera-based tracking

Schmalstieg D, Höllerer T (2016) Augmented reality: principles and practice.
Addison Wesley. The book gives a comprehensive overview of augmented real-
ity, including a detailed description of computer vision techniques for AR
tracking

References

Azuma R (1997) A survey of augmented reality. Presence Teleop Virt 6(4):355–385
Bimber O, Raskar R (2005) Spatial augmented reality: merging real and virtual worlds: a modern

approach to augmented reality. AK Peters
Brown LD, Hua H (2006) Magic lenses for augmented virtual environments. IEEE Comput Graph

Appl 26(4):64–73
Debevec P (1998) Rendering synthetic objects into real scenes: bridging traditional and image-

based graphics with global illumination and high dynamic range photography. In: Proceedings
of the 25th annual conference on computer graphics and interactive techniques, pp 189–198.
https://doi.org/10.1145/280814.280864

Enomoto A, Saito H (2007) Diminished reality using multiple handheld cameras. In: ACCV’07
workshop on multi-dimensional and multi-view image processing, vol 7, Tokyo, pp 130–135

Fujinami K, Kawsar F, Nakajima T (2005) AwareMirror: a personalized display using a mirror.
In: International conference on pervasive computing. Springer, Berlin/Heidelberg, pp 315–332

Granados M, Tompkin J, Kim K, Grau O, Katuz J, Theobalt C (2012) How not to be seen – inpaint-
ing dynamic objects in crowded scenes. Eur Secur 31:219–228

Hamasaki T, Itoh Y (2019, May) Varifocal occlusion for optical see-through head-mounted dis-
plays using a slide occlusion mask. IEEE Trans Visual Comput Graph 25(5):1961–1969.
https://doi.org/10.1109/TVCG.2019.2899249

Herling J, Broll W (2010) Advanced self-contained object removal for realizing real-time
diminished reality in unconstrained environments. In: Proceedings of IEEE ISMAR 2010,
pp 207−212

Herling J, Broll W (2014) High-quality real-time video inpaintingwith PixMix. IEEE Trans Vis
Comput Graph 20(6):866–879

Kautz J, Sloan P-P, Snyder J (2002) Fast, arbitrary BRDF shading for low-frequency lighting using
spherical harmonics. 13 EG workshop on rendering, Eurographics

Kawai N, Yamasaki M, Sato T, Yokoya N (2013) Diminished reality for AR marker hiding based
on image inpainting with reflection of luminance changes. ITE Trans Media Technol Appl
1(4):343–353

W. Broll

https://doi.org/10.1145/280814.280864
https://doi.org/10.1109/TVCG.2019.2899249

329

Kawai N, Sato T, Yokoya N (2016) Diminished reality based on image inpainting considering
background geometry. Trans Vis Computer Graphics 22(3):1236–1247

Kido D, Fukuda T, Yabuki N (2020) Diminished reality system with real-time object detection
using deep learning for onsite landscape simulation during redevelopment. Environ Model
Softw 131:104759

Knorr SB, Kurz D (2014) Real-time illumination estimation from faces for coherent rendering. In:
Proceedings of IEEE ISMAR 2014, pp 113–122

Kunert C, Schwandt T, Broll W (2019) An efficient diminished reality approach using real-time
surface reconstruction. In: Proceedings of CYBERWORLDS 2019, pp 9−16

Lensing P, Broll W (2012) Instant indirect illumination for dynamic mixed reality scenes. In:
Proceedings of ISMAR 2012, pp 109−118

Li WHA, Fu H (2012) Augmented reflection of reality. In: ACM SIGGRAPH 2012 Emerging
Technologies, Article no. 3

Man S (2001) Mediated reality. Linux Journal, Article no. 5 1999(59)
Milgram P, Takemura H, Utsumi A, Kishino F (1995) Augmented reality: a class of displays on the

reality-virtuality continuum. In: Photonics for industrial applications. International Society for
Optics and Photonics, pp 282–292

Mori S, Erat O, Broll W, Saito H, Schmalstieg D, Kalkofen D (2020) InpaintFusion: incremental
RGB-D inpainting for 3D scenes. IEEE Trans Vis Comput Graph 26(10):2994–3007

Mottura S, Greci L, Travaini E, Viganò G, Sacco M (2007) MagicMirror & Foot-glove: a new
system for the customized shoe try-on. In: The future of product development. Springer, Cham,
pp 441–450

Scharstein D, Szeliski R (2003, June) High-accuracy stereo depth maps using structured light.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2003), vol 1, Madison,
WI, pp 195–202

Schwandt T, Broll W (2016) A single camera image based approach for glossy reflections in mixed
reality applications. In: Proceedings of IEEE ISMAR 2016, pp 37–43

Schwandt T, Kunert C, Broll W (2018) Glossy reflections for mixed reality environments. In:
Proceedings of CYBERWORLDS 2018, pp 138–143

Siltanen S (2006) Texture generation over the marker area. In: Proceedings of IEEE ISMAR 2006,
pp 253–254

Szeliski R (2011) Computer vision: algorithms and applications. Springer
Ullmer B, Ishii H (2000) Emerging frameworks for tangible user interfaces. IBM Syst J

39(3–4):915–931
Vera L, Gimeno J, Coma I, Fernández M (2011) Augmented mirror: interactive augmented reality

system based on Kinect. In: Proceedings of IFIP human-computer interaction. Springer, Berlin/
Heidelberg, pp 483–486

Weidner F, Broll W (2019) Exploring large stereoscopic 3D dashboards for future automotive user
interfaces. In: Proceedings of AHFE. Springer, Cham, pp 502–513

Wexler Y, Schechtman E, Irani M (2007) Space-time completion of video. IEEE Trans Pattern
Anal Mach Intell 29(3):463–476

Zokai S, Esteve J, Genc Y, Navab N (2003) Multiview paraperspective projection model for dimin-
ished reality. In: Proceedings of IEEE/ACM ISMAR 2003, pp 217–226

8 Augmented Reality

331© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
R. Doerner et al. (eds.), Virtual and Augmented Reality (VR/AR),
https://doi.org/10.1007/978-3-030-79062-2_9

Chapter 9
VR/AR Case Studies

Ralf Doerner, Alexander Tesch, Axel Hildebrand, Stephan Leenders,
Tobias Tropper, Wilhelm Wilke, Christian Winkler, Julian Hillig, Alec Pestov,
James A. Walsh, Bruce H. Thomas, Gerhard Kimenkowski, Stephen Walton,
Torsten W. Kuhlen, Geert Matthys, Holger Regenbrecht, Chris Heinrich,
Xiumin Shang, Marcelo Kallmann, Benjamin Lok, Francisco A. Jimenez,
Cheryl Wilson, Marc Erich Latoschik, Carolin Wienrich, Silke Grafe,
Mario Botsch, and Jonny Collins

Abstract This chapter is a collection of selected VR/AR case studies from aca-
demia and industry.

9.1 Introduction and Overview

Ralf Doerner

For the conception of applications in VR and AR, a large design space exists with
an unmanageable number of conceivable realization alternatives. The large number
of available input and output devices alone, which are themselves available in dif-
ferent variants and which can be combined in different ways, makes a systematic
analysis and evaluation of all implementation alternatives difficult. This is espe-
cially true since a sufficient theoretical foundation for such an analysis is not avail-
able today. Therefore, case studies in the sense of best practices provide a good
orientation. VR/AR designers often take existing successful case studies as a start-
ing point for the initial conception. In case studies, one can see how different tech-
nologies interact and how interaction techniques can be selected and adapted for the
technical circumstances in a meaningful way. Case studies are an important source
of experience. Since most VR and AR applications today are “one-offs” for a spe-
cific VR/AR setup and a specific application goal, one cannot consult any standards,
but one can try to benefit from the experiences of previous successful applications.

R. Doerner (*)
RheinMain University of Applied Sciences, Wiesbaden, Germany
e-mail: ralf.doerner@hs-rm.de

Dedicated website for additional material: vr-ar-book.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79062-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-79062-2_9#DOI
mailto:ralf.doerner@hs-rm.de
http://vr-ar-book.org

332

This chapter contains a selected collection of case studies. On the one hand, they
illustrate the basic principles of VR and AR taught in the other chapters and show
examples of how virtual worlds have actually been realized or reality has been
enhanced with virtual content. On the other hand, they provide an insight into how
case studies can serve as a basis or inspiration for the development of future applica-
tions with VR/AR. Each case study is self-contained. Since the context in which
case studies were created is also of interest, each case study not only mentions the
authors directly, but also the organization or company in which the case study was
created.

The first case study shows that the use of VR in certain applications, such as the
construction of automobiles in the automotive industry, is already very well estab-
lished. VR and AR are therefore not only something that researchers in academia
are dealing with in the prototype stage but something that is being used in a com-
mercial environment. In the assessment of Technology Readiness Levels (TRLs), as
defined in the ISO 16290:2013 standard (ISO 2013), the maturity of VR/AR tech-
nologies today comprises all stages from basic technology research to system test,
launch and operations. The next three case studies provide further examples of suc-
cessful commercial use of VR/AR in different application domains, such as enter-
tainment/infotainment, life sciences and diagnostics, as well as civil engineering.
The case studies illustrate the added value of VR/AR. These include cost savings,
for example, when physical models in the design process are at least partially
replaced by virtual models that can be created more cheaply, or when costly excava-
tion damages during construction work are avoided. But the examples also illustrate
other benefits, such as the improvement of human–machine interaction in Case
Study 9.3 or the realization of telepresence and computer-supported collaboration
in Case Study 9.4, as well as completely new possibilities of visualization.

While Case Study 9.5 uses mobile devices such as smart phones or tablets, the
next two case studies (9.6 and 9.7) show examples of large installations that use
specially equipped rooms. In contrast to Case Study 9.5, Case Study 9.6 does not
visualize construction data such as blueprints in reality, but utilizing Spatial
Augmented Reality in a permanently installed, dedicated hardware setup, which can
display construction data flexibly and at life size in their spatial context. Case Study
9.7 shows how a CAVE, a sophisticated hardware infrastructure, can be used to
convincingly present a virtual world. This VR hardware is located in an academic
environment and also highlights the added value of VR for scientific applications.

Case Study 9.8 is an example of the use of VR/AR in the field of medicine and
health. It shows that AR can also be used for treatment, in this case for therapy of
people who have suffered a stroke. It also shows how ideas and approaches for the
use of VR/AR are developed in the academic environment. Case Study 9.9 shows
how a transition from the academic environment to commercial exploitation can be
accomplished.

The next three Case Studies, 9.9 through 9.11, demonstrate the value of integrat-
ing not only objects but also virtual characters into VR/AR. These virtual characters
can be used either to graphically represent users as avatars in the VR/AR environ-
ment, or to populate the world with virtual people, e.g., in the form of virtual agents
capable of acting autonomously. All three case studies also demonstrate the poten-
tial that VR/AR offers for teaching and training. For example, Case Study 9.9

R. Doerner et al.

333

illustrates basic research on collaborative virtual trainers. Case Study 9.10 shows
how virtual patients already serve as established support in medical education. Case
Study 9.11 is an example of how embodied social XR also supports social skills
training. Furthermore, this case study also shows how avatars can be created and
what effects avatars may have on the users they represent. This feedback effect can
also be used for therapeutic purposes, for example. Case Study 9.12 is another
example of how VR can be used for rehabilitation and training. This case study also
shows that diverse user groups can benefit from VR/AR. In this case, VR opens up
new possibilities for training that rely on playful effects, which can extend to seri-
ous games (Doerner et al. 2016) that are realized in VR/AR.

All in all, the 11 case studies show the wide range of possible applications of VR
and AR technologies and the associated objectives, which can range from training
to visualization, therapy, design, construction and entertainment.

9.2 Using Virtual Reality for Design Processes
in the Automotive Industry

Alexander Tesch, Volkswagen AG

The design process of a car consists of various consecutive steps where several
qualities such as aesthetics and feasibility are reviewed. For this purpose, physical
mock-ups are manufactured on a 1:1 scale and presented at specific milestones. In
Fig. 9.1 (left), an example of a partial physical model is shown. However, the pro-
duction of these mock-ups is time-consuming, as it can take weeks until the whole
prototype is ready for presentation. As a consequence, prototypes do not represent
the current state of the car development project. Moreover, they often lack several
components, as the manufacturing costs for a fully detailed mock-up would be too
high. The overall cost of one prototype varies with the desired quality and can take
up to several hundred thousand US dollars.

Fig. 9.1 A physical mock-up serving as a real model of the front part of a car in reality (left) and
a virtual counterpart (right). (©Volkswagen AG. All rights reserved)

9 VR/AR Case Studies

334

To mitigate the problems associated with physical prototypes, today’s design
process employs Virtual Reality (VR). VR can support the decision-making already
in the early phases of the development. Using powerwalls, CAVEs and VR Head
Mounted Displays (HMD), car components are visualized and reviewed in different
variants, leading to a reduction in the number of physical mock-ups needed. With
VR being part of the daily work in a variety of different fields, such as ergonomics
or lighting design, VR has become a valued technology and can be considered a
standard technology throughout the development phase of a car.

For certain design reviews, a highly immersive virtual environment is required to
guarantee that an executive is enabled to make a valid decision based on VR visual-
ization. Common examples of such reviews are ergonomics and visibility checks in
a car’s interior. Besides photo-realistic rendering techniques, adjustable seating
bucks are used to achieve a high degree of immersion in both examples. Figure 9.2
shows an example of such a seating buck. These seating bucks are physical car seats
in combination with VR HMDs. They provide the user with the feeling of being
fully surrounded by the interior with a natural view out of the windows. For ergo-
nomic checks, the alignment of the virtual seating position with the physical seat is
key for creating a highly immersive experience, as the executives are typically
experts in the field of interior design and consequently highly sensitive to any posi-
tional discrepancies. They are capable of noticing offsets and height differences of
only a few millimeters between the real seating position and the virtual seating posi-
tion. These discrepancies can result in a significant reduction in the feeling of pres-
ence, which in turn could make it impossible to continue with a meaningful

Fig. 9.2 A seating buck as shown in this picture is used to provide haptic feedback for an immer-
sive experience in VR. (©Volkswagen AG. All rights reserved)

R. Doerner et al.

335

evaluation. Thus, a precise alignment of the virtual and physical world is crucial for
a valid evaluation result. Visibility checks deal with questions such as: To what
extent do the C-pillars affect the driver’s visibility? Does the front vent glass restrict
the driver’s visibility on pedestrians? Does the car’s shape limit visibility through
the side- or rear-view mirrors? While the first two questions might be answered by
varying the car’s geometry or exchanging certain components directly in VR, virtual
mirrors require a correct simulation of how light rays behave.

For the evaluation of the car’s surfaces on the exterior and interior, the demands
for a realistic depiction are particularly high. Here, a virtual presentation on a pow-
erwall represents the standard tool as it allows for an agile demonstration during
which numerous variants can be presented instantaneously under the direct control
of a presenter. Figure 9.3 shows an example of a presentation room equipped with a
powerwall. The VR system allows the presenter to dynamically change the virtual
environment as well as the materials on the interior’s surfaces. As a result, the visu-
alization of different variants of a component not only shows the changes made to
the geometry but also emphasizes the impact on the impression of the whole car. As
the model used in the VR visualization is automatically derived from the most
recent version of the construction data, it is guaranteed that the presented compo-
nent is always up to date. Furthermore, a rendering cluster enables the rendering of
virtual models on a powerwall with global illumination. Therefore, the powerwall
can offer a high-quality presentation of the car. With advances in graphics hardware
and rendering algorithms, the need for physical prototypes throughout the design
process might be further reduced. On the other hand, a powerwall also enables the

Fig. 9.3 A prototype is visualized on a powerwall. (©Volkswagen AG. All rights reserved)

9 VR/AR Case Studies

336

user to investigate the model from perspectives that no customer is likely to take.
This in return can lead to inappropriate decisions and high costs.

A VR presentation using an HMD offers the possibility to confine the user to
natural viewing perspectives. This enforces an examination of the car similar to how
a potential buyer of this car would look at it. With the focus on surface evaluation,
an expert study has shown that a surface analysis with a VR HMD can achieve
almost equivalent results to the use of physical mock-ups (Tesch and Doerner 2020).
Furthermore, a VR presentation on an HMD enables the user to experience the mod-
els with natural dimensions while also being able to interactively change not only
the model itself but also the virtual scene. For instance, a virtual parking lot can be
provided as a context, exhibiting a variety of different car models for comparison
purposes. Another example is the provision of a virtual studio with sophisticated
lighting controls that facilitates the design evaluation of exterior surfaces.

There are several challenges when using virtual reality with an HMD. One major
problem is the occurrence of cybersickness in a variety of different scenarios, such
as in driving simulations. Another drawback of a VR presentation with an HMD is
that experts have low confidence in the validity of the appearance of virtual objects.
One reason for this is imperfections in VR presentations. For instance, displays in
an HMD still exhibit the screen-door effect, i.e., the pixel grid can be perceived.
Even though there are technologies to achieve an almost realistic look of the virtual
data such as raytracing, a real-time presentation with sufficient quality on an HMD
is currently not feasible.

In summary, there are multiple use cases where VR has the potential to reduce
costs and to accelerate the development phase of a car. Among these use cases are
visibility checks and surface evaluations. More examples of VR applications can be
found in Berg and Vance (2017). VR opens up new ways of interaction between
multiple users as well as between the user and the virtual data. For example, while
two experts or executives can only discuss a physical prototype from different per-
spectives (while sitting next to each other), a virtual environment enables them to be
in the same position, allowing them to have a similar view. Nonetheless, physical
models remain the most trusted basis for final decisions and are still indispensable.
Even though the use of VR has proven to be successful and has already led to a
reduction in the need for physical mock-ups, there is room for improvement (e.g., in
the area of usability of VR tools or the area of dedicated VR authoring processes).
The potential of VR for design processes in the automotive industry has not been
fully exploited yet. Besides VR, also Augmented Reality (AR) is set out to be used
frequently in a variety of different areas, such as for constructing and designing
vehicles. For instance, AR offers the possibility to enrich simple physical mock-ups
by superimposing virtual data on top of these prototypes (Zimmermann 2008).
Dummy components on these models can be replaced with the most recent con-
struction data when viewing a live video image augmented with AR methods on a
tablet. Thus, AR also facilitates new ways to reduce the level of detail worked into
the physical mock-up and thereby further reduces manufacturing cost. By using the
camera of a tablet and a precise tracking algorithm that merges a virtual model with
its physical counterpart, the image of the physical exterior can be virtually projected

R. Doerner et al.

337

on a physical mock-up. Thus, a simple physical object can be augmented with addi-
tional virtual details in the correct position. Examples of such details are gaps, dif-
ferent car paints or car components such as different headlights.

9.3 AR/VR Revolutionizes Your In-Car Experience

Axel Hildebrand, Stephan Leenders, Tobias Tropper, Wilhelm Wilke,
and Christian Winkler, Daimler Protics GmbH

Although VR and AR have become commodity technologies with high awareness
even in the non-tech community, employing AR/VR in a car is still a challenging
objective. In doing so, several conditions need to be considered to ensure a seamless
and well-received in-vehicle AR/VR experience.

The advantages are obvious and numerous use-cases exist, e.g., getting the right
information at the right place via AR without the need to take the driver’s eyes off
the road, or gaining a new quality of in-vehicle entertainment leveraging
VR. However, aligning the almost non-predictable vehicle motion and vehicle space
to an augmented or virtual environment requires a careful and well-defined transi-
tion to achieve consistent storytelling. In addition, specifically regarding AR, a pre-
cise localization of the vehicle is of particular importance.

This case study describes our journey, lasting more than 15 years, from prototyp-
ing and research up to the MBUX 2.0 Augmented Reality Head-Up Display avail-
able within the new Mercedes S-Class launched at the end of 2020 (see Fig. 9.4).
Furthermore, we present how Head-Mounted Displays (HMDs) can become part of
an immersive in-car gaming or entertainment solution.

Given the recent advances in navigation and driver assistance systems, there are
three major questions that arise during the path to fully autonomous driving:

Fig. 9.4 Different AR features (left to right): Distronic (adaptive cruise control), lane departure
warning, assisted lane change, route guidance, destination. (©Daimler Protics GmbH. All rights
reserved)

9 VR/AR Case Studies

338

 1. How can the driver oversee, understand and leverage the growing number of
increasingly powerful assistance systems of a car?

 2. How can the driver gain trust and lie back while the car takes over part of
their job?

 3. How can an entirely new in-car experience be created when there is no
human driver?

AR can play a key role in all these questions and it is happening already. From a
technical point of view there are multiple ways in which AR can be used within a
car. These include showing an augmented video on a screen, AR glasses or project-
ing the virtual content directly on the windshield. The latter can be achieved by
using a recent head-up display with a comparatively large field of view (e.g.,
10° × 5°).

After the introduction of the video-based MBUX Augmented Reality for
Navigation in 2018, Mercedes-Benz introduced a novel AR HUD starting with the
S-Class presented in 2020. It features both contact analog visualization of naviga-
tion as well as assistance systems to address the first two questions in particular. So
why are there no other AR HUDs available yet? Apart from the hardware, imple-
menting such a system is much more challenging than it might seem in the first place.

Pose Estimation and Sensor Fusion For the navigation use case especially, it is
crucial to know exactly the position and orientation of the car. Every little bump on
the street needs to be considered, as the contact analogy would suffer otherwise. A
precise and high-resolution pose is important for the quality of AR in general, but it
is even more crucial for the HUD, as it acts like a magnifier that makes changes of
orientation of well below 0.1° obvious. This is aggravated by the fact that most of
the sensor data comes with a different frequency, latency, reliability, coordinate sys-
tem and resolution.

Projection The content of the head-up display must appear in a way that fits
exactly to the reality in front of the car. To achieve this, every piece of hardware
involved needs to be calibrated. Additionally, the head position of the driver (head
tracking) as well as the windshield distortion need to be taken into account (warping).

Latency A head-up display does not forgive visual inaccuracies. As you directly
see the reality behind the windshield, the requirement is no less than to have zero
latency on the screen as well. As this cannot be achieved, the goal is at least to
reduce the latency as much as possible and then use proper prediction to make up
for the rest.

User Interface Although the size of HUDs has become bigger and bigger over
time it is still limited to a rather small area just in front of the car. Thus, it easily
happens that relevant information leaves the field of view. So, the challenge for the
UI is to get the most out of AR, but at the same time not to overload the screen and
to handle information outside the screen.

R. Doerner et al.

339

Autonomous driving is going to release huge amounts of free time in the car. But
already (rear seat) passengers are looking for distraction during long-haul trips.
While traditional activities such as reading, working, playing games or watching
movies on smartphones and in-car displays will have their place, car movements
easily induce motion-sickness during these activities. In addition, unfavorable view-
ing angles for handheld devices (eyes below road level) and the confined space of
the car can further limit perceived comfort and enjoyment for a significant amount
of people during longer periods of transit.

Head-Mounted Displays (HMDs) that allow full immersion into a virtual or (in
the future) augmented reality promise to alleviate many of these problems. They can
present any content at eye level (AR/VR) and, considering VR, include the car
motion to counteract motion sickness and place the user in completely new environ-
ments to escape the confines of the car. In addition, the interior of a car, with all its
sensors/actuators and the computable driving forces that act on human bodies, rep-
resents an instrumented environment with unprecedented opportunities for new
types of entertainment and gaming pertaining especially, but not only, to HMDs.
Potential use-cases for VR headsets include:

• gaming (e.g., a space shooter where the story and route depend upon the real
navigation route)

• entertainment (e.g., VR roller coaster or scenic ride through a fictitious or his-
toric landscape (Haeling et al. 2018))

• working (e.g., virtually larger office inside the confined car space)
• recreation scenarios (e.g., sailing over a calm sea while listening to relax-

ing music)

However, enabling the use of HMDs inside cars is very different compared to
living rooms in multiple aspects. First, the space for body movement is much more
confined. To one side of the seat, in particular, there is usually almost no space avail-
able. Thus, the virtual interfaces must be intelligently adapted so that users do not
accidentally collide with the car interior. Yet more importantly, the driving forces
work on the body and induce motion sickness if the visual perception cues contra-
dict those that the body senses through the vestibular system. That means that for
any shown VR content, some visual representation of movement of the real car and
the surrounding environment is beneficial for the user.

Other remedies against motion sickness are the visualization of landmarks, rest
frames in the real world (e.g., a part of the car that appears in the virtual environ-
ment to hold on to) and subtle information cues about the expected acceleration or
deceleration of the car. These showed that they are even able to reduce motion sick-
ness instead of increasing it (Carter et al. 2018). For AR, digital content has to
match the real-world environment precisely, by analogy with the head-up-display.
Because motion sickness, once experienced, can take hours for symptoms to resolve,
solving this problem is a key enabler for prolonged use of both AR and VR HMDs
inside cars.

However, all these visualizations require precise alignment of the virtual and
physical worlds (see Fig. 9.5). The previous section has already elaborated the

9 VR/AR Case Studies

340

challenges of calculating a precise car pose in relation to the real world. In combina-
tion with HMDs, the precise alignment is further impeded, since conventional track-
ing methods for HMDs will not work out of the box in a vehicle. This is because the
physical forces measured by the HMD’s Inertial Measurement Unit (IMU) will
reflect the car and head motion combined (e.g., accelerating will have your virtual
head turn slightly down), while other tracking sensor data (e.g., optical tracking)
may still only provide evidence for the head motion. This creates observation con-
flicts during the sensor fusion for the final HMD pose. This sensor fusion, however,
is required, as the drift of today’s IMUs is much too high for them to deliver suffi-
cient tracking quality while driving on their own.

Regarding storytelling, the biggest challenge is to create thrilling experiences
on-the-fly for dynamic routes at dynamic paces (e.g., sudden stops at red lights or
traffic jams) which can both change at any time during the course of the experience.
To this end, the car can provide a lot of interesting information, like the current
route, traffic situation along the route, immediate traffic surrounding and possible
alternative routes the driver could take. This data can help game designers redesign
their game story and content positions according to dynamic properties, which
could be part of an SDK offered by car manufacturers.

Finally, the crash safety of HMDs is a topic that must be researched and solved
for wide adoption. Overall, while technical challenges such as fusing precise car
and HMD poses at low latency are coming into reach (e.g., as demonstrated by
Haeling et al. (2018), questions regarding social acceptability (Is it okay to use VR
HMDs over the whole duration of a family trip?), safety concerns (e.g. crash safety
and driver distraction), and business plans (What are users willing to pay for these
experiences?) increasingly gain importance, for which McGill et al. (2020) provide
a good overview. Both software in general and user interfaces in particular will gain
even more importance to deal with the increasing complexity of driving situations,
especially considering the trend towards autonomous driving. In addition, technical
innovations such as waveguides or holographic displays, as well as more natural and
holistic user-interaction will lead towards a seamless human–machine interface. For

Fig. 9.5 Different types of dynamic virtual entertainment matched to the route ahead (left to
right): original view – dynamic procedural environment as basis for, e.g., virtual cinema – space
shooter game – edutainment – all viewed inside a (mobile) VR headset. (©Daimler Protics
GmbH. All rights reserved)

R. Doerner et al.

341

gaming and entertainment especially, in the short term the usage of HMDs has
already enabled new applications.

9.4 VR-Based Service Training in the Life Sciences
and Diagnostics Industry

Julian Hillig, realworld one GmbH & Co. KG

The adoption of virtual (VR) and augmented reality (AR) technologies has expanded
rapidly across various enterprise sectors, and the technology is now experiencing
accelerated integration within the life sciences and the analytical and diagnostics,
pharmaceutical, chemical, and processing industries. While VR and AR are consid-
ered breakthrough technologies and are expected to substitute for computers and
smartphones in the coming decades, the global crisis of COVID-19 has forced many
companies to accelerate the digitalization of their workforce and operations, leading
to increasing general adoption of the technology. VR represents the ideal technol-
ogy for companies to continue conducting training courses and holding group
events without any risk to health and safety. In addition to being an important con-
tribution to a company’s overall digitalization and global sustainability strategy – as
drastic reductions in air travel for companies will result in a significant decrease in
their carbon emissions – the cost-saving potential from VR-based training is around
US$450,000–650,000 per product per year.

Along with the continuous growth of businesses in the life sciences and diagnos-
tics industry, the global headcount of their Field Service Engineers (FSEs) is consis-
tently increasing. Additionally, as product lines have become increasingly complex,
the knowledge and skill requirements for FSEs have also grown. Previously, FSEs
conducted only basic maintenance and repair tasks, but now they also provide
expanded services. Because of these factors, the post-service and support teams are
reaching their full training capacities, resulting in extended waiting periods for
newly hired FSEs to conduct their on-site training. By implementing VR into the
training process, businesses can significantly increase their global training capaci-
ties and will be able to meet both their short- and long-term training needs. VR
provides the global FSEs with highly realistic and fully interactive training scenar-
ios created by service specialists that can be accessed at any time from any location.

While there will be pre-recorded training content prepared for FSEs, any internal
specialist within a company can easily connect to the VR environment and join the
FSEs at any time to answer specific questions or even test an FSE, without the need
for anyone to leave the office or home. Also, FSEs can always revisit any training
material on their own to refresh their knowledge of particular aspects of the instru-
ments and equipment.

The VR-based software platform developed by realworld one now serves as a
standard for applications in training, sales, marketing and service (see Fig. 9.6).

9 VR/AR Case Studies

342

This software platform has been specifically designed for the life sciences and ana-
lytical and diagnostics industries and includes the following functionalities:

• The CAN functionality enables users to create and preserve their own VR con-
tent and share it with others across the globe. People can record and save interac-
tive training sessions, product explanations, events, meetings, and more within
their VR environments.

• The multiuser-based software allows users from all over the world to meet and
collaborate in real time, as well as interact directly with products in virtual envi-
ronments (see Fig. 9.7).

• Users can upload 3D and CAD data, PDFs, PowerPoint presentations, images,
videos, and notes from their desktop into VR to share them with colleagues and
business partners.

• The virtual desktop function lets people use their personal computers in VR. One
can browse the web, view files, answer emails or work with BI (business intelli-
gence), CRM (customer relationship management) or ERP (enterprise resource
planning) systems on a giant virtual screen.

• The avatar configurator gives users the option to select and configure their own
avatars for a personalized virtual experience.

• realworld one provides multipurpose rooms, including user, conference, training
and showrooms, as well as an auditorium hall for larger events. Users can host
and invite people to join at any time.

• The realworld one software is designed to be used with the latest virtual and
mixed reality head-mounted display devices from various manufacturers.

Fig. 9.6 Example view within a multiuser VR training session. (© realworld one. All rights
reserved)

R. Doerner et al.

343

• The non-VR mode enables users to connect to virtual environments without
requiring a VR headset.

The implementation of VR solutions into the service training process provides
companies with the following performance enhancements:

• Consistency: Access to highly consistent information throughout the entire orga-
nization, while providing a coherent format for product user education.

• Efficiency: Significant gains for global service and support teams through a VR-
based strategy that provides easier and quicker access to service experts, while
simultaneously reducing the resources required from these experts.

• Time: Significant reduction in the time required to train personnel on instru-
ments. This shortens the length of the certification process for staff, as there is no
waiting period to participate in training sessions.

• Capacity: The capacity to conduct training on certain instruments is determined
by training staff, facilities and hardware availability. By implementing VR-based
training with virtual instruments, these dependencies can be significantly
reduced.

• Cost savings: As the number of training participants has considerably increased
over the years, the costs incurred by companies for hosting trainees, by providing
travel, accommodation and food expenses, have risen markedly. In addition, the
depreciation and maintenance of instruments required for training also represent
a significant cost that can be saved by moving them into a virtual environment.

• Flexibility: The ability to receive/conduct training can be made as flexible as is
necessary, using a VR-based approach, as content is available at any time and
experts can quickly connect into the various environments for one-on-one
sessions.

Fig. 9.7 Example interaction in VR training. (© realworld one. All rights reserved)

9 VR/AR Case Studies

344

The typical rollout plan for VR software implementation at realworld one is usu-
ally a 3- to 6-months process, requiring extensive consultation with the client’s tech-
nical team to bring the full spectrum of training features into a virtual environment.
The initial phase calls for the complete 3D rendering of all technical equipment
involved in the training. After the client provides feedback on the VR prototype
module, the final version will be completed for international distribution.

9.5 Utilizing Augmented Reality
for Visualizing Infrastructure

Alec Pestov, vGIS Inc

Municipalities and utility companies maintain vast networks of underground and
aboveground infrastructure. This infrastructure is difficult to access – many assets
such as pipes, cables, valves, etc., are buried underground – and often complex, as
multiple utility types reside densely near each other. The combination of complexity
and inaccessibility leads to the high cost of any infrastructure-related initiative.
Additionally, utility workers’ inability to see buried assets directly occasionally
leads to excavation damages, which are estimated at U$6 billion annually for North
America alone.

The traditional approach to locating utility assets relies on using printed and digi-
tal maps in conjunction with specialized equipment such as electromagnetic locator
devices. The locator then paints the horizontal location of the asset on the ground,
produces a sketch and compiles a report. The sketch and report are then provided to
the excavator. Often, locations are independently validated by another person
through a quality assurance process. The location work process is complicated,
relies on records that can – at times – be inaccurate or incomplete, involves person-
nel with varying degrees of experience and is an important component of the dam-
age prevention and workplace safety programs of the construction industry.

In the AEC (architecture, engineering and construction) industry, unseen infra-
structure can cause design errors or construction problems in the field. At the design
phase, it can be costly to redesign an already developed plan. If issues come up dur-
ing construction, they can be extraordinarily costly, leading to long delays and proj-
ect cost overruns. Furthermore, it can be difficult for engineers to analyze blueprints
to understand 3D spatial relationships with regard to construction projects. As a
result, it takes longer to work on designs, and those designs are more likely to have
errors, which could lead to delays, rework and cost overruns.

Emerging technologies such as Mixed Reality (MR) and especially Augmented
Reality (AR) have great potential to positively influence the fieldwork (see Fig. 9.8).
Using AR tools, field workers and engineers can see an unobstructed physical world
in front of them, as well as virtual representations of lines, pipes and proposed struc-
tures that can be perceived similar to holograms (see Fig. 9.9). By interacting with

R. Doerner et al.

345

virtual ‘digital twins’, the user should be able to perform the job faster, more easily,
more safely and more accurately.

vGIS is an AR/MR application designed by vGIS Inc. for high-accuracy field
services operations (vGIS 2021). The app either uses the HoloLens, a holographic
headset by Microsoft equipped with cameras, audio, various sensors or traditional
smartphones and tablets to display underground pipes and other assets as holo-
grams. While wearing the HoloLens or using the smart device, workers see an unob-
structed physical world in front of them as well as carefully placed virtual imagery
of proposed buildings and bridges, lines of wastewater pipes underground and real-
ity capture displays. The virtual representations are color-coded and projected to
scale at job sites, while advanced positioning algorithms designed by vGIS Inc.
maintain its real-time-created virtual imagery world – positioned at the correct
physical location – with up to 1 cm accuracy (see Fig. 9.10).

The vGIS platform combines client-provided BIM (building information model-
ing), GIS (geographic information system), Reality Capture and other types of spa-
tial data with third-party information from multiple sources to create visuals to

Fig. 9.8 Using smart devices with a location sensor to visualize underground infrastructure such
as buried pipes and cables for construction: (a) with a tablet and (b) with a smart phone. (© vGIS
Inc. All rights reserved)

Fig. 9.9 Screenshots from the vGIS application showing AR scenes with additional annotations
such as distances measured. (© vGIS Inc. All rights reserved)

9 VR/AR Case Studies

346

power purpose-built applications. The information is converted into unified 3D
visuals in real time to display on the end user’s devices (see Fig. 9.10).

The broad range of devices covered by vGIS allows AR users to deploy tools that
work better in specific environments. Phones and tablets offer a unique combination
of accessibility and convenience. They are familiar, easy to use and always on,
which enables apps to run within a few seconds or less after unlocking the phone.
Depending on the model and screen size, they are fast and offer excellent visuals,
even in bright light. On top of this, they already run numerous apps that comprise a
standard toolkit of any enterprise. It is not surprising that approximately 90% of
vGIS app deployments are on mobile devices.

HoloLens and other dedicated AR devices are the best tools for complex or busy
visualizations. These include visualizations of sophisticated BIM models, struc-
tures, multi-layered utility corridors, subsurface utilities of a busy downtown street,
intertwining fibre-optic cables, etc. HoloLens delivers depth perception, which
helps the user understand complex 3D objects almost instantly. The superiority of
the stereoscopic 3D visuals exclusive to HoloLens and similar devices warrant
deploying at least a few of these units to support advanced construction and engi-
neering jobs, critical utility maintenance tasks (e.g., field crew supervisors), utility
location validators, public works and similar roles where speed, deeper understand-
ing and accuracy are important.

The hands-free environment is another type of deployment where HoloLens
shines. If the user needs to remain hands-free to perform his or her job, paper records
and tablet/phone-based tools will not suffice. HoloLens provides a rich and interac-
tive user experience for displaying manuals, guides and collaboration tools while
keeping the user’s hands free to do the job.

vGIS helps field technicians close service tickets more quickly by reducing the
time required to locate assets. Depending on the complexity of location and avail-
ability of utilities data, the system can save up to several hours on a single locate job.
A study conducted by vGIS clients found that utility locators could reduce the time
required to complete jobs by 50%. At the same time, QA validation time was
reduced by 66–85%. This translated to cumulative savings of 12–20 h per locator
per month.

Fig. 9.10 Visualizing BIM data in AR. (© vGIS Inc. All rights reserved)

R. Doerner et al.

347

Additionally, vGIS helps avoid costly repairs and line breaks. A line strike means
that work comes to a halt until repairs are made. Many of those problems occur
because the aboveground markings are inaccurate or incomplete. A simple two-hour
markup may easily turn into a $23,000 dig up and repair. vGIS helps reduce the
number of such strikes.

The impact in the AEC space is yet to be measured. However, early deployments
conducted by several multinational corporations have demonstrated tangible
improvements in infrastructure-related projects, such as light rail construction and
road work.

9.6 Enhancing the Spatial Design Process with CADwalk

James A. Walsh and Bruce H. Thomas, University of South Australia
Gerhard Kimenkowski and Stephen Walton, CADwalk Global Group Pty Ltd

Building design remains a uniquely challenging problem, involving a variety of
stakeholders (novices to experts), waterfall development and high costs. In addition
to these problems, given the huge physical size of the buildings being created and
the fact that they must be scaled down for planning, design becomes increasingly
abstract and complex in nature. This is especially difficult for clients who are not
architects themselves, but instead are stakeholders who will have to utilize the end
product. Fundamentally, clients require some way to bring abstract CAD plans into
the real world for collaborative validation and optimization of the proposed project.
Design experts can visualize the designs as final built constructs, but this is a com-
plicated process for clients on plans given in a non-1:1 scale, with many layers of
complexity (electrical, heating and cooling, etc.). Ideally, clients would be able to
see the life-size end result as early in the design phase as possible, and throughout
the entire process.

Projection mapping as a research topic enables the real world to be augmented
and enhanced. More specifically, Spatial Augmented Reality (SAR) allows large-
scale collaboration with a blend of physical and virtual experiences. Given the
unique affordances of SAR as a display and interaction medium, the question arose:
how could we leverage the unique affordances of SAR for visualizing and editing
large-scale, life-size building designs (Thomas et al. 2011)? In exploring this prob-
lem, a joint project between the University of South Australia and Jumbo Vision
International (now CADwalk Digital) was established to explore how SAR could be
employed. The end result of the research project and subsequent commercialization
is CADwalk Lifesize, a large-scale, projection-based, collaborative building design
tool that allows end-users (novices and experts alike) to explore their plans in real
time and at life size.

Built using the Unreal Engine, CADwalk utilizes multiple floor-facing projectors
working in concert with a wall-facing projector in large warehouse-style spaces (see
Fig. 9.11). The floor-facing 2D projectors display life-size blueprints and CAD

9 VR/AR Case Studies

348

designs of buildings, enabling end-users to physically walk through their new spaces
before they have been built. Using the wall-facing projector, a 3D view is projected,
showing the 3D textured real-time rendering of the current plans, allowing users to
see both 1:1 blueprints on the floor and the rendered 3D floor view of the space
simultaneously. A roaming Surface tablet is used as a control screen for the session
facilitator.

To collaboratively edit the plans a novel interaction device is used: a “tree”,
which consists of an aluminum pole approximately 2 m high, on a wheeled base,
with retro-reflective balls attached to the top. Using an optical-tracking system pres-
ent throughout the whole space, users can wheel the trees onto content, rapidly spin
the tree one way, and then back, to have the tree “pick up” the content underneath,
which is then fixed to the tree to be moved and rotated around the scene. The user
then rapidly spins the tree back-and-forth again to uncouple the projected content
from the tree, leaving it in its new location. The trees act as a shared, mobile method
for directly interacting with projected content, along with other functions, such as a
digital tape measure showing the distance between multiple trees. For plans larger
than the physical space available, blueprints can be panned and scaled as desired,
including moving between floors in multi-floor structures.

Additional functions, such as adding/removing models, is performed with the aid
of a user at a desktop placed to the side of the main space. Newer versions of
CADwalk seek to leverage tablet input, and employ head-mounted displays (i.e.,
Microsoft HoloLens) to let users visualize and interact with the full 3D CAD model
rendered above the projected blueprints. A miniature version of CADwalk
(CADwalk Mini) also allows users without access to a purpose-built installation to

Fig. 9.11 CADwalk session showing blueprints on the floor and perspective correct 3D rendering
of the scene on the end wall. Trees are visible in the scene as the thin vertical stands. (© 2020
CADwalk Global Group Pty Ltd. All rights reserved)

R. Doerner et al.

349

still leverage the collaborative and direct interaction offered by CADwalk, albeit at
a much smaller, non-1:1 scale. A Virtual Reality (VR) view is also offered, allowing
the current scene to be immediately viewed by users in a VR headset. While VR
obviously also allows users to view the plans in 1:1 scale, the lack of natural col-
laboration and the spatial perception issues present in VR (Henry and Furness 1993)
impact its effectiveness when needing to ensure accurate representation of structural
plans to end users. Multiple CADwalk installations can be networked together,
enabling remote collaboration at real-world scale.

A CADwalk session starts with ingesting the CAD models from the designers/
architects. Given the plethora of data formats in use, data must first be prepped for
import to the system in a compatible format. As CAD models are increasingly com-
plex, data preparation may involve polygon reduction, among other tools, to create
a scene that can be rendered effectively by the system. This process is done offline,
before the session begins.

When the session commences, a CADwalk staff member (facilitator) is present
to facilitate the session and system, enabling the stakeholder’s users present to focus
on their discussions around the space, not on the system itself. Users are able to
freely roam the space and use the multiple trees to modify the layout of the environ-
ment, measuring, moving and rotating items in the scene, such as doors, walls, fur-
niture or other fixtures. Scenarios can be saved, and actions can be undone/redone
and recalled for final decision-making from all stakeholders.

Project stakeholders can then commence their own interaction regarding points
of concern, either previously identified or new factors identified from being able to
view the plans at scale in CADwalk. These include not just cosmetic changes, but
legal requirements (safe distances, minimum clearances, etc.), clash detection (e.g.,
does the air-conditioning duct interfere with the placement of other elements?) and
domain-specific investigations.

Given the wide application domains across which spatial design occurs, e.g.,
manufacturing/industrial, domestic housing, aerospace, defense and city planning,
the applicability of CADwalk for improving the current design process has been
demonstrated for its fast, efficient and cost-saving properties. CADwalk Lifesize
Studios are used from kitchen and bathroom design validation and optimizing
“dream home layouts”, to highly specialized mission-critical control centers. The
European Space Agency (ESA) utilized CADwalk to understand current workflows
and spaces for their current and future space exploration missions, and subsequent
validation and optimization of new workstations for their highly specialized opera-
tors. This will be the blueprint for all future ESA facilities globally.

While largely ignored for consumer AR, the use of projection in SAR provides
unique affordances for commercial and industrial applications, where requirements
such as having a fixed setup are not a restriction to adoption. In representing struc-
tural plans at life size, CADwalk allows novice and expert end users to collabora-
tively explore plans on an equal footing. Whereas novice users looking at traditional
blueprints or CAD plans may only be able to visualize and understand a subset of
the overall plans, including spatial relationships, the intuitive representation of

9 VR/AR Case Studies

350

those plans in CADwalk means structural plans are now accessible to all stakehold-
ers, for both viewing and modification.

9.7 The aixCAVE at RWTH Aachen University

Torsten W. Kuhlen, RWTH Aachen University
Geert Matthys, Barco

At a large technical university like RWTH Aachen, there is enormous potential to
use VR as a tool in research. In contrast to applications from the entertainment sec-
tor, many scientific application scenarios – for example a 3D analysis of result data
from simulated flows – not only depend on a high degree of immersion, but also on
the high resolution and excellent image quality of the display. In addition, the visual
analysis of scientific data is often carried out and discussed in smaller teams. For
these reasons, but also for simple ergonomic aspects (comfort, cybersickness),
many technical and scientific VR applications cannot just be implemented on the
basis of head-mounted displays. To this day, in VR Labs of universities and research
institutions it is therefore desirable to install immersive large-screen rear projection
systems (CAVEs) to adequately support the scientists (Kuhlen and Hentschel 2014).
Due to the high investment costs, such systems are used at larger universities such
as Aachen, Cologne, Munich or Stuttgart, often operated by the computing centers
as a central infrastructure accessible to all scientists at the university.

At RWTH Aachen University, the challenge was to establish a central VR infra-
structure for the various schools of the university with their very different require-
ments for VR solutions. In cooperation between the RWTH IT Center and the
Belgian company Barco, a concept was therefore developed and implemented as
aixCAVE (Aachen Immersive eXperience CAVE), which, as a universal VR dis-
play, equally meets the requirements of full immersion and high-quality projection.

To achieve the highest possible degree of immersion, a configuration consisting
of four vertical projection walls was chosen, completely surrounding the user. To
enter and exit the system, an entire wall can be moved using an electric drive. This
avoids door elements that interfere with immersion – when closed, no difference to
the other projection walls is visible. However, extensive security measures had to be
implemented so that no one could be locked in the CAVE in an emergency. Although
a ceiling projection would have further contributed to the degree of immersion in
the system, it was not used, as the complex audio and tracking integration planned
for the CAVE in Aachen would not have been possible then. To nevertheless achieve
largely complete immersion, the vertical screens are 3.3 m high.

The 5.25 × 5.25 m area, which is quite large compared to conventional CAVE
installations, offers smaller teams of scientists enough space for collaborative anal-
ysis session, enables natural navigation (“physical walking”) within certain limits,
and creates a realistic feeling of space in the virtual environment (“spatial

R. Doerner et al.

351

Fig. 9.12 Concept of the aixCAVE with 24 projectors. (© TW Kuhlen, G Matthys. All rights
reserved)

awareness”). Since the floor should not bend noticeably even with such a large base,
6.5 cm thick glass was used, on which thinner acrylic glass was placed as the actual
display. This two-stage structure decouples the static requirements from the display
requirements. Glass has better rigidity, while the acrylic glass has very similar prop-
erties to the sidewalls, which are also made of acrylic glass. For structural reasons,
two glass elements lying next to each other had to be installed instead of a single
glass plate. This inevitably creates a gap that, with a suitable mechanical design and
skillful alignment of the projectors, turned out to be very narrow at 2 mm.

Figure 9.12 shows the basic structure of the solution with a total of 24 projectors.
To achieve the required high image quality, projector and screen technologies were
used that guarantee sufficiently high resolution, brightness, brightness uniformity
and luminance. The final solution (see Fig. 9.13) is based on active stereo projection
technology with 3-chip DLP projectors, each with a light output of 12,000 lumens
and a WUXGA resolution (1920 × 1200 pixels). To meet the requirements for the
resolution of the system as a whole, four of these projectors were used for each
vertical side and eight for the floor, each in a 2 × 2 tiled display configuration with
soft edge blending (see also Sect. 5.2)

Apart from the resolution and the brightness of the selected projectors, the prop-
erties of the rear projection screens are critical for the resulting image quality. These
should provide a uniform brightness distribution without hotspots, so that users can
walk from one corner to another within the CAVE without the image quality or

9 VR/AR Case Studies

352

perceived brightness suffering from the different perspectives. This requirement
was achieved by using canvas materials with excellent diffuse properties (low peak
and half gain, see also Sect. 5.2.2).

Figure 5.2 shows the fully installed aixCAVE in operation. By combining a pre-
cise mechanical construction with high-quality projection technology, a CAVE sys-
tem could be implemented that allows an intuitive visual analysis of high- resolution
scientific data in three-dimensional space. Ergonomic factors such as high lumi-
nance and brightness uniformity, high contrast and excellent channel separation of
the stereo projection, as well as small gaps between the individual screens have
been consistently taken into account. As a result, the Aachen CAVE goes beyond a
pure presentation system, providing a valuable tool that users from science and
industry actually use in longer, intensive sessions for exploratory data analysis. In
particular, the clear ergonomic advantages over HMDs, as well as the possibilities
of a combined analysis of geometric and abstract data resulting from the high reso-
lution, justify – at least at RWTH Aachen University – the very high installation and
operating costs. Since its inauguration in 2013, the aixCAVE has proven to be a
valuable tool in research projects in production technology, fluid mechanics, archi-
tecture, psychology and neurosciences. In addition, the CAVE is not only used as a
tool for data analysis, but also as a tool for basic VR research by the computer sci-
entists at RWTH to develop new navigation and interaction paradigms in virtual
environments (Kuhlen 2020).

Fig. 9.13 Complex installation of the glass plates for the floor rear projection of the aixCAVE. (©
TW Kuhlen, G Matthys. All rights reserved)

R. Doerner et al.

353

9.8 Augmented Reflection Technology: Stroke
Rehabilitation with XR

Holger Regenbrecht and Chris Heinrich, University of Otago, Dunedin,
New Zealand

Millions of people experience a stroke and require rehabilitation therapy every year.
Most stroke survivors are left with unilateral impairments, e.g., the inability to move
one arm, and have to undergo a very long period of rehabilitation and training to
regain motor function. The efficacy of this training depends on four intertwined fac-
tors: (1) the patient’s (stroke survivor’s) motivation, (2) the meaningfulness of the
tasks in training, (3) the training intensity, and last but not least (4) the provision and
effectiveness of stimuli for neuroplastic change. XR techniques, i.e., the full spec-
trum of computer mediation of reality between Virtual Reality and Augmented
Reality, can play a major role here and we are presenting two systems based on the
concept of augmented reflection technology (ART) we have developed and empiri-
cally and clinically tested.

With ART we are focusing on the factor of neuroplasticity, i.e., the brain’s ability
to lastingly change in response to environmental stimuli, while maintaining patient
engagement with the other three factors for rehabilitation efficacy (motivation,
meaningfulness, intensity). The neuroplastic effect is achieved by “fooling the
brain” (Regenbrecht et al. 2011) about what it is “perceiving”, e.g., by visually
exaggerating movement capabilities of a limb or by mirroring over the healthy
limb’s movements to the impaired side (Regenbrecht et al. 2012; Hoermann et al.
2017). XR offers great possibilities here for (1) precisely directing what the patient
controls and perceives, (2) suppressing potential disbelief, i.e., believing in the vir-
tual magic of the technology and (3) keeping patients engaged with the rehabilita-
tion process.

ART is based on the principle of decoupling what the patient is doing from what
they are seeing. We sense and capture patients’ limb movements (here upper limbs),
feed this into an XR system and manipulate the perceivable output in a way that the
(neurorehabilitation) effect can be achieved. Over the last decade we have built dif-
ferent versions of ART using tailored input, computing and output modalities.

ART4 (Fig. 9.14, left) comprises two closed boxes into which the patient puts
their hands and lower arms. The boxes are closed with curtains, like with magician’s
boxes, so that the patient cannot see their actual hand movements. Both boxes are
equipped with a particular form of diffuse lighting and cameras, which capture what
is inside the boxes. The camera feeds are used to (1) foreground segment the hands
and (2) track the hand movements. The segmented hands are put inside (in front of)
a virtual environment, so that the user gets the impression to interact within that
space. These segmented hands can then be selectively shown, hidden and/or mir-
rored at the therapist’s discretion. We can also augment the users’ perceived hand
movement: for instance, an actual movement of say 10 mm will result in 30 mm
movement as perceived by the patient on the screen. ART4 was designed for use in

9 VR/AR Case Studies

354

clinical settings for the treatment of chronic stroke patients. However, XR features
were implemented to allow for its use in other rehabilitation scenarios. These
include hot/cold virtual environments for burn victims, enlarged or smaller hands
for pain management and the ability to change the color appearance of hands (com-
plex regional pain).

If we want to apply ART in users’ homes, then we have to (1) allow the system
to be self-controlled and (2) be suitable for installation in people’s homes. ART6
(Fig. 9.14, center and right) utilizes a head-mounted display, a Leap motion control-
ler, big arcade-style push buttons and foot pedals, individualized virtual hands and
machine learning-based feedback mechanisms in conjunction with a tailored reha-
bilitation protocol (Heinrich et al. 2020). Our stroke application scenario has unique
requirements in that our user has an impaired arm (no/limited movement), their
unaffected arm is carrying out the mirrored hand movements (and thus cannot be
used to control the system while in VR), and survivors can have low technical com-
petency, which means the system has to be easy and intuitive to use. To account for
these requirements, we developed an interface that consists of arcade style push
buttons for the user to interact with the system outside of VR (start/stop system,
switch between system modules). While in VR, the user can interact with the system
by using two foot pedals (move on to next hand exercise or show a virtual training
hand which demonstrates the hand exercise to the survivor in VR). Our XR hard-
ware was chosen for survivors’ home use because it provides an inherent decou-
pling of the survivors’ view from their home (real) environment into our XR
environment. For our stroke rehabilitation scenario, this serves three purposes. (1)
Survivors are completely immersed in our virtual illusion and this can lead to a
more convincing “fooling of the brain” because of the mixing of what is real (hand
movements, real-world/virtual environment correspondence) and augmented (mir-
rored hand position and mirrored movement), which can help lead to that suppres-
sion of disbelief that is desired for neuroplastic effects to occur. (2) It allows for the
mirrored virtual hand to be observed in the most spatially congruent and natural
position for the survivor. (3) It disconnects the survivor from their home

Fig. 9.14 Augmented Reflection Technology systems in action. Left: ART4 with “magician’s
boxes” and operator; center: ART6 for home use without an operator; right: ART6 mirroring a
stroke survivors’ right (unaffected) hand movement and presenting it to them in XR as their left
(affected) hand carrying out the mirrored hand movements. (© H Regenbrecht, C Heinrich. All
rights reserved)

R. Doerner et al.

355

environment, which often consists of various distracting stimuli, and allows them to
focus their complete attention/gaze on their mirrored virtual hand and rehabilitation
exercises.

Besides the neurorehabilitation effects of ART, both systems are valuable instru-
ments for patient engagement. The “newness” of XR, the game elements of the
training tasks, the control of the exercises, including the individually tailored pace,
and the realism and meaningfulness of the experience lead to increased patient
engagement.

To make ART more widely available – currently, our systems are used with
patients and users in Dunedin, New Zealand (Dunedin Hospital) and Berlin,
Germany (MEDIAN Klinik Kladow) – we are going to bring our systems to market
in the near future. The improvements in the quality of XR technology in combina-
tion with increasing affordability of that technology will allow more and more users
to benefit from our ART approach. While stroke rehabilitation is our main focus at
the moment, ART can be used with other conditions, like traumatic brain injuries,
(phantom limb) pain management and hand therapy, but also for education and
training, entertainment and other related sectors.

9.9 Collaborative Virtual Trainers in VR Applications

Xiumin Shang and Marcelo Kallmann, University of California, Merced

We use the term “virtual trainer” to refer to a simulated human-like character that
can collaborate with humans to complete a given task with the use of interactive
verbal and/or non-verbal movements and behaviors. Virtual trainers collaborating
with human users can be achieved in different ways. Here we discuss two important
types of collaboration that are representative of indirect and direct types of interac-
tion. We consider an indirect collaboration when the virtual trainer collaborates
with the user only by providing verbal or non-verbal feedback as instructions, there-
fore helping the user to complete a given task but letting the user perform the task
independently. In a direct collaboration, the virtual trainer will instead jointly com-
plete the task with the user. Here we focus on the particular case of collaborative
object manipulation where both the virtual trainer and the user need to manipulate
a virtual object together in order to complete the given task. We summarize in this
chapter our current work on implementing both indirect and direct types of collab-
orative virtual trainers. Both of our projects are being developed with the use of the
Unity game engine.

To achieve effective interactions when assisting humans to perform tasks in a
given scenario, a feedback strategy has to be identified and implemented. In general,
feedback is a language or gesture signal given by the virtual trainer and which might
change the user’s thinking or behavior to improve his/her learning or training

9 VR/AR Case Studies

356

performance (Arif et al. 2017; Blair 2013). A feedback strategy will specify how
feedback is provided, including types of feedback and several other parameters,
such as frequency and adaptation. We have investigated two particular types of feed-
back strategies for virtual trainers assisting participants in a VR task, as illustrated
in Fig. 9.15. Strategies based on Correctness Feedback (CF) and Suggestive
Feedback (SF) were compared as possible feedback strategies used by the virtual
trainer to help users to memorize relative areas of given countries.

A scenario was designed where the virtual trainer assists the user to sort cubes
representing countries according to the area of the countries. The user needs to
complete the sorting task with different levels of difficulty, which are imple-
mented with an increasing number of countries to be sorted. Under this task
scenario, CF is defined as providing correctness feedback by fully correcting
human responses at each stage of the task, and SF is defined as providing sugges-
tive feedback by only notifying if and how a response can be corrected. We have
conducted a pilot user study with four participants and a formal user study with
14 participants to investigate the effects of the feedback strategies provided by
the virtual trainer on the user’s performance. Our final study results show that CF
was more effective because it had higher user preference and shorter task com-
pletion time with equivalent performance outcomes. This study exemplifies the
importance of implementing an appropriate feedback strategy for a given sce-
nario and application. More details are available in our previous work (Shang
et al. 2019).

Using virtual trainers to assist users during direct manipulation tasks, in either
simulated environments or physical environments, requires the use of some spe-
cific approach for achieving adaptive motion control. While in some cases a

Fig. 9.15 In this VR training environment the virtual trainer provides feedback to assist the user
to sort virtual cubes such that the represented countries appear in increasing area order. (© X
Shang, M Kallmann. All rights reserved)

R. Doerner et al.

357

hard-coded solution involving a step-by-step procedure for the virtual trainer to
follow may be possible, in such cases the virtual trainer will not be able to adapt
and execute a similar but different task, or to address the same task in a different
environment. To increase the adaptability of this type of collaborative virtual
trainer, different machine learning methods can be applied. A common approach
is to rely on imitation learning methods able to learn human behaviors using some
type of action mapping and then to apply the learned knowledge to the robotic or
virtual trainer for it to cooperate with human users on given tasks. Another popular
approach is to apply reinforcement learning to improve a robotic or virtual train-
er’s sequential decision-making policy by interacting with the environment
periodically.

Previous work (Yu et al. 2020) has demonstrated the effectiveness of using deep
reinforcement learning (DRL) for virtual trainers or robotic agents, and for agent–
human collaboration. We focus on applying the DRL methodology to a virtual
trainer collaborating with a human user immersed in a VR environment. In our
simulated environment we have designed a task involving two virtual trainers col-
laboratively moving a tray from a random position to a target position in a dynamic
environment with an object on top of the tray. The goal is to reach the target location
while avoiding collisions with obstacles and while keeping the tray balanced. Based
on this design, we have trained an efficient initial policy in this virtual environment,
as illustrated in Fig. 9.16.

The use of virtual trainers assisting humans in a variety of scenarios represents a
promising application for VR technologies and the study of collaborative behaviors
for virtual trainers is key for achieving effective virtual trainers. When properly
implemented the discussed types of collaborative virtual trainers can significantly
enhance the learning and training experiences of users by achieving interactions that
can closely resemble intuitive human–human exchanges.

Fig. 9.16 Two virtual trainers move a tray collaboratively in the VR environment. (© X Shang, M
Kallmann. All rights reserved)

9 VR/AR Case Studies

358

9.10 Virtual Patients: A Case Study from Research
to Real-World Impact

Benjamin Lok, Computer and Information Science and Engineering,
University of Florida
Francisco A. Jimenez and Cheryl Wilson, Elsevier

In this case study, we will explore the journey of virtual patient technology from
research to a commercial system that is educating hundreds of thousands of health-
care students a year. Virtual patients are computer simulations of a real patient
encounter. Virtual patients are used in the training of healthcare students, including
nursing, physician, pharmacy and physical therapy. Virtual patients provide students
with opportunities for practice, remediation, feedback and exposure to a wide range
of conditions and symptoms. Virtual patients are diverse in their background, being
able to present patient scenarios that involve various ages, genders, ethnicities, races
and personalities. Virtual patients are used by educators to develop psychomotor,
cognitive and social skills in learners. This case study will cover the research that
was conducted by the Virtual Experiences Research Group at the University of
Florida, lessons learned through commercialization of the research by Shadow
Health® from Elsevier and implications for nursing education and virtual reality as
their simulations are the most used virtual patient platform in the world.

Research began in the early 2000s into using virtual patients to improve health-
care students’ conversational skills. Early systems experimented with a wide range
of modalities including head-mounted displays, large projection displays and desk-
top monitors (Johnsen and Lok 2008). Research studies evaluated multiple input
modalities, including enabling the user to speak to the virtual patient, type questions
to the virtual patient and gesture to the virtual patient.

Dozens of user studies were conducted with healthcare students to explore the
potential and limitations of virtual patients, including exploring the validity of vir-
tual patients (Johnsen et al. 2007), learning empathy with virtual patients (Deladisma
et al. 2007), the impact of different display types (Johnsen and Lok 2008), physical
mannequin integration (Kotranza et al. 2008), reflection with virtual patient training
(Raij and Lok 2008) and team training (Robb et al. 2014).

The resulting body of publications demonstrated the educational benefits of virtual
patients, including developing clinical reasoning, empathy and communication skills.
With the benefit and limitations identified through scientific study, the next stage was
to identify how to help as many healthcare students as possible with a curriculum of
virtual patients. Designing a curriculum of virtual patients would require resources
that were beyond standard academic mechanisms of grants and collaborations.

The researchers worked with the University of Florida Office of Technology
Licensing to identify pathways to commercialization. In 2011, a team of entrepre-
neurs and some of the core researchers founded Shadow Health.

Three important pivots occurred during the transition from a research platform to
a commercial product: market identification, change in delivery mechanism, and
adapting the virtual patient to curriculums. First, the nursing student market was

R. Doerner et al.

359

identified as the healthcare group that had the largest need for virtual patient train-
ing. There are over 400,000 nursing students in the United States and Canada alone.
Second, an effective method for delivery of the virtual patients was identified. As
head-mounted displays were not widely available at the time, standard laptop/desk-
top computers with both typed and speech recognition capabilities were used.
Finally, the virtual patients moved from short 15-min scenarios used in the research
studies to a series of virtual patient assignments that could be integrated throughout
a course and provide over a dozen hours of educational content.

As of 2020, thousands of universities and colleges use virtual patients from
Shadow Health® in their curriculum. Each year, over 100,000 nursing students use
Shadow Health® products in their classes, reaching over 25% of nursing students in
the United States and Canada. When they graduate, these nursing students will see
approximately half of the US and Canada population, making the impact of the
research into virtual patients a reality that is improving healthcare.

Each Shadow Health® product has a set of Digital Clinical Experiences™
(DCE). The DCE is the virtual patient encounter (see Fig. 9.17). Each DCE simula-
tion starts with a pre- brief with a virtual preceptor that introduces the scenario,
provides goals and instructions, and delineates what is expected from the learner in
terms of performance. Next, the learner conducts a patient interview and physical
assessment with the virtual patient, engages in therapeutic and non-judgmental
communication, documents findings, and applies clinical reasoning skills to develop
nursing diagnoses, care plans or interventions relevant to the scenario (e.g., admin-
ister medications, write a prescription or conduct a mental status exam). Upon com-
pletion of the patient exam in each DCE simulation, the learner is presented either
with self- reflection prompts or a structured debrief where they can revisit actions
and decisions taken throughout the simulation as well as reflecting on how they
could improve in future patient interactions.

After submitting their attempt to their instructor for review, the learner is auto-
matically scored on their clinical reasoning. Shadow Health’s team of instructional

Fig. 9.17 Learning scenario with a virtual patient. (© B Lok, FA Jimenez, C Wilson. All rights
reserved)

9 VR/AR Case Studies

360

designers, psychometricians, nurse educators and computer scientists have collabo-
rated with educators to develop the scoring for each DCE simulation. This develop-
ment process includes rigorous discovery, design, construction, pilot testing and
psychometric evaluation of each instrument so that it is aligned to the learning
objectives and target learner population of each DCE simulation.

Shadow Health® DCE is addressing evolving nursing education needs. The land-
scape of nursing education allows for increased innovation and technological
advancement in education programs. Students growing up as digital natives embrace
the utilization of technology in their training programs. Faculty of nursing have rec-
ognized the impact that the technology has on the learning potential of their students.

With the development of technology delivering virtual patients, faculty time can
be devoted to translating the virtual patient experience into clinically relevant appli-
cations instead of developing, implementing, debriefing and evaluation of the simu-
lation experience. Faculty can also be assured their students are participating in a
standardized experience. Integration of virtual patient experiences has allowed fac-
ulty to see how their students develop communication skills and clinical reasoning
throughout a course.

Virtual patients are one of a growing number of virtual reality technologies that
are transitioning from research to commercial product that is impacting our daily
lives. So the next time you interact with a nurse or physician, you will know that
your healthcare provider has likely practiced and improved their interpersonal skills
using a virtual human.

9.11 Embodied Social XR for Teaching, Learning
and Therapy

Marc Erich Latoschik, Carolin Wienrich, and Silke Grafe, University
of Würzburg, Germany
Mario Botsch, TU Dortmund University

The Breaking Bad Behaviors (BBB) system utilizes the power of embodied social VR
to teach and test classroom management skills with student teachers (Latoschik et al.
2016). The system simulates individual and group behavior through a parameterized
AI-based model. The model includes typical patterns of student behaviors and their
dynamic development from real classroom situations. Users can then slip in a teach-
er’s role in front of a simulated class and experience different, even critical situations
in a realistic way. BBB lets them try out and reflect on suitable response strategies
alone or in groups and acquire important media skills during the process. Figure 9.18
shows snapshots from real-life use, which has been implemented for several years at
the Julius-Maximilians-Universität Würzburg in the teacher training program. Initial
empirical findings show significant advantages compared to the previous gold standard.

In principle, Virtual Reality has the power to release us from the need to physi-
cally meet at the same places and times and thus significantly increase the potential

R. Doerner et al.

361

for participation. Virtual agents can realize group experiences for individuals at any
time. At the same time, the virtual worlds can include and support the ever- increasing
volume of digital data, multimedia content, and information required by almost
every aspect of collaborative knowledge work, specifically in the domain of learn-
ing and teaching.

The project ViLeArn explores teaching and learning with avatars and agents in
an immersive social VR (Latoschik et al. 2019). ViLeArn preserves the diversity of
embodied interpersonal communication for digital teaching. For example, a hetero-
geneous group of avatars that are not homogeneously represented (see Fig. 9.19,
left) does provoke some eeriness but also increases the perceived possibility of

Fig. 9.18 Virtual training of classroom management skills in the 2018 FraMediale – Award-
winning Breaking Bad Behaviors project. Left: a user within a virtual class of AI-simulated virtual
agents. Right: a student teacher discusses her classroom management experiences with fellow
students, showing her first-person view. (© ME Latoschik et al. All rights reserved)

Fig. 9.19 Left: A virtual classroom with a different embodiment of participants during work in
small groups. Right: Discussion in front of an interactive screen. The personalized photorealistic
avatars maintain important non-verbal communication cues while providing a shared spatial refer-
ence system for communication. (© ME Latoschik et al. All rights reserved)

9 VR/AR Case Studies

362

interaction. In this context, an immersive realistic personalized embodiment
increases body ownership, presence and emotional response (Waltemate et al.
2018). Moreover, non-verbal communication signals such as gestures, facial expres-
sions or gaze and eye contact are important mediators of, for example, our inten-
tions (Roth et al. 2018). These are important factors, especially for the intended
collaborative learning progress.

The work on ViLeArn has contributed, among other things, to the first non-
commercial German social VR platform that supports a wide range of avatar
embodiments up to photorealistic avatars. The system provides access to multime-
dia and text-based teaching/learning content: it supports a markdown-to-HTML5
processing pipeline and integrates personal and shared virtual large-screen interac-
tive HTML5 panels. It also supports necessary functions for text input and sketch
creation. The platform is largely independent of big IT service providers and also
takes into account important data protection and privacy issues.

In general, avatars are our digital replicas in virtual worlds. The acceptance of
virtual bodies as our own is called the Virtual Body Ownership (VBO) illusion. The
VBO illusion is significantly determined by three different factors. These are (a) the
perception and acceptance of the virtual body as our own body and thus as the
source of sensory input (body ownership), (b) the perception of control over the
virtual body and thus control over actions taken in the environment (agency), and
(c) the change in the perceived body schema evoked by the stimulation (change).
Figure 9.20 illustrates these three factors. A VBO illusion, in turn, is one of the
central initiators and promotors of the Proteus Effect (Yee et al. 2009). The Proteus
effect describes a change in behavior induced in the user/wearer of the avatar solely
by the appearance of the virtual body and the properties associated with this body
by the user/wearer.

The plasticity of one’s own body schema opens up far-reaching possibilities for
therapies, e.g., in the treatment of chronic pain, or in eating disorders such as obe-
sity and anorexia, which, in indicated cases, also correlate with a disturbance of the
body schema. The goals of the project ViTraS (Virtual Reality Therapy through
Stimulation of Modulated Body Perception) are the development of the necessary
avatar technologies and the design of appropriate therapy concepts. ViTraS utilizes

Fig. 9.20 Illustration of the three identified embodiment factors (from left to right): body owner-
ship (a), agency (b) and change (c). The user appears in gray, the avatar in orange. Illustration after
Roth and Latoschik (2020). (© ME Latoschik et al. All rights reserved)

R. Doerner et al.

363

the plasticity of one’s own body schema for therapeutical interventions to help
patients that suffer from obesity. The project explores different approaches from the
wide spectrum and design space of XR-based therapies, including interactive sketch
systems, social VR group therapies, or mirror expositions as shown in Fig. 9.21.

The application scenario of the ViTraS project combines new methods for virtual
embodiment, self-(mis-)perception, and faithful avatar reconstruction and its
manipulation using digital XR-based interventions. Among other things, the devel-
oped solutions increase participation, as they also support distributed therapies for
the rampant worldwide health problem of eating disorders, especially obesity, which
has far-reaching negative individual as well as overall social and economic conse-
quences. The project strongly demonstrates the great potential of embodiment,
especially embodied XR with photorealistic avatars.

The avatars for XR-assisted therapy are created via an optimized photogrammetry-
based approach (Wenninger et al. 2020). The method combines 3D reconstruction
of geometry and textures with an automated rigging process. As a result, personal-
ized fully animated photorealistic virtual replicas of a user’s body are created within
a few minutes (see Fig. 9.22). These avatars can then instantly be used with com-
mon XR platforms (e.g., Unity 3D). Therapeutically, they can be used to realisti-
cally modify and simulate body proportions at the push of a button (or change of a
slider). The avatars in Fig. 9.19 were created by the same process. Personalization
and photorealism are important to increase the efficacy of XR exposures and the
therapeutic interventions. The accompanying user-studies identified personalization
and photorealism as strong promoters, especially of the VBO illusion and other
important XR factors like presence, acceptance or emotional response (Waltemate
et al. 2018).

Fig. 9.21 Mirror confrontation with the digital self. Left: Illustrating the consequences of obesity
by looking into one’s virtual body. Right: A user testing a mirror therapy with a modified (made
fatter) avatar. The overlay shows the user from outside the VR surrounded by a camera-based
tracking system. (© ME Latoschik et al. All rights reserved)

9 VR/AR Case Studies

364

9.12 Virtual Reality for Teaching Literacy to Prisoners

Holger Regenbrecht and Jonny Collins, University of Otago, Dunedin,
New Zealand

Numeracy and literacy skills are very low in corrections facilities around the world –
New Zealand not being an exception. A large proportion of prisoners are illiterate to
a degree that their reading skills do not allow them to participate in normal social
life, e.g., being able to comprehend job advertisements or to write a job application.
Hence, when released from prison they often cannot reintegrate successfully into
society and the chances are that they will end up in criminal activity again. This
negative cycle can be broken by, for example, giving prisoners better opportunities
to learn how to read and write.

While in prison, prisoners’ motivation to learn is usually much lower than with
average people outside prison – for many, complex reasons. Classes in literacy are
offered within the prison, but in rather traditional classroom settings, i.e., front of
class teaching using standard literacy teaching methods. For some prisoners, those
settings have positive effects, but many drop out of classes or do not fully engage in
learning. The question arises: How to motivate and engage prisoners in literacy
learning? Immersive Virtual Reality (VR) might be one promising vehicle for this –
at least it is new and potentially exciting for a number of prisoners; for many it is
probably their first encounter with such technology.

The Methodist Mission South, a provider of learning services to our local correc-
tions facility, approached us at the Otago University Human-Computer Interaction

Fig. 9.22 Photogrammetry system at the Chair of HCI at the University of Würzburg with about
100 SLR cameras for photorealistic 3D reconstruction of user avatars. Left: The multi-camera
system that was initially used. Center: A user during the 3D scan process. Right: The result of the
reconstructed avatar in a virtual scene. Figure adapted from Latoschik et al. (2019). (© ME
Latoschik et al. All rights reserved)

R. Doerner et al.

365

(HCI) lab about developing a VR system that can be used for literacy training with
prisoners. This task is not without challenges (McLauchlan and Farley 2019):
Which technology can be used within a prison? Which virtual environment is excit-
ing and motivating enough to carry the literacy learning task? How to test and evalu-
ate solutions and how to bring them sustainably into the prison environment? We
addressed all of those challenges and developed a prototypical system, the “Virtual
Mechanic”, which was tested in a lab and in the prison environment, and handed
over to a commercial partner for product development and market introduction
(Collins et al. 2020).

For inherent reasons, corrections facilities are closed off from the rest of the
societal environment. Being allowed to bring a VR system comprising a head-
mounted display, a high-end computer and plenty of needed wiring and peripherals
requires a huge amount of willingness, motivation and constructive cooperation
from corrections facilities staff. The primary concerns of staff include outside com-
munications potential, access to unmediated content and any other type of unauthor-
ized behavior that could be facilitated by the technology. Prisoners are highly
creative when it comes to exploiting the materials around them for their own pur-
poses; therefore, what comes in and out of the facility is highly regulated.

Because our main focus was on how to motivate and engage prisoners in literacy
learning, we tried to develop a virtual environment which aligns with the existing
interests of prisoners. We learned that a common interest amongst prisoners is auto-
motive engineering and cars in general. We selected this common interest as our
context, and we built an environment that simulates a car workshop. We took 360°
panoramic photos of an existing car workshop, stitched them together, and used this
as a background (Fig. 9.23, left) including ambient workshop noise. We explored
other environments as a context for learning; however, the remaining most common
interests extracted from prisoners were not ethically viable.

Throughout the stages of development, an Oculus Rift HMD was used as the
visual medium. During the prototyping stage, we opted for an Xbox controller com-
bined with gaze-based selection to allow users to interact with the environment. In

Fig. 9.23 Virtual environment with panoramic environment (left), virtual brake system broken
apart showing (1) syllabic version of a word as a voice reads it aloud for the user (middle), and (2)
an active task in which a user attempts to complete rhyming words (right). Tasks are embedded in
the context of the environment. (© H Regenbrecht, J Collins. All rights reserved)

9 VR/AR Case Studies

366

this way they could explore the different virtual components and activities that were
available. In the later commercial development iteration, the Oculus Touch control-
lers were used to enable interactions with the virtual world. Compared to the prior
gaze-based approach combined with an Xbox controller, Oculus touch controllers
lead to a more embodied experience, as users’ real hand movements are mapped
directly into the environment for interaction. This is a more intuitive form of inter-
action and can therefore lead to higher levels of engagement.

The actual task we chose was to disassemble and assemble the brakes of a virtual
car. Therefore, we introduced a virtual car model with detailed parts modeled for the
front disc brake which have been animated in a way to step-by-step reveal the inner
structure of the brake. This task was then used as the medium to deliver literacy
skills training by giving (interactive) instructions with words. The verbal instruc-
tions have been given in three different ways: displayed as words next to the parts
of the virtual brake, decomposed into syllables, and read aloud by a computer-
generated voice (Fig. 9.23, middle). In addition, we also developed some word
rhyming exercises as part of the instructions in a multiple-choice, quiz-like style
(Fig. 9.23 right).

Due to the prototypical nature of the application and therefore the lack of actual
content during prisoner exposures to date, tangible learning gains have been diffi-
cult to evaluate empirically. However, we have gained some insights from our ses-
sions. For instance, trust emerged as an issue with some prisoners, as wearing an
HMD meant impeding their view of the real-world environment, which was shared
with a small number of other prisoners. Issues arose regarding exposure times, as
some prisoners’ attention spans and patience levels are more volatile. We also found
that a self-directed lesson approach is desirable, as outside intervention reduces a
user’s momentum and presence in/engagement with the system. The project is cur-
rently in the hands of the commercial sector, where it is in continued development.
Hopefully, more robust evaluations of the application’s educational impact will be
conducted soon and can eventually lead to wider dissemination.

The entire process of research and development of this prototype application has
been a very enlightening exercise for us. Everyone involved saw this as a clear step
forward, especially the prisoners themselves. Virtual Reality carries a lot of poten-
tial for delivering training in those kinds of challenging environments. Despite the
current lack of content and inability to robustly measure learning outcomes, col-
lectively we could show that implementing VR-based, contextual learning applica-
tions in a prison can be done. The idea to “piggy-back” a less engaging task, here
literacy training, on a more exciting and motivating task, here immersive VR car
maintenance, seems to work well. Whether this approach will lead to transferrable
results for the prisoners when leaving prison is still to be shown. VR has the poten-
tial to make a real difference here.

R. Doerner et al.

367

References

References for Sect. 9.1

Doerner R, Göbel S, Effelsberg W, Wiemeyer J (2016) Serious games – foundations, concepts and
practice. Springer, Cham

International Organization for Standardization ISO (2013) Space systems – definition of the
Technology Readiness Levels (TRLs) and their criteria of assessment. https://www.iso.org/
standard/56064.html. Accessed on 2 Feb 2021

References for Sect. 9.2

Berg LP, Vance JM (2017) Industry use of virtual reality in product design and manufacturing: a
survey. Virtual Reality 21(1):1–17

Tesch A, Doerner R (2020) Expert performance in the examination of interior surfaces in an auto-
mobile: virtual reality vs. reality. In: Proceedings of ACM MultiMedia ‘20, Seattle, WA

Zimmermann P (2008) Virtual reality aided design. A survey of the use of VR in automotive indus-
try. In: Product engineering. Springer, Cham, pp 277–296

References for Sect. 9.3

Carter L, Paroz AWL, Potter LE (2018) Observations and opportunities for deploying virtual real-
ity for passenger boats. In: Extended abstracts of the 2018 CHI conference on human factors in
computing systems (CHI EA ‘18), paper LBW118. ACM, New York, pp 1–6

Haeling J, Winkler C, Leenders S et al (2018) In-car 6-DoF mixed reality for rear-seat and co-
driver entertainment. In: Proceedings of IEEE conference on virtual reality and 3D User
Interfaces, pp 757–758

McGill M, Williamson J, Ng A et al (2020) Challenges in passenger use of mixed reality headsets
in cars and other transportation. Virtual Reality 24:583–603

References for Sect. 9.5

vGIS (2021) Homepage of vGIS Inc. http://www.vgis.io. Accessed on Jan 2021

References for Sect. 9.6

Henry D, Furness T (1993) Spatial perception in virtual environments: evaluating an architectural
application. In: Proceedings of IEEE virtual reality annual international symposium, pp 33–40

Thomas BH et al (2011) Spatial augmented reality support for design of complex physical envi-
ronments. In: IEEE international conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), pp 588–593

9 VR/AR Case Studies

https://www.iso.org/standard/56064.html
https://www.iso.org/standard/56064.html
http://www.vgis.io

368

References for Sect. 9.7

Kuhlen TW (2020) aixCAVE at RWTH Aachen University. https://www.vr.rwth- aachen.de/
page/10/. Accessed on 1 Nov 2020

Kuhlen TW, Hentschel B (2014) Quo Vadis CAVE? Computer Graphics Appl 34(5):14–21

References for Sect. 9.8

Heinrich C, Cook M, Langlotz T, Regenbrecht H (2020) My hands? Importance of person-
alised virtual hands in a neurorehabilitation scenario. Virtual Reality. https://doi.org/10.1007/
s10055- 020- 00456- 4

Hoermann S, Ferreira dos Santos L, Morkisch N, Jettkowski K, Sillis M, Devan H, Kanagasabai
PS, Schmidt H, Krüger J, Dohle C, Regenbrecht H, Hale L, Cutfield NJ (2017) Computerised
mirror therapy with augmented reflection technology for early stroke rehabilitation: clinical
feasibility and integration as an adjunct therapy. Disability Rehabilitation 39(15):1503–1514

Regenbrecht H, Franz EA, McGregor G, Dixon BG, Hoermann S (2011) Beyond the looking
glass: fooling the brain with the augmented mirror box. Presence Teleop Virt 20(6):559–576

Regenbrecht H, Hoermann S, McGregor G, Dixon B, Franz E, Ott C, Hale L, Schubert T, Hoermann
J (2012) Visual manipulations for motor rehabilitation. Comput Graph 36(7):819–834

References for Sect. 9.9

Arif AS, Sylla C, Mazalek A (2017) Effects of different types of correctness feedback on children’s
performance with a mobile math app. In: Proceedings of IEEE international conference on
systems, man, and cybernetics (SMC), pp 2844–2849

Blair KP (2013) Learning in critter corral: evaluating three kinds of feedback in a preschool math
app. In: Proceedings of 12th international conference on interaction design and children,
pp 372–375

Shang X, Kallmann M, Arif AS (2019) Effects of correctness and suggestive feedback on learning
with an autonomous virtual trainer. In: Proceedings of 24th international conference on intel-
ligent user interfaces, companion, pp 93–94

Yu T, Huang J, Chang Q (2020) Mastering the working sequence in human-robot collaborative
assembly based on reinforcement learning. IEEE Access 8:163868–163877

References for Sect. 9.10

Deladisma A, Cohen M, Stevens A, Wagner P, Lok B, Bernard T, Oxendine C, Schumacher L,
Johnsen K, Dickerson R, Raij A, Wells R, Duerson M, Harper J, Lind D (2007) Do medical
students respond empathetically to a virtual patient? Am J Surg 193(6):756–760

Johnsen K, Lok B (2008) An evaluation of immersive displays for virtual human experiences. In:
Proceedings of IEEE virtual reality 2008, pp 133–136

Johnsen K, Raij A, Stevens A, Lind D, Lok B (2007) The validity of a virtual human experience
for interpersonal skills education. In: Proceedings of SIGCHI conference on human factors in
computing systems. ACM Press, New York, pp 1049–1058

R. Doerner et al.

https://www.vr.rwth-aachen.de/page/10/
https://www.vr.rwth-aachen.de/page/10/
https://doi.org/10.1007/s10055-020-00456-4
https://doi.org/10.1007/s10055-020-00456-4

369

Kotranza A, Deladisma A, Lind D, Pugh C, Lok B (2008) Virtual Human + Tangible Interface =
Mixed Reality Human. An initial exploration with a virtual breast exam patient. In: Proceedings
of IEEE virtual reality, pp 99–106

Raij A, Lok B (2008) IPSVIZ: an after-action review tool for human-virtual human experiences.
In: Proceedings of IEEE virtual reality, pp 91–98

Robb A, White C, Cordar A, Wendling A, Lampotang S, Lok B (2014) A qualitative evaluation
of behavior during conflict with an authoritative virtual human. In: Intelligent virtual agents.
Springer, Cham, pp 397–409

References for Sect. 9.11

Latoschik ME, Lugrin JL, Habel M, Roth D, Seufert C, Grafe S (2016) Breaking bad behavior:
immersive training of class room management. In: Proceedings of ACM conference on Virtual
Reality Software and Technology VRST, pp 317–318

Latoschik ME, Kern F, Stauffert JP, Bartl A, Botsch M, Lugrin JL (2019) Not alone here?!
Scalability and user experience of embodied ambient crowds in distributed social virtual real-
ity. IEEE Trans Vis Comput Graph 25(5):2134–2144

Roth D, Kullmann P, Bente G, Gall D, Latoschik ME (2018) Effects of hybrid and synthetic social
gaze in avatar-mediated interactions. In: Proceedings of IEEE International Symposium on
Mixed and Augmented Reality (ISMAR), pp 103–108

Roth D, Latoschik ME (2020) Construction of the virtual embodiment questionnaire (VEQ). IEEE
Trans Vis Comput Graph 26(12):3546–3556

Waltemate T, Gall D, Roth D, Botsch M, Latoschik ME (2018) The impact of avatar personaliza-
tion and immersion on virtual body ownership, presence, and emotional response. IEEE Trans
Vis Comput Graph 24(4):1643–1652

Wenninger S, Achenbach J, Bartl A, Latoschik ME, Botsch M (2020) Realistic virtual humans
from smartphone videos. Proceedings of ACM Symposium on Virtual Reality Software and
Technology (VRST). https://doi.org/10.1145/3385956.3418940

Yee N, Bailenson JN, Ducheneaut N (2009) The Proteus effect: implications of transformed digital
self-representation on online and offline behavior. Commun Res 36(2):285–312

References for Sect. 9.12

Collins J, Langlotz T, Regenbrecht H (2020) Virtual reality in education: a case study on explor-
ing immersive learning for prisoners. In: Adjunct Proceedings of International Symposium on
Mixed and Augmented Reality (ISMAR ‘20)

McLauchlan J, Farley H (2019) Fast cars and fast learning: using virtual reality to learn literacy
and numeracy in prison. J Virtual Worlds Res 12(3)

9 VR/AR Case Studies

https://doi.org/10.1145/3385956.3418940

371© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
R. Doerner et al. (eds.), Virtual and Augmented Reality (VR/AR),
https://doi.org/10.1007/978-3-030-79062-2_10

Chapter 10
Authoring of VR/AR Applications

Wolfgang Broll, Florian Weidner, Tobias Schwandt, Kai Weber,
and Ralf Doerner

Abstract This chapter deals with the authoring of VR and AR applications. The
focus here is on the use of authoring tools in the form of software development kits
(SDKs) or game engines. First, the actual authoring process will be briefly dis-
cussed before selected authoring tools for VR and AR are reviewed. Subsequently,
the authoring process and the use of the tools will be illustrated through typical case
studies. The other chapters of this book deal with the fundamentals and methodolo-
gies of VR and AR. These are generally applicable over a longer period. In contrast
to this, this chapter looks at some very specific authoring tools and the authoring
process based on them, which can inevitably only represent a snapshot in time.
Features, releases and availability of these tools can change at short notice, so that
individual sections may no longer be up to date when this book is in press. To take
this aspect into account, the case studies listed here are stored in an online reposi-
tory, where they are regularly updated to reflect the latest versions of the authoring
tools and runtime environments.

10.1 Supporting Authors

The authors of a VR/AR application are confronted with a wide range of different
tasks, which together require many individual skills. These include, for example,
programming skills, knowledge of real-time computer graphics and image
processing, human–machine interface design skills and usability know-how. They
also often require knowledge of the generation of VR/AR assets (e.g., 3D models,
textures and sounds), special algorithms and methods (like collision detection in

W. Broll (*)
Department of Computer Science and Automation/Department of Economic Sciences
and Media, Ilmenau University of Technology, Ilmenau, Germany
e-mail: wolfgang.broll@tu-ilmenau.de

Dedicated website for additional material: vr-ar-book.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79062-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-79062-2_10#DOI
mailto:wolfgang.broll@tu-ilmenau.de
http://vr-ar-book.org

372

virtual worlds or 3D registration in AR), and properties as well as software-
engineering aspects, e.g., for connecting special VR/AR input and output devices.
On top of that, knowledge and skills regarding the application itself are indispens-
able: in the case of a VR application for training minimally invasive surgery, for
example, this requires knowledge of medicine as well as didactics. Hardly a single
author will possess all these skills. Therefore, it is crucial to enable and foster inter-
action between different authors, but also to support each author individually in her
tasks. Adequate support for authors is not only the key to an efficient and high-
quality realization of VR/AR applications, but also allows particular people to par-
ticipate actively in the creation process in the first place. Thus, providing good
support not only enables the necessary experts to be involved, but additionally helps
to reduce costs. In many cases, this is what makes the use of VR/AR applications
technically and economically feasible.

Common support comes in the form of programming libraries together with pro-
gramming tools (Software Development Kit, SDK) or programming interfaces
(Application Programming Interface, API) to software packages and systems. For
example, ARToolKit (Kato and Billinghurst 1999), which has been available as
open source software since 2001, gave a boost to the use of AR at that time, as appli-
cation developers could simply rely on an existing implementation of an essential
foundation of AR, namely the realization of stable (in this case marker-based) track-
ing or working camera calibration, without having to deal with the corresponding
concepts and algorithms themselves beforehand.

Another form of support is the use of software tools supporting various authoring
tasks. Section 10.2 presents examples of such tools. But tools that are not specific to
VR/AR are also used, e.g., image editing programs like Photoshop or The Gimp for
creating textures and (utilizing special plugins) normal maps, or 3D modeling and
animation tools like Blender or 3ds Max. Typically, multiple tools are used (in paral-
lel or sequentially) to address different aspects of VR/AR application development
but also to serve different authoring groups. One speaks of a tool chain when one
tool exports data that is then imported by another tool for further processing. Such
exchange of data can be a source of problems if there is no common usable or open
data format, or if the import and export processes involve a loss of information. For
example, a 3D object such as an automobile may be designed in a CAD tool, but the
exported CAD data is not directly usable for a VR tool and must be preprocessed
(e.g., by reducing complexity). For this purpose, corresponding conversion tools
(often also in the form of plug-ins) are available for existing CAD tools.

Authoring processes need to be carefully planned so that authors can collaborate
efficiently and without any frictional losses using tools, APIs and SDKs.
Development environments that integrate a variety of support functions into a single
tool are popular. This often implicitly prescribes the authoring process, at least in
part. Increasingly, game engines, development and corresponding runtime environ-
ments originally intended for the creation of computer games, are also being used
for VR/AR applications. The processes for creating a 3D game world and a virtual
world are fundamentally similar in many respects. In addition, modern game engines
offer mechanisms such as plug-ins or APIs to support the special needs of VR/AR

W. Broll et al.

373

applications, such as the use of certain VR controllers or the rendering of pre-
distorted stereo images for HMDs (see Sect. 5.2.3).

Unfortunately, there is neither a universal authoring process nor a single tool that
would be sufficient on its own to support the creation of arbitrary VR/AR applica-
tions. Rather, authoring processes and their support must be individually assessed
and determined for each VR/AR application. Criteria for the selection include the
existing skills of the authors, functionality offered, quality, performance, maturity,
licensing costs, licensing model applied, quality of documentation and tutorials, and
the availability of an active and responsive user community.

10.2 Foundations of Authoring Software

In this section, we will present two examples of popular game engines used for the
development of VR applications, i.e., Unity (2021) and Unreal Engine (2021).
Furthermore, we will present two frameworks used for developing AR applications:
ARKit (2021) and ARCore (2021). As they are largely limited to AR-specific
aspects, they are usually used in conjunction with game engines. While many game
engines, including the two presented here, support a variety of different platforms
(PC/Mac, consoles, mobile devices, web browsers), the two AR frameworks are cur-
rently exclusive to one of the major mobile platforms (ARCore: Android,
ARKit: iOS).

Two of the most popular game engines are currently Unreal Engine (UE) and
Unity. These game engines offer similar core functionality. Both support level
design, realistic rendering, multiplayer applications, artificial intelligence, user
interfaces, physics simulations, global illumination, animations and more. Also,
both platforms offer distribution platforms for assets and applications (Unity: asset
store; Unreal Engine: marketplace). After installing and starting one of these engines,
both allow for the setup of a project. Such a new project can be based on a template
or it can be a new and empty project. If we open such a project, both applications
show a similar layout. It contains an area showing details and letting us change pref-
erences, one area that lists all objects in our current scene, and an area that shows us
all of the game assets (3D models, sounds, animations, textures, etc.) included in this
project, which usually looks like the Windows Explorer (see Fig. 10.1).

However, if we have a closer look at both engines, we will notice some differ-
ences. For example, while both engines allow us to view their source code and by
that, understand how they work, only Unreal Engine also allows us to modify the
source code and change engine functionality (as of March 2021).

Both applications allow us to create and design levels by dragging objects into
our scene following the what-you-see-is-what-you-get principle (WYSIWYG).
However, if we need more complex functionality, there are again differences
between them: Unity supports common programming languages like Javascript and
C# to add functionality. Unreal Engine uses Blueprints and C++. Blueprints rely on
a visual programming approach. Both C++ and Blueprints can be combined and are

10 Authoring of VR/AR Applications

374

almost always interchangeable. However, the usage of C++ is in complex cases
more straightforward and less troublesome.

In the past, support for novel AR and VR hardware was often included in Unity
before Unreal Engine supported them. Meanwhile, both engines support almost all
common hardware and VR headsets, AR headsets, and ARKit and ARCore.
Currently, VR devices based on OpenVR (2021) are slightly better supported by
Unreal Engine, as not all hardware manufacturers already provide support for a
recent redesign of Unity’s plugin system. However, except for some extra effort,
hardware support is basically the same in UE and Unity.

Fig. 10.1 Unreal Engine (top) and Unity (bottom) user interfaces of the development environment

W. Broll et al.

375

When developing with Unity, the community and forums are bigger compared to
Unreal Engine. This might be especially important for people who are new to these
engines, as a quick search on the internet can easily solve many problems. While the
community of Unreal Engine is growing, the engine is not known for being beginner-
friendly as it is quite complex and overwhelming in the beginning.

Finally, while free (except for royalties for sold applications), Unity also offers
some Plus and Pro subscription plans. Unreal Engine is free to use until you sell
your work (royalties).

In the end, selecting an engine for a new project depends on many factors (sup-
ported hardware, community, programming languages, cost, access to source code,
etc.). Also, a very important aspect is the prior knowledge and skills of the team
members working on the VR/AR application. Table 10.1 summarizes these aspects.

The following two subsections each explain the use of these engines for the
authoring process.

10.2.1 Unity

Unity is a popular game engine that supports a variety of VR/AR hardware. This
includes almost all VR HMDs as well as current AR HMDs like the Microsoft
HoloLens 2 or the Magic Leap 1. Development for these devices is fully supported
in Unity. Further, we can develop utilizing AR frameworks like ARKit and ARCore.
In addition to that, Unity is known for being beginner-friendly and easy to use.

 How It Works

Unity applies the entity-component model. Here, every object in a scene (or in the
game) is an entity and has a relation to one or more other entities. In Unity, entities
are also called GameObjects, Prefabs or Scripts. Scripts contain source code in C#
or Javascript and allow for adding functionality and behaviors to an object. A

Table 10.1 High-level comparison of the game engines Unity and Unreal Engine regarding the
development of AR and VR applications

Unreal Engine Unity

Community ☺
Price ☺
Beginner friendly ☺
Source Code Access Yes (modifiable) Yes (read-only)
Programming languages C++, Blueprint C#, Bolt
VR Support ☺
AR HMD Support ☺ ☺
Mobile AR Support ☺ ☺

10 Authoring of VR/AR Applications

376

GameObject is a collection of one or more assets like 3D models, sounds, textures
and more. A Prefab is a special type of GameObject. It encapsulates several
GameObjects and in that way eases reusability and sharing of content. Both Prefabs
and GameObjects are hierarchically structured. For Scripts, developers can use typi-
cal concepts known from programming, like inheritance. Scripts can be added to
GameObjects, so that we can add animations, behaviors, other GameObjects, artifi-
cial intelligence or other effects. Together, all GameObjects comprise our scene.
Figure 10.2 shows the Unity development user interface for a sample scene, with
hierarchy window, scene view, inspector window and the project explorer.

A scene in Unity represents a level in our application. Further, a scene in Unity
is represented by a scene graph. The scene graph is a hierarchical data structure that
contains all the GameObjects of a single scene. In the scene view in the center of the
Unity application, we can see and also arrange all elements of our scene, and design
the level according to our liking or external requirements. To modify not only the
position and rotation but also other properties of a GameObject, the inspector on the
right-hand side provides us with a variety of settings: among others, settings of
attached scripts, behavior settings, positional attributes and lighting options. To get
a preview of our scene, we can switch to the Game view. Here, we see the game in
a pre-final version – it looks like the exported version. The project explorer contains
all the scripts, assets, and prefabs that we have added to our project. It also allows
us to manage them. The console lists all errors and warnings that arise during devel-
opment and is a helpful tool when fixing errors.

Fig. 10.2 Full view of the Unity editor. The Inspector shows a GameObject “CameraRig” with an
attached Script called “Steam VR_Play Area”. The Hierarchy window shows the hierarchical orga-
nization of the GameObjects of a scene. The Scene view shows a 3D preview of the current level
and the Project view all files of the project

W. Broll et al.

377

 VR/AR Development with Unity

Creating a VR application with Unity requires, as usual, that the drivers and sup-
porting software of the VR headset like the Oculus software or SteamVR are
installed on the system. These programs manage the communication between Unity
(and any other VR application) and the HMD, tracking system and controllers.
Without them, development for a VR headset is not possible. Assuming the neces-
sary software is installed, we can open a Unity project. Depending on our VR HMD,
we most likely need either a dedicated plugin from Oculus or from Valve. The latter
uses OpenVR and can be used for most SteamVR-based headsets. While the Oculus
plugin is already available within Unity, the OpenVR plugin needs to be installed or
downloaded from Github (SteamVR Unity Plugin 2021). Similarly, development
for VR HMDs that are based on Windows Mixed Reality require the installation of
the Windows Mixed Reality Toolkit (MRTK Release 2021). If you do not depend on
external plugins, you can directly enable your device for Unity in the Edit → Project
Settings as shown in Fig. 10.3. The Unity documentation supports developers when
setting up new projects or upgrading older projects to VR (Unity XR 2021).

All plugins – Oculus, StreamVR and Windows Mixed Reality – can be used as a
starting point but can also be integrated into a project at a later stage in develop-
ment. In addition to the core functionality, they offer sample scenes, prefabs and

Fig. 10.3 Project settings showing the supported XR frameworks of Unity 2020.1.16f1. Only
Oculus devices are directly supported without the need for additional external tools. Windows
Mixed Reality requires an additional plugin

10 Authoring of VR/AR Applications

378

scripts that support developers by offering code examples for, e.g., basic navigation
and interaction techniques.

When developing for AR, the respective plugins for devices like Microsoft’s
HoloLens, the Magic Leap 1 or recent smartphones using ARKit and ARCore need
to be downloaded and installed. After the installation procedure for these third-party
tools has been completed, development for AR applications becomes similar to that
of VR and traditional desktop applications using the scene view and the game view.
It is noteworthy that Unity also offers MARS (2021) a WYSIWYG editor for MR
and AR. This editor promises to streamline the development of AR applications by
integrating sensor data from devices into the development process.

 Summary

In summary, Unity is a well-suited tool for developing AR/VR applications. All
assets are organized in a scene graph and represented by different types of
GameObjects. Behaviors can be added using scripts written in C# or Javascript.
Such GameObjects and Scripts can be grouped to Prefabs to foster reusability and
interchangeability. Several device manufacturers also provide prefabs for their
HMDs to ease development for VR and AR devices. Among others, Unity supports
the popular VR headsets from Oculus, HTC, Valve and HP. It further supports AR
devices like the Microsoft HoloLens 2 and Magic Leap 1. AR development for
smartphones is also supported via the integration of ARKit and ARCore. For AR
development, Unity also offers a rich authoring tool called MARS.

10.2.2 Unreal Engine

Unreal Engine (UE) is the successor to the Unreal Development Kit. Generally, it
offers similar features as Unity. The current version as used in this chapter is UE4
(as of March 2021). However, a tech demo of UE5 was presented in 2020. The
development of applications with UE is quite comfortable. While the development
of 2D or 2.5D games is also supported, the entire engine has been designed and
optimized for the realization of 3D first-person applications.

 How It Works

UE provides two alternative ways to develop applications: traditional C++ program-
ming and a visual programming approach called Blueprints. Blueprints are based on
nodes and connections between those nodes. A node represents a function like
move, get or set, or operations such as loops or if-statements. Each node has one or
several pins. The pins are entry or exit points for connections. Developers can place
nodes (squares with rounded corners and a header with different colors) in the

W. Broll et al.

379

editor. Then, connections (white lines) are connected to the pins of nodes (either
white or colored triangles at the nodes) to create the data and control flow. Adding
nodes, and thus functionality, is supported by a context-sensitive auto-completion.
As with other programming languages, developers can debug Blueprints using a
debugger and can also copy and paste them between files. Figure 10.4 shows an
example Blueprint from a VR example that sets the tracking origin depending on the
connected HMD.

The main disadvantage of this variant of programming is that large Blueprints
are prone to getting confusing and cluttered. Here, using advanced concepts like
inheritance, interfaces and Blueprint libraries can help to declutter Blueprints.
Further, it is important to know that developers can combine both methods, C++ and
Blueprints. For beginners, Blueprints offer an easier entry point when working with
UE. Unfortunately, many functions provided by UE as Blueprints are not similarly
easy to use in C++. However, C++ provides more flexibility. It is noteworthy that
internally, UE translates every Blueprint into C++ code. That means that using them
does not result in performance loss. Microsoft Visual Studio is recommended when
developing with C++.

Similarly, to Unity, UE follows the entity-component model. Instead of
GameObjects, it uses Actors. Unity’s scripts correspond to Blueprints, other actors,
or C++ code files in UE. Actors are hierarchically organized in a scene graph and
can be directly edited. Assets can be viewed, moved and otherwise organized using
the file explorer of UE.

UE offers several preview modes for testing. Developers may test their game in
the editor (Play-in-Editor), start it as a standalone game (Play-as-Standalone-
Game) to simulate a build version of the game, or build and start a final version of
the game via Launch. In addition to that, it offers the possibility to test the game
using a simulated VR HMD without having access to a real one.

Fig. 10.4 Example of a Blueprint. This Blueprint sets the tracking origin of the application’s
HMD during start-up

10 Authoring of VR/AR Applications

380

 Developing VR/AR Applications

After downloading the Epic Games Launcher, we can install the most recent version
of Unreal Engine 4. If we intend to develop with C++, it is also possible to install
debugging symbols. They ease the debugging process by providing more detailed
error messages in case of an engine error. Next, we can open UE and create a new
project. The project launcher already offers a template ready for VR applications
(see Fig. 10.5). If possible, developers should base their applications on this tem-
plate. If this is not possible – for example when upgrading from an old project – the
template can still act as a useful reference. This template offers (in UE4.25) simple
interaction and navigation methods that can be used by developers for their own
applications.

Usually, no additional plugins need to be installed. Support for Oculus, HTC,
Valve, Windows Mixed Reality (2021), HoloLens 2 and Magic Leap 1 is already
integrated into UE. This also extends to the AR frameworks ARKit and ARCore.
However, vendor-specific SDKs (e.g., SteamVR) still need to be installed.

If developers have no HMD at their disposal, they can enable a virtual HMD via
Edit → Plugins → Virtual Reality → SimpleHMD. In this way, the application runs
in VR preview mode and content is displayed in such a way that is like a real VR
HMD. The key here is that the same rendering algorithms are used. That means that
UE renders separate images for each of the eyes – however, without a dedicated
HMD-specific barrel distortion (see Sect. 5.2.3). This simplifies level design and
testing. Figure 10.6 illustrates this view.

Fig. 10.5 Template browser of UE4 (the VR template is highlighted)

W. Broll et al.

381

UE4 offers an immersive modelling/authoring mode. This VR-Edit-Mode allows
designers and developers to create their level while wearing a VR HMD. In this
mode, they can manage their actors, e.g., by adding, moving, rotating and scaling
them or changing their properties. The advantage of this immersive authoring mode
is that the scene can be viewed directly in VR. Thus, there is no need to constantly
put the headset on and take it off. Also, it is easier to judge if the scales and distances
of the VR scene are appropriate. This may result in more comprehensive level
design and a faster development process. Figure 10.7 shows the entry point to
this mode.

As mentioned above, UE natively provides support for many popular devices,
including those from Oculus and HTC, as well as Windows Mixed Reality headsets.
These plugins can be enabled or disabled on demand via the project settings. It also
offers native integration for ARKit and ARCore as well as HoloLens 2 and Magic
Leap 1. When activated, these plugins enable access to the device via C++ or
Blueprints. In addition to the native plugins, further plugins may be added to UE.

 Summary

Notably, the Unreal Engine has been designed for first person-games, i.e., games
played from an egocentric perspective. It plays to these strengths in the development
of AR and VR applications. Applications based on UE consist of levels and the lev-
els contain actors. The actors are organized in a scene graph. UE natively supports
many AR and VR devices, while also allowing the development for additional
devices via its plugin system. The engine is free (at least until the lifetime gross
revenue of the game exceeds US$1,000,000), and the source code may be modified
at one’s own discretion.

Fig. 10.6 The left image shows the default view of a game. The right image shows the preview
using the SimpleHMD plugin

Fig. 10.7 VR-Edit-Mode of Unreal Engine

10 Authoring of VR/AR Applications

382

10.2.3 AR Frameworks: ARCore and ARKit

Both Apple and Google have published their own frameworks in the field of aug-
mented reality (AR), which can be used to develop mobile AR solutions. Both
frameworks were specifically adapted to the hardware of recent smartphones. Since
both ARCore (Google) and ARKit (Apple) became available at the end of 2017,
more and more applications have been published that use AR technologies. This
subsection is intended to provide an overview of the basic functionalities as well as
the main differences between these two frameworks.

 Availability

Both AR frameworks are available on devices with recent hardware and software.
ARKit is available on all iPhone and iPad devices with iOS 11 or higher, including
iPadOS (Apple 2021). For Android, these are smartphones with the Android 7.0
(Nougat) operating system or higher, as well as other selected devices (Google
2021). Recent data from 2020 shows that the availability of ARKit-enabled devices
(1185 million) is noticeably higher than that of ARCore-enabled devices (633 mil-
lion). Among active users of the frameworks, this difference is even more pro-
nounced, with 950 million for ARKit and 122 million for ARCore (Makarov 2021).

The continued availability and distribution of corresponding hardware is a key
factor here. However, only the latest hardware (currently, for example, LiDAR sen-
sors on some Apple devices) offers the possibility of fully exploiting the functions
available for AR. Due to the short life cycle of mobile hardware, it can be assumed
that by the time this book is published, almost all active smartphones and tablets
will be able to use one of the two AR frameworks.

 Tracking and Mapping

One of the most important functionalities of an AR framework is tracking, which is
based on a SLAM approach in both frameworks (see Sect. 4.3.4). Both frameworks
can track the device (camera), planes, faces and 2D images. At the time of writing,
ARKit additionally supports 3D object tracking and body tracking. However, the
tracking of the camera in particular is crucial for sufficiently good visualization, and
both frameworks deliver very good results in this area. This is mainly due to the
utilization of the hardware installed in the mobile device. In addition to the camera,
acceleration sensors, gyroscopes and partly LiDAR sensors are used. For mapping,
both frameworks create a virtual map by detecting and storing features in space.
When testing various applications, both can demonstrate robust mapping, although
ARKit shows some advantage with respect to fast camera movements.

W. Broll et al.

383

 Reconstruction

In both frameworks the environment is defined by a set of feature points. For this
purpose, features are detected in the environment and tracked over several frames,
and their position in space is continuously improved. Based on these features it is
possible to detect planes in space (plane detection). These planes provide a rough
representation of the real environment. Figure 10.8 shows the reconstruction of a
vertical plane based on feature points using ARCore. Both frameworks can create
vertical as well as horizontal planes. By using LiDAR sensors, even the detection of
complex (non-planar) geometries is possible.

 Estimation of Environment Light

Both ARKit and ARCore provide a simple estimation of environment light to illu-
minate virtual objects of an AR scene correspondingly (cf. also photometric regis-
tration, Sect. 8.2.2). This estimation is based on the current environment, with each
framework supporting different light estimation features (ambient light, specular
highlights and reflections). Both support ambient light, which represents the overall
diffuse lighting originating from arbitrary directions in the environment. This ambi-
ent light detection is provided by determining an intensity value between 0 and 1 as
well as a color temperature. For a more sophisticated representation the frameworks
offer an illumination detection for the complete HDR environment lighting, which
also allows for plausible reflections. For ambient light, both frameworks apply (dif-
ferent) estimation approaches based on neural networks. ARKit uses reconstructed
geometry like planes, renders them into a cubemap and completes the latter by a
neural network. ARCore, in contrast, uses the current camera image only to

Fig. 10.8 Detection of a vertical plane (red) reconstructed from detected feature points (cyan). (©
Tobias Schwandt, TU Ilmenau 2018. All rights reserved)

10 Authoring of VR/AR Applications

384

determine a 360° HDR environment cubemap. In combination with the integrated
detection of the main light source, more realistic shadow casts or even specular
reflections are enabled, for example, Fig. 10.9 illustrates the difference between
using a simple intensity value and an HDR illumination using ARCore.

 Summary

While having their individual strengths and weaknesses, both frameworks provide
very similar functionality, which will likely further converge in the future. Even
supposedly decisive advantages, such as the support of LiDAR in ARKit, can be
relativized with the next version.

However, Apple has a clear advantage in terms of market penetration. Any device
with the latest iOS or iPadOS operating system can automatically display AR. In
contrast, it can hardly be estimated to what extent current devices for Android sup-
port ARCore. Nevertheless, it can be assumed that more smartphones with AR sup-
port and further sensors will become available for Android. Thus, the question of the
right framework remains a question of the target group, personal interests, the
devices available and the type of application to be developed.

10.3 Examples of the Creation of VR/AR Applications

In this section, the creation of VR and AR applications will be illustrated using four
practical case studies. The first example deals with a VR application for the presen-
tation of CAD data with Unity using the Vive Cosmos. The second example creates
an interactive VR application with the Unreal Engine using the Vive Cosmos again.
The third example describes an AR application for Microsoft’s HoloLens 2. The
fourth and final example describes an ARCore application for Android.

Note that these examples can only provide a snapshot of what is currently avail-
able and possible. Obviously, a much wider range of game engines, toolkits,

Fig. 10.9 Illustration of the illumination in ARCore with a 360° HDR ambient illumination in
HDR (left) and simple intensity detection (right). Metallic objects in particular benefit from the
360° illumination reconstruction

W. Broll et al.

385

frameworks, and devices exist, which cannot be covered here. We would, for exam-
ple, have loved to include an example using a non-commercial game engine such as
Godot (2021), or to show how easy AR development may be even for non-
programmers using RealityKit (2021). We were also unable to include Oculus
HMDs due to the limitations imposed by the manufacturer’s service conditions. We
will closely monitor ongoing developments and update the examples in future edi-
tions, but also more frequently in the online repository.

10.3.1 Making of: Immersive VR Presentation of CAD Files
with the Vive Cosmos in Unity

In this section, we will set up a VR application in Unity. It will allow us to view a
CAD model and offer simple interaction with it – we will be able to grab it with a
handheld controller and release it again. For this, we assume that your headset is
correctly set up and all necessary drivers like SteamVR or Viveport are installed.

We start with a Unity project, install and open Unity Hub, and then create a new
project using the 3D template. This case study is based on Unity version 2019.4.6f1.
After loading Unity, we need to install the SteamVR Unity Plugin. We can download
the package directly from within Unity via the Asset Store or at Valve Cooperation
(2021). Such packages extend Unity with functionality and content. For this tuto-
rial, we use the Asset Store. Search for “Steam VR” and import it to your project.
This package contains all the necessary content for Unity to recognize your headset
and to communicate with it. It will also work for other headsets that are based on
OpenVR. In addition to that, it contains some sample content that we can use to real-
ize our case study. Right after clicking Import, Unity downloads the package. Then
we are offered a list of files for import. By default, all files are selected. Thus, select
Install all here. One further needs to confirm the necessary settings by selecting
Accept all in the upcoming dialog. If a project settings window pops up, we can
safely close it.

Before we can fully utilize the plugin, we must create input mappings. To do this,
we select Window → Steam VR Input. Unity then asks if we want to use the default
input bindings, which we confirm with Yes.

Now, we already have a working VR setup. We can open the Simple Sample
scene which is in Assets → SteamVR in the project window. The project window is
in the lower left part of our application window. Figure 10.10 shows the scene view
of this example. If we hit Play in our Unity application, SteamVR starts up and we
can already see a scene in our headset. Also, head-tracking and controller tracking
are already working, as shown in Fig. 10.11.

For our example, let us create a new scene. We can do this via File → New Scene.
We name our new scene MyExample. In the beginning, it contains a Directional
Light and MainCamera. First, we delete the MainCamera. We do not need this
GameObject as the SteamVR plugin already provides us with a setup working with

10 Authoring of VR/AR Applications

386

the VR HMD. In the project explorer, we search for Player and add this prefab to
our scene via drag and drop. Inspecting it more closely in the hierarchy panel, we
can see that it not only contains a camera but also GameObjects for the
controllers.

Next, we create a cube with size (0.1, 0.1, 0.1). This cube is going to be our
object that we want to grab. To make it grabbable, the SteamVR plugin provides a

Fig. 10.10 Scene view and hierarchy of the example scene “Simple Sample” in Unity

Fig. 10.11 Game view and hierarchy of the example scene “Simple Sample” in Unity after hitting
play in Unity

W. Broll et al.

387

script called Interactable. In the Inspector of our cube, we click AddComponent and
add this script to it. Next, two options are available: First, the SteamVR plugin pro-
vides a script in Assets/SteamVR/InteractionSystem/Samples/Scripts/
InteractableExample.cs. We can open this script and delete everything that is related
to text fields, as we do not need those for our example. Second, we can use the
SimpleGrab.cs script, which is provided as online material to this book. We now add
this script (either the modified InteractableExample.cs or the SimpleGrab.cs) to our
cube. The final composition of our scene is illustrated in Fig. 10.12. Note the two
scripts of the cube.

Now, if we start our application, we can grab the cube and move it around. When
we release it, it returns to its initial position. In addition to that, the object gets high-
lighted if our controller (or hand) gets close to it). The grabbed object is highlighted
in Fig. 10.13.

To really display a CAD model and interact with it, we first must load our CAD
model and then add these scripts to it. However, Unity natively supports only .fbx,
.dae (Collada), .3ds, .dxf and .obj files. For CAD models, it provides a Pixyz (2021)
package to load various CAD formats. Having this plugin enabled (for example in
the test version), we can add our CAD file as a GameObject, add the scripts, and
grab and release it the same way we did with the cube. Alternatively, we can try to
directly export our CAD model to a file format that is supported by Unity (e.g.,
.obj). Or, we can use a third-party tool like Blender (2021). Using Blender, you can
import various formats and export them again to a format that is accepted by Unity.

Fig. 10.12 Setup of our newly created scene MyExample, showing the player with controllers and
a cube in the hierarchy

10 Authoring of VR/AR Applications

388

10.3.2 Making of: Interaction in VR Using the Vive Cosmos
and Unreal Engine

This case study will outline how to realize easy interaction techniques like grabbing
objects in Virtual Reality using Unreal Engine. For this, we will use the Vive Cosmos
and the accompanying motion controller. However, this example should work with
all Virtual Reality HMDs that use StreamVR. We assume that the drivers and run-
time software necessary for using the HTC Vive such as SteamVR and/or Viveport
have already been installed on the computer. In this example, we will setup an
Unreal Engine project, configure the virtual camera, create some objects and finally
implement the grabbing mechanism.

First, we launch the Epic Games Lauchner and create a new project for Unreal
Engine. This case study is based on UE 4.25.4. When creating a new VR applica-
tion, we recommend using an existing template as a starting point. Unreal Engine
offers a template called Virtual Reality that has been designed especially for our
purpose. It is located under the category Games (c.f. Fig. 10.5). In the next screen,
we do not have to change anything. Using the template, our project has preconfig-
ured settings and plugins that allow for easy development of VR applications.

After Unreal Engine has loaded the project, we can explore the Content Browser
in the lower left part of the application window. We first create a new level with a
right-click into the content browser. A level is the equivalent of Unity’s scene. When
we open this new map (a map in Unreal Engine is similar to a scene in Unity cor-
responding to a level in a game), we see only a black screen. That is because we
don’t have any objects in our scene – we can see that by looking at the World
Outliner in the upper right part of the application window. Let’s switch to the
Landscape mode by clicking Modes → Landscape Mode. Here we can change, edit
and create our level. For now, we just hit Create. After that, we switch back to the
Select Mode via the Modes dropdown menu. In the World Outliner, we see that we
now have a landscape. However, it is still dark. On the left side of the application
window, we see the Place Actors panel. Here we can switch to Lights and drag a
Directional Light into our scene. This acts as the sun. Now we should be able to see
our checkerboard floor that we created earlier as part of the landscape. Because our
project is based on the VR template, we can see some predefined objects in our

Fig. 10.13 Left: The virtual hand approaches the cube, which is then highlighted. Right: The
virtual hand grabs the cube, which now follows the movement of the hand

W. Broll et al.

389

Content Browser. The HMDMotionControllerPawn in Content → VirtualRealityBP
is the item we now drag into our scene. It provides us with the necessary means to
use the VR HMD and the controllers in our project. If you select the
HMDMotionControllerPawn in the World Outliner, you can also see a small camera
window that shows a preview of the VR view. If we now select the
HMDMotionControllerPawn in the World Outliner, we can see that the Details
panel just below it shows some options for this game object. If we change the option
Auto Possess Player from Disabled to Player 0, we already have our first working
example! We can test it directly in VR by selecting the little arrow next to Play and
then select VR Preview. Our app should now be visible in your VR HMD (see
Fig. 10.14).

The hands already move, and the view is updated when we turn our head and
move around in our play area. If we push the grab button on our controller, the hand
changes as well.

The HMDMotionControllerPawn is a Blueprint (see also Sect. 10.2.2). It encap-
sulates functionality but can also have a 3D model attached. Almost all game objects
in Unreal Engine are blueprints. A part of the HMDMotionControllerPawn Blueprint
is shown in Fig. 10.15.

Nodes with a red header are events. Nodes with a blue header are functions. In
this example, Left Controller is variable. In plain words, the snippet does the follow-
ing: If we receive an input action called GrabLeft, execute the function Grab Actor
on the Left Controller and when we release the button, execute Release Actor.

Next, we add objects that we can grab with our controllers. For this, Unreal
Engine provides another Blueprint. This is called BP_PickupCube and is in Content
→ VirtualRealityBP → Blueprints. We can simply drag this cube in our scene. In the
game, we can now use the controller to grab the cube and release it again. If we open

Fig. 10.14 Startup sequence to create a new Unreal Engine project based on the VR template

10 Authoring of VR/AR Applications

390

this blueprint with a double-click, the Blueprint editor opens. We can see two events,
Event Pickup and Event Drop. The former activates the physics calculation for our
cube and attaches the cube to our hand. The latter reverses these changes (cf.
Fig. 10.16).

If we want to make other 3D models grabbable, we simply copy these snippets
into their blueprint. We also must make sure to add the interfaces Drop and Pickup.
They allow for calling Pickup and Drop from other objects, such as motion control-
lers. We can do this via Class Settings → Interfaces → Add.

We can see the result of our demo in Fig. 10.17. The integrated system of Unreal
Engine also allows us to test this project with other devices like the HTC Vive Pro
or the Oculus Rift.

10.3.3 Making of: An Application for the Microsoft HoloLens
2 with Unity

This section explains the basic handling and functionality of the Microsoft HoloLens
(HoloLens Documentation 2021) as well as an introduction to creating a simple
HoloLens AR application with Unity.

The interaction with the HoloLens, the virtual world and the virtual objects
(referred to as holographic objects by Microsoft) in it is realized by a combination
of the viewing direction, gestures and voice commands. In the real world, it seems
natural for us to look at things we want to interact with. The selection of objects for
interaction within HoloLens applications is likewise represented by the focused
gaze of the user. Since the HoloLens (1st Gen.) does not support eye tracking (cf.
Sect. 4.5 Eye Tracking), the position and orientation of the head are primarily used
for this purpose. The HoloLens 2, however, provides built-in eye tracking, here

Fig. 10.15 When Unreal Engine receives a GrabLeft event, it calls Grab Actor or Release Actor
via the respective Controller

W. Broll et al.

391

called eye-gaze (Microsoft 2021a). It allows for using the actual viewing focus of
the user in interactive AR applications.

The basis of the HoloLens gestures is the air tap gesture, which can be compared
to a conventional mouse click. It is initialized by raising the index finger (called
ready position) within the field of view of HoloLens’ frontal camera. The target

Fig. 10.16 When our 3D object receives a Pickup or Drop event, physics simulation is turned on/
off and the 3D object is attached/detached to the controller (which means it follows the controller
motion or not)

Fig. 10.17 Cube that can be grabbed and released using the motion controllers

10 Authoring of VR/AR Applications

392

object is then focused using the gaze or, in the case of the HoloLens 2, the eye-gaze.
The index finger and thumb are brought together in a gripping movement and then
moved back to their original position (cf. Fig. 10.18, right). If the fingers are not
immediately returned to the starting position and held, it is called air tap and hold.
This gesture, in combination with the subsequent movement of the hand, the gaze,
or eye-gaze, offers the user different interaction, manipulation and navigation
options, such as selecting and positioning virtual objects or scrolling through menu
items (Microsoft 2021a).

The bloom gesture, which is reserved for the HoloLens (1st Gen.), represents the
home functionality within the Windows operating system and always leads the user
back to the start menu. This is done by bringing all the fingertips together and then
quickly splaying the fingers (cf. Fig. 10.18, left). The HoloLens 2 uses a virtual
Windows symbol, which appears next to the wrist when the hand is stretched out
(wrist button) instead. Alternatively, the start menu can also be opened with just one
hand, by focusing the wrist button with the eyes and performing an air tap gesture
with the same hand. The HoloLens 2 also supports the execution of natural interac-
tions through hand or finger tracking (cf. Sect. 4.4 Finger Tracking). This includes
direct contact and interaction with virtual objects such as a button or menu options.
With the touch gesture, which is characterized by stretching out the index finger
with the hand closed, a floating cursor similar to a mouse pointer appears next to the
fingertip. This is very suitable for direct interaction with virtual objects in the imme-
diate vicinity of the user. The hand ray gesture is recommended for distant objects.
This is characterized by an outstretched, open hand with the palm facing forward,
where a laser pointer (hand ray) is projected from the palm. This gesture is used to
target virtual objects at a distance, and in conjunction with the air tap gesture, rep-
resents another method for further interaction (Microsoft 2021a).

The voice commands of the Microsoft HoloLens are more flexible in their han-
dling and can contain functionalities of different complexity depending on the
implementation. The basic voice commands of the HoloLens include “Select”,

Fig. 10.18 Basic gestures for interacting with the HoloLens. The bloom gesture (left) and air tap
gesture (right)

W. Broll et al.

393

“Place”, “Face me”, “Enhance”, “Bigger” and “Smaller”. In addition, most of the
menu items and options as well as other controls on the HoloLens can also be
applied using voice commands. The voice command “Select” is, for example, used
in conjunction with the HoloLens 2 to show the user the corresponding voice com-
mands for menu items. With the HoloLens (1st Gen.) the existing voice commands
are automatically displayed as a voice dwell tooltip (Microsoft 2021a).

The relationship between the real and virtual worlds (cf. Sect. 8.3 Registration)
is implemented by Microsoft using what is known as Spatial Mapping. This pro-
vides the user with a mesh representation of the real environment, allowing virtual
3D objects to interact with real-world locations or objects (cf. Fig. 10.19). The pri-
mary objects used for Spatial Mapping are the Spatial Surface Observer and the
Spatial Surface. The Spatial Surface Observer is responsible for the recording and
management of the detected surrounding areas, whereas each Spatial Surface
describes the virtual representation of a physical surface in the real world. With the
help of the four integrated environment understanding cameras, the user’s surround-
ing is scanned for recognizable surface areas. The integrated depth cameras (time-
of- flight cameras) work in two different operating modes (Ungureanu et al. 2020).
The AHAT (Articulated HAnd Tracking) mode is used for a range of up to one
meter with a rather high sampling rate of 45 fps. This is used for recognizing and
tracking the user’s hands. The second operating mode, also called Long Throw, is
used with a low-level sampling rate of 1–5 fps for the acquisition of depth informa-
tion of the distant environment contributing to Hololens’ SLAM approach (cf. Sect.
4.3.5.). The recognized surfaces, called Spatial Surfaces, are transferred into a met-
ric, Cartesian, right-handed coordinate system as a reconstructed triangle mesh.
This spatial assignment and the visualization of the recognized surfaces can be
viewed directly in the Microsoft Device Portal (cf. Fig. 10.19).

The Scene Understanding SDK, which is new in the HoloLens 2, offers develop-
ers the option of using a static but very well-structured high-level representation of

Fig. 10.19 Visualization of the Spatial Mapping in the Microsoft Device Portal of the HoloLens
(1st Gen.)

10 Authoring of VR/AR Applications

394

the 3D environment. This is made possible by a combination of the less structured,
but dynamic and very detailed Spatial Mapping and with the help of artificial intel-
ligence approaches (Microsoft 2021a).

When creating a HoloLens application with Unity, it is recommended to use the
Mixed Reality Toolkit (MRTK Documentation 2021) from Microsoft. This open-
source framework contains a collection of components, scripts and tools allowing
for cross-platform development of VR and AR applications. In addition, numerous
MR scenes with various application examples are offered in additional packages,
providing the user with a comprehensive overview of the individual components
and their functionalities. It is therefore well suited for a quick introduction to the
development of HoloLens applications and due to its integration in Unity reduces
the overall implementation effort.

To start developing a HoloLens application in Unity, it is first necessary to ensure
that all of the basic requirements are met. This includes the installation and configu-
ration of the essential software, frameworks and SDKs as well as the settings for the
used hardware or emulators. Among other things, this includes enabling developer
mode on Windows and HoloLens, installing Visual Studio with Universal Windows
Platform (UWP) development workload, using the current Windows 10 SDK and
the activation and connection with the HoloLens Device Portal. All necessary
requirements are listed and described in detail by Microsoft in the documentation of
the MRTK (MRTK Documentation 2021).

Then, a new Unity project is created and the MRTK packages, Foundation and
Tools are imported into the development environment via the menu option: Assets
→ Import Package → Custom Package and the project is set up for the development
of MR applications (Note: if using the Unity Version 2019.4 and above, the Unity
Package Manager can alternatively be used). For this purpose, the default settings
of the MRTK, which are automatically suggested for configuration after the suc-
cessful import, are accepted and applied. For realizing 3D audio, the MS HRTF
(Head-Related Transfer Function; see Sect. 5.5 Audio Output Devices) Spatializer
is selected as Audio Spatializer. Then further configurations must be made under the
Build Settings (menu option: File → Build Settings). Here the Platform is set to
UWP (Universal Windows Platform) and the Target Device is set to the Microsoft
HoloLens. If Unity 2019 is used, it must be ensured that the Architecture option is
set to either ARM or ARM64 – the latter is recommended. All other options can be
left at the standard configuration or individually adjusted later. Under the Player
Settings you should check whether the VR support is configured correctly (cf. Sect.
10.2.1 Unity. During development, it is advisable to deactivate the menu option:
Player Settings → Other Settings → Optimize Mesh Data, as this option can drasti-
cally slow down the build process of the application. To ensure consistent real-time
execution on the HoloLens, it is also recommended to configure the standard quality
settings for UWP applications under the menu option: Edit → Project Settings →
Quality to Very Low or Fastest (Microsoft 2021a; MRTK Documentation 2021).

After that, a new Unity scene is created (menu option: File → New Scene) and all
essential components are automatically added via the menu option: Mixed Reality
Toolkit → Add to Scene and Configure. The Mixed-Reality-Toolkit-Object created

W. Broll et al.

395

in this way contains the DeviceManager and SpatialMeshObserver as well as the
other different systems for configuring the Mixed Reality application. These include
the systems for Camera, Spatial Awareness, Diagnostics, Boundary and the systems
that are required for processing input and voice commands. In this step, the Unity
Main Camera is also automatically provided with the necessary components, such
as the MixedRealityInputModule or the GazeProvider, and assigned to the
MixedRealityPlayspace within the scene graph. The resulting camera object has all
the properties and components that are necessary to utilize the camera movement
when using the HoloLens or to simulate it in the Unity editor.

The settings of the Mixed Reality Toolkit and its components can be fully config-
ured within the Unity Inspector under their component entry of the same name. All
settings of the MRTK and its sub-categories are managed in their individual profiles.
Either the default profiles of the Mixed Reality Core SDK already contained in the
MRTK can be used or individual profiles can be created. For example, to configure
the visualization of the Spatial Mapping, it is advisable to choose one of the stan-
dard profiles such as the DefaultMixedRealityToolkitConfigurationProfile or, if a
HoloLens 2 application is to be developed, the DefaultHoloLens2Configuration
Profile. The selected profile is cloned using the menu option of the Inspector and is
then available to the user as an individual profile. This process must be carried out
individually for each category. It is then possible to configure all settings of the
MRTK according to the individual requirements of the application to be developed
and to save them as separate profiles for future use. The form of visualization and
the associated material for displaying the Spatial Mapping can then be configured
under the settings Spatial Awareness → Spatial Mesh Observer → Display Settings.

Since there are initially no objects in the scene for the user to interact with, new
3D objects are now created using the menu option: GameObject → 3D Object and
positioned in the scene (with the sub-item → Sphere e.g., a sphere). The position
and size of a generated object and its relative location with respect to the camera
may still have to be adapted. According to Microsoft, approximately 2 m is consid-
ered to be an optimal distance for using gaze and interacting with virtual objects.
The 3D objects created are then assigned their respective materials. A wide selec-
tion of materials that are optimized for usage in AR applications can be found under
Assets → MRTK → SDK → StandardAssets → Materials. When the user’s gaze
wanders over the 3D object that has been created, only the cursor is projected onto
the object’s CollisionObject. By adding the script TapToPlace (Assets → MRTK →
SDK → Features → Utilities → Solvers), the 3D object can be selected using the air
tap gesture and freely positioned in the room using the gaze or placed on any sur-
face recognized by Spatial Mapping. Additional settings can be made in the
Inspector under the SolverHandler script, which is automatically added. An exam-
ple is the Tracked Target Type defining the reference point of the tracking used. It is
possible to use the hand of the user or a hand ray instead of the head movement of
the HoloLens. The BoundingBox script (Assets → MRTK → SDK → Features →
UX → Scripts → BoundingBox) equips the 3D object with a visible bounding box
(cf. Sect. 7.2.1). Thanks to the previously mentioned interaction options of the
HoloLens, such bounding boxes allow the associated 3D object to be scaled and
rotated at runtime. Another useful component is the PointerHandler script (Assets

10 Authoring of VR/AR Applications

396

→ MRTK → SDK → Features → Input → Handlers), which equips a 3D object
with the function of reacting to individual air taps. This can be used to implement
individual functionalities, such as a change to the material used while the 3D object
is selected or moved. In addition, the MRKT package Examples offers a wide range
of practical example scenes. These are helpful for getting to know the numerous
components and their functionalities as well as being a starting point for your own
projects. The HandInteractionExample is particularly suitable for testing the hand
tracking functionality of the HoloLens 2, as it provides many ready-to-use interac-
tive virtual objects (MRTK Documentation 2021).

To deploy the application on the HoloLens, the current scene must first be added
to the Build Settings. After that, the Unity application and the APPX package must
be built using the Build Window, which is included in the MRTK Tools package
(menu option: Mixed Reality Toolkit → Utilities → Build Window). Alternatively,
the deployment can also be done conventionally using Visual Studio (MRTK
Documentation 2021). The HoloLens is then connected to the PC via USB to con-
nect to the Device Portal. The Device Portal is a web server on the HoloLens, which
can be reached via the browser at the IP address 127.0.0.1:10080. Alternatively, it is
possible to access the Device Portal via a shared WiFi connection and the specific
IP address. The APPX package can be installed under the menu entry: System →
Apps of the Device Portal. It is important to consider all the necessary dependencies
of the package. After the application has been successfully installed, it can be exe-
cuted on the HoloLens. Another possibility to start the application directly on the
hardware is realized by the Holographic Remoting Player (HRP). First, the HRP
application from the Microsoft Store is installed on the HoloLens and launched.
Based on the information provided by the HRP, the HoloLens is then connected to
the Unity editor using the menu option: Windows → XR → Holographic Emulation.
The Device Portal enables the user to manage the configuration of the HoloLens and
has many useful tools to analyze your own applications and support their develop-
ment. For further information Microsoft provides detailed documentation
(Microsoft 2021a).

10.3.4 Making of: Basics for the Development of a Native
ARCore Application for Android

This case study describes the development of an AR application using ARCore,
including an insight into more general aspects of creating AR applications. The
underlying principles can also be applied to other frameworks.

Rather than using Java code and framework APIs, native development of an
Android application allows us to develop parts of the application or even the entire
project in C++. Android Studio provides easy access to many configuration tasks
required to develop a native application. Additionally, the Native Development Kit
(NDK) provided by Google is required. Nevertheless, it is necessary to write some

W. Broll et al.

397

helper classes in Java to provide basic functionality. In this case the Java Native
Interface (JNI) is used as the interface.

Before ARCore can be used, a session based on the current instance of the appli-
cation is required. For this purpose, the function ArSession_create is called with
information about the current Java environment, the current context, and the instance
of the application. An ARSession describes and manages the current state of the
system as well as the complete AR life cycle.

Using such a session, individual (camera) frames can be retrieved from a smart-
phone. A frame represents the current camera image and provides the necessary
functions to determine trackables – objects that can be tracked with ARCore. To
create a session, the desired screen size of the application and orientation of the
device must be provided.

When the current camera image is provided by the session object, ARCore allows
to store it as a texture directly in the graphics memory. For this purpose, a texture
with the OpenGL-ES extension GL_OES_EGL_image_external_essl3 is created
and its native ID is passed to the session. The dimension of this texture does not
depend on the settings of the session but is based on the resolution of the built-in
camera. Usually, its aspect ratio is not identical to the aspect ratio of the screen or
the application. Since the session has already been informed about the screen size,
the UV coordinates of the camera image can be adjusted accordingly. These adjusted
coordinates are also created by the AR session. This allows the camera image to be
displayed at the desired size. In most cases, the camera image is displayed as full
screen. For this purpose, the generated coordinates are used and passed to a shader
for the visualization on the screen. The camera image can also be rendered in a
separate texture (render target). This allows further use of the texture for special
effects or for further analysis.

Essential parts of an ARCore application are so-called trackables. Trackables are
objects in space that are recognized as geometries by the application and may be
planes or points. These trackables are created, maintained and, if necessary, deleted
by ARCore based on the session and the current camera image. It is important to
consider the dynamics of these trackables accordingly. Anchor points can be set on
trackables, which then give objects a position and orientation in space, i.e., allowing
for a geometrical registration in world space (see Sect. 8.2.1).

The dimension and orientation of a trackable are determined by ARCore.
However, the individual points of a plane can be extracted via the interface.
Additionally, the transformation matrix for the center of the plane can be deter-
mined. Thus, all information is now available for further usage and rendering. The
accompanying code example shows, for example, how planes can be visualized on
the screen.

Besides a list of planes, points can also be used as trackables. Similar to a plane,
points are objects in space. However, these points do not have their own transforma-
tion matrix, but define themselves as a single vertex (3D coordinate), having a posi-
tion in the world. This makes visualization of these points easy, as each vertex must
be transformed by the projection matrix only.

10 Authoring of VR/AR Applications

398

As already explained, anchor points can be set on trackables, which can then be
used to arrange virtual geometries inside the scene (see Fig. 10.8). To add an anchor
to a trackable a ray is cast from the screen-space coordinates of a user tap gesture
into 3D world space. The framework then provides a list of trackables hit by the ray.
Now, an anchor point is created close to a trackable from this list. ARCore allows
for requesting the transformation of an anchor point, which may then be used for the
visualization of objects at that location.

In this example, the light intensity of ARCore is a single value calculated based
on a complete frame (see Sect. 10.2.3). This is a floating-point number between 0
and 1. How this value is finally interpreted and used depends on the developer. A
reasonable way to use this value is to consider it as the ratio of the illumination
value related to the maximum illumination intensity. If a virtual light source is avail-
able, the author should design the lighting conditions for a bright room. In the case
of a dark environment, the intensity of the light source can then be adjusted accord-
ingly. This value can be used to attenuate the light intensity, for example by simple
multiplication. Figure 10.20 shows the adjustment of the intensity in a dark room
(left) and a bright room (right). It is clearly visible that in the first case the materials
appear darker and specular reflections are less pronounced.

The information provided in this section represents the basis for creating a native
ARCore application. However, the underlying principles can be transferred to other
AR frameworks like ARKit without much effort.

10.4 Summary and Questions

In this chapter, the process of authoring VR and AR applications was first illustrated
in general and then specifically using individual frameworks and case studies. Based
on this chapter, the reader should have gained a rough idea of the authoring process
using modern runtime environments and recent VR and AR hardware. Ideally, the
reader has downloaded the examples, tried them out and developed them individu-
ally to get a good sense of the possibilities and limitations of the respective tools.

Fig. 10.20 Illustration of two differently illuminated scenes and the influence of the illumination
situation on the material properties

W. Broll et al.

399

Check your understanding of the chapter using the following questions:

• You will be tasked with implementing a VR/AR training application for mini-
mally invasive surgery using a common consumer VR HMD and an end effector
display (cf. Sect. 5.6) as haptic input/output device. What authors are needed for
this? Plan a suitable authoring process and select appropriate software to support
the authors.

• What is a tool chain? At what point in the development process should you deal
with it?

• You want to create an AR application with Microsoft’s HoloLens. Which frame-
work can you use for this?

• You want to create a mobile AR application for a wide variety of smartphones
and tablets. Can you get by with a single code base for this? How can you keep
your development effort as low as possible?

• You are to develop an AR application that realistically displays objects in both
light and dark areas. How can you determine the illumination?

• When starting the application, an error occurs with a session. What is a session
and what is it needed for?

• You are asked to develop an AR application dealing with complex geometry.
Which framework and hardware are you going to use?

 Recommended Reading

Glower J (2018) Unity 2018 Augmented reality projects: Build four immersive and fun AR applica-
tions using ARKit, ARCore, and Vuforia. Packt Publishing.

Linowes J (2020) Unity 2020 virtual reality projects: Learn VR development by building immer-
sive applications and games with Unity 2019.4 and later versions, 3rd edn. Packt Publishing.

McCaffrey, M (2017) Unreal Engine VR cookbook: Developing virtual reality with UE4.
Addison Wesley.

Rabin S (2009) Introduction to game development, 2nd edn. Charles River Media, Boston – a
reference book on computer games. Due to the manyfold intersections of VR and computer
games, the literature from the field of computer games is also relevant.

Sewell B (2015) Blueprints visual scripting for Unreal Engine (English Edition): Build profes-
sional 3D games with Unreal Engine 4’s visual scripting system. Packt Publishing.

Vroegop D (2017). Microsoft HoloLens developer’s guide: A complete guide to HoloLens applica-

tion development. Packt Publishing.

References

Apple (2021) Apple app store. https://developer.apple.com/support/app- store/. Accessed 16
Mar 2021

Google (2021) Google developers. https://developers.google.com/ar/discover/. Accessed 16
Mar 2021

HoloLens 2 (2021). https://www.microsoft.com/en- us/hololens/. Accessed 16 Mar 2021

10 Authoring of VR/AR Applications

https://developer.apple.com/support/app-store/
https://developers.google.com/ar/discover/
https://www.microsoft.com/en-us/hololens/

400

Magic Leap 1 (2021). https://www.magicleap.com/en- us/magic- leap- 1. Accessed 16 Mar 2021
Makarov A (2021) 9 augmented reality trends in 2021: the future is here. https://mobidev.biz/blog/

augmented- reality- future- trends- 2018- 2020. Accessed 14 Jan 2021
Kato H, Billinghurst M (1999) Marker tracking and HMD calibration for a video-based augmented

reality conferencing system. In: Proceedings of IWAR, p 99
Ungureanu D et al (2020) HoloLens 2 research mode as a tool for computer vision research. arXiv

preprint arXiv:2008.11239
Unity (2021). https://unity.com/. Accessed 16 Mar 2021
Unreal Engine (2021). https://www.unrealengine.com/en- US/. Accessed 16 Mar 2021

Software, Online Documentation and Tutorials

ARCore (2021). https://developers.google.com/ar/. Accessed 16 Mar 2021
ARKit (2021). https://developer.apple.com/augmented- reality/arkit/. Accessed 16 Mar 2021
Blender (2021). https://www.blendernation.com/. Accessed 16 Mar 2021
Godot game engine (2021). https://godotengine.org. Accessed 16 Mar 2021
HoloLens Documentation (2021) Microsoft. https://docs.microsoft.com/en- us/hololens. Accessed

16 Mar 2021
MARS (2021). https://unity.com/products/unity- mars. Accessed 16 Mar 2021
MRTK Documentation (2021) Mixed Reality Toolkit Unity Documentation. https://github.com/

Microsoft/MixedRealityToolkit- Unity. Accessed 16 Mar 2021
MRTK Release (2021), https://github.com/Microsoft/MixedRealityToolkit- Unity/releases/tag/

v2.3.0. Accessed 16 Mar 2021
OpenVR (2021). https://github.com/ValveSoftware/openvr. Accessed 16 Mar 2021
Pixyz (2021). https://unity.com/products/pixyz. Accessed 16 Mar 2021
RealityKit (2021). https://developer.apple.com/augmented- reality/realitykit/. Accessed 16

Mar 2021
Unity, download (2021). https://unity3d.com/get- unity/download. Accessed 16 Mar 2021
Unity XR (2021). https://docs.unity3d.com/2019.3/Documentation/Manual/XR.html. Accessed 16

Mar 2021
Unreal Engine, download (2021). https://www.unrealengine.com/en- US/download. Accessed 16

Mar 2021
Unreal Engine XR (2021). https://www.unrealengine.com/en- US/xr. Accessed 16 Mar 2021
Valve Cooperation (2021) SteamVR plugin 2.6.1. https://assetstore.unity.com/packages/tools/inte-

gration/steamvr- plugin- 32647. Accessed 16 Mar 2021
Windows Mixed Reality (2021). https://www.microsoft.com/en- us/mixed- reality/windows- mixed-

reality. Accessed 16 Mar 2021

W. Broll et al.

https://www.magicleap.com/en-us/magic-leap-1
https://mobidev.biz/blog/augmented-reality-future-trends-2018-2020
https://mobidev.biz/blog/augmented-reality-future-trends-2018-2020
https://unity.com/
https://www.unrealengine.com/en-US/
https://developers.google.com/ar/
https://developer.apple.com/augmented-reality/arkit/
https://www.blendernation.com/
https://godotengine.org
https://docs.microsoft.com/en-us/hololens
https://unity.com/products/unity-mars
https://github.com/Microsoft/MixedRealityToolkit-Unity
https://github.com/Microsoft/MixedRealityToolkit-Unity
https://github.com/Microsoft/MixedRealityToolkit-Unity/releases/tag/v2.3.0
https://github.com/Microsoft/MixedRealityToolkit-Unity/releases/tag/v2.3.0
https://github.com/ValveSoftware/openvr
https://unity.com/products/pixyz
https://developer.apple.com/augmented-reality/realitykit/
https://unity3d.com/get-unity/download
https://docs.unity3d.com/2019.3/Documentation/Manual/XR.html
https://www.unrealengine.com/en-US/download
https://www.unrealengine.com/en-US/xr
https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647
https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647
https://www.microsoft.com/en-us/mixed-reality/windows-mixed-reality
https://www.microsoft.com/en-us/mixed-reality/windows-mixed-reality

401© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
R. Doerner et al. (eds.), Virtual and Augmented Reality (VR/AR),
https://doi.org/10.1007/978-3-030-79062-2_11

Chapter 11
Mathematical Foundations of VR/AR

Ralf Doerner

Abstract In Virtual Reality and Augmented Reality, mathematical methods offer
fundamental principles to model three-dimensional space. This makes it possible to
provide exact information and perform calculations, e.g., to determine distances or
to describe the effects of transformations such as rotations or translations exactly.
This chapter compiles the most important mathematical methods, especially from
linear algebra, that are frequently used in VR and AR. For this purpose, the term
vector space is defined and extended to a Euclidean space. Afterwards, some basics
of analytic geometry are introduced, especially the mathematical description of
lines and planes. Finally, changes of coordinate systems as well as affine transfor-
mations are discussed and their computation with matrices in homogeneous coordi-
nates is explained.

11.1 Vector Spaces

In Virtual Reality, we are concerned with the real space that surrounds us. It is help-
ful to model this space with methods of mathematics, e.g., to be able to make exact,
formal, mathematically provable statements or to perform computations. In VR, we
use a vector space, a construct of linear algebra (a branch of mathematics), for this
modeling.

Each vector space is formed over a field G. The elements of G are called scalars
and we denote them by small Latin letters. Being a field in the sense of algebra
means that G is a set with the two binary operations “+” (addition) and “·” (multi-
plication), which combine two elements of G and as a result give an element of

R. Doerner (*)
Department of Design, Computer Science, Media, RheinMain University of Applied
Sciences, Wiesbaden, Germany
e-mail: ralf.doerner@hs-rm.de

Dedicated website for additional material: vr-ar-book.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79062-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-79062-2_11#DOI
mailto:ralf.doerner@hs-rm.de
http://vr-ar-book.org

402

G. Moreover, there is an element 0 in G, called the additive identity, and an element
1 in G, called the multiplicative identity. Finally, the elements of G satisfy the fol-
lowing field axioms. For any scalar a, b, c, d (with d ≠ 0):

a b c a b c� �� � � �� � � � �associativity of addition

a b b a� � � � �commutativity of addition

0 � � � �a a commutativity of addition

For each a ∈ G there exists a −a ∈ G with −a + a = 0 (additive inverses)

a b c a b c· · · ·� � � � � � �associativity of multiplication

a b b a· ·� � �commutativity of multiplication

1·d d� � �multiplicative identity

For each d ∈ G \{0} there exists a d−1 ∈ G with d−1 · d = 1 (multiplicative inverses)

a b c a b a c· · ·�� � � � � �distributivity

The set of real numbers R, which comprises the set of natural numbers (e.g., 1, 2,
3, …), integers, rational numbers and irrational numbers (e.g., π), fulfills the field
axioms and is usually chosen in VR.

The set of elements of a vector space V over a field G is called vectors. We denote
them by Latin letters, over which an arrow is placed. Two operations are defined on
vectors. First, vector addition takes two vectors and assigns them a third vector. We
write this operation as “+” (not to be confused with addition in scalars). The vector
addition adheres to the associativity of addition and the commutativity of addition.
There exists also an identity element of addition, the zero vector

0 . For each vector

u there exists an additive inverse −u in V. Secondly, scalar multiplication takes a
scalar and a vector and assigns them a vector. we write it as “·”. Scalar multiplica-
tion adheres to distributivity:

� � � � �� � � � �� � � �a b G u v V a u v a u a v a b u a u b u, , , :

· · · · · ·and

An example of a set V that fulfills these properties of a vector space is the set of
3-tuples over the real numbers, i.e., the set of all lists of real numbers of length 3.
We call this set R3. The 3-tuple (5, –2, 3), for example, is an element from the set R3.
In the following, we will not write the elements of R3 as a list next to each other but
on top of each other:

R. Doerner

403

u � �
�

�

�
�
�

�

�

�
�
�

5

2

3

To specify the set R3 completely as a vector space, we still have to specify the two
operations “+” and “·” of the vector space. We do this by defining these operations
based on the addition and multiplication of the real numbers (i.e., the field over
which R3 was formed).

 a u v∈ ∈ , , :
 3

 u v
u
u
u

v
v
v

u v
u v
u v

� �
�

�

�
�
�

�

�

�
�
�
�
�

�

�
�
�

�

�

�
�
�
�

�
�
�

�

�

:

1

2

3

1

2

3

1 1

2 2

3 3

��
�
�

�

�

�
�
�

�
�

�

�
�
�

�

�

�
�
�
�
�

�

�
�
�

�

�

�
�and a u a

u
u
u

a u
a u
a u

· : ·

·

·

·

1

2

3

1

2

3
��

In vector spaces, vector addition and scalar multiplication are generally used to
define a linear combination of a number of n scalars and n vectors:

 u a u a u a un n� � ���1 1 2 2· · ·

If all n scalars must have the value 0 for the linear combination to yield the zero
vector, the n vectors of the linear combination are called linearly independent. If
one finds a maximum of d linearly independent vectors in a vector space V, then d
is the dimension of the vector space V. In our example, the vector space R3 has
dimension 3. By the way, it is not only the set of all 3-tuples that forms a vector
space. If k is a natural number, then the set of all k-tuples of real numbers forms a
vector space Rk, which has dimension k.

If V is a vector space of dimension n and we find n linearly independent vectors,
these vectors are called a base of V. We can then represent each vector of V by a
linear combination of these base vectors. The n scalars that occur in this linear com-
bination are called the components or coordinates of a vector.

11.2 Geometry and Vector Spaces

In geometry, directed line segments are called geometric vectors. You can visualize
them with an arrow, having a length and a direction. The beginning of the geometric
vector is called the tail, and the end of the geometric vector is called the tip. We
define an addition operation of two geometric vectors as follows. We place the tail
of the second vector at the tip of the first vector – the result of the addition is a geo-
metric vector that then runs from the tail of the first vector to the tip of the second
vector. We also define a scalar multiplication, where we choose the real numbers R
as scalars (see Fig. 11.1). If we multiply the scalar a by a geometric vector, we get

11 Mathematical Foundations of VR/AR

404

as a result a geometric vector with a × the length of the original geometric vector. If
a is positive, the resulting vector points in the same direction; if not, the result vector
points in the opposite direction. With these two operations the set of geometric vec-
tors forms a vector space over R.

Directed line segments are useful constructs when we want to model the space
surrounding us. However, performing computations with them directly proves to be
difficult. Therefore, we take a base from the space of geometric vectors – if we are
in the three-dimensional space, it consists of three base vectors. We can represent
each geometric vector as a linear combination of these three base vectors. The coor-
dinates in this linear combination are three real numbers – which in turn we can
understand as 3-tuples, i.e., an element of the vector space R3.

We can proceed as follows. We assign a vector from R3 to each directed line seg-
ment, i.e., to each geometric vector, with the help of a base. In R3 we can calculate
with vectors based on the addition and multiplication of real numbers. The result of
the calculation is then transferred into the space of the geometric vectors by insert-
ing the calculated result as a scalar into the linear combination of the base vectors.
If, for example, we want to add two geometric vectors, then we assign two vectors
from R3, the “world of numbers”, to these two vectors from the “world of geome-
try”. In the “number world” we can calculate the result vector. We transfer this result
vector back into the “world of geometry” and thus we have determined the geomet-
ric vector resulting from the addition by computation.

11.3 Points and Affine Spaces

However, the usefulness of our mathematical model is still limited: geometric vec-
tors possess only length and direction, but no fixed position in space. This also
means that we cannot model essential concepts from the real world, such as dis-
tances. Therefore, we introduce the term point in addition to scalar and vector. We
write points with capital Latin letters. Points have no length and no direction, but a
position. Let P and Q be two elements from the set of points. Then we define an
operation “–”, called point-point subtraction, which connects two points and results
in a vector:

Fig. 11.1 Vector addition and scalar multiplication of geometric vectors

R. Doerner

405

 P Q u P u Q� � � � �

With this we also define an addition between a point and a vector (called point-
vector addition), where the result is a point. Thus, we can represent any point P in
three-dimensional space as an addition of a point O (called the origin) and a linear
combination of three linearly independent geometric vectors

u v w, , , the base
vectors:

 P O a u b v c w O p� � � � � � � � �

We call these three base vectors, together with O, a coordinate system K. We call
the 3-tuple (a, b, c) the coordinates of P with respect to K. Thus, every point in our
“world of geometry” for a given K can be represented by an element from R3, our
“world of numbers”. So, we can “calculate” not only with vectors, but also with
points, i.e., with fixed positions in our world. We call

p the position vector belong-
ing to P.

A vector space that has been extended by a set of points and an operation, the
point-point subtraction, is called an affine space in mathematics. Geometrically, we
can interpret point-point subtraction like this: P – Q is a vector that we get when we
choose a directional path with starting point Q and final point P.

11.4 Euclidean Space

We add the concept of distance to our existing mathematical model of the space
surrounding us. For this purpose, we introduce another operation, which we denote
by “·” and which takes two vectors and results in a scalar. We call this operation the
scalar product (not to be confused with scalar multiplication, which takes a scalar
and a vector and results in one vector – even if we write both operations with “·”, we
always know which operation is meant because of the types of the two operands).
The scalar product must adhere to commutativity of multiplication and the follow-
ing axioms for scalars a, b, vectors

u v w, , and the null vector

0 :

a u b v w a u w b v w� � �� � � � � � � � �

u u u· � �0 0if

0 0 0· =

In our vector space R3, we can define a scalar product as follows so that all the above
conditions are fulfilled:

11 Mathematical Foundations of VR/AR

406

 u v
u
u
u

v
v
v

u v u v u v· · : · · ·�
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
� � �

1

2

3

1

2

3

1 1 2 2 3 3

In honor of the Ancient Greek mathematician Euclid of Alexandria, an affine
space supplemented by the scalar product operation is called a Euclidean point
space. Using the scalar product, we define the amount of a vector as follows:

 u u u� �

In our three-dimensional space, the amount of a vector is equal to its length. Thus,
we can also determine the distance d between two points P and Q as

d P Q P Q P Q� � � �� � � �� �

The angle α enclosed by two vectors can be determined from the following equation:

 u v u v� � � � cos�

In the case α = 90° (i.e., the two vectors are perpendicular to each other) the scalar
product of the two vectors is 0. Two vectors whose scalar product is 0 are called
orthogonal. If the two vectors also have length 1, they are called orthonormal. For
the base in our space, we want to use orthonormal vectors in the following. A cor-
responding coordinate system (base vectors are perpendicular to each other and
have length 1) is called a Cartesian coordinate system. In the case of R3, we take the
three unit vectors

 e e ex y z�
�

�

�
�
�

�

�

�
�
�

�
�

�

�
�
�

�

�

�
�
�

�
�

�

�
�
�

�

�

�
�
�

1

0

0

0

1

0

0

0

1

, ,

in the given order and the point O as the origin point, whose position vector is the
zero vector.

To be able to easily find a vector orthogonal to two vectors in R3, we define an
operator “×”, which we call the cross product and which takes two vectors and
results in one vector:

 n u v
u
u
u

v
v
v

u v u v
u� � �

�

�

�
�
�

�

�

�
�
�
�
�

�

�
�
�

�

�

�
�
�
�

�1

2

3

1

2

3

2 3 3 2

3:

· ·

· vv u v
u v u v

v u1 1 3

1 2 2 1

1�
�

�

�

�
�
�

�

�

�
�
�
� � �� �·

· ·

·

R. Doerner

407

The resulting vector is called a normal vector. In this order, the vectors

u v n, , form
a right-handed system, i.e., if you take them as geometric vectors and place their tail
on a common point, the vectors are oriented like the thumb, index finger and middle
finger of the right hand. The vector product is not commutative. While one can gen-
eralize our definition of the scalar product from R3 to Rn and thus obtain Euclidean
point spaces of dimension n, the cross product is defined exclusively in R3.

11.5 Analytical Geometry in ℝ3

In R3, our mathematical model of the space surrounding us, we can solve geometric
problems by computation, e.g., finding an intersection of lines or determining the
distance of a point to a plane. A line is the generalization of a directed line segment:
it has no direction and has infinite length. A line is defined by two points.
Mathematically we model a line g through points P and Q as a subset of R3 that
includes all points X whose position vector

x satisfies the equation of the line, using
the position vectors associated with P and Q:

g x t x p t q p� � � � � � �� �� � 3| , ·

The scalar t is called the parameter and the equation above is also called the vector
equation of a line. The vector that is multiplied by t is called the directional vector
of the line g. Similarly, we can model a plane E as a subset of R3. It is defined by
three points P, Q, R and the equation of the plane contains two parameters and two
directional vectors:

E x t s x p t q p s r p� � � � � � �� � � �� �� � 3| , , · ·

By means of the cross product, we can compute the normal vector

n from the direc-
tional vectors, which is perpendicular to E. For the distance d of a point X to a plane
E we know the following equation in linear algebra, where the sign of the scalar
product indicates on which side of E the point X is located:

d n
n

x p� � �� �

Thus, we can reformulate the condition that points X belong to the subset E. This is
because all points X that have the distance 0 from E lie on the plane E. Thus, we
obtain the point-normal form of a plane:

E x n x p� � �� � �� � 3 0| ·

11 Mathematical Foundations of VR/AR

408

With these definitions you can compute intersections between lines and between a
line and a plane as well as intersections between planes. The first step is to equate
the equations that define the set of points that form a line or a plane. Alternatively,
substitution can sometimes be used. This results in either an equation to be solved
or a linear system of equations, the solution of which can be computed by mathe-
matical methods (for example, Gaussian elimination).

11.6 Matrices

In virtual reality, another mathematical construct is often used to compute transfor-
mations such as rotations or translations in three-dimensional space: the matrix
(plural: matrices). A matrix is a table of n rows and m columns where each entry is
a scalar. In the following, we will always assume that entries are real numbers. We
find the scalar aij in row i and column j of the matrix. It is called the entry in place
(i, j). We write matrices with bold capital letters: A = [aij] and say A is an n × m
matrix. The matrix M in our example has two rows and four columns, so it is a 2 × 4
matrix, and the entry m1,3 has the value 5:

M �

�

�
�

�

�
�

1 0 5 3

1 9 2 0

For matrices, we define three operations. First, the scalar-matrix multiplication,
denoted by “·”, which combines a scalar s and a n × m matrix A = [aij] to form an
n × m matrix: s·A = s·[aij]:=[s·aij]. This operation adheres to associativity. Secondly,
matrix-matrix addition, denoted by “+”, links two matrices A and B of the same size
n × m to form a matrix of size n × m: A + B = [aij] + [bij] := [aij + bij]. This operation
adheres to associativity and commutativity. Third, matrix-matrix multiplication,
denoted by “·”, combines a matrix A of size n × k and a matrix B of size k × m to
form a matrix of size n × m:

A B· : ·� �� �� �

�
�c c a bij ij
l

k

il ljwi ht
1

This operation adheres to associativity. It should be emphasized that commutativity
does not apply to matrix-matrix multiplication: A·B does not always equal B·A.

If we swap the rows and columns in a matrix, we get the transposed matrix. The
transposed matrix of matrix M = [aij] is MT=[aji]. The following applies: (A·B)T =
BT · AT. A special case are matrices that have the same number of rows and columns.
These are called square matrices. The square matrix I for which the follow-
ing applies

R. Doerner

409

I � �� �� �

��
�
�

a a
i j

ij ij,
1

0

if

otherwise

is called the unit matrix. The following applies: A·I = I·A = A, where A and I are
both n × n matrices If a matrix A–1 of the same size exists for an n × n matrix A and
the equation A·A–1 = I applies, then A–1 is called the inverse matrix of A. A is then
called invertible. The following applies: (A·B)–1 = B–1·A–1. If the following applies
to a matrix A: A–1 = AT, then A is called orthogonal.

11.7 Affine Transformations

Assume that the point P has coordinates (x, y, z) with respect to a Cartesian coordi-
nate system. If we translate P by tx in the x-direction, by ty in the y-direction and by
tz in the z-direction, we map point P to a new point P′. What are its coordinates? To
calculate such transformations, we utilize matrices. We introduce a special notation
for matrices that consist of only one column: we write them with small bold letters
and call them column matrices. Now we want to represent the point P by the column
matrix p. We do this as follows:

p �

�

�

�
�
�
�

�

�

�
�
�
�

�

w x
w y
w z
w

w w

·

·

·
, for any real number with 0

We call (w·x, w·y, w·z, w) the homogeneous coordinates of P. In practice, for the
sake of simplicity, usually w = 1 is chosen. If one chooses w = 0, one can represent a
vector in a column matrix instead of a point by means of homogeneous coordinates:

v

x

y

z

x

y

z
�
�

�

�
�
�

�

�

�
�
�

� �

�

�

�
�
�
�

�

�

�
�
�
�

v

0

The translation from P to P′ can be described by a matrix M. The following simple
equation applies:

� � �p M p

11 Mathematical Foundations of VR/AR

410

In our translation example, this equation looks like this:

� �

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�p

1 0 0

0 1 0

0 0 1

0 0 0 1

t
t
t

w x
w y
w z
w

x

y

z

·

·

·

·

ww x t

w y t

w z t
w

x

y

z

·

·

·

�� �
�� �
�� �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

From the resulting column matrix p′, we can obtain the coordinates of point P′ after
division by w: (x + tx, y + ty, z + tz). If instead of p, which represents a point, we were
to use the column matrix v, which represents a vector, in the above equation, then v
would be mapped exactly back to v. This is also what we expect: since a vector has
no fixed position in space, it is not changed by a displacement. As we will see below,
the transformation of a vector by a more complex transformation is slightly more
complicated.

Let us take a closer look at the matrix M that represents this translation. You can
think of its four columns as column matrices. The first three columns represent vec-
tors, because the value in the fourth row is zero. In fact, these are the base vectors of
our three-dimensional space if we apply the translation to them. They do not change,
because a translation does not change the length or the direction of a vector. The
fourth column vector represents a point, because the value in the fourth row is not
zero. This column vector represents the origin when the translation is applied to it.
As a result of the translation, the origin (0, 0, 0) is mapped to (tx, ty, tz). Therefore,
this transformation can be seen as a change from one coordinate system of our
three-dimensional space to another coordinate system. In fact, mathematicians have
been able to show that each change of coordinate systems can be represented as a
matrix M. With 4 × 4 matrices M, not only can translations be computed, but also
other affine transformations that map one affine space into another. Besides transla-
tion, the following geometric transformations are also included: rotation, scaling,
reflection and shearing. If you invert the matrix M, you get the matrix M–1, which
represents the inverse mapping of M, i.e., it reverses the mapping represented by M.

Let us assume that we perform n geometric transformations of the point P. We
represent the transformation performed first by M1, the second by M2 and so on,
until finally the transformation performed last is represented by Mn. This allows us
to determine the coordinates of the point P′ resulting from the back-to-back execu-
tion (concatenation) of these transformations as follows:

� � �� �p M M M M pn · · · · ·3 2 1

Note the order of the matrices and keep in mind that matrix multiplication is not
commutative. If you perform the computation as indicated by the brackets, you only
need to compute the product of all n matrices once, even if you transform hundreds
of points with the same transformation. For a large number of points to be trans-
formed, this results in a considerable saving of computing time. Matrix operations

R. Doerner

411

for 4 × 4 matrices are implemented directly in hardware in graphics processors,
which leads to another reduction in computing time.

Besides points, vectors can also be transformed by a matrix M that describes an
affine transformation. If we want to know where the vector

v is mapped to after the
transformation described by M, we represent the vector in the column matrix v. We
compute v′ = (M–1)T · v and the first three rows of the column matrix v′ contain the
coordinates of the transformed vector.

11.8 Determination of Transformation Matrices

To calculate geometric transformations or to perform a change between coordinate
systems, we need a matrix M that represents this transformation, as described in the
last section. But how do we determine this matrix M? In principle there are two ways.

The first alternative is to know formulas for these matrices for certain standard
cases. The formula for translation has already been given in Sect. 11.7. For rotation
by an angle α around the x-axis around the origin point, the following formula can
be found for the matrix M:

M �
�

�

�

�
�
�
�

�

�

�
�
�
�

1 0 0 0

0 0

0 0

0 0 0 1

cos sin

sin cos

� �
� �

Accordingly, one can also find formulas for transformation matrices for rotation
around the y-axis, around the z-axis or around any other axis, for reflection, or for
scaling in computer graphics textbooks. From these standard cases, more complex
transformations can be computed by concatenation (see Sect. 11.7). For example, if
you want to calculate a rotation of 30° around the x-axis around the center of rota-
tion (1, 2, 3), you divide this transformation into three transformations for which a
formula is known: first, you perform a translation by (–1, –2, –3), which takes the
center of rotation to the origin (because we only know the formula for rotations
around the origin). Then you rotate 30° around the x-axis around the origin point
and reverse the first translation performed with the inverse translation. The matrix
for the entire transformation is obtained by multiplying the three matrices for the
standard cases (note the order):

M �

�

�

�
�
�
�

�

�

�
�
�
�

�� �

�

1 0 0 1

0 1 0 2

0 0 1 3

0 0 0 1

1 0 0 0

0 30 30 0

0 30
·

cos sin

sin coos
·

30 0

0 0 0 1

1 0 0 1

0 1 0 2

0 0 1 3

0 0 0 1

�

�

�

�
�
�
�

�

�

�
�
�
�

�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

11 Mathematical Foundations of VR/AR

412

The second alternative to determine the matrix M, which we need according to the
formula p′ = M·p to compute a transformation or to change coordinate systems, is
to construct M directly:

• We start with our coordinate system K, which consists of three base vectors and
the origin point. We also need to know the target coordinate system K′ after the
transformation, which results from the geometrical transformation of the three
base vectors and the origin point of K. Let M be the matrix that changes coordi-
nates from coordinate system K to K′, i.e., M computes the geometric transfor-
mation from K to K′.

• We represent the first base vector of K′ as a column matrix of size 4 by entering
its three coordinates with respect to K in the first three rows of the column matrix
and a zero in the fourth row. Analogously, we obtain column matrices for the
second and third base vector of K′. We represent the origin point of K′ by enter-
ing its coordinates with respect to K in the first three rows of a column matrix of
size 4 and a one in the fourth column. From these four column matrices, we form
the matrix M–1 of size 4 × 4 by writing them next to each other according to the
above order. By inverting M–1 we obtain the matrix M that we are looking for.

If a point P has coordinates (x, y, z) with respect to the old coordinate system K,
its new coordinates with respect to K′ are calculated with the matrix M as follows:

• We represent P as a column matrix p with the homogeneous coordinates (x,
y, z, 1).

• We calculate the matrix product p′ = M·p
• The values in the first three rows of p′ are the coordinates of P with respect to the

new coordinate system K′

R. Doerner

413© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
R. Doerner et al. (eds.), Virtual and Augmented Reality (VR/AR),
https://doi.org/10.1007/978-3-030-79062-2

 About the Authors

Dr. Steffi Beckhaus is an expert on VR/AR and HCI. Her main research interest is
to understand human perception, the power of imagination and, ultimately, the
influencing factors on our felt sense of “reality”. She works as a coach and consul-
tant for women, entrepreneurs and people pursuing advanced academic careers in
STEM. Here, her topics include potential development, creativity and innovation
training, career counselling, leadership development and hypnosystemic coaching.
She was professor for interactive media and virtual environments at the University
of Hamburg from 2004 to 2011. The R&D in her lab included the chairIO, multisen-
sory, immersive VR-systems including floor-haptics and olfactory elements, quali-
tative, emotional experience spaces, storytelling, and media art. In 2011/2012 she
was guest professor at TU Darmstadt. She holds degrees in Physics (1991) and
Computer Science (1993) and certifications in generative and systemic coaching
and consulting (2014–2018). At the beginning of her career, she worked for 8 years
in the private sector as a researcher and IT consultant. In 2002, she obtained her
multiply awarded PhD on navigation in virtual environments, while being part of
the Virtual Environments Group of IMK at GMD. In this book, she authored
Sect. 6.8.

Mathias Buhr studied Engineering & Computing at the TU Bergakademie
Freiberg and continued as a research assistant at the Institute for Computer Science.
In addition to his teaching activities in the field of human–machine communication,
multimedia and parallel computers, his focus was on methods for distributed and
parallel rendering techniques for virtual environments. Since 2014 he has been
working in the field of audio/video signal processing and real-time communication
protocols for LogMeIn, Inc. Mathias Buhr is the author of Sect. 7.2 and co-author
of Sect. 7.3.

https://doi.org/10.1007/978-3-030-79062-2#DOI

414

Dr. Wolfgang Broll is a full professor at TU Ilmenau (Ilmenau University of
Technology), heading the Virtual Worlds and Digital Games group. He received his
Master’s (Dipl.-Inf.) in Computer Science from TU Darmstadt (Darmstadt
University of Technology) in 1993 and a PhD in Computer Science from Tübingen
University in 1998. He was a lecturer at RWTH Aachen (Aachen University of
Technology) from 2000 to 2009. From 1994 to summer 2012 he headed the VR and
AR activities at Fraunhofer FIT in Sankt Augustin. He has been doing research in
augmented reality, shared virtual environments, multi-user VR and 3D interfaces
since 1993. In addition to his academic activities, he was the founder and CEO of
fayteq GmbH, and later a member of the board of fayteq AG until it was sold to
Facebook Inc. in 2017. He is a SIGGRAPH pioneer, and vice chair of the steering
committee of the VR/AR chapter of Germany’s computer society (GI). He is a
member of the Steering Committee of the IEEE Symposium on Mixed and
Augmented Reality (ISMAR), where he served as Program Chair in 2016 and 2017.
He is currently concerned with AR-related technologies, including, but not limited
to, collaborative augmented environments, Diminished and Mediated Reality,
global illumination, natural interaction and the application of deep learning
approaches to those. Prof. Broll contributed to this book as editor for Chaps. 5, 8
and 10 and as second editor for Chaps. 3 and 6. As an author, he contributed to
Chaps. 1, 4, 5, 8 and 10.

Dr. Carolina Cruz-Neira, a member of the National Academy of Engineering, is
a pioneer in the areas of Virtual Reality and interactive visualization, having created
a variety of VR technologies that have become standard tools in industry, govern-
ment and academia. She is known for being the inventor of the CAVE. Having dedi-
cated a part of her career to the transfer of research results into daily use she
spearheaded several open-source initiatives and VR-related commercialization
efforts. She is also recognized for having founded and led very successful VR
research centers, such as the Virtual Reality Applications Center at Iowa State
University, the Louisiana Immersive Technologies Enterprise and the Emerging
Analytics Center at the University of Arkansas at Little Rock. She has been named
one of the top innovators in VR and one of the top three greatest women visionaries
in VR. She is an IEEE Fellow and has been inducted as an ACM Computer Pioneer.
She has received the IEEE Virtual Reality Technical Achievement Award and the
Distinguished Career Award from the International Digital Media & Arts Society,
among other national and international recognitions. Currently, Dr. Cruz-Neira is
the Agere Chair in Computer Science at the University of Central Florida. As an
author, she contributed to Chap. 5 (mainly Sect. 5.4) and Sect. 7.3.

Dr. Ralf Doerner has been professor of Computer Graphics and Virtual Reality in
the Design, Computer Science, Media department of the RheinMain University of
Applied Sciences in Wiesbaden, Germany since 2004. After obtaining his Diploma
degree in Computer Science from the Technical University of Darmstadt with dis-
tinction, he worked for the Fraunhofer Society, first as a researcher at the Fraunhofer

About the Authors

415

Institute for Computer Graphics, and later as head of the Mixed Reality department
and vice director of Fraunhofer AGC in Frankfurt. After receiving his PhD (Goethe-
University in Frankfurt, summa cum laude) and working as a scholar in the United
States (University of New Hampshire/NOAA) with a DAAD PostDoc grant, he
became a professor at Harz University of Applied Sciences before becoming full
professor in Wiesbaden. He received an honorary professorship from the University
of Transylvania, is a member of ACM SIGGRAPH, whose Recognition of Service
Award he received, and has been elected to the board of the GI-working group VR/
AR. His research interests lie in the field of visualization (interactive information
visualization, visual data analysis), VR and MR (especially in the field of authoring
systems) and the use of Computer Graphics for e-Learning and entertainment. He
has been responsible for numerous research projects and has published over 150
peer-reviewed articles. Ralf Doerner served as editor of this book, being responsible
for Chaps. 1, 2, 6, 9, and 11. He served as secondary editor for Chap. 7 and contrib-
uted as author to Chaps. 1, 2, 6, 9, 10, and 11.

Dr. Christian Geiger has been Professor of Mixed Reality and Visualization at the
Düsseldorf University of Applied Sciences since 2004. Before that, he was a profes-
sor of 3D graphics and animation at the Harz University of Applied Sciences in
Wernigerode. He studied computer science at the University of Paderborn and
received his doctorate there in 1998 with a thesis on the creation of interactive 3D
animations. From 1997 to 2000 he was responsible for R&D projects in the field of
3D graphics, multimedia and VR/AR at Siemens AG in Paderborn. His research
interests lie in the design and implementation of novel user interfaces, mixed reality
applications and interactive visualization techniques. As an author he contributed to
Chap. 6, especially Sects. 6.1, 6.4 and 6.5

Dr. Martin Göbel is a consultant at the Institute of Visual Computing at the Bonn-
Rhein- Sieg University of Applied Sciences in Sankt Augustin, Germany. Before
that, he was CEO of 3DAround GmbH and of flexilution GmbH. From 1996 he was
a competence center director for Virtual Environments in the GMD in Birlinghoven,
where he implemented the first CAVE in Europe. From 1987, he was a senior scien-
tist in the Fraunhofer Institute for Computer Graphics. Martin Göbel studied
Computer Science at the Technical University of Darmstadt where he received the
diploma degree (Master in Science) in 1982 and his PhD (Dr.-Ing.) in 1990. He is
author and editor of several books on Graphics Standards, Visualization and Virtual
Reality and over 100 scientific publications. He established the Eurographics
Workshops on Virtual Environments (EGVE) in 1993 and chaired them. In 2003 the
ARVR-group of the German Computer Society (GI-ARVR) was founded by him.
Göbel has been program cochair of the EUROGRAPHICS ‘95 and ‘98 conferences
and the IEEE VR 2001, 2002 & 2004 conferences and General Chair of IEEE
VR2005 and 2006 as well as the Honorary Chair of IEEE VR 2015, IEEE VR 2018
and the ACM VRCAI 2019.

About the Authors

416

Dr. Paul Grimm is professor for Software Design and Architecture of Extended
Reality and 3D Game Engines at Darmstadt University of Applied Sciences (h_da)
in Germany. He has been Professor of Computer Graphics at Fulda University of
Applied Sciences from 2011 until 2021. Before, he was Professor for Computer
Graphics at Erfurt University of Applied Sciences since 2004. After studying com-
puter science and physics at Technical University of Darmstadt, he worked as a
research assistant at the Fraunhofer Institute for Computer Graphics (Fraunhofer
IGD) in Darmstadt and at the Fraunhofer Application Center for Computer Graphics
(Fraunhofer AGC) in Frankfurt. From 1997 to 1998 he was a visiting scientist at the
National Center for Supercomputing Applications (NCSA) in Urbana-Champaign,
USA. From 2009 to 2010 he did a research semester at Daimler Protics GmbH in
the Virtual Engineering & Consulting division. His research interests focus on sim-
plifying the creation of Virtual and Augmented Reality, and he has been pursuing
this for more than 20 years in various national and international projects. He is a
member of ACM and the German society of computer science (Gesellschaft für
Informatik, GI) and was spokesman for the GI interest group for Animation and
Simulation as well as a member of the management committee of the GI interest
group VR and AR. Prof. Dr. Paul Grimm contributed to this book as editor, espe-
cially as editor of Chap. 4. For Chap. 5, 8, 9 and 11 he acted as a second editor. For
Chap. 10, he collected four examples. As an author, he contributed to Chap. 1,
4 and 5.

Dr. Rigo Herold is a research scientist for Augmented Reality systems based on
data glasses at the Westsaxony University of Applied Sciences, Zwickau. He
received a diploma degree and an MS degree in electrical engineering from the
University of Applied Sciences, Dresden, Germany in 2006 and 2007. He received
a doctoral degree in electrical engineering from University of Duisburg-Essen in
2011. From 2007 to 2013 he was a research assistant at Fraunhofer-Gesellschaft. In
2013 he was appointed to a professorship at the Westsaxony University of Applied
Sciences, Zwickau. His research interests are in mobile AR systems based on data
glasses, human–computer interaction, mobile computing and the customized design
of data glasses. As an author, he contributed to Chaps. 4 and 5.

Johannes Hummel was a PhD student at the German Aerospace Center (DLR) in
Braunschweig in the field of virtual assembly simulations in orbit. Before that, he
studied computer science and electrical engineering at the Technical University of
Munich (TUM) from 2003 to 2009 and graduated with a diploma. From 2005 to
2010 he was a freelance software developer responsible for projects in the field of
user interfaces and data management in the automotive industry. His research inter-
ests are in the field of Virtual Reality, especially multimodal interaction techniques
for virtual assembly simulation in space. He wrote Sect. 4.4.

Dr. Bernhard Jung has been the chair for Virtual Reality and Multimedia at the
Institute of Computer Science, Freiberg University of Mining and Technology since
2005. He studied computer science and computer linguistics at the University of

About the Authors

417

Stuttgart, Germany, and the University of Missouri, Saint Louis. He received his
doctorate in 1996 from the University of Bielefeld with a thesis in artificial intelli-
gence as well as a Habilitation degree in 2002 for a thesis on intelligent virtual
environments. From 2003 to 2005 he was full professor for Media Informatics at the
University of Lübeck’s International School of New Media. He is a member the
German Society for Computer Science (GI) and the German Society for Cognitive
Science (GK). Prof. Jung’s research interests are in the fields of virtual & mixed
reality, large data visualization, virtual prototyping with HPC workflows, human–
computer interaction and advanced robotics. He served as one of the co-editors of
this book, primary editor of Chaps. 3 and 7, secondary editor of Chaps. 1, 2 and 10
and co-author of Chaps. 1, 3 and 7.

Rolf Kruse has been teaching and researching in the field of digital media at the
Applied Computer Science department at the Erfurt University of Applied Sciences,
Germany, since 2012. At the beginning of the 1990s, parallel to his degree in archi-
tecture, he conducted research at the 1st Demonstration Center for Virtual Reality of
the Fraunhofer Institute for Computer Graphics Darmstadt (IGD). This research
was continued in 1994 at Art & Com in Berlin with a focus on urban planning and
the interaction of lay people with digital spatial content. As founder of the Laboratory
for Media Architectures in 1997 and Invirt GmbH in 2008, he created hybrid inter-
active installations for well-known companies and public clients. From 2002 to
2005 he headed Cybernarium GmbH, a spin-off of IGD, which developed XR appli-
cations for educational and entertainment purposes and ran exhibitions attracting a
wide audience. His current research focuses on applications and technologies for
immersive learning and user experience design for spatial computing. Rolf Kruse
actively supported the editors and authors of this textbook in structuring the content
and uniform graphical presentation.

Dr. Leif Oppermann is head of the Mixed and Augmented Reality Solutions
group at Fraunhofer FIT in Sankt Augustin, Germany, which is a part of their
Cooperation Systems research department. He is researching into applications of
mobile Mixed Reality, web-based collaboration and ubiquitous computing for intel-
ligence augmentation using a user-oriented cooperative design approach. Prior to
joining FIT, he was a research fellow at the Mixed Reality Lab of the University of
Nottingham, UK, under Steve Benford und Tom Rodden, where he worked on per-
vasive gaming projects and completed his PhD in 2009 with a thesis on “Facilitating
the Development of Location-Based Experiences”. Leif has a background in real-
time graphics programming and finished his Mediainformatics studies in 2003 at
the Hochschule Harz with a work on interacting with surfaces in AR using head-
mounted displays and a pointing device with distinction. He continued to work as a
research associate on AR projects with Christian Geiger and Ralf Doerner before
moving to Nottingham in 2004. Dr. Oppermann joined FIT in 2009 and currently
leads the German national project “IndustrieStadtpark” on mobile applications for
5G in an industrial campus setting. For this book he contributed to Chap. 6, espe-
cially to Sects. 6.1, 6.3, 6.4 and 6.5.

About the Authors

418

Dr. Volker Paelke has been professor of Human–Computer Interaction at the
University of Applied Science in Bremen since 2015. In 2002 he completed his
doctorate on the “Design of Interactive 3D Illustrations” at the University of
Paderborn, working in C-LAB, a joint venture with Siemens AG. From 2002 to
2004 he worked as a postdoc in the special research cluster SFB 614 Self-Optimizing
Systems, researching the use of VR in collaborative engineering applications. In
2004 he was appointed to the junior professorship for 3D geovisualization and aug-
mented reality at the Leibniz University of Hanover. From 2010 to 2012 he worked
as institute professor and head of the 3D visualization and modeling group at the
Geomatics Institute in Barcelona. From 2013 to 2014 he deputized as the professor
for user-friendly design of technical systems at the Ostwestfalen-Lippe University
of Applied Sciences in Lemgo and set up the User Experience Design group at
Fraunhofer IOSB-INA in Lemgo. His research interests lie in the user-centered
design of visual-interactive applications, with a focus on 3D visualization, AR/MR
techniques and natural user interfaces. Prof. Paelke contributed to Chap. 6, espe-
cially Sects. 6.3 and 6.6.

Dr. Thies Pfeiffer is Professor for Human-Computer Interaction and Head of the
Mixed Reality Laboratory at the Department for Electrical Engineering and
Information Technology, Faculty of Technology, University of Applied Sciences
Emden/Leer, Germany. He received his PhD in Informatics in the Artificial
Intelligence Group headed by Prof. Dr. Ipke Wachsmuth at Bielefeld University in
2010. From 2013 to 2019 he was Technical Director of the Virtual Reality Lab and
the Immersive Media Lab at the Cluster of Excellence Cognitive Interaction
Technology (CITEC) at Bielefeld University. In his research, he focuses on Mixed
Reality technologies for assistance and training. As author he was happy to contrib-
ute to Sect. 7.1.

Dr. Dirk Reiners is an Associate Professor in the Department of Computer Science
at the University of Central Florida. He has Masters and PhD degrees from the
Technical University of Darmstadt, Germany. Before joining academia, he worked
for more than 10 years at the Fraunhofer Institute for Computer Graphics, the larg-
est research group in the world for computer graphics, leading a variety of industry
and public research projects in virtual and augmented reality and directing the
development of the OpenSG system. His research interests are focused on software
systems for Virtual and Augmented Reality, different applications of interactive 3D
graphics and immersive display systems of all kinds. As an academic, he has
received several best paper awards, over $15 million in funding and several patents
and open source licenses. He is a member of IEEE and ACM. As an author, he con-
tributed to Chap. 5 (mainly Sect. 5.4) and Sect. 7.3.

Dr. Tobias Schwandt is a research assistant at the Ilmenau University of
Technology in the Virtual Worlds and Digital Games research group. In his disserta-
tion, he was particularly concerned with the illumination of virtual content in AR,
its influence on the real environment, the reconstruction of environmental light and

About the Authors

419

the manipulation of real geometry by virtual content. Prior to that, he obtained a
Master of Science in Applied Computer Science at the Erfurt University of Applied
Sciences in 2014. He has a strong background in computer graphics and visualiza-
tion of virtual content. He also spent some time at Fraunhofer IDMT in the research
area of exer-learning games as part of the project HOPSCOTCH. At TU Ilmenau,
eXtended- Reality (XR) became his professional and personal focus. His results
were presented and published, among others, by IEEE ISMAR, GRAPP, CW and
Springer. He co-authored Sects. 10.2 and 10.3.

Dr. Frank Steinicke is full professor of Human–Computer Interaction at the
Department of Informatics at the University of Hamburg, and head of the Human–
Computer Interaction research group. His research interests focus on three-
dimensional user interfaces for computer-generated environments, with a special
focus on virtual and augmented reality, multi-sensory perception and human–com-
puter interaction. He studied mathematics with a minor in computer science at the
University of Münster and graduated in 2002. In 2006 he received his doctorate in
computer graphics and visualization at the Institute for Computer Science at the
University of Münster. He then worked as a visiting professor at the Department of
Computer Science at the University of Minnesota in Duluth (USA) in 2009. In
2010, Frank Steinicke received the Venia Legendi for computer science from the
University of Münster. Before he accepted the call to Hamburg in 2014, he worked
as a W2 professor for media informatics in Würzburg between 2011 and 2014. As
an author, he contributed Sects. 2.1, 2.2, 2.3, 2.4.5, 2.4.6 and 2.5.2.

Dr. Arnd Vitzthum currently heads the media informatics group at the University
of Cooperative Education in Dresden and educates students in the fields of Computer
Graphics and Virtual Reality. He studied Computer Science at the Dresden
University of Technology. From 2003 to 2008, he worked as a research and teaching
assistant at the University of Munich, where he wrote his doctoral thesis on Software
Engineering of 3D-Applications. From 2008 to 2011, he was a scientific staff mem-
ber at the TU Bergakademie Freiberg where he contributed to the VR-related project
“Virtual Workers” and led the project “Roundtrip 3D”, which was based on the
results of his dissertation. Both projects were funded by the Deutsche
Forschungsgesellschaft (DFG). Dr. Arnd Vitzthum wrote Sects. 3.2, 3.3, 3.4,
and 3.5.

Kai Weber is studying applied computer science as a masters student with a focus
on media informatics at the University of Applied Science in Fulda. He works as a
research associate in the field of data analysis and was previously involved in sev-
eral research projects in the field of augmented reality. Furthermore, he also acted
as a supporting teacher in the field of 3D modeling, animation and game program-
ming. Before that, he worked as a freelance in the field of media production and as
a system administrator. During his bachelor’s thesis, he dealt with the generation
and analysis of synthetic training data for artificial neural networks in the field of
context- based image segmentation. In addition, he contributes as a 3D artist and
developer in a video game project. Kai Weber contributed Sect. 10.3.3.

About the Authors

420

Dr. Florian Weidner has been working as a research assistant in the Virtual Worlds
and Digital Games Group at the Ilmenau University of Technology since 2016. As
part of his dissertation, he worked on the development and impact of Spatial
Augmented Reality for virtual dashboards in vehicles. From 2009 to 2015, he stud-
ied Media Informatics with a minor in Biomedical Engineering at the Dresden
University of Technology, where he received his M.Sc. degree. His other research
interests include Virtual Reality, Mixed Reality and Augmented Reality, as well as
input and output devices for these technologies. His results were presented, among
others, at the IEEE Conference on Virtual Reality and 3D User Interfaces and the
ACM Conference on Automotive User Interfaces and Interactive Vehicular
Applications. He contributed to this book as an author on Sects. 10.2 and 10.3.

About the Authors

421© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
R. Doerner et al. (eds.), Virtual and Augmented Reality (VR/AR),
https://doi.org/10.1007/978-3-030-79062-2

A
AABB tree, 262
acceleration, 114
accommodation, 41, 45
accommodation-convergence discrepancy, 56
accommodation distance, 165
accretion, 47
accuracy, 107
acoustic, 113
acoustic attenuation, 95
acoustic tracking, 113
action at a distance, 212
active stereo method, 190
affine space, 405
albedo, 83
ambient light, 94
ambient occlusion, 85
ambient reflection, 82
ambisonics, 96
analysis of variances (ANOVA), 233
animation, 89
APP-CULL-DRAW, 285
appearance, 81, 211
application programming interface (API), 372
AR applications, 318
arcball, 213
ARCore, 396
area lights, 94
AR glasses, 151
AR System, 29, 30
ARToolkit, 25, 372
asthenopia, 60
asymmetrical viewing volume, 63
ataxia, 60
atmospheric perspective, 46

attention, 64
attention map, 65
AttrakDiff, 230
audible output, 193
audio source, 95
auditory perception, 48
augmented reality (AR), 10, 18–20, 291
augmented reflection technology (ART), 353
augmented virtuality, 19
author, 371
authoring process, 372, 375
autostereoscopic methods, 191
avatar, 97, 216, 362
axis-aligned bounding box (AABB), 258–259

B
backface culling, 276
backfaces, 81
background sound, 95
base, 403
behavior, 75, 91–93, 98
behavior trees, 92
believability, 17
between-group design, 229
bias, 229
billboards, 88, 100
binary space partitioning tree

(BSP tree), 264–266
binaural hearing, 95
binocular depth cue, 45
Binocular HMD, 166
Blender, 387
blending, 184, 351
Blueprints, 378, 389

Index

https://doi.org/10.1007/978-3-030-79062-2#DOI

422

Bonferroni correction, 233
boundary representation (b-rep), 80
bounding sphere, 259
bounding volume (BV), 80, 90, 257, 274,

276, 285
bounding volume hierarchies (BVHs),

262, 285
box-and-whisker diagram, 231
box plot, 231
break in presence, 17
brightness, 118
brightness uniformity, 154
broad phase, 267
building information modeling (BIM), 345
bump mapping, 84

C
C#, 375
C++, 378
caching, 281
calibration, 112
camera-based tracking, 108
“camera-in-hand” technique, 217
carmouflage object, 313
Cartesian coordinate system, 406
causation, 233
cave automatic virtual environment

(CAVE), 25, 350
ChairIO, 221
change blindness, 220
channel separation, 185
Chi-square test, 234
circular polarization filter, 187
clipping, 273
Cochran’s Q test, 234
coding, 230
cognitive map, 214
cognitive processor, 40
Cohen’s kappa, 230
collabative virtual environment (CVE), 155
Collada, 387
collision detection, 255–271
collision engine, 90
collision response, 270
color picking, 206
color reproduction, 153
color space, 153
complete survey, 232
concatenation, 410
cones, 41
constraints, 208
context-aware filling, 321
context-sensitive, 321

contingency coeffi-cient, 234
continuous collision detection, 271
contrast, 117
contrast ratio, 138
controlled experiment, 233
control techniques, 217
convergence, 43, 45
conversion tools, 372
Cook-Torrance model, 83
coordinates, 403
coordinate system, 405
Coriolis stimulation, 61
correlation, 233
corresponding points, 43
coupling-in, 158
coupling-out, 158
crossed disparity, 43
cross product, 406
cross-reality, 20
crosstalk, 187
culling, 272
curved screen, 176
cybersickness, 60, 247
cyclopean scale, 54

D
dashboard, 311
data glasses, 24
DataGlove, 24
DaVinci-stereopsis, 44
debriefing, 229
decision trees, 92
deep learning, 324
deep neural network, 86
deformable object, 91
depersonalization, 236
depth buffer, 275, 312
depth cameras, 306, 307
depth cameras (RGBD cameras), 312
depth cues, 45
depth of field, 56
descriptor, 127
design activities, 225
diamond square algorithm, 101
diffuse reflection, 82
digital light projector (DLP), 162
dimension, 403
diminished reality (DR), 20, 21, 314, 315, 321
diplopia, 53
directed acyclic graphs (DAGs), 75, 284
directed line segments, 403
directional light, 93
direct manipulation, 203

Index

423

discrete-oriented polytopes
(k-DOPs), 261–262

disparity, 43, 45
displacement mapping, 84
display, 111
display latency, 249, 252
display surface, 44
distance, 406
distortion maps, 169
DLP link, 191
dome projection, 176, 179
Doppler effect, 96
double vision, 53, 54
drift, 111
dwell time, 317
dynamic depth cue, 45
dynamic range, 153

E
early Z rejection, 276
edge collapse, 86
elastic interface, 220
electrical muscle stimulation, 197
electromagnetic tracking system, 250
elevation grid, 101
ELSI/ELSA, 237
Emmert’s law, 57
end effector, 144
end effector displays, 144
end-to-end latency, 249, 254
energy conservation, 83
entity, 375
entity-component model, 375, 379
equirectangular function, 169
escapism, 236
ethics, 237
ethics guidelines, 237
Euclidean point space, 406
exit pupil, 164
exoskeleton, 135
exploration, 215
eXtended reality (XR), 19
eye-directed control, 216
eye motion box, 164
eye relief, 164
eye-tracking, 252, 317

F
factor, 233
feature-based tracking techniques, 127
feature integration theory, 65

feature points, 383
features, 382, 383
field, 401
field of view (FOV), 52, 76, 215
finger tracking, 111
finite state machines (FSM), 91
first person-games, 381
Fisher’s test, 234
Fitts’ Law, 208
fixation maps, 66
fixed-directions hulls (FDH), 261
flashlight technique, 210
focus, 208
force feedback, 195
fovea, 41
foveated rendering, 252
fractal shape, 102
fragment shader, 85
frame cancellation, 55
frame rate, 247
frame-rate induced delay, 249
frames per second (fps), 153
Fresnel reflection, 84
Friedman test, 234
front luminance, 158
front projection, 175
frustum, 273
functional decomposition, 227
fusion, 44

G
gabor filter, 66
gain factor, 183
gains, 59
game AI, 92, 98, 285
game engines, 74, 83, 103, 285, 372
GameObjects, 375
gamut, 153
gaze-based interaction, 317
geographic information system

(GIS), 345
geometric field of view, 58
geometric registration, 293, 300
geometric vector, 403
gestures, 205
ghosting, 187
GJK algorithm, 269
global illumination models, 94
glossy reflections, 306
gl transmission format (glTF), 82
go-go technique, 210
graphical user interfaces (GUIs), 14

Index

424

graphics processing unit (GPU), 86, 251, 256,
271–273, 275, 279, 282, 283, 285

grounded theory, 230
guided navigation, 222

H
haptic feedback, 256
haptic loop, 195
haptic perception, 49
haptics, 49
hard edge, 184
Hawthorne effect, 229
Head Related Transfer Function (HRTF), 194
headlight, 95
head-mounted displays (HMDs), 12, 13, 306
head-related transfer function (HRTF), 48
head-tracking, 12
head-up content, 311
head-up displays (HUD), 320
height field, 101
height in the field of view, 46
hermann grid, 3
heuristic evaluation, 229
hierarchical finite state machines, 92
hierarchical view volume culling, 274
holodeck, 12
holographic objects, 390
holographic optical elements (HOE), 159
HoloLens, 390
HOMER, 210
Homogeneity, 154
homogeneous coordinates, 409
homography, 322, 324
horizontal prototypes, 228
horopter, 43
HTC Vive, 388
human-centered design, 224, 225
human–computer interaction (HCI), 202
human information processing, 41
hybrid tracking system, 250
hybrid tracking techniques, 131

I
illumination model, 82
image blur, 45
image layer technique, 210
image sharpness, 154
immersion, 13, 51
inattentional blindness, 64
indexed face set, 79, 280
indexed mesh, 79, 280
indexing, 280

indirect illumination, 94
indirect lighting, 94
inertial navigation system (INS), 115
inertial sensor, 114
inertial tracking, 114–115
inertial tracking system, 250
informed consent, 229
inhibition, 66
input devices, 107–146
inside-out, 113
inside-out tracking, 113
interaction by navigation, 316
Interactivity, 72
interference filter, 188
interpupillary distance (IPD), 166
interview, 230
intuitive user interface, 15
inverse kinematics, 98
inverse matrix, 409
involvement, 17
isometric interface, 220
isotonic interface, 220
ISO 9241-210, 225

J
java native interface (JNI), 397
Javascript, 375
joy of use, 202

K
Kalman filters, 131
k-d tree, 265, 266, 274
keyframe, 89
keyframe animation, 89
kinaesthesia, 49
known size, 46
Kruskal-Wallis test, 234

L
landmark knowledge, 214
Laser-based tracking, 115–116
latency, 245–248, 250–252, 300
latency determination, 250
latency requirements, 247
Latin square, 229
leaning-based interface, 220
lenticular lenses, 191
level of detail (LOD), 87, 278, 285
light attenuation, 93
light detection and ranging (LiDAR), 382, 383
lightmap, 94

Index

425

lightmap baking, 94
light probes, 94, 304
light sources, 93
Likert scale, 231
line, 407
linear combination, 403
linearly independent, 403
linear perspective, 46
local coordinate system, 76
local illumination models, 94
local interaction techniques, 208
logical input devices, 203
L-shapes, 175
luminance, 153
luminous flux, 153
luminous intensity, 153

M
magical 3D interaction, 203
magic lens, 307
magic lens metaphor, 295
magic wand, 207
magnetic field-based tracking, 114
maneuvering, 216
manipulation, 211
Mann-Whitney-U-test, 234
mapping, 382
marker-based methods, 118–122
marker-based optical tracking, 252
marker-based tracking, 122
markerless, 118
material, 82, 283
material systems, 82
matrix, 408
matrix-matrix addition, 408
matrix-matrix multiplication, 408
McNemar’s test, 234
mechanical tracking system, 254
median, 231
mediated reality, 20, 305
mental model, 202
metalness, 83
metaphor, 15, 202
micro-facets, 83
Midas touch problem, 209
midpoint displacement method, 101
Minkowski difference, 269
Minkowski sum, 269
mixed reality (MR), 19
mobile position tracking, 116
mobile systems, 155
mock-up, 227
mode errors, 209

monocular depth cue, 45
Monocular HMD, 166
morality, 237
motion capture, 98
motion parallax, 47
motion sickness, 60
motion sickness assessment questionnaire

(MSAQ), 62
motion-to-photon latency, 249
motor processor, 40
multi-channel audio systems, 194
multimodal, 13
multisensory perception, 48
multi-sided projection systems, 195

N
narrow phase, 267, 268
natural 3D interaction, 203
natural user interfaces, 213
navigation, 214
negative parallax, 44
Newtonian physics, 100
nimbus, 208
nominal, 231
non-player characters (NPCS), 97
normalized device coordinates (NDC), 279
normal mapping, 84
normal vector, 407
null hypothesis, 232
number of degrees of freedom, 110, 208

O
OBB tree, 262
obtrusiveness, 112, 155
occluders, 312
occlusion, 45
occlusion culling, 275, 276
occlusion query, 276
octree, 266, 274
off-axis method, 63
omni light, 93
one-sample t-test, 234
one-tailed test, 233
one-way ANOVA, 234
opacity, 84
openVR, 385
optical flow, 50
optical see-through AR (OST-AR), 296
optical see-through displays

(OST displays), 158
optical tracking system, 250
ordinal, 231

Index

426

oriented bounding boxes (OBBs), 259–261
origin, 405
orthogonal, 406
outdoor position tracking, 116–117
outside-in, 118
outside-in tracking, 146
overuse, 238
overview knowledge, 215

P
paired t-test, 234
Panum’s fusional area, 44
paradoxical window, 55
parallax, 44
parallax barriers, 192
parallax budget, 54
particle system, 88, 99
path planning, 222
pathtracing, 94
Pearson correlation, 234
perceptual processor, 40
perspective, 295
PHANTom, 25
phantom objects, 312
Phong model, 82
photogrammetry, 73
photometric registration, 293, 304, 309
physically based rendering (PBR), 82
physics engine, 90
physics simulation, 256, 270
picking, 206
pictorial depth cue, 45
pilot, 229
place illusion, 17
plane, 407
plausibility illusion, 17
point & teleport method, 221
pointing device, 206
pointing gestures, 213
point light, 93
point-normal form, 407
point-point subtraction, 404
point-vector addition, 405
polarization, 186
polygon, 78
polygon mesh, 79
polygon soup, 280
portal culling, 277
pose estimation, 292
position estimation, 293
position vector, 405
positive parallax, 44
postural instability theory, 61

post-WIMP interface, 15
preattentive processing, 65
Prefabs, 375
presence, 17, 51
pre-test, 229
priming, 235
primitive instancing, 81
prism-based glasses, 159
probability value (p-value), 233
procedural knowledge, 215
procedural modeling, 73, 101–103
programming interface, 372
programming libraries, 372
projection matrix, 274
projection system, 151
proprioception, 49
props, 205
Proteus effect, 362
prototype, 228
proxy, 317
pupil distance, 53
pupil forming HMDs, 164

Q
q% quantile, 231
quadrilateral strips, 282
quadtree, 266
qualitative analysis, 230
quasimodes, 209
questionnaire, 230

R
radiosity, 94
randomized approach, 323
RANSAC, 127
rational, 231
ray-casting, 206, 210
raytracing, 86, 94
reality–virtuality continuum, 19
real-time capability, 72, 246
real-time rendering, 271
rear projection, 174
redirected free exploration with distractors

(RFED), 219
redirected walking (RDW), 67, 219
refresh rate, 247, 256
registration, 300
regression analysis, 233
relative size, 46
remote interaction techniques, 208
rendering latency, 249, 251
repeated measures ANOVA, 234

Index

427

resolution, 110
retina, 41
retinal HMDs, 161
RGBD, 128
rigging, 97
right-handed system, 407
rigid bodies, 89
robustness of linear perspective, 52
rods, 41
roughness, 83
route knowledge, 215
rubber hand illusion, 235

S
saccades, 41
salience, 65
saliency, 65
saliency map, 65
sample, 232
scalar, 401
scalar-matrix multiplication, 408
scalar multiplication, 402, 403
scalar product, 405
scale invariant feature transform (SIFT), 128
scenario-based design, 227
scene, 75
scene graph, 74–77, 376, 378, 395
scene graph systems, 284–285
Scripts, 375
seamless display, 180
search, 216
seasickness, 60
seating buck, 334
selection, 205
self-perception, 237
semantic differential scale, 231
sensitivity, 112
sensory conflict theory, 61
separating axis, 260
separating axis theorem (SAT), 260
serious games, 333
shader, 83, 85, 86
shadow cast, 305
shadows, 46
shape from shading, 46
Shapiro-Wilks test, 232
shutter glasses, 177
significance level, 233
simplification of polygon meshes, 74
simulator sickness, 60
simulator sickness questionnaire

(SSQ), 62

simultaneous localization and mapbuilding
(SLAM), 306, 382

single pass stereo, 251
single-sided displays, 173
size constancy, 46, 57
skeleton-based animation, 97
skinning, 97
sky box, 96
sky sphere, 96
small feature culling, 277
smart projectors, 309
soft bodies, 89
soft edge, 184
software development kit (SDK), 372
software tools, 372
solid model, 80, 81
solid particle systems, 100
Sort & Sweep, 267
sound, 95, 96
space partitioning, 263
spatial AR (SAR), 297, 309
spatial audio sources, 95
spatial augmented reality (SAR), 347
spatial hashing, 264
spatial mapping, 393
Spearman correlation, 234
specular reflection, 82
speed constancy, 50
speeded up robust features (SURF), 128
speed teleporting method, 222
sphere tree, 262
spherical displays, 175
spherical harmonics, 305
spot light, 93
standard deviation, 232
state machines, 91, 98
stationary systems, 151
statistically significant, 233
steamVR, 385
stereo blindness, 44
stereo display, 44
stereopsis, 42
stereoscopic rendering, 251
stereoscopic window violation, 55
stereotype, 235
strafing, 216
stripping, 282
structured light, 307
superimposition, 293
supernatural user interfaces, 213
surface model, 78
suspension of disbelief, 7
Sweep & Prune, 267, 268

Index

428

T
tail, 403
tangibles, 205, 317
tangible user interfaces (TUI), 317
task analysis, 227
task load index, 230
task maps, 65
technology assessment (TA), 237
technology readiness levels (TRLs), 332
teleportation, 217
temporal coherence, 268
terrain modeling, 101
test plan, 229
tethered, 211
texture, 84, 85
texture baking, 87
texture gradient, 46
texturing, 84
thinking aloud test, 230
3D computer graphics, 13
3D cursor, 207
3D interaction, 12
3D widgets, 204
tiled displays, 151
tiled projections, 179
tiling, 101
time, 107
Time of Flight (TOF), 113
tip, 403
toe-in method, 63
tool chain, 372
tracking, 12, 292, 300, 382
tracking latency, 248, 250, 252
tracking systems, 250
tracking techniques, 107
tracking update rate, 300
tracking using black and white

markers, 122–126
transcutaneous electrical nerve

stimulation, 197
transformation matrix, 76
translucency, 83
transparency, 83
transport latency, 248, 251
transposed matrix, 408
traveling, 215
treatment factor, 233
triangle strips, 79, 282
Tukey box plot, 231
two-tailed test, 232

U
ultimate display, 12, 23
ultrasound-based systems, 197
UML use case diagram, 227
uncrossed disparity, 43
uniformity, 151
Unity, 375, 385, 390
unpaired t-test, 234
unreal engine (UE), 378, 388
update rate, 111
urban canyon, 116
usability, 202
use case, 227
user experience, 202
user tests, 228–234

V
vection, 50, 62
vector, 402
vector addition, 402
vector space, 401
vergence-accommodation conflict, 56
vergence-focus conflict, 56
vertex shader, 85
vertical parallax, 63
vertical prototypes, 228
vertigo, 247
vestibular sense, 50
vestibulo-ocular reflex, 248
video pass-through AR, 295
video see-through AR (VST-AR), 295
video see-through displays (VST

displays), 158
video stream, 292
view frustum culling, 273
view volume, 256
view volume culling, 256, 273, 274, 278, 285
vignetting, 183
virtual body ownership (VBO) illusion, 362
virtual display, 161
virtual environment, 6
virtual eye separation, 53
virtual field of view, 294
virtual hand, 207, 213
virtual humans, 97
virtual prototyping, 97
virtual reality (VR), 20
virtual reality locomotion, 216
virtual reality markup language (VRML), 74

Index

429

virtual world, 6, 71
visibility testing, 272
visual field, 151
visual programming, 373
visual programming approach, 378
visual realism, 72
visual SLAM, 130
visual system, 2
Vive Cosmos, 388
voice commands, 205
volumetric displays, 44
von Neumann bottleneck, 281
voodoo dolls, 214
Vortex rings, 197
VR/AR application, 371
VR/AR assets, 371
VR glasses, 136
VR sickness, 60
VR system, 6, 26–28

W
walking in place, 218
wave field synthesis, 96
waveguide optics, 158

wavelength multiple, 188
wayfinding, 214
what-you-see-is-what-you-get principle

(WYSIWYG), 373
white flash, 191
whole-body illusion, 235
Wilcoxon rank sum test, 234
Wilcoxon signed rank test, 234
Windows, Icon, Menu, Pointer

(WIMP), 202
winner-takes-all approach, 66
wired clothing, 27
within-group design, 229
world-in-miniature (WIM), 210

X
X-ray vision, 314
X3D, 74

Z
Z-buffer, 275
zero vector, 402
Z pre-pass, 276

Index

	Foreword
	Preface
	Contents
	Chapter 1: Introduction to Virtual and Augmented Reality
	1.1 What Is VR/AR About?
	1.1.1 The Perfect Virtual Reality
	1.1.2 The Simulation of the World
	1.1.3 Suspension of Disbelief
	1.1.4 Motivation

	1.2 What Is VR?
	1.2.1 Technology-Centered Characterizations of VR
	1.2.2 VR as an Innovative Kind of Human–Computer Interaction
	1.2.3 Mental Aspects of the VR Experience

	1.3 What Is AR?
	1.4 Historical Development of VR and AR
	1.5 VR Systems
	1.6 AR Systems
	1.7 Using the Book
	1.7.1 Structure of the Book
	1.7.2 Usage Instructions
	1.7.3 Target Groups
	Lecturers in the Field of VR/AR
	Students
	Users and Those Who Want to Become Users
	The Technology-Savvy

	1.8 Summary and Questions
	Recommended Reading
	References

	Chapter 2: Perceptual Aspects of VR
	2.1 Human Information Processing
	2.2 Visual Perception
	2.2.1 Stereo Vision
	2.2.2 Perception of Space

	2.3 Multisensory Perception
	2.3.1 Auditory Perception
	2.3.2 Haptic Perception
	2.3.3 Proprioception and Kinaesthesia
	2.3.4 Perception of Movement
	2.3.5 Presence and Immersion

	2.4 Phenomena, Problems, Solutions
	2.4.1 Deviating Observation Parameters
	2.4.2 Double Vision
	2.4.3 Frame Cancellation
	2.4.4 Vergence-Focus Conflict
	2.4.5 Discrepancies in the Perception of Space
	2.4.6 Discrepancies in the Perception of Movement
	2.4.7 Cybersickness
	2.4.8 Vertical Parallax Problem

	2.5 Use of Perceptual Aspects
	2.5.1 Salience
	2.5.2 User Guidance

	2.6 Summary and Questions
	Recommended Reading�
	References

	Chapter 3: Virtual Worlds
	3.1 Introduction
	3.1.1 Requirements on 3D Object Representations for Virtual Worlds
	3.1.2 Creation of 3D Models
	3.1.3 Preparation of 3D Models for VR/AR
	3.1.4 Integration of 3D Models into VR/AR Runtime Environments

	3.2 Scene Graphs
	3.3 3D Objects
	3.3.1 Surface Models
	Polygonal Representations
	Polygons
	Polygon Meshes
	Triangle Strips

	3.3.2 Solid Models
	Boundary Representations (B-Reps)
	Primitive Instancing

	3.3.3 Appearance
	Materials
	Textures
	Shader

	3.3.4 Optimization Techniques for 3D Objects
	Simplification of Polygon Meshes
	Level-of-Detail Techniques
	Texture Baking
	Billboards

	3.4 Animation and Object Behavior
	3.4.1 Keyframe Animation
	3.4.2 Physics-Based Animation of Rigid Bodies
	3.4.3 Object Behavior
	3.4.4 Behavior and Animation in Scene Graphs

	3.5 Light, Sound, Background
	3.5.1 Light Sources
	3.5.2 Sound
	3.5.3 Backgrounds

	3.6 Special Purpose Systems
	3.6.1 Virtual Humans
	3.6.2 Particle Systems
	3.6.3 Terrain
	3.6.4 Vegetation

	3.7 Summary and Questions
	Recommended Reading
	References

	Chapter 4: VR/AR Input Devices and Tracking
	4.1 Fundamentals of Input Devices
	4.2 Tracking Techniques
	4.2.1 Acoustic Tracking
	4.2.2 Magnetic Field-Based Tracking
	4.2.3 Inertial Tracking
	4.2.4 Laser-Based Tracking
	4.2.5 Outdoor Position Tracking

	4.3 Camera-Based Tracking
	4.3.1 Marker-Based Methods
	4.3.2 Tracking Using Black and White Markers
	Use of Marker Tracking
	Basic Operation
	Intrinsic and Extrinsic Camera Parameters

	4.3.3 Feature-Based Tracking Techniques
	Geometry-Based Tracking
	Other Feature-Based Tracking Techniques

	4.3.4 Visual SLAM
	4.3.5 Hybrid Tracking Techniques
	Cloud-Based Tracking
	Microsoft Hololens Tracking

	4.4 Finger Tracking
	4.5 Eye Tracking
	4.5.1 Eye Movements
	4.5.2 Methods
	4.5.3 Functionality of an Eye Tracker
	4.5.4 Calibration
	4.5.5 Eye Tracking in Head-Mounted Displays
	4.5.6 Remote Eye Tracker

	4.6 Further Input Devices
	4.6.1 3D Mouse
	4.6.2 Mechanical Input Devices
	4.6.3 Treadmills for Virtual Reality

	4.7 Summary and Questions
	Recommended Readings
	References

	Chapter 5: VR/AR Output Devices
	5.1 Introduction
	5.2 Basics of Visual Output
	5.3 Head-Mounted Displays (HMDs)
	5.3.1 VR Glasses
	5.3.2 AR Glasses
	5.3.3 General Characteristics and Properties of HMDs
	5.3.4 Special HMDs

	5.4 Stationary VR Systems
	5.4.1 Single-Sided Displays
	5.4.2 Multi-Sided Displays
	5.4.3 Tiled Displays
	5.4.4 Stereo Output Methods

	5.5 Audio Output Devices
	5.6 Haptic Output Devices
	5.7 Summary and Questions
	Recommended Reading
	References

	Chapter 6: Interaction in Virtual Worlds
	6.1 Fundamentals of Human–Computer Interaction
	6.2 System Control
	6.3 Selection
	6.3.1 Pointing in Virtual Worlds
	6.3.2 Interaction Design
	6.3.3 Examples of Selection Techniques

	6.4 Manipulation of Objects
	6.5 Navigation
	6.5.1 Control Techniques for Traveling
	6.5.2 Walking Technique for Natural Movement Control
	6.5.3 Leaning Interfaces for Movement Control
	6.5.4 Teleportation for Movement Control
	6.5.5 Route Plan, Goal-Based and Guided Movement Techniques
	6.5.6 Criteria for Navigation Techniques

	6.6 Processes for the Design and Implementation of Interaction
	6.6.1 Characteristics of VR/AR User Interfaces
	6.6.2 Human-Centered Design of VR/AR Interactions
	Analysis of the Context of Use
	Specification of Requirements
	Concept, Design and Implementation
	Evaluation (Especially User Tests)

	6.7 User Tests
	6.8 Ethical, Social and Legal Aspects of VR/AR
	6.9 Summary and Questions
	Recommended Reading
	References

	Chapter 7: Real-Time Aspects of VR Systems
	7.1 Latency in VR Systems
	7.1.1 What Are the Requirements on Latency?
	7.1.2 Where Do Latencies Actually Arise?
	7.1.3 Is Latency in a VR System Constant?
	7.1.4 What Are the Approaches to Determining Latency?
	Latency Estimation from Datasheets
	Measuring the Latency of Tracking Systems
	Measuring End-to-End Latency

	7.1.5 Summary of Latency

	7.2 Efficient Collision Detection in Virtual Worlds
	7.2.1 Bounding Volumes
	Axis-Aligned Bounding Box (AABB)
	Bounding Spheres
	Oriented Bounding Boxes (OBBs)
	Discrete-Oriented Polytopes (k-DOPs)

	7.2.2 Bounding Volume Hierarchies and Space Partitioning Techniques
	Bounding Volume Hierarchies (BVHs)
	Space Partitioning Techniques

	7.2.3 Collision Detection in Large Environments
	Broad Phase Collision Detection
	Narrow Phase Collision Detection

	7.2.4 Summary and Advanced Techniques

	7.3 Real-Time Rendering of Virtual Worlds
	7.3.1 Algorithmic Strategies
	View Volume Culling
	Hierarchical View Volume Culling
	Occlusion Culling
	Backface Culling
	Small Feature Culling
	Portal Culling
	Level of Detail (LOD)

	7.3.2 Hardware-Related Strategies
	Object Size
	Indexing
	Caching
	Stripping (Triangle and Quadrilateral Strips)
	Minimizing State Changes

	7.3.3 Software Systems for Virtual Worlds
	Scene Graph Systems
	Game Engines

	7.4 Summary and Questions
	Recommended Reading
	References

	Chapter 8: Augmented Reality
	8.1 Introduction
	8.1.1 Getting Started
	8.1.2 AR – An Overview

	8.2 Registration
	8.2.1 Geometric Registration
	8.2.2 Photometric Registration

	8.3 Visual Output
	8.3.1 Handheld Devices
	8.3.2 Projection-Based Output
	8.3.3 Further Types of Spatial AR
	8.3.4 AR Mirrors

	8.4 Special AR Techniques
	8.4.1 Head-Up Content
	8.4.2 Occlusions and Phantom Objects
	8.4.3 Crossfading Markers
	8.4.4 Virtual Holes
	8.4.5 X-Ray Vision

	8.5 Special AR Interaction Techniques
	8.5.1 Interaction by Navigation
	8.5.2 Gaze-Based Interaction
	8.5.3 Tangible User Interfaces

	8.6 AR Applications
	8.7 Diminished and Mediated Reality
	8.7.1 Diminished Reality
	8.7.2 Mediated Reality

	8.8 Summary and Questions
	Recommended Reading
	References

	Chapter 9: VR/AR Case Studies
	9.1 Introduction and Overview
	9.2 Using Virtual Reality for Design Processes in the Automotive Industry
	9.3 AR/VR Revolutionizes Your In-Car Experience
	9.4 VR-Based Service Training in the Life Sciences and Diagnostics Industry
	9.5 Utilizing Augmented Reality for Visualizing Infrastructure
	9.6 Enhancing the Spatial Design Process with CADwalk
	9.7 The aixCAVE at RWTH Aachen University
	9.8 Augmented Reflection Technology: Stroke Rehabilitation with XR
	9.9 Collaborative Virtual Trainers in VR Applications
	9.10 Virtual Patients: A Case Study from Research to Real-World Impact
	9.11 Embodied Social XR for Teaching, Learning and Therapy
	9.12 Virtual Reality for Teaching Literacy to Prisoners
	References
	References for Sect. 9.1
	References for Sect. 9.2
	References for Sect. 9.3
	References for Sect. 9.5
	References for Sect. 9.6
	References for Sect. 9.7
	References for Sect. 9.8
	References for Sect. 9.9
	References for Sect. 9.10
	References for Sect. 9.11
	References for Sect. 9.12

	Chapter 10: Authoring of VR/AR Applications
	10.1 Supporting Authors
	10.2 Foundations of Authoring Software
	10.2.1 Unity
	How It Works
	VR/AR Development with Unity
	Summary

	10.2.2 Unreal Engine
	How It Works
	Developing VR/AR Applications
	Summary

	10.2.3 AR Frameworks: ARCore and ARKit
	Availability
	Tracking and Mapping
	Reconstruction
	Estimation of Environment Light
	Summary

	10.3 Examples of the Creation of VR/AR Applications
	10.3.1 Making of: Immersive VR Presentation of CAD Files with the Vive Cosmos in Unity
	10.3.2 Making of: Interaction in VR Using the Vive Cosmos and Unreal Engine
	10.3.3 Making of: An Application for the Microsoft HoloLens 2 with Unity
	10.3.4 Making of: Basics for the Development of a Native ARCore Application for Android

	10.4 Summary and Questions
	Recommended Reading
	References
	Software, Online Documentation and Tutorials

	Chapter 11: Mathematical Foundations of VR/AR
	11.1 Vector Spaces
	11.2 Geometry and Vector Spaces
	11.3 Points and Affine Spaces
	11.4 Euclidean Space
	11.5 Analytical Geometry in ℝ3
	11.6 Matrices
	11.7 Affine Transformations
	11.8 Determination of Transformation Matrices

	About the Authors
	Index

