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Foreword

You hold in your hands – or are viewing on a screen – an excellent book on virtual 
and augmented reality. It will introduce you to a plethora of topics from a variety of 
viewpoints by multiple experts.

Virtual and augmented reality has indeed come a long way since Ivan Sutherland’s 
1968 head-mounted 3D display. The paper starts:

The fundamental idea behind the three-dimensional display is to present the user with a 
perspective image which changes as he moves. … if we can place suitable two-dimensional 
images on the observer’s retinas, we can create the illusion that he is seeing a three- 
dimensional object. … The image presented by the three-dimensional display must change 
in exactly the way that the image of a real object would change for similar motions of the 
user’s head. (Sutherland 1968, first paragraph)

Every aspect of Sutherland’s above description  – and much, much more  – is 
addressed extensively in this book: (1) the basic elements of VR/AR systems, (2) 
the perceptual aspects of VR, (3) modeling of virtual worlds, (4) input devices and 
tracking, (5) output devices, (6) interaction, (7) real-time aspects of VR, (8) AR 
overview, (9) a group of case studies, (10) a tutorial on creating VR/AR applications 
with current hardware and software, and (11) mathematical foundations of VR/
AR. This list is but a hint of the many topics in this volume.

This text will be useful and enjoyable for both the beginner as well as the expe-
rienced practitioner. For “old folks” like yours truly, many pages convey new infor-
mation (trying to use VR to teach literacy to prisoners) and many trigger memories 
of old VR adventures (building 1980s VR systems with miniature TV displays and 
analog TV camera-based trackers).

In this volume you will learn not only about VR/AR topics but also about many 
other topics whose utility extends far beyond VR/AR boundaries: physically based 
modeling, user interfaces, real-time rendering, and haptic devices, to name just a few.

The authors present each chapter with a gentle introduction, clear organization, 
useful illustrations, clear exposition, and end each chapter with a summary, a set of 
self-study questions, a short list of recommended further readings, and the list of 
references for that chapter. The list of recommended further readings is particularly 
helpful for many of us who, when we delve into a topic of interest, often yearn for 
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more. This recommended reading list is a short annotated list, in contrast to the 
long, complete list of references for that chapter.

As a reader, I really appreciate this chapter-oriented organization; it is much 
easier to look up references and scan for other relevant readings at the end of a par-
ticular chapter than to consult a much longer list of all the combined references at 
the end of an entire book. When there are overlaps with other chapters, the authors 
make clear references to the other locations, to the related topics, and to the relevant 
illustrations.

This is indeed an excellent volume. It is sure to be useful both for adoption as a 
textbook in a VR/AR course and also for self-study. I highly recommend it.

The University of North Carolina at Chapel Hill,  
Chapel Hill, North Carolina, USA

 Henry Fuchs

June 2021

Foreword
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Preface

Professional associations and societies in the field of sciences, such as the 
Association for Computing Machinery (ACM) or the IEEE Computer Society, play 
an important role in advancing scientific discourse and education. Their activities 
lead to tangible outcomes, such as journals or conference proceedings. This book is 
the result of an initiative that started in the special interest group for virtual reality 
and augmented reality (VR/AR) of the German Society for Computer Science (GI). 
The members of this special interest group, who come not only from academia (e.g., 
universities, research institutes) but also from companies and organizations, started 
a project in 2010 that aimed to provide a scientifically based introductory book to 
VR/AR that can serve as a textbook for students of various disciplines and also cater 
to professionals and the interested public. It soon became clear that a multi-faceted 
and broad topic such as VR/AR needed the expertise of many authors from the 
group. However, just slapping chapters from different authors together does not 
necessarily lead to a good introductory text – especially for beginners, consistency 
and coherency are key. Therefore, we four editors saw our task as being to invest 
significant time and to heavily edit the initial texts from the authors to obtain a 
coherent and consistent book. In this context, we are especially grateful to Rolf 
Kruse, Professor of Digital Media and Digital Design, who ensured consistency and 
quality for all of the figures.

Since the German version of this book appeared for the first time in 2013, it has 
become widely popular, especially as basic literature for courses in VR and AR. The 
most recent German edition is from 2019. In 2020, we decided to publish this inter-
national edition. This did not just mean that we translated the book from German to 
English. For instance, the case studies that initially came only from Germany were 
replaced by case studies from all over the world.

This preface is a good opportunity to thank once again all those involved in this 
book project. These include not only the authors and those involved with Springer 
Nature but also all our readers of the German editions, especially our students and 
the members of the VR/AR special interest group of the German Society for 
Computer Science, who have given us incredibly valuable feedback that has been 
incorporated into this current edition. Among other things, we have complied with 
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the request to make the illustrations contained in the book available electronically 
for non-commercial use, for example, in lecture slides or student works. A corre-
sponding package, which also contains code examples from Chap. 10, is available 
for free download at vr-ar-book.org.

Now, it is a pleasure for us to serve as your guide for your journey into the fasci-
nating world of virtual and augmented reality.

Wiesbaden, Germany Ralf Doerner
Ilmenau, Germany Wolfgang Broll
Darmstadt, Germany Paul Grimm
Freiberg, Germany Bernhard Jung 

Preface
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Chapter 1
Introduction to Virtual and Augmented 
Reality

Ralf Doerner, Wolfgang Broll, Bernhard Jung, Paul Grimm, Martin Göbel, 
and Rolf Kruse

Abstract What is Virtual Reality (VR)? What is Augmented Reality (AR)? What is 
the purpose of VR/AR? What are the basic concepts? What are the hard- and soft-
ware components of VR/AR systems? How has VR/AR developed historically? The 
first chapter examines these questions and provides an introduction to this textbook. 
This chapter is fundamental for the whole book. All subsequent chapters build on it 
and do not depend directly on one another. Therefore, these chapters can be worked 
through selectively and in a sequence that suits the individual interests and needs of 
the readers. Corresponding tips on how this book can be used efficiently by different 
target groups (students, teachers, users, technology enthusiasts) are provided at the 
end of the chapter, as well as a summary, questions for reviewing what has been 
learned, recommendations for further reading, and the references used in the chapter.

1.1  What Is VR/AR About?

Let us first look at the ideal conception of a Virtual Reality (VR): What is a perfect 
VR? In this extreme case the underlying ideas of VR become particularly clear. 
Then we will look at why perfect VR cannot be achieved today (and why one would 
not want to achieve it, e.g., for ethical reasons) and show how a virtual environment 
can still be created. We introduce the concept of Augmented Reality (AR). Finally, 
we motivate what VR and AR can be used for today and why these topics are being 
dealt with intensively.
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1.1.1  The Perfect Virtual Reality

Humans perceive the world through sensory impressions. If, for example, light is 
reflected by a real object, such as a tiger, and enters a person’s eye, photochemical 
processes are triggered in special sensory cells located in the retina. The light acts 
as a stimulus for these sensory cells. The light stimuli set off nerve impulses, which 
are modified via nerve cells that are connected in a complex way. These signals are 
then transmitted throughout the brain and processed further. Various areas of the 
brain that contribute to visual perception have already been identified. The per-
ceived image is not created in the eyes, but rather in brain regions, mainly in the 
back of the head. The processes in the brain can be divided into several stages. At 
first, fast parallel processing of the visual sensory impressions takes place during 
which, for example, the yellow and black areas and also the pattern on the fur of the 
tiger are identified. Based on this, slower sequential processing follows, e.g., the 
composition of the colored surfaces to objects (as for example a paw or the teeth of 
the tiger) with the support of the person’s memory. If the human being has already 
seen a tiger before, this can lead to recognition. We call the whole apparatus, from 
the sensory cells, via the visual nerves to the visual centers in the brain, the visual 
system of the human being. So, in our example, the human being sees the tiger 
thanks to the visual system and can draw conclusions about reality from this, e.g., 
that a real predatory cat is standing nearby and it would be a perfectly suitable time 
to start running away.

The connection between reality and what people perceive about it through their 
visual system is anything but simple. The same reality can cause different percep-
tions in different people. A wall that reflects light with a wavelength of 630 nm 
triggers the color perception “red” in many people – but some people have a differ-
ent perception. Because they are in the minority, these people are called color- 
blind – after all, about 9% of men and 1% of women perceive colors differently than 
the rest of the population. Color, a term people use to describe visual perception, is 
therefore not a term that objectively describes reality. Color is not a physical prop-
erty of the real wall but rather stands for a subjective perception that is indirectly 
triggered in people by the wall through reflected light.

Even in a single individual there is no simple connection between reality and 
visual perception of reality. If you look at Fig.  1.1, you can see black squares 
arranged on a grid. At the intersections of the grid, one can see alternating, partly 
flickering dark and bright points. But this does not correspond to the properties of 
the grid points in reality. All grid points are identical and always reflect the light in 
the same way (if this text is being read with an e-book reader, be assured that there 
is no trickery here). A number of such phenomena have been described in percep-
tual psychology, showing how the visual system combines, amplifies, filters out or 
recombines responses to external stimuli originating from the sensory cells during 
the complex process of perception. The same stimuli can lead to different percep-
tions in the same individual at different times, for example depending on whether 
the individual is concentrating on something or not – or whether the individual has 

R. Doerner et al.
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just had a glass of vodka or not. A remarkable characteristic of the visual system is 
that it can also change its mode of operation over time, adapting itself. The psy-
chologist George M. Stratton made this clear in an impressive self-experiment at the 
end of the nineteenth century. Stratton wore reversing glasses for several days, 
which literally turned the world upside down for him. In the beginning this caused 
him great difficulties: Just putting food in his mouth with a fork was a challenge for 
him. With time, however, his visual system adapted to the new stimuli from reality 
and he was able to act normally in his environment again, even seeing it upright 
when he concentrated. As he took off his reversing glasses, he was again confronted 
with problems: He used the wrong hand when he wanted to reach for something, for 
example. Fortunately for Mr. Stratton, an adaptation of perception is reversible, and 
he did not have to wear reversing glasses for the rest of his life. For him, everything 
returned to normal after one day.

We can conclude that there is no fixed, unambiguous and objective connection 
between (1) reality with the light stimuli it exerts on a human being and (2) the 
visual perception by the human being of this reality. This creates some leeway for 
manipulating the human visual perception of reality. A simple way is to replace a 
stimulus emanating from a real object with a similar, artificial stimulus. If the human 
visual system, stimulated by this artificial stimulus, comes to a similar perception as 
it would have done with a real object, the human being may even be under the mis-
taken impression that this object actually exists in reality. Images are a typical 
example of this approach. If one wishes to cause the visual perception “tiger” in a 
human being, then one does not need to inconvenience a real predatory cat. One can 
show the person a photograph of a tiger. Of course, this photograph of a tiger – a 
sheet of paper printed with pigments reflecting light in a certain way – is a funda-
mentally different object than a flesh and blood tiger. But both have something in 
common: They reflect light in a similar way, stimulate the visual system in a similar 
way and evoke similar visual perceptions in the human being.

Fig. 1.1 A Hermann grid. Although in reality all grid intersections always reflect light to the same 
extent, a person sometimes perceives dark spots there. The dark spots disappear as soon as you try 
to look at them directly

1 Introduction to Virtual and Augmented Reality
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Typically, a person will not be deceived so simply. People are usually able to 
distinguish a real tiger from a photo of a tiger. Therefore, let us assume that we 
could bring the light stimuli that emanate from a real tiger perfectly into the visual 
system of a human being, e.g., by playing in the impulses of sensory cells resulting 
from outside stimuli via a “socket” implanted into the brain. Let us go a step further 
in our thoughts and not limit ourselves to visual perception alone. Visual perception 
is the most important source of information about a person’s environment – more 
than 130 million sensory cells (about 70% of all human sensory cells) and more 
than four billion neurons, i.e., more than about 40% of the cerebral cortex, are 
involved in seeing. “Man is an eye animal” as Leonardo da Vinci put it. However, 
the human perception of reality is also based on other sensory impressions. For 
example, in addition to the cone cells in the retina that react to light, there are spe-
cial sensory cells, such as Merkel cells, which respond to pressure, or the Pacinian 
corpuscles, which are stimulated by acceleration. Therefore, let us further assume 
that we could also transfer the reaction of all these other sensory cells directly to the 
brain via the imaginary “socket”. Besides seeing (visual perception) we would thus 
also manipulate

• hearing (auditory perception),
• smelling (olfactory perception),
• tasting (gustatory perception),
• feeling (haptic perception),
• and, as part of feeling, touch (tactile perception),
• sense of balance (vestibular perception),
• body sensation (proprioception),
• the sensation of temperature (thermoception),
• and the sensation of pain (nociception).

Would we then be in a position to have the stimuli emanating from a tiger calcu-
lated by a computer and played into the brain of a person in such a way that this 
person would be convinced that there was a real tiger nearby? Would we be able to 
put a human being into an apparent reality, a virtual reality, that the human being 
could no longer distinguish from the “real” reality? Can we create a perfect illusion 
of reality?

These are fascinating questions that the Wachowskis, for example, have vividly 
dealt with in their film The Matrix and its sequels. Other films, such as Vanilla Sky 
and science fiction novels by Stanislaw Lem, for example, also address this ques-
tion. It also touches on philosophical questions such as those raised by Plato over 
2400 years ago with his allegory of the cave. Plato wondered how people would 
react who had been trapped in a cave since childhood with their heads fixed in such 
a way that they never see objects behind them but only perceive the objects’ shad-
ows cast on the cave wall visible to them. According to Plato’s Theory of Ideas, we 
do not directly recognize reality – the true being – but are only able to perceive 
indirectly “shadows”, images of reality in our “cave”, our world limited by the 

R. Doerner et al.
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realm of sensual experiences. Similar ideas can also be found, for example, in 
Indian mythology. Here, Maya, the goddess of illusion, prevents people from 
directly recognizing reality. Instead, Maya makes us experience only a projection of 
the world created by ourselves and our perception.

The French philosopher René Descartes went a step further. He stated that our 
perception of reality might not only be an imperfect image but a complete illusion 
and that all knowledge about reality is to be doubted. Descartes introduces the figure 
of the Genius Malignus, an evil spirit, who makes people believe in a reality that 
does not exist. So, you are not reading a book, but an evil spirit makes you believe 
that you have eyes and can read a book that does not exist in reality. In fact, the spirit 
is even so evil that it is a textbook about Virtual Reality.

The philosophical direction of skepticism doubts that there is such a thing as 
reality or such a thing as fundamental truths at all. With the “Brain in a Vat” experi-
ment, a thought experiment similar to our considerations, the followers of skepti-
cism justify their position. In this experiment, it is assumed that a brain extracted 
from a human being floating in a vat of nutrient solution is supplied by a computer 
with impulses that simulate an apparent reality. They answer our question of whether 
the consciousness in this brain can distinguish the faked reality from real reality, 
namely the disembodied brain floating in a tub, with a firm “No”. Therefore, the 
argument goes, we can never be sure whether we are in a Virtual Reality – just as 
most people in the feature film The Matrix never realize what their actual reality 
looks like.

1.1.2  The Simulation of the World

In order to realize a perfect Virtual Reality, at least to some extent, sensory stimuli 
must be generated that make a person perceive this alternative world. In the first 
flight simulators, a video camera was attached to a linkage and moved over a physi-
cal landscape model similar to a model railway. The images captured by the camera 
were displayed to the pilot in the flight simulator, who could thus perceive an image 
of the world when looking out of the cockpit. A more modern approach would be to 
use computer graphics to generate images or light stimuli for Virtual Reality.

But the generation of the stimuli is only one task on the way to the perfect Virtual 
Reality. People not only want to see and feel the world but also to act in it. For 
example, if a person perceives a ball in Virtual Reality, he or she might want to be 
able to kick the ball and run after it. This requires that the virtual world is simulated, 
that the actions of the person are known to the simulation, and that these actions can 
influence the simulation. The results of the simulation in turn have an effect on the 
generation of the stimuli – if a person moves in Virtual Reality, the generation of 
stimuli must also take the new position into account. The task of simulation can be 
performed by a computer system that must have a simulation model of the world at 

1 Introduction to Virtual and Augmented Reality
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its disposal. The simulation model of the world determines the behavior of the 
Virtual Reality. Consequently, the reactions of the virtual world in response to the 
actions of users must be simulated, as well as changes in the virtual world that do 
not depend on human actions. For example, a day-night cycle in the virtual world 
could be simulated that cannot be influenced by people.

One can strive to build the simulation model of the world in such a way that the 
behavior of the virtual world corresponds as closely as possible to that of reality. If 
a person kicks a virtual ball, the world simulation would move the ball according to 
the well-known laws of physics – the ball would have a virtual mass and a virtual 
frictional resistance, and would continue to roll on sloping virtual terrain until it 
reached a rest position. In Virtual Reality, however, one is not bound by the laws of 
reality. A kick against a virtual ball, for example, could also cause the ball to move 
along a serpentine path – or to turn it into a chicken. In this way you can create 
fantastic virtual worlds, virtual worlds that play in an imaginary future, or virtual 
worlds that recreate past times.

Being tasked with the recognition of human actions, the simulation of the virtual 
world, and the generation of stimuli for humans, the VR system can become highly 
complex. The simulation of a single virtual human being – which includes the gen-
eration of realistic images of skin and clothing, speech synthesis, and the simulation 
of human behavior, emotions, irony and willpower – is a major challenge today. The 
challenge is further increased by the requirement that this computer system must 
operate in real time, i.e., it has to keep pace with human beings. This implies that 
calculations must not take up arbitrary time but must adhere to strict time con-
straints. For example, a large number of images for Virtual Reality must be gener-
ated per second so that the human observer perceives movements in the virtual 
world as continuous and natural. The required number of images per second depends 
on the viewers and their current situation  – typically 60 images per second are 
needed to meet the demand for real time (if the viewers have large amounts of alco-
hol in their blood, however, four images per second may be sufficient). This means 
that the computer system may not take more than 16 ms to generate images. Real- 
time requirements are even more demanding for haptic feedback. Typically, the VR 
system must generate haptic stimuli 1000 times per second in order to create a 
convincing sensation of touch.

We call a VR system a computer system consisting of suitable hardware and 
software to implement the concept of Virtual Reality. We call the content rep-
resented by the VR system a virtual world. The virtual world includes, for 
example, models of objects, their behavioral description for the simulation 
model and their arrangement in space. If a virtual world is presented with a 
VR system, we speak of a virtual environment for one or more users.

R. Doerner et al.
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1.1.3  Suspension of Disbelief

The Matrix in the feature film of the same name and the Holodeck in the television 
series Star Trek both transport a person into Virtual Reality. There is one crucial dif-
ference: In the Matrix, people do not know that they are in Virtual Reality at all. On 
the contrary, people enter the Holodeck on the starship Enterprise consciously. 
They go through a door into the virtual environment and know that it is a simulation, 
but in reality, they are still in a large hall. Nevertheless, people seem to perceive the 
Holodeck as very real. Does it not bother you to know that you are in Virtual Reality? 
Can the illusion of a virtual world be achieved at all if you are aware of being in 
Virtual Reality?

Let us consider the following experiment. We put a helmet on a person, in which 
two small monitors, one for each eye, are attached. The person can no longer per-
ceive the environment visually, but only the images in the monitors, which are fed 
in from outside. A sensor is built into the helmet which can determine how the per-
son is turning their head and where the person is located. This information is used 
to adjust the generated images to the current head position: If the person looks up, 
images from the sky are shown; if the person tilts their head downwards, then he or 
she sees the ground; and if the person takes a step forward, then images from this 
new position are shown. We use a computer to create images of the roof of a virtual 
skyscraper and want to give the impression that the person is standing at a dizzy 
height on the edge of a huge building. If you observe people in this situation, you 
often see that they move forward very slowly and carefully. The closer they get to 
the edge of the building, the faster their pulse and breathing become. Their hands 
get wet. These are typical fear reactions that are caused by a danger such as an abyss 
in reality. The people are always aware that the building is only virtual, that in real-
ity there is no abyss at all, and that they are standing safely in a room. Nevertheless, 
they succumb to the illusion of Virtual Reality and react to it as if it were the 
real world.

In certain situations, people possess the ability to blank out the obvious contra-
diction between a fictitious world and reality. Besides, people want to do this. The 
philosopher Samuel T. Coleridge coined the expression “willing suspension of dis-
belief”. For entertainment purposes, people are prepared to accept the figure of 
Scrooge McDuck and his virtual world Duckburg as existing, even if it is known 
that this character consists only of hand-drawn lines and that in reality older drakes 
do not bathe in money. In dubbed films, one fades out the fact that James Bond as 
an English agent obviously does not always speak perfect Japanese or German. 
However, this “suspension of disbelief” is not easy to describe and is sometimes 
selective. Cartoonist Gary Larson describes the indignation of his readers about the 
fact that in one of his cartoons a polar bear is surrounded by penguins. Readers criti-
cized that this is impossible since polar bears live at the North Pole, but penguins 
live at the South Pole. However, at the same time readers are not in the least both-
ered by the fact that the penguins in the cartoon talk to each other and the polar bear 
has disguised himself as a penguin.

1 Introduction to Virtual and Augmented Reality
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For the creation of Virtual Reality, this human characteristic of blanking out dis-
belief means that one does not have to resort to drastic measures. Fortunately, there 
is no need to drill holes in the top of someone’s skull and directly manipulate the 
brain in order to put people into a virtual environment in which they feel present. In 
this way, Virtual Realities can be created at different stages of technological 
advancement, where the ultimate stage would allow the creation of the perfect 
Virtual Reality discussed above. In fact, highly believable virtual environments can 
already be created today with relatively little effort.

1.1.4  Motivation

What is the point of all this? Why would you want to build a virtual environment at 
all and put people into it? What are the advantages of dealing with Virtual Reality? 
There are many answers to these questions. We will consider some of them in the 
following.

If the world simulation is performed by a computer, then Virtual Reality is the 
interface between the computer system and the human being. Under this perspec-
tive, every Virtual Reality implements a human–machine interface. This interface 
can be characterized as being particularly natural and intuitive. For example, instead 
of using a mouse and keyboard, the use of a steering wheel and foot pedals for a car 
racing game is a step towards Virtual Reality that makes the operation of the virtual 
car and its navigation through the virtual world more natural. A perfect Virtual 
Reality can then be understood as a perfect user interface for software. Users can 
simply act as they are used to doing in the world. Ideally, they are completely 
unaware of the fact that they are interacting with a computer program. In this 
respect, the engagement with Virtual Reality can be understood as a methodical 
approach to finding new forms of human–computer interaction by working towards 
a vision of a perfect Virtual Reality. Even though this vision may never be achieved 
(or one may not even want to achieve this, because extensive manipulation of 
humans is ethically questionable), valuable new ideas can emerge along the way 
and innovative user interfaces can be designed to make it easier for humans to han-
dle computer systems.

By exploiting its sophisticated visualization capabilities, Virtual Reality can also 
make it easier for people to absorb and understand data. For example, through years 
of study and experience, architects have acquired the ability to imagine a building 
in their minds by looking at 2D construction plans – many real-estate investors do 
not have this ability. Virtual Reality can also visualize the data in the construction 
plans for clients in such a way that they can get a good impression of the building 
and make more informed decisions regarding alternative design choices. Complex 
results of computer simulations, e.g., the calculation of how air would flow around 
a newly planned vehicle, can be visualized directly on a virtual vehicle. Engineers 
and designers can work together in the virtual world to develop aesthetically 
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pleasing body shapes that avoid air turbulence and reduce the vehicle’s air resis-
tance. Even completely abstract data can be displayed in Virtual Reality. In this way, 
an analyst can be transported to a virtual world of financial data.

Virtual realities offer researchers tools to find out more about human perception. 
For example, experiments can be conducted in Virtual Reality that help to gain 
insight into how people orient themselves in three-dimensional space. In addition to 
gaining knowledge in science, Virtual Reality can also offer a very practical use 
with tangible financial benefits, as case studies show, e.g., on the use of VR in con-
struction (see Chap. 9).

Hardly any car is built today without using methods from Virtual Reality. For 
example, designs can be visualized more realistically, and prototypes can be created 
more cost-efficiently than in traditional model-making (see Chap. 9). How the 
robots in production lines of automobiles are adjusted to a new car model can be 
simulated in a virtual world and presented in Virtual Reality before the start of pro-
duction. The analysis of the planning and the elimination of planning errors in a 
virtual plant or a virtual factory is much easier and more cost-efficient than perform-
ing it in the real world.

Pilots take advantage of Virtual Reality during their training in flight simulators. 
By not using a real aircraft, the airline saves money. But training in Virtual Reality 
does not only have financial advantages. As no kerosene is burned, less CO2 is emit-
ted, which benefits the environment. In comparison to a real aircraft, the pilots can 
rehearse extreme situations without danger. In addition to flight simulators, simula-
tors of ships, trams, trains, and trucks are also commonly used. German air traffic 
control even operates a virtual airport where air traffic controllers can train. Another 
example is the training of personnel for complex systems, such as operating the 
control center of a coal-fired power plant or maintaining aircraft. Virtual Reality 
allows training to take place even before the real object is completed, so that well- 
trained personnel are already available at the time of commissioning. In addition to 
training in the civilian sector, Virtual Reality also has application potential in the 
military. For example, crews of fighter jets or tanks are trained in virtual 
environments.

Interested people can buy tickets to an attraction that allow them to drive a high- 
speed train through a virtual landscape sitting in a highly realistic mock-up of a 
locomotive. This is an example of how Virtual Reality is used for entertainment 
purposes in simulation games. Other game genres also benefit from the use of 
Virtual Reality, so players can experience adventures in fantastic worlds in adven-
ture games. Very close to reality, tourists can experience historical cities such as 
ancient Rome by visiting them in Virtual Reality. Museums can offer engaging sen-
sual experiences in virtual environments. Artists use Virtual Reality for installa-
tions. Virtual Reality arouses interest and can serve as an eye-catcher – accordingly, 
it offers potential for marketing, for example at trade show booths.

In medicine, there are possible applications in the field of training. Doctors can 
practice and plan operations in Virtual Reality without any risk for their patients. 
Nursing staff can train in the handling of patients. Virtual Reality can even be used 
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for treatment. As already described, people can be positioned at a virtual abyss. In 
this way, people with a fear of heights can be confronted with critical situations and 
their phobia can be treated. In Virtual Reality, the factors that cause fear can be 
safely controlled and dosed during treatment.

The range of possible applications of Virtual Reality can be significantly 
expanded by trying not to completely cut people off from reality when placing them 
in a virtual environment. Instead, one can try to integrate parts of a virtual world into 
reality. Let us look again at the example already described where we have placed a 
person on the edge of a virtual abyss. Would it not be more effective if we did not 
have to put a helmet on the person and instead could place him or her on a large 
glass plate? An image from the virtual world would be projected onto this glass 
plate from below instead of showing it on the small monitors in the helmet. If the 
person looks down, he or she can see not only the virtual edge of the building but 
also their own real feet. So the person still perceives reality, but additionally, at some 
points, integrated parts from a virtual world that fit into reality. The idea of aug-
menting images from reality in real time by exactly fitting virtual partial images 
opens up a whole field of new application possibilities for VR technologies. Another 
example is the use of special binoculars, similar to the well-known coin-operated 
binoculars, that are permanently installed at viewing points. When looking through 
the binoculars, the user sees not only reality but also parts of a virtual world that are 
displayed according to the area of reality currently being viewed. For example, if 
the observer is looking at the tower remains of an old castle ruin, the binoculars can 
display a virtual tower at exactly this point, just as it might have appeared several 
centuries ago. In this case, one no longer speaks of Virtual Reality (VR) but of 
Augmented Reality (AR). The virtual and real portions of an image can vary. In fact, 
there is a smooth transition. One speaks of AR when the real parts predominate. In 
Sect. 1.2, we look at VR in more detail, while AR is the subject of Sect. 1.3.

So, there are many reasons to learn more about the theoretical foundations of VR 
and AR as well as the practice of creating convincing virtual and augmented worlds. 
If one embarks on this endeavor, one is confronted with many questions. What do 
you have to consider if you want to put people into a virtual world? What makes it 
believable? What is conducive to achieving suspension of disbelief – and what can 
destroy it? What effort must be made in a particular application area to achieve this? 
How is the transmission of different stimuli from a VR technically realized? Which 
devices are there to make it easier for a person to immerse him or herself in Virtual 
Reality? How is a computer system structured that generates the corresponding 
stimuli, e.g., generates images from a VR close to reality? What is the system archi-
tecture of a VR system? Which interfaces are there, which norms, and which stan-
dards? How do you build simulation models for the world simulation of VR? How 
does the simulation get information about the actions of people? How can people 
move in a virtual world? Which algorithms are used in VR? What is the runtime of 
these algorithms? How can the VR system meet real-time requirements? When 
looking at AR in comparison to VR, additional questions arise: Which technology is 
used to include parts of a virtual world into reality? What is the relationship between 
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virtual and real objects? Can they occlude each other? How is a virtual object illu-
minated with a real light source? How does a virtual object cast a shadow on a real 
object? How can a virtual object be placed on top of a real object?

In science, but also in practical implementation, many people have already dealt 
with such questions and contributed to finding answers. In this textbook, basic sci-
entific knowledge in the field of VR and AR is compiled and its practical application 
is illustrated with case studies. The knowledge conveyed in the book is a solid foun-
dation for all those who want to use VR and AR practically, but also for those who 
want to actively contribute to the vision of a perfect Virtual Reality through research 
and development in the field.

1.2  What Is VR?

As should be clear from the introductory remarks above, one can approach the field 
of VR in very different ways. At the visionary end of the spectrum, e.g., in science 
fiction movies and popular culture, “perfect VR” is presented as a comprehensive 
simulation which is no longer distinguishable from human reality. At the practical 
end of the spectrum, VR has long been established as a tool for product develop-
ment in many industrial sectors. In this section, we examine how the scientific and 
technological field of VR is characterized by the members of the research community.

VR is a relatively young field of science and its development is strongly driven 
by rapid advances in the underlying hardware. In view of this, it may come as no 
surprise that the scientific discipline of VR has so far not produced a uniform defini-
tion of “Virtual Reality”. Nevertheless, there is very broad agreement on the essen-
tial or desirable features of VR. The following characterizations of VR take different 
perspectives to differentiate VR systems from traditional human–computer inter-
faces: the focus on technological aspects, the classification of VR as a new form of 
human–computer interaction, and the emphasis on the mental experience of VR.

1.2.1  Technology-Centered Characterizations of VR

“The ultimate display would, of course, be a room within which the computer 
can control the existence of matter. A chair displayed in such a room would be 
good enough to sit in. Handcuffs displayed in such a room would be confin-
ing, and a bullet displayed in such a room would be fatal. With appropriate 
programming such a display could literally be the Wonderland into which 
Alice walked.” (Sutherland 1965)

1 Introduction to Virtual and Augmented Reality
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An iconic feature of VR in many photos or other visual depictions is the special 
input and output devices worn by the users such as head-mounted displays (HMDs), 
stereo glasses, spatial tracking devices or data gloves. Accordingly, one way to char-
acterize VR is by highlighting its technological components. However, there is a 
certain danger with technology-centered approaches that such definitions of VR 
may refer too much to specific input and output devices (e.g., “wired data suits”), 
which become quickly outdated by technological progress. “Future-proof” defini-
tions of VR should also be compatible with visionary ideas like Sutherland’s 
Ultimate Display or the Holodeck from Star Trek. The following technology-ori-
ented characterizations from the early years of VR still apply to today’s VR systems:

These characterizations of VR can perhaps best be understood in contrast to “tra-
ditional” computer graphics, as the science and technology field from which VR 
evolved. VR builds on 3D content from computer graphics but focuses in particular 
on real-time computer graphics. Matching the 3D content, three-dimensional dis-
plays are used for its presentation. In the case of the sense of vision, this is achieved 
using stereoscopic displays. Moreover, 3D content is often presented in a multi- 
sensory manner by addressing further senses such as hearing or touch, for which 
spatial audio and haptic feedback devices are employed. Besides 3D presentation, 
VR systems also facilitate 3D interaction. 3D interaction devices are input devices 
whose position and orientation can be tracked in 3D space. Whereas in desktop 
systems the classic mouse and other “pointing” devices such as trackpads only pro-
vide 2D positional information, VR systems make use of 3D tracking to realize, for 
example, natural pointing gestures. By tracking body and finger movements, grasp-
ing of virtual objects can be simulated. Interactivity includes users receiving sen-
sory feedback on their inputs, e.g. by mapping hand movements directly onto a 
virtual hand model. The tracking of the user’s position and orientation, particularly 
head-tracking, is the basis for another characteristic of VR systems: Viewer- 
dependent image generation. If a VR user moves in real space, the 3D environment 
is automatically displayed from her new perspective. Steve Bryson (2013) suc-
cinctly summed up this quintessential property of VR: “If I turn my head and noth-
ing happens, it ain’t VR!”

“Virtual Reality (VR) refers to the use of three-dimensional displays and 
interaction devices to explore real-time computer-generated environments.” 
(Steve Bryson, Call for Participation 1993 IEEE Symposium on Research 
Frontiers in Virtual Reality)

“Virtual Reality refers to immersive, interactive, multi-sensory, viewer- 
centered, three-dimensional computer-generated environments and the com-
bination of technologies required to build these environments.” (Carolina 
Cruz-Neira, SIGGRAPH ’93 Course Notes “Virtual Reality Overview”)
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Immersion is often considered as an essential feature to distinguish VR from 
other kinds of human–computer interfaces. Unfortunately, the term immersion is 
used in non-uniform ways in the literature. Following Slater and Wilbur (1997), we 
take a technology-centered view of immersion. According to Slater and Wilbur 
(1997), immersion is based on four technical properties of display systems: Inclusive 
(I) indicates the extent to which the user’s sensory impressions are generated by the 
computer, i.e., the user should be largely isolated from the real environment. 
Extensive (E) refers to the range of sensory modalities accommodated. Surrounding 
(S) indicates the extent to which the presentation is panoramic rather than limited to 
a narrow area. Vivid (V) indicates the resolution, fidelity and dynamic range of 
stimuli within a particular sensory modality. Immersion is therefore a gradual char-
acteristic that is achieved to different degrees by different displays. For example, 
HMDs are usually considered highly immersive displays, since the visual sensa-
tions of the user are exclusively computer-generated. However, an HMD with a 
small field of view is less immersive than an HMD with a wider field of view. 
Similarly, multi-wall projections like CAVEs (see Sect. 9.2) are more immersive 
than single-screen projections.

The goal of total immersion is achieved by today’s VR displays to varying 
degrees. The terms immersive VR or fully immersive VR usually refer to VR systems 
based on HMDs or CAVEs. Desktop systems that provide stereoscopic displays and 
head-tracking are sometimes referred to as non-immersive and large single-screen 
or table-top displays as semi-immersive VR.

Besides the use of the term immersion as a technical property of VR displays, 
some authors also use the term to describe a mental quality of the VR experience 
(e.g., Witmer and Singer 1998). To differentiate between the two uses, one also 
speaks of physical immersion and mental immersion (Sherman and Craig 2003) and 
sometimes also of physiological and psychological immersion (Sadowski and 
Stanney 2002).

Table 1.1 summarizes the distinguishing features of VR as compared to conven-
tional computer graphics.

Table 1.1 Features of VR as compared to conventional computer graphics

3D Computer Graphics Virtual Reality

Visual presentation only Multimodal presentation (i.e., addressing several senses, 
e.g., visual, acoustic and haptic)

Presentation planning/rendering not 
necessarily in real-time

Real-time presentation planning and rendering

Viewer-independent image generation 
(exocentric perspective)

Viewer-dependent image generation(egocentric 
perspective)

Static scene or precomputed 
animation

Real-time interaction and simulation

2D interaction (mouse, keyboard) 3D interaction (body, hand and head movements and 
gestures) + speech input

Non-immersive presentation Immersive presentation
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1.2.2  VR as an Innovative Kind of Human–
Computer Interaction

Another way to characterize VR is to emphasize the goal of creating human–
computer interfaces, which, in comparison to traditional user interfaces, enable 
much more natural or intuitive interaction with the three-dimensional simulated 
environment (see Fig. 1.2).

Graphical user interfaces (GUIs) and the associated WIMP (Windows, Icons, 
Menus, Pointing) interaction style represent a paradigm of human–computer inter-
action that has been dominant for several decades. The WIMP paradigm, which was 
originally developed for document-processing tasks, however, turns out to be rather 
inefficient when manipulating 3D content. For example, the task of repositioning an 
object in 3D space can be naturally achieved in VR by grasping and moving the 
object. In 2D GUIs, however, this task usually has to be broken down into several 
subtasks, e.g., first move the object in the xy-plane, then move in the z-direction. 
Besides the additional motor effort (e.g., two 2D mouse movements instead of one 
hand movement in 3D space), this also requires an additional cognitive effort for 
remembering when and how to change the system control state (e.g., how do you 
tell the computer that the next 2D mouse movements should be interpreted as trans-
lation in the z-dimension of 3D space?). As a prerequisite for successfully complet-
ing the task, the user must first learn how the 3D task can be broken down into a 
sequence of 2D subtasks, i.e., there is also a greater learning effort.

“The promise of immersive virtual environments is one of a three- dimensional 
environment in which a user can directly perceive and interact with three- 
dimensional virtual objects. The underlying belief motivating most virtual 
reality (VR) research is that this will lead to more natural and effective 
human–computer interfaces.” (Mine et al. 1997)

Fig. 1.2 Example of natural interaction: A virtual switch is turned like a physical switch using 
one’s hand
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Virtual and Augmented Reality, along with other innovative forms of human- 
computer interaction, are examples of so-called post-WIMP interfaces. Post-WIMP 
interfaces build on interaction techniques that exploit prior knowledge and skills 
that the human user has already learned from everyday interactions with physical 
objects. For example, a person knows from everyday experience how one can use 
one’s body to manipulate objects and has expectations of how these objects will 
typically behave as a consequence of this interaction. By using this knowledge, 
learning and further mental effort in natural interaction techniques may be greatly 
reduced when compared with WIMP techniques.

The following quote from Robert Stone explains the goal of intuitive user inter-
faces in the context of VR systems:

Compared to other innovative forms of human–computer interaction, VR offers 
great potential for an especially thorough realization of intuitive human–machine 
interfaces in the sense of Robert Stone. However, the goal of completely natural 
forms of interaction has arguably not yet been achieved nor is it always aimed for in 
today’s VR systems. Nevertheless, through the use of 3D input and output devices, 
interactions in existing VR systems are typically much more natural than is the case 
with conventional 2D interfaces.

Metaphors represent another important aspect in the design of human–computer 
interfaces. Metaphors aim to explain the user interface through analogies with 
everyday life experiences. Within the WIMP paradigm, well-known examples of 
metaphors are the desktop, folders with documents in them, or cutting and pasting 
for transferring parts of one document to another. In the case of VR, the term Virtual 
Reality itself is a metaphor that makes the analogy to reality as such. The VR meta-
phor conveys to the user that the objects in the simulated world behave realistically 
and that natural forms of interaction are supported. Another aspect of the VR meta-
phor is that the user is situated within the simulated world and experiences it “from 
the inside” instead of looking at the simulated world “from the outside” through a 

“An intuitive interface between man and machine is one which requires little 
training … and proffers a working style most like that used by the human 
being to interact with environments and objects in his day-to-day life. In other 
words, the human interacts with elements of his task by looking, holding, 
manipulating, speaking, listening, and moving, using as many of his natural 
skills as are appropriate, or can reasonably be expected to be applied to a 
task.” (Stone 1993)

“The primary defining characteristic of VR is inclusion; being surrounded by 
an environment. VR places the participant inside information.” (Bricken 1990)
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window as with conventional desktop computers. According to the VR metaphor – 
which could be implemented using future perfectly immersive systems – the user is 
totally isolated from physical reality so that all sensory impressions are computer- 
generated. Fig. 1.3 contrasts the interaction models of conventional desktop com-
puters with 2D displays and VR.

1.2.3  Mental Aspects of the VR Experience

In perfect VR, all of the sensory impressions of the user would be generated by 
the computer, in the same quantity and quality as people are used to in the real 
world. Human actions in VR would have the same effects and virtual objects would 
affect people as they do in the real world. Today’s VR systems are by no means 
perfect, but the development of VR technology is aimed at ever more realistic expe-
riences. But if the computer-generated sensory level is no longer (or hardly) distin-
guishable from physical reality, what effects does this have on higher-level processes 
of human perception? Does the user perceive the pixels of the visual displays as 
pictures or does the feeling of being at another place emerge? What other properties 
characterize the mental experience of VR? How can you measure or otherwise 
quantify these properties? How does this inform the design of virtual worlds and the 
setup of VR systems?

In VR research, these and similar questions regarding the mental experience of 
VR have played an important role right from the start. The fact that these questions 
are still the subject of research shows on the one hand their relevance for the research 
area of VR, but on the other hand that no generally accepted answers have yet 
become established. Unfortunately, the relevant terms in the literature such as 

“At the heart of VR is an experience – the experience of being in a virtual 
world or a remote location” (Rheingold 1991)

Fig. 1.3 Interaction models for desktop computers and VR: (a) When looking at the 2D display of 
a desktop computer, the user perceives both the real world and the computer-generated environ-
ment. (b) According to the VR metaphor the user is completely situated within the computer- 
simulated virtual world and fully isolated from the physical world. (c.f. Rekimoto and Nagao 1995)
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“immersion” and “presence” are sometimes used with different meanings. As noted 
above, we reserve the term “immersion” in this book, consistent with much of the 
research community, to exclusively describe the technical properties of VR systems. 
In contrast, some authors also use the term to describe the mental sensations of VR 
experiences. When reading different texts on VR, it is necessary to pay close atten-
tion to how key terms such as immersion are used. The following presentation of the 
most important concepts for the analysis of the mental experience of VR essentially 
follows the terminology of Slater (2003, 2009).

Presence is the central concept for describing the mental aspects of the VR expe-
rience. In a broad sense, it refers to the feeling of being within the virtual environ-
ment that is displayed by an immersive VR system (“being there”). The concept of 
presence was originally developed in the context of telerobotics. The aim was to 
provide the operator with the most realistic impression possible of the robots’ envi-
ronment during remote control of robots, in particular using immersive VR tech-
nologies such as HMDs and data gloves. In the early 1990s, the concept of presence 
was transferred to VR (Held and Durlach 1992; Sheridan 1992). Evidence for (the 
feeling of) presence is, for example, when VR users react to the virtual environment 
as if it were a real environment. The concept of presence can be further decomposed 
to involve three different components:

First, the place illusion refers to the feeling of being in the location presented by 
the VR system (Slater 2009). The place illusion is the human response to a given 
level of immersion. It tends to arise naturally in highly immersive systems, but is 
more difficult to achieve with desktop systems (Slater 2009). Particularly important 
is the ability of the immersive VR system to display the scene from the perspective 
of the viewer. If the user turns their head, then the virtual environment should still 
be visible, just from a different perspective. If this is not the case, e.g., due to a 
single-screen setup, a break in presence may occur.

Second, the plausibility illusion arises when the events of the simulated environ-
ment are perceived as if they are really happening (Slater 2009). While the place 
illusion is largely induced by how the virtual world is presented, the plausibility 
illusion has to do with the content of the simulated world. The plausibility illusion 
relates in particular to events that affect the user but were not initiated by the user 
him or herself (e.g., a projectile suddenly flying towards the user or a virtual person 
who appeals to the user). The believability of the virtual environment seems to be 
more important than sensory realism for the emergence of the plausibility illusion. 
For example, a visually perfectly represented virtual person who communicates 
only in simple phrases would lead to a break of the plausibility illusion.

Third, involvement refers to the level of user attention or interest in the simulated 
world (Witmer and Singer 1998). Involvement, like the plausibility illusion, is 
mainly related to the content of the virtual environment. For example, in an immer-
sive VR system, users might feel strongly that they are part of the simulated world 
(convincing place illusion), but may still get bored (low involvement).

To test whether and to what degree the feeling of presence arises with users, 
experimental studies with test persons are necessary. Different users may experi-
ence different levels of presence in one and the same VR application. One way to 
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record presence is to use special questionnaires (e.g., Witmer and Singer 1998). 
Furthermore, the behavior of the experiment’s participants can be observed, for 
example movements (e.g., a user ducks away when an object comes flying towards 
them at high speed) and emotional expression such as fright. Other studies measure 
physiological parameters such as heart rate or skin resistance, which are often inter-
preted as signs of stress. In Slater et al. (2010) a “VR in VR” scenario is proposed 
as a further possibility for quantifying presence, in which the user can configure a 
VR system in the simulated world that generates a maximal level of presence.

Finally, the feeling of presence is not limited to VR, but may also arise with other 
media, such as books, movies or arcade machines, though perhaps not equally 
intensely. A further discussion on this can be found in Sherman and Craig (2003), 
for example.

1.3  What Is AR?

In the literature, a large number of different and sometimes contradictory definitions 
of AR exist. While Ivan Sutherland was the first to create an AR system in the late 
1960s (Sutherland 1968), the definition according to Azuma from 1997 is widely 
used in science.

According to Azuma (1997), an AR system (see also Sect. 1.6) has the following 
three characteristic features: (1) It combines reality and virtuality. (2) It is interac-
tive in real time. (3) The virtual contents are registered in 3D. While the second 
feature is also found in VR, the other two aspects differ significantly from VR. The 
combination of reality and virtuality is typically achieved by overlaying reality with 
(artificial) virtual content. That is, an observer (the AR user) simultaneously per-
ceives the real environment and the virtual objects within it as a coherent whole. 
The virtual content allows for real-time interaction. Furthermore, the virtual content 
is registered in 3D (i.e., geometrically). This means that in an AR environment, a 
virtual object has a fixed place in reality and, as long as it is not changed by user 
interaction or changes itself, e.g., by animation, it remains there. In other words, 
from the user’s perspective, it behaves exactly like a real object that would be in that 
location. As registration in 3D space and visual superimposition occur in real-time, 

“Augmented Reality (AR) is a variation of Virtual Environments (VE), or 
Virtual Reality as it is more commonly called. VE technologies completely 
immerse a user inside a synthetic environment. While immersed, the user can-
not see the real world around him. In contrast, AR allows the user to see the 
real world, with virtual objects superimposed upon or composited with the 
real world. Therefore, AR supplements reality, rather than completely replac-
ing it.” (Azuma 1997)
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this does not change even if the user changes their perspective and therefore per-
ceives a different part of the environment.

In the domain of popular science, the term AR is often used to refer to examples 
limited to the first of the features described by Azuma (i.e., the augmentation of 
reality by virtual content), while interactivity, real-time capability and especially 3D 
registration are frequently ignored.

More generally, AR may be defined as follows:

Implicitly, this definition also includes the aspects of interactivity and real-time 
capability, though it considers AR from the perceptual perspective. While AR today 
(as in much of this book) is mostly limited to the augmentation of visual perception, 
it can, just like VR, extend to any other form of sensory experience, including audi-
tory, olfactory, gustatory, haptic (including tactile), vestibular, proprioceptive, ther-
moceptive and nociceptive perception. In contrast to VR, it is not intended to replace 
the sensory impressions completely by virtual ones. Rather, real and virtual sensory 
impressions are mutually superimposed.

In addition to AR, the term Mixed Reality (MR) is often used, indicating that real 
and virtual content are mixed together. Although MR and AR are often used inter-
changeably, MR, unlike AR, represents a continuum. The MR taxonomy of the real-
ity–virtuality continuum introduced by Paul Milgram et al. (1995) is widely accepted 
in the research community (see Fig. 1.4).

While Azuma sees AR as a special case of VR, Milgram et al. define AR as one 
representation of MR, whereas MR and VR are disjunct. Thus, while using the AR 
definition from Azuma, we will apply the taxonomy from Milgram throughout the 
remainder of this book. Furthermore, although the term XR as an abbreviation for 
eXtended Reality goes back to a patent application by the photographer Charles 

Augmented Reality (AR) refers to the immediate and seamless perception of 
the real environment enriched by virtual content in real-time, the latter resem-
bling reality to the largest extent possible regarding its characteristics, appear-
ance, and behavior, so that (if desired) sensory impressions from reality and 
virtuality may become indistinguishable (for any senses).

Reality–Virtuality Continuum (according to Milgram): Mixed Reality (MR) is 
a continuum that extends between reality and virtuality (Virtual Reality), 
whereby the share of reality continuously decreases while that of virtuality 
increases. As far as the share of virtuality is prevailing here, without the envi-
ronment being completely virtual (Virtual Reality), one speaks of Augmented 
Virtuality. If on the other hand the share of reality is larger, then we are talking 
about AR.
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Wyckhoff in 1961, it has also been used since then by Sony, for example, to describe 
their X-Reality technology, or by Paradiso and Landay (2009) and others to describe 
types of Cross-Reality, i.e., a crossbreed between a Virtual Reality and ubiquitous 
sensor/actuator networks placed in reality. In this book, however, we will use the 
currently most common variant, namely XR as a generic term for VR and MR (and 
by that also AR). In this sense, the “X” may also be considered as a placeholder for 
“V”, “A” or “M”. As the “X” resembles a cross, XR is also sometimes referred to as 
Cross Reality (not to be confused with the concept of Cross-Reality mentioned 
above).

“Virtual Reality (VR) replaces the user’s perception of the real environment 
by a virtual world. In contrast, Augmented Reality (AR) augments or enhances 
the perception of reality by virtual content – Diminished Reality (DR) removes 
parts from the real environment. Augmenting, enhancing, deliberately dimin-
ishing, or otherwise altering the perception of the real environment in real 
time is referred to as Mediated Reality” (Mann 1999)

Fig. 1.4 Reality–Virtuality Continuum. (According to Milgram et al. 1995)

R. Doerner et al.



21

VR replaces the perception of the user’s real environment by that of a virtual 
world. AR enriches the user’s perception of the real environment by virtual content 
(see Fig. 1.5). In Mediated Reality the perception of the real environment is aug-
mented, enriched, consciously diminished or otherwise changed in real time (Mann 
1999). If the perception of reality is consciously reduced, i.e., real contents of the 
environment are deliberately removed from the perception of the user in real time, 
this is called Diminished Reality (DR). While not necessarily following the extended 
taxonomy of Mann et  al. (2018), we use will use their definitions of Mediated 
Reality and Diminished Reality in this book. Further, we will consider eXtended 
Reality (XR) to be a subset of Mediated Reality. For clarification of the taxonomy 
as used in this book, refer to Fig. 1.6.

Comparing AR with VR (see Table 1.2), it becomes obvious that many basic 
characteristics are very similar, if not identical. Both use a multimodal presentation, 
in that both interaction and simulation take place in real time, both visualize virtual 
3D objects, and both use the egocentric perspective, i.e., the visualization is (at least 
conceptually) correct in terms of perspective for the respective viewer (although this 

Fig. 1.5 AR compared to VR. In contrast to VR, the user interacts with the virtual content as well 
as with the real environment. Furthermore, an interaction between the real environment and the 
virtual content can take place. Virtual content and the real environment are not strictly separated 
from each other, but can overlap, be superimposed or penetrate each other

Fig. 1.6 Euler diagram 
showing the relationships 
between Augmented 
Reality (AR), Augmented 
Virtuality (AV), Mixed 
Reality (MR), Virtual 
Reality (VR), eXtended 
Reality (XR), Diminished 
Reality (DR) and Mediated 
Reality
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is not always the case with actual VR and AR systems). However, there are also a 
number of differences: The most obvious difference is that in VR all content is 
purely virtual, whereas in AR the virtual content is embedded in the real world. 
Accordingly, there is no real immersion in AR like there is in VR. For its application 
to AR, the concept of immersion would have to be significantly expanded. In AR, 
the focus is rather on the correct superimposition or fusion of reality and virtuality. 
This is achieved by registration. VR and AR also differ with respect to navigation. 
While in VR implicit navigation (the user moves in the virtual world analogous to 
movement in reality) is limited due to the inherent limitation of the dimensions of 
the room, the tracking area, the cable length of the HMD or the dimensions of the 
CAVE (see Sect. 1.4), navigation in AR is often unrestricted. For this purpose, VR 
additionally enables explicit navigation, in which the user changes their point of 
view by changing the camera position using specific interaction techniques. This 
allows, for instance, the user to fly through a virtual world, which is obviously not 
possible in AR at all. VR takes place primarily in closed rooms and these are usually 
stationary (location-bound) systems. Although there are many AR applications for 
indoor use, AR is generally not limited to these. Many AR applications are mobile 
and used outdoors. Also, the lighting and scaling of the virtual contents are funda-
mentally different. While in VR only the virtual lighting is of importance, in AR 
there is a mutual influence of the real and virtual lighting situation, although this is 
only rudimentarily or not at all considered by many applications. In VR, content can 
be scaled as desired. A user can, therefore, move between molecules or microbes as 
well as holding the entire Milky Way in their hands. With AR, in contrast, the real 
environment always provides a frame of reference, so that virtual objects usually 
have to be on a scale of 1:1. Of course one could also superimpose the Milky Way 

Table 1.2 Features of AR as compared to VR

Virtual Reality Augmented Reality

Multimodal presentation Multimodal presentation
Real-time presentation planning and 
rendering

Real-time presentation planning and rendering

Viewer-dependent image 
generation(egocentric perspective)

Viewer-dependent image generation(egocentric 
perspective)

Real-time interaction and simulation Real-time interaction and simulation
Virtual 3D objects Virtual 3D objects
All content purely virtual Combination of reality and virtual content
Immersive presentation (central aspect) Immersive presentation (open issue)
Tracking Tracking and geometric (3D) registration
Implicit (restricted) and explicit 
navigation

Implicit (unrestricted) navigation

Stationary Stationary or mobile
Indoor Indoor and outdoor
Virtual illumination Mutual influence of real and virtual illumination
Arbitrary scaling of the user perspective User perspective always unscaled (virtual models 

may have limited scalability)
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in AR in such a way that the user is holding it in their hands. However, the percep-
tion would be fundamentally different. While in VR the users get the illusion that 
they have shrunk to the size of a microbe or grown to the size of a galaxy, in AR the 
users have the impression of holding a model of the Milky Way, since their own size 
remains unchanged in relation to the real environment.

Sometimes you may hear the question: Which one is better: VR or AR? This 
question cannot be answered because VR and AR are aimed at different application 
scenarios. There will rarely be a situation where you have a choice between VR and 
AR when it comes to implementing them. Rather, the application scenario usually 
determines the type of system to be used. This, however, does not mean that VR and 
AR cannot complement each other – in fact, quite the opposite! Thus, for example, 
in a purely virtual environment (VR), the details of a complex machine can be 
explained to trainees, problem and danger scenarios can be simulated and options 
can be tested that do not exist in reality (at least not on site). By using AR, the 
acquired knowledge can then be tested and further consolidated on the real machine 
with virtual support. For instance, it is possible to look into a component using vir-
tual X-ray vision, etc. Basically VR, in contrast to AR, has no limitations: neither in 
content nor in physics (in a VR you can define your own physics!). On the other 
hand, the continuous use of VR is – at least currently – limited to rather short peri-
ods of time (minutes rather than hours). Since you always have to leave the real 
world for VR, this will not change fundamentally (unless we will live in the matrix 
one day). AR, on the other hand, has the potential to be used always and everywhere 
(24/7), although this potential currently cannot be fully exploited due to limitations 
in software and hardware.

1.4  Historical Development of VR and AR

The history of VR as a field of science and technology began in the 1960s. As part 
of his research on immersive technologies, Ivan Sutherland (1965) wrote “The 
Ultimate Display”, in which he described the vision of a room “within which the 
computer can control the existence of matter”. In his pioneering work, Sutherland 
took the first step towards connecting the computer with the design, construction, 
navigation, and experience of virtual worlds, even before the personal computer 
(PC) was invented (1970). In 1968, Sutherland created a Head-Mounted Display 
System consisting of a data helmet and a mechanical and alternatively ultrasound- 
based tracking system (see Fig. 1.7a). This system (Sutherland 1968) is often erro-
neously called the “Sword of Damocles” in the literature, although this was only the 
name of the mechanical tracking component of it. It enabled the viewer to view a 
simulated, albeit simple, 3D environment in the correct perspective. This system 
can also be regarded as the first AR system due to its see-through property.

The VIEW project (Virtual Environment Interface Workstations) of the NASA 
Ames Research Center in the mid-1980s had the goal of developing a multi-sensory 
workstation for the simulation of virtual space stations.
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Around 1987 Thomas Zimmermann described the “DataGlove”, a glove that was 
equipped with glass fibers on the top of the hand to capture finger flexion. He and 
Jaron Lanier jointly founded the company VPL. Lanier is often credited as the first 
scientist to use the term “virtual reality”. Besides selling the “DataGlove”, VPL also 
developed the “EyePhone” data helmet, a continuation of Sutherland’s Head- 
Mounted Display from the 1960s. The LX version of the EyePhone offered a resolu-
tion of 442 × 238 pixels, while the HRX version offered 720 × 480 pixels.

Another milestone was the commercialization of electromagnetic trackers by 
Polhemus 3Space in 1989. This made it possible to control or determine a target at 
a certain distance from a computer.

Around the same time, the “BOOM” (Binocular Omni-Orientation Monitor) was 
developed by Fake Spaces Labs, a 3D visualization device with two monochrome 
cathode ray tubes, which received NTSC signals generated by a Silicon Graphics 
Workstation VGX380 (8 RISC processors, 33 MHz per processor, 1280 × 1024 pix-
els at the graphics output). This workstation was able to generate 800,000 small, 
transformed and shaded triangles per second that were also clipped at the border of 
the drawing area. One of the first applications to take advantage of this feature was 
the “Virtual Wind Tunnel” in the aerospace field by Steve Bryson in 1991.

Around 1988, various high-quality workstations for graphics were introduced to 
the market. These included Ardent, Stellar, Silicon Graphics (SGI) and HP, of which 
the SGI Reality Engine from Silicon Graphics prevailed on the worldwide market 
for high-end graphics systems around 1995. Commercial VR software systems were 
also introduced to the market. These were “RB2 – Reality built for two” by VPL, 
“dVS” by the English company Division and “WorldToolKit” by Sense8 
(1990–1995).

Fig. 1.7 Pioneering work in the field of VR/AR. (Left) Sutherland’s data glasses with 6-DOF 
ultrasound tracking; image courtesy of © Ivan Sutherland, all rights reserved. (Right) Replica of 
the MARS system of 1997 (Bell et al. 2002). (Image courtesy of © Steve Feiner, all rights reserved)
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The term “Augmented Reality” was coined in the early 1990s by a pioneering 
project at Boeing, which used information superimposed on the visual field to make 
it easier for workers to lay aircraft cables (Caudell and Mizell 1992).

In 1993, a student of the Massachusetts Institute of Technology (MIT) founded 
SensAble Technologies Inc., a company that developed and commercially distrib-
uted haptic devices. The “PHANTom” facilitated the experience of force feedback – 
a great innovation at that time.

At the beginning of the 1990s, groundbreaking research was undertaken in the 
field of Virtual Reality. For the first time, these made projection-based representa-
tions possible. The main representatives of these are the “Powerwall”, which con-
sisted of a stereo screen, the “CAVE” (Cave Automatic Virtual Environment), which 
had four screens (developed at the University of Illinois in 1992), the “Responsive 
Workbench”, which arranged a screen horizontally analogous to a table surface 
(developed by GMD in 1993), and “iCONE”, which used semicircular screens.

With “MARS” (see Fig.  1.7b), the first mobile AR system was presented at 
Columbia University in 1997 (Feiner et al. 1997). The publication of ARToolkit in 
1998 (Kato and Billinghurst 1999) made computer vision-based tracking for AR 
available and triggered a huge wave of research around the world.

After the development of electromagnetic tracking systems, ultrasonic tracking 
systems came on the market, which in turn were replaced by optical tracking sys-
tems based on infrared light around the year 2000. PC clusters also replaced the SGI 
Reality Engine II, reducing the price for the user to about one fifth. This made more 
extensive research possible. Founded in 1993, the company Nvidia released their 
GeForce graphics chips as a successor to the RIVA chip family in 1999. Introducing 
advanced features to consumer-level 3D hardware, the GeForce is a milestone in 
graphics hardware.

On the software side, Silicon Graphics developed a toolkit named OpenInventor 
(originally IRIS Inventor) to support application development that also benefitted 
VR applications in 1988. It was based on the ANSI standard PHIGS that introduced 
the concept of a scene graph. The Open Graphics Library (OpenGL) debuted in 
1992. With the success of the World Wide Web, VRML, a dedicated markup lan-
guage for VR, was developed and became an ISO standard in 1997. It would later 
evolve into X3D. This was also the time when dedicated VR software companies 
emerged and basic application areas were explored. For example, Henry Fuchs 
investigated telepresence applications as well as medical applications with VR/AR 
(Fuchs et al. 1998).

There is a regular exchange of information on the subject of VR throughout the 
world. In the USA there have been VRAIS Symposia since 1991 and in Europe 
EuroGraphics VE Workshops since 1993. In Japan the ICAT workshops have also 
taken place since the beginning of the 1990s. In 1999 the IEEE VR Conference was 
established as the successor to the VRAIS, which attracts about 500 participants 
from all over the world every year. Similarly, dedicated conferences on the topic of 
AR were introduced, e.g., ISMAR, the IEEE International Symposium on Mixed 
and Augmented Reality, which started in 2002 as a merger of the International 
Symposium on Augmented Reality (ISAR) and the International Symposium on 
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Mixed Reality (ISMR). Moreover, VR and AR have been featured in trade shows 
such as the consumer electronics show (CES).

For several decades, access to VR and AR technology was limited to research 
institutions, large industrial companies and government agencies, not least because 
of the sometimes astronomical prices for the necessary hardware. This changed 
abruptly with the introduction of the first high-end low-cost data glasses, Oculus 
Rift, in 2013. Since the delivery of the consumer version in 2016 and the market 
entry of numerous comparable displays (HTC Vive, Playstation VR, Microsoft’s 
“Mixed Reality” displays, etc.) VR has experienced a boom. Approaches to AR 
glasses have not yet been able to achieve this success. For example, Google Glass 
has not yet prevailed in the market and Microsoft’s Hololens is considered a techni-
cal masterpiece but has not achieved widespread use quickly. A new phase in the 
evolution of AR applications started in 2017 with the introduction of several major 
software platforms for mobile AR on smartphones and tablet computers. Apple pre-
sented ARKit and Google presented ARCore, two modern frameworks that have 
started to strongly influence the commercial development of AR applications.

1.5  VR Systems

If we summarize the previous requirements for a VR system, we get the following 
situation: We need a computer system that recognizes the actions of users, simulates 
the world under this influence, and lets users perceive a virtual world via appropri-
ate stimuli. Technically, three parts can be distinguished: input devices, output 
devices, and the world simulation. As simply as the tasks of a VR system can be 
broken down into these three parts, each subsystem can become rather complex: 
Which sensors can detect a user’s actions? What coverage and resolution do these 
sensors have in terms of space and time? What range of actions do these sensors 
allow? Do the sensors restrict or limit the user? How can sensor data be passed on 
to the simulation of the world? How can knowledge about the world be made avail-
able to the simulation? How can stimuli be generated in a suitable way for all per-
ception channels of the user? What is the quality of these stimuli? In what radius of 
action can the user sensibly perceive these stimuli? How can it be ensured that the 
response time of the overall system keeps pace with the actions of the user?

To demonstrate the importance of the individual subsystems of a VR system, let 
us revisit a prior experiment and examine it in more depth. In that experiment, we 
had placed a user in VR on the edge of a virtual abyss to observe the user’s reactions 
to images of the user’s surroundings. The user’s position and viewing direction must 
be tracked by the input devices all the time to be able to calculate the correct per-
spective for the user in the virtual environment. In the first variant of the experiment, 
it was assumed that a sensor was built into the user’s helmet to provide this position 
and orientation data. What does such a sensor look like? Is only the orientation of 
the head recognized or also the direction of the eyes? What distances of movement 
does such a sensor allow? In addition to tracking the head’s orientation, is it possible 
to also track the position of the head so that bending forward is possible in the 
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virtual environment? Can you approach the virtual abyss by taking a step or two? Is 
it possible to walk on the entire roof of the virtual skyscraper? In addition, is it pos-
sible to track the whole body with all limbs to visualize the user’s body as an avatar 
to support self-perception? Would this body tracking recognize only roughly the 
limbs or also individual finger movements, e.g., is it possible to press the elevator 
button with one finger to leave the roof of the virtual skyscraper by elevator?

In the early days of Virtual Reality, it was common to attach many of the sensors 
required here, and the input devices were mostly connected by cable (called wired 
clothing). Examples of this are helmets with monitors or data gloves to recognize 
finger movements. Electromagnetic and ultrasound-based devices have also been 
developed over time. Such systems usually consist of transmitter(s) and receiver(s), 
so that users had always something attached to their bodies. These days the trend is 
towards optical processes based on one or more cameras, whereby a distinction is to 
be made regarding the use of so-called markers or markerless systems. Markers are 
patterns known to the VR system that can be detected automatically with high reli-
ability. Markers can be used to enable or stabilize the camera-based detection, as 
they are designed in a way that they are easy to detect in camera images and less 
prone to detection errors due to factors such as occlusions or unfavorable lighting 
situations. In addition to RGB cameras, markerless systems often use so-called 
depth cameras, which support the extraction of foreground objects and background. 
By using multiple cameras, accuracy can be improved and situations can be avoided, 
where tracking fails in single-camera setups due to occlusion.

Multiple, possibly redundant, input devices are often used at the same time to 
ensure the best possible recognition of user actions. An example of this is the com-
bination of precise position tracking within a large action space in combination with 
hand/finger tracking and voice input. Here, the sensor data must be aggregated in a 
suitable form (sensor fusion) in such a way that overall plausible and non- 
contradictory data are provided reliably by combining sensor data of different types, 
even if single sensors fail due to occlusions.

When designing or configuring a VR system, one should always focus on the actual 
task and analyze which input devices are necessary. It is not always advantageous to 
include as many sensors as possible in a setup if this results in restrictions for the user. 
In our abyss experiment, it could be possible to measure the pressure distribution of 
the sole to infer whether the user is leaning forward or backward. This could be done 
using pressure-sensitive mats, which would require that the user may only stand on the 
mat, and thus the user’s location would be fixed. This would be counterproductive in 
relation to other objectives, e.g., that the user should be able to move freely.

The output devices are the counterpart to the input devices. They serve to present 
the virtual world to the user in multiple modalities. This conversion of the virtual 
world model to sensory stimuli for the user is called rendering. According to the dif-
ferent sensory modalities through which humans perceive the real world, it is helpful 
to address as many of them as possible in Virtual Reality. Regarding our experiment, 
the visual output is of course highly important. Should the user be able to look around 
freely, as would be possible with a tracked helmet? Is it enough for the user to look 
down only, as in the second variant of the experiment, in which the image is projected 
onto the floor? Is it important for this use case that the user can turn and look around? 
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Which action space should be provided where the user can perceive the virtual envi-
ronment? In which visual quality should the virtual world be presented? Is it impor-
tant to recognize moving cars or pedestrians from the skyscraper? In addition to 
visual stimuli, other sensory modalities of the user can also be addressed. Should the 
noise of road traffic be perceived louder when you get closer to the edge of the build-
ing of the skyscraper? Should the user be able to perceive wind, and should it also 
change at the edge of the building? As already discussed, the time requirements for 
the stimulus calculation and rendering for the individual sensory modalities also dif-
fer. For the visual system, many new images must be calculated every second. In 
contrast, it is enough to determine the strength of the wind from the example once or 
twice per second. It is advisable to analyze exactly what is important for the actual 
application, instead of implementing everything that is technologically possible.

The task of world simulation is performed by a computer system that relies on an 
appropriate world model. This model determines the behavior. Depending on the 
application, physically based simulation models (e.g., for simulating flow behavior) 
or models based on artificial intelligence (AI) may be appropriate. The world simu-
lation responds to data from the input devices. In addition to the question of the 
granularity in which the world is or can be modeled, which was dealt with in Sect. 
1.1.2, there are questions relating to technical issues: Which delays occur from rec-
ognition by an input device to rendering in all output devices? To reduce this 
response time (which is called end-to-end latency), it may be helpful or even neces-
sary to use pre-calculated simulation data instead of calculating everything in real 
time. For our experiment, the movements of road traffic can be calculated as well as 
the flow simulation for the winds between the skyscrapers. It may even be necessary 

Fig. 1.8 Overview of the subsystems of a VR system
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to make major simplifications to keep the delays to an acceptable level. It may also 
be necessary to distribute the calculation of the world simulation or the rendering to 
several computers. Does the world simulation rely on locally available data only or 
does it depend on remote data (e.g., current flight data for a simulator for air traffic 
controllers or data from VR systems that enable collaboration in virtual space)? 
Such data can be made available to the world simulation via network connections.

An overview of a VR system is shown in Fig. 1.8, with sensors, which can serve 
as input devices (in orange), output devices that address the various sensory modali-
ties (in green), and all remaining subsystems of the VR system (in blue).

1.6  AR Systems

We define the term AR system by analogy with the already introduced term VR 
system.

Even though an AR system typically looks different, its basic composition com-
prising subsystems is very similar to that of a VR system. Consider the requirements 
for an AR system: Again, we first need a computer system that performs a simula-
tion depending on user activities. However, this simulation only affects certain parts 
of the world. One might be inclined here to limit the simulation of an AR system to 
the virtual part of the world perceived by the user. However, this is by no means suf-
ficient for AR. Since the real and virtual contents are closely intertwined, i.e., there 
is an interdependency between the two, the parts of the real world that are influenced 
by the virtual content or, respectively, influence the virtual content, must also be 
simulated. In AR, the stimulus is generated in such a way that the real and virtual 
contents complement each other. Many aspects relating to sensors and stimuli apply 
in a similar way to AR systems. However, in contrast to VR systems, AR systems are 
usually not restricted to a specific location. This means that factors such as the oper-
ating range are omitted, but questions regarding the usability in certain environ-
ments have to be added. Can I use my AR System indoors or only outdoors? Will it 
still work in the subway? What if I am in a room with smooth white walls? Will the 
display work in sunlight? So, does an AR system have higher or lower technical 
requirements than a VR system? There is no general answer to these questions, but 
in a non-stationary system the amount of hardware is naturally limited. Thus, AR 
systems use on average fewer devices (sensors, output devices, computers, etc.) than 
VR systems. Nevertheless, the baseline requirements are rather high. While in the 
above example in the VR system we had a variety of configurations with more or 

We call an AR system a computer system that consists of suitable hardware 
and software to enrich the perception of the real world with virtual content as 
seamlessly and indistinguishably as possible for the user.
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less sophisticated sensor technology, an AR system must always guarantee the cor-
rect superposition of the real and virtual worlds with the proper perspective. On the 
other hand, many components of VR systems are not required. Through the aware-
ness of reality, self-perception is always guaranteed. Also, navigation in the virtual 
world is not necessary, because users change their point of view by moving in their 
natural environment, the real world. While in VR systems the sensors, world simula-
tion and stimulus generation are often distributed over a number of computer sys-
tems to ensure the required performance of the overall system, most AR systems are 
confined to a single computer system. This can be a mobile device such as a smart-
phone or tablet or it is sometimes completely integrated into AR data glasses (such 
as the Microsoft Hololens). However, there are also approaches where optical track-
ing or rendering are outsourced to external systems to improve quality.

The overall view of an AR system is shown in Fig. 1.9: By analogy with Fig. 1.8, 
the sensors for input are shown in orange, output devices in green and the other 
subsystems of the AR system in blue.

1.7  Using the Book

In the following, you will find information on how the book is structured and sug-
gestions on how the book can be used by different target groups for different pur-
poses. Recommendations for use in academic courses are also given.

Fig. 1.9 Overview of the subsystems of an AR system. (See also Fig. 1.8)
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1.7.1  Structure of the Book

Following this introduction, the next chapter (Chap. 2) describes the basics of spatial 
perception. Starting from the human visual system, the theory of “depth cues” is pre-
sented, which describes the basic theory of spatial perception. The physiological 
aspects of stereoscopy are considered as well as supporting recommendations to 
enhance spatial perception. In addition to visual perception, the importance of other 
perceptual channels is discussed. The chapter on virtual worlds (Chap. 3) describes 
typical concepts employed to build them. Starting from data structures like the scene 
graph, advanced modeling concepts for virtual worlds are presented: Examples are 
animation methods, behavior descriptions and event models. In the chapters about 
VR input devices (Chap. 4) and VR output devices (Chap. 5), the characteristics of 
sensors and displays are described. After the introduction of underlying properties, 
methods for the tracking of user actions are shown as well as realization alternatives 
addressing the different sensory modalities of the user. Based on individual technolo-
gies, typical setups with VR hardware are also presented. Concepts and techniques 
for interactions in virtual worlds are presented in Chap. 6. Basic techniques for navi-
gation and selection are described as well as the iterative approach to creating user 
interfaces based on user testing. Chapter 7 describes the requirements for the real-
time capability of VR systems and presents solutions to meet these requirements. 
Based on fundamentals such as the importance of latency and efficient representa-
tions of large scenes, procedures for typical problems like synchronization and colli-
sion detection are discussed. Chapter 8 is dedicated to the topic of Augmented Reality. 
In addition to special input/output devices, the focus is on geometric and photometric 
registration as well as on the question of how authenticity or believability can be 
increased. Chapter 9 contains a series of small case studies that provide insights into 
the practice of VR/AR and illuminate the many facets of the topic. Software and tools 
for the practice of VR/AR development are the subject of Chap. 10, while Chap. 11 
contains an introduction to the basic mathematics relevant to VR and AR.

1.7.2  Usage Instructions

Each further chapter of this book presumes having read in this chapter. For example, 
to work through Chap. 6, it is not necessary to read Chaps. 2, 3, 4, and 5 but only the 
first chapter. This means that the book can be used modularly and selectively – it 
does not have to be worked through from front to back. All the necessary basic 
knowledge has already been addressed in this chapter. Although the individual 
chapters of the present book differ considerably in the complexity of the material 
dealt with and thus in their scope, all chapters are structured according to a similar 
basic pattern. This enables the readers to find their way around the individual chap-
ters quickly and to work through them similarly.

Chapters always start with an abstract that summarizes the most important con-
tent in a concise form. This enables readers who already have prior knowledge in 
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individual areas or are only interested in certain topics, i.e., who do not want to 
work through the book sequentially, to quickly identify and select the chapters rel-
evant to them. The most important topics are then dealt with in the respective sub-
chapters. The individual chapters are concluded with a list of questions on the topics 
covered and a list of recommendations for more in-depth or supplementary literature.

1.7.3  Target Groups

This book is primarily an academic textbook, i.e., it is intended to offer teachers and 
students a comprehensive and structured treatment of the topic of VR/AR. Therefore, 
fundamental aspects of VR and AR are covered. Prior knowledge in this field is 
therefore not necessary, but mathematical basics and basic knowledge of computer 
graphics are useful. Chapter 11 contains a summary of the most important mathe-
matical elements of VR. A comprehensive and in-depth treatment of all topics rel-
evant to VR/AR would go far beyond the scope of a single book – this book can 
serve here as an introduction and preparation for the study of specialist literature.

The book has a modular structure – each chapter only requires the reading of in 
this chapter. This allows students and teachers to adapt the order in which they work 
through the subject matter to the requirements of their course. It is also possible to 
select individual chapters and to omit other chapters (except in this chapter) without 
any problems, as it is not a prerequisite for understanding that all previous chapters 
have been read.

The creation of interactive virtual worlds is also one of the foundations of mod-
ern 3D computer games. Although the present book deals with these topics and 
there is considerable overlap with the realization of computer games, the book is not 
primarily aimed at developers of computer games, as game-specific aspects are not 
considered.

 Lecturers in the Field of VR/AR

The book can be used directly as a basis for lectures and seminars in the field of VR/
AR. Due to the modular structure of the book it is easy to vary the order of the dif-
ferent topics and thus to adapt to the individual requirements of the respective teach-
ing unit. The individual chapters conclude with a collection of comprehension and 
transfer questions. These can be used directly as a basis for corresponding examina-
tions or the preparation for them.

In the following, some typical combinations for individual courses are shown as 
examples. However, this can and should only serve to illustrate and in no way 
replaces the individual selection based on the respective curriculum and scope.
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Introduction to VR/AR
Chapter 1
Sections 2.1, 2.2, 2.3, 2.4
Sections 3.1–3.3, optional 3.5
Sections 4.1, 4.2, 4.3, 4.6
Sections 5.1, 5.2, 5.3, 5.4
Sections 6.1, 6.2, 6.3, 6.4, 6.5
Sections 7.1, 7.2, 7.3
Section 8.1, 8.3, 8.4

3D User Interfaces
Chapter 1
Sections 2.1, 2.2, 2.3, 2.4, 2.5.2
Sections 4.1, 4.2, 4.3, 4.6
Chapter 6: all subchapters
Section 7.1
Section 8.5

Applications of Virtual Reality
Chapter 1
Sections 2.4, 2.5
Chapter 3: all subchapters
Sections 5.1, 5.2, 5.3
Chapter 6: all subchapters
Section 7.2
Section 8.6
Chapter 9 (VR examples)
Section 10.1, 10.2/10.3

Graphically Interactive Systems
Chapter 1
Chapter 2: all subchapters
Chapter 4: all subchapters
Chapter 5: 5.1
Chapter 6: all subchapters
Chapter 9: all subchapters
Chapter 10: all subchapters

Augmented Reality
Chapter 1
Chapter 3
Sections 4.1–4.4
Sections 5.1, 5.2, 5.3
Chapter 6
Chapter 8
Chapter 9 (AR examples)
Chapter 10
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 Students

The book offers students a universal companion and reference reading for courses 
on VR, AR and XR. In addition, it enables the self-study of the subject matter. The 
book is suitable for students of courses of study who might want to develop or 
extend VR/AR systems themselves, implement VR/AR applications or just use VR/
AR applications. While the first aspect particularly appeals to students of Computer 
Science, Media Computing, Computational Imaging and Media Technology, the 
other aspects cover a wide range of natural and engineering sciences, humanities 
and social sciences, as well as creative and artistic fields.

 Users and Those Who Want to Become Users

Potential users of new technologies such as VR and AR often have only a vague idea 
of the potentials and limitations as well as the resources required for their use. This 
leads to the fact that such technologies are often not used at all or are used too late. 
Or even worse, many introductions fail in the end. One of the main problems is that 
often extensive investments are made in hardware before it is clear whether and how 
it will be used afterward. Who are the users? Who benefits? How are the users 
trained? How is the infrastructure maintained and developed? Which applications 
should be created or used? How are they integrated into a production process or 
adapted to it? This book should help potential users of VR and AR to better assess 
these issues in advance and thus prevent or at least reduce misplanning. For users 
from both research and industry, the book enables them to deal with the topic in 
detail and thus to assess whether and to what extent the use of VR and AR appears 
to be sensible and what resources are required for this.

 The Technology-Savvy

Ultimately, the book reflects the current status quo in the field of VR/AR and thus 
gives the technologically interested reader an insight into this fascinating world. 
New techniques and technologies that are currently still primarily used in research 
or research-related prototype and application development are presented, as well as 
those that are already an integral part of the production chain today, for example in 
the automotive industry.

1.8  Summary and Questions

There is no single generally accepted definition of VR today. One can approach 
the term from a technology-centered perspective and understand it to mean com-
puter systems that build immersive and interactive environments using 
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appropriate hardware, such as stereo displays. But VR can also be described as a 
methodology to give users the experience of inclusion in an alternative reality. The 
goal is not necessarily to achieve a perfect Virtual Reality that can no longer be 
distinguished from reality. Peculiarities of human perception and cognition such 
as the suspension of disbelief can be exploited to successfully create virtual envi-
ronments for people and give them the feeling of presence in a VR. This can serve 
different purposes: research (e.g., about human perception), education, entertain-
ment, communication support, visualization of simulation results or economic 
goals (e.g., prototyping to increase efficiency or save costs). The basic purpose of 
VR is to create an innovative interface between humans and computers. The idea 
of leaving users present in reality, but extending it with parts from a virtual world, 
leads to Augmented Reality. For the realization of virtual or augmented environ-
ments a virtual world and a VR/AR system are required. The virtual world pro-
vides the content to be shown in the environment (e.g., description of the geometry, 
appearance, and behavior of the virtual objects occurring in it). With regard to the 
VR/AR system, a computer system needs to be implemented that comprises the 
essential components for the collection of information about the users and their 
interactions (e.g., by tracking), the generation of stimuli for the user (e.g., images 
and sounds) as well as the simulation of the virtual world. Despite its more than 
50 years of existence, VR/AR is still a young science. Four generations can be 
distinguished in its development, which can be characterized by the hardware 
used: (1) HMD and data glove, stereo projection and optical tracking, (2) high-
resolution displays and low-cost tracking without the use of artificial markers, (3) 
consumer HMD including tracking and controllers, and (4) AR on smartphones 
and tablets.

Check your understanding of the chapter by answering the following questions:

• What would your definitions of the terms “virtual reality”, “virtual world”, “vir-
tual environment”, “augmented reality”, “mixed reality”, “immersion”, “pres-
ence”, “simulation”, “tracking”, “user”, “human-machine interaction” and 
“suspension of disbelief” be?

• The text describes a scenario in which a user stands on a glass plate that is used 
as a projection screen. This gave the user the impression of standing on a virtual 
high-rise building where the user could see their real feet. Is this scenario an 
example of VR or AR?

• Suppose you want to create a jogging app where you run against other runners 
(or even yourself the day before). Would you implement this with VR or AR? 
What might this depend on? What would your environment look like? Which 
hardware would you use for this?

• What can VR and AR be used for? Which application examples do you know, or 
can you imagine? Why are you interested in VR/AR?
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 Recommended Reading

Angel E, Shreiner D (2015) Interactive computer graphics: a top-down approach 
with WebGL. Pearson Education, Harlow – Textbook covering the basics of com-
puter graphics, e.g., discussing the generation of images with the computer. It 
also introduces OpenGL and WebGL, a programming library for computer 
graphics, and discusses the possibilities of using graphics processors (GPUs) in 
the form of so-called shaders.

Rabin S (2009) Introduction to game development, 2nd edition. Charles River 
Media, Boston – a standard work on computer games. Due to the manifold points 
of contact between VR and computer games, literature from the field of computer 
games is also relevant.

Original scientific literature can be found in specialist journals and conference pro-
ceedings which can be researched and accessed in digital libraries (e.g., dl.acm.org, 
ieeexplore.org, link.springer.com) or via search engines (e.g. scholar.google.com). 
In the field of VR the IEEE VR Conference (ieeevr.org) takes place annually. 
Moreover, there is the Eurographics Symposium on Virtual Environments (EGVE) 
as well as the VR Conferences of euroVR, which are partly jointly organized as 
Joint Virtual Reality Conference (JVRC). With the focus on AR, ISMAR, the IEEE 
Symposium for Mixed and Augmented Reality, is held annually. In addition, there 
are special events that focus on aspects of user interfaces of VR and AR, such as the 
ACM VRST conference or the 3DUI, the IEEE Symposium for 3D User Interfaces. 
There are also further events dealing with special applications of VR, for instance in 
the industrial sector (e.g., VRCAI  – ACM International Conference on Virtual 
Reality Continuum and Its Applications in Industry). Some scientific journals also 
focus on VR and AR, e.g., Presence – Teleoperators and Virtual Environments by 
MIT Press, Virtual Reality by Springer Verlag or the Journal of Virtual Reality and 
Broadcasting (jVRb) as an open access e-journal.

In addition to conference proceedings and professional journals that deal primar-
ily with VR and AR, literature is also recommended that deals with essential aspects 
of VR and AR, such as Computer Graphics (e.g., ACM SIGGRAPH and the ACM 
Transactions on Graphics), Computer Vision (e.g., IEEE ICCV) or Human–Machine 
Interaction (e.g. ACM SIGCHI).

References

Azuma R (1997) A survey of augmented reality. Presence Teleop Virt 6(4):355–385
Bell B, Feiner S, Hoellerer T (2002) Information at a glance. IEEE Comp Gr Appl 22(4)., July/

August, 6–9
Bricken W (1990) Virtual reality: directions of growth. Notes SIGGRAPH ‘90 Panel (HITL 

Technical Report R-90-1), University of Washington, Seattle
Bryson S (2013). Virtual Reality: a definition history – a personal essay. ArXiv, abs/1312.4322

R. Doerner et al.

http://dl.acm.org
http://ieeexplore.org
http://springerlink.bibliotecabuap.elogim.com
http://scholar.google.com
http://ieeevr.org


37

Caudell TP, Mizell DW (1992) Augmented reality: an application of heads-up display technology 
to manual manufacturing processes. In: Proceedings of 25th Hawaii International conference 
on system sciences, Vol. 2, 659–669

Feiner S, MacIntyre B, Höllerer T (1997) A touring machine: prototyping 3D mobile augmented 
reality systems for exploring the urban environment, digest of papers. In: First International 
Symposium on Wearable Computers, pp 74–81

Fuchs H, Livingston MA, Raskar R, Colucci D, Keller K, State A, Crawford JR, Rademacher P, 
Drake SH, Meyer AA (1998) Augmented reality visualization for laparoscopic surgery. In: 
Wells WM, Colchester A, Delp S (eds) Medical image computing and computer-assisted inter-
vention — MICCAI’98, LNCS, vol 1496. Springer, Berlin/Heidelberg

Held RH, Durlach NI (1992) Telepresence. Presence Teleop Virt 1(1):109–112
Kato H, Billinghurst M (1999) Marker tracking and HMD calibration for a video-based augmented 

reality conferencing system. In: 2nd IEEE and ACM international workshop on augmented 
reality (IWAR), pp. 85–94, IEEE

Mann S (1999) Mediated Reality. Linux Journal, Article No 5, Issue 59
Mann S, Furness T, Yuan Y, Iorio J, Wang Z (2018) All Reality: Virtual, Augmented, Mixed (X), 

Mediated (X,Y), and Multimediated Reality. https://arxiv.org/abs/1804.08386
Milgram P, Takemura H, Utsumi A, Kishino F (1995) Augmented reality: a class of displays on the 

reality-virtuality continuum. Proc SPIE 2351:282–292
Mine MR, Brooks Jr FP, Sequin CH (1997) Moving objects in space: Exploiting proprioception in 

virtual-environment interaction. In: Proceedings of SIGGRAPH 1997, pp 19–26
Paradiso JA, Landay JA (2009) Guest editors’ introduction: cross-reality environments. IEEE Perv 

Computing 8(3):14–15
Rekimoto J, Nagao K (1995) The world through the computer: computer augmented interaction 

with real world environments. In: Proceedings of UIST ‘95, pp 29–36
Rheingold H (1991) Virtual reality. Summit Books, New York
Sadowski W, Stanney KM (2002) Presence in virtual environments. In: Stanney KM (ed) 

Handbook of virtual environments: design, implementation, and applications. Lawrence 
Erlbaum Associates Inc, Mahwah

Sheridan TB (1992) Musings on telepresence and virtual presence. Presence Teleop Virt 
1(1):120–125

Sherman W, Craig A (2003) Understanding virtual reality. Morgan Kaufmann, San Mateo
Slater M (2003) A note on presence terminology. Presence Connect 3:3
Slater M (2009) Place illusion and plausibility can lead to realistic behaviour in immersive virtual 

environments. Phil Trans R Soc B 364(1535):3549–3557
Slater M, Wilbur S (1997) A framework for immersive virtual environments (FIVE): speculations 

on the role of presence in virtual environments. Presence Teleop Virt 6(6):603–616
Slater M, Spanlang B, Corominas D (2010) Simulating virtual environments within virtual envi-

ronments as the basis for a psychophysics of presence. ACM Trans Graph 29(4):92
Stone RJ (1993) In: Earnshaw RA, Gigante MA, Jones H (eds) Virtual reality systems. London, 

Academic
Sutherland IE (1965) The ultimate display. Proceedings of the IFIP congress, 506–508
Sutherland I (1968) A head mounted three dimensional display. In: Proceedings of the AFIPS fall 

joint computer conference. Thompson Books, Washington, DC, pp 757–764
Witmer BG, Singer MJ (1998) Measuring presence in virtual environments: a presence question-

naire. Presence Teleop Virt Environ 7(3):225–240

1 Introduction to Virtual and Augmented Reality

https://arxiv.org/abs/1804.08386


39© The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2022
R. Doerner et al. (eds.), Virtual and Augmented Reality (VR/AR), 
https://doi.org/10.1007/978-3-030-79062-2_2

Chapter 2
Perceptual Aspects of VR

Ralf Doerner and Frank Steinicke

Abstract Virtual Reality (VR) has the special ability to provide the user with the 
illusion of presence in a virtual world. This is one aspect of the valuable potential 
that VR possesses concerning the design and realization of human–machine inter-
faces. Whether and how successfully this potential is exploited is not only a techni-
cal problem. It is also based on processes of human perception to interpret the 
sensory stimuli presented by the virtual environment. This chapter deals with basic 
knowledge from the field of human information processing for a better understand-
ing of the associated perceptual issues. Of particular interest in VR are the percep-
tion of space and the perception of movement, which will be dealt with specifically. 
Based on these fundamentals, typical VR phenomena and problems are discussed, 
such as double vision and cybersickness. Knowledge of human perception pro-
cesses can be used to explain these phenomena and to derive solution strategies. 
Finally, this chapter shows how different limitations of human perception can be 
utilized to improve the quality and user experience during a VR session.

2.1  Human Information Processing

The way that people perceive and process information is essential for the design of 
virtual environments and the interaction within them. Ultimately, every virtual envi-
ronment is used by humans. For this reason, it is useful to study the basic functions 
of human information processing to better understand the various effects and phe-
nomena of VR and to be able to take advantage of possible limitations.
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Humans perceive their environment through different senses. In the context of 
today’s VR technologies, the most important senses are:

• the visual sense,
• the acoustic sense, and
• the haptic sense.

In most of today’s VR systems, other senses, such as the olfactory (smelling) or 
gustatory (tasting) senses, are not stimulated. Thus, most information presented in 
the virtual environment is perceived through the eyes, ears, or skin. At first glance, 
perception in a virtual environment does not differ from perception in a typical 
desktop environment and the associated senses and sensory impressions. The virtual 
worlds presented on the screen or from the loudspeakers act as visual or acoustic 
stimuli; haptic impressions are conveyed via mouse and keyboard. An important 
aspect of the VR experience is the possibility to explore the virtual world in an 
immersive way. In contrast to desktop-based environments, in VR this is not only 
done by mouse and keyboard but by 3D input devices or by movements of the user 
in real space, which are mapped to corresponding movements in the virtual world. 
In addition to these inputs into the VR system, there are other forms of input, such 
as speech, gestures, and other forms of human expression (Preim and Dachselt 2015).

To better understand the complexities of human perception and cognition, it is 
helpful to imagine humans as an information processing system (see Fig. 2.1). In 
this metaphor from the field of computer science, all physical characteristics of 
humans are assigned to hardware and all psychological characteristics to software. 
The chain of information processing starts with an input, which is processed in the 
computer and finally presented as output on the output media. In human information 
processing, stimuli from the external world are thus first transferred to the percep-
tual system as input and perceived there (Card et al. 1986a). This perceptual proces-
sor has access to memory (e.g., visual memory) and processor (e.g., for pre-filtering) 
similar to the input to the computer. The processing of the resulting perceived stim-
uli then takes place in the cognitive processor. Here, further memories, i.e., the 
working and long-term memories, can be accessed to interpret the stimuli and plan 
appropriate action. The actual action then takes place in the motor processor, which 
initiates corresponding movements.

These partly substantial simplifications only approximate the much more com-
plex biological processes, but they allow us to make predictions about human infor-
mation processing. For example, Card et al. (1986a) were able to predict the time 
required for a whole series of human interaction tasks. This model makes it clear, 
among other things, why tasks that require the cognitive processor to be run through 
several times (e.g., comparisons) require more time than those tasks in which the 
cognitive processor is only run through once (e.g., simple response to stimulus).

In this context, a whole range of other models, such as GOMS or the Keystroke- 
level Model (KLM), can be mentioned, which are used in the field of human–com-
puter interaction (Card et al. 1986b; Sharp et al. 2019; Shneiderman et al. 2018). In 
the following, we want to give a more detailed insight into the individual compo-
nents of human information processing.
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2.2  Visual Perception

The visual system is the part of the nervous system responsible for processing visual 
information. The structure of the human eye allows light to be projected through the 
lens onto the inner retina. There are about 120 million photoreceptor cells. These 
are divided into the rods, which only perceive brightness, and the approximately 
7 million cones, which are responsible for color vision. The cones, in turn, can be 
divided into three types, each of which reacts to blue, green or red hues. The optical 
apparatus of the eye produces an upside-down and reversed image on the retina. For 
the perceived image to arrive sharply on the retina, the lens must be correctly 
adjusted by muscles depending on the distance of the object being viewed. This 
process is called accommodation. The fovea is the retina area with the highest image 
sharpness and the highest density of photoreceptor cells. Although the eye has an 
aperture angle of approximately 150° (60° inside, 90° outside, 60° above, and 75° 
below), only 2° to 3° of the field of vision is projected onto the fovea. Under ideal 
conditions, the resolving power is about 0.5–1 min of angle. This means that a 1 mm 
spot can be perceived from a distance of about 3–6 m. The eye only remains at such 
a fixation point for a period of about 250 ms to 1 s before rapid, jerky eye move-
ments (known as saccades) occur. These saccades serve to complement peripheral 

Fig. 2.1 Model of human information processing. (According to Card et al. 1986a)
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perception, in which the resolution is only about one-fortieth of the foveal resolu-
tion, and thus enable us to perceive a complete high-resolution image.

In particular, visual perception enables us to identify objects. For this purpose, 
the projected image of the scene is already analyzed in the retina (e.g., brightness, 
contrast, color and motion) and processed (e.g., brightness compensation and con-
trast enhancement). During transmission via the optic nerve, the spatial relation-
ships of the photoreceptors are retained in the nerve tracts’ positional relationships 
and synapses. This positional relationship can be detected in the visual cortex as a 
neural map and supports, for example, the identification and differentiation of 
objects (Marr 1982). The recognition of individual elements and their meaning is 
probably done by comparison with already stored experiences (scenes linked to 
body sensation, emotions, smell, sounds, and much more).

2.2.1  Stereo Vision

As an example of how human perception works and how it can be manipulated by a 
VR system to create presence in the virtual environment, we consider a phenome-
non important for VR: stereopsis, also called stereo vision. Humans have two eyes 
but do not perceive two separate images of reality. In addition, the visual system 
succeeds in obtaining a three-dimensional impression of the environment from the 
light stimuli impinging on the two-dimensional retina of the eyes.

Let us consider point A in Fig. 2.2a. If we assume the eyes have fixated on point 
A, then they have been adjusted so that light from point A enters both the fovea of 
the left eye (and impinges on the retina at point AL) and the fovea of the right eye 

Fig. 2.2 (a) Stereopsis. (b) Manipulation of the stereopsis with a stereo display
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(there at point AR). Adjusting means that the eye muscles are moved accordingly. 
The closer the point A between both eyes is to the observer, the more the eyes must 
be turned inwards towards the nose to fixate on A. This movement of both eyes is 
called convergence. As the visual system has information on how big the conver-
gence is, the angle α can be estimated in the triangle A, AL and AR, because the big-
ger the convergence, the bigger α is. With the knowledge of α and the distance k of 
both eyes, which is constant for a person, the distance d of point A from the observer 
can be concluded. By simple trigonometry, the following relationship between d 
and α can be established: d = k/ (2 · tan α). With this triangulation of A, which is only 
possible with two eyes, the visual system can thus perceive the distance of A.

The points AL and AR are called corresponding points of the retina. They would be 
in the same place if the two eyes were thought to be superimposed. The visual system 
is able to determine this correspondence. All points in reality that are mapped onto 
corresponding points on the retina form the horopter. It has the shape of a surface 
curved around the head, which contains the fixation point. Let us now look at point 
B in Fig. 2.2, which is not on the horopter. In the left eye, light from B still strikes at 
point AL, while in the right eye, it strikes at point BR. The points AL and BR are not 
corresponding points. The difference between BR and the point AR corresponding to 
AL is called the disparity created by B. Disparities are often given as angles; in our 
example in Fig. 2.2 this would be the angle β. The larger β is, the more the point B is 
away from the horopter. The disparity generated by B thus provides a point of refer-
ence for determining the distances of points like B, which, unlike A, are not fixated 
on and whose distance cannot be determined directly based on eye convergence alone.

Retinal disparities also allow us to obtain information about the distance of 
points that are in front of the horopter from the observer. Point C in Fig. 2.2 is such 
a point, and while light from C in the left eye also arrives at point AL, this happens 
in the right eye at point CR. The disparity now exists between AR (the point corre-
sponding to AL) and CR. The point CR lies to the right of AR, while BR lies to the left 
of AR. B creates an uncrossed disparity and C a crossed disparity. Whether a point 
lies behind or in front of the horopter can be distinguished by the fact that in the first 

Two Small Experiments on Convergence and Disparity
 1. Hold a pen at a distance of about 1 m in front of a person’s face. Ask the 

person to fixate on the tip of the pen and leave it fixed. Now move the pen 
towards the person’s nose so that you can easily observe the convergence: 
the eyes are directed inwards towards the nose.

 2. Sit in front of a rectangular object (e.g., a monitor), close your right eye 
and hold your index finger so that the left index finger points to the left 
edge of the object and the right index finger to the right edge. Now open 
the right eye and close the left one. The object seems to jump relative to the 
fingers – the right and left eyes perceive a slightly different image; there 
are disparities.
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case uncrossed disparities are generated and in the second case crossed disparities 
are generated.

If the disparity becomes too large, i.e., the point generating the disparity is too far 
away from the horopter, the visual system is no longer able to fuse the image infor-
mation of both eyes into one image. As a result, one no longer sees one point but two 
points. All points in the world that create disparities small enough to allow a fusion 
of the image information from the left and right eye form Panum’s fusional area. 
This area has the smallest extension around the point the eyes fixate on.

In a virtual environment, stereopsis can be manipulated with the aim of creating 
a three-dimensional impression, even though only a two-dimensional display sur-
face is used. Figure 2.2b shows that a display surface is viewed by an observer. 
Viewing means that the observer fixates on a point A on the display surface with the 
eyes. We now illuminate two points PL and PR on the display surface. By taking the 
technical precautions described in detail in Chap. 4, we ensure that light from PL 
only hits the left eye and light from PR only the right eye. The distance between PL 
and PR on the display surface is called parallax. The visual system can react to this 
situation in two ways. First, two different points are perceived. In reality, it happens 
all the time that light from points in the world only enters one of the eyes. The visual 
system can also spatially arrange such points in relation to points from which light 
falls into both eyes and whose location could already be deduced (DaVinci- 
stereopsis). Secondly, the visual system explains the light stimuli at points PL and PR 
by the fact that the light comes from a single point P* located in front of the display 
surface. P* is the fusion of PL and PR. Which of the two cases actually occurs 
depends on a number of factors, such as how far the apparent point P* is located 
from the display surface. If the visual system merges PL and PR, then a point outside 
the display surface is successfully displayed. It is also possible to create points 
behind the display surface by reversing the order of the points for the left and right 
eyes on the display surface. This is shown in Fig. 2.2 at point QL and QR, where the 
two points shown on the display could be fused to form a point Q* behind the dis-
play. When PL and PR are displayed, this is called negative parallax, while in the 
case of QL and QR one speaks of positive parallax.

In VR, it is, therefore, possible to create a stereo display by exploiting the pecu-
liarities of human perception. The visual system creates not only a two-dimensional 
but also a plastic three-dimensional image impression, in which objects appear in 
front of or behind the screen based on an appropriate selection of the parallax. This 
must be distinguished from true three-dimensional displays (volumetric displays), 
in which, for example, a display surface is moved in space.

2.2.2  Perception of Space

Not only disparities are used by the visual system to perceive spatiality and the 
arrangement of objects in space. This can be seen by the fact that there are people 
who are unable to evaluate information from disparities (‘stereo blindness’) but 
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nevertheless develop a three-dimensional idea of the world. There are no exact fig-
ures, but it is estimated that about 20% of the population is stereo blind. A test can 
be used to determine stereo blindness in the same way as a test for color vision 
defects. It is recommended to perform such a test, especially for people who are 
active in the field of VR. Many people are not aware that they are stereo blind.

Today we know a whole series of clues, called depth cues, which are used by the 
brain for the perception of space. Disparity is an example of a depth cue. If a car 
covers a tree, the visual system can derive the information that the car is closer to 
the observer than the tree. This information does not require the interaction of both 
eyes. Thus, this clue is called a monocular depth cue. As it is still possible to obtain 
depth cues even from 2D images, this is also referred to as a pictorial depth cue. 
Disparity, on the other hand, is a binocular depth cue. With depth cues, one can 
distinguish whether they help to estimate the spatial position of an object absolutely 
or only relative to another object. Convergence, for example, allows an absolute 
position determination, whereas occlusion only permits a determination relative to 
the occluded object.

The informative value and reliability of the various depth cues depend in particu-
lar on the observer’s distance to the respective object. While occlusion provides 
reliable information in the entire visible range, this is not the case for disparity. The 
further away a point is from the observer, the lower the disparity it generates. A 
point at a distance of 2–3 m produces a very small disparity. From a distance of 
10 m, the disparity is de facto no longer perceptible. For VR, this means that for 
virtual worlds where significant objects are within arm’s reach, the effort to use 
stereo displays should be invested. Disparity is essential in this area. For virtual 
worlds, however, where objects are more than 3 m away from the viewer, the use of 
a stereo display does not contribute much to the perception of space and may be 
superfluous.

Table 2.1 lists various depth cues and gives details of the area of action and the 
information content (indications of relative arrangement or absolute distance deter-
mination), as well as the category (monocular depth cue, binocular depth cue or 
dynamic depth cue, the latter being understood as depth cues that the observer 
receives through movement). The depth clues mentioned in the list are all of a visual 
nature, but the brain can also obtain cues from other senses, e.g., by interpreting 
information from touch or by analyzing the pitch of a moving object’s sound. As it 
is essential for a good perception of a virtual world to give as many depth clues as 
possible in VR, we go through the list below. Occlusion, disparity and convergence 
have already been discussed. Similar to convergence, where muscle tension is taken 
into account to align the eyes, the brain also uses the muscle tension necessary for 
accommodation, the adjustment of the refractive power of the eye lens, as a depth 
cue. To see nearby objects clearly, the eye lens must be pressed together with more 
muscle power than is the case with distant objects. If a person fixates on an object 
at a certain distance, other objects appear sharp only in the vicinity of this object 
(e.g., in the distance range 75 cm to 1.5 m if the fixed object is 1 m away from the 
observer). Objects that are too far away or too close to the observer appear blurred. 
From the image blur, it is, therefore, possible to draw conclusions about the distance 
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of objects. Linear perspective is a depth indication based on perspective distortion. 
Objects further away appear smaller; in reality, parallel lines seem to converge at a 
vanishing point (see, for example, the street in Fig. 2.3a).

Also, with textures, the texture elements become smaller with increasing dis-
tance. Thus, the texture gradient can serve as a depth cue. For similar objects, such 
as the three squares in Fig. 2.3a, which have different sizes in the image, the visual 
system assumes that the differences in size can be explained by different distances 
(and not by the fact that the objects themselves are of different size: assumption of 
size constancy). This depth cue is called relative size. However, the known size also 
contributes to distance estimation. We get a good impression of the size and orienta-
tion of the triangle in Fig. 2.3a because a person is standing next to it – and thus an 
object of which we know the size and the usual orientation in space. Moreover, the 
height in the field of view is an indication of depth. In Fig. 2.3a, square C is arranged 
higher in the image than square A and thus closer to the horizon line. This indicates 
that square C is further away. Connected to this is also the direction of view. If one 
has to look straight ahead or raise the head, the object is assumed to be further away 
(Ooi et al. 2001). Very distant objects do not appear so rich in contrast and have a 
slightly bluish coloration (cf. Fig. 2.3b), because more air and the particles it con-
tains lie between the observer and the object (atmospheric perspective). The illumi-
nation of objects gives clues about their arrangement in space. On the one hand, 
shaded objects appear more spatial (shape from shading, cf. left pyramid with shad-
ing, right pyramid without in Fig. 2.3c); on the other hand, the shadows cast give 
cues about the spatial arrangement of objects (cf. shadows of spheres in Fig. 2.3d). 
It is especially effective when shadows are cast from above on a base surface 
because the visual system is used to a light source from above: the Sun. If the object 
is in motion, the shadow of this object is particularly useful for depth perception. 

Table 2.1 List of depth cues (with range of action and classification)

Depth cue Range of action Classification Positioning

Occlusion Complete range Monocular Relative
Disparity Up to 10 m Binocular Relative
Convergence Up to 2 m Binocular Absolute
Accommodation Up to 2 m Monocular Absolute
Image blur Complete range Monocular Relative
Linear perspective Complete range Monocular Absolute
Texture gradient Complete range Monocular Relative
Relative size Complete range Monocular Absolute
Known quantity Complete range Monocular Absolute
Height in the field of view Over 30 m Monocular Relative
Atmospheric perspective Over 30 m Monocular Relative
Shape from shading Complete range Monocular Relative
Shadows Complete range Monocular Relative
Motion parallax Over 20 m Dynamic Relative
Accretion Complete range Dynamic Relative
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Finally, certain depth cues are based on movement: movement of objects or move-
ment of the observers themselves. This includes motion parallax: the light stimuli 
from near objects move faster across the retina than those from farther away. If we 
drive through an avenue in a car, the nearby trees pass us quickly while the moun-
tains in the background move only slowly. Through movement, objects suddenly 
become occluded or reappear behind the objects that are obscuring them. This 
change, called accretion, also gives cues to the spatial arrangement of the objects.

Depth cues are not to be considered independently of each other. For example, 
accommodation and convergence depend on each other (Howard 2002). Also, depth 
cues are of varying strength. For example, while accommodation is a weak depth 
cue, occlusion is a strong depth cue. All depth cues are considered for spatial per-
ception in the form of a weighted sum. How much weight is given to a depth cue is 
flexible and depends on the distance of the object to be assessed. One theory 
(Wanger et al. 1992) assumes that the weights also depend on the current task the 
observer is engaged in. If the task is to estimate the spatial arrangement of distant 
objects, then motion parallax, linear perspective, texture gradient and shadows have 
a high weight. If the task is to grasp an object, disparity, convergence and 

Fig. 2.3 Examples of depth cues
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accommodation are important. According to this, the depth cues in the brain are not 
used to form a single model of the 3D world, which is then used for different tasks, 
but rather task-dependent models are formed. Therefore, if not all depth cues can be 
generated in a VR, then a prioritization should be made depending on the task the 
user has to perform.

2.3  Multisensory Perception

Even though the visual sense is undoubtedly the most important source of informa-
tion in the perception of virtual worlds, the auditory and haptic senses also play an 
increasingly important role (Malaka et al. 2009). In this respect, these two senses 
will also be examined more closely in the context of this chapter. Other senses, such 
as smell and taste, play more of an exotic role and are currently mostly used as pro-
totypes in research laboratories. At this point, it should be noted that perceptions via 
the individual sensory organs are by no means processed separately, but rather an 
integration of the different impressions is created. For further literature, please refer 
to Ernst (2008).

2.3.1  Auditory Perception

The ears enable humans to perceive air movements. Such air and pressure fluctua-
tions generate mechanical waves that hit the ear, which is made up of the outer, 
middle and inner ear. The auricle (outer ear) collects sound waves and transmits 
them to the middle ear. In the middle ear, sound waves are converted into vibrations 
of the eardrum. The eardrum vibrations are transmitted to the cochlea via the ossi-
cles (anvil, malleus and stapes). The sensory cells in the cochlea then convert the 
mechanical energy into electrical signals. Finally, these electrical nerve impulses 
are transmitted to the brain via the auditory nerve. The different frequencies can be 
perceived by hair cells in the inner ear. The waves perceived by humans have lengths 
of about 0.02–20 m, which correspond to audible frequencies in the range of about 
18–0.016 kHz (Malaka et al. 2009). In contrast to the visual sense, the spatial reso-
lution is much lower. The Head-Related Transfer Function (HRTF) or outer ear 
transfer function describes the complex filter effects of the head, outer ear, and 
trunk. The evaluation and comparison of the amplitudes are, along with the transit 
time differences between the ears, an essential basis of our acoustic positioning 
system. However, the absolute distinguishability of intensity and frequency has 
clear limits, so that two noise sources are only distinguished if they are several 
degrees apart. In contrast, the temporal resolution is much better and acoustic stim-
uli can be distinguished already at 2–3 ms temporal discrepancy. The principle of 
localizing noise sources at different receiver positions is also used in acoustic track-
ing systems (see Chap. 4).

R. Doerner and F. Steinicke



49

2.3.2  Haptic Perception

Haptics, or haptic perception, describes the sensory and/or motor activity that 
enables the perception of object properties such as size, contours, surface texture 
and weight by integrating the sensory impressions felt in the skin, muscles, joints 
and tendons (Hayward et al. 2004). The senses that contribute to haptic perception 
are divided into:

• tactile perception (element of surface sensitivity),
• kinesthetic perception/proprioception (depth sensitivity) and
• temperature and pain perception.

These senses thus enable the perception of touch, warmth and pain. Such percep-
tion phenomena are based on receptors in the skin. The more such receptors are 
available, the more sensitive the respective body part (e.g., hand, lips or tongue) is. 
The most important receptors are the mechanoreceptors (e.g., pressure, touch or 
vibration), the thermoreceptors (heat, cold) and the nociceptors (e.g., pain or itch-
ing). The mechanoreceptors, for example, convert mechanical forces into nerve 
excitation, which are transmitted as electrical impulses to the sensory cortex, where 
they are processed. As a result, shapes (roundness, sharpness of edges), surfaces 
(smoothness and roughness), and different profiles (height differences) can be 
perceived.

Haptic output devices stimulate the corresponding receptors, for example, by 
vibration (see Chap. 5).

2.3.3  Proprioception and Kinaesthesia

In contrast to surface sensitivity, depth perception describes the perception of stim-
uli coming from inside the body. Depth perception is essentially made possible by 
proprioception and kinaesthesia. Both terms are often used synonymously. However, 
we will use the term proprioception to describe all sensations related to body posi-
tion – both at rest and in motion – whereas kinaesthesia describes only those sensa-
tions that occur when active muscle contractions are involved. Proprioception thus 
provides us with information about the position of the body in space and the posi-
tion of the joints and head (sense of position) as well as information about the state 
of tension of muscles and tendons (sense of strength). Proprioception enables us to 
know at any time what position each part of our body is in and to make the 

A small experiment on the spatial resolution of haptic perception: take a com-
pass or two sharp pencils and test with somebody else or yourself where in 
your upper extremities you can best distinguish between two points of contact 
and where you can distinguish least.
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appropriate adjustments. Kinaesthesia (sense of movement) enables us to feel 
movement in general and to recognize the direction of movement in particular.

These two senses are essential, considering that interaction in a virtual environ-
ment is largely carried out by active movements of the limbs. In VR, various devices 
are available to stimulate these senses, such as haptic joysticks, complete exoskel-
etons or motion platforms (see Chaps. 4 and 5).

2.3.4  Perception of Movement

Movement is a fundamental process in real and computer-generated environ-
ments. We move through the real world, for example, by simply walking, running, 
or driving a car or bicycle. In addition to the user’s actual movements, most virtual 
worlds contain a multitude of movements of other objects. From a purely physical 
point of view, motion is defined as a change of location over time. In visual per-
ception, the movement of a stimulus leads to a shift in the corresponding retinal 
image. Provided it has the same speed, the further away the stimulus is, the smaller 
is the retinal shift. Still, we mostly perceive the physical and not the retinal speed. 
This ability is called speed constancy (analogous to size constancy; see Sect. 
2.4.5). The human body has elementary motion detectors available for the visual 
perception of movement, which detect local movements in a certain direction at a 
certain speed. More complex, global movements are composed of local movement 
stimuli.

Another essential sense in the perception of movement is the vestibular sense. 
Hair cells in the inner ear detect fluid movements in the archways of the organ of 
equilibrium. This then makes it possible to perceive linear and rotational accelera-
tions. To stimulate the vestibular sense, motion simulators (platforms) are used in 
some VR systems. It is also possible, however, to create the illusion of an own 
movement by visual stimuli only. This illusion is called vection and is created, for 
example, in a standing train when looking at another train that starts moving next to 
it. This illusion is mainly based on the perception of the optical flow. The optical 
flow can be modeled as a vector field, i.e., each point P on an image is assigned a 
vector – whereby the image is not isolated but is part of a sequence of images in 
which pixels corresponding to P can be found. The direction of this vector indicates 
the direction of movement of the pixel P in the sequence of images. The speed of 
the movement can be determined from the length of the vector. In this respect, the 
optical flow is a projection of the 3D velocity vectors of visible objects onto the 
image plane. Accordingly, when we humans move, we receive a whole series of dif-
ferent movement cues, which are all integrated to derive a final perception of move-
ment (Ernst 2008).
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2.3.5  Presence and Immersion

As described at the beginning of this chapter, an essential potential of VR lies in the 
possibility to create in the user the illusion of presence in a virtual world. For exam-
ple, the user should get the feeling of complete immersion in the virtual world. The 
term presence (cf. Chap. 1) describes the associated subjective feeling that one is 
oneself in the virtual environment and that this environment becomes real. Stimulus 
from the real environment is thereby faded out. On the other hand, immersion 
describes the degree of inclusion in a virtual world caused by objective, quantifiable 
stimuli, i.e., multimodal stimulations of human perception. Various studies have 
shown that presence occurs, particularly when a high degree of immersion is 
achieved. Presence is achieved when the user feels located in VR and behaves as in 
the real world. Various studies have shown that various virtual environment param-
eters have the potential to increase the presence of test subjects, such as a large field 
of vision, activated head-tracking and real walking (Hendrix and Barfield 1996). 
There are several questionnaires to measure the subjective feeling of presence 
(Witmer and Singer 1998; Slater et al. 1994). However, it is also possible to deter-
mine the degree of presence based on physiological data or human behavior. For 
example, a user with a high degree of presence in an apparently hazardous situation 
occurring in VR will respond physiologically, e.g., with increased skin conductance 
or heart rate (Slater et al. 1994).

2.4  Phenomena, Problems, Solutions

When using VR, one can observe surprising phenomena. From 1 s to the next, the 
presentation of a virtual world in a stereo display no longer succeeds. The viewer no 
longer sees the world plastically but sees everything twice. Users of VR start to 
complain about headaches or even vomit. Although the car’s interior appeared spa-
cious when first viewed in VR, the space in the real car is then perceived as disap-
pointingly tight, even though the virtual car and the real car are identical in terms of 
proportions. With knowledge of human perception, one can try to explain these 
phenomena and develop solution strategies to avoid or at least mitigate the resulting 
problems. With today’s VR, we are not able to reproduce reality 1:1; there are 
always deviations. For example, the two images required for stereopsis for the right 
and left eye may have been generated at a distance between the two virtual cameras 
that does not correspond to the actual eye distance of an individual observer. Is that 
bad? Knowledge of human perception helps us to assess the magnitude of the prob-
lem associated with these deviations. The following eight subsections deal with 
VR-typical phenomena and problems. In each subsection, the currently known 
attempts at explanation are also presented as well as approaches to solutions that 
can be derived from them.

2 Perceptual Aspects of VR



52

2.4.1  Deviating Observation Parameters

Let us assume that we recreate the Eiffel Tower and its surroundings in a virtual 
environment. With a virtual camera, we create an image and show it to a human 
observer. Light stimuli from this image are projected onto the retina in the eyes of 
the observer and create a visual sensation. Ideally, the image of the virtual Eiffel 
Tower creates the same impression that viewers would have if they were standing in 
front of the real Eiffel Tower. However, aberrations usually occur, which can be 
explained by deviations in the viewing parameters. The virtual camera generates 
images on a plane, while human retinas are curved. The angle of view of the virtual 
camera can deviate from the field of view of the observer. The observer does not 
necessarily look at the image from the same place where the virtual camera was 
standing – the observer might be closer or further away, perhaps not looking perpen-
dicularly at the image but from the side. As a result, enlargements or reductions, as 
well as distortions of image impressions, occur. This affects the estimation of dis-
tance or the perception of the inclination of objects (Kuhl et al. 2006).

However, the distortions caused by looking at the image of the virtual world from 
a different perspective are surprisingly not experienced as bothersome. One speaks 
of the robustness of linear perspective in human perception (Kubovy 1986). This 
phenomenon can also be observed in a cinema – if the viewer sits in the first row on 
the very outside, he or she is very likely to have a completely different perspective 
than the camera that shot the film. There is, if at all, only one place in the whole 
cinema where the perspective of the film camera is maintained. Although this means 
that almost all viewers see the film in a distorted way, they do not mind. One expla-
nation for this phenomenon is that the viewer’s visual system actively corrects the 
distorted image impression. This correction is based, among other things, on the 
deviation of the viewing direction from the normal of the image plane (Vishwanath 
et al. 2005). Conversely, this active correction could be responsible for the fact that 
images taken with a wide opening angle of the virtual camera (‘wide-angle perspec-
tive’) may appear distorted even when viewed from the correct position.

Although deviating viewing parameters are not experienced as particularly irri-
tating, it is advisable to strive to minimize the deviation. This is especially true for 
applications where the correct estimation of distances or orientation of objects in 
space is of high importance. It is particularly relevant if the virtual world is not only 
viewed passively, but active actions (grasping objects, movement) are performed. 
Moreover, the virtual world and one’s own body should not be perceived simultane-
ously from different viewing positions. An approach to minimization of such devia-
tions frequently pursued in VR consists of determining the current viewing 
parameters (e.g., by head-tracking, see Chap. 5), such as position and direction of 
gaze. If these are known, they can be transferred to the virtual camera. Another 
approach is to simulate long focal lengths in the virtual camera, i.e., to realize 
almost a parallel projection. This reduces the distortions caused by a deviating 
viewer position (Hagen and Elliot 1976).
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Stereo displays can cause additional deviation because the two virtual cameras 
that generate the image for the left and right eyes have a distance (called virtual eye 
separation) that may differ from the distance of the viewer’s pupils. On average, the 
pupil distance is 64 mm, but the individual range is large and lies approximately in 
the interval from 45 mm to 75 mm. Figure 2.4 shows an example that small changes 
in pupil distance can result in large changes in depth perception. In this example, the 
pupil distance is initially 64 mm and the object shown on the projection surface 
appears to be 9 m behind the projection surface. If the distance between the eye 
points is reduced by 4 mm, it follows from the set of beams that the virtual object 
moves forward by 3.6 m. But as with deviations in the viewing position, deviations 
between virtual eye separation and pupil distance are compensated by adaptation in 
such a way that they do not irritate the viewer. In fact, the distance between the 
virtual cameras can be changed several times in 1 s without the viewer even realiz-
ing it. In VR, it is therefore not absolutely necessary to first measure the distance 
between the two eyes of the viewer and then adapt the distance between the two 
virtual cameras accordingly. However, side effects such as nausea (see Sect. 2.4.7) 
can occur, even if the user does not consciously notice the difference.

2.4.2  Double Vision

If the viewer of a stereo display is not able to fuse the two different images shown 
to the left and right eyes, diplopia occurs. This is a severe problem in VR, as it is 
perceived as extremely irritating and has a negative effect on the feeling of presence 
in VR. Thus, diplopia should be avoided at all costs.

Fig. 2.4 Geometric effect of changing the virtual eye separation (drawing is not to scale). The 
geometric effects also influence perception (Bruder et al. 2012a)
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The reason for diplopia has already been explained in Sect. 2.2.1: the point to be 
merged lies outside Panum’s fusional area. Since accommodation always occurs to 
the display plane, the visual system tends to move Panum’s fusional area near the 
display surface of the stereo display as well (see vergence-focus conflict, Sect. 
2.4.4). This means that a stereo display cannot make objects appear arbitrarily far in 
front of or behind the display surface. So, if one wants to display a virtual world 
with the help of a stereo display, there is only a limited area available in which the 
virtual objects can be placed in front of or behind the display (parallax budget) 
without diplopia. Williams and Parrish (1990) state that −25% to +60% of the dis-
tance from the viewer to the display surface are the limits for the usable stereo range 
(in the case of an HMD, the virtual distance of the display is to be used). Here, 
Panum’s fusional area has its thinnest extent in the area of the point that the eyes 
fixate on. In the worst case, it has only a width of 1/10 degree viewing angle. At a 
distance of 6° from the fixated point, Panum’s fusional area increases in width. 
Then, it has a visual angle of about 1/3 degree. If a display is at typical monitor 
distance and has 30 pixels per cm, then points can only be arranged in a depth range 
of 3 pixels before diplopia occurs (Ware 2000). The situation is aggravated by the 
fact that the entire Panum’s fusional area should not be used, since only in a partial 
area can fusion be achieved without effort even over longer periods of time. This 
partial area is called Percival’s zone of comfort and it covers about one-third of 
Panum’s fusional area (Hoffmann et al. 2008).

One strategy to avoid diplopia is to enlarge Panum’s fusional area. The size of 
this area depends, among other things, on the size and richness of detail of the 
objects being viewed and on the speed of moving objects. By blurring the images to 
be fused, the amount of detail is reduced. This way, Panum’s fusional area can be 
enlarged. Another strategy is to bring virtual objects closer to the display area and 
thus into Panum’s fusional area. With virtual eye separation, we have already 
learned a technique for this. If one reduces the distance between the virtual cameras, 
objects meant to appear behind the display can be brought closer to the display 
surface. Since human perception is robust against this manipulation, changing the 
virtual eye separation is useful to avoid diplopia. Ware et al. (1998) propose the fol-
lowing formula: virtual eye separation v = 2.5 cm + 5 cm · (a / b)2, where a is the 
distance of the point in the scene closest to the viewer and b is the distance of the 
point furthest away. Another technique to bring the virtual world into Panum’s 
fusional area is the cyclopean scale (Ware et al. 1998). Here, the whole scene is 
scaled by one point between the two virtual cameras (cf. Fig. 2.5). The cyclopean 
scale can be combined with the manipulation of virtual eye separation, where scal-
ing should be performed first. Such scaling is not only useful to bring a virtual world 
that is too spatially extended into Panum’s fusional area, but also in the opposite 
case: a virtual world that does not use the limited area around the stereo display can 
be made to appear more three-dimensional by extending it. In VR, it is useful to be 
clear about the available parallax budget and its use. In a stereo display, the parallax 
that can be displayed cannot be arbitrarily small. The lower limit is the width of 
one pixel.
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2.4.3  Frame Cancellation

The displays used for the presentation of virtual worlds usually have several imper-
fections, e.g., they cannot display the brightness levels found in reality, such as in 
sunlight. Also, the surface of the display is usually recognized as such and can be 
distracting. In particular, the edge of a display surface can be perceived as irritating. 
Let us assume we use a stereo display to make an object appear in front of the dis-
play plane. In case this object approaches the edge of the display and finally touches 
it. The following phenomenon can be observed. The illusion that the object is in 
front of the display is suddenly lost and the object snaps back to the level of the 
display. Moreover, diplopia can also be observed. This phenomenon is called frame 
cancellation, paradoxical window or stereoscopic window violation 
(Mendiburu 2009).

This phenomenon can be explained by the fact that the object has conflicting 
depth cues. According to the disparities, the object is in front of the display. However, 
the edge of the display seems to occlude the object, which suggests that it is behind 
the display. Occlusion is a stronger depth cue than disparity, which is why the object 
is perceived to be behind the display. Other explanation attempts point out that the 
object can only be seen by one eye when it is at the edge.

Keeping objects with negative parallax away from the edge or moving them 
quickly at the edge so that they are either completely visible or completely invisible 
on the image are simple strategies to avoid frame cancellation. Another strategy is 
to darken objects at the edge of the display and color the edge itself black so that the 
contrast between the edge and the object is small. Finally, black virtual stripes can 
be inserted in the depth of the object in the scene, thus seemingly bringing the dis-
play edge forward. The virtual stripes cover the virtual object when it approaches 
the display edge.

Fig. 2.5 Cyclopean scale
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2.4.4  Vergence-Focus Conflict

In contrast to reality, some depth cues may be completely missing in VR, e.g., 
because the VR system’s performance is not sufficient to calculate shadows in real 
time. Depth cues can also be wrong, e.g., the image blur might not be displayed 
correctly because it is difficult to determine the exact point the observer fixates on. 
While in reality the depth cues are consistent, they can be contradictory in VR, as 
the frame cancelation example shows. Contradictory depth cues not only have con-
sequences such as a misjudgment of the spatial arrangement of objects in space or 
the loss of presence because the virtual world appears unnatural; other negative 
consequences can include eye stress, exhaustion and headaches. An example of this 
is the vergence-focus conflict (Mon-Willams and Wann 1998), also called 
accommodation- convergence discrepancy or vergence-accommodation conflict.

No matter whether a virtual world is viewed on a computer monitor, a projection 
or a head-mounted display (see Chap. 5), the viewers must adjust their eyes so that 
the display surface is seen sharply to easily perceive what is shown there. If a stereo 
display is used and an object appears in front of or behind the display surface due to 
disparity, the convergence is not set to the distance of the display surface but the 
apparent distance of the virtual object. Therefore, if the viewer wants to focus on a 
virtual object that appears to be in front of the display surface, the viewer must 
increase the convergence. As a result, however, the object suddenly appears unex-
pectedly blurred, as the eyes no longer focus on the display surface. This can also 
cause a contradiction between convergence and image blur. Convergence and focus 
information are therefore in conflict. As a result, headaches can occur. The risk of 
this increases with the duration of viewing of the virtual world (Hoffman et al. 2008).

The contradiction between the above depth cues can be reduced by bringing the 
virtual objects as close as possible to the display surface. For this purpose, the 
already discussed techniques, such as the cyclopean scale or the change of virtual 
eye separation can be used. These techniques can have side effects, such as falsifica-
tion of depth perception. These side effects must be weighed against phenomena 
like fatigue or headache. There is no way to avoid the viewer’s eyes converging on 
the display surface, as this is the only way to ensure that the image shown on the 
screen can be perceived sharply. The approach of subsequently introducing depth of 
field into the image (computer calculations of images allow the creation of images 
that are sharp everywhere – in contrast to real imaging systems such as a camera or 
the human eye) by blurring parts of the image and thus adapting the focus informa-
tion to the convergence has not proven to be successful (Barsky and Kosloff 2008).

2.4.5  Discrepancies in the Perception of Space

In applications from the fields of architecture, CAD, urban visualization, training, 
simulation and medicine, three-dimensional spaces are presented. In these applica-
tions, it is essential that the users correctly perceive the virtually presented space, so 
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that they can draw conclusions about their actions and decisions in the real world. 
Discrepancies between the perception of size and distance in the virtual and real 
worlds are particularly critical in this application context. For example, a physician 
simulating an operation in the virtual world should not train wrong movements due 
to misjudgments of space. The correct perception of sizes and distances is essential 
for many applications in the field of VR.

Unfortunately, many studies show that there can always be discrepancies in the 
perception of virtual space. For example, it has often been shown that users tend to 
underestimate distances in the virtual world by up to 50% (Interrante et al. 2006; 
Steinicke et al. 2010a). A common approach to measuring distance estimation is, for 
example, blind or imaginary walking. Here the user is shown a mark at a certain 
distance (e.g., 4 m, 6 m or 8 m) on the floor, and the user must then walk to this mark 
with eyes closed. In the real world, this task is easy to accomplish, and we walk 
almost exactly up to the mark. A user in the virtual world who sees the same scene 
(geometrically correct) on a head-mounted display, for example, will most likely 
walk much too short a distance; in some cases by up to 50%. This effect can be 
observed with many techniques for evaluating spatial perception (e.g., triangular 
completion, blind throwing, imaginary walking or verbal assessment). Many studies 
have shown the influence of some factors (such as stereoscopic imaging, limited 
field of view, realistic lighting or shading) on this distance underestimation, but up 
till now, there is no complete explanation for this phenomenon.

According to Emmert’s law, there is a clear connection between sizes and dis-
tances. In this respect, the phenomenon of underestimating distances can also be 
observed as a phenomenon of overestimating sizes. The law states that the perceived 
size is proportional to the product of perceived distance with retinal size, i.e., the 
size of the image on the retina. The resulting law of size constancy is used by 
humans already in infancy. If, for example, a mother distances herself from her 
child, the projection of the mother on the retina of the child becomes smaller, but the 
child is aware that the mother is not shrinking, but merely moving further away. It 
is also the case that the more of the above-mentioned depth cues are missing, the 
more the angle of vision is used for size estimation. Misjudgments in the real world 
can also occur. These can be exploited in perspective illusions, for example. 
However, such misjudgments result not only from perceptual errors but also from 
cognitive processes. Distances are considered to be greater, for example, when sub-
jects carry a heavy backpack (Proffitt et al. 2003) or are asked to throw a heavier ball 
(Witt et al. 2004). Thus, not only optical stimuli and their processing play a role in 
depth perception but also the intended actions and the associated effort. Furthermore, 
studies have shown that presence influences the perception of distances. The more 
present we feel in the virtual world, the better our assessments of distances become 
(Interrante et al. 2006). This illustrates that the correct assessment of space can be a 
complex task even in the real world, depending on perceptual, cognitive and motor 
processes.

Various approaches exist to improve the estimation of distances or sizes in the 
virtual world or to make the space presented or the objects displayed in it appear 
larger or smaller. For example, one could simply scale the entire geometry. Now the 
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test persons would perceive the space as they would in the real world, but this does 
not solve the problem. Similar effects can be achieved by enlarging the geometric 
field of view. The geometric field of view refers to the area presented by the virtual 
scene, which is defined by the horizontal and vertical opening angle of the virtual 
camera. If this is enlarged, the viewer sees a larger area of the virtual world. 
However, since the same physical display is still used, this larger area must be 
mapped to the same area of the screen. Thus, the scene is minified, and objects 
appear further away (Kuhl et al. 2006). This is illustrated in Fig. 2.6. Similar effects 
can be achieved by changing the pupil distance. However, these approaches have the 
disadvantage that they actually present a different space utilizing, for example, per-
spective distortion. Subjects now continue to walk further, but they do so in another 
room that is projected with different geometric properties (see Fig. 2.6).

Alternative approaches are based on the idea of exaggerating the given depth 
cues to give the users clearer indications for the assessment of distances. For exam-
ple, artificial shadows created by drawing lines to the base surface can give just as 
effective depth indications as stereoscopy. By using fog to desaturate the colors of 
distant objects, atmospheric depth can be imitated. This helps the user to better 
estimate distances, for example in virtual city models.

As already indicated above, cognitive factors also influence the assessment of 
space. It has been shown that the estimation of distances is significantly better in 
virtual space that is an exact representation of real space (Interrante et al. 2006). 
Follow-up studies have shown that this is not only due to the knowledge of real 
space, but especially to the higher sense of presence in such virtual worlds. This 
improved ability to assess distance can even be transferred to other virtual worlds. 

Fig. 2.6 Presentation of the same virtual space with (left) small and (right) large geometric field 
of view. (According to Steinicke et al. 2009)
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For instance, a transfer can succeed if one is teleported from a virtual space exactly 
simulating real space to these other virtual worlds through a portal (see Fig. 2.7).

2.4.6  Discrepancies in the Perception of Movement

A similar effect as with distance underestimation can also be observed in the per-
ception of movement, such that speeds of movement or distances covered are over- 
or underestimated. For example, many studies have shown that forward movements 
along the line of sight are underestimated (Lappe et al. 2007; Loomis and Knapp 
2003). This is particularly true if the movement is only visually presented, and the 
user essentially perceives only the optical flow. Even if the user moves simultane-
ously and the movements are mapped 1:1 onto the virtual camera, this underestima-
tion of forward movements along the line of vision occurs. In contrast to virtual 
straight-line movements, virtual rotations often lead to an overestimation (Steinicke 
et al. 2010a).

In principle, these discrepancies in the perception of movement can be resolved 
relatively easily by applying gains to the tracked movements. For example (tx, ty, tz) 
is a measured vector that describes the head movement of a user from one frame to 
the next. By means of a gain gT, this movement can now be scaled simply by (gT ∙ tx, 
gT ∙ ty, gT ∙ tz). If gT = 1 no scaling occurs; for gT > 1 the motion becomes faster; and 
for gT < 1 the motion becomes slower. Psychophysical studies have shown that, for 
example, forward movements must be slightly accelerated (approx. 5–15%) to be 

Fig. 2.7 Representation of a virtual portal through which users can travel to different virtual 
worlds. (According to Steinicke et al. 2010b)
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considered correct by users. In contrast, rotational speeds should be reduced slightly 
(by approximately 5–10%).

These manipulations now lead to the fact that the virtually represented move-
ments are correctly perceived, i.e., the visually perceived movements match the 
vestibular-proprioceptive as well as the kinesthetic feedback. However, the users 
now actually perform different movements in the virtual and real environments, 
with the effect that, for example, certain distance estimation methods, such as count-
ing steps, no longer work. More recent approaches by Bruder et al. (2012b) prevent 
such discrepancies between real and virtual movements by manipulating the optical 
flow. Such optical illusions only manipulate the perception of the movement but not 
the movement itself.

2.4.7  Cybersickness

Users of a VR/AR application may experience undesirable side effects: headaches, 
cold sweat, paleness, increased salivation, nausea and even vomiting, ataxia (distur-
bance of movement coordination), drowsiness, dizziness, fatigue, apathy (listless-
ness) or disorientation.

It is generally known that the use of IT systems is not free of health side effects. 
Just working at a screen can lead to headaches, for example, because the eyes are 
overstrained by focusing on one plane for a long time, or the visual system is 
stressed by flickering at low refresh rates or blurred images. These visual distur-
bances, known as asthenopia (eye strain), can also occur in VR/AR applications 
because they also use monitors. The symptoms can be more severe, e.g., because the 
displays in an HMD may be closer to the eyes or fusion may still be necessary for 
stereo vision. An early study (Stone 1993) concluded that 10 min of use of an HMD 
is as stressful for the visual system as sitting in front of a computer monitor for 8 h. 
The situation is worse for individuals who suffer from vision disorders and, for 
example, have problems with eye muscle coordination.

Side effects can also be expected when users are moving or being moved within 
an application, e.g., by means of a motion platform, or by simply walking. The syn-
drome of symptoms known as seasickness (more generally: motion sickness) has 
been known for a long time and has also been the subject of research. It is possible 
to characterize movements that cause seasickness – for example, it is known that 
low-frequency vibrations (which may also occur in VR installations) lead to sea-
sickness. In flight simulators, which move an entire replica of a cockpit, it was 
observed early on that a significant proportion of pilots complain of feeling unwell 
(simulator sickness).

It is noteworthy that in VR/AR applications, the physiological symptoms men-
tioned at the beginning, which sometimes also occur in motion sickness or simula-
tor sickness, can be observed even when the users are not moving at all. Just seeing 
images seems to cause discomfort. Therefore, a separate term has been coined: 
cybersickness (sometimes also called VR sickness). Cybersickness can occur not 
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only during VR/AR use but also for some time afterward. Usually, the symptoms 
disappear by themselves. However, users may still be sensitized even after the 
symptoms have subsided, i.e., they may suffer from cybersickness more quickly if 
they repeatedly use VR/AR systems within a certain period.

The exact causes of cybersickness are not known today. Probably there is also no 
single cause, but it is a multifactorial syndrome. One theory often used to explain 
cybersickness and motion sickness is the sensory conflict theory: problems occur 
when sensory perceptions are inconsistent. If, for example, a passenger is below 
deck while heavy seas are moving the ship, the brain receives information via the 
vestibular sense that strong movements are present. In contrast, the visual sense sug-
gests precisely the opposite when no movement is detected in the cabin. Treisman 
(1977) motivates the sensory conflict theory by means of evolution: in the past, such 
inconsistencies in sensory perception only occurred if one had eaten the wrong 
mushrooms – and it is a sensible protective mechanism to quickly get rid of the 
poisoned stomach contents. Although in motion sickness inconsistencies between 
the visual sense and the sense of balance are particularly important in explaining 
symptoms, in cybersickness inconsistencies within a sense (e.g., contradictory 
depth cues in the visual sense, as in the vergence-focus conflict) are also considered, 
or even inconsistencies between the expected sensory impressions of a user and 
what is actually perceived. However, the sensory conflict theory cannot explain all 
phenomena in the area of cybersickness, and in particular, the extent to which symp-
toms occur can only be predicted with difficulty. Other attempts at explanation are 
therefore being sought. For instance, the postural instability theory (Riccio and 
Stoffregen 1991) assumes that people cannot cope with unfamiliar situations (such 
as those that can occur in a virtual environment) and that there is a disruption in the 
control of body posture that causes further symptoms.

Even though cybersickness’s exact causes cannot be explained, factors have been 
identified that promote cybersickness’s occurrence. The first group of factors 
depends on the individual. Age, gender, ethnicity and also individual previous expe-
riences with VR and AR can influence the occurrence of cybersickness. Remarkable 
are significant individual differences in the susceptibility to cybersickness. People 
who frequently suffer from motion sickness are also more susceptible to cybersick-
ness. The second group of factors is related to the VR/AR system. Influencing fac-
tors include image contrast and associated flicker, refresh rate, tracking errors, 
quality of system calibration and use of stereo displays. The larger the field of view 
(and the more peripheral vision is involved), the more frequently the occurrence of 
cybersickness is observed. Other essential factors are latencies, e.g., the time offset 
between head movement, the new head position’s detection, and the correct image 
display of this new head position. A rule of thumb says that latencies above 40 ms 
are too high and that latencies below 20 ms should be aimed for. Finally, there is a 
third group of factors that are related to the application. Does the user spend a long 
time in the application? Does the user have to move the head frequently? Does the 
user rotate, perhaps even more than one axis at a time? Is the head tilted off the axis 
around which the user is rotated (Coriolis stimulation)? Is the user standing instead 
of sitting or lying down? Do users look directly down at the area in front of their feet 
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and cannot see far in the scene in general? Is it difficult to orientate in the scene, e.g., 
because a static frame of reference is missing? Is there much visual flow? Do users 
move quickly and a lot in a virtual world? Are there frequent changes in speed, are 
movements oscillating rather than linear, and are there abrupt movements? Does the 
user jump often or climb stairs? Are there unusual movements? Are users anxious? 
The more questions are answered in the affirmative and the more emphatic the 
agreement, the more cybersickness can be expected. Another factor is the degree of 
control (combined with the anticipation of movement) that a user has when navigat-
ing through a virtual environment. This is consistent with the phenomenon that the 
driver of a car or the helmsman of a ship suffers less often from motion sickness. 
Finally, a further factor is whether the application favors vection, i.e., the illusion of 
moving even though no movement is taking place.

If one wants to reduce the risk of cybersickness, one can minimize the influence 
of the factors mentioned, such as reducing latencies by improving the technical 
realization, reducing movements of the user by increased use of teleportation, or by 
inserting artificial blurring during the rotation of the user. Individually, one can 
avoid the occurrence of cybersickness by slowly getting used to VR/AR applica-
tions (McCauley and Sharkey 1992). Chewing gum and adequate fluid intake are 
recommended. In extreme cases, one can take medication against motion sickness. 
As a herbal remedy, ginger does not prevent cybersickness, but it does counteract 
nausea and vomiting. Ultimately, it must be accepted that the occurrence of cyber-
sickness cannot be prevented with certainty. Consequently, users should be given an 
easy way to terminate a VR/AR application at any time. It is also important to 
inform users about the possible side effects and to obtain the explicit consent of 
users, especially in user tests.

Whether and to what extent cybersickness occurs is usually determined by 
observing or asking users. For this purpose, it makes sense to use standardized ques-
tionnaires. Although not intended for cybersickness, the Simulator Sickness 
Questionnaire (SSQ) and the Motion Sickness Assessment Questionnaire (MSAQ) 
are often used (Kennedy et al. 1993). Alternatively, users can be watched to detect 
symptoms – but this is sometimes difficult, e.g., headaches are difficult to detect, but 
vomiting is easy. Physiological body values (e.g., heart rate, skin conductivity) are 
sometimes measured. Here, especially, the interpretation of the measured values is 
difficult. Based on such measurements, studies such as Lawson (2015) conclude 
that 60–80% of users of a VR application show symptoms of cybersickness. Around 
15% show symptoms so severe that they have to stop using the application. However, 
such figures should be applied with great caution to a specific VR/AR application – 
there are many possible influencing factors and, therefore, strong fluctuations in the 
values. Individual differences among users are also considerable; the same user can 
react very differently to a scenario repeated several times during each repetition. 
Nevertheless, these figures show that cybersickness is not a marginal problem, but a 
real barrier to the use of VR and AR. Consequently, cybersickness should be taken 
into account in the development of every VR/AR application.
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2.4.8  Vertical Parallax Problem

One problem with the technical implementation of stereo vision is that the virtual 
projection plane used in rendering cannot be brought into alignment with the dis-
play’s real plane if the two are not parallel to each other. This leads to vertical paral-
lax, which the viewer perceives as a strain and can lead to errors in depth perception, 
blurring at specific image points or double images. Let us look at Fig.  2.8a. An 
observer fixates on point P, and thus the eyes are aligned accordingly – the direc-
tions of gaze are no longer parallel and convergence occurs. If we reproduce this 
when rendering the images, i.e., if we apply the toe-in method, the two projection 
planes intersect at point P and are not parallel to each other. Most of the time, it is 
technically not possible to realize that, for each of the two projection planes, there 
is a separate display available that can be aligned accordingly. Instead, a common 
real display is used for both projection planes. The point A has the distance v from 
the display. This is the unwanted vertical parallax. The further point A is from point 
P, the greater the vertical parallax, and the more blurred or distorted the image 
appears. As with horizontal parallax, you can distinguish between negative parallax 
(located before the display plane, such as point A) and positive parallax (located 
behind the display plane, such as point B).

Because of the problem of vertical parallax, the toe-in method is avoided, and the 
off-axis method is used instead. This is shown in Fig. 2.8b. Here, each eye has a ficti-
tious point of view P′ or P″, so that both projection planes lie on top of each other. 
This means that both projection planes can also be mapped exactly onto a single 
display plane. As a result, the viewing volumes are no longer symmetrical. 
Accordingly, an asymmetrical viewing volume must be set during rendering. This is 

Fig. 2.8 (a) The toe-in method leads to the occurrence of vertical parallax. (b) The off-axis 
method solves this problem
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shifted by the distance t from the center axis (‘off-axis’). The exact size of the view 
volumes can be calculated through a set of rays if the distance between the projec-
tion plane and the eyepoint is known. This solves the problem of vertical parallax.

2.5  Use of Perceptual Aspects

With knowledge of human perception, we can not only explain problems occurring 
in VR. Knowledge about the operation of human perception can also be useful to 
improve a VR experience or to use available resources well. In Sect. 2.4.1 we have 
already seen an example of how the ability of the human visual system to adapt 
makes complex technical solutions superfluous: we do not have to measure the dis-
tance between the pupils of an observer to adjust the virtual cameras correctly. On 
the contrary, we can manipulate virtual eye separation to prevent diplopia because 
we know that human perception reacts robustly to changes in virtual eye separation. 
Besides adaptation, there are two other important perceptual aspects of VR that are 
exploited in VR: salience and user guidance.

2.5.1  Salience

Human perception does not have the capacity to process all environmental stimuli 
in equal detail. Priorities are set, and people can focus attention on certain aspects. 
In the human visual system, for example, differentiation is already inherently built-
 in through the uneven distribution of sensory cells on the retina of the eye – humans 
can align the fovea in such a way that light stimuli from environmental objects clas-
sified as particularly relevant hit this point in the retina, which possesses a high 
number of sensory cells.

VR makes use of this characteristic of human perception because VR systems 
often do not have the capacity to artificially generate all environmental stimuli 
equally well. If you know what the user of a VR system is focusing his or her atten-
tion on, you can adjust the quality of the rendering (e.g., simulation of surface mate-
rials, quality of the object models, effort invested in anti-aliasing), sound quality, 
quality of the animation or accuracy of the world simulation. Conversely, one does 
not need to invest any or only a few resources of a VR system in areas that are not 
the focus of attention. In extreme cases one can even observe inattentional blind-
ness. In an experiment, Simons and Chabris (1999) showed nearly 200 students 75 s 
long videos in which basketball players throw a ball at each other. The viewers had 
the task of counting how many passes a team makes – attention was thus focused on 
the ball. The video showed an unusual event for 5  s, e.g., a person dressed as a 
gorilla walking across the field. About half of the viewers did not notice this at all. 
So why go to the trouble of creating images of a gorilla in a VR version of this scene 
if the viewer does not notice it?
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There are two obstacles to exploiting these phenomena of human perception. On 
the one hand, while it is possible to make statements about probabilities, it is not 
possible to predict with certainty which environmental stimuli are considered 
important for an individual in a concrete situation. Hence, we could make mistakes. 
For example, we leave out the gorilla in our VR scene even though the viewer would 
have seen it in the concrete situation. Here it is essential to weigh up the likelihood 
of making a mistake and the consequences. Due to the limited performance of VR 
systems, one may have no choice but to set priorities to meet real-time require-
ments. Violating real-time conditions (e.g., the virtual environment reacts with a 
noticeable delay to a user’s action; see Chap. 7) can have more serious consequences 
than choosing the wrong priorities.

On the other hand, there is the issue that the information is needed on which the 
viewer’s attention is currently focused. There are different approaches to obtaining 
this information. Firstly, technical systems can be used to determine where the 
observer is currently looking (eye-tracking; see Chap. 4). Secondly, through knowl-
edge about the application and the current goals and tasks of the user of VR, it can 
be estimated which objects of the virtual world are likely to attract a high level of 
attention (Cater et al. 2003). In the gorilla example, we could deduce from the task 
given to the viewers that the ball is the center of attention. Myszkowski (2002) cre-
ates task maps that assign each object a priority for rendering, with moving objects 
automatically getting a higher priority. A third approach (Treisman and Gelade 
1980) is based on the feature integration theory. This approach is attractive for VR 
because it does not require any additional knowledge about the application or the 
viewing direction of the viewer but can work solely on the images of the 3D scene: 
the salience (also called saliency) of objects is determined as a measure of their 
importance.

Salience describes how strongly an object stands out from its surroundings (e.g., 
in color, orientation, movement, depth). If one shows a person a picture with 50 
squares of equal size, 47 of which are grey and 3 are red, the 3 red squares stand out 
and are immediately noticed. The person can easily and quickly answer the question 
of how many red squares can be seen in the picture. Even if the number of gray 
squares is quintupled, the person can just as quickly recognize that there are 3 red 
squares present. The feature integration theory explains this observation by postu-
lating that human perception works stepwise. In the first stage, all incoming image 
stimuli are processed in parallel and examined for specific features. This happens 
subconsciously. It is called preattentive processing (see Fig.  2.9). Anatomically, 
receptive fields have already been identified, i.e., groups of nerve cells in the brain 
that are responsible for these tasks of feature extraction. The result of preattentive 
processing then serves as the basis for the decision in the next stage as to which 
regions in the image are to receive attention.

If one wants to take advantage of this in VR, one must first calculate an attention 
map (saliency map) of an image in which every pixel of an image is assigned a 
salience value. Today’s algorithms for this purpose are based on the work of Itti 
et al. (1998). The procedure consists of first splitting the input image into feature 
images, e.g., extracting a luminance image that contains only brightness values. 
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These feature images are examined in parallel with image processing methods, 
whereby the operation of the receptive fields in the brain is modeled mathemati-
cally. Receptive fields that recognize orientation in a feature image can be described, 
for example, by Gabor filters. A Gabor filter is constructed from a Gaussian func-
tion modulated by a sinusoidal function and can thus map the sensitivity for differ-
ent frequencies and orientations. The results of processing the individual feature 
images are normalized. The salience values are determined from this by weighted 
summation. The weighting can also be chosen depending on the current task of the 
observer. It is often determined by machine learning, e.g., utilizing neural networks. 
In this processing step, another phenomenon of human perception can be mimicked: 
inhibition. Inhibition means that nerve cells can not only be stimulated but also 
inhibited by stimuli, which increases differences. Algorithmically, this can be real-
ized, for example, with a winner-takes-all approach, i.e., the greatest value is used 
for salience, while salience in the vicinity of the greatest value is reduced to enhance 
its significance further. The saliency map finally obtained then serves as a basis for 
decisions on how to use resources of the VR system, e.g., for areas with high 
salience 3D models with a high level of detail are used. Further data can also be 
obtained, e.g., fixation maps (Le Meur et al. 2006), which predict what an observer 
is likely to fixate on. Since saliency maps are two-dimensional, a relatively complex 
back-calculation into the 3D scene is necessary to assign a salience value to virtual 
3D objects. Therefore, approaches are also being considered that directly examine 
characteristics of 3D objects and derive a salience value from them (Lee et al. 2005).

2.5.2  User Guidance

The area covered by the virtual environment’s hardware platform in which users can 
move around is usually much smaller than the virtual world represented in it. Clearly, 
without additional input devices, the users can only explore a very small part of the 
virtual world by their own movements. There is a variety of so-called locomotion 
devices that prevent the user from moving from one place to another in the real world 

Fig. 2.9 Example of preattentive processing: the time required to find the number of occurrences 
of the digit ‘7’ in a series of numbers can be reduced considerably if the number ‘7’ is displayed in 
a different color. This is processed in a preattentive stage. If the number series size increases, the 
time for the task completion increases if the number ‘7’ is not highlighted; otherwise it remains 
the same
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while walking. Examples are omnidirectional treadmills or the Virtuix Omni (see 
Chap. 4). Another approach is based on the idea of manipulating users in such a way 
that they walk on different paths in the real world than those perceived in the virtual 
world. If, for example, a small virtual rotation to one side is introduced during a 
user’s forward movement, the user has to compensate for this rotation in the real 
world to be able to continue walking virtually straight ahead. This results in the user 
walking on a curved path in the opposite direction. Thus, users can be guided on a 
circular path in the VR setup while they think they are walking straight ahead in the 
virtual world. Investigations have shown whether and from when on test persons can 
detect such manipulations through re-directed walking (Steinicke et al. 2010a). For 
instance, test persons who walk straight ahead in the virtual world can be guided on 
a circle with a radius of about 20 m in the real world without noticing this.

2.6  Summary and Questions

In this chapter, you have acquired basic knowledge in the field of human informa-
tion processing. In particular, we have dealt with some of the most important aspects 
in the field of spatial perception and the perception of movement. Based on this, you 
have learned about relevant phenomena and problems of VR. You have also seen 
examples of how different limitations of human perception can be exploited to 
improve the quality and user experience during a VR session. To design effective 
virtual worlds, it is essential to take findings from perceptual psychology on human 
information processing into account. Aspects related to perception have become 
increasingly important in recent years, which is reflected in the increased number of 
research projects in this field.

Check your understanding of the chapter by answering the following questions:

• Why is the response time for a subject longer when deciding whether a stimulus 
displayed on the screen matches a previously displayed stimulus than when the 
subject only has to respond when the stimulus appears?

• Compare a photo of a beach in the Caribbean and a photo of the streets of 
Manhattan. What pictorial depth cues are present in the photos?

• How does the object in Fig. 2.4 move if the virtual eye separation is not reduced 
from 64 mm to 60 mm, but instead increases to 70 mm?

• Why should a cyclopean scale be performed before virtual eye separation?
• Take a stereo display and conduct experiments to determine Panum’s fusional 

area of the stereo display. Try using the techniques presented in Sect. 2.4 to fit a 
3D scene that initially protrudes over the panorama area.

• Find more examples of conflicting depth cues in VR.
• You would like to build a light rail simulator with which a learner can drive a 

streetcar through a virtual city. Think about where perceptual aspects need to be 
considered. Which problems can potentially arise? Where can perceptual aspects 
be exploited in the technical realization of the simulator?

2 Perceptual Aspects of VR



68

 Recommended Reading1

Goldstein EB (2016) Sensation and Perception (10th edn). Cengage Learning, 
Belmont – Standard work from the psychology of perception which is not limited 
to visual perception. Very informative and with many examples.

Thompson WB, Fleming WF, Creem-Regehr SH, Stefanucci JK (2011) Visual 
Perception from a Computer Graphics Perspective. CRC Press, Boca Raton – 
Textbook which also explains essential aspects of perception for VR and always 
makes the connection to computer graphics.
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Chapter 3
Virtual Worlds

Bernhard Jung and Arnd Vitzthum

Abstract Virtual worlds, the contents of VR environments, consist of 3D objects 
with dynamic behavior that react in real time to user input. After a brief overview of 
the creation process of virtual worlds, this chapter introduces a central data structure 
of many VR/AR applications, the scene graph, which allows us to structure virtual 
worlds in a hierarchical manner. Afterwards, different ways to represent 3D objects 
are presented and discussed in the context of interactive virtual worlds. Special 
attention is given to methods for optimizing 3D objects with respect to the real-time 
requirements of virtual worlds. Subsequently, an overview of basic methods for 
generating the dynamic behavior of 3D objects is given, such as animations, physics- 
based simulations and the support of user interactions with 3D objects. A section on 
sound, lighting and backgrounds describes elements of virtual worlds that are sup-
ported by common scene graph systems. The concluding section on special-purpose 
systems deals with 3D objects that are usually modeled with the help of custom 
methods and tools, such as virtual humans, particle systems, terrains and vegetation.

3.1  Introduction

The term virtual world refers to the content of VR environments. Virtual worlds 
consist of 3D objects that exhibit dynamic behavior and can react to user input. 
Besides the actual 3D objects, virtual worlds also contain abstract, invisible objects 
that support the simulation and rendering of the virtual world. These include light 
and sound sources, virtual cameras and proxy objects for efficient collision checks 
or physics calculations. In the following, a simplified overview of the steps in mod-
eling virtual worlds and their integration into VR systems is given.
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3.1.1  Requirements on 3D Object Representations 
for Virtual Worlds

In contrast to other areas of 3D computer graphics that often emphasize photoreal-
ism and high visual detail of still images or animations, virtual worlds demand real- 
time capability and interactivity.

In simple terms, real-time capability means that the virtual world is updated and 
displayed immediately, i.e., without any noticeable delay. Ideally, the user would 
not perceive any difference from the real world in terms of the temporal behavior of 
the virtual world. For a more detailed description of the topics real-time capability 
and latency in the context of entire VR systems, refer to Sect. 7.1. For each time step 
or frame, e.g., 60 times per second, the subtasks of user tracking and input process-
ing, virtual world simulation, rendering and output on the displays have to be per-
formed by a VR/AR system (see Sect. 1.5). The way in which 3D objects are 
modeled directly influences the subtasks of world simulation and rendering. If the 
virtual world model becomes too complex, real-time capability may no longer be 
possible.

Interactivity means first of all that the system will respond to (any) activities of 
the user, such as moving around in the virtual world or influencing the behavior of 
the 3D objects contained therein. User interaction techniques for, e.g., navigation 
and object manipulation in VR, are the topic of Chap. 6. While the implementation 
of interactive behavior usually requires scripting or other forms of programming, 
certain measures can already be taken at the modeling stage of virtual worlds to 
make these interactions effective and efficient. For example, to accelerate user inter-
actions as well as the dynamic behavior of 3D objects resulting from these interac-
tions, 3D objects are often enriched with simpler collision geometries such as 
cuboids or spheres. This allows efficient collision checks not only of the 3D objects 
with each other, but also, during user interactions, with the virtual representation of 
the user or a virtual pointing ray emanating from an interaction device (see also 
Sects. 6.2 and 6.4 for selecting and manipulating 3D objects, and Sect. 7.2 for col-
lision detection).

Concerning the visual realism of virtual worlds, a wide spectrum of requirements 
exists in different kinds of VR/AR applications. While virtual worlds for training 
purposes should strongly resemble the real world, the visual appearance of gaming 
applications may range from toon-like, through realistic to artistically fanciful. In 
scientific applications, often clearer form and color schemes are preferred over real-
istic appearance. Even in VR/AR applications with high demands on visual quality, 
however, the requirements regarding real-time and interactivity of the virtual world 
generally take precedence.
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3.1.2  Creation of 3D Models

The first step in the creation process of virtual worlds is the creation of the individ-
ual 3D models. This can be done in different ways:

• ‘Manual’ modeling of 3D objects in 3D modeling tools. Widely used examples 
are Autodesk’s 3ds Max and Maya, and the open-source tool Blender. 3D model-
ing tools typically also support the creation of animations, for example by inte-
grating motion capture data to animate virtual humans. In the technical domain, 
CAD systems are used which often provide very precise geometric modeling. 
Before import into VR systems, it is typically necessary to simplify the often 
very complex CAD models (see below and Sect. 3.3.4).

• Procedural modeling techniques are used for the automatic generation of very 
large or very complex objects, whose modeling by hand would be too time- 
consuming. An example is the automatic generation of 3D models of buildings 
or entire cities, possibly based on real-world geodata. Another example is the 
generation of objects with fractal shapes, such as terrain or trees (see Sect. 3.5).

• Furthermore, 3D models can be acquired as 3D scans of real objects or environ-
ments. For this purpose, e.g., laser scanners, which provide depth information, 
are used in combination with color cameras to obtain the object textures. By 
means of photogrammetric methods it is also possible to create 3D models solely 
on the basis of multiple camera images of the object (see Fig. 3.1). Raw 3D scans 
may require complex post-processing steps, such as filling gaps (in areas not 
captured by the camera due to occlusion), simplifying the geometry and remov-
ing shadows or viewpoint-dependent highlights from the object textures. A good 
overview of the algorithmic procedures for the 3D reconstruction of objects from 
2D images can be found in the book by Hartley and Zisserman (2004). Among 
the more frequently used software tools are Agisoft Metashape, Autodesk ReCap, 
3DF Zephyr and the open source VisualSFM.

Fig. 3.1 Generation of 3D models using photogrammetry software. Left: Selection of photos of 
an object; typically several dozen photos would be used. Middle: Generated 3D model in wire-
frame view. Right: Textured 3D model
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3.1.3  Preparation of 3D Models for VR/AR

3D objects created or acquired by the above methods usually require post- processing 
so that they can be included in virtual worlds. This typically concerns simplification 
of the object geometry and the adaptation of visual detail. Further, objects must be 
converted into file formats suitable for the respective VR/AR system.

The simplification of the object geometry aims, among other things, at enabling 
an efficient rendering of the 3D objects. Essentially, the goal is to reduce the number 
of polygons of a 3D object. This can be done, for example, mostly automatically by 
special programs for simplification of polygon meshes (some manual postprocess-
ing is typically required, however). Another option is to model an additional, low- 
resolution variant of the 3D object, which is textured with renderings of the original, 
high-resolution 3D object (texture baking). Furthermore, it can be useful to provide 
several variants of a 3D object in different resolutions, between which it is possible 
to switch at runtime depending on the distance to the viewer or the field-of-view 
covered (level of detail). These and other techniques are elaborated in Sect. 3.3.

The 3D objects must also be converted into a file format that is supported by the 
respective runtime environment of the virtual world. This step can be done using 
special conversion programs or export options of 3D modeling tools. For commer-
cial game engines, the proprietary FBX format by Autodesk is primarily relevant. 
Popular file formats are also, for example, the somewhat older but still widely sup-
ported formats Wavefront (.obj) and Autodesk 3DS (.3ds). Open standards include 
COLLADA (.dae), glTF (.gltf) and X3D (.x3d).

3.1.4  Integration of 3D Models into VR/AR 
Runtime Environments

Finally, the individual 3D models must be combined into complete virtual worlds. 
For this, the 3D objects are arranged in a scene graph. This could be done, for 
example, by creating a single X3D description of the entire virtual world. More 
common, however, is to load the individual objects into a world editor of a game 
engine and to create the scene graph there. Furthermore, to simplify collision detec-
tion and collision handling as part of the world simulation, it is often advisable to 
equip the 3D objects with simplified collision geometries at this point (see Sect. 3.4 

X3D (Web 3D Consortium 2013) is an XML and scene graph-based descrip-
tion language for 3D content. The successor of VRML (Virtual Reality Markup 
Language), X3D was adopted by the W3C Consortium as a standard for the 
representation of virtual worlds in web applications. Many common 3D mod-
eling tools offer an export option to the X3D format, which thus also plays an 
important role as an exchange format for 3D models and 3D scenes.
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and in-depth Sect. 7.2). In addition to the actual 3D objects, virtual worlds contain 
special objects such as virtual cameras, light sources, audio sources and back-
grounds, which should now also be defined (see Sect. 3.5).

3.2  Scene Graphs

The elements of the virtual world, such as its 3D objects, sounds, cameras and light 
sources, as well as information on how these elements are spatially arranged and 
hierarchically structured are described by the so-called scene. At runtime, the scene 
is rendered from the user’s point of view, i.e., converted into one, or in the case of 
stereo displays two, or in the case of multi-projector systems multiple 2D raster 
graphics (bitmap images). The rendered raster graphics are then displayed on suit-
able devices (e.g., monitor, head-mounted display, projection systems such as a 
CAVE, etc.; cf. Chap. 5). In addition, audio information contained in the scene is 
output via speakers or headphones. A scene can change dynamically at runtime. For 
example, the positions of 3D objects can vary over time. This is referred to as an 
animated scene. If 3D objects also react to user input, the scene is interactive. The 
ability of an object to react to events such as user input or interaction with other 
objects by changing its state is called behavior.

A scene graph describes the logical and often spatial structure of the scene ele-
ments in a hierarchical way. Common data structures for scene graphs are trees and, 
more general, directed acyclic graphs (DAGs). Conceptually, a scene graph consists 
of nodes connected by directed edges. If an edge runs from node A to node B, A is 
called the parent node and B is called the child node. Scene graphs contain exactly 
one root node, that is, a node that does not have a parent node. Nodes without chil-
dren are called leaf nodes. Unlike a tree, which is a special kind of DAG, child 
nodes are allowed to have multiple parent nodes in DAGs. The scene graph is tra-
versed from the root to the leaves at runtime, collecting information for rendering, 
among other things (see Sect. 7.3).

Scene graphs allow a compact representation of hierarchically structured virtual 
worlds. Figure 3.2 shows an example of a scene comprising a vehicle, a road and a 
nail. The vehicle consists of several sub-objects, i.e., the body and four wheels. The 
hierarchical relationship is modeled by grouping them in a transformation group. 
By using a transformation group instead of a ‘plain’ group, the vehicle can be moved 
as a whole. The four wheels are also each represented by a transformation group 
that allows the wheels to rotate while the car is moving. Figure 3.2 also illustrates 
an advantage of scene graphs having a DAG structure rather than being trees, i.e., 
the ability to reuse 3D objects (or groups of them) very easily. In the vehicle exam-
ple, only one geometry object of the wheel has to be kept in memory instead of 
keeping four separate copies.

The leaf nodes of the scene graph represent the actual (mostly geometric) 3D 
objects. All internal nodes have a grouping function. The root node represents the 
entire scene, as it encompasses all 3D objects. Transformation groups deserve 
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special elaboration. They define a local coordinate system for their child nodes, usu-
ally by means of a transformation matrix contained as an attribute of the node. The 
transformation defined by such a node then describes the displacement, rotation and 
scaling of the local coordinate system with respect to the coordinate system of the 
parent node. To determine the global position, orientation and scaling of an object, 
the path from the root of the scene graph to the object must be traversed. For all 
transformation nodes occurring on the path, the corresponding transformation 
matrices must be chained together in the order of the path by right multiplication. 
The resulting matrix must now be multiplied by the vertex coordinates of the object. 
The mathematics of calculating with transformation matrices is explained in Chap. 
11. Figure 3.3 illustrates the typical node types of scene graph architectures. The 
meaning and usage of these and other node types will be explained in more detail at 
the appropriate places within this chapter. In addition to the actual geometric 3D 
objects, the scene graph usually contains other elements, such as audio sources, 
light sources and one or more virtual cameras (or viewpoints). Lens parameters such 
as the horizontal and vertical view angle (or field of view) as well as the orientation 
and position of a virtual camera determine the visible section of the virtual world.

The hierarchical structure of scene graphs also offers the interesting possibility 
of representing an object in the coordinate system of another object (the reference 
object). For example, the vertex coordinates of a geometric object can be trans-
formed into the coordinate system of the virtual camera. For this purpose, a path in 
the scene graph must be traversed from the node of the reference object to the 

Fig. 3.2 Example of a scene graph. The scene consists of a vehicle with four wheels and a road 
with a nail on it. The 3D object for the wheel only has to be loaded into memory once, but is reused 
several times
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respective object node. Edges can also be traversed in the reverse direction. As 
before, the transformation matrices occurring on the path must be multiplied. If the 
corresponding transformation group is reached via an edge in the reverse direction, 
multiplication with the inverse matrix must be performed.

As an example, the transformation matrix MNail → Wheel1 is to be determined, which 
transforms the object coordinates of the first wheel of the vehicle into the coordinate 
system of the nail lying on the road (see Fig. 3.2). This yields the following matrix 
multiplication:

 
M M M M MNail Wheel Nail Street Vehicle Wheel�

� �� � � �1
1 1

1

  
 

3.3  3D Objects

3D objects are the most important elements of virtual worlds. 3D models should 
define the object geometry both as precisely as possible and in a form that can be 
efficiently processed by a computer. Some common ways of representing objects 

A widely used, platform-independent scene graph library is the C++-based 
OpenSceneGraph, which is used, e.g., for the development of immersive VR 
systems. With the X3DOM framework, which is also open source, X3D-based 
virtual worlds can be displayed in web browsers. In game engines, scene 
graphs are also common. Popular examples are Unity, Unreal Engine and the 
open-source Godot engine. Scene graphs of game engines, however, usually 
have a tree structure, which is a special case of a DAG. To achieve memory- 
efficient reusability of 3D objects, other mechanisms such as instantiation are 
used here.

Fig. 3.3 Selection of typical node types in scene graph architectures. The leaf nodes (green) in the 
scene graph are usually displayed visually or audibly, group nodes (red) serve to structure the scene
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for VR/AR applications are presented below. A fundamental distinction exists 
between surface and solid models. Surface models, such as polygon meshes, 
describe surfaces that may, but are not guaranteed to, enclose a 3D volume. Solid 
models, e.g., b-reps, in contrast, always describe objects that enclose a volume.

3.3.1  Surface Models

In computer graphics, it is often sufficient to model what a 3D object looks like 
when seen from a certain distance, but unnecessary to model the invisible interior. 
Surface models thus capture only the outer appearance of objects but not their 
inside. While some surfaces are of simple, regular shape, the natural world also 
contains many complex, curved surfaces, such as human faces or hilly landscapes.

 Polygonal Representations

Polygon-based surface representations are widely used in computer graphics as they 
both allow us to model arbitrary shapes and can be efficiently rendered. A disadvan-
tage, however, is that the geometry of curved surfaces can only be reproduced 
approximately, since it is modeled by a mesh of planar polygons. To describe a 
curved surface with sufficient accuracy, a high number of polygons is therefore 
necessary, which in turn requires a larger amount of memory and makes rendering 
more complex.

On modern graphics hardware, so-called tessellation shaders are available which 
allow the creation of polygons directly on the GPU. With the help of the tessellation 
shaders, curved surfaces can be represented with low memory requirements and ren-
dered efficiently. However, tessellation shaders are not yet supported by many model-
ing tools. Instead, when exporting 3D models with curved surfaces, polygon meshes 
with a high polygon count are typically generated. Thus, memory efficiency is an issue 
when choosing an appropriate data structure for polygonal representations.

 Polygons

A polygon is a geometric shape that consists of vertices that are connected by edges. 
Only planar polygons are of interest here, i.e., polygons whose vertices lie in a 
plane. The simplest and necessarily planar polygon is the triangle. Slightly more 
complex is the quadrilateral (or quad in computer graphics speak). Also possible, 
but less common in computer graphics, are n-gons, i.e., polygons with n vertices. 
For the purpose of rendering, more complex polygons are typically split into trian-
gles, as the graphics hardware can process triangles very efficiently. Polygons that 
are part of an object surface are also called faces. Figure 3.4 shows the conceptual 
relationship between objects, faces, triangles, edges, and vertices.
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 Polygon Meshes

A polygon mesh consists of a number of connected polygons that together describe 
a surface. As the vertices in a polygon mesh are shared by different faces, the 
indexed face set (or indexed mesh) is often a good choice as a data structure for stor-
ing the mesh. Two separate lists are defined for faces and vertices. A face is then 
defined by references (indices) to the vertex list (Fig. 3.5). Compared to an indepen-
dent definition of the individual faces, the indexed set saves memory space. 
Furthermore, topology information (relationships between vertices, edges and sur-
faces) can be derived from the data structure.

 Triangle Strips

An even more memory efficient representation of polygon meshes (or, more pre-
cisely, triangle meshes) is achieved by triangle strips. Here only the first triangle is 
defined by explicitly specifying all three vertices. Each further vertex then creates a 
new triangle by reusing two of the previously defined vertices (Fig. 3.6). Thus, for 
N triangles, only N + 2 vertices need to be defined instead of 3 ∙ N vertices. In addi-
tion to saving memory space, the fast processing of triangle strips is supported by 

Fig. 3.4 Elements of polygonal object representations

Fig. 3.5 Representation of a polygon mesh by separate lists for vertices and faces as an indexed 
face set. An indexed face set can contain different kinds of polygons, i.e., triangles, quadrilaterals 
or general n-gons, but each face must be planar
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the graphics hardware. Efficient algorithms exist for the automated conversion of 
other polygonal representations into triangle strips. Some scene graph architectures 
may provide special geometry nodes, so-called TriangleStripSets, which describe 
objects as a set of triangle strips. Also, many real-time oriented computer graphics 
environments, including those for VR/AR, may try to automatically optimize 3D 
models when loading them, e.g., by converting them to triangle strips.

For a more in-depth discussion of triangle strips and other polygonal representa-
tion, see Sect. 7.3.

3.3.2  Solid Models

A surface by itself does not have to enclose a volume, i.e., it does not necessarily 
have to describe a solid. While surface representations are often good enough for 
rendering purposes, other cases may require solids, e.g., in a physical simulation to 
calculate the volume or the center of mass of an object. Similarly, for collision 
detection, it can be advantageous to approximate objects by bounding volumes, i.e., 
simple solid bodies that fully enclose the actual objects (see also Sects. 3.4.2 
and 7.2.1).

 Boundary Representations (B-Reps)

A boundary representation (b-rep) defines a solid as a set of surfaces that define the 
border between the interior and the exterior of the object. A simple example is a 
polygon mesh that encloses a volume in a watertight manner. To execute certain 
algorithms efficiently, e.g., for checking the validity of the boundary representation 
(i.e., the ‘watertightness’ of the polygon mesh), data structures are required that 
provide information about the topology of the object surface (as relationships 

Fig. 3.6 Representation of a triangle mesh by triangle strips. The first triangle of each strip is 
specified by three vertices, and the following triangles by only one vertex. For example, the first 
triangle F1 is specified by vertices v1, v3 and v2. The following vertex v4 specifies the triangle F2 
with vertices v3, v2, v4 and the vertex v5 specifies the triangle F3 with vertices v3, v5, v4, etc.
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between vertices, edges and faces). This is where data structures such as the indexed 
face sets discussed above come into play. In addition, it must be possible to distin-
guish the inside and outside (or back and front) of a boundary face. For this purpose, 
vertices or edges of the face can be defined in a certain order, e.g., counterclock-
wise. The order of the vertices determines the direction of the normal vector, which 
is perpendicular to the polygon front. Alternatively, the normal vector can be defined 
explicitly. An observer looks at the front side of a polygon when its normal vector 
points approximately in the direction of the observer (Fig. 3.7b). For b-reps (and 
solids in general) the drawing of the polygon back sides (backfaces) can be omitted, 
because they never become visible. In many scene graph libraries, the node classes 
for polygon meshes contain a binary attribute that indicates whether the polygon 
mesh models a solid.

 Primitive Instancing

Primitive instancing is based, as the name already suggests, on the instantiation of 
so-called primitives. These are predefined solid objects, such as spheres, cylinders, 
capsules and tori, or sometimes more complex objects, such as gears. The properties 
of a primitive instance (e.g., the radius in the case of a sphere) can be set via param-
eters. Many scene graph libraries offer support at least for simple primitive objects 
like spheres, cuboids, cylinders and cones.

3.3.3  Appearance

While the surface or solid models discussed above describe the shape of 3D objects, 
their appearance is modeled by ‘materials’. Different types of textures play impor-
tant roles for this.

Fig. 3.7 (a) Example of a b-rep solid. (b) Determination of the front or back side of a polygon. If 
the polygon normal 



n  is approximately opposite to the viewing direction 


v , or more precisely: if 


n  and 


v  form an angle between 90° und 270°, then the viewer is looking at the front of the polygon
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 Materials

The visual appearance of objects is mainly characterized by their material proper-
ties regarding reflection and transmission (transparency and translucency) of inci-
dent light. In computer graphics, a multitude of lighting models have been proposed 
which, with more or less computational effort, aim to approximate the underlying 
physical processes at least in effect. The lighting models differ, among other things, 
in their material systems used to model the appearance of the objects.

Two main approaches are currently relevant for real-time 3D applications such as 
VR and AR. Modern game engines, including Unity and the Unreal Engine dis-
cussed in Chap. 10, use physically based rendering (PBR) with associated material 
systems, which may, however, differ in detail between the various engines. PBR 
(e.g., Pharr et  al. 2016). delivers comparatively photorealistic image quality but 
places higher demands on the available computing power. The older, ‘classical’ 
approach follows the illumination model by Phong (1975), which is also well suited 
for applications in web browsers and mobile devices due to the lower requirements 
regarding computing power. Older, but still common, file formats for 3D objects 
like Wavefront obj only support the well understood Phong model, so knowledge of 
it is still useful for application development with modern game engines.

According to Phong’s illumination model, the light reflected from a surface is 
composed of three components, which must be specified separately for each mate-
rial: ambient, diffuse and specular reflection. Ambient reflection models the influ-
ence of directionless ambient light and provides the basic brightness of the object. 
Diffuse reflection occurs on matte surfaces and depends on the orientation of the 
object surface to the light source. The resulting shades contribute significantly to the 
spatial impression of the 3D object. Specular reflection creates shiny highlights on 
smooth surfaces. Material specifications according to the Phong model are usually 
supplemented by emission properties to model objects that themselves emit light.

Among the advantages of the Phong model are its conceptual simplicity and the 
low computing power requirements. An obvious disadvantage is that it cannot com-
pete with modern PBR approaches in terms of visual realism. For example, the 
Phong model still produces reasonably attractive results for matte surfaces, but is 
less suitable for smooth surfaces, which often give the impression of plastic even 
when metals are to be displayed. A further disadvantage is that the specification of 
the different material properties requires a certain understanding of the different 
parameters of the model. For example, the ambient, diffuse and specular reflection 

glTF (GL Transmission Format) is a royalty-free standard for storage and net-
work transmission of 3D models, which in particular offers support for 
physics- based rendering (Khronos Group 2017). Models using the metalness- 
roughness material system can be described in a purely declarative manner. 
For models that use other material systems, shader programs can be embedded.
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properties can be specified independently of each other, although there are physical 
dependencies between them. In practice, this may tempt the 3D designer to experi-
ment with the parameter settings of the materials until a visually appealing result is 
achieved, but which violates basic physical laws. Such an object, with physically 
impossible reflective properties, may even look good under the lighting conditions 
of a given application, but is unlikely to be easily reusable in other applications.

PBR, which is used in modern game engines, is essentially a methodology with 
many variations, but not a standardized model. The various concrete forms share the 
common goal of achieving the most photorealistic renderings possible by imple-
menting concepts that are comparatively close to physics. For example, PBR 
approaches ensure energy conservation, i.e., it is guaranteed that no more light is 
reflected than is incident on a surface. The calculation of light reflection often fol-
lows the Cook-Torrance model (Cook and Torrance 1981), which, among other 
things, makes a physically well-founded distinction between metals and non-metals 
(‘dielectrics’) with respect to material types. This takes into account, for example, 
that in the case of metals specular reflections occur in the object color, whereas in 
the case of non-metals specular highlights occur in the light color. Furthermore, 
PBR approaches conceptually regard surfaces as consisting of many micro-facets 
(Torrance and Sparrow 1967). The orientation of the micro-facets, in similar or 
varying directions across the surface, models smooth or rough surfaces. 
Corresponding to the multitude of concrete implementations of the PBR approach, 
modern game engines offer the 3D designer a number of different shader models to 
choose from. Most engines offer ‘standard shader models’, but these may differ 
between engines (or versions of the same engine). The shader models available in 
game engines typically try to provide the 3D developer with parameters that are as 
intuitive as possible, i.e., that ‘hide’ the complexity of the underlying physics 
of light.

A typical minimal PBR material system contains the following parameters: 
albedo, metalness and roughness/smoothness. Albedo is the basic color of the 
object. In contrast to the Phong model, no other color needs to be specified. Albedo 
corresponds approximately to the diffuse color of the Phong model. Metalness 
describes whether the material is a metal or not. Formally, the parameter usually 
allows values between 0 and 1. In practice, binary modeling with the exact values 0 
or 1 or values that are close is often sufficient. The roughness parameter also allows 
values in the range between 0 and 1, although here the whole range of values can be 
used to define more or less smooth surfaces (Fig.  3.8). In game engines, these 
parameters can be specified for an entire object or, what is more common in prac-
tice, per pixel, using textures (see below). The material systems of game engines 
typically also provide options for specifying emission properties and textures such 
as bump, normal and ambient occlusion maps (see below).

With regard to the light transmission of objects, a rough distinction can be made 
between transparency and translucency. If the objects behind the considered object 
are still clearly visible, this is called transparency, e.g., clear glass, otherwise it is 
called translucence, e.g., frosted glass. Physically, the transition between transpar-
ency and translucency is continuous. In the simplest case, transparency is modeled 
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using an opacity value (opacity is the opposite of transparency). For example, the 
alpha value of RGBA textures is such an opacity value. More complex models also 
account for the refraction of light when it passes into other media, e.g., from air to 
water, for which physical parameters such as a refractive index or the Fresnel reflec-
tion ‘F0’ are required. To make it easier for 3D designers to use such models in 
practice, game engines typically provide specialized shader models for this purpose, 
as well as for related effects such as subsurface scattering or clear coat surfaces.

A more in-depth introduction to the concepts and methods of PBR is given, for 
example, in Pharr et al. (2016) and Akenine-Möller et al. (2018).

 Textures

To represent fine-grained structures, e.g., of wood or marble, or to represent very 
fine details, a trick is used which can also be found in many old buildings, such as 
churches: the details are only painted on instead of modeling them geometrically. In 
computer graphics this is called texturing. Textures are raster images that are placed 
on the object surfaces. The exact mapping of pixels of the texture to points on the 
object surface is achieved by assigning normalized texture coordinates (i.e., raster 
image coordinates) to the vertices of the polygons representing a surface. During 
rendering, texture coordinates for pixels located between the vertices of a polygon 
are calculated by the graphics hardware by means of interpolation (Fig. 3.9a).

Even more realistic surface structures can be created using methods such as 
bump mapping, normal mapping or displacement mapping. In bump mapping, the 
pixel colors of the object surface are modified based on a grayscale image (the bump 
or height map). The bump map represents the ‘height profile’ of the object surface, 
with small (i.e., ‘dark’) values usually representing lowered areas and large (i.e., 
‘light’) values representing raised areas of the object surface. A bump map is placed 
on the object’s surface like a conventional texture. However, the values of the bump 
map are not interpreted as colors, but modify the normals on the corresponding 

Fig. 3.8 Effects of the metalness and roughness parameters in a typical PBR material system. 
Mooth surfaces reflect the environment sharply, whereas on rougher surfaces the environment 
reflection is blurred or even imperceptible. Highlights on metals shine in the color of the surface, 
highlights of non-metals in the color of the light source
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points on the object surface. Thus, as normals play an important role in illumination 
calculations, the surface brightness can be varied pixel by pixel (Fig. 3.9b). Normal 
mapping is a variant of bump mapping with the difference that normal vectors are 
stored directly in a so-called normal map. Nevertheless, both bump-mapping and 
normal-mapping are ‘display tricks’ which create the visual effect of rough surfaces 
even on coarsely resolved polygon models without actually changing the object’s 
geometry. In contrast, displacement mapping indeed manipulates the geometry of 
the object’s surfaces. It may be necessary to refine the polygon mesh for this 
purpose.

Ambient occlusion maps are also quite common, modeling how much ambient 
light arrives at the different parts of a surface. For cracks, this value will tend to be 
low, but higher in exposed areas. Ambient occlusion maps are typically calculated 
from object geometry during the modeling stage using texture baking (see 
Sect. 3.3.4).

 Shader

To enable an even more varied design of object surfaces, so-called shaders can be 
used. Shaders are small programs that are executed on the graphics hardware 
(graphics processing unit, GPU). Shaders are written in a special shader language 
like the OpenGL Shading Language (GLSL) or the High Level Shading Language 
(HLSL) by Microsoft. The most commonly used shader types are vertex shaders, 
which modify vertex information, and fragment shaders (often also referred to as 
pixel shaders), which allow manipulation of color values in the rasterized image of 
an object surface. For example, displacement mapping could be realized based on a 
vertex shader and bump mapping based on a fragment shader. The final color of a 
pixel on the screen may also result from color fragments of several objects, e.g., if 
a semi-transparent object is in front of a more distant object from the viewer’s point 
of view.

Fig. 3.9 (a) Object with image texture; section of the texture at the top left of the image, (b) object 
with image texture and bump map; section of the bump map at the top left of the image
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Modern GPUs contain thousands of processing units (also known as hardware 
shaders, shader processors or stream processors) that enable highly parallel execu-
tion of shader programs. GPUs are increasingly being used for tasks beyond com-
puter graphics, including high-performance computing, crypto-mining and machine 
learning. Accordingly, newer GPUs also offer hardware support for such tasks, e.g., 
specialized deep learning processing units (e.g., Nvidia’s ‘tensor cores’). These new 
capabilities of the graphics hardware open up novel possibilities for using machine 
learning when rendering virtual worlds in the future. For example, an approach 
presented by Nvidia in 2018 uses deep neural networks to evaluate the visual quality 
of shadow renderings in real-time applications, so that they can be improved by 
means of ray tracing if necessary.

3.3.4  Optimization Techniques for 3D Objects

Rendering efficiency is a crucial factor for maintaining real-time performance and 
thus for compelling VR experiences. The rendering efficiency can be significantly 
improved by simplifying complex object geometries. In this section several useful 
optimization approaches are presented, namely simplification of polygon meshes, 
level of detail techniques and texture baking for replacing geometry with textures.

 Simplification of Polygon Meshes

An important measure to obtain real-time 3D models is the reduction of the number 
of polygons. A common method for triangle meshes is the repeated application of 
‘edge collapse’ operations (Hoppe 1996). For example, to remove vertex v1 from the 
mesh, it is merged with an adjacent vertex v2 into a single vertex v2. First, the two 
triangles that share the edge (v1, v2) under consideration are removed from the mesh. 
Then, in all triangles of the mesh that still contain v1, v1 is placed by v2. Finally, the 
position of the unified vertex v2 is adjusted, e.g., halfway between the old positions 
of v1 and v2. This procedure effectively removes one vertex and two triangles from 
the mesh.

A question that arises, however, is according to which criteria the vertices to be 
deleted are selected by an automated procedure. Intuitively, the number of polygons 
in a mesh can be reduced at points where the surface is relatively ‘flat’. For a trian-
gle mesh, for example, the variance of the normals of the triangles sharing a vertex 
can be checked (Schroeder et al. 1992). If the variance is rather small, at least in the 
local neighborhood of the vertex, the surface is ‘flat’ and the vertex can be deleted. 
Depending on the choice of threshold value for the variance, the triangle reduction 
can be stronger or weaker.
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 Level-of-Detail Techniques

With increasing distance of a 3D object to the viewer, less and less detail is percep-
tible. This fact can be used to optimize rendering efficiency if a 3D object is stored 
in several variants of different level of detail (LOD). Object variants with different 
levels of detail can be created, for example, by gradually simplifying a polygon 
mesh as described above, or by lowering the resolution of textures. Also, the two 
techniques addressed in the following, i.e., texture baking and billboarding, can be 
used to generate object variants at lower levels of detail.

At runtime, a suitable level of detail is selected by the VR system depending on 
the distance to the viewer. For example, if the object is further away, a 3D model is 
displayed that consists of relatively few polygons or uses smaller, less detailed tex-
tures and can therefore be rendered faster. In contrast, a more detailed model is 
rendered at shorter distances. The distance ranges for the detail levels are usually 
defined per object during the modeling stage. When defining these distance ranges, 
care should be taken that the VR user will not notice the transitions between the 
detail levels. In practice, three detail levels are often sufficient.

Some scene graph architectures support this mechanism directly through a dedi-
cated LOD node type (e.g., in X3D). Alternatively, customized switch nodes could 
be used. A switch node is a group node where only one of the child nodes is dis-
played. The child node to be displayed can be selected at runtime. To mimic the 
behavior of an LOD node, one could select the child node to be displayed depending 
on the distance to the virtual camera (see also Sect. 3.4.3 on using switch nodes to 
display the state changes of dynamic objects).

Some modern game engines provide even more sophisticated LOD mechanisms. 
Besides the use of lower-detail models, it may also be possible to vary certain prop-
erties of the rendering process, depending on the detail level. For example, the more 
accurate per-pixel lighting might be replaced by faster per-vertex lighting, or com-
putationally expensive indirect lighting methods could be turned off at lower 
detail levels.

 Texture Baking

It is often necessary to reduce the number of polygons of a high-resolution 3D 
object to guarantee the real-time requirements mandated by VR/AR applications. To 
still get the impression of a detailed representation, the technique of texture baking 
is commonly used. Here, the color information of the illuminated surface of a high- 
resolution 3D model is stored in a texture. The texture ‘baked’ in this way is then 
applied to the low-resolution, polygon-reduced version of the 3D model. Instead of 
a color texture, this technique can be used in a similar way to create a bump map or 
normal map for the corresponding low-resolution model from a high-resolution 
model (Fig. 3.10).
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 Billboards

Billboards are special transformation groups that are automatically aligned to face 
the observer. Billboards often contain very simple geometries, such as textured 
quadrilaterals. For example, it is much more efficient to render a billboard with the 
image of a distant tree as a texture than to render a detailed geometric tree model. 
Accordingly, billboards with textured quadrilaterals are often used in conjunction 
with LOD methods. Another important use case of billboards is the visual represen-
tation of individual particles in particle systems for fire, smoke, explosions etc. (see 
Fig. 3.15). Compared to a ‘true’ geometric model, the billboard has the disadvan-
tage that the observer always sees the object from the same side. Therefore, it is 
generally recommended to use billboards only for more distant or very small objects 
whose details are less visible. An exception is the display of text, e.g., in textual 
labels or menu items, where the auto-aligning property of billboards can be exploited 
to ensure readability.

Fig. 3.10 Example of Texture Baking. Left: high resolution original scene. Right: scene with 
simplified geometry and baked textures for color and bump mapping
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3.4  Animation and Object Behavior

If the properties of objects in the virtual world change over time, they are called 
animated objects. A wide variety of properties can be modified, such as position, 
orientation, size, color and geometry (vertex coordinates). In the following, two 
basic types of animation are briefly explained: keyframe and physics-based 
animation.

3.4.1  Keyframe Animation

A very common and simple method for animating 3D objects is keyframe anima-
tion. Here, the animator defines the values of a property to be animated, e.g., the 
position of an object, at selected time steps of an animation sequence – the so-called 
keyframes. Values at time steps between two keyframes are determined automati-
cally by interpolation of the key values (Fig. 3.11). Different interpolation methods 
can be used, such as linear or cubic spline interpolation.

3.4.2  Physics-Based Animation of Rigid Bodies

It is often desirable to generate object movements in an at least approximately real-
istic manner. A common approach is to treat 3D objects as rigid bodies – which in 
contrast to soft bodies are not deformable – and to simulate their behavior based on 
physical laws. For this, several physical object properties must be modeled or com-
puted. Important physical properties of an object include:

• its mass, to determine accelerations when forces or torques are applied to the 
object, e.g., after a collision,

• its linear velocity and (when rotating) angular velocity,

Fig. 3.11 Keyframes at time steps t1 and t2, interpolated frames in between. In this example, the 
rotation angle of the object is animated
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• material-related damping parameters to damp the movement of the object due to 
friction,

• elasticity values to simulate the reduction in speed due to the loss of kinetic 
energy after a collision.

Furthermore, the initial forces and torques acting on a body at the beginning of 
the simulation must be defined. Global influences, such as the gravity force perma-
nently acting on all bodies, must also be taken into account by the simulation. For 
each time step, the behavior of a rigid body is calculated by the physics simulation. 
Its updated position and orientation are then applied to animate the 3D object.

Another important task in physics-based animation is collision detection. To 
facilitate efficient collision testing, the actual geometry of the body is usually 
approximated by a bounding volume (Fig. 3.12). The bounding volume is assigned 
to a proxy object (often called collision proxy in this context). The collision proxy 
is not rendered and thus remains invisible. Simple bounding volumes are spheres, 
cuboids or capsules. A more accurate approximation of an object’s detail shape is its 
convex hull (the convex hull is a polygon mesh that is also a b-rep solid; see Sect. 
3.3.2). Whether simpler or more accurate collision proxies are useful depends on 
the application. The augmentation of geometric objects with suitable collision prox-
ies is therefore typically a task during the modeling stage of the virtual world. For a 
more detailed discussion of collision detection, see Sect. 7.2.

The rigid body simulation is usually performed within a physics engine that man-
ages its own ‘physics world’ that is separate from and exists parallel to the actual 
scene of renderable objects – the ‘geometry world’. Collision detection calculations 
are sometimes performed in a special collision engine, but when a physics engine is 
present the latter will usually both detect and handle collisions.

Not every geometric object of the visually displayed scene necessarily has to be 
represented by a corresponding physical rigid body. For example, it is not necessary 
to include distant background objects in the physics simulation if it is clear in 
advance that these objects will never collide with other objects. When augmenting 
the ‘geometry world’ with rigid bodies for the ‘physics world’, a suitable aggrega-
tion of single geometries is usually sensible. For example, a car may be composed 
of several individual geometric objects, e.g., body and four wheels (cf. Fig. 3.2), but 
for the special application case it may be sufficient to simulate the whole car as a 
single rigid body. At the end of each simulation step, the position and orientation 
values calculated by the physics engine are transferred to the corresponding 

Fig. 3.12 The detail geometry of an object is approximated by two different bounding volumes, a 
capsule and a box. Bounding volumes are used instead of the actual geometry to efficiently detect 
collisions between objects
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property fields of the geometric objects in the visual scene. When the scene is ren-
dered next, the object movements become visible.

In some cases, the freedom of movement of bodies is restricted because they are 
connected by joints. Typical joint types are ball joints, sliders and hinges. For exam-
ple, the elbow of a virtual human could be modeled in a somewhat simplified form 
as a hinge joint. Furthermore, the maximum opening angle of the joint in this exam-
ple could be defined as approximately 180°. Such motion constraints must also be 
ensured by physics engines during the simulation.

3.4.3  Object Behavior

A high-level method of controlling animations of objects is the specification of their 
behavior when certain events are inflicted on them. For example, when a vehicle is 
involved in a severe collision, its state may change from ‘new’ to ‘demolished’ 
along with a corresponding change in its visual appearance. Similarly, the keyframe 
animation applied to a virtual human should change when transitioning from an idle 
to a walking state. In general, state changes can affect all kinds of properties of the 
3D object, such as color, shape, position or orientation.

Different methods of specifying object behavior exist. A simple, yet powerful, 
way is the use of state machines (or finite state machines, FSM). State machines are 
formally well understood and supported by the major game engines. Further, special 
description languages have been proposed for behavior specification based on state 
machines, such as Behavior3D (Dachselt and Rukzio 2003) and SSIML/Behaviour 
(Vitzthum 2005). In scene graph architectures, state changes could be realized with 
the help of a switch node. In the vehicle example, a switch node could be defined 
with two child nodes: one geometry node for the vehicle before and another one for 
the vehicle after the collision. The task of a state machine is then to change the state 
of the switch node when the relevant event – here a car crash – occurs in the vir-
tual world.

Besides instant changes of an object property, a state transition can also trigger 
the execution of an animation. This animation can also be repeated until the next 
state transition is triggered by another event. The example in Fig. 3.13 illustrates a 
state machine for the behavior of a door. Here, keyframe animations for opening and 
closing the door are executed in the corresponding states.

While rigid-body dynamics only considers the motion of non-deformable 
objects, soft-body dynamics is concerned with the simulation of deformable 
objects such as clothes. Furthermore, fluid animation addresses fuzzy phe-
nomena of unstable shape and undefined boundaries such as water and smoke. 
Soft-body and fluid simulations are supported by several modern game 
engines. However, they require special editing tools and effort at the modeling 
stage and induce relatively high computational costs at runtime.
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Triggers for state transitions can be events of various types. In the simplest case, 
a state transition can occur after a defined period of time has elapsed (timer event). 
Another typical event would be the selection of an object by the user (touch event). 
Further, a proximity event may be triggered when the user approaches an object and 
the distance falls below a certain threshold. For example, a (virtual) door could be 
opened when the user moves close to it. A visibility event may be triggered when an 
object enters the user’s field of view, e.g., causing an animation of the object to start. 
Similarly, the animation of the object could be stopped when the user no longer sees 
it to save computational resources.

3.4.4  Behavior and Animation in Scene Graphs

To implement animations and behavior, the scene graph must be dynamically 
updated in each frame before rendering. In addition to the obvious option of modi-
fying the scene ‘from the outside’, e.g., by using an external physics engine (Sect. 
3.4.2) or other procedures to simulate object behavior (Sect. 3.4.3), some scene 
graph architectures provide native support for keyframe animations (Sect. 3.4.1) by 
means of special node types. For example, X3D features nodes that generate certain 
events (e.g., proximity sensors, touch sensors) and keyframe animations in conjunc-
tion with timers and interpolation nodes. To update the scene graph before 

State machines are conceptually simple and widely supported in modern 
game engines. When it comes to the modeling of more complex behaviors, 
e.g., the ‘game AI’ of non-playing characters in games, extensions or alterna-
tive means of behavior specification are also commonly used. These include 
hierarchical finite state machines, decision trees and behavior trees (see 
Colledanchise and Ögren 2018).

Fig. 3.13 State machine for defining the behavior of a door: if the distance between the VR user 
and the door is less than two meters, the door is opened, and closed again in the opposite case
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displaying it, all new or not yet handled events must be evaluated, interpolation 
values must be calculated and animation-related actions (e.g., updating the position 
of an object or playing a sound) must be executed. This programming model of 
X3D and some other scene graph architectures allows elegant specifications of sim-
ple animations and behavior. On the other hand, the propagation of the relevant 
events through the scene graph – in the general case involving a multitude of nodes – 
induces relatively high runtime costs, which is why this is not done in performance-
optimized scene graph architectures.

3.5  Light, Sound, Background

This section gives a brief overview of various further objects that are typically part 
of virtual worlds: light sources, sound sources and background objects. Due to the 
common use of these objects, scene graph architectures typically provide special 
nodes to integrate them into the scene.

3.5.1  Light Sources

Rendering of virtual worlds is based on calculations of how much incident light is 
reflected back from the surfaces of the 3D objects. Without lighting, all objects 
would appear pitch black. Virtual worlds thus should also include at least one but 
usually several light sources, in addition to the 3D objects. In computer graphics, 
typically, a distinction is made between directional light, point light and spot light 
sources. Directional light models a very far away or even infinitely distant light 
source (such as the Sun), whose rays arrive in the virtual world in parallel direc-
tions. Similar to a light bulb, a point light source emits light spherically in all direc-
tions (point light is sometimes called omni light, as it is omnidirectional). A spot 
light source produces a light cone, just like a flashlight. For all types of light sources, 
the light color and intensity can be defined. In the case of point and spot lights, the 
light intensity also decreases with increasing distance from the light source (light 
attenuation). For directional light, in contrast, distance-dependent attenuation does 
not make sense, as the distance to the light source is not defined (or infinitely large). 
In the real world, more distant light bulbs or flashlights cover a smaller area in the 
observer’s field of view than closer ones do. This could be modeled as light attenu-
ation that is proportional to the inverse square of the distance. In computer graphics 
practice, light attenuation is, however, often modeled with a less steep falloff so that 
a light source casts its light in a wider area, e.g., as proportional to the inverse of the 
distance to the light source. Generally, it is possible to define and tweak an attenua-
tion function according to the application’s needs, for example, to also account for 
dust or other particles in the air (atmospheric attenuation). In the case of spot lights, 
additionally, the light intensity decreases not only with increasing distance but also 
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towards the edge of the light cone. The strength of this radial falloff can be adjusted, 
as can the radius of the spot light cone. Moreover, often a radius of influence can be 
defined around a point or spot light source. Only objects that lie within the sphere 
defined by the radius of influence are illuminated by the light source.

In some VR/AR environments, area lights are offered as a further type of light 
source. Area lights emit light from a 2D rectangular area, in one direction only. 
Compared with point and spot lights, area lights produce much more realistic shad-
ows, for example. However, the computational costs are also considerably higher 
for area lights.

In real-time applications such as VR and AR, for efficiency reasons often only 
local illumination models are implemented that only account for direct light paths 
between light sources and 3D objects. However, real-world lighting is much more 
complex. Let us take the example of a street canyon in a city center with many high- 
rise buildings. Even in the early afternoon, no direct sunlight arrives at street level, 
which is in the shadow of the tall buildings. Nevertheless, it is not completely dark 
there either, as the Sun’s rays are reflected by the buildings’ facades and – possibly 
after several reflections from facade to facade – arrive at the bottom of the street. In 
real-time applications, this indirect lighting is usually not simulated but instead 
accounted for by the simplified concept of a global ambient light. Ambient light is 
classically assumed to be directionless, equally strong throughout the whole scene 
and defined just once for the entire virtual scene. A variant makes use of a textured 
sky box (see Sect. 3.5.3) that acts as the source of ambient light that is now direc-
tional. Another extension is ambient occlusion techniques (see Sect. 3.3.3 on tex-
tures) that locally attenuate the ambient light intensity to approximate the effect of 
occlusions. While these variants improve the visual quality of rendered images, they 
still constitute a drastic simplification of real-world light propagation.

Global illumination models, such as raytracing, pathtracing or radiosity, in con-
trast, also account for light reflections over several surfaces (indirect illumination). 
However, global illumination models are not yet computable in real time for fairly 
complex virtual worlds. Some game engines offer precomputed global illumination 
that is used to improve the illumination of static objects. For this, a global illumina-
tion method, e.g., pathtracing, is applied at the end of the virtual world’s modeling 
stage and the (direct and indirect) light arriving at a surface is stored in a special 
texture called a lightmap. This trick of lightmap baking, however, cannot be applied 
to dynamic, animated objects because, e.g., their positions during gameplay are not 
known at the time of the precomputation.

To apply indirect lighting to moving objects, several game engines offer the pos-
sibility to distribute light probes throughout the virtual world. Light probes capture 
and ‘bake’ the lighting conditions at modeling time at selected locations in the vir-
tual world. In the example of the street canyon, light probes could be positioned in 
open space along the street, even at different heights. At runtime, indirect lighting 
can then be applied to moving objects by interpolation between nearby light probes. 
Of course, light probes can only provide a coarse approximation of true real-time 
global illumination, since they ‘bake’ indirect lighting at only one point in time and 
only a few points in space. Some game engines may even provide an option to 
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periodically update the light probes every few frames. Calculating global illumina-
tion at runtime is, however, computationally expensive and may slow down overall 
game play.

A special light source in many VR applications is the headlight, which moves 
along with the viewer, similar to a real headlight attached to a person’s head. The 
headlight is typically realized as a directional light source whose direction is aligned 
with the viewing direction. Through this, the objects in the observer’s field of view 
are well lit, even if they are insufficiently illuminated by other light sources. A pos-
sible disadvantage of using the headlight is that it changes the lighting conditions of 
a virtual world with carefully modeled light sources. In such cases the headlight 
should be explicitly switched off.

3.5.2  Sound

Besides light sources, audio sources can also be part of the virtual world. These can 
be integrated into the world just like other objects. In scene graph systems this inte-
gration is accomplished in the form of audio nodes. However, the extent and type of 
sound support differs from system to system. Typical types of audio sources in vir-
tual worlds are presented below. For an overview of audio output devices, see 
Sect. 5.5.

When adding an audio source to a scene, one first has to specify the sound ema-
nating from the source (based on an audio clip or an audio stream) and whether the 
sound is played only once or repeated in a loop. Probably the simplest audio source 
type is the background sound (e.g., birdsong) that is not bound to a defined spatial 
position and can be heard everywhere. In contrast, spatial audio sources have a 
defined position in the 3D world. These include point sources that can be heard 
within a certain radius, similar to point light sources that emit light in all directions. 
Similar to spot light sources, there can also be audio sources that emit sound waves 
within a conical volume. Since a purely conical emission hardly ever occurs in real-
ity, it is recommended to combine a sound cone with a point source to model a more 
realistic sound propagation.

The volume of most audio sources decreases with increasing distance from the 
listener. This acoustic attenuation can be modeled approximately, for example, by a 
piecewise linear, monotonically decreasing function. Background sound is an 
exception, as the position of the audio source is undefined and therefore no distance 
to the listener can be calculated.

In the real world, binaural hearing enables a spatial perception of sound and the 
localization of sound sources. In VR, this can be an important navigation aid and 
generally improves the feeling of immersion. The ear that is closer to the sound 
source hears the sound signal a little bit earlier than the other ear. Moreover, the 
sound signal is slightly attenuated by the head, so that the sound level between the 
two ears also varies slightly. This situation can be reproduced by using two (stereo) 
or more output channels. The sound is played with slightly different delays for each 
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channel, possibly also with slight differences in the sound volume. As alternatives 
to multichannel sound processes that work with a fixed number of channels or loud-
speakers, methods such as Ambisonics (Gerzon 1985) and wave field synthesis 
(Berkhout 1988) do not assume a fixed number of loudspeakers. For example, 
Ambisonics calculates the audio signals for the individual loudspeakers based on 
sound property values at the respective loudspeaker positions.

A physically exact real-time calculation of sound absorption, reflection and dif-
fraction through arbitrary obstacles – similar to the reflection and refraction of light 
rays – requires very high computing performance and is therefore not supported by 
game engines and scene graph systems. However, both modern game engines and 
some scene graph systems – the latter using additional libraries that use low-level 
programming interfaces for real-time 3D audio such as FMOD or OpenAL – offer 
various advanced audio effects. These include reverb and echo, simulation of the 
change in the sound signal caused by obstacles between the sound source and the 
listener, and simulation of the Doppler effect. The Doppler effect increases the 
sound frequency (pitch) as the sound source, e.g., a fast-moving ambulance, moves 
towards the listener and decreases the pitch as the distance increases.

3.5.3  Backgrounds

In addition to the actual objects in the scene, the scene background, such as the sky, 
must also be displayed. In the simplest case, a static image can be used for this. 
Another option is to use a three-dimensional volume, such as a large sphere or box, 
whose inner surface is textured with the background graphics. This volume is usu-
ally modeled large enough so that it contains all (other) objects of the virtual world. 
The center of this volume is always at the current camera viewpoint. Thus, while 
different parts of the background volume might become visible by camera rotations, 
camera movements will not change the distance to the volume’s surface. By rotating 
the sky sphere or sky box, effects like passing clouds can be simulated. In modern 
game engines, backgrounds typically also contribute to the illumination of the 
scene. Thus, for example, objects with smooth surfaces could show reflections 
of clouds.

3.6  Special Purpose Systems

Rounding off this chapter on virtual worlds, this section discusses special 3D objects 
that make virtual worlds more interesting, but whose modeling and animation pose 
distinct challenges, such as virtual humans, particle systems, terrains and vegeta-
tion, e.g., trees. These are often managed within special purpose systems of game 
engines, scene-graph systems and 3D modeling tools. The presentation of the 
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individual topics has an overview-like character while providing references to fur-
ther literature.

3.6.1  Virtual Humans

Virtual worlds are often populated with virtual humans (or virtual characters). The 
function of these virtual humans can vary greatly depending on the application area 
of the respective virtual worlds. In game-oriented scenarios, virtual humans act as 
autonomous opponents or fellows (non-player characters, NPCs). In multi-player 
games and social virtual worlds, avatars serve as virtual representatives of the vari-
ous participants. In virtual prototyping, virtual humans are used in ergonomics stud-
ies. Other application areas include training scenarios, architectural applications 
and the virtual reconstruction of historical environments. The following presenta-
tion focuses on the basic procedures for computer graphics modeling and animation 
of virtual humans in today’s game engines and VR environments.

A simple method to model virtual humans is to represent the different body parts, 
such as the upper body, upper and lower arms, hands, head and legs, by separate, 
hierarchically structured 3D objects. Since this simple modeling often does not 
appear very realistic (e.g., unnatural gaps at the joints typically occur when animat-
ing such models), another method, skeleton-based animation, has become estab-
lished, which distinguishes between the underlying skeleton structure (‘rig’) and a 
deformable surface model (‘skin’). During animation, the surface model is auto-
matically deformed according to the respective skeleton pose. A prerequisite for this 
is that the vertices of the skin have been coupled to suitable bones of the skeleton in 
a prior modeling step called ‘skinning’. The even earlier process of setting up a suit-
able skeleton structure for a given surface model is called ‘rigging’. Figure 3.14 
illustrates the principle of skeleton-based animation.

The skeleton structure defines the hierarchical structure of abstract bones of the 
virtual human model. The individual bones, e.g., thigh, lower leg and foot, are con-
nected by joints. Thanks to the hierarchical skeleton structure, a rotation of the knee 
joint not only affects the lower leg, but also the position of the foot. The facial 
expression of virtual humans can be animated by defining suitable ‘facial bones’. 
Compared to the skeletons of natural humans, the skeletons of virtual humans are 
usually greatly simplified. There are different conventions concerning the number, 

An avatar is a virtual figure that acts as representative or proxy of a VR user 
in a virtual world. Avatars often, but not necessarily, have a human-like 
appearance. Avatars are distinguished from non-playing characters (NPCs) or 
bots whose behavior is generated by control programs of the game engine or 
VR environment.
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naming and hierarchical structure of the bones. An open standard is H-ANIM of the 
Humanoid Animation Working Group of the Web 3D Consortium (2019). In com-
mercial tools such as the Character Studio of the modeling tool 3DS MAX different 
conventions may be used.

The animation of virtual humans is often based on the combination of different 
individual methods. Basic animations such as those for walking or running are typi-
cally created by means of motion capture. Motion capture data for typical basic 
animations can be found, e.g., on the internet or are supplied with 3D modeling 
tools. Goal-oriented animations, such as looking at a moving object, grasping an 
object or placing the feet when climbing stairs, however, must be calculated at run-
time. Inverse kinematics algorithms can be used to compute skeletal postures such 
that the extremities (i.e., hands, feet, head) are placed at the intended target position 
(and in the correct orientation). Finally, virtual humans should be able to react to 
events in the virtual world or user interactions in a manner that is appropriate for the 
current situation. This is achieved by more or less complex control programs (called 
‘Game AI’ in computer games; in the simplest case realized by means of state 
machines as described above in Sect. 3.4.3), which, among other things, choose 
between available basic animations and apply inverse kinematics procedures as 
demanded by the current situation.

The generation of realistic or believable behavior of virtual humans generally 
places many demands on the modeling and simulation of human abilities regarding 
perception, planning and action. These topics are far from being fully understood in 

Fig. 3.14 Modeling and animation of virtual humans: by moving the skeleton bones, animations 
of bodies and facial expressions can be created
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research. Research topics concern, for example, abilities to understand and generate 
natural language, including abilities for non-verbal communication, emotion, and 
personality. A comprehensive overview of the research area of virtual humans is 
given, for example, in Magnenat-Thalmann and Thalmann (2006).

3.6.2  Particle Systems

Particle systems enable the modeling of special effects such as fire, smoke, explo-
sions, water drops or snowflakes in virtual worlds (Reeves 1983). In contrast to the 
3D objects considered so far, which represent bodies with a firmly defined bound-
ary, phenomena of fuzzy, continuously changing shapes can be represented. 
Accordingly, the underlying concepts for modeling and animating particle systems 
differ fundamentally from the geometry-based representations of solid bodies. 
Scene graph-based systems for modeling virtual worlds typically provide a special 
node type for particle systems. Figure 3.15 shows several visual effects that can be 
accomplished with particle systems.

A particle system consists of a multitude of individual particles: in real-time VR 
applications, for example, several hundreds or thousands. During the simulation of 
a particle system, each particle is understood as a point mass (i.e., a particle has no 
spatial extension but non-zero mass) whose position in 3D space is updated in each 
time step based on simple physical simulations of the forces acting on the particle. 
At each time step:

Fig. 3.15 Examples of particle systems. The animation of smoke and fire is accomplished using 
the physical simulations and particle-age dependent colorizations outlined in the text. Grass can be 
generated by a variant in which individual blades of grass are simulated by a fixed number of con-
nected particles. The gushing water on the right is modeled with a hybrid approach consisting of a 
deformable geometry for the main water gush and a particle system for the water droplets 
splashing away
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• new particles are inserted into the particle system via a so-called ‘emitter’,
• old particles are removed from the particle system if their lifetime has expired or 

if they leave a predefined area,
• for each particle, the forces acting on the particle (e.g., gravity, wind, damping) 

are used to update the position and velocity of the particle, and
• visualization attributes such as color and texture are updated for each particle 

and the particles are visually displayed.

There are various types of emitters that differ in the initial positions of the ejected 
particles. For example, depending on the type of emitter, all new particles may be 
ejected from a single point, along a line segment, 2D shapes such as circles or poly-
gons, or 3D volumes such as cuboids. Emitters can also differ in their ejection direc-
tion, i.e., whether particles are ejected in all directions or only within predefined 
direction ranges. An essential feature of emitters is that all the parameters, such as 
number, initial position, and ejection velocity (i.e., direction and magnitude of 
velocity), of the newly generated particles are randomly varied within predefined 
ranges to achieve the desired irregular, fuzzy appearance of the simulated 
phenomena.

In each simulation time step, all the forces acting on a particle are calculated and 
accumulated. Typical forces considered are gravity, global wind fields or damping 
(a particle becomes slower with time). In some cases, spring forces are also consid-
ered. For example, in clothing simulations or in the modeling of strand-like objects 
such as hair and grass, springs are attached to particles that connect them with other 
particles. From the forces acting on the particle and its constant mass, its accelera-
tion is calculated by simple Newtonian physics (F = m ∙ a). By integration over the 
time interval passed since the previous time step, the new velocity and position of 
the particle are then computed.

There are also various possibilities for the visual rendering of particle systems. 
In applications with strong real-time requirements, such as VR systems, particles 
are typically displayed as textured polygons, usually quadrilaterals, that are aligned 
to the viewing direction of the VR user (see Sect. 3.3.4 Billboards). The color and 
texture of the particles may change over time, e.g., from red-hot at emission to 
smoky-gray in later phases. Alternatively, to provide a better sense of the movement 
direction of the particles, particles may be rendered as line segments, e.g., with the 
current particle position as the starting point and the added velocity vector as the 
end point. Furthermore, particles may be rendered by more or less complex geom-
etries, e.g., spheres, cylinders or, if a history of past particle positions is additionally 
stored, as line segments or ‘tubular’ extrusion geometries. Solid particle systems 
render each particle as a complex static polygonal mesh, e.g., for flying debris or 
shrapnel. However, the more complex the geometries used, the higher becomes the 
rendering effort, which may impair the real-time capability of big systems with a 
large number of particles.
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3.6.3  Terrain

Fundamental to terrain modeling is a simple data structure, the so-called height 
field, sometimes also called the elevation grid. In essence, this is a two-dimensional 
grid where each grid point is assigned a height value. A height field in which all 
height values are equal would yield a completely flat landscape, for example. A 
realistic appearance can be achieved by texturing the height field.

To model more interesting and varied terrains with mountains, hills and valleys, 
suitable height values should be assigned to the elements of the height field. To 
avoid drastic discontinuities in the landscape, care should be taken to ensure that 
adjacent elements have similar height values. Since height fields often become quite 
large – e.g., with a dimension of 256 × 256, more than 65,000 height values must be 
set – modeling ‘by hand’ is obviously not practical. In common 3D modeling tools, 
the creation of height fields is therefore supported by partially automated tech-
niques. Here, the user defines the height values for selected areas, e.g., the highest 
elevations of hilly landscapes, whereupon the transitions to the surrounding terrain 
are automatically smoothed, e.g., by means of a Gaussian filter.

For the creation of fissured landscapes such as rock formations, which have a 
fractal structure, even more automated procedural modeling techniques are used. A 
simple algorithm is the midpoint displacement method, which is illustrated in 
Fig. 3.16. Starting from the height values at the four corners of the height field, first 
height values are calculated for the points in the middle between the corners. As 
shown in Fig. 3.16 (left), exactly five midpoints are considered. In a first step, the 
height values of the five midpoints are calculated as the mean value of the neighbor-
ing corner points. In a second step, the new height values are slightly varied by 
adding a random value. The addition of this random value is crucial for the genera-
tion of fissured structures, since otherwise only linear interpolation would be per-
formed. The midpoints, for each of which new height values were just calculated, 
define a subdivision of the entire height field into four sectors. In the following itera-
tion of the algorithm, these four sectors are processed (recursively) by assigning 
new height values to the midpoints in the four sectors. The recursive subdivision – 
each sector is split into four smaller subsectors – is repeated until all elements of the 
height field have been assigned new height values. The basic midpoint displacement 
algorithm can be modified in various ways to further increase the realism of the 
generated terrain shapes. For example, in addition to the recursive subdivision into 
four squares, the diamond square algorithm also considers diamonds rotated by 45° 
in intermediate steps (Fournier et al. 1982).

An optimization technique for very large areas is the spatial subdivision into so- 
called tiles (tiling). When the user moves through the terrain, only a small section of 
the terrain, one or a few tiles, needs to be loaded into memory.
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3.6.4  Vegetation

Trees and other plants occur in nature in very complex, fractal shapes. In computer 
graphics, similar to rugged terrain, they are typically created using procedural mod-
eling techniques. A comprehensive overview of common generation methods is 
given in Deussen and Lintermann (2005). The following example for the procedural 
modeling of a tree is based on the method of Weber and Penn (1995). In the first 
stage, the wooden parts, i.e., everything but the leaves, are generated. In the exam-
ple, a three-level branching structure is assumed consisting of a trunk, the branches 
and the twigs. A configurable number of branches is randomly attached to the trunk, 
then several twigs are attached to each branch. The trunk, branches and twigs are 
each defined by line segments, which can later be wrapped by extrusion geometries 
in the final 3D model (Fig. 3.17a, b). In the second stage, the leaves are added to the 
branches (Fig. 3.17c). Instead of modeling the individual leaves geometrically as 
polygon meshes, which would result in an excessive number of polygons, the leaves 
are represented by highly simplified geometries, e.g., rectangular polygons (quadri-
laterals) which are rendered with semi-transparent leaf textures mapped to them 
(Fig. 3.17d, e).

Fig. 3.16 Procedural generation of terrain using the midpoint displacement method. Top: Starting 
from the four corners of the height field, height values for the five midpoints are calculated by 
averaging over the height values at the corners and then adding a random displacement. 
Subsequently, the height values for four subsectors (upper left subsector highlighted) are recur-
sively calculated using the same procedure. Bottom: Wireframe and textured rendering of a larger 
height field
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In practice, the procedural modeling of trees and other plants is typically done 
within specialized modeling tools, some of which are also integrated into common 
general purpose 3D modeling tools. The procedurally generated trees can be 
exported as (textured) polygon meshes and stored in common 3D file formats. Since 
the complex structure of the trees typically results in a large number of polygons, 
however, not too many trees should be displayed in full resolution with regard to the 
real-time capability of the VR system. An often-used optimization technique is to 
represent more distant trees, which occupy only a few pixels on the screen, simply 
as semi-transparent textured billboarded quadrilaterals (see Sect. 3.3.4).

In addition to trees, other forms of vegetation can also be created using similar 
procedures to those described above. Bushes can usually be created by suitable 
parameterizations of the tree generators. For the automatic generation of ivy and 
similar climbing plants, the contact with surrounding objects such as house walls or 
columns is also taken into account. Grass, for example, can be realized as a variant 
of particle systems, where each blade of grass is made of several particles connected 
by line segments (Reeves and Blau 1985). Some game engines support the simula-
tion of dynamic behavior of trees, grass and other plants under the influence of wind.

3.7  Summary and Questions

On the one hand, virtual worlds should often appear as realistic as possible, but on 
the other they are subject to strict real-time requirements. A main concern of this 
chapter was to show how virtual worlds can be optimized with respect to real-time 
aspects, both by clever modeling techniques and by the use of memory-efficient 
data structures. A general idea for increasing the rendering efficiency is to reduce 
the number of polygons and other visual details of the 3D objects in the virtual 
world. For this purpose, game engines and other scene graph architectures provide 

Fig. 3.17 Procedural generation of a tree. (a) Trunk and branches. (b) Trunk, branches and twigs 
(c) with leaves. (d) Leaves are modeled as quadrilaterals (e) with semi-transparent textures

3 Virtual Worlds



104

a number of optimization options. For example, the hierarchical structure of a 
directed acyclic graph (DAG) used in many scene graphs allows the reuse of geom-
etries that therefore only need to be loaded into memory once. The conversion of 
polygon meshes to triangle strips, which in scene graph systems can also be done 
automatically when loading the objects, significantly reduces the number of vertices 
per triangle compared to other polygon mesh representations. Level of detail tech-
niques reduce the detail with which distant objects are rendered: an object is repre-
sented by multiple 3D models with different resolutions of geometry and textures, 
from which an appropriate one is automatically selected for rendering depending on 
the distance to the viewer. Bump mapping and texture baking are useful techniques 
for reducing the number of polygons in the modeling stage. Besides supporting the 
efficient rendering of virtual worlds, scene graphs also provide mechanisms for ani-
mation, simulation and user interaction with 3D objects. Supplementing the model-
ing of 3D objects ‘by hand’, procedural modeling methods are commonly used for 
the generation of complex, natural phenomena, e.g., fire and smoke (using particle 
systems) and rugged terrains as well as trees and other kinds of vegetation.

Check your understanding of the chapter by answering the following questions:

• What is the main purpose of a scene graph?
• Name five node types that typically appear in a scene graph.
• A person is standing on a tower and watches a moving car with a telescope. 

Sketch a scene graph that reflects this situation. Which transformation maps the 
vertex coordinates of the car into the coordinate system of the telescope?

• A triangle mesh consists of 15 triangles. By how many vertices are the triangles 
described if the mesh can be represented by a single triangle strip?

• Explain the basic principles of physics-based rendering (PBR) and the Phong 
illumination model! Why is the latter often called an ‘empirical’ model?

• Explain the difference between a color texture and a bump map. What is the dif-
ference between a bump map and a normal map?

• What types of light sources exist, and how do they differ from each other?
• What does LOD stand for? What is it used for and how?
• The behavior of a car driving autonomously over an (infinite) plane is to be mod-

eled. The car should try to avoid collision with obstacles in front of it, if possible, 
by changing its direction (the direction of avoidance does not matter). If a colli-
sion with an obstacle nevertheless occurs, the car stops. From the initial state, the 
car should switch directly to the moving state. Sketch a simple state machine to 
model this behavior.

• A common method of animating virtual humans is to play back motion capture 
data. These define, for each time step or only for single keyframes, the virtual 
human’s pose (i.e., all joint angle values). How can a smooth transition between 
two subsequent animations, e.g., from walking to running, be achieved? How 
must a pre-recorded jump animation be modified so that the virtual human can 
land on platforms of different heights?
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 Recommended Reading

Akenine-Möller T, Haines E, Hoffman N, Pesce A, Iwanicki M, Hillaire S (2018) 
Real-Time Rendering, 4th edn. Taylor & Francis – Textbook on advanced topics 
in computer graphics, providing a comprehensive overview of techniques for 
real-time rendering of 3D objects.

Millington I, Funge J (2019) Artificial Intelligence for Games, 3rd edn, Morgan 
Kaufman, San Francisco  – The book provides a comprehensive overview of 
‘Game AI’ techniques that are suitable for planning and controlling intelligent 
behavior of virtual humans, for example.
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Chapter 4
VR/AR Input Devices and Tracking

Paul Grimm, Wolfgang Broll, Rigo Herold, Johannes Hummel, 
and Rolf Kruse

Abstract How do Virtual Reality (VR) and Augmented Reality (AR) systems rec-
ognize the actions of users? How does a VR or AR system know where the user is? 
How can a system track objects in their movement? What are proven input devices 
for VR and AR that increase immersion in virtual or augmented worlds? What are 
the technical possibilities and limitations? Based on fundamentals, which explain 
terms like degrees of freedom, accuracy, repetition rates, latency and calibration, 
methods are considered that are used for continuous tracking or monitoring of 
objects. Frequently used input devices are presented and discussed. Finally, exam-
ples of special methods such as finger and eye tracking are discussed.

Input devices are used to record user interactions using sensors, as well as other 
objects and the environment. The data obtained in this way are summarized, if nec-
essary, semantically interpreted and forwarded to the world simulation. There is a 
wide range of VR/AR input devices available and a classification of these can be 
done in different ways. The distinction can be made based on accuracy (fine or 
coarse) or range (from an area that can be reached with an outstretched arm, to an 
area where one can walk or look around). It is also possible to distinguish between 
discrete input devices that generate one-time events, such as a mouse button or 
pinch glove (a glove with contacts on the fingertips) and continuous input devices 
that generate continuous streams of events (e.g., to continuously transmit the posi-
tion of a moving object). The physical medium used for determination (e.g., sound 
waves or electromagnetic fields) can also be used for classification (see Bishop et al. 
2001). In the following, the fundamentals of input devices are presented. Then, in 
Sect. 4.2 tracking techniques are presented in general before a more detailed 
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discussion of camera-based tracking approaches in Sect. 4.3. Sections 4.4 and 4.5 
give examples of finger and eye tracking to show how natural user interactions can 
be detected using specialized input devices. Afterwards (Sect. 4.6) further input 
devices are presented, which are often used in VR systems. Finally, the chapter is 
summarized and example questions as well as literature recommendations are given.

4.1  Fundamentals of Input Devices

The interaction of a user with a VR or AR system can be manifold. In a simple case, 
a conscious action of the user takes place in the form of a push of a button, which is 
recognized as a unique event by the system in such a way that it can react to it. More 
difficult are more complex interactions, such as hand movements (e.g., to point at 
something) or to direct the gaze at something.

This section explains the foundation to describe input devices in more detail. In 
the case of interactions, a distinction can be made between whether the interaction 
should be continuous (e.g., in continuous pursuit of a finger pointing at something) 
or whether part of a movement should be recognized as a gesture (e.g., when point-
ing at an object in the virtual world to select it). In both cases, however, the system 
must be able to track the user, as gestures can only be extracted from recorded data 
in a subsequent step. It must be determined what exactly is to be tracked by the VR 
system. Either interaction devices, such as VR controllers or a flystick (see Fig. 4.4), 
or the user directly can be used. In the latter case, it must then be determined what 
kind of movements a VR/AR system should detect, or which parts of the body 
should be considered for interaction (e.g., only the hand, the arm, the head or per-
haps the movement of the whole body, as shown in Fig. 4.1 as an example).

Technically speaking, continuous tracking by an input device continuously 
determines the position and orientation of an object (e.g., hand or head, controller). 
This process is called tracking. For simplification, an object is usually regarded as a 
so-called rigid body that cannot be deformed.

The movement of a rigid body can be broken down into a displacement (transla-
tion) in space and a rotation around three perpendicular axes. Thus, the movement of 
a rigid body can be specified by giving six values (three coordinates as position and 
three angles to describe the orientation) for each time step. These independent move-
ment possibilities are called degrees of freedom. Generally, a system with N points 
has 3 × N degrees of freedom (each point in space has three degrees of freedom, N 
points in space corresponding to 3  ×  N degrees of freedom), which in turn are 
reduced by the number of constraints. In the case of rigid bodies, where all distances 
between points are constant, there are always six degrees of freedom left (Goldstein 
1980). As an example, a cube can be used that has eight vertices and thus 3 × 8 = 24 
degrees of freedom. If the cube is considered to be non-deformable, the constraints 
are that the respective distances between the eight points remain unchanged. For 
eight points, this means 6 + 5 + 4 + 2 + 1 = 18 constraints (4 + 2 for the distances 
including the diagonals of the flat base surface, 3 + 2 for the first side surface includ-
ing the diagonals, two for the next side surface and one for the last side surface).
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The goal of tracking is to determine or estimate the values corresponding to these 
six degrees of freedom (6DOF) of the tracked objects for continuous interaction. 
The data acquisition is usually performed in the reference system of the respective 
tracking system. If several or even different systems are used, the tracking data must 
be transferred to a common reference system.

Fig. 4.1 Recording of 
body movements (© ART 
2013, all rights reserved)

Degrees of Freedom (DOF) are the independent movement possibilities of a 
physical system. A rigid body has six degrees of freedom: three each for trans-
lation and rotation.
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Starting with mechanical tracking systems (see Sect. 4.6.2), through the use of 
strain gauges to camera-based approaches (see Sect. 4.3), data was recorded in dif-
ferent ways, as was data transmission by cable or radio. Correspondingly, very dif-
ferent input devices are available, which have different advantages and disadvantages. 
Input devices can be described by the following characteristics.

 Number of Degrees of Freedom Per Tracked Object
The number of specific degrees of freedom per tracked object varies depending on 
the input device. Usually, the determination of all six degrees of freedom by an 
input device is desirable. However, it also happens that only the position – equiva-
lent to the three degrees of freedom of translation – or only the orientation – equiva-
lent to the three degrees of freedom of rotation – is determined. Examples of the 
limited determination of degrees of freedom are the compass (one degree of free-
dom, determination of the orientation in the plane) and GPS, which, depending on 
the number of visible satellites, determines two to three degrees of freedom of trans-
lation. It is also possible that the accuracy of the determination of individual degrees 
of freedom is different (in the case of GPS, the position on the Earth’s surface is 
recorded more accurately than the height above it).

 Number of Objects Tracked Simultaneously
Depending on the application, it is important to consider how many objects are to be 
tracked simultaneously. In addition to tracking the user or recording the viewer’s 
point of view, other objects (e.g., one or more input devices) often need to be 
tracked. For the use of several objects it is helpful if they can not only be tracked, 
but they can be uniquely identified by an ID. It is helpful if these IDs are retained, 
even if individual objects are temporarily out of monitoring.

 Size of the Monitored Area or Volume
The size of the monitored area or volume varies greatly depending on the type of 
input device used. It must be ensured that the selected input devices offer an area 
that is large enough for the requirements.

Depending on the application, this can mean that it is sufficient to cover an area 
that can be reached with the arm or that corresponds to the movements of a head in 
front of the monitor. There are also applications where it is necessary to be able to 
walk around. The reason for the size restrictions may be that the input device is 
wired, has a mechanical construction or (in the case of camera-based input devices) 
the resolution is too low. Depending on the technology used, the shape of the moni-
tored area may vary (e.g., similar to a circle in the case of wired technologies or simi-
lar to a truncated pyramid in the case of camera-based technologies with one camera).

 Accuracy
Not only because of the physical limitations of the input devices, high accuracy is 
not always achievable. Sometimes it is also a question of cost. For example, in opti-
cal tracking a change of camera can increase the accuracy. However, if an expensive 
industrial camera is used instead of a simple webcam, the price can easily increase 
by a factor of 10 or more. Depending on the application, it must be considered what 
accuracy is necessary or what budget is available. The usual range in spatial 
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resolution is between millimeter accuracy (e.g., optical finger tracking) up to an 
inaccuracy of several meters (e.g., when using GPS). The accuracy can also vary 
with different types of degrees of freedom (translation or rotation), e.g., as in the 
case of GPS, where altitude determination is not as accurate as position determina-
tion. The accuracy can also be position-dependent: for example, the accuracy may 
be lower at the edge of the monitored area than at its center. During digitization, the 
measured values are quantized, e.g., to 8 bits or 16 bits. With regard to the measure-
ment technology, noise (addition of an interfering signal), jitter (temporal inaccu-
racy of the time of measurement or of the sampling time) or interpolation errors can 
also be assumed to be interfering influences.

 Update Rate
The update rate describes the resolution of an input device in time. The degrees of 
freedom are determined in discrete time steps. The number of these measurement 
points per second is called the update rate. Thus, monitoring the real continuous 
motion of an object (shown as a black line in Fig.  4.2) results in corresponding 
measuring points. Basically, a time-discrete signal is obtained, which will usually 
have errors. Figure 4.2 shows some of the possible errors.

 Latency
Each input device requires a certain amount of time to react (e.g., time until the next 
scan, due to signal propagation times in cables or due to the processing of data by 
algorithms), which causes a delay. This is called latency. An example of the effect 
can be seen in Fig. 4.2. The significance of latency for VR systems is discussed in 
more detail in Sect. 7.1.

Fig. 4.2 Possible errors during data acquisition of the position of a moving object (black line): 
acquisition with latency (blue dots), with drift (orange squares) and with noise (green triangles), 
displayed over time (horizontal axis)
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 Drift
Errors that keep adding up can cause drift. If input devices record relative changes 
(e.g., change in position compared to the previous scanning or the previous measur-
ing point), errors can increase over time. An example of drift is shown in Fig. 4.2.

 Sensitivity to External Conditions
Depending on the technology used, the external conditions must be observed. 
Lighting or temperature can have just as much influence as the furnishing of the 
room in which the VR system is set up. Uniform lighting can be of great advantage, 
especially with optical methods, compared with hard transitions from direct sun-
shine to shaded areas. It would be annoying not to be able to use a tested application 
because the sun appeared from behind a cloud. A problem has often been reported 
to have arisen in trade fair construction, where before the opening usually only 
some working lights were used, but during trade fair operations there were often 
many other spotlights, which then led to disturbing influences.

With optical tracking systems it can be helpful to work in darkened rooms and to 
create the desired lighting situation with artificial light. It should be noted that direct 
light sources can interfere with camera sensors. Methods based on sound are often 
susceptible to different temperatures or different air pressures, as this changes the 
speed of sound (on which the measurement is based). Electromagnetic methods in 
turn react sensitively to (ferro-)magnetic materials and electromagnetic fields in the 
rooms (e.g., metallic table frames or the power supplies of other devices).

 Calibration
Calibration is the adjustment of measured values to a given model. For both virtual 
reality and augmented reality, the measured values must be adjusted to the real 
objects used, so that the real movements that are tracked also correspond to the 
dimensions in the virtual world. With optical methods, this also includes the deter-
mination of imaging errors of the optics (e.g., distortions).

 Usability
For the application it can be decisive to what extent a user is restricted by the input 
devices. For example, it may be necessary to put on glasses or shoes or hold VR 
controllers. It also makes a difference for the application whether the respective 
devices are wired or connected via radio technologies. The size of the room in 
which a user is allowed to interact also influences whether the user can immerse 
himself or herself in the application or whether he or she must constantly ensure that 
he or she does not exceed predetermined interaction areas. It may also be necessary 
that the user is always oriented towards the output device to enable good tracking. 
A detailed consideration of usability is given in the framework of the consideration 
of basics from the field of human–computer interaction in Sect. 6.1.

The obtrusiveness of an input device can be seen as a measure of the extent to 
which it is considered to be disruptive. For example, it makes a big difference 
whether a head-mounted display can be worn like sunglasses or whether it can be 
used like a bicycle helmet due to its weight and dimensions.
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4.2  Tracking Techniques

As explained in the introduction, tracking is the continuous estimation of the posi-
tion and orientation of an object. Generally, we may distinguish between systems in 
which the measuring sensors are located on the tracked objects themselves and 
determine their position and location in relation to their surroundings (inside-out 
tracking), and systems in which the measuring sensors are distributed in the envi-
ronment and interact to measure an object from outside (outside-in tracking) (see 
Sect. 4.3 on camera-based tracking). The determination or estimation of the position 
of an object is carried out in a defined coordinate system. One possibility is the 
estimation in relation to individual objects. Here, the relative transformation 
between the user or camera coordinate system and the object coordinate system is 
determined for each object. Another possibility is that several objects use a common 
coordinate system. In this case, the transformations between the individual objects 
within the coordinate system must be known, and the transformation between the 
camera and this coordinate system is estimated. If only the position of some objects 
in a global coordinate system is known, while others can change their position and 
orientation within it, you get mixed forms of both scenarios.

In the following, different tracking techniques are presented with their advan-
tages and disadvantages. Camera-based tracking techniques will be presented in 
Sect. 4.3 due to their diversity.

4.2.1  Acoustic Tracking

Acoustic-based input devices use the differences in the time of flight (TOF) or phase 
of sound waves. Ultrasound that is inaudible to humans (sound waves with a fre-
quency of more than 20,000 Hz) is used. The measurement uses a transmitter and a 
receiver, where one of them is connected to the tracked object. This allows for the 
determination of the distance between them. By that, the position of an object can 
be limited to a spherical surface around the transmitter. By adding a second trans-
mitter or a second receiver, the position can already be limited to a circular path (as 
an intersection of two spheres). Adding a third transmitter or receiver then limits the 
position to two points (as an intersection of three spheres or as an intersection of two 
circles). A plausibility check is then used to determine the actual position from these 
two points. A setup with one transmitter and three receivers (or three transmitters 
and one microphone) thus allows for the determination of all three degrees of free-
dom of the translation (3 DOF). If the orientation is also to be determined (6 DOF), 
three transmitters and three receivers must be used.

Compared to other 3D tracking systems, acoustic systems are rather cheap. A 
disadvantage of acoustic tracking is its sensitivity to changes in temperature or air 
pressure. Any change in temperature or air pressure requires a (re)calibration of 
the system.
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4.2.2  Magnetic Field-Based Tracking

Magnetic fields can be used for tracking. However, a distinction must be made 
between artificial magnetic fields and the Earth’s magnetic field. In mobile systems, 
so-called fluxgate magnetometers (also known as Förster probes) are usually used 
for electronic measurement of the Earth’s magnetic field. Based on the individual 
sensor orientation, both the horizontal and vertical components are measured. This 
gives two degrees of freedom of the current position. Sensors for magnetic field 
measurement are disturbed easily by artificial magnetic fields in their environment. 
Especially indoors, electromagnetic fields (e.g., from installed cables) can falsify 
the recorded data to such an extent that they become useless for determining the 
position. In smartphones and tablets, three orthogonal magnetometers are usually 
combined with three linear inertial sensors and three angular rate sensors each (cf. 
Section 4.2.3) to compensate for measurement errors through redundancy.

For indoor systems, the use of the Earth’s magnetic field is usually not possible 
due to disturbing influences. However, with the help of current-carrying coils, arti-
ficial magnetic fields can be created which can then be used for tracking. Coils are 
also used as sensors. Depending on whether a static magnetic field (direct current, 
DC) or a dynamic magnetic field (alternating current, AC) is used for the measure-
ment, different measuring methods are used. With alternating magnetic fields, the 
magnetic field induces currents in the coils, which are used as a measure of the posi-
tion and orientation in the magnetic field (or in space). In DC magnetic fields, a 
current flow through the receiver coils and a voltage drop can be observed perpen-
dicular to both the direction of current flow and the magnetic field direction when 
the coils are moved through the magnetic field. This so-called Hall effect also allows 
tracking by measuring the Hall voltage. The combination of three orthogonal trans-
mitters and three orthogonal receiving coils allows one to determine the position 
and orientation in space. The advantages of electromagnetic tracking systems are 
that the receivers are small and that they are insensitive to occlusion by the user or 
other non-conductive objects. The major disadvantage is that no (ferro-)magnetic 
materials must be used in the room (up to the use of plastic screws for fastening the 
sensors) and no electromagnetic fields should exist, as these interfere with the mag-
netic field, introducing measurement errors. Since interference influences, espe-
cially in a room with other electromagnetic components of a VR or AR system, can 
usually not be avoided, complex calibration procedures are necessary to compen-
sate for disturbing interference. However, this assumes that the interference is 
exclusively based on static, permanently mounted objects.

4.2.3  Inertial Tracking

Inertial tracking is based on sensors that measure acceleration (called inertial sen-
sors or acceleration sensors). Inertial tracking is primarily used to determine orien-
tation. One area of application is, among others, the detection of the joint positions 
of a user by attaching appropriate sensors to the individual limbs.
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Depending on the design, a distinction is made between linear inertial sensors, 
which measure the acceleration along an axis, and angular rate sensors, which mea-
sure the angular acceleration around an axis. Since the latter behave like a gyrocom-
pass (gyroscope), they are sometimes also called gyro sensors. Together they form 
a so-called Inertial Navigation System (INS). Typically, three linear inertial sensors 
(translation sensors) and three angular rate sensors, arranged orthogonally to each 
other, are integrated into an inertial measurement unit (IMU). Such units often also 
include three magnetometers, which are also arranged orthogonally to each other 
(see Sect. 4.2.2).

Linear accelerometers can be used to determine the orientation, but only in the 
idle state. Then, the inclination to the vertical can be measured due to the direction 
of gravity. Since the orientation in the horizontal is perpendicular to gravity, this 
cannot be measured by linear inertial sensors. For input devices that can be moved 
freely, three orthogonal sensors are nevertheless installed so that at least two can be 
used for measurement at any time. However, linear inertial sensors may also be used 
for position determination. Based on the linear acceleration values in the three 
orthogonal sensors, the current speed can be estimated by integration and the change 
in position by a second integration. However, due to measurement inaccuracies 
(usually amplified by a relatively low accuracy in converting the analog measured 
values into digital values), drift effects often occur. This means that if, for example, 
a sensor is moved out of its resting state and then stopped again, the sums of the 
recorded acceleration values would have to add up to zero at the end, resulting also 
in zero velocity. However, this is usually not the case, so that the measurement 
results in a low residual speed even in the idle state. This leads to an increasing 
deviation between the measured and actual positions over time.

In the case of acceleration sensors for measuring angular velocity, the accelera-
tion values are integrated twice analogously to obtain the angle of rotation. This also 
causes the problem of drift. It is therefore recommended to recalibrate in the idle 
state using the linear accelerometers. For the detection of rotations over all three 
axes, three sensors are usually installed orthogonally to each other, even with gyro 
sensors.

4.2.4  Laser-Based Tracking

In laser-based tracking, the tracked objects are equipped with several photosensors 
that detect laser beams emitted from a base by two rotating lasers. If only one base 
is used, the photosensors are often occluded, e.g., by the user’s own body. Most 
systems therefore use several base stations. This also allows a larger tracking vol-
ume to be covered. For synchronization between the base stations and the objects, 
either additional infrared signals are used, or the sync signal is transmitted via the 
laser beam itself. The lasers rotate around a horizontal or vertical axis, whereby the 
laser beam is emitted only in one direction with a certain aperture angle (e.g., 120°). 
The position and orientation of the object can be calculated based on the time 
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difference between the detection of the laser light by the individual photosensors. At 
a defined rotation speed of the lasers (e.g., 1000 Hz), the position is determined by 
the time difference between the infrared flash, which is emitted before the start of a 
laser rotation, and the impact on one of the sensors. At a rotation frequency of 
1000 Hz, an aperture angle of 120° and a time difference of 1/6 ms from the infrared 
synchronizing flash, this results in a position at the center of the monitored space.

4.2.5  Outdoor Position Tracking

In the field of mobile outdoor applications, global satellite-based systems such as 
GPS, Glonass or Galileo are used for positioning. Mobile position tracking is espe-
cially relevant for AR, since VR applications are typically not used outdoors. 
However, in contrast to navigation applications, where satellite data can be com-
pared with existing roads and paths, the position of an AR system is almost arbi-
trary. Thus, deviations of 10 m and more are not uncommon. Especially under poor 
reception conditions, the accuracy can be reduced even further. Global satellite- 
based systems usually require a view of at least four satellites to determine their 
position. While this is usually not a problem outdoors, reception inside buildings 
with conventional receivers is not suitable for AR. But even in forests and deep val-
leys the reception quality can be significantly impaired, so that positioning is not 
possible or only possible to a limited extent. A particular problem is the use in inner 
city areas. Due to high buildings and narrow alleys, the free view of the satellites 
may be so limited that proper positioning cannot always be guaranteed. Here, one 
also speaks of ‘urban canyons’ (see Fig. 4.3).

While conventional GPS signals are not sufficient for AR in most cases, the 
accuracy can be significantly increased by using differential methods. A distinction 
is made between Differential GPS (DGPS) and Satellite Based Augmentation 
System (SBAS). With DGPS, a correction signal is calculated based on a local refer-
ence receiver whose position is known. This correction (received by radio or via the 
Internet) is then applied to the locally received GPS signal, allowing accuracies 
down to a few centimeters. In SBAS, the reference system is formed by several 
geostationary satellites. These reference satellites each provide correction data for 
specific areas (WAAS in North America or EGNOS in Europe). Based on SBAS, 
accuracies of about one meter can be achieved. However, SBAS (in particular) in 
city centers is again sometimes problematic due to the often limited visibility to the 
south (geostationary satellites have an orbit above the equator). For outdoor AR 
applications, however, the use of SBAS is usually the only way to achieve an accept-
able positioning accuracy. This is already sufficient for the augmentation of objects 
and buildings that are not in the immediate vicinity of the observer. If DGPS is used, 
augmentation can usually be achieved even at a short distance without any notice-
able deviation from the actual position. However, the objectively perceived quality 
of the positioning strongly depends on whether the virtual object must fit seamlessly 
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to a real object or can be positioned rather freely (for example, a virtual fountain on 
a real site).

In addition to DGPS and SBAS, Assisted GPS (A-GPS) and WLAN positioning 
are also frequently used, especially in smartphones and tablets. With A-GPS, an 
approximate position is determined on the basis of the current mobile radio cell 
(possibly refined by measuring the signal propagation times to neighboring mobile 
radio masts), whereas WLAN positioning uses known WLAN networks (these do 
not have to be open, but only uniquely identifiable). Neither method provides suf-
ficiently accurate position data for AR.  However, A-GPS can also significantly 
accelerate the start-up phase of an ordinary GPS receiver by transmitting satellite 
information (especially current orbit data and correction data). This is particularly 
relevant for AR applications if the users are frequently in areas where there is no 
satellite reception – for example in buildings.

Fig. 4.3 Buildings block 
GPS signals in so-called 
urban canyons
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4.3  Camera-Based Tracking

In recent years, camera-based tracking, also known as optical tracking, has become 
increasingly popular because it enables high accuracy and flexible use. In the field 
of optical tracking different techniques are used. They are based on the idea of using 
objects recorded in the video stream to determine the relative positioning and orien-
tation of the objects to the camera (the so-called extrinsic camera parameters) 
(Hartley and Zisserman 2000).

Basically, techniques can be distinguished according to whether markers (see 
Fig. 4.8) are used for tracking which are easily recognizable in the recorded video 
stream (by their color, shape, contrast, brightness, reflective properties, etc.), or 
whether the method also works without markers (markerless). In the latter case, 
either lasers are used, or cameras capture features within the camera image (see 
Sect. 4.3.3). It is also possible to distinguish between methods in which the cameras 
are directed at the object to be monitored from the outside (outside-in), or whether 
the cameras are mounted to the object to be monitored and record the surroundings 
(inside-out). In most cases, outside-in methods combine several cameras with the 
aim of increasing the area of interaction or making it less susceptible to occlusion. 
The disadvantage of outside-in methods is that a (very) large number of cameras 
may be required to monitor large interaction areas and that the overall costs may rise 
rapidly, especially when using special cameras. The disadvantage of inside-out pro-
cedures is that the user must accept restrictions by carrying cameras around. Even 
though camera modules have become very small nowadays, the total package of 
camera and possibly battery and transmission or evaluation logic is relatively heavy. 
The advantage is that users are not restricted to a certain interaction space and can 
therefore move around more freely.

From the user’s point of view, a markerless outside-in method would of course 
be desirable, as this is where the restrictions for the user are least severe. Users do 
not have to hold anything in their hands, do not need markers (e.g., on clothing) and 
can move freely and walk freely through the room. In practice, however, it has been 
shown that markerless tracking systems are more susceptible to interference (e.g., 
additional people in the room or changing lighting conditions) than marker-based 
systems, and that the accuracy of marker-based systems is often higher.

4.3.1  Marker-Based Methods

To reduce the complexity of calculations and to avoid errors in different lighting 
situations, optical tracking techniques often use clearly specified markers whose 
image can be quickly identified in the video stream via threshold filters. Basically, 
active and passive marker can be distinguished, depending on whether the markers 
passively reflect the light or they themselves actively radiate light. Figure 4.4 (top) 
shows an example of a six degrees of freedom controller with active markers (18 
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white LEDs arranged in a given pattern). Figure 4.16 shows a similar controller with 
active infrared LEDs.

When using RGB cameras, black and white markers with defined sizes are often 
used for this purpose. These are discussed in detail in Sect. 4.3.2. There are also 
different approaches with colored markers. However, due to the lighting situation 
and possibly also due to inferior cameras, even areas that are actually monochrome 
are usually no longer monochrome in the video stream, so that the susceptibility to 
errors increases when searching for a colored area. Better results can be achieved 
using color-based tracking with active markers, i.e., self-luminous markers. Electric 
lights (with the disadvantage of the power supply) such as the PlayStation Move 
controller or glow sticks (also known as bend lights, which use chemiluminescence) 
have proven to be very useful for this purpose.

To allow illumination of a scene without dazzling the users, infrared cameras are 
often used in VR. The markers used here are either passive reflectors in combination 
with infrared lights or active infrared LEDs such as the Nintendo Wii (see Lee 
2008). Figure 4.4 (bottom) shows the infrared LEDs used for illumination. In the 
video stream, small very bright round areas can be seen for each marker. The 

Fig. 4.4 (Top) VR controller with active marker; (bottom) cameras with infrared LEDs for illumi-
nation and flysticks with reflective markers
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visibility of a marker in several camera views allows the three-dimensional position 
to be calculated.

Single markers are sufficient if tracking is only to provide the position (3 DOF). 
However, a rigid body (also called a target in some tracking systems) typically 
requires the calculation of its position and orientation. Consequently, a target is 
composed of several individual markers. In a calibration step, the geometric struc-
ture of the targets (e.g., the distances of the individual reflection spheres) must be 
communicated to the tracking system. If all targets differ in their geometric struc-
ture, identification can be made based on these characteristics. In Fig. 4.4 (right 
side) two input devices with targets are shown, which take over the function of a 3D 
joystick, and with which the user can indicate positions and orientations in 3D space 
(so-called flysticks).

To make the reflection of passive markers as efficient as possible, retroreflection 
is usually used. Retroreflection means that the beams of light are reflected specifi-
cally in the direction of the incident light and is based on two basic optical princi-
ples: in the case of reflection by triple mirrors, the mirrors are arranged with a right 
angle in between, as shown in Fig. 4.5 (left). When reflected by glass spheres, the 
spheres focus the incoming light approximately on the opposite surface of the glass 
sphere (see Fig. 4.5, right). A layer of microscopically small glass spheres applied 
to reflective material acts as a retroreflector. These foils can be produced on flexible 
carrier material and are therefore used to produce ball markers as shown in Fig. 4.6 
and Fig. 4.7.

Fig. 4.5 Retroreflection of protected triple mirrors and glass spheres. (© ART 2013, all rights 
reserved)

Fig. 4.6 Tracking a target 
from two cameras
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Active markers often use infrared LEDs that must be synchronized with the cam-
eras. This synchronization can be done with active markers via an IR flash. The 
cameras emit IR flashes that are reflected by the markers towards the camera lens. 
Due to the IR flashes, it is possible that opposite cameras are blinded. A common 
solution for this is to divide the cameras into so-called flash groups that work alter-
nately, so that the opposite camera is inactive when taking the picture.

The tracking cameras that scan a specific area register the reflected radiation in a 
grayscale image. The pre-processing of this image data takes place in the camera 
and provides 2D marker positions with high accuracy using pattern recognition 
algorithms optimized for circular surface detection. To be able to determine the 
coordinates of a marker or target in space at all, it is necessary that at least two cam-
eras scan the same area simultaneously (cf. Figure 4.6). Larger volumes are accord-
ingly built up with more cameras, whereby it must also be ensured that partial areas 
of overlap are scanned by additional cameras. It is therefore important to ensure that 
the individual areas are linked.

The calibration of outside-in procedures with markers is usually carried out with 
the aid of test objects known in shape and size, which are moved in the monitored 
room. The test data obtained in this way allows the coordinate systems of the indi-
vidual cameras to be aligned with each other such that tracked objects can be 
described in a uniform coordinate system.

The camera 2D data is transmitted to the central tracking controller, which cal-
culates the 3D positions of the marker or the 6D data of the rigid bodies by triangu-
lation and passes them on to the user. To enable the tracking software to perform this 
triangulation, the exact positions and orientations of the tracking cameras must be 
known. In a typical VR system, the accuracy requirement for this is less than 1 mm 
in position and less than 0.1° in angle. To determine the position and orientation of 
the tracking cameras with this precision, the tracking software provides a simple 
calibration step whose basic mathematics (bundle adjustment) is derived from pho-
togrammetry (Hartley and Zisserman 2000) and which allows the calibration in a 
short time. To achieve a coverage of the tracking volume according to the 

Fig. 4.7 Optical tracking of a person with reflective markers (the markers appear to be illuminated 
by the flashlight used) and several infrared cameras (infrared LEDs appear red)
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requirements, the tracking cameras are equipped with lenses of different focal 
lengths. This allows a variation in the field of view (FOV). To allow unrestricted 
working in front of power walls or in multi-side projections, wide-angle lenses for 
the tracking cameras are selected. It is important that the user can get close to the 
projection screens to achieve high immersion. Figure 4.7 shows an example where 
an optical tracking system is used to capture the movement of a user, so-called 
motion capturing.

Optical tracking in closed multi-sided projections (such as 5- or 6-sided CAVEs; 
see Sect. 5.4.2) presents a special problem. Optical tracking through projection 
screens is not possible because these screens have a highly scattering surface and 
optical imaging through a scattering surface is generally difficult. Therefore, track-
ing cameras must be installed inside the CAVE, which leads to an impairment of the 
spatial impression in the virtual environment by these camera bodies. For multi- 
sided projections in particular there are special cameras that are installed in the 
corners of the multi-sided projection, looking through a hole of about 40 mm diam-
eter. This allows precise optical tracking in CAVEs to be used, whereby the optical 
interference caused by the holes in the corners is negligible according to the users.

4.3.2  Tracking Using Black and White Markers

Camera-based tracking using markers has been used for AR since the late 1990s and 
the technique is still in use today. In most cases, markers with black and white pat-
terns are used (see Fig. 4.8). Compared to colored markers, these offer the advan-
tage that they can be extracted from images with the aid of simple threshold values, 
even under varying brightness conditions.

The markers used are usually either square or round and bordered by a com-
pletely black or completely white border. Criteria for selecting one of the systems 
can be stability, recognition speed or the number of distinguishable marks. Some of 
the better-known marker-based tracking approaches include ARToolkit, ARTag, 
ARToolkit+ or the IS 1200 VisTracker. For a detailed comparison between different 
marker-based approaches, see Köhler et al. (2010).

Fig. 4.8 Typical markers as used for camera-based tracking
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 Use of Marker Tracking

For marker tracking, the pattern and size of the individual marker must be known in 
advance. While some methods (such as ARToolkit, cf. Berry et al. 2002) allow any 
black and white patterns for the inner part of the marker, the possible patterns are 
predefined in other methods (such as ARToolkit+). The latter prevents performance 
losses with many markers. As a rule, markers must be completely visible in the 
captured camera image to be recognized. With predefined patterns, however, redun-
dancy can often still be used to detect a marker that is not completely visible. If 
markers are too large, it can also happen that only a part of the marker is visible 
when the camera is very close to it and tracking is therefore not possible or only 
possible to a limited extent. Conversely, if the marker is too small in the camera 
image, this leads to both faulty pattern recognition due to the too small number of 
detected marker pixels and to a significant reduction of the tracking accuracy, such 
that even with static objects and a practically motionless camera, transformation 
values can vary greatly. In addition to the size of the marker, the resolution of the 
camera is a decisive factor. If the AR application requires that users look at an object 
from very different distances, it can be advantageous to use markers of different 
sizes in parallel. A universal solution for this problem is the use of fractal markers 
(Herout et  al. 2012). In addition to the distance, the angle between camera and 
marker as well as the current lighting situation have a major impact on the quality 
of the tracking results. If the angle becomes too flat, the calculated transformation 
values often start to vary greatly (Abawi et al. 2004). If the lighting is too bright 
(also due to reflections) or too dark (also due to shadows), white and black marker 
areas are ultimately no longer recognized sufficiently clearly from each other, mak-
ing tracking no longer possible.

The main advantages of marker-based tracking are that the markers can be cre-
ated quickly and easily by printing them out and can be applied to objects, walls and 
ceilings, or can be easily integrated into books and magazines. Even though AR 
markers may look similar in parts, they should not be confused with QR codes, 
which are used to encode strings of characters, especially URLs.

The main disadvantage of markers is that they usually must be applied directly to 
or on the object to be augmented. This is due to the fact that the markers would 
otherwise often not be visible when looking at the object (more closely) as well as 
because tracking inaccuracies have a much stronger effect on augmented objects if 
the distance from the marker to an augmented object get bigger. The markers are 
therefore often disturbing with respect to the real object. Another aspect is that it is 
not possible or not appropriate to place markers on many real objects (for example 
on a statue). An aggravating factor for smaller objects is that when interacting with 
the object (for example, by touching it), the markers are easily covered by the user’s 
hand or arm, either completely or partially, so that tracking is no longer possible. 
There are numerous other factors that influence the quality of tracking. An essential 
aspect is the quality of the camera and the camera calibration (see Szeliski 2011). 
Another problem is that with some methods (such as ARToolkit) the performance 
decreases reciprocally quadratic with the number of patterns to be detected.
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 Basic Operation

In the following, the basic procedure of marker-based tracking will be outlined 
using ARToolkit (Kato and Billinghurst 1999) as an example. The tracking is basi-
cally done in four steps:

 1. Camera captures video image
 2. In the picture, the system searches for areas with four connected line segments
 3. It is checked whether the detected areas represent one of the predefined markers
 4. If a marker was found, the position and orientation of the camera to the marker 

are calculated from the position of the vertices in the image

After obtaining the current camera image, it is first converted to a grayscale 
image. A black and white image is then generated based on a threshold value, 
whereby all values below the threshold value are displayed in black and those above 
the threshold value in white. All line segments in the image are now identified and 
then all contours are extracted from line segments with four lines. The parameters 
of the line segments and the positions of the corner points are temporarily stored for 
later calculation (see Fig. 4.9).

The region found within the four vertices is then normalized. As the surrounding 
black border has a uniform width of 25% of the edge length, the image to be com-
pared can be easily extracted from the center of the image. The image is then tested 
for matching with the stored patterns (see Fig. 4.10). For the comparison of each 
stored pattern, the four possible orientations at three brightness levels each are used. 
The pattern with the highest degree of similarity is recognized if a defined threshold 
value for similarity is exceeded. It is therefore also important to select patterns with 
the lowest possible similarity between them to avoid false positives. Based on the 
orientation of the pattern, the recognized vertices can easily be assigned to the cor-
responding coordinates in the marker’s coordinate system.

Fig. 4.9 Single steps in the recognition of the marker boundaries in the camera image: conversion 
to grayscale image, black and white image based on a threshold value, segmentation, identification 
of lines, identification of contours from four lines and storage of the corner points
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 Intrinsic and Extrinsic Camera Parameters

The calculation of the pose of the marker in relation to the camera is based on the 
mapping of the marker’s corner point coordinates to pixels. The size of the marker 
must be known.

Tcm is the transformation matrix from the marker coordinate system M to the 
camera coordinate system C. The position of the camera corresponds to the optical 
center and thus the origin of the camera coordinate system. The viewing direction 
of the camera is along the negative z-axis of this coordinate system. 



vm  is a coordi-
nate in the marker coordinate system M and 



vc  the coordinate transformed into the 
camera coordinate system C. For a detailed representation of the relationships see 
Fig. 4.11. Thus, the following applies:
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wherein the homogenous matrix Tcm is composed of a 3 × 3 rotation matrix R and a 
translation vector 



t . Both components have three degrees of freedom each; the 
whole transformation thus has six. Camera calibration (cf. Szeliski 2011) yields the 
intrinsic camera parameters and thus the calibration matrix K, which determines the 
mapping of the camera coordinates to the image plane S. Here applies:
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Fig. 4.10 Recognized marker, normalized marker, normalized original
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where f is the focal length of the camera (distance from the image plane) and (cx, cy) 
is the optical center of the image in image coordinates. Strictly speaking, this is an 
idealized (pinhole) camera, where it is assumed that the focal length is the same in 
both sensor dimensions and that there is no distortion due to a non-perpendicular 
installation of the camera sensor (cf. Szeliski 2011, p.  47). Thus, the relation 
between a camera coordinate 



vc and an image pixel 


vs  can be described by
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where 


vs  the must be normalized so that sz = 1 (Fig. 4.11).
By inserting the detected pixels and using the calibration matrix K and the known 

distance between the vertices, and taking into account the orientation known from 
the marker orientation, the 3 × 3 rotation matrix R and the translation vector of Tcm 
can thus be determined. These are called extrinsic camera parameters. For further 
details of the method see Kato and Billinghurst (1999) and Schmalstieg and 
Höllerer (2016).

Fig. 4.11 Camera coordinate system C, image coordinate system S and marker coordinate system 
M (position of image plane flipped for illustration)
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4.3.3  Feature-Based Tracking Techniques

In addition to marker-based tracking techniques, there are also camera-based track-
ing techniques that recognize features in the camera image and assign these to mod-
els. The models, which can be 2D or 3D, can be built on the fly or could be already 
known from a database. Feature-based tracking techniques represent a generaliza-
tion of the marker-based approach.

 Geometry-Based Tracking

In geometry-based tracking, features such as edges and/or vertices are extracted 
from the camera image. Based on an extrapolation of the transformation extracted 
from the previous camera image, the distances between the lines and corners of the 
calculated and the current image are used as the basis for the modification of the 
transformation.

As can easily be seen from the example of a cube with six identical sides, in 
many cases the individual features are not unique, i.e., there are often several valid 
poses for a current camera image. Thus, based on the last used pose, one of several 
possible transformations is always used: the one that has the smallest change to the 
previously calculated transformation. The correct initialization of the tracking is 
therefore crucial, as further poses are calculated incrementally. For a unique initial-
ization, additional tracking techniques (such as the already described marker-based 
method) can be used. Neural networks are also increasingly used for matching with 
a given model (cf. Klomann et al. 2018).

Feature-based approaches using edges and/or corners are particularly suitable in 
areas of uniform geometric shapes, especially when the areas have few other fea-
tures for extraction.

 Other Feature-Based Tracking Techniques

Unlike corners and edges, other visual features are often not easily recognizable to 
a human observer. However, they offer the advantage that they can be found quickly 
and reliably in a camera image using corresponding feature detectors. As far as is 
possible to extract enough of such features from the camera image, they will be 
compared with existing 2D or 3D descriptions of the features (the so-called descrip-
tor). After outliers have been sorted out – usually using a RANSAC method (Fischler 
and Bolles 1981) – the pose of the camera in relation to the known feature groups 
can be calculated on the basis of the correct assignments (see Fig. 4.12).

Feature detectors differ significantly in their speed and reliability. Not all detec-
tors offer corresponding descriptors. It is advantageous here if the detection of the 
features is independent of rotation (rotation invariance) and distance (scale invari-
ance). If this is not the case, corresponding features must be calculated from 
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different angles and in different resolutions. Detectors used for feature-based track-
ing include SIFT – Scale Invariant Feature Transform (Lowe 1999, 2004) – and 
SURF – Speeded Up Robust Features (Bay et al. 2006). A basic description of fea-
ture-based tracking for AR can be found in (Herling and Broll 2011). Figure 4.13 
shows the robustness of feature-based methods using a SURF-based approach: 
despite numerous occluding objects, the remaining features visible allow for a sta-
ble pose estimation.

Another possibility to implement camera-based tracking is the combined use of 
color cameras and depth cameras in the form of so-called RGBD cameras. Here, the 
depth information can be used for tracking the camera position as well as for track-
ing user interactions. The latter is done by estimating to what extent skeletons can 
fit into the recorded depth data and thus allow the recording of user movements such 
as the movement of an arm. RGBD cameras usually use an infrared projected 

Fig. 4.12 Assignment of 
feature points in the 
current camera image to 
those of an existing 
feature map
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pattern (see Fig. 4.14) or a Time of Flight (TOF) method for depth detection, where 
the travel times of the reflected light are determined. The technology of RGBD 
cameras has become particularly well known through the great success of the first 
generation of Kinect, which was sold as an input device for a game console.

Fig. 4.13 Tracking based on features is much more robust against interference than marker-based 
tracking: despite numerous objects obscuring the image used for tracking, the virtual object can be 
registered correctly

Fig. 4.14 Projected infrared pattern for depth detection of an RGBD camera. (© DLR 2013, all 
rights reserved)
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4.3.4  Visual SLAM

In the tracking techniques presented so far, it was assumed that markers, images, or 
objects are known regarding their characteristics. This made it possible to determine 
the relative position and orientation of the camera. If either the position and location 
of the markers or the camera(s) in the surrounding (spatial) coordinate system was 
known (e.g., in the form of a map), this information could also be used for absolute 
location (position estimation) in the spatial coordinate system. But how to realize a 
tracking in an unknown environment, i.e., without known markers, images or 
objects and without any information about the arrangement these in space?

In this case, SLAM (simultaneous localization and mapping) – a method origi-
nating from robotics – is used. Initially, neither the position and orientation of the 
camera nor the environment are known. SLAM approaches primarily based on cam-
eras observing the environments are also referred to as Visual SLAM. For SLAM- 
based tracking in the AR context, either features (SIFT, SURF, FAST, etc.) and/or 
depth information (e.g., Kinect, Intel RealSense, Google Tango, Structure.io) 
are used.

More recent handheld devices may also apply LiDAR (light detection and rang-
ing), originally used in robotics and automated driving only, providing high-quality 
depth estimation of the environment. While the former produce sparse maps with 
comparatively few feature points (cf. PTAM, Klein and Murray 2007), the latter 
generally use dense maps of volume. Since initially no map exists, the coordinate 
system can be freely selected based on the starting position. The map is then succes-
sively created based on the movement of the camera, i.e., features found in the cur-
rent camera image are compared with the existing map and new features are located 
in the map. Based on the already known parts of the map, the position and location 
of the camera are simultaneously reassessed based on detected features.

The simultaneous reconstruction of the environment in the form of a map as well 
as the estimation of the position based on this still incomplete information usually 
leads to increasing errors (both with regard to the quality of the map and the position 
estimation based on it) as long as new unknown areas are continuously added. It is 
crucial that known surrounding areas are reliably recognized, even if their position 
and location are different from the current map information. In this so-called loop 
closing, all map data must be adjusted to ensure that the current and stored informa-
tion are consistent.

Dynamic objects represent an additional difficulty with SLAM methods. Since 
the resulting features change their position and location, they must be identified and 
then ignored in the processing, otherwise they lead to both a faulty map and faulty 
tracking.
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4.3.5  Hybrid Tracking Techniques

For augmented reality applications it is common to use combinations of different 
tracking techniques. The reason for this is usually that the individual methods pro-
vide different results, depending on the situation. A typical example is a marker- 
based approach: this approach usually works well if the position and location in 
relation to the camera can be determined for all virtual content via at least one 
marker. However, if an occlusion occurs even for a short time, the marker is not 
recognized and registration of the virtual object(s) in the real scene is no longer pos-
sible. In order not to immediately lose the illusion of an augmented reality, it is 
therefore recommended to estimate the change of position and attitude based on 
alternative tracking techniques. If, for example, a tablet or smartphone is used, the 
change in position could also be determined by the integrated position sensors (see 
Sect. 4.2.3). This can be used to ensure that in situations where the brand tracking 
does not provide any information, a transformation can be specified that is correct 
at least regarding the position. If the user does not change his or her position until 
the corresponding marker is visible again, or only changes it slightly, the illusion 
can be maintained in this way.

Another way to compensate for short-term failures or even latency of the track-
ing technique is to use prediction techniques. While simple extrapolation methods 
are basically also suitable for this purpose, Kalman filters (cf. Bishop et al. 2001, 
p. 81) are a widely used and significantly better alternative. Depending on whether 
the position or the rotation must be estimated, ordinary or advanced Kalman filters 
are used. Another possibility is the use of particle filters (cf. Arulampalam 
et al. 2002).

 Cloud-Based Tracking

Hybrid tracking techniques can also be used for multiuser experiences. The first 
step is to build a tracking reference (called an anchor) within a spatial environment 
or context. Feature maps in combination with additional information like GPS data 
(for outdoor applications) or room information (for indoor applications) can be used 
for this. The second step is to send to a cloud service. By downloading this cloud 
anchor, applications on other devices can align virtual objects to the same spatial 
context, enabling users to view the same content at the same location but from an 
individual perspective (see Fig. 4.15, left).

In visions of the near future of computing – coined as AR Cloud, Spatial Web, 
Mirror World or Digital Twin – a large amount of constantly updated digital content 
(e.g., construction, IoT, traffic, shops, artists) is spatially anchored and can be per-
ceived and shared by many users as a persistent, dynamic overlay of the real world 
(see Fig. 4.15, right). Reliable, precise and easily functioning tracking and localiza-
tion technologies are an essential part of the implementation of these concepts. 
Organizations are developing universal open standards to ensure open, free and 
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interoperable use of the deeply linked partial technologies. For example, the Open 
AR Cloud organization (OpenAR 2021) together with the Open Geospatial 
Consortium (OGC), is developing a standard for a geographically anchored poses 
with six degrees of freedom (GeoPose 2021) referenced to standardized Coordinate 
Reference Systems (CRSs). Since these tracking and immersive visualization tech-
nologies capture and operate with many personal and potentially protected private 
data, for long-term acceptance it is important to take care of privacy and data secu-
rity issues and to respect possible ethical, legal and social impacts (CyberXR 2021) 
as part of development and operation.

 Microsoft Hololens Tracking

The SLAM approach used in Microsoft’s Hololens 2 (see Hololens 1 in Fig. 5.10) 
has several special features regarding the combination of different hardware sen-
sors. It uses a total of four cameras exclusively for tracking. The four cameras work 
with a comparatively low frame rate of only 30 Hz. This means that fast head move-
ments cannot be detected without noticeable latency. To compensate for fast move-
ments, the tracking data is therefore combined with those of an IMU (see Sect. 
4.2.3) with an update rate of 1000 Hz. This allows not only the calculation of inter-
mediate values between the determined camera poses at 240 Hz, but also compensa-
tion of color shifts (late-stage reprojection) due to the color sequential output (see 
Sect. 5.3.2). Instead of a global coordinate system, a graph of position estimations 
is used, whereby the individual local coordinate systems are connected by relative 
poses. If relative poses are not, or not yet, available, the graph may break up into 
several subgraphs. A loop closing does not take place, so that the graph is not neces-
sarily globally consistent.

Fig. 4.15 (Left) Simplified concept of cloud anchors: 1) One device captures peculiar features 
from the environment. 2) It saves these and an object anchor in cloud storage. 3) Another device 
downloads this information and 4) tries to find the same features in its view to position a virtual 
object at the same anchor position. (Right) The AR Cloud concept: different layers of dynamic 
georeferenced information augment the real world
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In addition, data from a depth camera (1-MP Time-of-Flight depth sensor) is 
used for spatial mapping with a framerate of 1–5 fps. If a user’s hand is recognized 
the modus of the depth camera will change to high-frame rate (45 fps) near depth 
sensing, which is used for hand tracking in an area up to 1 m (see also Sect. 4.4). For 
power saving, it reduces the number of illuminations while doing the hand tracking.

Furthermore, the Hololens has a high-resolution front camera with a FOV of 65°, 
a five-channel microphone array with noise cancellation to allow voice input even 
in loud environments, and eye tracking (see Sect. 4.5). The eye tracking is espe-
cially used for the rendering using the waveguide displays (see Sect. 5.3.2).

4.4  Finger Tracking

Although the interaction with standard input devices and the corresponding interac-
tion methods are usually sufficient, these devices and methods hardly reproduce the 
natural interaction of a human being with the virtual world. New types of interaction 
(e.g., by pointing gestures) must first be explained to the user.

One example is the virtual assembly simulation. Using a standard interaction 
device such as a VR controller, a component can be easily moved from one location 
to another by detecting its position and orientation and by pressing a button. 
However, it is not possible (or very difficult) to check whether a user is able to 
install a component with only one hand or whether the user needs both hands for 
this action. Figure 4.16 left shows a user in front of a VR display during a virtual 
assembly simulation of a satellite. The user is equipped with optically tracked 3D 
glasses and a finger tracking device and tries to insert a module of the satellite with 
only one hand into the corresponding module slot. Other scenarios in the field of 
virtual assembly simulation are testing for the general tangibility of objects or the 

Fig. 4.16 (Left) User with tracked 3D glasses and finger tracking during an installation test of a 
satellite module in a virtual assembly simulation (© DLR 2013, all rights reserved). (Right) 
Grasping a virtual apple with a tracked hand (© ART 2013, all rights reserved)
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transfer of objects from one hand to the other. The use of standard interaction 
devices like VR Controller is not suitable for this kind of applications.

In general, the direct interaction of users with their environment by tracking their 
hands and fingers in the virtual world is easier and more intuitive for them (Bowman 
et al. 2004). In contrast, interactions with VR are faster when using indirect interac-
tion methods in combination with simple or standard interaction devices (Möhring 
and Fröhlich 2011; Hummel et al. 2012).

In general, the term finger tracking is used to describe the detection of the posi-
tion and usually also the orientation of a hand and its fingers. Depending on the 
application, the required accuracy varies. Relatively low accuracy and only the 
detection of the position of the back of the hand or a finger is already sufficient to 
emulate a mouse or to interact with a user interface in a virtual world. However, low 
to medium accuracy and the relative position of individual fingers to each other is 
already necessary to recognize gestures. For application areas such as virtual assem-
bly simulation in the automotive, aerospace and aviation industries, which require 
direct interaction, not only the position and orientation of the back of the hand and 
all fingertips are important for tracking, but also the lengths of the individual finger 
links and the angles of the corresponding finger joints. Only this accuracy enables a 
perfect image of the real hand.

There are two major challenges in finger tracking. First, the human hand has 
many degrees of freedom. The back of the hand is usually seen as a rigid body with 
six DOF: three translational and three rotational (see Fig. 4.17). Each finger has 
another four DOFs, two rotational DOFs at the root of the finger and one rotational 
DOF each for the joints to the middle and outer phalanx. The thumb has a special 
role because it has an additional DOF at the root. Therefore, five DOFs are required 
for the thumb, three rotatory DOFs at the wrist and one for each additional finger 
joint. Added up, this results in 27 DOF for one hand (Lin et al. 2000). Second, the 
tight position of the fingers in relation to each other is a great challenge for the 
tracking system. For optical systems in particular this is a non-trivial problem to 

Fig. 4.17 Data model of a hand to implement finger tracking (the circles symbolize the joints of 
the hand and fingers with their respective degrees of freedom; the lines represent the skeleton)
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solve because of the occlusion of markers, the small visual difference of the fingers 
and the 27 DOF per hand.

In addition, it should not be forgotten that each person’s hands and fingers are 
different. This includes not only the length and thickness of the individual phalan-
ges, but also the joints and joint angles between them. A physical handicap or even 
the absence of one or more fingers must not be ignored either. The respective track-
ing devices must take this into account and be adaptable to it.

Since finger tracking has high requirements on the tracking hardware, a wide 
variety of techniques are employed. In earlier days mechanical tracking techniques 
were most common, for example optical fibers, strain gauges or potentiometers 
(variable resistors). The Sayre Glove (DeFanti and Sandin 1977) has bendable tubes 
that run along each finger inside a glove. The Data Glove (Zimmermann et al. 1986) 
uses two optical fibers per finger. At one end of this fiber optic cable is a light 
source; at the other end is a photocell. Depending on the bending of the finger, a 
different amount of light hits the photocell. This allows the joint angles of the fin-
gers to be approximately determined. The CyberGlove (Kramer and Leifer 1989) 
uses 22 thin, metallic strain gauges to measure the joint angles of the fingers. In the 
Dexterous Hand Master (Bouzit et al. 1993), an exoskeleton is pulled over the hand 
and fingers. Using cable pulls, potentiometers are then activated, from whose resis-
tance values the positions of the fingers can be determined by analog/digital con-
verters. With mechanical methods, however, only a relative measurement of the 
fingers to the back of the hand is possible. The position and orientation of the back 
of the hand must be measured using a different tracking technique.

More rarely, magnetic trackers are used for finger tracking. These can detect up 
to 16 individual 6-DOF sensors. This means there is one sensor for each of the 
three-finger links and one sensor for the back of the hand. The disadvantage of mag-
netic tracking is the slight susceptibility to interference from metallic or electro-
magnetic sources. In addition, most magnetic trackers are wired due to their design.

Optical finger-tracking devices predominate in the non-mechanical tracking 
techniques. The MIT LED Glove (Ginsberg and Maxwell 1983) is equipped with 
light-emitting diodes (LEDs), which are recorded by an external camera system. To 
distinguish individual fingers from each other, the LEDs flash alternately one after 
the other (Hillebrand et al. 2006). At a recording rate of 60 Hz, for example, the 
alternate flashing of the LEDs reduces the repetition frequency to 20 Hz for a three- 
finger system and to 12 Hz for a five-finger system. The use of optical tracking 
enables high accuracy and lightweight wireless interaction devices, but usually at 
least four expensive special cameras are required to ensure triangulation of each 
LED used. Some optical finger tracking devices are additionally equipped with iner-
tial sensors to temporarily bridge any obscurations of the LEDs, which often occur 
due to the small distances between the fingers. In Hackenberg et al. (2011) a method 
was presented that is based on depth cameras and uses special feature detectors for 
finger phalanges and fingertips.

There are inexpensive camera-based finger trackers available, which neverthe-
less offer high accuracy and low latency and can be easily integrated into VR appli-
cations. Leap Motion, as an example, uses two cameras in combination with infrared 
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LEDs (wavelength 850  nm). The hardware covers an interaction space of up to 
80 cm by 80 cm, with the brightness of the infrared LEDs being the limiting factor. 
The controller transmits two grayscale videos to the software, which in turn deter-
mines the finger positions from this data. Usually, the controller is used while lying 
on a table. With the help of an adapter, however, it is also possible to attach the 
controller to VR glasses to use finger gestures as input for VR applications.

Using touch-sensitive surfaces it is also possible to track fingers using a VR con-
troller (see Fig. 4.18).

4.5  Eye Tracking

4.5.1  Eye Movements

Eye-tracking, or gaze registration, generally refers to tracking the movement of the 
human eye. The procedure is used to record and evaluate the course of a per-
son’s gaze.

If a user views an image, he focuses by changing the focal length of his lens and 
depicts the image onto light-sensitive cells of the retina. The amount of incident 
light can be varied through the iris. The iris works like an aperture and changes the 
diameter of the pupil. The eye muscles that move the eye in the eye socket are 
attached to the sclera. The types of movement of the eye are differentiated into drift-
ing, following, trembling, rotating, fixing and saccades. However, only the last two 
are interesting for tracking the eye. During fixation, e.g., while reading, the eye 
concentrates on one point and collects information. Saccades are jumps that take 
place between fixation and last about 20 ms to 40 ms.

4.5.2  Methods

Various technical methods have been developed in recent decades to determine the 
direction of gazes. An overview of these methods and sub methods is given in 
Fig.  4.19. In principle, a distinction is made between invasive and non-invasive 

Fig. 4.18 3D model of a hand controlled by a VR controller with touch sensors
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procedures. Invasive procedures always require a direct intervention on the user’s 
body, e.g., with electrodes.

With non-invasive procedures the user’s gaze can be followed without contact. 
The first developed eye-tracking techniques were purely invasive. Electrooculography 
was developed more than 40 years ago. In electrooculography, the electrical poten-
tials of the skin around the eye are measured. These potentials range from 15 μV to 
200 μV. The sensitivity for eye-tracking is about 20 μV/angle degree (Duchowski 
2007). With this technique the relative eye movement to the head can be recorded. 
However, it is not possible to determine an absolute point of view of the eye on an 
object. Another invasive eye-tracking technique is the contact lens method. Here, 
contact lenses are used either with small coils or with reflectors. For contact lenses 
with coils, the change of the magnetic field is measured, and from this the relative 
movement of the eye is derived. If there are reflectors on the contact lenses, the 
reflected light can be used to deduce the relative direction of vision.

Fig. 4.19 Overview of methods for eye tracking
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In recent years non-invasive video-based eye-tracking techniques have been 
used. Here, the eye is captured by a camera and the gaze direction is determined by 
image processing algorithms. In video-based methods, a distinction is made between 
passive and active eye irradiation. Passive methods use ambient light to irradiate the 
eye scene. Due to the undefined irradiation conditions of an environment, there are 
high requirements for precise feature identification of the eye components.

With passive irradiation, the contour between the dermis and iris is used to iden-
tify features. A more precise method is the active irradiation of the eye scene by an 
infrared light source. Figure 4.20 illustrates the more favorable contrast ratios of the 
active method, which enables robust feature identification between pupil and iris.

Depending on the arrangement of the IR irradiation source, a distinction is made 
in active irradiation procedures between the light and dark pupil technique. If the 
irradiation source is located outside the optical axis of the eye-tracking camera, the 
radiation is reflected by the iris and sclera; thus, the pupil is the darkest object 
within the recorded eye scene. If the light source and the camera are arranged in the 
same optical axis, the radiation is reflected at the retina inside the eye, making the 
pupil the brightest object.

Hybrid processes require optics with different arrangements of the IR irradiation 
sources. Regardless of whether active or passive eye irradiation is used, the evalua-
tion of the direction of gaze is based on features on the one hand and on models on 
the other. Combined methods are also used. Feature-based methods detect contours, 
e.g., the pupil geometry, and calculate the center point and the relative gaze 
coordinates. Side effects, such as reflections, can cause other features to be inter-
preted as the pupil; this property reduces the accuracy of feature-based methods. 
Model- based methods, on the other hand, compare the image information of the 
recorded eye scene with a corresponding model of an eye. By varying the parame-
ters, an iterative attempt is made to adapt the model to the real eye scene. If the 
model could be adapted with a certain error, the relative gaze coordinates are 
obtained. Model- based procedures belong to the more precise, but also to the more 
computationally intensive, approaches. Video-based eye-tracking techniques not 

Fig. 4.20 Recorded eye scene with passive and active irradiation
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only allow the relative direction of gaze to be determined. With calibration, the cor-
respondence between the direction of gaze and regions in the virtual image (e.g., a 
button) can be found.

4.5.3  Functionality of an Eye Tracker

Figure 4.21 shows the basic procedure of an eye-tracking routine with active illumi-
nation and bright pupil technique. An eye-tracking camera, which is focused on the 
user’s eye, captures a digital grayscale image. This image is passed to the eye- 
tracking image processing system. First, an adjustment of the gray values is applied 
and then the image is pre-filtered, e.g., to improve a noisy image. Furthermore, a 

Fig. 4.21 Image processing process for eye tracking

4 VR/AR Input Devices and Tracking



140

histogram spread is performed to highlight the object contours of the eye such as the 
pupil or iris. In the next step, the contour of the pupil is detected by edge detection, 
and the pupil center is calculated. Furthermore, in the case of active illumination, 
the reflections at the cornea are used as additional information. With a Head- 
Mounted Display (HMD; see Chap. 5) with integrated eye tracking, these reflec-
tions are often used as a reference point. The eye-tracking image processing finally 
outputs the coordinates of the pupil center in horizontal and vertical direction. If the 
corneal reflections are also evaluated, the eye-tracking image processing outputs a 
difference vector between the pupil center and the center of the corneal reflection, 
from which it can be concluded where the user focuses.

4.5.4  Calibration

To enable user interaction with virtual objects in addition to the actual eye-tracking, 
an assignment between the camera’s detection range and the displayed image is 
necessary.

Figure 4.22 shows the nested coordinate systems of the eye-tracking camera and 
the virtual image. To be able to establish a connection between the pair of coordi-
nates in the camera coordinate system 



xc , 


vc  and the coordinates of the virtual 
image 



xvirt , 


vvirt , there are various assignment methods. In Duchowski (2007) a 
simple linear analytical mapping function is presented. Equations (4.1) and (4.2) 
describe the linear mapping functions for the horizontal and vertical direction. In eq. 
(4.1) the horizontal coordinate 



xc  is set by subtracting from 


xc _ min  to its origin. 
Then this coordinate is scaled to the virtual image by the horizontal resolution ratio 
between the virtual coordinate system and the camera coordinate system. Then the 
relative position in the virtual image is calculated by adding the minimum coordi-
nate of the virtual image. For the vertical coordinate assignment, the calculation 
method described in eq. (4.2) is analogous to eq. (4.1).
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In practice, more complex assignment procedures, such as the second and third- 
order polynomial procedure or the homographic procedure, are usually used. These 
assignment procedures require several parameters. The parameters are obtained by 
a calibration routine. In this calibration routine the user has to select points that are 
distributed over the virtual image (e.g., in the corners and in the middle). The user 
must look at these points one after the other. Using these parameters, the calibration 
routine can now determine the parameters for the complex assignment functions.
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4.5.5  Eye Tracking in Head-Mounted Displays

If you want to use gaze control, you can use an eye-tracking HMD. Figure 4.23 
shows the basic procedure of an eye-tracking HMD. As already mentioned in Sect. 
4.5.2, a camera is required for a video-based procedure. The camera is attached to 
the HMD in a way that it can focus on the eye. The captured image of the eye scene 
is then transmitted to the computer or to the HMD electronics and an eye-tracking 
algorithm calculates the direction of the eye (see Sect. 4.5.3).

Eye-tracking HMDs evaluate either both eyes simultaneously or only one eye. If, 
for example, the gaze direction of both eyes is determined, the 3D viewpoint of the 
user can be determined from the intersection of both vectors.

As already explained in Sect. 4.5.4, there must be a correspondence between the 
coverage area of the camera and the display area of the virtual projection. Therefore, 
a calibration must be carried out. Compared to the remote eye trackers presented in 
Sect. 4.5.6, eye tracking HMDs have better conditions for recalibration due to the 
tight fit of the glasses. If the HMD moves only slightly, the calibration does not have 
to be repeated during operation.

Fig. 4.22 Camera coordinate system of the virtual image and the camera
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4.5.6  Remote Eye Tracker

A remote eye tracker has essentially the same components as the eye-tracking HMD 
presented in Sect. 4.5.5. With a remote eye tracker, the user sits in front of a monitor. 
A camera mounted near the monitor focuses on the user’s head. There are two meth-
ods to capture one or both eyes. On the one hand the camera captures a large area 
where the user’s head is located. The image processing locates the area of the eye 
and calculates the position of the pupil in this section. With this method, only a few 
pixels are available to calculate the pupil position. This low resolution of the pupil 
area also reduces the accuracy. With a second method, the eye-tracking camera cap-
tures only a small area, but this area is captured with high resolution. This camera 
automatically aligns itself so that the current position of the eye is recorded. As 
mentioned in Sect. 4.5.4 a calibration must be performed for the remote eye tracker 
to assign the calculated coordinates of the gaze direction to the display area of the 
monitor. Unlike eye-tracking HMDs, remote eye trackers often need to be recali-
brated during operation because the user changes their sitting position relative to the 
monitor and the eye-tracking camera.

4.6  Further Input Devices

In this section we will consider other input devices that are often used to build VR 
systems, in addition to standard PC input devices (such as 2D mouse, keyboard, 
microphone or touch monitors).

Fig. 4.23 Basic procedure of an eye-tracking HMD
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4.6.1  3D Mouse

One of the simplest input devices is the 3D mouse (see Fig. 4.24). This enables 
direct navigation according to the six degrees of freedom as well as interaction via 
freely assignable buttons. By shifting the mouse sideways and pushing and pulling 
it vertically, a translation in 3D space can be performed; by turning or tilting it, a 
corresponding rotation is achieved.

Versions of the 3D mouse differ not only in size but also in the integration of 
additional buttons, which are usually freely assignable. The advantage of a 3D 
mouse is its high accuracy. Because a 3D mouse is usually placed on a table, it is 
more suitable for desktop VR. Sometimes it is also used as a control unit perma-
nently mounted on a column, which limits the user’s working range.

4.6.2  Mechanical Input Devices

Mechanical input devices record the movements of a user via a mechanism (e.g., via 
a linkage or cable pulls). The advantage of mechanical input devices is that, on the 
one hand that they can be highly accurate, and on the other hand that they are well 
suited to provide haptic feedback to the user. The disadvantages are that the user 
always has something in his or her hand or has to be connected in some way to the 
mechanical input device and that the mechanics may be a disruptive object. 
Figure 4.25 shows an example of a mechanical input device where the user holds a 
pen in his or her hand. The fact that the user is used to holding pens means that the 
use of the device can become part of normal habits, provided that the actual applica-
tion supports this usage scenario.

Mechanical input devices use angle or distance measurements at the joints to 
obtain users interactions. The high accuracy is achieved by correspondingly accu-
rate angle measurements, which are usually carried out using gear wheels or gears, 
potentiometers, or strain gauges. In some cases, similar measuring methods are used 
as in computer mice, which are known to allow high resolution. The latency of 
mechanical input devices is low due to the direct measurement. Smooth operation is 
particularly important for use (Salisbury and Srinivasan 1997) in order not to be 

Fig. 4.24 Different variants of a 3D mouse
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restricted by the input device and thus to perceive it as disturbing. By integrating 
haptic feedback, a mechanical input device becomes an output device at the same 
time (see end effector displays in Sect. 5.5).

4.6.3  Treadmills for Virtual Reality

Due to the limited size of a VR system, it is difficult to allow walking or running 
around in a virtual environment. In most cases the user reaches the edge of the inter-
action area after a few steps. Accordingly, control techniques for navigation have 
established themselves, using different input devices such as VR controllers or a 
flystick (see Sect. 4.3.1). In addition, input devices have been developed that allow 
walking or a walk-like movement for navigation in virtual worlds. Many approaches 
are based on the idea of treadmills on which users move and whose speed is con-
trolled by the VR system. By means of a mechanism for tilting, it is possible to walk 
uphill or downhill. The disadvantage of treadmills, which are used in a similar way 
in gyms, is that they only allow walking or running in one direction, which is a 
significant limitation for use in VR systems.

In recent years, so-called omnidirectional treadmills have been developed 
using different approaches. One possibility is to construct the treadmill from 
small treadmills that are arranged orthogonally to the main direction. This cre-
ates a surface on which the user can move in all directions. By tracking the user, 
the individual treadmills can be controlled so that the user always moves in the 
middle of the surface. The CyberWalk Treadmill (Souman et  al. 2008) is an 

Fig. 4.25 Mechanical input device in pen form with haptic feedback

P. Grimm et al.



145

example of this. Large balls, in which the user moves and which are themselves 
supported so that they remain in one place, are another possibility. The problem 
with this approach is that the perceived floor for the user is not flat but curved by 
the shape of the sphere. This can make walking more difficult. The Cybersphere 
(Fernandes et al. 2003) is an example of this type. Other variants are based on 
constructing the floor from appropriately arranged castors to allow walking 
around. More cost-effective approaches are based on the idea of holding the user 
in place by means of a retaining ring and allowing him or her to walk on a smooth 
or slippery floor. The Virtuix Omni (see Fig. 4.26) and the Cyberith Virtualizer 
are examples of this.

Fig. 4.26 User with VR 
glasses on an 
omnidirectional treadmill
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4.7  Summary and Questions

In this chapter you have acquired basic knowledge in the field of tracking and VR/
AR input devices. Starting from the consideration of how many degrees of freedom 
an object has, basic terms such as accuracy, repetition rates, latency and calibration 
were introduced with respect to their applicability in the fields of VR and 
AR. Following the presentation of different tracking techniques for the continuous 
determination of 3D data, further input devices were introduced.

Check your understanding of the chapter by answering the following questions:

• Why is high accuracy not sufficient as a requirement for VR/AR input devices?
• Which effects can cause problems during data acquisition?
• What is determined by a tracking system and what are the characteristics of 

tracking systems?
• What effects can interfere with a tracking system?
• What problems arise with outdoor tracking in city centers and what alterna-

tives exist?
• Find an application example for hybrid tracking techniques.
• What is the difference between inside-out and outside-in tracking techniques and 

what are their advantages and disadvantages?
• What are the advantages of camera-based tracking?
• Why should you actively illuminate the eyes of a user during eye tracking and 

what should be considered?
• How many degrees of freedom must be determined for finger tracking?

 Recommended Readings

Bishop G, Allen D, Welch G (2001) Tracking: beyond 15  minutes of thought. 
SIGGRAPH 2001, Course 11, http://www.cs.unc.edu/~tracker/media/pdf/
SIGGRAPH2001_CoursePack_11.pdf. Accessed 18 October 2021 – The authors 
of this course at SIGGRAPH presented a good overview of the technical funda-
mentals of input devices.

Szeliski R (2011) Computer vision  - algorithms and applications, Springer, DOI 
https://doi.org/10.1007/978- 1- 84,882- 935- 0. – This book gives a good overview 
of the basics of computer vision, which is used for VR and AR.
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Chapter 5
VR/AR Output Devices

Wolfgang Broll, Paul Grimm, Rigo Herold, Dirk Reiners, 
and Carolina Cruz-Neira

Abstract This chapter discusses output devices and technologies for Virtual 
Reality (VR) and Augmented Reality (AR). The goal of using output devices is to 
enable the user to dive into the virtual world or to perceive the augmented world. 
Devices for visual output play a crucial role here, they are of central importance for 
the use of VR and AR. First and foremost, Head-Mounted Displays (HMD) must be 
mentioned, the different types of which are discussed in detail here. However, VR 
also uses different forms of stationary displays, which are another major topic of 
this chapter. Finally, output devices for other senses are reviewed, namely acoustic 
and haptic outputs.

5.1  Introduction

How can virtual content be transformed into sensory experiences? What possibili-
ties and alternatives exist to address individual senses? Output devices serve to pres-
ent the virtual world to users or to expand the real world by generating appropriate 
stimuli. In this chapter, output devices for VR and AR are presented. A VR or AR 
system must react to user actions, which are recognized by the use of suitable input 
devices (see Chap. 4), and generate a corresponding representation, which in turn 
appeals to the senses of the users (see Sect. 2.1). Commercially available output 
devices address in particular the visual, acoustic and haptic senses. Here, we will 
focus on the visual output of the output devices, because it is of outstanding 
importance for VR and AR. Figures 5.1 and 5.2 show two typical representatives of 
the most important visual device categories: an HMD and a CAVE-like large 
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projection. We will then provide an overview of acoustic output devices and some 
haptic output devices used in VR and AR. In addition, there is a multitude of other, 
sometimes very special, output devices in the form of prototypes and demonstrators, 

Fig. 5.1 Typical consumer HMD with integrated head-tracking and accompanying controllers (© 
TU Ilmenau 2019, all rights reserved)

Fig. 5.2 CAVE-like multi-sided projection to visualize a design study (© RWTH Aachen 2013, all 
rights reserved)
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which address further senses. For example, there are olfactory displays, acceleration 
simulators based on galvanic-vestibular stimulation and specific solutions such as 
the event-controlled generation of wind or the splashing of water, which will not be 
considered further here due to their limited popularity so far. Pure motion platforms, 
such as those used for driving and flight simulators, or in amusement parks, are also 
not discussed here, although one might consider them a large-scale VR out-
put device.

Sect. 5.2 introduces basic aspects of visual output for better understanding of the 
following sections. Section 5.3 deals with Head-Mounted Displays (HMDs). This 
includes those for VR as well as for AR. Furthermore, part of it deals with the tech-
nical properties of HMDs. In Section 5.4 stationary VR systems are considered. 
This also includes multi-sided projections such as CAVEs and tiled displays, and 
their technical challenges as well as technologies for stereo presentation. Sections 
5.5 and 5.6 deal with audio output and haptic output devices for VR and AR, respec-
tively. The chapter concludes with a short summary, including a list of questions, a 
list of recommended literature and the list of references.

5.2  Basics of Visual Output

The basic goal of the visual output is to present the virtual world (in the case of a 
VR system) or the augmented world (in the case of an AR system) to users in such 
a way that they can perceive it in a similar way to the real world. The term display 
is used in the following as an umbrella term for monitors, projection systems (i.e., 
projector with projection surface or canvas) and head-mounted displays (HMDs). 
Monitors and projection systems are used in stationary systems. HMDs refer to 
displays mounted on the head, which can usually be viewed by both eyes, or some-
times only by one eye. In the following, HMD is used as a generic term for both VR 
and AR glasses. Smart glasses, which are also HMDs, but are primarily used to 
display information in a small area of the field of view, should be distinguished from 
HMDs as they are not suitable for VR or AR.

The classification of visual output devices can be based on different criteria. 
Possible criteria include quality, brightness, field of vision or perception, size of the 
area of use, uniformity, freedom of movement, usability or location. The following 
aspects can thus be used to describe visual VR/AR output devices. Starting with 
viewpoint-related aspects, we will look into the technical parameters of such sys-
tems before discussing more user- or usage-oriented aspects.

Visual Field
The visual field is the area that can be perceived by the eyes of a user without mov-
ing the eyes or head. The human visual field is about 214° horizontally (see Fig. 5.3). 
Each eye covers an angle of approximately 60° towards the nose and 107° towards 
the outside. The area that can be perceived with both eyes, the so-called binocular 
cover field, is thus approximately 120° (horizontal). Vertically, the visual field is 
generally much smaller (approximately 130°–150°).
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Field of View
The field of view (FOV) is the angle of view that can be perceived using a technical 
device (e.g., an HMD). It is usually specified separately for horizontal and vertical 
angles (see Fig. 5.4); sometimes the diagonal angle of view is also used. When using 
the device, the visual field is either reduced to the field of view (e.g., in the case of 
HMDs) or the field of view covers only a part of the visual field. Thus, one criterion 
for evaluating visual output devices is the size of the field of view. Here, the absolute 
size of the display is irrelevant. For example, a smartphone has a very small display 
in relation to a large screen as a projection surface. However, if the smartphone is 
used in an HMD (see Sect. 5.3.1), the field of view can be much larger than when 

Fig. 5.3 Human visual field

Fig. 5.4 Horizontal and vertical field of view (FoV)
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standing several meters in front of a screen. The size of the field of view has a major 
influence on the degree of immersion and thus the sense of presence.

Frame Update Rate
The update rate describes the resolution of an output device in time. The output is 
done in discrete time steps and is specified either in Hertz [Hz] or in frames per 
second (fps). The repetition rate can be different depending on the sensory channel.

Latency
Each output device needs a certain amount of time to output the transferred data 
(e.g., time until the output is refreshed, due to signal propagation delays in cables or 
due to the processing of data by algorithms), causing a delay. This is called latency 
(see Chap. 7).

Brightness, Luminance and Dynamic Range
Brightness is a subjective measure of the amount of light a user perceives. It is there-
fore only of limited use for the evaluation of displays. For projectors, the luminous 
flux (in lumen) is usually specified. However, the resulting impression of the user is 
significantly influenced by the size and nature of the canvas. Luminous intensity 
describes the luminous flux per solid angle (measured in candela). A better way to 
describe the brightness of planar light sources is therefore the luminous intensity in 
relation to the area. This describes the luminance (measured in candela per square 
meter). Contrast is a measure to differentiate the luminance. The dynamic range 
(DR) or contrast ratio describes the ratio between the minimum luminance to the 
maximum luminance of a display. For visual output devices, luminance and dynamic 
range are crucial for the capabilities of VR and AR applications: if they are too low, 
they can only be used in darkened areas (e.g., in a laboratory without direct sun-
light). If they are large enough, they can even be used in daylight.

Ambient Light
The ambient light represents the light in the environment of a user or a display. 
Here, this includes all light in the scene except that emanating from the display itself 
(i.e., the screen or projector), whether it is sunlight or lamps, directional or non- 
directional. A bright ambient light usually leads to reduced brightness of the dis-
play. Even though the luminance of the light source does not change as a result of 
this, of course, the perceived amount of light becomes less due to the lower contrast 
ratio. This more traditional view of ambient light should not be confused with ambi-
ent lighting in virtual worlds.

Color Reproduction
To evaluate the quality of a display in terms of colors that can be displayed, the CIE 
Yxy color system can be used. Figure 5.5 shows this color space. In order to describe 
the display colors, a triangle is drawn in the color system, where the vertices cor-
respond to the three basic colors of the display. The triangle includes all colors that 
can be displayed (called the gamut of the display).

The gamut always covers only a part of the colors perceived by the human eye, 
which are represented by the area enclosed by the curve. Here, the points on the 
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curve correspond to the wavelengths of light visible to the human eye, e.g., the 
wavelength 555 nm corresponds to a bright green color. So you can describe a color 
in the color system by xy coordinates. Displays with more than three primary colors 
exist, covering a larger part of the visible color spectrum. These are not in common 
use though, and therefore will not be discussed further here.

Resolution
A visual display presents content using pixels. The resolution of visual displays is 
specified either by specifying the total number of pixels in (mega) pixels (similar to 
photos) or by specifying the horizontal and vertical number of pixels separately. The 
resolution of output devices is crucial for the details that can be displayed.

Homogeneity
Output devices should reproduce the virtual world or the virtual parts of an aug-
mented world in homogeneous quality independent of position and direction. With 
regard to visual output devices, this means that brightness uniformity is maintained 
as well as that the image sharpness and color reproduction are of constant quality.

Fig. 5.5 The CIE chromaticity diagram of the colors perceived by humans with the indicated color 
space of a display (gamut)
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Location (in-)Dependence
Depending on their structure, VR/AR systems can be described as stationary, i.e., 
location-bound, or mobile systems. Stationary systems are usually permanently 
installed and cannot be used at another location (or only with substantial effort). An 
example of a stationary system would be a large multi-sided projection as shown in 
Fig. 5.2. Reasons for a stationary use can be, size, weight, dependence on connec-
tions (e.g., power supply), or the overall effort required for installation (e.g., a com-
plex calibration process  – see also Sect. 5.4.3). Mobile systems can be used 
independent of location. Systems that are used in stationary location, but can in 
principle be set up at another location with very little effort are called nomadic sys-
tems. An example would be a VR system consisting of an HMD, two controllers and 
a tracking system on tripods.

Personal output devices vs. multi-user output devices
Generally, a distinction can be made between personal output devices that can only be 
used by one person (e.g., HMDs or headphones) and multi-user output devices that 
can be used by several people at the same time (e.g., projections). However, real multi-
user output devices further require consideration of each user’s individual viewpoint, 
which typically is not the case for most projection-based systems, where at most the 
viewpoint of a single (tracked) user is considered. Additionally, software can be used 
to give multiple personal output devices access to a shared virtual or augmented world 
(Collabative Virtual Environment – CVE – or Collaborative Augmented Environment).

Usability
For the application it can be important to what extent users are restricted by the 
output devices. For example, it may be necessary to put on glasses or attach an 
HMD to the head. It also makes a difference for the application whether the respec-
tive devices are wired or connected via RF technology. The supported room size 
also has an influence on whether the user can immerse herself in the application or 
whether she must constantly take care not to exceed predetermined interaction 
areas. It can also be necessary for the user to always be oriented towards the output 
device in order to be able to see something. A detailed examination of usability is 
carried out in the context of the consideration of basics from the area of human–
computer interaction in Sect. 6.1. The obtrusiveness of an output device can be seen 
as a measure of the extent to which it is considered disturbing. It makes a big differ-
ence whether a head-mounted display can be worn like a pair of sunglasses, or 
whether it can be used like a bicycle helmet due to its weight and dimensions. 
Ergonomics such as grip or weight distribution can also be critical.

5.3  Head-Mounted Displays (HMDs)

Head-mounted displays (HMDs) are generally understood to be personal displays 
that are worn on the head directly in front of the user’s eyes. Depending on their 
design and weight, they are worn like glasses or more like a bicycle helmet. HMDs 
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often have an integrated tracking system or are combined with a tracking system 
(see Chap. 4) to continuously adjust the viewing direction and viewing position of 
the virtual camera according to the current position and orientation of the 
HMD. HMDs usually use binocular optics, so that the user can perceive the contents 
stereoscopically. A distinction is made between VR glasses, which isolate the user 
from the outside world and thus facilitate immersion in a virtual world, and AR 
glasses, which enrich the user’s real environment by adding virtual content.

5.3.1  VR Glasses

This section deals with HMDs for VR applications. Figure 5.6 shows typical con-
sumer VR glasses. VR glasses usually use a closed design so that the user is visually 
completely isolated from his environment, only allowing him to see the virtual 
world. The field of view here sometimes almost matches the natural visual field. 
This may result in complete immersion.

Consumer HMDs are often based on a simple magnifier design. Here, a simple 
magnifying optic is used for each eye, allowing the user to focus on the actual dis-
play (see Fig.  5.7). Depending on the individual design, a single display or two 
separate displays are used.

In a single display, the eyes see different areas of the same display, allowing 
stereo vision. In two separate displays, they are often slightly tilted towards each 
other to cover a larger field of view. Through the use of LCD or OLED displays, 
which are also used in smartphones, such displays now achieve high resolutions 
combined with high luminosity and reasonable prices.

Fig. 5.6 Typical representative of consumer VR glasses with integrated sensors for tracking (© 
TU Ilmenau 2019, all rights reserved)
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Low-cost versions do not have their own display. Instead, a smartphone is used 
as the display, which is inserted into an HMD rack. Cardboard displays (see Fig. 5.8) 
use only a holder made of cardboard in which two lenses are inserted for the optics.

In contrast, high-end systems may even use multiple displays per eye. See also 
Sect. 5.3.4. for such an approach. Besides the simple magnifying glass design, alter-
native designs exist. For example, prism-based VR glasses allow a very compact 
design because the prism optics significantly reduce the overall depth (see also 
Fig. 5.11). However, commercially available smartphone displays cannot be used 
for this purpose. Therefore, displays of this type are not very common for more 
recent HMDs.

Fig. 5.7 Simple magnifier principle as typical design of current VR glasses

Fig. 5.8 Simple Cardboard HMD using the magnifying glass principle
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The classical design of HMDs often used optics with mirrors. Here, a mirror and 
possibly an additional semi-transparent mirror were used to make the virtual con-
tent of the display visible to the eye.

5.3.2  AR Glasses

There are two basic approaches to glasses for Augmented Reality, or AR glasses for 
short: optical see-through displays (OST displays) and video see-through displays 
(VST displays). While the first type optically superimposes real and virtual images 
in the user’s view, the latter type uses video cameras to capture the environment and 
then superimpose it with virtual content during rendering (see Chap. 8). In the fol-
lowing sections, we will first take a closer look at OST displays and their construc-
tion methods, before we go on to discuss VST displays in more detail.

Optical AR Glasses
When we talk about AR glasses, we usually mean such OST displays. While the 
view of reality is always direct and thus immediate, the virtual contents are only 
optically superimposed. Thus, in contrast to VST displays, there are no limitations 
in terms of quality and resolution when viewing the real environment. As with VR 
glasses, a virtual image is generated by a display and enlarged by a lens. However, 
here it is projected into the user’s eye with the help of a beam splitter. A major prob-
lem is that the virtual image is projected at a fixed distance, which may differ from 
the distance of real-world content currently focused by the user.

A general problem of OST-HMDs is the insufficient background contrast ratio in 
bright environments. Due to the low luminance ratio of the display with respect to 
ambient light, virtual content is perceived only faintly, i.e., it appears increasingly 
transparent to reality. In practice, the transparency is reduced accordingly in bright 
environments to provide the required background contrast ratio for a given front 
luminance. The different superimposition methods usually lead to a significant 
reduction of the amount of incident light, so that the surrounding reality appears 
darkened to the observer. In comparison to viewing without a display, in some cases 
only about 25% of the light reaches the eye of the observer. This corresponds 
approximately to sunglasses with a medium protection factor (S2). Due to the low 
light intensity, most HMDs of this type are not, or are only partially, suitable for 
sunlight use, even if the transparency is reduced by means of appropriate filters. 
There are a large number of different designs of OST displays, the most important 
of which will be briefly explained in the following.

Waveguide Optics Glasses
Strictly speaking, this refers to a whole range of different approaches. These 
approaches have in common that the light is fed into a largely planar glass body, 
which acts as waveguide optics, and then travels through it as in a fiber optic cable 
by being reflected from the outside of the glass body. The decisive factor now is how 
the light enters the glass body (coupling-in) and how it exits it (coupling-out). 
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Special optical elements are used for this purpose. These result in the light being 
transmitted and radiated in a previously predefined direction. If the light is fed into 
the waveguide from the side, there is no need for corresponding elements for cou-
pling- in (see Fig. 5.9). The elements for coupling-out are arranged in such a way 
that the light leaves the waveguide at the appropriate point in the direction towards 
the eye. In this way HMDs are possible that look more like conventional glasses due 
to their flat optics. For a full color display, three layers of light guides must be 
arranged one above the other, since the individual color channels must be transmit-
ted separately due to the dependence of the refraction on the wavelength of the light. 
Holographic waveguides applying holographic optical elements (HOE) are among 
the best known representatives of this approach (see Fig.  5.9). By analogy with 
holograms, light beams impinging on the HOEs generate a secondary light beam in 
a predefined direction, while the ambient light passes through them without inter-
ference. Other approaches include diffractive, polarized, and reflective waveguides.

For AR displays like the Microsoft Hololens (see Fig. 5.10) or Hololens 2, the 
Meta 2 or the display from Daqri, waveguides are used. However, another, mostly 
curved glass is often used before the actual light guide for protection and shading.

Prism-Based Glasses
Prism-based glasses, which are also used for VR, enable a relatively high light out-
put with a more compact design when compared to other designs. For use as a see- 
through display, the prism is complemented by a glass body with parallel outer 
surfaces, so that the ambient light can pass through the glass without being refracted 
(see Fig. 5.11).

Fig. 5.9 Schematic principle of operation of an OST display based on waveguides (here applying 
holographic optical elements)
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The best known representative of this type of display so far has been Google 
Glass, although as a so-called SmartGlass it was not really suitable for AR applica-
tions due to its small field of view.

Mirror-Based Glasses
The use of semi-transparent mirrors has been the preferred design for OST displays 
for a long time. The content was displayed on an LCD or OLED display and was 
magnified by means of magnifying optics located directly beneath or above the 
display. The classic approach used to apply two semi-transparent mirrors, one 
mounted vertically at the front and a second mirror at a 45° angle right behind it 
towards the eye. Thus, the ambient light simply passed both mirrors, while the light 

Fig. 5.11 Schematic principle of a prism-based OST display consisting of two glass bodies. The 
complement is shown as a dashed line

Fig. 5.10 HMD with clearly visible waveguides for the individual color channels (see magnifica-
tion) (© TU Ilmenau 2019, all rights reserved)
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from the display was reflected by the diagonal mirror towards the front face, then 
reflected back towards the eye, passing the diagonal mirror (see Fig. 5.12). A sim-
pler approach would use just a single semi-transparent mirror (with the back mirror 
flipped by 90°). While this also allows for better light output, it requires stronger 
magnification, which typically results in less compact HMDs.

More recently, mirror-based approaches have regained popularity, as they enable 
the realization of a simple OST display using a smartphone. The smartphone is usu-
ally inserted vertically into a holder in the area in front of the user’s forehead. A 
mirror reflects the image downwards into the area in front of the eyes. Here, there is 
usually also an optical system in the form of one magnifying lens for each eye. 
There are also models without lenses, but as the eyes then have to focus on the 
smartphone display, they do not allow for a relaxed viewing position of the virtual 
image in space. In the area in front of the eyes there is a diagonally aligned semi- 
transparent mirror, which on the one hand reflects the image of the display towards 
the eyes and on the other hand allows a view of the environment. In cheap models a 
perspex panel is used for this purpose. There are also versions where the upper mir-
ror is omitted so that the smartphone is inserted horizontally. Similar models, but 
without a semi-transparent mirror, use the smartphone camera to realize VST AR 
glasses.

Retinal Glasses
Retinal HMDs do not have a display in the actual sense, since the content is pro-
jected directly onto the retina (see Fig. 5.13). This is also called a virtual display. 
This approach offers two major advantages: on the one hand, a complex optical 
system is avoided, and on the other hand, despite an extremely compact design, very 
large fields of view can be generated because no optics in front of the eye have to 
cover the displayed field of view. Modulated laser light is used as the light source, 
which is directed into the eye via a semitransparent mirror or prism. Until now, only 
monochromatic OST glasses of this type have been commercially available. For a 
full color display three separate lasers (RGB) would be necessary.

Fig. 5.12 Schematic structure of a classic mirror-based OST display
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An alternative design approach replaces the laser projector by an RGB light 
source and the mirror by a DLP (Digital Light Projector) microdisplay.

Video AR Glasses
Video AR glasses, more precisely Video See Through (VST) displays are basically 
HMDs as they are used for VR (see Sect. 5.3.1). This means that the user is com-
pletely isolated from the environment, at least when the device is completely closed. 
In contrast to their use for VR, however, a video image of reality is inserted in such 
a way that the user has the impression that she can look at the world around her 
through glasses. For this purpose one or two video cameras are attached to the HMD 
or are directly integrated into it (see Fig. 5.15).

Fig. 5.13 Schematic principle of a retinal virtual OST display (here with mirror)

Fig. 5.14 Optical principle of recent HMDs with integrated cameras. Since the cameras are 
mounted right in front of the eyes, their point of view is almost identical
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Since the human eye only sees the information projected by the display, the real 
and virtual content are always in the same focusing plane. Thus, those parts of the 
real world that are not in focus for the camera cannot be focused by the user either. 
Furthermore, the perception of the real world is in a reduced resolution and has 
limited dynamic range due to the camera as well as the display used, when com-
pared to the direct view by the human eye.

The captured video image is correctly inserted as a background image when 
rendering the scene. Basically, the field of view of the camera must be larger than 
that of the HMD used. In most cases, it is not possible to position the video cameras 
directly in the area of the beam path in front of the eyes. Therefore, when correcting 
the perspective of the camera image, translational and/or rotational offsets often 
have to be deducted in addition to the rectification and restriction of the viewing 
angle. Without this, the user will have difficulty in estimating distances, and propor-
tions correctly (at least temporarily until his visual system has adapted). HMDs in 
which the lens of the camera is positioned directly in front of the eye in the direction 
of vision, or the light rays arriving there are deflected into the camera, avoid this 
problem (see Figs. 5.14 and 5.16).

5.3.3  General Characteristics and Properties of HMDs

In this subsection some basic characteristics and properties of HMDs will be 
reviewed and discussed. Depending on the type of application planned, these can 
sometimes be decisive for the selection of an HMD to be used.

As already introduced in Sect. 5.3.1 the basic optical principle of VR glasses is 
that of a magnifying glass. Let us have closer look at its general characterics accord-
ing to Melzer and Moffitt (1997). The display, which the user looks at through the 
lens, is positioned at the distance of the focal length to the lens (see Fig. 5.17).

Fig. 5.15 Example of an 
HMD with integrated 
cameras
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Pupil Forming Vs. Non-pupil Forming HMDs
On the optical side, there are two basic approaches to realize an HMD. On the one 
hand, non-pupil forming HMDs are used, which are based on the principle of a 
simple magnifying glass. On the other hand, we have pupil forming HMDs, which 
are based on a projection (Cakmakci and Rolland 2006). An important parameter, 
which refers to the use of the HMD and is specified for non-pupil forming HMDs, 
is the so-called eye motion box (sometimes also called the head motion box or just 
eyebox) in its vertical and horizontal dimensions. This is the size of the optical 
opening of the HMD on the eye side. The larger the eye motion box, the further the 
position of the HMD can be shifted in relation to the user’s eye without restricting 
the visibility of the virtually projected image. In pupil forming systems, however, a 
diameter is specified at the optical output of the HMD within which the viewer can 
see the virtual image. This parameter is called the exit pupil. In contrast to the eye 
motion box, this diameter remains constant regardless of the distance between the 
user’s eye and the HMD optics.

Field of View (FoV)
Based on the optics shown in Fig. 5.17, the field of view can be calculated for the 
horizontal, vertical and diagonal by eq. 5.1, where F represents the focal length of 
the lens and S is the size of the display horizontally, vertically or diagonally, 
respectively.
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Theoretically, the FoV calculated according to eq. 5.1 is independent of the 
diameter of the lens D. In practice, however, there is the problem that at a higher 
distance between the eye and the magnifying lens (the so-called eye relief L) not all 
light rays of the display can reach the eye via the lens. In this case, for technical 

Fig. 5.16 Schematic principle of a prism-based video see-through display with cameras for 
recording in the viewing direction

W. Broll et al.



165

reasons, the lens diameter and the eye relief according to eq. 5.2 determine the 
maximum possible field of view.
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Eq. 5.2 is valid for D < L (S/F). HMDs, which optically follow the simple mag-
nifying principle, have an eye motion box E instead of an exit pupil. The size of the 
eye motion box for the horizontal, vertical and diagonal direction can be determined 
according to Eq. 5.3 (Melzer and Moffitt 1997).
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Accomodation Distance
The accommodation distance indicates the distance from the user’s eye at which the 
virtual image appears. Most optical see-through HMDs have a virtual image at 
infinity. For a simple HMD using the magnifying glass principle, the relation 
between the lens position and the distance of the virtual image Dvirt can be described 
by eq. 5.4:
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Here the parameter d is the distance between the lens and the display. If the dis-
play is within the focal length of the lens, as shown in Fig. 5.18, the denominator in 

Fig. 5.17 Optical principle of VR glasses, where F represents the focal length, S the size of the 
display, D the diameter of the lens, E the eye motion box and L the eye relief
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eq. 5.4 becomes zero and the virtual image is at infinity. If d is smaller than F, the 
virtual image is projected enlarged. This means that the projection is larger than the 
illuminated area of the display. If d is larger than F, the virtual image is projected 
scaled down.

Interpupilary Distance (IPD)
The interpupillary distance (IPD) is the distance between the two eyes of an observer. 
It is usually measured from pupil to pupil and in the range of 6 to 8 cm for an adult. 
Many, though not all, HMDs allow the eye distance to be adjusted to suit the indi-
vidual user. Otherwise, especially in combination with a small eye motion box, 
parts of the displayed image may be cut off. The eye distance also has a direct influ-
ence on the perception of sizes and distances of the virtual content (see Chap. 2).

Monocular vs. binocular HMDs.
With HMDs, one can basically distinguish between monocular and binocular vari-
ants. Monocular HMDs have only one display with associated optics for one eye, 
while the other eye usually remains free. While this can be useful for certain AR 
applications, it drastically reduces immersion in VR. Binocular HMDs have sepa-
rate optics for each eye, allowing different content to be viewed. Only this enables 
stereoscopic perception and thus a spatial impression. In contrast to binocular dis-
plays, there are also biocular displays in which both eyes look at the same image 
through separate optics. However, this does not allow stereoscopic perception. If 
both eyes look at different areas of one and the same display via separate optics 
(e.g., in smartphone-based HMDs), they usually see different images nevertheless.

Fig. 5.18 Field of view of an HMD compared to the user’s visual field when using binocular 
AR-glasses in a closed design
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Open Vs. Closed HMDs
The design of an HMD also affects the perception of the virtual environment (for 
VR) or the augmented environment (for AR). Basically, one can distinguish between 
open and closed designs of HMDs. While the closed design limits the visual field of 
the observer to the field of view of the HMD, the open design allows unrestricted 
perception of the environment outside the display. Figure 5.18 illustrates an HMD 
of closed design using OST AR-glasses as an example.

The illustration clearly shows how much the visual field of the observer is 
restricted by the field of view of the HMD. Stereoscopic vision is only possible in 
the area where the fields of view of the display for left and right eyes overlap. This 
is called the stereoscopic or binocular field of view. Its size in VR glasses depends 
on the distance at which the display appears to the viewer due to the optics. It can 
therefore vary between 0 and 100% of the individual fields of view.

Small fields of view are problematic for several reasons. With VR glasses as well 
as with closed AR glasses they lead to tunnel vision and thus to increased cybersick-
ness due to the lack of peripheral perception. An additional complication is that 
closed AR-glasses shield the viewer from the perception of a large part of his real 
environment. This is particularly problematic when used in unprotected areas (such 
as mostly outdoors), since the perception of stairs, cars, bicyclists, etc. occurs much 
later than normal.

Monocular HMDs, i.e., those that only superimpose the vision of one eye, allow 
an unrestricted view of the surroundings, at least with the other eye. In the field of 
working environments and military application scenarios, such designs (see 
Fig. 5.19) are therefore strongly represented, whereby a largely open design is usu-
ally used here, so that only the display mounting causes a certain restriction of the 
visual field.

Fig. 5.19 Field of view and visual field for a monocular display (right) in a closed design
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HMDs in an open design enable users to directly perceive the environment out-
side the HMD’s field of view. Thus, the peripheral vision of the user is not restricted, 
although virtual content remains limited to the area of the HMD’s field of view (see 
Fig. 5.20). With open AR glasses, it can be disturbing that the area covered by the 
HMD usually appears significantly darker than the part that is not covered. 
Furthermore, the limited field of view in comparison to the field of vision causes the 
problem that virtual objects leaving the field of view of the AR glasses, are only 
partially displayed at its edges, while the real background remains continuously vis-
ible (cf. Figure 5.21). This effect immediately destroys the viewer’s impression of a 
correct registration of the corresponding virtual object in the real world (see frame 
cancellation, Chap. 2).

Contrast Ratio
As we have previously learned, the dynamic range or contrast ratio CR is the ratio 
between the brightest and darkest representation. For VR glasses, this is the ratio 
between the luminance of a maximally bright pixel and a completely dark pixel:

 
CR

L

L
= max

min  
(5.5)

For OST-AR glasses (see Sect. 5.3.2), however, the contrast ratio between the 
luminance of the display (the so-called front luminance) and the background of the 
real environment is of particular interest. The contrast ratio of the background CRback 
is thus the ratio of the front luminance Lfront minus the background luminance Lback 
to the background luminance:

Fig. 5.20 Fields of vision of a binocular HMD with an open design
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When using OST-AR glasses outdoors, especially in bright sunshine (e.g., on an 
unclouded day), the brightness of the projected image must be correspondingly high 
so that the virtual content stands out sufficiently from the background (see also Sect. 
8.1.2). Indoors, on the other hand, for example, AR-supported assembly work in a 
factory building, a significantly lower front luminance may be sufficient to provide 
the same contrast ratio with respect to the surroundings. With OST-AR glasses, the 
see-through transparency Tsee-through indicates how bright the user can perceive the 
real environment or by how much the brightness of the environment is reduced by 
the HMD, similar to sunglasses.

Distortion
Due to the highly distorting simple magnifying optics used especially in recent 
consumer VR glasses, the displayed images must be pre-processed (see Fig. 5.22). 
This is done by applying an appropriately parameterized equirectangular function to 
the images with the aim of providing the user with an undistorted image after being 
distorted by the lens. For this purpose, manufacturers often provide corresponding 
distortion maps.

Fig. 5.21 Problems with the display of virtual objects at the boundaries of the field of view with 
an open design
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In order to be able to judge the image quality of the virtually projected image, the 
horizontal, vertical and diagonal distortions of the virtual image in relation to the 
original image are compared. Distortions occur if the virtual image does not have 
the same projection scale in every area. Distortions become noticeable, for example, 
when the virtual image has the outer shape of a cushion.

5.3.4  Special HMDs

Eye Tracking for VR and AR Glasses
With the availability of VR glasses for the consumer sector, a need to capture where 
the user is looking in virtual worlds quickly arose. This information can be used for 
investigations of user behavior in user tests as well as for the fixation of virtual 
objects for selection and manipulation. A further application area is Foveated 
Rendering (see Sect. 7.1.4), in which different display areas are shown in different 
detail depending on the retinal area on which they are perceived. While a rigid divi-
sion of the field of view can lead to disturbing effects when focusing on peripheral 
areas, in combination with eye-tracking it can be ensured that the rendering always 
takes place in the center of the current viewing direction at the highest quality.

On the one hand, various commercial eye-tracking systems are now available for 
direct installation in consumer VR glasses. On the other hand, HMDs are increas-
ingly being delivered directly with integrated eye-tracking for user interaction. 
Examples are the Hololens 2, the Magic Leap One (see Fig. 5.23) or the HTC Vive 
Pro Eye. Commercial systems are usually based on the fact that for each eye several 
infrared LEDs are arranged mostly in a ring around the HMD’s optics. The positions 
of the reflections of the LEDs are then recorded by a camera, which is also mounted 
directly next to the HMD’s optics. Based on the points identified in the camera 
image, the direction of vision of the eye can then be calculated (see also Sect. 4.5.5).

Fig. 5.22 Display of the two partial images for the left and right eyes of the viewer (left without, 
right with perspective predistortion for HMD)
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Multi-Display Glasses
Some high-end systems, like the Varjo glasses, combine multiple displays to achieve 
very high perceived resolutions (Lang, 2018). The basic idea is to combine a regu-
lar, large field-of-view display with a much smaller foveal display that only covers 
the center of the field-of-view (the fovea). The approach extends Foveated Rendering 
to the usage of high-res foveal displays. The perceived quality is significantly better 
than one display systems, but the additional effort in design and production results 
in significantly higher prices. One approach to realize this is the application of a 
semi-transparent mirror in combination with eye-tracking (see Fig. 5.24).

Adaptive HMDs
All currently commercially available HMDs have the problem that due to static 
optical elements the virtual image always has a fixed distance to the eyes of the user. 
However, the distances of the real objects the user is looking at vary. Since the 
human eye cannot focus on different distances at the same time, one of them is usu-
ally out of focus. One possible solution is an adaptive HMD (Herold et al. 2015). 
Such adaptive HMDs are based on a liquid lens, which makes it possible to adjust 
the focal length and thus also the distance of the virtual image to the user.

Fig. 5.23 Optical 
see-through AR glasses 
with integrated eye 
tracking (© W. Broll, all 
rights reserved)
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Fig. 5.24 Multi-display system supporting foveated rendering
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5.4  Stationary VR Systems

Stationary VR systems use one or more mostly vertically oriented (i.e., standing 
upright) displays (projection screens or large monitors) for visual output. Depending 
on the type of system, alternatively or additionally horizontally oriented projection 
surfaces or monitors or even spherical projection surfaces are used. The output is 
usually stereoscopic. For the correct calculation of perspective, the user’s head is 
usually tracked. The necessity is easily recognized by the following example: if the 
user bends to the right or left to look past a virtually represented column, the virtual 
world must be displayed accordingly. This requires an individual calculation of the 
images shown on the displays from the user’s perspective. This is also the reason 
why even stationary VR systems are still single-user systems almost without excep-
tion (and despite the fact that they are often used by several users in parallel). The 
one exception is new systems that use extremely high-speed projectors that can 
display a sufficient number of images per second (a typical example would be 360 
fps) to display separate stereo pairs for multiple users.

In principle, AR systems can also be stationary. In particular, spatial AR systems 
such as projection-based AR are usually stationary. While most of the technical 
aspects discussed here also apply to them, they are dealt with in Sect. 8.4.

5.4.1  Single-Sided Displays

Many stationary VR systems are simple single-sided displays, i.e., a single projec-
tion surface as large as possible is used on which the virtual world is displayed ste-
reoscopically. In the simplest case this can also be just a large monitor.

It is crucial for a high level of user immersion that the display’s field of view 
covers as much of the user’s visual field as possible. The larger the field of view 
(FOV), the less often a virtual object from the user’s perspective will reach the edge 
of the display, destroying the spatial (stereoscopic) impression by frame cancella-
tion (see Sect. 2.4.3). This means that the smaller a display area is, the closer the 
user has to be in front of it, or the larger the display area, the further away the user 
can be (cf. Figure 5.25).

Vertical and Horizontal Displays
Single-sided displays are usually oriented vertically (upright) so that the user(s) can 
stand or sit in front of the display, comparable to a 3D cinema. Depending on the 
application, however, horizontal (lying/tabletop/floor) displays are also useful (as 
an example see Responsive Workbench; Krüger and Fröhlich (1994)). In tabletop 
systems, virtual objects usually appear to lie on the table or hover above it. Users 
have to stand very close to the display to avoid frame cancellation.

Both single-sided vertically and horizontally arranged displays can be used to view 
virtual content with multiple users at the same time (see Fig. 5.26). Usually, however, 
a perspective correct stereo view is only generated for one user. All other users see 
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virtual content stereoscopically, but in a different position. For an interaction with 
virtual objects in particular, perspective correct stereo presentation is essential.

Front and Rear Projections
If no monitors but projection systems are used for a display, the projector can basi-
cally illuminate the projection surface (screen) from the user’s side or from the side 
opposite to the user. If the projection is made from the same side from which the 

Fig. 5.25 Dependence of the field of view on the size and distance of the display or projec-
tion surface

Fig. 5.26 Vertically and horizontally arranged single-sided displays and projections
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user looks at the projection surface, this is called front projection. If, on the other 
hand, the projection is made from the opposite side, i.e., the rear side, it is called 
rear projection. With front projections, the user must maintain sufficient distance 
from the projection surface to avoid obstructing the beam path of the projector. The 
shadows cast on the projection surface can also lead to frame cancellation.

However, if the user has to maintain a greater distance from the display, this inevi-
tably leads to a restriction of her interaction space (see Fig. 5.27) and at the same time 
increases the risk of frame cancellation. With rear projection systems, these disadvan-
tages are generally avoided, but a correspondingly larger space is required for the 
beam path of the projector behind the projection surface. Furthermore, specific, usu-
ally more costly, canvases must be used for rear projection. By employing mirrors in 
combination with ultra wide angle projector lenses or ultra short throw (UST) projec-
tors, the space required for both front and rear projections can be significantly 
reduced, whereby front projections also benefit from an increased interaction space.

5.4.2  Multi-Sided Displays

With a single flat display, it is difficult if not impossible to achieve complete cover-
age of the user’s visual field by the field of view and thus a high degree of immer-
sion. Accordingly, there are numerous approaches that combine several display 
surfaces or realize curved display surfaces. Well-known representatives of the first 
group are so-called CAVEs (Cave Automatic Virtual Environments) and L-Shapes; 
the second group particularly includes spherical displays.

Fig. 5.27 While front projections limit the interaction space of the user, rear projections require 
considerably more space. Usage of mirrors or ultra short throw projectors can significantly reduce 
space requirements
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L-Shapes
An L-shape uses two displays. One display is usually mounted vertically, while the 
second display is usually placed horizontally and has an edge directly adjacent to 
the first display (in side view, the two displays placed next to each other thus resem-
ble the letter L; hence the name). L-Shapes offer the great advantage over single- 
sided displays, especially in stereoscopic presentation, that the volume for displaying 
virtual content is significantly larger. Thus, virtual objects can be displayed up to the 
immediate vicinity of the user, e.g., for hand-based interactions. Frame cancella-
tion, which often occurs in the lower part of a vertically arranged display in single- 
sided displays, is thus effectively prevented by the second horizontally arranged 
display (see Fig. 5.28). Similarly, in the case of primarily horizontal displays (e.g., 
Responsive Workbench; Krüger and Fröhlich (1994)), a second vertically arranged 
display prevents frame cancellation when viewing virtual objects close to the oppo-
site side of the horizontal display.

For larger L-shapes it may be necessary for the user to stand on the horizontal 
display. If this is a monitor or panel, the challenge is that the display must not only 
have sufficient optical properties but also sufficient static stability to reliably sup-
port one or even several users.

Spherical Displays
Spherical displays or curved screens (also known as dome projection when covering 
360°) consist of a curved screen on which the image is usually displayed with the 
aid of several projectors (see Fig. 5.29). The projection surface has the shape of a 
sphere, a cylinder or a cone, or a cutout of these basic shapes. The projector image 
must be distorted according to the shape of the projection surface. If several projec-
tors are used (see also the next section on tiled displays), their images cannot be 
projected without any overlapping. The overlapping image areas must therefore 
always be adjusted accordingly, i.e., masked by software or physical barriers, mak-
ing these transitions appear seamless to the user.

Cave
A CAVE (Cave Automatic Virtual Environment) is a cube-shaped arrangement of 
displays with the user standing inside the cube (Cruz-Neira et al. 1992). Figures 5.2 
and 5.29 show two installations of CAVE-like displays. Depending on how many 
sides of the cube are designed as displays, we speak of three- to six-sided CAVEs. 

Fig. 5.28 L-shapes expand the working space available for stereo vision and reduce frame 
cancellation
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In a six-sided CAVE the user is completely surrounded by the virtual world. In this 
case, only rear projections can be used, which not only requires a sufficiently large 
space behind each of the projection surfaces, but also, due to the ceiling and floor 
projections, equally large space above and below the CAVE (see Fig. 5.30). If a 
projection from above is used for the floor, this first implies that a ceiling projection 
is no longer possible and second that the users are right in the beam path of the 
projector. However, such floor shadows are often perceived as less disturbing, since 
users are used to casting a shadow on the floor in reality. Also, stereoscopic repre-
sentation is sometimes omitted for floor projection. For stereoscopic representation, 
CAVEs mostly use active methods, i.e., shutter glasses (see Sect. 5.4.4). Case study 
9.7 describes some of the challenges involved in the construction of a CAVE.

An advantage of a CAVE is that the user can move around in it as in reality (at 
least within the limits given by the surrounding projection surfaces). Another advan-
tage of the CAVE compared to VR glasses is the self-perception of the user’s own 
body. A fundamental problem of CAVEs is that the representation can generally 
only be calculated correctly only for the position of a single user based on their 
point of view. For all other users inside a CAVE, this results in a disturbing offset at 
the boundaries between the projection surfaces (i.e., the edges of the cube). In the 
best case, this will only lead to frame cancellation if parts of a virtual object extend 
over several projection surfaces. For many of these users, however, this increases 
the probability of developing symptoms of cybersickness (see also Sect. 2.4.7). One 
way to overcome this limitation is to use high-framerate projectors and custom ste-
reo glasses (see also Sect. 5.4.4). In this configuration the projectors can display 
enough images for multiple (typically two or three) users to provide each user with 
their own pair of stereo images, in combination with tracking everybody’s head 

Fig. 5.29 Example of a curved screen projection. (© Fraunhofer IFF 2013. All rights reserved)
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resulting in the correct depth perception for each user. As of today, no CAVEs using 
these projectors have been built, but several are under construction.

5.4.3  Tiled Displays

Stationary VR systems often use displays that are as large as possible. The reasons 
for this are on the one hand that a large display offers a larger field of view at the 
same distance from the user and thus results in higher immersion, while on the other 
hand a larger number of users are able to use such a system at the same time. Since 
the resolution and brightness of projectors as well as the resolution and size of 
monitors cannot be increased at will, the size that can be achieved with a single 
display of a certain quality are limited.

To increase the resolution or to realize large projection and monitor surfaces with 
high resolution and/or high luminous intensity, a division into several displays (i.e., 

Fig. 5.30 Layout of a six-sided CAVE
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several projection systems or monitors) appears reasonable. We refer to this as tiled 
displays.

The main idea here is to combine several display systems in such a way that the 
user perceives them as a single, larger system. The idea as such is not new and has 
been used for a long time in military flight simulators (here to completely cover a 
dome projection) or for so-called video walls. With this approach, the limitations of 
a single display can be bypassed to achieve larger sizes and/or higher resolutions.

As the number of individual tiles usually quickly exceeds the number of outputs 
of a graphics card, tiled display systems usually use a cluster of computers to calcu-
late the output images. Generally, the fewer tiles a computer has to serve, the higher 
the performance can be. Conversely, the synchronization effort increases with the 
number of computers used.

Tiled displays can occur with both projection systems and monitors. Both 
approaches are presented in more detail in the following. Also, tiled displays always 
have to be calibrated to create the impression of a single display surface. Basic cali-
bration methods for geometric calibration and for achieving brightness and color 
uniformity are therefore also briefly discussed in the following sections. Various 
approaches to specific setups exist, e.g., Bajestani (2019) and Okatani and 
Deguchi (2009).

Tiled Projections
Figure 5.31 shows the C6, a six-sided CAVE built at Iowa State University in 2006 
using tiled projections. It was built using 24 projectors with 4096 × 2160 pixels 
each. A 2 × 2 raster per side with two projectors per tile is used for the stereo dis-
play, which combined can display a stereo image with over 100 million pixels. Each 

Fig. 5.31 CAVE C6 at the Iowa State University
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individual pixel is only 0.7 mm in size, a size that is close to the resolution of the 
human eye at typical viewing distances of 1–5 m.

Instead of fewer very high-resolution and light-intensive projectors, smaller tiles 
can be used with a correspondingly higher number of projectors, but with lower 
resolution and light intensity. An early example of such an approach was the 
HEyeWall shown in Fig.  5.32, a system with 48 standard projectors installed at 
Fraunhofer IGD in Darmstadt in 2003. Figure  5.33 shows the view behind the 
screen so that the arrangement of the projectors is visible as a 6 × 4 grid with two 
projectors per tile.

Tiled Monitors
Tiled displays consisting of monitors can also be used to realize large display areas 
with a high resolution. Compared to projectors, monitors have a significantly lower 
price per pixel and, due to their small installation depth, allow high-resolution sys-
tems, even if there is significantly less space available. Figure 5.34 shows the Reality 
Deck at Stony Brook University, which was built in 2012. The system used 416 
standard monitors, each with 2560 × 1440 pixels, so together the whole system can 
display 1.5 billion pixels simultaneously. As shown by the figure, it is important that 
the individual monitors have a seamless display. Otherwise, the impression is 
quickly created that the user is looking through a grid at the virtual world. With 
stereoscopic displays, a gap between the monitors, which is clearly perceived by the 
user, very quickly results in frame cancellation. Tiled monitors are suitable for 
single- sided display surfaces as well as for CAVEs, L-shapes and cylindrical spheri-
cal VR systems.

The tile approach is very well suited to overcoming the limitations of individual 
display systems in terms of resolution, brightness or price. But while the basic idea 

Fig. 5.32 Tiled wall using the example of the HEyeWall with 48 projectors. (© Fraunhofer IGD 
2013, all rights reserved)
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Fig. 5.33 HEyeWall setup. (© Fraunhofer IGD 2013, all rights reserved)

Fig. 5.34 Tiled wall of monitors illustrated by the Reality Deck at Stony Brook University
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is very simple, the details require a lot of effort. As a result, the use of tile systems 
for high-quality applications is either limited or relatively costly. In particular, the 
calibration of the different display tiles in terms of geometric alignment as well as 
homogeneity and color representation can very quickly become a significant time 
and cost factor that is quickly overlooked, or at least underestimated. However, if 
the method is applied correctly and carefully, extremely impressive display systems 
can be developed, showing where the journey into virtual worlds may lead.

Geometric Calibration
As soon as several individual displays are to be tiled, geometric consistency is no 
longer automatically given. A horizontal line that is one pixel wide and runs across 
all display tiles is not automatically at the same height on each tile. This continuity 
must be explicitly established.

Under favorable conditions the geometric calibration can be solved purely 
mechanically. For this purpose, a fixture is used that allows exact mechanical posi-
tioning and orientation of the individual display tiles. This requires accuracies in the 
sub-millimeter range, corresponding to the pixel sizes for high-resolution displays. 
Obtaining this mechanical accuracy over a large display such as a HEyeWall is a 
considerable amount of work, which can cancel out a significant part of the price 
advantage due to installation costs.

This task is further complicated by the inherent assumption that the display tile 
is geometrically correct in itself. In a conference room it is virtually impossible to 
see whether the center of the projection is a few pixels higher or lower than the 
edges, or whether the left edge is a few millimeters larger than the right edge. When 
several projections are put together, such inaccuracies quickly become obvious. A 
purely geometric-mechanical calibration cannot always correct such errors, since 
many variables, such as image border size, squareness and line straightness, depend 
on each other and cannot be changed independently.

This is especially important if the projection is to be made on an uneven surface 
(e.g., for spherical displays). A mechanical correction is no longer possible here. 
The alternative is a correction in the image creation software. There are different 
approaches possible. The most common is the texture distortion method, in which 
the image to be displayed is first rendered into a texture and this texture is then dis-
played on a grid that corrects the geometric inaccuracies of the display. This method 
is extremely flexible and can correct a wide range of geometric problems. However, 
it also has some disadvantages. First, the correction must be done within the image 
creation software, i.e., only software that has knowledge about the display can be 
used. On the other hand, it involves a (slightly) increased rendering effort, since the 
image must first be rendered into a texture and then displayed. In many modern 
systems, however, this is done anyway to produce high-quality images (e.g., in High 
Dynamic Range Rendering), which is even possible without reducing the refresh 
rate. Due to the fact that the image is displayed using a texture, however, texture 
filtering must also be performed, which may result in a certain degree of inaccuracy 
and image blur.
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The biggest challenge, however, is to create an appropriate correction grid. For 
small systems this can be done manually (and especially in flight simulators this is 
not uncommon). For larger systems, however, the effort quickly becomes unreason-
ably high. In such cases, image processing methods that automatically generate 
corresponding correction grids from test images can help. Nevertheless, this is not a 
trivial problem and corresponding calibration systems are a price factor that (again) 
should not be underestimated.

After all these steps the system is now geometrically correct. Straight lines are 
straight, objects of the same size on all tiles are the same size, etc. Nevertheless, 
there remain other problems that have to be solved to get a uniform display.

Brightness and Color Uniformity
Besides geometrical problems, projectors also have problems with the uniformity of 
their brightness distribution. These stem from the geometric properties of the light 
source-lens-screen system, such as vignetting, where the image becomes darker 
towards the edges. With a single projector, this effect is much less noticeable, since 
there is no comparison image past the edge of the screen. However, if several tiles 
are arranged next to each other, the bright-dark-bright transition becomes much 
more visible. Vignetting is only caused by the projector and lens: it is independent 
of the viewer’s point of view.

Vignetting already occurs with a single projector. When several projectors are 
used together, production variations in the projectors and especially in the lamps are 
added. Two identical projectors placed next to each other with the same settings do 
not necessarily have to be equally bright (and they usually are not). To achieve the 
impression of uniform brightness, each projector must therefore be individually 
adjusted. While this is possible using the naked eye, it will not give very accurate 
results, because the eye can adapt very quickly to different brightness levels. Good 
results can only be achieved with special light meters.

Another brightness effect comes from the properties of the canvas. Most screens 
for projections are not perfectly diffuse, i.e., light coming from behind is not emit-
ted uniformly in all directions (see Fig. 5.35). Almost all commercially used screens 
have a gain factor that ensures that more light is emitted to the front than to the sides.

Since the viewer of a normal projection practically never looks very oblique 
from the side, this arrangement makes sense, because more light reaches the viewer. 
In the case of tiled projections, however, this ensures that in the transition area 
between two tiles there are very clear differences in brightness, even if both projec-
tors emit exactly the same amount of light. In Fig. 5.35, the viewer looks directly 
into the left projector and therefore sees an area of the screen with high gain. The 
area of the right projector is seen at a much larger angle and therefore in an area of 
the canvas with low gain. Thus, at the point where the projection areas meet, a clear 
difference in brightness becomes visible. To make matters worse, this difference is 
dependent on the angle of viewing: when the viewer moves in front of the screen, 
one area becomes brighter while the other becomes darker. This makes a uniform 
image impression practically impossible, the only solution is to use extremely dif-
fuse canvases, which then result in a rather dark projection.
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The transition area between tiles is also critical for another aspect, that of over-
lapping. There are two alternatives for creating the transition between two tiles: 
either without overlap (hard edge) or with overlap (soft edge or blending). With hard 
edge, the projectors are arranged in such a way that the transition from one projector 
to the next is hard: the last pixel of one projector is immediately followed by the first 
pixel of the other projector. To make this possible, all components of the system 
(projectors, projector mounts, canvas, etc.) must be extremely stable. Even the 
slightest movement in the sub-millimeter range can cause a gap to appear between 
the two projections, which is clearly visible as a black line, or the projectors can 
overlap and the result can be seen as a bright line in the image. The HEyeWall 
(Figs. 5.32 and 5.33) was a hard edge system, so special attention had to be paid to 
the stability of the screen. For this purpose, precisely adjustable baffles were 
installed, which made it possible to avoid overlapping.

The alternative is to allow overlapping of the projection areas. This creates an 
area where both projectors beam onto the canvas. To prevent this area from appear-
ing artificially brighter, the displayed image must be adjusted so that one projector 
is increasingly faded in and the other is faded out in the overlap area. This adjust-
ment is usually achieved by a blend mask that is placed over the image after the 
rendering process. The C6 is a soft-edge system in which the two projectors per side 
overlap by approximately 220 pixels.

Fig. 5.35 Brightness discrepancy in the transition area between the images of two projectors due 
to non-diffuse projection canvas
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The overlap prevents the formation of gaps when the canvas is deformed or 
moved, and reduces the gain problem. In the transition area, the user no longer sees 
only the image of a single projector, as the projector images merge seamlessly. The 
main problem with overlap is when dark images or backgrounds are displayed. 
Modern LCD or DLP projectors cannot display true black because they rely on fil-
ters that attenuate the light from the lamp. These filters are never perfect, so a certain 
amount of residual light always penetrates. In the overlapping areas a double (at the 
inner corners a quadruple) residual light is therefore visible. As long as only bright 
images are displayed, this can be masked, but as soon as darker areas appear at the 
edges/corners, the overlapping and thus the tiling becomes clearly visible, which 
considerably disturbs a uniform image impression.

While brightness is only a one-dimensional problem, color uniformity requires 
three dimensions to be matched. This is already apparent within a single projector. 
LCD projectors in particular often show significant color differences between dif-
ferent areas of an image. If color differences already occur within an image, it is not 
surprising that massive color differences often occur between several projectors. To 
achieve a high quality result, these differences must be compensated. This is a much 
more complex process than brightness calibration and is practically impossible to 
do effectively manually.

5.4.4  Stereo Output Methods

To support stereoscopic vision (see Sect. 2.2.1) with the goal of making a virtual 
world stereoscopically experienceable for the user, each eye of a user must be pro-
vided with an individual view. While in binocular HMDs this is done by separate 
optics for each eye, in monitors or projection systems both eyes basically see the 
same display. Therefore, additional methods for channel separation between the left 
and right eyes have to be applied. The individual methods used for this purpose are 
therefore briefly presented below, whereby individual advantages and disadvan-
tages in each case will be highlighted.

Anaglyphs
Anaglyphs are an approach to stereo imaging in which the two partial images are 
colored differently for the left and right eye – in the original approach, one in red, 
the other in green. Both images are then combined into one image by superimposi-
tion. Red-green glasses are used for viewing. Here, a red filter is placed in front of 
one eye and a green filter in front of the other, so that each eye only sees its respec-
tive partial image. The two colored partial images complement each other to form a 
stereoscopic grayscale image. For the observation of a usually colored virtual world 
the approach is therefore not suitable in this original form.

However, the approach can be extended to color image pairs. In this case, red- 
cyan glasses are usually used instead of the red-green glasses mentioned above. In 
a display or projection, each individual pixel usually consists of one red, green and 
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blue subpixel (RGB). For the color anaglyph process, the two images are now 
divided according to their subpixel assignment (see Fig. 5.36). For one image, only 
the red channel is used, while the green and blue channels (green + blue = cyan) are 
used for the other image. The problem is that objects whose color values are only 
displayed in one subframe cannot be perceived stereoscopically (see also Fig. 5.36). 
The problem of a unilateral representation can be reduced by a suitable color selec-
tion of the objects.

The division does not necessarily have to be along the subpixel boundaries, but a 
color image can be divided along any complementary colors (e.g., yellow/blue or 
green/magenta). Of course, the corresponding color filters must then be available 
for the glasses (see Fig. 5.37). To calculate the partial images, the RGB color value 
is linked to the respective filter color by a bitwise AND operation with each pixel of 
the corresponding image.

Polarization
Polarization is a widely used approach to realize stereo vision using channel separa-
tion. The method is used in the majority of 3D cinemas. The approach uses the 
characteristic of light waves to oscillate in different directions. Polarization filters 
allow only light waves with a certain oscillation direction to pass through. In 

Fig. 5.36 Distribution of pixels along the RGB subpixels (left) and color anaglyph display of a 3D 
scene with red-cyan channel separation. The problem with this approach can be seen in the dark 
blue table legs, which are only present in the left subframe. (© Rolf Kruse, FH Erfurt 2019, all 
rights reserved)
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general, there is a distinction between systems that use linear polarization filters and 
those that use circular polarization filters.

For channel separation, typically two projectors (or possibly one projector with 
two lenses) are required per screen. A polarizing filter is mounted in front of each 
lens, whereby these are rotated 90° to each other. Thus, one polarizing filter, for 
example, only allows the horizontally oscillating part of the light to pass, while the 
second only allows the vertically oscillating part to pass. Since the two partial 
images overlap on the projection surface, they are perceived simultaneously by the 
viewer. Polarization glasses are now used to separate the channels of the images for 
the left and right eyes. Here, the two polarizing filters in front of the eyes are aligned 
in the same way as those on the lenses. If the polarization axes are exactly the same, 
each eye only sees the corresponding partial image, enabling stereo vision (see 
Fig. 5.38).

Due to this approach, however, the procedure is very susceptible to crosstalk. If 
the user tilts the head just a little to the side, the polarization axis changes and a 
ghosting of the other channel results. Instead of a horizontal and vertical alignment, 
combinations of 45°/135° are often used, which, however, has no advantage with 
regard to the problems described above.

The use of circular polarization filters solves this problem. Here, a distinction is 
made between left- and right-turning light waves. This is not influenced by the head 

Fig. 5.37 Superimposition of partial images and channel separation by means of color filters for 
the anaglyph method
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tilt, so that crosstalk can be avoided as far as possible. However, circular polariza-
tion filters are much more expensive. Therefore, only linear polarization filters are 
used for “disposable” (cardboard) glasses. A further disadvantage of polarization- 
based approaches is that the projection surface must retain the polarization. This is 
only the case with high-quality metal-coated screens, which limits their use and, 
like the requirement for two projectors per projection surface, increases the costs 
even further. Since polarization filters generally filter out at least half of the light, 
only 50% of the light from a projector reaches each eye.

Wavelength Multiplex
The wavelength multiplex method, also known as interference filter method, uses 
dielectric interference filters for channel separation. Each filter is based on several 
coupled resonators, which filter out three very narrow frequency ranges in the three 
primary colors red, green and blue (see Fig. 5.39).

By mixing the respective primary colors, full color images can be created. By 
using different frequencies for the three primary colors, the superimposed partial 
images can then be separated again into two channels, i.e., one for each eye. Similar 
to a polarization-based channel separation, a filter pair is used for each of the two 
projectors (or a projector with two lenses) and an identical filter pair for one pair of 
glasses. In contrast to polarization methods, the wavelength multiplexing method 
does not require any special characteristics of the projection surfaces. A further 
advantage is the low susceptibility to crosstalk. A disadvantage is the color shift 

Fig. 5.38 Superimposition of the partial images and channel separation by means of linear polar-
ization filters
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between the image for the left and right eyes due to the three different primary col-
ors. To avoid this, the color of the images to be output can be adjusted so that they 
lie exclusively within the range that can be displayed with both primary color triples 
(see Fig. 5.40).

However, this further limits the total color space available. The wavelength mul-
tiplexing method also allows the independent display of more than two channels. In 
this case, there are always two channels used for each user, which allows n users to 
see a stereo image correctly calculated for their individual point of view. For these 
n users, 2 × n different basic color triples are required and thus a corresponding 
number of filter types as well as projectors and n different types of glasses with two 
different filters each.

Shutter Glasses
Besides polarization glasses, shutter glasses are another widely used method for 
stereo output. They are also partly used in 3D cinemas and for 3D TV sets. While 
the methods presented so far were based on superimposition and subsequent chan-
nel separation based on filters, shutter glasses display the partial images in time 
sequence. Here, the left eye sees its partial image for a short time and shortly after-
wards the right eye sees its corresponding partial image. Because the change occurs 

Fig. 5.39 Composition of the two partial images from three different base colors each
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at a high frequency, the brain is still able to fuse the two partial images into one 
stereoscopic image, even though they are not perceived simultaneously at any time. 
To ensure that each eye only sees the partial image intended for it, shutter glasses 
use two LCD shutters (hence the name). This always covers the eye whose partial 
image is currently not displayed, so that it cannot perceive any image (see Fig. 5.41). 
Synchronously to the change of the partial image, the corresponding LCD shutter is 
opened while the shutter of the other eye is closed. Due to the active switching, this 
is called an active stereo method (in contrast to the passive stereo methods using 
filters). Due to the time-sequential display of the two partial images, their frame rate 
has to be twice as high to achieve the same overall frame rate as with the passive 
methods.

Proper synchronization between the shutter glasses and the image output is cru-
cial for channel separation. While earlier systems were primarily synchronized via 

Fig. 5.40 CIE standard valence system with the primary colors of two filters using the wavelength 
multiplexing method
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infrared, which is in principle susceptible to occlusion or further interference, nowa-
days synchronization via radio-based procedures, especially based on Bluetooth, 
has become generally accepted. An alternative is synchronization via a white flash 
(known as DLP link). Here a very short, completely white image is shown, which is 
detected by a photo diode attached to the shutter glasses and used for synchroniza-
tion. The duration is so short that the user is not consciously aware of this white flash.

Lenticular Lenses
Lenticular lenses are a method to make different (partial) images visible depending 
on their direction of view. The simplest variant of this are so called “wobble images”, 
which allow you to view simple animations consisting of very few frames. 3D post-
cards are based on the same principle. In both cases a prismatic grid consisting of 
lenticular lenses arranged in vertical rows is used. Each prism covers at least two 
pixels. Depending on the viewing angle, one or the other pixel becomes visible (see 
Fig. 5.42).

For stereoscopic output, a prism foil is glued to a screen with pixel accuracy. If 
the observer is vertically in front of the display at the correct distance, he sees one 
subframe with one eye and the other subframe with the other eye (see Fig. 5.42).

The advantage of this method is that it does not require any form of glasses, 
which is why it belongs to the so-called autostereoscopic methods. A disadvantage 
of this method, however, is that the resolution of the display is reduced by half hori-
zontally. Another problem occurs when the user moves to the side or changes their 
distance to the display. This can lead to the channel separation not working or only 
working in a limited way (the already mentioned crosstalk). Tilting the head may 
also cause crosstalk. In principle, the procedure also works for several users at the 
same time. However, if several users are grouped around such a display, it must be 
ensured that an individual view is also possible with each eye from other viewing 
angles. This is achieved by using larger prismatic grids in which each lenticular lens 

Fig. 5.41 Time-sequential display of the left and right partial image synchronously to the alternat-
ing opening and closing of the shutter LCD in front of the left and right eye, so that each eye only 
sees the partial image intended for it
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covers more than two pixels. For example, seven different stereo views can be cre-
ated by using eight pixels. The disadvantage here is that the horizontal resolution is 
reduced even more (in this case to one eighth!).

Parallax Barriers
Parallax barriers represent another autostereoscopic method. Here, a shadow mask 
is placed in front of the display or the projection surface. Due to the arrangement of 
the holes in the shadow mask, each eye of the observer sees different pixels, which 

Fig. 5.42 Prismatic grid of lenticular lenses with detail magnification of a lenticular lens for chan-
nel separation
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are then used to display the different subframe for the left and right eyes  
(see Fig. 5.43).

While rigid parallax barriers also only work within a certain distance from the 
display, movable parallax barriers allow for adjustment to the distance of the viewer. 
Either two slit masks are mechanically moved against each other so that the position 
and size of the holes change accordingly, or an additional LCD layer is used for this 
purpose. Parallax barriers also reduce the resolution by at least a factor of two and 
are susceptible to head tilting. In LCD-based systems, if detected, this can be solved 
by software. Software parallax barriers are used as masks to generate the two sub-
frames, so that ultimately only the pixels visible to the respective eye from each 
perspective are included in the overall image to be displayed. In principle, the 
approach can also be extended to more than one user, as Ye et al. (2010) have shown 
with a display in which they used randomly distributed holes in well known 
locations.

5.5  Audio Output Devices

The goal of acoustic or audible output is to reproduce the sounds and tones of the 
virtual world in such a way that the user can perceive them in the same way as in the 
real world. Even though the spatial resolution of human audio perception is lower 
compared to the visual sense (see Sect. 2.3.1), it clearly supports spatial orientation. 
A simple audio system at least is also important for the temporal assignment of 
events that happen in the virtual world: for example, the user can be given audible 
feedback when selecting objects or controlling a menu.

Fig. 5.43 Parallax barrier for channel separation
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Stereo Speakers
A simple spatial audio model, such as the one used in X3D, only influences the 
volume of the output for the left and right ear depending on the distance of the 
sound source to the virtual position of the ears (whereby this is only taken into 
account due to the position and orientation of the virtual camera, i.e., the position of 
the loudspeakers to the real ear has no influence here). For more realistic effects, the 
individual signal delay due to the distance to the sound source can be included. With 
this form it is not possible to distinguish between audio sources in front of or behind 
the user, which is usually not sufficient for VR or AR. Also sound sources above or 
below the user cannot be determined from their direction.

Multi-Channel Systems
For better spatial orientation the use of more complex audio installations is neces-
sary. Often, multi-channel audio systems are sufficient to provide orientation for the 
user of a virtual world. In multi-channel systems one or more main loudspeakers are 
usually available as the actual sound source, while several additional loudspeakers 
are used to support the spatial effects. When installing multi-channel audio systems, 
it is important to ensure that appropriate loudspeakers are also installed behind the 
user. The disadvantage of multi-channel audio systems is that spatial perception is 
really good only in a small area (the so-called sweet spot). If the user is able to 
move, the limits of such a system are quickly reached. Furthermore, although the 
horizontal direction of a sound source can be well simulated, the height of the sound 
source usually cannot be reproduced.

Binaural Sound
One way to achieve a more realistic audio impression is binaural sound. This is an 
attempt to imitate natural, spatial hearing. The output is only possible via head-
phones. For an optimal hearing impression, the Head Related Transfer Function 
(HRTF) of the user must be known. If this is not known, the HRTF of a standard 
head is usually used, which can provide very good or even bad results depending on 
the individual user. The advantage of binaural sound is that with correct HRTF not 
only audio sources in front of and behind the user, but also below and above the 
user, can be clearly identified with regard to their direction.

Ambisonics
Ambisonics usually uses four channels to record and play back three-dimensional 
sound sources in the form of a sound field. Although the technology is over 50 years 
old, it has only recently gained some popularity through its use in conjunction with 
360° video and VR.  In the meantime, relatively inexpensive commercial micro-
phones and software for mixing ambisonic recordings are available. The four chan-
nels represent the sound pressure gradients in the X, Y and Z directions and the 
sound pressure. For these second-order ambisonics, eight capsule microsphones are 
used. Higher-order ambisonics are rarely used.

Wave Field Synthesis
Another way to create more realistic spatial sound is wave field synthesis (Bertino 
and Ferrari 1998; Brandenburg 2006). The goal of wave field synthesis is to record 
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the wave field of a real event (e.g., the playing of an orchestra) and to be able to 
reproduce it at any time as a synthetic wave field. Thus it is possible to position 
sound sources freely, within certain physical limits. For this purpose, the wave field 
is generated by a large number of loudspeakers that have to be arranged around the 
playback area. These loudspeakers are operated by a central computer, controlling 
the reproduction of the sounds together with their positioning.

Application to Stationary VR Systems
Often it seems to make sense to position the speakers of an audio system behind the 
display. In principle, this is possible for projection systems with permeable screens. 
However, with multi-sided projection systems such as CAVEs, the sound is partially 
reflected by the projection surfaces, reducing the quality of the audio simulation. A 
further problem with loudspeakers located behind the projection surface is that the 
sound causes the canvas to vibrate. This can sometimes have a negative effect on the 
quality of the visual impression. When using glass panels as projection surfaces and 
in the case of monitor-based solutions (see Fig. 5.32), it may be necessary to place 
the loudspeakers under, above or next to the displays.

A comprehensive overview of sound, especially in the context of VR, is given by 
Vorländer (2008).

5.6  Haptic Output Devices

Haptic output devices make virtual objects tangible for the user by means of 
mechanical, pneumatic or electrical stimuli, vibration or the application of force. 
Haptic output is mostly integrated into input devices like gloves (see also Sect. 4.4) 
and mechanical input devices (see Sect. 4.6.2).

Generally, haptic output devices are divided into those that generate tactile feed-
back and those with force feedback. Tactile feedback generates a haptic sensation 
for the user when touching a virtual object, without necessarily corresponding to the 
sensation when touching a similar real object. Force feedback usually requires an 
external skeleton structure (exoskeleton), which restricts the freedom of movement 
of fingers or other limbs.

Haptic Loop
While haptic output basically uses the same information about the virtual world as 
graphical output, haptic rendering differs significantly from normal (graphical) ren-
dering. A haptic output device is usually combined with an input device, since the 
haptic output is typically the result of a movement of the user. Of course, a virtual 
object can also move towards the user and thus initiate a haptic output. An example 
would be a virtual bullet in a VR game. If the initiation is done by the user, this 
results in a so-called haptic loop (or haptic rendering loop) (see Fig. 5.44). For the 
user’s movement to result in a haptic output, it must first trigger a collision between 
the user’s representation (i.e., their avatar) and an object of the virtual world. This 
collision is detected by collision detection (see Chap. 7). The resulting collision 
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response induces on the one hand a modification of the VR simulation, while on the 
other hand the ideal force feedback is calculated as response. The extent to which 
this can now be (re)transmitted to the user depends in particular on the specific 
haptic output device used. Appropriate control algorithms are used to convert the 
ideal force into an actual output reaction. Correspondingly, a massive resistance 
may end up in a rather soft tactile perception. In contrast to the graphics render loop, 
which should reach at least 60 frames per second, the haptic render loop typically 
operates at a much higher frequency. 1000 Hz (or 1000 fps) is not uncommon at this 
point. An overview of haptic rendering can be found in Salisbury et al. (2004).

Data Gloves with Tactile Feedback or Force Feedback
While data gloves are primarily input devices, a number of models have been devel-
oped over time that involve a haptic output component. However, most of them are 
limited to simple tactile feedback. For example, small vibration motors are placed 
on the fingertips, the fingertips are mechanically contracted by small bands or elec-
trical impulses are generated. However, some also use external skeletal structures to 
actually restrict the freedom of movement of the fingers. The HGlove uses an exo-
skeleton for the thumb, index finger and middle finger. The HaptX glove (see 
Fig. 5.45), for example, uses a combination of a miniaturized pneumatic actuator 
consisting of 12 elements at each fingertip and an exoskeleton.

Fig. 5.44 The haptic rendering loop
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Air and Ultrasound-Based Systems
Vortex rings use air over a certain distance to create a short haptic stimulus. If a grid 
of actuators is used to generate the stimuli, this allows the simulation of even more 
complex virtual objects.

Similar in effect are haptic output devices based on ultrasound. Those devices 
use up to several hundred sound generators arranged in arrays. At update rates of up 
to 40 kHz, a haptic output can be generated at a distance of up to 70 cm.

Vests and Suits
In games and military simulations especially, vests and whole suits for haptic output 
have been developed. The Teslasuit full body suit is an example of an individual, 
haptic output device that uses electrical impulses to perform transcutaneous electri-
cal nerve stimulation and electrical muscle stimulation. Furthermore, the suit can 
influence the temperature sensation of the user. A motion capture system is also 
integrated for input. Haption’s Able is another example, providing an exoskeleton 
for shoulders, arms and hands (see Fig. 5.46).

End Effector Displays
An end effector is a device that is typically mounted on a robot arm (see Fig. 5.47). 
End effector displays are haptic output devices for tactile stimulation, which a user 
can grasp or otherwise manipulate with hands or feet. In contrast to an input device, 
an end effector display is not passive, but reacts actively through resistance or force 
feedback. The best-known representative of this device class is the Phantom Omni 
as a desktop device. Larger versions can easily cover volumes of several cubic meters.

Fig. 5.45 Glove with pneumatic finger actuators and external skeletal structure. (© HaptX Inc. 
2021. All rights reserved)
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Fig. 5.46 Example of a 
vest-based system. (© 
Haption SA/Laval Virtual, 
2020. All rights reserved)

Fig. 5.47 Example of an end effector display. (© Haption SA, 2020. All rights reserved)
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5.7  Summary and Questions

VR/AR output devices are used to present the virtual world or the augmented world 
to the user via appropriate stimulus generation, i.e., to convert the virtual content 
into something that can be experienced by the user’s senses. The visual output can 
be done with HMDs, monitors or projection systems. To cover the field of vision of 
stationary VR systems as much as possible, display systems are often composed of 
several individual displays, which are arranged in different forms: examples are 
walls, L-shapes, curved screens or CAVEs. The tiling of displays (in the form of 
tiled displays) is especially used to improve resolution and luminous intensity, but 
leads to a considerably higher calibration effort. Using active or passive stereoscopy 
methods, monitors and projection systems can also spatially represent virtual 
worlds. Although the optical sense is the most important one, a high degree of 
immersion can only be achieved by addressing additional senses. While there are 
almost no VR or AR systems without acoustic output and therefore the question of 
the quality of the effects to be produced is primarily concerned here, haptic output 
devices are much less common.

Check your understanding of the chapter by answering the following questions:

• What difficulties can occur when using tiled displays and what are the solutions?
• What advantages do multi-sided displays offer compared to single-sided 

displays?
• When should optical AR glasses (OST) be used for an AR application and when 

should video AR glasses (VST) be used?
• Explain the basic differences between active, passive and autostereoscopic stereo 

methods.
• Which audio technologies are suitable for realistic surround sound?
• Explain the difference between tactile and force feedback using a simple example
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Chapter 6
Interaction in Virtual Worlds

Ralf Doerner, Christian Geiger, Leif Oppermann, Volker Paelke, 
and Steffi Beckhaus

Abstract In Chap. 1, VR and AR have already been introduced as innovative forms 
of human–computer interaction. This chapter deals in detail with the design and 
realization of interaction and the resulting user interface of a VR/AR system. A user 
interacts with a virtual world to select (selection) and change (manipulation) virtual 
objects and to control the position and viewing direction in the virtual environment 
(navigation). In addition, the user interacts with the system itself (system control) to 
perform functions outside the virtual environment on a meta-level (e.g., loading a 
new virtual world). These basic tasks of system control, selection, manipulation and 
navigation are each dealt with in a subsection. Solutions for the realization of cor-
responding interactions are presented. It is essential to achieve good usability. This 
is a core issue of human–computer interaction in general. Therefore, the basics of 
human–computer interaction are discussed at the beginning of the chapter. Moreover, 
a subsection considers special design processes that guide a developer in the design 
and realization of VR/AR interactions. An essential aspect here is the repeated vali-
dation of interactions with users in the form of user tests. Methods for the execution 
and evaluation of user tests are therefore dealt with separately in a subsection. 
Interactions with VR/AR systems always have effects on the user. The related ethi-
cal and legal aspects are discussed in the last subsection.
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6.1  Fundamentals of Human–Computer Interaction

A virtual world or a world extended with virtual elements employing AR can be 
made interactive for users. This means enabling users to interact with this environ-
ment under real-time conditions. It is thus about an exchange of information 
between the human users and the computer, which controls the virtual part of the 
user’s environment; in other words, it is about communication between humans and 
computers. Technically, this is known as Human–Computer Interaction (HCI). HCI 
is concerned with the design, evaluation, and implementation of interactive 
computer- based systems and the phenomena involved. An essential aspect is the 
user-oriented design of interfaces based on findings in computer science, but also in 
other fields such as psychology and cognitive science, ergonomics, sociology 
and design.

An important concept of HCI is usability, which is most aptly described as “fit-
ness for purpose” and defined according to ISO 9241.

Aspects of usability include usefulness, efficiency (effort in relation to the 
achieved goal), effectiveness (achievement of goals, avoidance of errors), learnabil-
ity, or training effort as well as subjective satisfaction. For some time now, HCI 
research has also been looking at interaction with a technical system in a wider 
context and taking into account all the experiences a person has had when using an 
interactive product. In addition to classic usability, this user experience includes, for 
example, the elegance and aesthetics of the interface or the joy of use.

Human–computer interaction aims at supporting the user to utilize a technical 
system to perform the tasks they are pursuing well, e.g., effectively and efficiently. 
In doing so, information is explicitly exchanged between humans and computers. 
Besides, there are context knowledge and assumptions that implicitly provide infor-
mation for communication with the computer. HCI uses metaphors and mental 
models to support this implicit knowledge. A metaphor is a linguistic image that is 
used to explain complicated relationships. One uses knowledge from a known area, 
e.g., waterways in nature, to explain an unknown area, e.g., the flow of data in com-
puter programs. Metaphors are used so that a user can get an idea of the technical 
system. The reaction of the system to an action of the user should be predictable or 
at least explainable. Such a mental simulation model that a person’s brain uses to 
make predictions about the system behavior is also called a mental model.

While classical user interfaces based on the WIMP (Windows, Icon, Menu, 
Pointer) paradigm have been established for many years and guidelines for their 

“Usability is the extent to which a product can be used by specified users to 
achieve specified goals with effectiveness, efficiency, and satisfaction in a 
specified context of use.” (Source: DIN EN ISO 9241,11: Software 
Ergonomics)
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effective development are available, nothing comparable exists in VR/AR.  It is, 
therefore, necessary to develop prototypical solutions for the respective tasks of the 
users and to evaluate their suitability. HCI’s popular approach of designing 
hardware- independent user interfaces by abstracting the available hardware to its 
function, e.g., as logical input devices (Foley et al. 1993), is of only limited use in 
VR/AR user interfaces. Due to the wide range of VR/AR hardware and a broad 
range of interaction techniques that a single piece of hardware can support, such an 
abstraction is difficult. Nevertheless, classical user interfaces are often taken as a 
starting point for VR/AR interaction. Also, other classes of user interfaces that are 
not based on the WIMP paradigm have become classical user interfaces due to their 
widespread use: for instance, user interfaces based on voice or touch-based user 
interfaces. These can be useful since users have usually already acquired significant 
competencies with classical user interfaces. This is also true for developers, who 
should rely on their own real experience in dealing with computers when imple-
menting interaction techniques in virtual environments (Winograd and Flores 1986).

When designing the “best” interaction technique, it is important to consider 
whether a technique should be as natural as possible or can also be magical. A natu-
ral 3D interaction in a virtual environment tries to simulate the interaction known 
from the real world as exactly as possible. For example, users move through a vir-
tual city at walking speed by real walking and can only manipulate objects within 
reach of their own arms. A magical 3D interaction, on the other hand, allows tele-
porting to any position or modifying objects that are far away by extending the arms 
at will. If one follows the approach that a virtual environment should reflect reality 
as closely as possible, one is inclined to make the 3D interaction more natural. 
However, a magical 3D interaction allows more possibilities and new functional-
ities. Here, the context of use, the user experience and the degree of naturalness play 
a role (Bowman et al. 2004).

Even if one chooses a high degree of naturalness, the interaction of humans with 
virtual objects is never as direct as with real objects, mostly due to technical inter-
mediate layers. User interfaces are said to support direct manipulation if the user 
can modify a graphical representation of an object with input devices and receives 
immediate and continuous visible feedback about these actions (Shneiderman et al. 
2016). Direct manipulation is a key concept in the design of interaction techniques 
in VR. In AR, direct manipulation enables the equal treatment of interaction with 
real and virtual objects.

6.2  System Control

The system control of a VR/AR system triggers actions that change the interaction 
mode or the system state. For example, these can be commands that cause the sys-
tem to load a new scene, to change the navigation mode through the virtual environ-
ment or to set up the display. Conventional graphical user interfaces mainly use 
elements such as menus, buttons or toolbars to execute such commands. Drag & 
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Drop, text commands and double-clicks are also common techniques. These tech-
niques from 2D user interfaces can only be transferred to virtual environments to a 
limited extent (for example, on which 2D surface in the virtual world does a button 
appear and how is it operated?). In the following consideration, use cases in which 
the system control is carried out by another exterior user (e.g., the instructor in a 
flight simulation) will not be considered further, since techniques from 2D user 
interfaces can be used for this purpose.

A conceptual problem of system control by the user of a virtual environment is 
the inherent conflict with the intended “willful suspension of disbelief” (cf. Chap. 
1), because the commands often have no equivalent in the real world or a realistic 
1:1 implementation is not practicable. Particularly in the early phase of VR, when a 
faithful reproduction of reality was key, the proper development of techniques for 
system control was therefore neglected. Many systems work with ad hoc solutions 
because selection techniques in combination with a representation of the possible 
actions in a (3D-) menu are a possible solution for system control, and thus the 
development effort can be minimized. In some systems, for example, a large button 
suddenly floats in the middle of the virtual environment and is activated by moving 
a hand to select it. There is only limited scientific knowledge about the usability of 
such approaches. The development of powerful algorithms for speech and gesture 
recognition expands the spectrum of available techniques and allows for better 
adaptation to user requirements. A good source of inspiration for techniques for 
system control is often computer games, in which many interesting implementa-
tions of menu techniques can be found. Five concepts for system control are widely 
used: menus, 3D widgets, tangibles, voice commands and gestures.

Menus are the most widespread technique. Menu techniques can be structured 
systematically, e.g., by their positioning (or spatial reference system), the way they 
are presented and the selection technique used. For example, the position of a menu 
in the virtual environment can be fixed or it can be linked to the position of an object 
in the virtual environment (context menu)–or it can be linked to the user (e.g., to the 
hand) or real objects. The representation can be structured in one dimension (e.g., 
list, ring), in two dimensions (e.g., color space, table), or in three dimensions (e.g., 
matrix). Depending on the positioning and representation, different techniques can 
be used to select a menu item. Dachselt and Hübner (2007) give an overview of cor-
responding 3D menu techniques.

3D widgets are closely related to menu techniques. 3D widgets are 3D objects in 
the virtual environment that are coupled with interaction behavior. Their 3D geom-
etry makes interactive functionality visible for the user. Moreover, their 3D geom-
etry provides affordances for using the underlying functionality. These 3D objects 
do not represent the content of the actual virtual world to be displayed but are addi-
tionally inserted to control the VR system. 3D widgets can be inspired by real 
objects (e.g., some widgets are based on a 3D representation of light sources or 
cameras–these are manipulated as 3D objects and influence the representation of the 
scene accordingly). Alternatively, 3D widgets can be abstract objects whose func-
tion the user must learn.

R. Doerner et al.



205

Tangibles (sometimes called props) are real objects that the user can use as tools 
in the virtual environment. If the user reaches for such a “tool”, a new mode of 
interaction is chosen and the tangible itself can give the user immediate physical 
feedback about this interaction. An example: the user wants to position a power tool 
in the virtual environment and has the handle of a real tool available for this pur-
pose. However, the number of tangibles that can be used in an application is limited 
and their assignment to interaction tasks is less flexible.

Voice commands can be used hands-free. Thus, they can be combined well with 
other interaction styles. An advantage of voice commands is that no part of the vir-
tual environment is hidden by additional objects that are needed for facilitating 
interaction. However, the user has to learn the possible commands, since there is no 
direct representation of the possible interactions in the virtual environment. 
Advances in speech recognition make the use of voice input increasingly attractive, 
but the developer of a virtual environment should also keep in mind that the perma-
nent use of voice input can be tiring. Environmental noise and use in collaborative 
work environments can also be problematic.

Gestures provide another powerful technique for system control and can be com-
bined with voice input and other techniques. As with voice input, no part of the 
scene is hidden, but the available functionality becomes more difficult for the user 
to “discover” and must be learned. Often there is also no graphical representation in 
the user interface that can serve as a memory aid. The availability of inexpensive 
sensors and improvements in recognition algorithms make the use of gestures for 
controlling VR/AR applications interesting.

6.3  Selection

Selection is one of the essential tasks in the interaction of a user with a virtual world 
or the real world augmented with virtual elements.

This task is much more difficult for the user to perform in a 3D context than with 
2D user interfaces. First, there are more degrees of freedom in the input (it can be 
especially difficult to perform a selection in 3D space with a 2D input device). 
Second, occlusion can become a severe problem. Third, most users have less experi-
ence with specific VR interaction techniques. Fourth, there can be more usability 
problems undiscovered by developers because user interfaces are often not as stan-
dardized or tested as in the 2D case. To mitigate these difficulties, one can limit the 

Selection means that the user determines a point, area or volume in the sur-
rounding world (e.g., to insert an object there) or selects a semantically mean-
ingful subset of the surrounding world (e.g., a specific virtual object or 
sub-object to move it).
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selection to an interaction surface (parallel to the image plane or spatially embedded 
on a 2D surface in the virtual world), which is often even more effective due to the 
similarity to the usual computer operation. However, VR/AR also allows us to break 
away from tradition and to introduce new interaction techniques that are more ori-
ented towards our everyday real experiences – or even go beyond.

In the first subsection, pointing devices, their classification and targeting are dis-
cussed in more detail, since pointing is often used for selection in VR/AR (and not, 
for example, naming by voice input or typing in coordinates of the object to be 
selected). When designing the corresponding interaction technique, one basically 
has the choice of either restricting the user’s degrees of freedom or working with 
different modes. These choices are discussed in the second subsection. Finally, the 
last subsection contains examples of selection techniques frequently used in VR/AR.

6.3.1  Pointing in Virtual Worlds

A common feature of many interaction techniques for selection is that they require 
a pointing device with which the user can make the selection. This can be the index 
finger or a special input device such as a hand controller or a 3D mouse (see Chap. 
4). With this pointing device, the user must aim at the target to be selected and make 
the selection. In the VR/AR system, corresponding algorithms from Computer 
Graphics have to be implemented which identify the selected 3D entity from the 
user’s input. This task is not trivial. On the one hand, it may be necessary to calcu-
late back from a 2D input into 3D space. On the other hand, which object can be 
found at the calculated 3D position must be determined. This basic task of deducing 
the selection in the displayed 3D space from a 2D interaction of the user with the 
image of a 3D scene is called picking. A simple solution is to create an image of the 
3D scene (which is not shown to the user) where each object is displayed with a 
different color and no lighting calculation is performed. You determine the pixel in 
the image that the user points to and determine the color of the pixel, which allows 
you to draw conclusions about the selected object (“color picking”). An alternative 
method, often used today because of its higher accuracy, calculates the intersections 
of a beam with the 3D geometry of the objects in the scene (ray-casting). The ray 
can emanate from the eyepoint of the observer through the pixel selected in the 
image. Alternatively, the ray can be an extension of the user’s index finger (see 
Fig. 6.1, left). The object that has the point of intersection closest to the observer’s 
eye is selected. By clever optimization, e.g., by employing bounding volume hierar-
chies (cf. Chap. 7), this picking can be realized in real time through ray-casting. 
Like collision detection, ray-casting has become a fundamental technique to realize 
interaction in VR and AR in general.

Picking can be complicated by the fact that the VR/AR system does not perform 
it with the selection granularity desired by the user because of semantic ambiguities 
(example: the user points to the head of a virtual person–does the user want to select 
the whole person, only the head or even a part of the head, such as the left eye?). In 
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AR, knowledge of the real objects in the user’s environment is required to enable the 
selection of real objects. Here, methods of digital image processing and 3D scene 
reconstruction are usually applied which are based on the analysis of current video 
recordings of reality.

It is essential to support the user during the selection process with visual feed-
back. This can be realized by highlighting the selected object (or point, area, or 
volume) or in the form of a target point (cursor) (see Fig. 6.1). In VR, the 3D cursor 
is the counterpart of the mouse pointer of the two-dimensional desktop metaphor 
and allows pointing to a virtual object, even if it is further away. Typically, suitable 
input devices like a flystick, 3D mouse or magic wand are used and their real posi-
tion and orientation are mapped to the values of the 3D cursor (cf. Chap. 4). A dif-
ferent technique is the virtual hand, which allows a direct touch of the objects to be 
selected near the user. For this purpose, a 3D representation of the user’s hand in the 
virtual world is used to select objects (see Fig. 6.1, right). Selection utilizing a vir-
tual hand is a more natural selection technique, while the use of a 3D cursor tends 
more towards magical interaction techniques.

The physical pointing devices of human–computer interaction can be divided 
into the categories “direct” and “indirect”. Direct pointing devices (e.g., a pointing 
stick) can be used to position a 3D cursor directly (e.g., at the tip of the stick). Direct 
pointing devices are therefore able to define absolute coordinates. Thus, the opera-
tion is easy but may be tiring or inaccurate over time. In addition, the user may 
cover parts of the virtual world relevant to the selection task with a hand or arm 
when operating the device. Indirect pointing devices (such as a mouse) can reduce 
these disadvantages. They change the position of a cursor using direction vectors, 
i.e., its position is determined relative to the previous position. Indirect pointing 
devices, however, require a period of familiarization, as they require hand–eye 

Fig. 6.1 Selection in VR and visual feedback. The selection process is realized (left) with a beam 
from the finger using ray-casting, or (right) by a virtual hand using collision detection
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coordination training from the user. The user’s attention is always limited to only 
one part of the overall space, the focus. The interaction activities, on the other hand, 
take place in another sub-area, which will be called the nimbus, following Benford 
and Fahlen (1993). In direct pointing devices both areas coincide and hand–eye 
coordination is therefore easy. With indirect pointing devices, however, the intersec-
tion of both areas can be empty. If the activity in the nimbus is disturbed or does not 
lead to the desired result, the attention is distracted and directed to the device itself. 
The focus of the user is then no longer on the actual task but turns to the interaction 
device. An everyday example of this is a mouse that encounters a physical obstacle 
during operation and has to be repositioned by the user. This is also a good example 
of a phenomenon formulated by Winograd and Flores (1986), namely that people 
only consciously perceive basic technologies and devices when they simply refuse 
to work.

When selecting in virtual environments, it is also possible to distinguish near 
interaction techniques, local interaction techniques and remote interaction tech-
niques. The close interaction enables users to orientate themselves quickly based on 
their everyday experiences, which can often be helpful. In VR systems, however, it 
is also possible to realize interactions over a virtual distance that would normally be 
beyond human reach (as special cases of magical 3D interactions). When designing 
these interactions at a distance, it is now mainly a question of their manageability or 
the accuracy that the user can achieve with them. In HCI, accuracy in the selection 
of targets in connection with the time required for this and the size of the target 
could be related in the form of Fitts’ Law. Although it is mainly used in the evalua-
tion of traditional 2D graphical user interfaces, there are also references to the 3D 
context. Fitts’ Law states that the smaller the target is and the further it is from the 
current cursor position, the longer it takes to select it. A logarithmic function is used 
to mathematically model this relation.

6.3.2  Interaction Design

To control interaction in virtual environments, input devices are required that cover 
the necessary degrees of freedom. In three-dimensional environments, there are six 
degrees of freedom: three for positioning along the x-axis, y-axis, and z-axis and 
three additional degrees of freedom for rotation around these axes. In many cases, 
however, fewer degrees of freedom can be used. For example, not all six degrees of 
freedom are required to aim at any point B from any point A (for example, because 
the imaginary connecting line from A to B can be rotated around itself without 
changing the target, this axis of rotation is not significant). It might also be desirable 
to deliberately limit the number of degrees of freedom in interaction by introducing 
constraints, e.g., to avoid accidentally changing the orientation of a 3D cursor when 
it is moved.
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The Midas touch problem shows that different modes should be distinguished in 
the design of some interaction techniques for selection. However, this has the draw-
back of increased complexity. The users – based on their own previous experience – 
often have certain expectations regarding the operation of a system. If the operation 
corresponds to their expectations or the general conventions, the system is in line 
with expectations. If it does not, the users are typically disoriented because they 
have unintentionally triggered actions or cannot trigger desired actions. If there are 
several modes, a user can inadvertently switch the system to another mode or does 
not notice a change of mode, which can lead to confusion. Problems of this type are 
referred to as mode errors. They are not errors in the traditional sense of software 
technology, but errors in interaction design. They require different measures for 
detection and correction than the usual debugging of software. When designing 
interactions, it is advisable to limit the use of modes. Some designers suggest that 
modes should be removed from user interfaces completely and that, only if neces-
sary, temporary quasimodes knowingly activated by the user should be used (Raskin 
2000). Interaction designers in the VR area should be sensitized to these and similar 
problems, e.g., about the frustration of users when they are doubtful what is not 
selectable and they can only find out by unsuccessful trial and error. (Bellotti et al. 
2002) posed five questions that designers of interactive systems should always ask 
themselves:

If I address the system, how does the system know that I am addressing it?
If I call the system, how do I know it will listen to me?
If I give a command, how does the system know what it is referring to?
How do I know that the system understands me and will carry out the action I want?
How can I correct a mistake?

The Midas Touch Problem
One could come up with the idea of making the selection with the eyes, espe-
cially over longer distances; after all, one can look further than one can grasp 
and can focus very quickly. However, it has turned out that a general selection 
only with the eyes is not comfortable for the user, because if a VR system tries 
to attach importance to these glances by continuously pointing them towards 
the selection of virtual objects, the user would not be able to look anywhere 
without unintentionally selecting something. This is the classic Midas touch 
problem (Jacob 1990). The name for this problem comes from mythology. 
According to legend, King Midas of Phrygia received the supposed gift of 
being able to turn everything he touched into gold. However, this proved to be 
a hindrance when it came to eating, and he also supposedly turned his daugh-
ter into gold by mistake. To work around the problem, you can work with 
modes – the “system responds at glances” mode and the “system does not 
respond at glances” mode.
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6.3.3  Examples of Selection Techniques

In the following, some examples of selection techniques are considered: ray- casting, 
the flashlight technique, the go-go technique, the HOMER technique, the image 
plane technique and the world-in-miniature technique.

In ray-casting, objects are selected using a beam that points from the 3D cursor 
into the environment. The position and orientation of the beam are controlled by the 
user, although degrees of freedom in control can be deliberately limited by setting 
constraints. All objects cut by the beam are candidates for selection. If there is more 
than one candidate, the object closest to the user is selected. The manageable accu-
racy of ray-casting decreases with distance because the angle to be set on the virtual 
hand becomes smaller and smaller and possibly falls below the resolution to be 
achieved by the input method. Ray-casting is considered the most important and 
effective selection technique. However, it is less suitable for longer distances.

A variation of ray-casting is the flashlight technique. Here, instead of a beam, a 
cone is projected that resembles that of a flashlight. Again, all objects that intersect 
the geometry are collected as candidates. As an additional selection criterion, the 
distance from the center of the cone is also considered.

Possibly inspired by the television series Inspector Gadget, the go-go technique 
allows the infinite extension of a virtual arm to which a virtual hand is attached. It 
thus allows the hand to be moved to the place of interest. Within the normal interac-
tion distance, i.e., within arm’s reach, the virtual hand behaves analogously to the real 
hand, i.e., the movement is scaled linearly. Beyond this distance, the movement of the 
real hand is mapped to the movement of the virtual hand by a usually non- linear scal-
ing in such a way that with increasing distance from the user, increasingly larger 
distances are bridged with the same hand movement. Similar to ray-casting, however, 
it is only partially suitable for selection at a distance due to its angle dependence.

In the term HOMER technique, HOMER stands for “Hand-centered Object 
Manipulation Extending Ray-casting”. With HOMER, a beam is also extrapolated 
from the current hand position. However, if the ray hits an object, the object is not 
manipulated as the endpoint of the ray, but the virtual hand is moved to the position 
of the object. This eliminates the dependence on angular accuracy and allows finer 
selections and manipulations of the target object.

The image layer technique uses virtual image layers on which the users make 
their selection, similar to a mouse pointer. The objects behind the image plane are 
projected onto them, just as they are projected onto the screen plane. The distance 
between users and the image plane is reduced for interaction. With their pointing 
device, the users now control a 2D cursor on this virtual plane. While this plane is 
within their reach, they are also able to select out-of-reach objects behind this plane, 
as these objects are projected on the plane. Because a user only has to control two 
degrees of freedom and the metaphor is known, this technique allows for easier 
control during selection.

An alternative approach to changing the reach of the user is the world-in- 
miniature (WIM) technique. This involves scaling down the entire virtual environ-
ment to such an extent that it fits into the user’s field of view as a miniature model. 
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The user can now select interaction targets in the model. Since the user leaves their 
own, egocentric perspective within the environment, this technique is also called an 
exocentric technique. An example of WIM is shown in Fig. 6.2. In contrast, tech-
niques like ray-casting or the flashlight technique are egocentric techniques. There 
exist also mixed forms between egocentric and exocentric techniques, which are 
called tethered.

6.4  Manipulation of Objects

After a suitable object has been selected, its properties can now be changed by 
manipulation. Selection and manipulation techniques should not be addressed indi-
vidually when designing a specific VR or AR interaction, but should be matched to 
each other. Already presented techniques like the HOMER technique or the WIM 
technique are suitable not only for selection but also for manipulation. For instance, 
using the go-go technique, objects can be moved very well. Moreover, the insights 
about interaction design discussed in Sect. 6.3.2 and illustrated with the example of 
a selection technique also extend to manipulation techniques.

Manipulation of a virtual object in a VR/AR environment is defined as an 
interactive change of the parameters characterizing the object, such as its 
location, its orientation in space, its size, its shape, its weight, its velocity or 
its appearance (which is determined by object parameters such as color, tex-
ture or shading).

Fig. 6.2 Example of the selection of remote objects by a world-in-miniature. With this technique, 
users can select objects even if they are not in their field of view
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Manipulations of virtual objects may not have a direct equivalent in the real 
world. For example, virtual objects can be manipulated by any affine mapping (e.g., 
shearing or scaling). To implement the manipulation, developers can fall back on a 
wide range of techniques that cover the entire spectrum from realistic interactions 
oriented on the user’s everyday experiences to magical techniques that can only be 
realized in a virtual environment. Therefore, the choice of a suitable manipulation 
technique should be made by the developers with regard to the desired functionality 
and the concept underlying an application.

In simulations and training applications, for example, it is often desirable to have 
a reference to reality that is also supported by a realistic interaction technique. This 
means that the virtual objects should behave like real objects as far as possible and 
the manipulation actions of the user should be based on the corresponding actions 
in a real environment. If, on the other hand, the focus is on simple interaction with 
the presented content, e.g., in visualization and entertainment applications, interac-
tion techniques can also be used that are not possible with real objects, e.g., manipu-
lation of objects that are beyond the user’s reach.

The manipulation of remote objects has great potential to improve the effective-
ness of a user interface, as it decouples the target-oriented part of the interaction 
(e.g., changing the spatial orientation of an object) from the preparatory actions that 
are indispensable in a real environment (e.g., positioning the user within reach of 
the object). Ideally, users can then limit their actions to the target-oriented part of an 
interaction. A variety of manipulation techniques have been proposed and devel-
oped to try to realize this potential advantage of interaction at a distance in virtual 
environments. However, since these techniques are not directly based on the users’ 
everyday experience, they typically have to be learned. The lack of haptics has also 
often proved to be problematic (De Boeck et al. 2005). Therefore, the aspects of 
intuitive usability and effective interaction must be weighed up in the development 
process.

Similar to selection techniques, manipulation techniques can distinguish between 
egocentric and exocentric interaction. In egocentric manipulation, the user is con-
ceptually part of the virtual environment, and perception takes place in the first- 
person view. This egocentric perspective on content and interaction is particularly 
useful if the user is to feel as present as possible in a VR or AR. An interaction 
employing pointing gestures can extend the manipulation to more distant objects 
(action at a distance). In the literature, there are a multitude of interaction tech-
niques based on pointing gestures for manipulating distant objects. Interaction tech-
niques based on a virtual hand or pointing gestures are characterized by the fact that 
they can be applied generically to any content. However, one downside may be that 
objects can only be repositioned within arm’s reach, resulting in clumping, i.e., an 
aggregation of objects close to the virtual hand that can be perceived as annoying. 
Besides, for specific applications (e.g., in simulations and training applications) the 
use of dedicated input devices such as a cubic-mouse has become common, which 
as “tools” support a specific interaction task.

With exocentric manipulation, the user is conceptually outside the virtual envi-
ronment. The perception of the content is “from outside” and is also called “god’s 
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eye view”. This exocentric perspective on content and interaction is particularly 
useful when simple interaction with complex spatial content is the main focus, for 
instance in visualization applications. Typical examples are the world-in-miniature 
(WIM) techniques already mentioned. In the following, some frequently used tech-
niques will be presented here.

Arcball: The arcball technique is an example of a manipulation technique that 
allows solely the manipulation of the orientation of an object. The object to be 
manipulated is conceptually enveloped in a sphere and user interactions are trans-
ferred to rotations of this sphere around its center, which in turn is translated into a 
new orientation of the object in space. Thereby, a 2D interaction can also be mapped 
to the rotation of the sphere. Such a restriction to two degrees of freedom can be 
perceived as helpful by users.

Virtual Hand: The virtual hand technique strives to have users interact with vir-
tual objects in a form that is similar to the interaction with real objects. Since the 
interaction is based on everyday experience, such techniques are easy to use and 
appear “natural” to the user. User interfaces that use such direct interaction, such as 
tapping or wiping, are called natural user interfaces. Here, the operation of artificial 
input devices such as the mouse does not have to be learned first. They are particu-
larly suitable for applications where a high degree of realism is desired. This can be 
extended beyond reality to worlds, e.g., fantasy worlds, that the user is familiar with 
and hence can also appear “natural” or rather “supernatural”. Accordingly, super-
natural user interfaces can be conceived, e.g., interaction techniques that are 
inspired by wizard spells. However, such natural techniques may also be subject to 
numerous restrictions: for example, users are confined to manipulate objects within 
their direct reach if it would be unnatural otherwise. In contrast to the 3D cursor, the 
virtual hand can be used to perform gestures with the fingers, which can be mapped 
to the manipulation of object parameters. This mapping must be learned by the user. 
An example is the pinch gesture, the bringing together of thumb and index finger, 
which can be mapped to object parameters, e.g., size.

Pointing Gestures: Techniques based on pointing gestures are suitable not only 
for selecting distant objects but also for manipulating them. For this purpose, the 
pointing gesture is typically interpreted as a pointing beam (cf. ray-casting) or as a 
pointing cone (cf. flashlight technique). Pointing gestures are often used in everyday 
experiences to select objects, e.g., in a discourse. Thus, they are an intuitive way for 
many users to select objects. The extension from selection to manipulation is then 
easy to learn. However, a direct transfer of gestures to manipulation is often diffi-
cult. The obvious option to use the pointer beam as a “lever” for manipulation 
makes precise positioning and orientation difficult.

Transmission of Hand Movements: A simple way to increase precision is to first 
make the selection using a pointing gesture, and for the subsequent manipulation to 
interpret the movements of the user’s hand as if the user had grasped the object. 
Conceptually, this can be done in such a way that the object moves into the hand of 
the user, is manipulated and returns to its starting point after the interaction is com-
pleted. Alternatively, the user is “teleported” to the location of the selected object 
and can then manipulate the object there using the techniques of the virtual hand.
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Voodoo Dolls: Another example of an exocentric technique is voodoo dolls. 
Similar to the WIM technique, it is based on scaling. The user can interact with 
scaled copies of individually selected objects. In contrast to WIM or techniques that 
directly transmit hand movements, scaling ensures that the user can effectively 
manipulate objects of different sizes.

6.5  Navigation

Navigation is a fundamental and often challenging task, as anyone will discover 
who is looking for a gas station in an unknown city and does not have a satellite 
navigation system available.

In HCI, navigation is also an important user task: users navigate websites, com-
plex text documents or tables, and stroll through computer game worlds. In a virtual 
environment, navigation is a universal interaction task and of central importance. 
Presence in VR requires that the user can move around the world as easily as pos-
sible. In this context, a distinction is made between two sub-areas, wayfinding and 
traveling.

The goal of wayfinding is always to generate a cognitive map of the virtual 
world, i.e., a simplified mental representation of virtual space. The process of way-
finding is usually unconscious, and the resulting cognitive map can be different for 
each user. Therefore, it is difficult to develop targeted computer-based support to 
enable the user to acquire the necessary spatial knowledge. This knowledge can be 
divided into three types. Landmark knowledge includes knowledge about promi-
nent, often unique reference points in space (landmarks), which are easier to remem-
ber than other points and can be used for locating points in space. Landmarks are 
easier to remember the longer a user is present in the virtual environment. Thus, 
they are an important tool for the development of a cognitive map. Landmarks can 

Navigation in the real world can be defined as finding one’s way in space by 
determining one’s position and calculating a route to reach the desired loca-
tion as well as the necessary activities to accomplish this.

Wayfinding is the cognitive component of navigation. On a higher level of 
abstraction, it comprises analysis, planning and decision about paths in the 
virtual world. This requires spatial knowledge of the environment, techniques 
for planning and deciding on routes, and the use of appropriate tools such as 
landmarks, signs, or maps.
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be integrated easily into virtual worlds, but they have to be distinguishable clearly 
from other objects in the environment and should be positioned in a suitable place. 
In AR, pathfinding is based on the usual pathfinding in reality, since the usual spatial 
navigation is available at any time. Nevertheless, this wayfinding in AR can be mod-
ified, e.g., by using virtual objects as landmarks, which can also support wayfinding 
in reality.

Route knowledge is also called procedural knowledge and describes the knowl-
edge about the sequence of points in a scene that form a route and what actions are 
necessary to follow this route. Thus, route knowledge is an action-driven concept 
and does not necessarily require extensive visual information. In a virtual environ-
ment, tools such as a digital compass, signposts or waymarks can support the acqui-
sition of route knowledge.

Knowledge about the topology of the environment is called overview knowledge. 
This knowledge is qualitatively the most extensive of the considered types and the 
acquisition usually takes the longest. Often existing landmark knowledge and route 
knowledge are used to get an overview of the virtual environment. For example, 
different routes and different reference points are utilized to get an overview of the 
virtual world through a comprehensive cognitive map. This knowledge acquisition 
is supported by interactive overview maps or the world-in-miniature technique 
already described in Sect. 6.3.3.

In virtual environments, the focus is usually on supporting the user’s abilities 
through the technical parameters of the system. Field of view, depth and motion 
cues (see Chap. 2), and multimodal input/output techniques that appeal to different 
senses can support the user in generating a mental map of the environment.

Interaction techniques for traveling are considered of particular importance 
because almost every virtual environment must allow the user to move around the 
world or at least look around in it. User movement is also a necessary prerequisite 
for other basic 3D interaction techniques, such as manipulation or system control. 
Without being able to reach a certain place in the virtual world, the hero in a com-
puter game cannot open the treasure chest and the engineer cannot virtually view 
the engine compartment of the new electric vehicle. Bowman et al. (2004) define 
three tasks for traveling: exploration, search and maneuvering.
In exploration, the user does not have a concrete goal but explores the virtual envi-
ronment by way of investigation. This is especially used in architectural visualiza-
tions, 3D computer games and information visualization. Typically, this task often 
occurs at the beginning when an initial orientation is necessary. Direct control of the 
virtual camera is helpful to explore the environment interactively and supports the 
creation of cognitive maps.

Traveling is the motor component of navigation, i.e., only the basic actions 
needed to change the position and orientation of the virtual camera are 
considered.
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During the search, the user has the goal of reaching a defined position. Without 
additional information this form is called “naïve search”; otherwise this targeted 
search is called “primed search”.
Maneuvering is about finding an exact position in the immediate vicinity of the user. 
It is characterized by short and precise movements. Maneuvering is an interactive 
task that often has to be solved between two other tasks. For example, when reading 
a sign in a virtual environment, you will first roughly approach the position before 
aligning yourself exactly. Then another task can be solved, e.g., manipulating an 
object based on the instructions shown on the sign.

In the following subsections, some examples of interaction techniques facilitat-
ing traveling in virtual environments will be presented. The last subsection deals 
with design recommendations for navigation techniques.

6.5.1  Control Techniques for Traveling

While most AR systems rely on the usual motion control in real space and control 
techniques for traveling are always implicit, VR systems can employ implicit as 
well as explicit techniques. Even a combination of both is feasible.

Many VR systems use virtual reality locomotion where the virtual camera is 
controlled by specifying a direction vector. Established 3D input devices such as 
flystick, wand and 3D controllers of HMD systems like Oculus or HTC Vive are 
especially well suited for hand-based control, as their 3D position and orientation in 
space are efficiently detected by a tracking system. The user starts the movement of 
the virtual camera through the handheld input device and often uses a vehicle meta-
phor for this type of movement. This means that a movement in the virtual environ-
ment is explained by a device like a car or an airplane that the user controls. 
Hand-based techniques are easy to implement but have the disadvantage that one 
hand has to be used for movement control and is therefore tied.

Eye-directed control is the basic principle of many first-person shooters and 
other 3D computer games. The player rotates a virtual avatar (a graphic representa-
tion as an agent of the user in the virtual world) in the first-person perspective with 
an input device in a certain direction and then moves forward in this direction at a 
certain speed. In desktop systems, this direction vector is determined and normal-
ized as a beam from the virtual camera through the center of the screen. The user or 
the virtual camera in the first-person perspective is then moved along this vector 
until the user stops or changes direction again. Moving the virtual camera orthogo-
nally to the viewing direction results in the movement technique known from com-
puter games called “strafing” (originally a military practice for attack), where the 
user moves sideways out of a hiding place to fight the opponent. In an immersive 
environment with user tracking, the gaze vector can be determined directly, e.g., 
relying on head tracking that might already be used in the virtual environment. The 
gaze control is natural and easy to use, but has the disadvantage that users can only 
move in their viewing direction.
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A decoupling of the view vector and direction of movement is obtained by using 
the body or hand to determine the direction. The latter is also the basis of the 
“camera- in-hand” technique, in which a physical object is equipped with appropri-
ate sensor technology that serves as an exact reference for the virtual camera. A 
disadvantage, however, is that it takes some effort to get used to moving the camera 
by hand for an egocentric camera perspective.

A special case of motion control is teleportation, in which a user can move 
abruptly to any position. This is achieved by an immediate change in camera posi-
tion and orientation. With the proliferation of consumer HMDs and VR games, tele-
portation has become a standard technique for traveling. A separate Sect. 6.5.4 deals 
with teleportation in more detail.

Altogether, there is a wide range of motion-based control techniques that can be 
used in the interaction design of a VR application. Boletsis (2017) analyzed 36 stud-
ies on traveling techniques and categorized them based on the typology shown in 
Fig. 6.3. A further overview of techniques with selected example applications can 
be found in (Reddit 2018).

Control techniques are generally easy to implement and established in VR. For 
example, teleportation is directly available as functionality in game engines, which 
are also used for the development of VR systems. However, the movement in the 
virtual world is often only perceived visually by the user. This is in contradiction to 
the various body perceptions such as the sense of balance and proprioception (per-
ception of one’s own movement) in case the user does not move. The use of certain 
metaphors such as “driving” or “flying” in the user interface can only partially 
diminish the contradictions in these impressions. The use of natural gestures such 
as typing, pulling/pushing or arm swinging has proven to help improve user- 
friendliness (Ferracani et al. 2016; Wilson et al. 2016). Improved visual feedback 
during movement, e.g. by dynamically changing the field of vision or displaying a 
virtual nose in the peripheral visual area, reduces cybersickness (Fernandes and 
Feiner 2016).

Fig. 6.3 Categorization of control techniques in virtual worlds
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6.5.2  Walking Technique for Natural Movement Control

The obvious technique for motion control is physical walking. The advantages of 
this natural technique are the vestibular movement cues provided by the human 
organ of balance during real movement. However, since many VR systems do not 
have the necessary large interaction space, alternative mappings of the real user 
movement to changes in the virtual camera position must be found. A simple 
approach is to scale a small user movement to large virtual changes but then one 
gets quite strong fluctuations for small changes due to tracking inaccuracies. 
Another approach has become known as “walking in place” (see Fig. 6.4). The user 
moves on the spot and is tracked by a suitable tracking system. Advanced approaches 
based on movement platforms also allow for manual or automatic reorientation of 
the user. On corresponding devices (such as Omni Virtuix), the user glides back to 
the starting position on a concave running surface.

Studies have shown that walking in place increases the feeling of presence com-
pared to a purely virtual technique without body movement. However, real move-
ment in space offers an even greater sense of presence (Usoh et al. 1999), although 
the risk of increased cybersickness (cf. Sect. 2.4.7) must be accepted (Suma 
et al. 2009).

Fig. 6.4 The figure shows a simple “walking in place” method where a user is tracked by a mobile 
motion capturing system. The body movements are detected by inertial sensors at the joints and 
control movement and orientation in the virtual environment. On the bottom left, the user’s pre- 
distorted view (see Chap. 5), which is generated for both eyes, is shown. (© Christian Geiger, HS 
Düsseldorf. All rights reserved)

R. Doerner et al.



219

With HMD-based virtual environments, the problem often arises that the user 
can quickly move out of the spatially limited tracking area. Here the technology of 
redirected walking (RDW) (Razzaque 2005) offers a solution. While the user physi-
cally moves in one direction, the scene is manipulated in a way that the according 
changes are hardly noticeable to the user. The user unconsciously adapts to these 
changes, so that redirected walking credibly simulates a straight movement in the 
virtual environment for the user, although the user has been walking in circles in the 
real world. This effective technique is based on the fact that visual feedback influ-
ences navigation more than a physical sensation. Spatial sound can be even more 
supportive in this respect since research has shown that the simulation of a rotating 
sound source creates the illusion of self-rotation when visual and acoustic stimuli 
coincide (Bowman et al. 2004).

Redirected walking has been a scientifically intensively studied control tech-
nique for more than 15 years. According to Nilsson et al. (2018), the ideal RDW 
technique should have four characteristics. Firstly, it must be imperceptible and not 
allow the user to detect the manipulation. Secondly, it must guarantee security and 
prevent the user from leaving the tracking area or colliding with objects or other 
persons. Generalization to multiple users or any virtual environment is the third 
requirement. Finally, an RDW technique must not have any undesirable side-effects, 
such as cybersickness or distraction from the primary task. These properties also 
depend on static parameters such as room size, the number of users or the size of the 
tracking area, as well as dynamic parameters such as the previous positions of the 
users and their targets.

Most RDW approaches change the rotation, translation or movement on a pre-
defined path in the virtual world in relation to the real environment. For individual 
cases of this mapping, it has been observed in relevant studies that users do not 
notice a deviation of the virtual rotation in the range of −20% to +50% of the real 
rotation angle. For RDW movement along a curve, Langbehn et al. (2017) were able 
to simulate a virtual area of 25 m × 25 m with a physical tracking area of 4 m × 4 m. 
All previous research results confirm the advantage of smaller, more subtle, and 
frequent modifications over larger, less frequent modifications. Therefore, the idea 
of using unconscious blinking or saccades – the fast jumps between fixations during 
which the visual system is blind – as an opportunity for manipulation of positioning 
is interesting. Sun et  al. (2018) describe a system that allows dynamic saccadic 
repositioning in real time and even evades moving elements, e.g., other users.

However, if the user reaches the edge of the tracking area or an obstacle too 
quickly, the cautious countermovement is not fast enough to avoid tracking or colli-
sion problems. In Razzaque (2005) it was suggested that in such cases, the system 
should “interrupt” users in navigation by forcing them to turn their heads briefly. 
Since after such a distraction one has to re-orientate oneself in the virtual environ-
ment, the system can rotate the virtual scene so that the user then moves away from 
the obstacle or the tracking border.

Peck et al. (2011) have presented a three-stage system RFED (“Redirected Free 
Exploration with Distractors”), which is designed to prevent users from moving 
beyond tracking limits or colliding with real obstacles during free exploration in a 

6 Interaction in Virtual Worlds



220

virtual world. In each frame, the system determines the expected user direction and 
rotates the scene unnoticed by the user in such a way that the next step really goes 
into the middle of the tracking space. If the user gets too close to the tracking limits 
by fast movements, a distraction in the VR environment is generated as a second 
step. In Peck’s example, a hummingbird flies close in front of the user and provokes 
the required head movement. If even this distraction is not enough, a virtual barrier 
is faded in, which makes it clear that there is no further movement feasible.

An alternative approach by Suma et al. (2011) subtly changes the virtual archi-
tecture in the scene. This approach makes use of change blindness, a phenomenon 
of visual perception in which sometimes large changes in a visual scene are not 
perceived by the viewer. Specifically, the position of doors and passageways behind 
the users was dynamically changed in the work, so that almost 220 m2 of virtual 
space in an 18.5 m2 area was accessible. Only one person out of 77 users noticed this 
manipulation.

6.5.3  Leaning Interfaces for Movement Control

In connection with the movement technique of steering, there are special interaction 
techniques that stimulate the sense of balance more strongly than movement on the 
spot through walking in place. The user leans in the desired direction of movement 
and the system calculates the locomotion. This “leaning” is comparable to steering 
a motorbike or moving while skiing or skateboarding. Leaning-based interfaces 
often provide hands-free, easy-to-learn, space-efficient and economical motion con-
trol that uses the sense of balance as physiological feedback (Wang and Lindeman 
2012). Different types are distinguished depending on the input device used and the 
type of force applied.

• Isometric interfaces require a holding force, i.e., the muscle tension is not con-
verted into movement. The Wii Balance Board is an example of an isometric 
leaning interface because it does not move when in use.

• Isotonic interfaces have practically no noticeable counterforce during use, i.e., 
there is no resistance and the input device moves effortlessly. An example is the 
Tony Hawk RIDE game board, which allows users to move in any direction 
without feeling any resistance.

• The combination of both approaches is called an elastic interface in VR and 
offers a better user experience and a higher presence than a purely isometric 
interface (Wang and Lindeman 2011).

An example of such an elastic interface is the input device ChairIO (Beckhaus 
et al. 2007; see Fig. 6.5). Such “leaning-based” interfaces have the advantage that 
they do not require much space. In contrast to purely virtual techniques, they stimu-
late the sense of balance and thus enable higher presence. Utilizing inexpensive 
tracking technologies, unusual interfaces can be realized that enable an attractive 
user experience.
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6.5.4  Teleportation for Movement Control

One of the simplest approaches to traveling is teleportation in VR. This approach 
reduces the susceptibility to cybersickness, as the path to the new position is not 
perceived. However, at the same time, the user’s orientation is limited as it is diffi-
cult to figure out their location on their own cognitive map. On the other hand, users 
are used to cuts from traditional film, in which there is also an abrupt change of 
environment based on the narrated content. The only essential difference is that in 
VR the user actively causes the abrupt change and also chooses the target. While 
classical film editing has rules such as the 180° rule (the orientation of the camera 
before and after the cut should avoid crossing an imaginary line that would result in 
the “swapping” of right and left), comparable design guidelines are still lacking in 
teleportation.

A special form is the point & teleport method, where users are teleported to a 
point in the field of vision, which they have previously selected by a selection 
method like pointing (Bozgeyikli 2016). To do this, the user points to the desired 
point, activates the process, and is immediately at the chosen location. The orienta-
tion remains the same. One reason for the popularity of this method is that the user 
can move freely within a limited tracking area (room-scale VR, approx. 
10 m2–20 m2). In addition, the point & teleport method, in combination with walk-
ing, in room-scale VR allows both exact movements near the user’s position and 
movement over long distances. In studies comparing different methods, such as 
teleportation, joystick and redirected walking for room-scale VR, subjects attest that 
teleportation is intuitive and user-friendly, while the use of joysticks often leads to 
cybersickness (Langbehn et al. 2018).

Fig. 6.5 The ChairIO allows navigation in a virtual environment by leaning in the desired direc-
tion of movement. To implement this concept, a special chair was equipped with additional sensors 
according to Beckhaus et al. (2007). (© Steffi Beckhaus. All rights reserved)
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Another special form is the speed teleporting method. It was added to the VR 
version of the well-known first-person shooter Doom because the speed of the game 
poses special challenges to the player’s movement. In speed teleporting, the camera 
is not changed abruptly nor does the user see a black intermediate image when 
changing location. Instead, images are shown of how the user moves at high speed 
on the path from the start position of the teleportation to its end position. Therefore, 
the user can continue to act during the teleportation. However, this form of telepor-
tation is more prone to the occurrence of cybersickness.

6.5.5  Route Plan, Goal-Based and Guided 
Movement Techniques

The interaction techniques discussed in this section differ from the direct motion 
controls mentioned so far because the users partly give up control of their move-
ment. In guided navigation, a user makes use of a moving entity (e.g., uses a train, 
steps on an escalator, hops on a conveyer belt) and is moved by it. In route plan or 
goal-based movement techniques, users specify only one path to the target, which is 
then followed. This two-step approach of path planning and execution of movement 
is less common in virtual environments. The user defines the path by directly speci-
fying the path on a map, by specifying waypoints through which a path is interpo-
lated or by specifying a destination while the system automatically determines the 
optimal path to that destination. An advantage of losing control over one’s own 
movement is that the path animation can be optimized by motion smoothing. This 
also includes goal-based techniques where the user only specifies the desired end-
point and the system determines and executes the path to that point itself. For an 
easy selection of possible targets, 2D maps or the three-dimensional world-in- 
miniature (WIM) technique already presented in Sect. 6.3.3 can be used. For large 
virtual worlds, especially, a three-dimensional miniature is a good approach to 
select the desired target. The manipulation of the WIM must be done with suitable 
tracking technologies and the WIM must be able to be displayed in the virtual envi-
ronment properly. In large installations such as a CAVE or a powerwall, only a 
display surface can be utilized, which is far away from the user. With the availability 
of mobile devices and tablets with good position sensors, this hardware is particu-
larly suitable for use as a WIM, as the necessary movements can be easily regis-
tered, direct touch with finger, pen or keystroke is possible, and the WIM can be 
rendered directly on a screen close to the user.
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6.5.6  Criteria for Navigation Techniques

At this point an overview of important design recommendations is given. These are 
essentially based on Bowman et al. (2004).

• Virtual landmarks should stand out clearly in the scene and be located at a suit-
able, clearly visible position.

• The motion control should use techniques and input devices that support physi-
ological movement cues.

• Maps support orientation very well if they are readable, represent the environ-
ment with the current position of the user, and are suitably oriented. It is impor-
tant to choose the right size so that the map does not obscure the surroundings.

• Maneuvering techniques must first be easy to use to facilitate rough positioning 
and later also allow for exact alignment.

• The motion control should be selected according to the application, the goal of 
the user and the technical conditions (e.g., I/O devices) of the virtual environment.

• Natural and magical interaction techniques can be equally helpful. Therefore, 
one should always consider both possibilities in interaction design. Compatibility 
with other techniques (e.g., for manipulation) should be considered.

• Different interaction techniques may also be useful for different motion control 
tasks. It should be taken into account that users may have different abilities. It is 
helpful to offer simple and complex navigation techniques when the user profiles 
differ greatly.

• For exploration and search, steering techniques and walking are well suited; for 
goal-based tasks (“Go to X”), procedures based on route plans are better.

• If navigation is only a secondary user task, the interaction technique should be as 
simple as possible so that the user can focus on the important tasks.

• In the case of complex interaction techniques, users should be trained in order to 
generate overview knowledge.

6.6  Processes for the Design and Implementation 
of Interaction

It is essential for the success of a VR/AR system that the applied interaction tech-
niques allow for a system with good usability. How can this be achieved during the 
development of the system? How should one proceed when designing VR/AR inter-
action techniques? How can one ensure that not only technical requirements are 
considered in the development processes? Here it makes sense to draw on previous 
experience and results in the development of human–computer interfaces in gen-
eral. VR/AR can be regarded as a special case. Therefore, the following section will 
highlight the special features of VR/AR, before the next section focuses on the 
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general software engineering concept of human-centered design as a starting point 
for a successful approach to the design and development of VR/AR interaction.

6.6.1  Characteristics of VR/AR User Interfaces

Human–computer interaction is important for many software systems, for example 
in the desktop or web area. Over time, design processes have been established in 
these domains that are also applicable in principle to the design of user interfaces in 
VR. In practice, however, some special features of VR need to be considered in the 
design process. A crucial difference is the lack of standardization. For desktop 
applications and the design of websites, the available hardware (and the interaction 
techniques that can be used based on it) has long been assumed to be largely stan-
dardized. However, these prerequisites do not apply to the field of VR/AR. In par-
ticular, standardized hardware platforms have been developing only recently. 
Experience has shown that careful coordination between hardware and software is 
necessary to arrive at highly usable solutions. Thus, the development or the selec-
tion of interaction hardware in the design process must be considered equivalent to 
software development. Specifically, the following differences arise for VR/AR 
applications compared to other domains:

• Development processes: The established human-centered design processes can 
in principle be transferred to VR/AR applications. Differences arise primarily for 
individual design activities within these processes. Furthermore, the develop-
ment/selection of suitable hardware must be included in the process.

• Authoring kits: In the desktop and web area, developers have access to estab-
lished and largely standardized authoring kits of interaction and presentation 
elements (widgets or controls). Since their visual design and function has been 
optimized over the years, the developer can concentrate on the problems arising 
from the interaction of several widgets in a user interface. In the field of VR/AR, 
on the other hand, even basic interaction techniques often have to be reimple-
mented, so that problems can already be expected here.

• Tools: In the desktop area, rapid prototyping tools are widely used to quickly 
create user interface designs. They allow authors to compare different designs at 
an early stage and involve end-users in the design without programming effort. 
Comparable tools are only available to a limited extent for VR/AR applications. 
Furthermore, there are hardly any special test tools that help developers to evalu-
ate and test.

Due to these specifics, different approaches have been developed in the past to 
support the design of VR/AR interactions. A common concept is to develop com-
plex interactions based on simple building blocks provided by an appropriate tool-
kit. A systematic approach to this was presented e.g. by Card et al. (1990). The basis 
is formed by the available sensor data and a series of operators for linking, which 
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together span a design space for interaction techniques. This concept of the design 
space supports the developer in the systematic consideration of different design 
options. The physical properties that can be detected by input sensors (e.g., absolute 
and relative position, absolute and relative force) are combined with linking opera-
tors (e.g., merge, layout, connection). An interaction technique is realized by com-
bining physical sensor data with logic operators and mapping the resulting data into 
the application domain. In practice, this approach is well suited to specify interac-
tion techniques but does not provide much support for (creative) design and practi-
cal implementation. Another well-known approach to systematize the development 
of VR/AR interactions goes back to Bowman and Hodges (1999). It is based on a 
taxonomy of typical recurring interaction tasks (such as selection, positioning or 
manipulation of 3D objects). Based on these general interaction tasks, a division 
into individual subtasks is made. The technical implementation of these subtasks 
can then be carried out by one or more technical components. For example, the 
interaction task “coloring a 3D object” can be divided into the following subtasks: 
selection of an object, selection of a coloring tool and application of the tool to the 
object. The taxonomy is supplemented by various metrics that describe the suitabil-
ity of a specific interaction technique in a concrete application context. In the above 
example, the metrics can then, for instance, provide developers with information on 
the advantages and disadvantages of different potential components for implement-
ing the subtask “selecting an object”.

6.6.2  Human-Centered Design of VR/AR Interactions

A systematic approach that is central to human-centered design is suitable for devel-
oping both individual interaction techniques and complete systems with good 
usability. Iterative procedures have established themselves as “best practice”, which 
divide the development into several phases and are iterated taking the results of user 
tests into account. In the literature, there are various iterative process models, some 
of which have the status of ISO standards (e.g. DIN EN ISO 9241-210, often 
referred to as its outdated predecessor ISO-13407, or ISO/PAS 18152). In practice, 
VR/AR projects often use a procedure adapted to the specifics of the current project.

Iterative development processes are based on a cyclical sequence of design activ-
ities (see Fig. 6.6). The sequence of these activities is repeated until a satisfactory 
result is achieved. The goal is to obtain feedback from users as early and repeatedly 
as possible and to be guided by this feedback in the development process. The actual 
iterative design process is often preceded by project preparation. The following 
points should be addressed during project preparation:

• Defining the development goal
• Specifying a (possibly modified) development process
• Putting together the development team
• Selecting the development tools

6 Interaction in Virtual Worlds



226

• Planning of user participation
• Defining quality criteria, e.g. learnability, efficiency, effectiveness, error rate, 

user satisfaction, user experience

In DIN EN ISO 9241-210, the procedure is structured into four central design 
activities (see Fig. 6.6), which are considered in more detail below:

• Analysis of the context of use
• Specification of requirements
• Concept, design, and implementation
• Evaluation (especially user tests)

 Analysis of the Context of Use

The analysis and documentation of the context of use, for example through inter-
views, field studies and user workshops form the basis for the following develop-
ment. In this activity, the user groups, the tasks to be supported and the application 
environment are analyzed and documented. It is important in the development of 
VR/AR applications that the technical environment is also analyzed here, for exam-
ple, to identify the available sensors and input modalities. The specification of the 
usage context is not a static document in an iterative process, but is continuously 
checked, updated and refined during the development. Especially in VR/AR appli-
cations, in which new interaction techniques based on additional sensors are inte-
grated, significant changes can occur during development.

Fig. 6.6 Iterative development process according to ISO 9241-210
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 Specification of Requirements

In this design activity, specific requirements for the system are identified taking into 
account the context of use. In addition to the requirements of the customer and the 
end-user, other framework conditions such as goals regarding usability, regulations 
for occupational safety, etc. must also be considered. As the development of VR/AR 
systems often involves breaking new technical and thematic ground, explorative 
techniques such as scenario-based design (Carroll 2000) have proven effective. 
Here, short stories are used as “scenarios” to describe a hypothetical interaction. 
These quickly created and easily modified prototypes enable potential users and 
content experts to provide feedback on the planned processes early in the design 
phase, even if the system (and possibly even the necessary technology) is not yet 
available. Since these prototypes can be created and modified quickly, it is possible 
to explore a wide range of different concepts at low cost. More formal approaches, 
such as functional decomposition and task analysis, are often more difficult to apply 
in VR, as with novel interaction techniques and applications the detailed require-
ments can often only be identified iteratively during development.

The concept of use cases is closely related to the scenarios in scenario-based 
design. Use cases also describe the interaction of users with a system. The term use 
case is sometimes used differently. One view (particularly common among design-
ers) interprets use cases in terms of goals that are supported by an application. A 
VR/AR application of a complex technical system could support, for example, the 
use cases “trade show presentation” and “interactive training”, each of which con-
tains different functionalities. A scenario then describes an interaction sequence in 
one of these use cases, for example, an interactive sequence for presenting content 
in the “trade show presentation” use case.

The second view (especially in software engineering) employs use cases to 
define an interactive system in detail. In this view, a use case consists of a list of 
steps (both user and system) that lead to the achievement of a goal. A central differ-
ence is the stronger formalization. Use cases in software engineering are often for-
mulated in a formal system, e.g., in a UML use case diagram. This view of use cases 
is of particular interest if the initial exploration is already completed and an interac-
tion concept is to be implemented.

 Concept, Design and Implementation

This activity is concerned with creating designs. For the development of novel VR/
AR systems, it is useful to apply a rapid prototyping strategy in an iterative process. 
In the first iterations, the designs are created as sketches, storyboards or mock-ups 
without implementation. Then, they are evaluated in the next step of the iteration 
(Buxton 2007). Sketches represent a simple graphical representation of the inter-
face, while storyboards (originally used in film production) represent a dynamic 
interaction process as a comic-like sequence of sketches. The concept of mock-ups 
was taken from industrial design, where scale models have a long tradition. In the 
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context of user interfaces, the term mock-up can refer to both purely visual dummies 
and partially functional prototypes. The aim is to explore a wide range of design 
alternatives at a reasonable cost. This approach is particularly important for new 
types of user interfaces as less experience can be drawn on and design decisions 
should be based on user feedback – and users can only give limited feedback on a 
purely textual description of a user interface. In later iterations, the design represen-
tation is then increasingly refined until the implementation has become mature 
enough to be released.

 Evaluation (Especially User Tests)

In the following activity, the designs are evaluated or the implemented solutions are 
tested with real users. Based on the results, all or individual design activities are 
then iterated to improve and refine the design. Since evaluation in the form of user 
tests is of central importance for the development of attractive VR/AR applications, 
it is discussed in detail in the following section.

6.7  User Tests

Testing interactions in virtual environments is essential, especially because the 
complex behavior of humans cannot be modeled mathematically in such a way that 
the results of these tests are predictable. Therefore, user interaction in the virtual 
environment, as well as the user interface as a whole, is mostly designed and devel-
oped iteratively. Each iteration ends with a test. The evaluation of the test gives hints 
about what to change in the next iteration. Therefore, tests are not carried out only 
with the completely developed VR/AR system but in all development phases. The 
earlier that problems are detected by tests, the easier they can be solved. Testing 

“The purpose of the prototype is to make real the conceptual structure speci-
fied, so that the client can test it for consistency and usability.” Frederick 
P. Brooks Jr. (1995)

A prototype of a software application is a working software program that 
simulates some aspects of this software application while being less complex 
(e.g., by being less robust, by supporting only one specific type of hardware, 
or by omitting the implementation of data security requirements). Nielsen 
(1994) distinguishes between horizontal prototypes that simulate a broad 
range of the software application’s features and vertical prototypes that focus 
on simulating a smaller subset of features more in-depth with increasing 
functionality.
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usability is of particular importance. Other aspects of software ergonomics can also 
be checked by tests, e.g., the user’s exposure to unnatural body poses in a virtual 
environment and the resulting fatigue.

Participants (also called test subjects) must be carefully selected so that they 
represent the later users of the VR/AR system well. An alternative to relying on 
participants is heuristic evaluation, in which a system is evaluated by at least two 
experts working separately from each other based on guidelines (general guidelines 
such as standards and norms, for example, DIN EN ISO 9421 “software ergonom-
ics”, or product-specific guidelines).

A test plan must be drawn up so that the individual tests can be carried out effec-
tively and are comparable. For this purpose, the test procedure is divided into 
phases. The first phase is test preparation, which should take place before the par-
ticipant appears. After a test introduction (greeting, providing information on the 
purpose, procedure and duration of the test, and obtaining each participant’s consent 
to take part in the test), the actual test execution is conducted. A participant can 
execute several tests one after the other (within-group design). This has the advan-
tage that fewer participants are required and individual differences do not have such 
a strong impact. However, the participant tires more quickly, and learning effects 
occur, for example, if a task needs to be solved several times in different variations. 
Here, a test in which each participant tests only one variation (between-group 
design) is better suited. A between-group design is unavoidable if one wants to take 
into account characteristics (e.g., age, handiness, gender) of the users in the test – 
after all, a participant cannot take the test once as a young child and then minutes 
later as an adult. Assignments in a user test must be made randomly. For instance, 
in a within-group design, the order of the variants is determined randomly or accord-
ing to a fixed variation scheme (e.g., a Latin square). The test instructions should be 
specific and should not leave room for interpretation or be sub-specified (for exam-
ple, is the participant standing or sitting?). The last phase of the test is the debrief-
ing, where, in addition to thanks and possible rewards, the participant should be 
asked for free comments. In total, the test duration should not exceed 45 min. Before 
the test is conducted with a large number of participants, a pilot (also called pre-test) 
with two to three participants should be conducted. This serves to better estimate the 
time required and to detect problems in the test plan (e.g., test instructions are 
ambiguous) at an early stage. Throughout the entire test, the test conductor should 
bear in mind that ethical aspects must be taken into account. After all, this is a test 
involving human beings as test subjects, so it is essential to protect privacy, be 
friendly and allow the test to be stopped immediately at the request of a participant. 
Some organizations require that a user test be approved by an ethics committee. In 
general, it is necessary to sign a declaration of consent or informed consent, which 
contains information on confidentiality, anonymization, utilization of data or pos-
sible risks, such as cybersickness, among other things.

Errors occur during the execution of the test and during measurement that can 
hardly be avoided. However, one should work towards minimizing systematic errors 
(bias). The mere fact that the participants are aware that they are being tested 
changes their behavior and falsifies the test results (Hawthorne effect). This can be 
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counteracted by creating a calm and relaxed test atmosphere. To avoid bias, tests 
should always be performed in the same way – it helps to adhere strictly to the test 
plan and to keep the environmental conditions (brightness in the room, temperature, 
volume, presence of an audience etc.) constant during all tests. The test leader 
should be neutral so that his or her opinion does not influence the participants. Thus, 
comments such as “I have worked very hard on my virtual world for three months, 
you will find it awesome” should be avoided. Bias can also be caused by learning 
effects that occur during the test. Over time, the participant becomes more and more 
familiar with the VR/AR system. Since the learning curve is usually steep at the 
beginning and then flattens out, it is advisable to first plan an introductory training 
session during the test – the first learning effects will then take place in this phase, 
in which measurements are not yet taken.

A simple test is to set tasks for participants and watch them perform them (record 
them on video if necessary or use logging tools like Morae and analyze them later). 
It is particularly effective to have the participants constantly say what they are think-
ing and what they are about to do (thinking aloud test). This helps to understand the 
thoughts of the participants. The test leader does not comment on the participants’ 
statements but just reminds the participants to verbalize. It is also helpful if the test 
leader demonstrates the verbalization at the beginning of the test so that it does not 
seem awkward or embarrassing to the participants. During the evaluation, phenom-
ena observed throughout the interaction of participants with the VR/AR system can 
be described (anecdotal data) or qualitative data can be collected. A technique for 
qualitative analysis is coding, where a code is assigned for an incidence (e.g., “par-
ticipant is frustrated”). In the end, the occurrences of the codes are analyzed. If 
several people independently code the same recording of a user test and the results 
are consistent, the observations have been objectified. Cohen’s kappa, a statistical 
measure, is used as a measure of agreement. The analysis of qualitative data is often 
based on the grounded theory of Glaser and Strauss (1967).

Interviews and questionnaires are further techniques to collect more data about a 
VR/AR system in a test. For this purpose, already existing carefully designed ques-
tionnaires can be used. Examples are the ISONORM questionnaire for usability 
(Prümper 1993), the AttrakDiff questionnaire for measuring user experience (prag-
matic as well as hedonistic quality), the QUIS questionnaire (Questionnaire for 
User Interaction Satisfaction), the task load index of NASA (NASA-TLX), which 
deals with the stress and load users feel, or questionnaires for assessing presence 
such as WS (Wittmer and Singer 1998) and SUS (Slater et al. 1994). Questionnaires 
allow the test to be performed without the presence of a test leader. Special attention 
must be paid to the clear formulation of test instructions and questions (e.g., no 
double negations) because further questions are not possible. Questions that charac-
terize the participant (age, gender, previous knowledge, etc.) should be asked at the 
end of the questionnaire, as even a participant who is tired at the end of the test can 
still answer these questions easily. Open-ended questions (such as “What did you 
find disturbing when using the VR system?”) are often not answered or not answered 
in detail. Nevertheless, at least one open question of the type “Do you have any 
further comments or remarks?” should always be included. If a test leader is 
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present, he or she can also ask the open questions in the form of an interview, as this 
gives better chances for a detailed answer. Multiple-choice questions are often used 
in questionnaires. A special form is a Likert scale. Here statements are made (e.g. 
“The navigation was easy to learn.”) and the participants can choose one of several 
alternative answers to express their degree of agreement with the statement (e.g., 
1 – “agree fully”, 2 – “agree”, 3 – “don’t know”, 4 – “don’t agree”, 5 – “don’t agree 
at all”). Another special form is the semantic differential scale. Here, pairs of oppo-
sites are used in a statement and the users can indicate their position on a scale (usu-
ally 5 or 7 parts), for instance, “The learning of the navigation was: easy _ _ _ _ _ 
difficult”.

Scales such as the Likert scale in a questionnaire allow quantitative data to be 
collected. Quantitative data can also be obtained by taking further measurements in 
the test, such as the time taken to solve a task or the number of errors made. Three 
cases are distinguished for the evaluation of these data. In the first case, nominal 
data are available, i.e., data that cannot be ordered (e.g., the participant was right- 
handed/left-handed). In the evaluation, these data are described by their ratio (e.g., 
in the user test 12% of the persons were male, 88% female). They can be visualized 
with a pie chart. In the second case, the data is either ordinal, i.e., the data can be 
put in a sequence (e.g., interaction technique A is rated better than interaction tech-
nique B – but no statement is made as to whether it was better by a short margin or 
by lengths), or rational, i.e., here differences between the values have a meaning 
and the values can be put into a ratio (e.g., a participant needed twice as long (80 s) 
to complete a task with interaction technique A than with interaction technique B, 
where it took 40 s). The data is evaluated by determining q% quantiles, where q lies 
in the interval from 0 to 100. For example, the 30% quantile is the observed value w 
where 30% of all values are smaller than w. The 50% quantile, the median, is always 
determined. The data can be visualized in a bar chart or a box plot (also called a 
Tukey box plot or a box-and-whisker diagram); see Fig. 6.7. The values of scales 

Fig. 6.7 Visualization of the test results with a box plot
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from questionnaires such as the Likert scale are ordinal. It is controversially dis-
cussed whether they can also be treated as rational data  – this would mean, for 
example, that the difference in agreement between “fully agree” and “agree” is as 
great as the difference between “don’t know” and “don’t agree”. The third case is 
when data is both rational and normally distributed, i.e. the distribution function of 
the data is in the form of a Gaussian bell curve. In this case, it is sufficient to calcu-
late the arithmetic mean μ and the standard deviation σ. As a rule of thumb, a nor-
mal distribution can be assumed if the number of measured values is large (usually 
greater than 50) or if more than 99.7% of all measured values lie in the interval 
[μ – 3σ, μ + 3σ]. The presence of a normal distribution can be checked more pre-
cisely with a statistical test, the Shapiro-Wilks test.

Since usually not all potential users of the VR system are tested, but only a 
sample instead of a complete survey, the question remains how meaningful the test 
result is. Let us assume that four tests have been carried out and all participants rate 
the VR system A better than B. Can we conclude that A is actually better? Assuming 
that both systems are equivalent on average (null hypothesis), 50% of all users 
would have to prefer A. Of course, it could be that we have accidentally caught four 
people among our participants who prefer A – just as a perfect coin can be flipped 
four times in a row and show “heads” four times. The probability for this case, if the 
null hypothesis holds, is (0.5)4 = 6.25%. In other words, if we answer the initial 
question with “yes”, i.e., reject the null hypothesis, the probability is 6.25% that we 
are wrong (and A is not better in reality after all, and we were unlucky in our sample 

User Test Example 1: In a user test, nine users had the task to perform a task 
once with VR system A and once with VR system B (whereby it was ran-
domly determined which VR system was used first). The times for task com-
pletion were measured. The following results were obtained (the first number 
in the tuple indicates the time in seconds for A, the second the time for B): 
(66,102), (75,80), (62,81), (74,46), (71,105), (76,70), (70,100), (68,99), 
(75,102). We formulate our null hypothesis: “There is no difference in task 
processing time between the two systems”. Our hypothesis to be tested, “A is 
faster than B, or B is faster than A” comprises two possibilities. Hence, we 
must perform a two-tailed test. There is a within-group design (connected 
sample) with two groups and rational data. Therefore, we carry out a Wilcoxon 
signed rank test and obtain a p-value of 7.422%. The p-value is higher than 
our threshold of 5%. Due to the small number of participants, we cannot 
assume normally distributed data. In fact, the Shapiro-Wilks test shows that 
our data is not normally distributed. As a result, we must not use the paired 
t-test. All in all, we cannot make any statements regarding the hypothesis in 
our user test.
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and happened to test an unrepresentative selection of users). As a rule, a probability 
value (p-value) of at most 5% is required. In our example, based on the test, we can-
not prove that A is better than B in a statistically significant way at the significance 
level of 5%. No statement can be made. There are several statistical methods to 
calculate this p-value, which are shown in Table 6.1. Different tests are used depend-
ing on the type of data and the question. A distinction is also made as to whether a 
within-group design (paired groups) or a between-group design (unpaired groups) 
was used in the test. If you have more than two groups (e.g., five interaction tech-
niques) that you want to compare, you can compare two groups in pairs. However, 
the significance level should be divided by n when statistically evaluating test data 
n-fold (Bonferroni correction). Therefore, there are special tests such as ANOVA 
(analysis of variances) which look at several groups simultaneously. The p-values 
for the individual statistical tests can be calculated with software, e.g., with spread-
sheet programs such as Microsoft Excel or with statistical packages such as the 
commercial SPSS or the free software R (r- project.org).

If one wants to determine whether two variables are related in measurements 
(e.g., the evaluation of an interaction technique with the handedness of a person), 
correlations can be calculated (see Table 6.1) to quantify this relationship. If there 
are more than two variables, a regression analysis is carried out. Especially in sci-
entific studies, one is not only interested in correlations, but also in causations (and 
correlation does not imply causation). For this purpose, the methodology of the 
controlled experiment is used. Here, all factors are identified that can influence a 
measurable result, the score. In the experiment, all factors except one, the treatment 
factor, are kept constant. In this way, cause–effect relationships between changes in 
the treatment factor and changes in the score can be examined.

User Test Example 2: In a user test, 10 participants had tested VR system M 
and 12 further participants had tested VR system N. All participants evaluated 
the system in a questionnaire with school grades (A to F). As a result M 
received the following grades: 3 × “A”, 2 × “B”, 3 × “C”, 2 × “D”, N received 
the following grades: 1 × “A”, 3 × “C”, 5 × “D”, 3 × “E”. The data are ordinal 
and there is a between-group design (unpaired groups). We apply the Mann- 
Whitney U-Test (also called the Wilcoxon rank sum test) as a one-tailed test. 
To conduct the test, we code grade “A” as “1”, grade “B” as “2” and so forth. 
We formulate the following hypothesis: “M was rated better than N”. We 
obtain a p-value of 0.789%, which is less than 5%. As a result, we can say that 
our test confirmed the statement “M was rated better than N” in a statistically 
significant way.
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6.8  Ethical, Social and Legal Aspects of VR/AR

Why is it essential to actively deal with ethical or legal aspects when designing or 
providing interactive VR/AR systems to users? Why can it have moral or legal con-
sequences if you fail to do so? An essential answer to these questions is that VR/AR 
can have significant effects on users. This becomes very obvious when users of a 

User Test Example 3: In a user test with two interaction techniques A and B, 
the following results are obtained: 12 right-handed persons prefer A, 23 right- 
handed persons prefer B, 18 left-handed persons prefer A, and 9 left-handed 
persons prefer B. Our hypothesis is: “There is a connection between handed-
ness and preference of an interaction technique”. We have nominal data avail-
able with two unpaired groups. We run Fisher’s exact test and get a p-value of 
2.036%. This is less than 5% and our data show statistically significantly that 
there is a correlation between handedness and interaction technique. By cal-
culating the contingency coefficient (according to Pearson) we can quantify 
the strength of the correlation. In our example, it has a value of 0.306. A value 
of 0 would mean no correlation, a value of 1 would mean maximum 
correlation.

Table 6.1 Application of statistical methods in the evaluation of user tests

Task Nominal Ordinal or rational

Rational and 
Normally 
distributed

Statistic description Relative frequencies q% quantiles, especially 
median

Arithmetic mean, 
standard deviation

Compare 1 group with 
hypothetical value

Chi-square test Wilcoxon signed rank 
test

One-sample t-test

Compare 2 groups, 
unpaired

Fisher’s test Mann-Whitney-U-test 
(Wilcoxon rank sum 
test)

Unpaired t-test

Compare > 2 groups, 
unpaired

Chi-square test Kruskal-Wallis test One-way ANOVA

Compare 2 groups, 
paired

McNemar’s test Wilcoxon signed rank 
test

Paired t-test

Compare > 2 groups, 
paired

Cochran’s Q test Friedman test Repeated measures 
ANOVA

Quantify the relationship 
between two variables

Contingency 
coefficient (after 
Pearson)

Spearman correlation Pearson correlation
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VR system vomit due to cybersickness or when users of AR stumble and fall down 
because they perceive reality only partially. There are also less direct and visible 
effects. It is easier to distance oneself emotionally from a movie when watching it 
sitting at a certain distance to the screen than being fully immersed in a virtual envi-
ronment. Users experience themselves as part of the virtual world (as opposed to as 
an observer of movies) and as part of the events. The more actively the user can 
interact with the virtual world and the more physical stimuli are experienced con-
gruently with the virtual environment, the more credibly and “real” this world is 
experienced. Thus, the experiences potentially have a stronger effect on the psyche 
and self-model (Madary and Metzinger 2016) and thus also, often unconsciously, 
on current thoughts, feelings and behavior.

Behavioral changes can be induced, for example, by choosing an avatar with a 
certain size, skin color, gender and body dimensions. Research has shown the effect 
of priming through stereotypes, i.e., ideas and images typically associated with cer-
tain social groups (e.g., defined by race or gender) such as their behavior and abili-
ties. People react differently to such priming in social contexts. The extent to which 
people are confident in themselves and perform also depends on this. The choice of 
a certain type of avatar in a virtual world can be a form of priming and can lead to a 
change of behavior later on in reality, even if the virtual world has already been left. 
Peck et al. (2013) have shown in an immersive experiment that after a stay in a vir-
tual world in the body of a dark-skinned avatar, implicit racial prejudices decreased 
significantly, in contrast to the control groups without a dark-skinned VR avatar. 
Piryankova et al. (2014) were able to show the effect of experienced altered versions 
of one’s own body (thicker, thinner) on the self-image.

The term “rubber hand illusion” describes the phenomenon of triggering a sub-
jective perception with VR/AR in which we are no longer our own body, but iden-
tify with an avatar, at least in partial aspects (Lenggenhager et al. 2007; Metzinger 
2014) – just as one can trick people to integrate a rubber hand into their own body 
awareness. This transformation is created, for example, when a user feels a stimu-
lus on his or her own back but can only see it on the distant avatar (see Fig. 6.8). In 
doing so, the sense of self can, so to speak, extend in the direction of the avatar. 
This is called a whole-body illusion. Other methods, for example, showing your 
own physical heartbeat as a pulsating aura around the avatar, can lead to similar 
effects. If one investigates the virtual environment from the perspective of an ava-
tar, tactile sensations can be induced with visual methods. With these methods, 
events that happen to the avatar in the virtual world can be experienced more 
strongly as “happening to ourselves”, with all the possible consequences that can 
result from this.

These and other presentations of illusory content and contexts that cannot be 
experienced in the real world can lead to a change in the inner models of “how the 
world works” (Madary and Metzinger 2016) and thus to manipulation of internal 
assumptions and models. These modified internal models, no longer learned in the 
“real” world alone, may then possibly determine the user’s actions in the real world. 
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An example of this can be found in clinical psychology. Rizzo and Koenig (2017) 
show the progress made since the mid-1990s in the use of VR to treat post-traumatic 
stress disorders and many types of other psychological, motor and functional 
impairments. It becomes clear that such “manipulations” of people by VR can later 
lead to dysfunctions in the real world if VR therapy is not professionally accompa-
nied, used responsibly and in full knowledge of possible consequences. The decep-
tive presentation and misleading of senses can have dire consequences, such as 
depersonalization. Cases of cyberbullying, immoral assaults or violence are known 
from non-regulated social VR worlds. A further problem area is an escape from 
reality (escapism).

Consequently, VR/AR can have diverse effects on users, including long-term 
effects, both obvious and not so obvious. This raises a lot of questions: How is the 
physical and mental health of users guaranteed? What are the effects of permanent 
residence in an immersive environment? If a user of AR can no longer distinguish 
between real and virtual content, what ethical and legal rules should apply in such 
an environment? What responsibility do developers, operators and users of VR/AR 
systems take? How do you make sure that this responsibility is accepted? Technology 
in general, and VR/AR in particular, is neither good nor bad. It is the effects of use 
on people and society that can become problematic, that must be estimated in time – 
and that must be considered when implementing and using VR/AR.  It must be 

Fig. 6.8 Synchronous 
stroking of the user’s and 
avatar’s backs can cause a 
“(partial) transfer of the 
sense of self” to the remote 
avatar. (© Steffi Beckhaus. 
All rights reserved)

R. Doerner et al.



237

considered that people not only create new technologies such as VR/AR and thus 
change their environment, but that they themselves are also changed, individually 
and as a society (e.g., with regard to self-perception, world view and judgment).

First indications of how to answer the questions raised above are available from 
various sources. The ethics guidelines of renowned computer science and engineer-
ing associations, such as ACM (2018), point out the essential aspects of ethical and 
social development of technology and its applications. Legal regulations that are 
significant for information technology systems can be found in many different 
places in the legal system, including data protection law (including employee data 
protection), freedom of information law, computer criminal law, intellectual prop-
erty law, IT security law, telecommunications law, media law, youth protection law 
and consumer protection law. Certification standards attempt to ensure the safety of 
commercial products. For example, IEC 62366-1:2015 obliges manufacturers of 
medical products to prove through evaluation that users are not jeopardized by 
incorrect operation. This means that there are implicit regulations for VR/AR appli-
cations, but these are usually only formulated in general terms and do not cover all 

Values: internalized ideas in a socio-cultural unit that are recognized as desir-
able (e.g., sincerity, justice, loyalty).

Morality: The actual principles of action of a community, based on com-
mon values and traditional customs and traditions; they enable an intuitive 
distinction to be made between “good” and “evil” and provide practical guid-
ance on alternative courses of action.

Ethics: Scientific discipline of philosophy that deals with the recogniz-
ability of values and the argumentative substantiation and precise formulation 
of moral principles. In everyday use, it is usually erroneously used synony-
mously with “morality”.

Law: External obligations of a party to act, which are usually sanctioned 
in case of violation. Law often has a moral quality, but does not regulate all 
ethical questions and also considers other issues (e.g., right/left-hand driving 
in road traffic).

ELSI/ELSA: Ethical, legal and social implications/aspects. Research 
activities that consider the non-technical aspects as an integral part of project 
work, especially in human–technology interaction projects.

Technology Assessment (TA): A research area in the philosophy of tech-
nology that considers developments in science and technology. Ideally, TA 
should support the public to form an opinion on the implications and conse-
quences of using technology. TA should also formulate recommendations for 
action to avoid risks and to exploit opportunities for society.
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aspects. For example, effects regarding possible changes in the personality of users 
are currently not regulated at all.

There are further indications from initial research articles on ethics and VR/AR, 
for example in the area of possible legal guidelines concerning VR (Spiegel 2017) 
or the ethical aspects of the use of VR in clinical psychology already mentioned 
(Rizzo and Koenig 2017). A largely unexplored aspect is the question of long-term 
consequences for the individual, but also society as a whole. This includes ques-
tions like:
What happens if we repeatedly do not experience real things through our senses but 
only perceive simulated stimuli? We know that humans adapt quickly to sensory 
inconsistencies. What happens if we are successful with actions that were previ-
ously impossible in reality? How do we deal in the real world with the habit acquired 
in VR that virtual actions have no real consequences?
How does the self-image change through the possibility/experience of one or many 
alternative self-representations (avatars) each with their own physical appearance, 
movement and behavior (identity tourism)? What effect do incongruent, distorted, 
or for the real world wrong, physiological and psychological stimuli have on the 
internal models of the human being?
What are the consequences of excessive use (overuse), escapism, physical neglect 
and self-image change on society, e.g., follow-up costs in the health care system?
What is the influence on people and societies through the realistic experience of 
fictional cultures, behavior and moral standards?

In this field of guidelines, laws, opportunities, risks and open questions, it is 
crucial that researchers, developers and product manufacturers should now be able 
to assess the advantages and risks of their developments in an informed and compre-
hensive manner – to meet their responsibilities. Otherwise, they could harm their 
users and possibly be sued for this. This is not an easy task when given the complex-
ity of the subject matter. In addition, the effects of VR/AR on people and society are 
not always obvious. It is also often difficult to causally attribute observed actions of 
users to VR/AR.

The five perspectives shown in Fig. 6.9 help to get an overview of the topics to 
be considered, the complex interrelationships, and possible effects of VR/AR for 
own research and project developments. A forward-looking risk assessment, a tech-
nology impact assessment and a social cost-benefit assessment are also necessary. 
Contents, procedures, forms of presentation, interaction possibilities, explanations 
and consent must be considered responsibly from each of these perspectives. The 
overarching view should be that VR/AR technologies are not developed and used as 
an end in themselves but should clearly serve people and their interests in the con-
text of use. In certain cases, the deliberate violation of such guidelines may be 
necessary, for example in the course of research on humans. However, this must be 
appropriately reflected and documented. Ethics committees, such as those that exist 
at most universities, can provide support in this regard.
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Fig. 6.9 Five perspectives that can show the effects of VR/AR and corresponding fields of action
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6.9  Summary and Questions

To ensure that users do not feel like apathetic or even paralyzed persons in a virtual 
environment, it is essential to enable interaction between the users and the virtual 
world in VR or virtual elements in AR. Thus, designing and creating a user interface 
is a standard task. This interface uses interaction techniques. With some of them, the 
user might already be familiar, as they stem from traditional user interfaces. Some 
interface techniques, however, are specific to VR, such as the world-in-miniature 
technique or the camera-in-hand technique. Another novel aspect of interaction in 
VR and AR is that it opens up unusual design possibilities: for example, interactions 
can be natural or magical. In every VR and AR, there are typical basic tasks that can 
be solved by suitable interaction techniques: selection (of objects or places, sur-
faces, volumes), manipulation, navigation and system control. The individual basic 
tasks can be refined so that navigation can be separated into wayfinding and travel-
ing – and traveling again can be separated into exploration, search and maneuver-
ing. Overall, the selected interaction techniques are to be integrated into an overall 
concept of a consistent user interface and design decisions are to be made, e.g., 
whether constraints or modes are to be introduced. Here, results from the field of 
human–computer interaction can be helpful. Thus, especially in the field of HCI, 
process models developed for the design and realization of user interfaces can gen-
erally be transferred to interaction in VR and AR. Early involvement of the users, 
the execution of user tests (and their careful evaluation, especially with statistical 
methods) and an iterative procedure can also be advantageously applied to VR/AR 
systems to achieve a high level of usability. So far, there are hardly any empirical 
values on how VR/AR affects the individual user. Ethical, legal and social implica-
tions have to be considered continuously with their different perspectives.

Check your understanding of the chapter by answering the following questions:

• Find examples of interaction techniques that can be classified as tethered!
• In a virtual operating room, the user has the task of selecting the right instru-

ments from a shelf with surgical instruments and handing them to the surgeon in 
a suitable orientation. Select a suitable selection technique and a suitable manip-
ulation technique. How can feedback be given to the user (as required for direct 
manipulation)?

• The limitation to five instead of six degrees of freedom in interaction in virtual 
environments, as mentioned in Sect. 6.3.2, can also be seen in the first-person 
shooter computer games available on the market. Which degree of freedom is 
usually not used here? With regard to the input devices used: Why is this the case 
and how would you integrate the sixth degree of freedom into such games? 
Which input devices would you use for the realization?

• Develop a navigation technique based on the metaphor of a “flying carpet”. What 
constraints are you introducing? Which modes could be useful here? How do you 
classify this navigation technique? Which navigation tasks can be covered?
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• You are developing a VR application for spatial planning. The users should be 
able to freely position furniture in a room and manipulate its dimensions and 
materials. Which questions should be answered in the analysis of the usage con-
text? Develop the first specification of requirements!

• Two important aspects of your VR application for spatial planning are loading 
room geometry and placing furniture there. In which categories of basic interac-
tion tasks are you looking for suitable techniques? Which techniques would be 
your first choice to implement these tasks?

• How would you change the concept of the spatial planning application if you use 
AR instead of VR, i.e., you place virtual furniture in a real room?

• To move to a very distant destination in a virtual world, one does not want to ask 
the user to walk for 20 min. One considers (a) displaying a selection list perma-
nently at the bottom of the screen from which the user can choose a destination 
or (b) recognizing a gesture (crossing the arms behind the head) of the user and 
interpreting the following voice input as a destination. What are the advantages 
and disadvantages of these two alternatives? Suggest your own implementation 
alternative (c). How can you find out which of the three alternatives (a), (b) and 
(c) least impairs the feeling of user presence in the virtual environment?

• How high would the p-value be in user test example 1 if the values did not come 
from 9 users, but from 18 participants, of which 9 users tested system A and 9 
users system B? [Answer: 2.412%]

• Which p-value would have been obtained in user test example 1 if the hypothesis 
“With A you are faster than with B” had been chosen (i.e., if a one-sided test had 
been performed)? [Answer: 3.711%]

• You are designing a VR application in which users control an avatar on a catwalk 
in order to show self-designed fashion to other users, who are also represented in 
the virtual world as avatars. Based on the five views in Fig. 6.9, consider which 
ELSI aspects are to be considered here, for what reason, and how. To what extent 
does it make a difference whether mirrors are present in the virtual world or not? 
What changes when AR is used to show an avatar on a real catwalk?

 Recommended Reading

Bowman DA, Kruijff E, Laviola JJ (2004) 3D user interfaces: theory and practice. 
Addison-Wesley, Amsterdam  – Standard textbook that discusses user inter-
faces in 3D.

Lazar J, Feng JH, Hochheiser H (2017) Research methods in human–computer 
interaction, 2nd edn. Morgan Kaufmann, San Francisco – Detailed presentation 
of various research methods relevant to VR interaction, including controlled 
experiments and ethnography.

Rubin J, Chisnell D (2008) Handbook of usability testing, 2nd edn. Wiley, 
New York – Practice-oriented book that shows how to plan, conduct and evaluate 
usability tests.
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Shneiderman B, Plaisant C, Cohen M (2016) Designing the user interface: Strategies 
for effective human–computer interaction (6th revised edn). Addison- Wesley 
Longman, Amsterdam  – Standard textbook for the field of human–computer 
interaction.

Tullis T, Albert W (2013) Measuring the user experience, 2nd edn. Morgan 
Kaufman, San Francisco – Book that focuses on measuring in the field of human–
computer interaction and presents a variety of metrics.

Further information on the topic of interaction in VR can be found on the numer-
ous websites of research institutions and especially in the conference proceedings of 
the corresponding conferences and workshops, e.g., IEEE Virtual Reality (IEEE 
VR), IEEE Symposium on 3D User Interfaces (3DUI), ACM Symposium on Virtual 
Reality Software and Technology (VRST), ACM Symposium on User Interface 
Software and Technology (UIST), ACM SIGCHI Conference on Human Factors in 
Computing Systems (CHI), IEEE Symposium on Mixed and Augmented Reality 
(ISMAR), Eurographics Symposium on Virtual Environments (EGVE), and the 
EuroVR Conference.
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Chapter 7
Real-Time Aspects of VR Systems

Mathias Buhr, Thies Pfeiffer, Dirk Reiners, Carolina Cruz-Neira, 
and Bernhard Jung

Abstract The term real-time refers to the ability of computer systems to deliver 
results reliably within a predictable – usually as short as possible – time span. Real- 
time capability is one of the most difficult requirements for VR systems: users expect 
a VR system to let them experience the effects of interactions without noticeable 
delays. This chapter deals with selected topics concerning the real-time capability of 
VR systems. In the first section, an overall view of VR systems shows which types of 
latencies occur between user input and system reaction. It also discusses how laten-
cies of the sub-components of VR systems can be estimated or measured. The second 
section presents common methods for efficient collision detection, such as the use of 
bounding volumes, which are important in real-time simulation of dynamic virtual 
worlds. The third section deals with real-time aspects when rendering virtual worlds.

7.1  Latency in VR Systems

A fundamental characteristic of VR systems is their interactivity. Realistic immer-
sive experiences in a virtual world are only possible when users can immediately 
perceive the consequences of their actions and relate them to their own behavior. 
For example, when a user pushes a real button of an input device or a virtual switch 
in the simulation, the effects of this action must be experienced within a response 
time that corresponds to the user’s expectations. The time span between action 
(input) and reaction (system response) is called latency. The greater the latency of 
the system, i.e., the greater the time interval between an action and its perceivable 
consequences, the less likely it is that users will associate the new world state with 
their own actions. This effect can also be observed in the real world: when 
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energy- saving light bulbs were first introduced, they had a rather long latency. In the 
transition phase, it happened quite often to the author of this section that after flip-
ping a light switch and observing no immediate reaction, he flipped the switch off 
and on again – this of course had the opposite effect: the waiting time for the light 
to turn on increased significantly, and thus also the frustration with the system.

In the context of this book, the frequently used term real-time capability also 
describes this relationship. A system is called real-time capable if it is able to deliver 
results to an input reliably within a predictable time period. In VR systems the 
latency should be below the human perception threshold. For the visual sense, for 
example, 1/60 of a second is usually considered sufficient. In some other areas of 
information technology, the term “real-time” is interpreted more strictly, in that a 
guaranteed reliability is demanded: a system is considered to be real-time capable if 
it guarantees to be able to respond to an input within a defined period of time. 
Although this interpretation would also be desirable for VR systems, constant laten-
cies cannot usually be guaranteed.

An example of an undesired effect in VR caused by latency occurs when moving 
a virtual tool that is coupled to the user’s hand movements via a tracking system: 
due to latency, the tool is not directly carried along with the hand, but rather, espe-
cially in the case of fast movements, is pulled at a greater or lesser distance. In this 
case, the total latency is made up of delays from the tracking system, network com-
munication and graphics output. For the graphical output part, real-time capability 
means, for example, that images can always be rendered and displayed at such 
speed that the user cannot perceive any single image sequence. However, this state 
is difficult to achieve in practice, as a simple change of perspective by the user can 
lead to situations in which the graphical system (the graphics hardware) is no longer 
able to compute the next image fast enough because the complexity of the now vis-
ible scene is too large or the required data is not directly available.

The graphics system and the communication network of the tracker are only two 
of many parts of a VR system where latencies occur. In order to operate an interac-
tive VR system, it is important to be aware of and, ideally, quantify all latencies that 
occur. Knowing the potential sources of latencies and how to determine these laten-
cies should already inform the design of VR systems and applications but is also 
useful for optimizations in later stages of development. This section first discusses 
the concept of latency in the context of VR systems by addressing the requirements, 
sources and methods for estimation and measurement of latencies. Sections 7.2 and 
7.3 show possible solutions for VR-related subproblems, which can be used to 
design real-time capable, and thus low-latency, VR systems.

7.1.1  What Are the Requirements on Latency?

A specific feature of VR/AR systems is view-dependent image generation based on 
head tracking. Here, strong requirements exist on latency, especially when head- 
mounted displays (HMDs) are used. As users can only see the virtual world but no 
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longer their own body, high latency has a particularly negative effect on the users’ 
well-being. This can lead to dizziness and cybersickness (see Chap. 2). Meehan 
et al. (2003), for example, found a significantly higher number of people suffering 
from vertigo when they increased the latency of an HMD from 50 ms to 90 ms. A 
latency below 50 ms is recommended for HMDs (Brooks 1999; Ellis 2009). In sta-
tionary projection systems, such as CAVEs, latency requirements are not as hard 
compared with HMDs. Here, when users turn their head, an image with the approxi-
mately correct perspective is already displayed, thus reducing the dissonance 
between the expected image and the presented image. A more detailed analysis of 
the interaction between different parameters of a simulation and the still perceivable 
latency can be found in Jerald et al. (2012).

When it comes to VR and AR, latency is fundamental  – if you don’t have low enough 
latency, it’s impossible to deliver good experiences, by which I mean virtual objects that 
your eyes and brain accept as real. By “real,” I don’t mean that you can’t tell they’re virtual 
by looking at them, but rather that your perception of them as part of the world as you move 
your eyes, head, and body is indistinguishable from your perception of real objects. […] I 
can tell you from personal experience that more than 20 ms is too much for VR and espe-
cially AR, but research indicates that 15 ms might be the threshold, or even 7 ms. 
(Abrash 2012).

The blog post by Michael Abrash quoted above was written at the time (December 
2012) when the Oculus Rift was first announced. The article received a lot of atten-
tion and inspired several extensive comments and discussions. Among others, John 
Carmack (co-founder of id Software, in a leading position at Oculus VR since 2013) 
reacted and discussed in a blog post of his own (Carmack 2013) problems and pos-
sible solutions in the areas of rendering and displays.

That such low latencies are called for may be surprising at first. A latency of 20 
ms corresponds to an update rate of 50 Hz. One often hears that a rate of only 24 Hz 
is needed to display moving images, and this is still the most common capturing rate 
in the movie industry today. Typically, however, images are projected in the movie 
theater at 48 Hz (i.e., each image is displayed twice). Actually, an update rate of as 
little as 14 Hz already suffices, for humans, for the illusion of continuous motion 
from individual images to appear. However, this does not mean that we cannot per-
ceive or distinguish between images at higher frequencies. At this point, it becomes 
useful to differentiate between the refresh rate (even of the same images) and the 
update frequency or frame rate (different images). The critical refresh rate at which 
one can no longer perceive the individual images of an image sequence starts just 
below 50 Hz, but depends on external factors (Bauer et al. 2009). Only with a refresh 
rate above 100 Hz is an image considered to be truly flicker-free. With HMDs, the 
frame rate plays a greater role, since the pixels of LCDs, for example, do not need 
to be refreshed as frequently as is the case for projectors and CRTs. Here, it is more 
important that the latency of the screen is low, so that the content can be updated in 
the shortest possible time. Also important, although often overlooked, are issues 
with fluctuations in the frame rate. 100 Hz (i.e. frames per second) are of little use 
if 99 of the frames are rendered and displayed within the first 5 ms and the last 
frame is only displayed after another 995 ms.
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Besides the effects of latencies that can be perceived consciously, unconscious 
effects also play a role. In a simulation, different latencies can arise in different 
presentation channels, e.g., visual, auditory and haptic. The presentation can then 
become asynchronous. Such incongruencies can, however, be perceived by humans 
and may lead to discomfort. The vestibulo-ocular reflex ensures, for example, that 
the eyes are automatically moved to counter a head movement (intentionally or 
unintentionally) while looking at objects to enable continuous perception. If the 
image generation in a head-mounted display has too much latency, the learned 
motion reflex of the eyes no longer fits and a refixation must be performed. This 
effect occurs similarly under the influence of alcohol or narcotics. In some people, 
it is precisely this incongruity that causes discomfort or even nausea.

7.1.2  Where Do Latencies Actually Arise?

Figure 7.1 shows the structure of a typical VR system. Various input sensors, shown 
on the upper left of the figure, capture the user’s behavior. Tracking latency occurs 
between the time of the user’s movement and the availability of the movement data 
as an event for the world simulation. The transport medium exhibits another latency 
to be considered separately, the transport latency. An important task of sensor 
fusion is to make provisions regarding the latency differences between multiple 

Fig. 7.1 Latencies occur at various points in a VR system
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tracking systems. Often the weakest link, i.e., the slowest tracker, determines the 
overall latency of tracking as a whole.

In the world simulation, incoming tracking events are processed to simulate the 
effects of user interactions. The simulation latencies that occur here result from the 
necessary calculations and possible waiting times, e.g., for incoming tracking data. 
Simulation latencies may vary widely depending on the application.

After a new world state has been calculated by the simulation, the new state must 
be rendered into a format suitable for the respective output device. Rendering occurs 
not only for visual but also for other kinds of displays, such as auditory and haptic 
displays. The time necessary for rendering induces the rendering latency. Finally, 
the rendered data is displayed on the output devices, which also does not happen 
instantly and thus induces a display latency.

The total latency of the system is also known as end-to-end latency or, when 
focusing on visual displays, motion-to-photon latency. A similar categorization of 
latencies is proposed by Mine (1993).

When the virtual world, which has changed due to interaction, is (finally) pre-
sented to the user, a certain amount of time has already passed and the presentation 
is therefore already outdated. Depending on the frame rate of the system, it will now 
take a further amount of time until the currently presented content is overwritten 
with new content (frame-rate induced delay).

To assess the total duration of an interaction, it may be appropriate to also mea-
sure the reaction time of users, i.e., the time users need to recognize a newly pre-
sented stimulus, plan their reaction to it and, for example, respond to it with body 
movements. Here major fluctuations of latencies between users (e.g., age) but also 
within one and the same user (e.g., fatigue) may occur. Of course, the reaction time 
of a user is also a relevant factor for interactions in the real world. However, the fol-
lowing explanations refer exclusively to technology-induced latencies of VR 
systems.

7.1.3  Is Latency in a VR System Constant?

The combined latency of the entire VR system depends on, among other things, the 
update rates of the involved processes. For example, if a tracking system has a sam-
pling rate of 60 Hz, the individual recording times are 16.7 ms apart. On average, a 
latency of 8.35 ms is already generated, as physical events (e.g., movements) that 
occur up to 16.7 ms later are not detected or passed on until the tracking system 
detects them. The same applies to the frame rate. If a projector is able to update the 
image at 100 Hz, a change that was not fully rendered until shortly after the last 
update will be displayed up to 10 ms later (on average 5 ms).

In a complex VR system with many concurrent subprocesses, update rates may 
vary a lot between its individual components. Therefore, the latencies of the overall 
system can be subject to significant fluctuations. Thus, in addition to minimizing the 
latency of the individual subsystems or the overall system, there is also the goal of 
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ensuring that latency is as constant as possible. Strong fluctuations in the overall 
latency can easily be perceived by users as jerking and can have a more disturbing 
effect than an overall higher but constant latency.

7.1.4  What Are the Approaches to Determining Latency?

Various approaches to latency determination are presented below. First, it is dis-
cussed to what extent the latency of a system can be estimated from datasheets of 
the individual components. This approach is primarily helpful in the planning phase 
of VR systems, but it can also give hints for potential optimizations later on. Then, 
various methods are presented with which the latency of a running system can be 
systematically measured.

 Latency Estimation from Datasheets

To measure latencies, the VR system must already be operational and all relevant 
components accessible. However, this cannot be achieved in the planning phase of 
new installations. In this phase, the system designer must therefore rely on the infor-
mation provided by manufacturers, on data from comparable systems and on expert 
experiences.

Table 7.1 shows examples of the tracking latencies for different types of tracking 
systems. The listed examples are based on real system data and are exemplary for 
commercially available systems. The data in the table are based either on statements 

Table 7.1 Overview of frame rates and latencies of various existing tracking systems, the 
manufacturers were anonymized

Type Frame rate Latency

Optical Tracking Systems
Example System A 30 Hz 90 ms–300 ms
Example System B 60 Hz 15 ms–20 ms
Example System C Up to 10,000 Hz with reduced field-of-view 4.2 ms
Example System D 30–2000 Hz, depending on spatial resolution > 2.5 ms
Electromagnetic Tracking Systems
Example System E, wireless 120 Hz < 10 ms
Example System F, wired 240 Hz 3.5 ms
Inertial Tracking Systems
Example System G 60–120 Hz 10 ms with USBa

Hybrid Tracking Systems
Example System H 180 Hz 1–2 ms RS-232;

5–8 ms USB
aSkogstad et al. (2011) report a latency difference of 15 ms between the fast USB connection and 
the slower but mobile Bluetooth connection.
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by professional users or on information provided by the manufacturers on websites 
or in product brochures. A similar, somewhat older, list can be found in (Ellis 1994). 
The concrete values are mainly to be understood as rough reference points, since 
there is no exact specification of how the measurement process should be designed 
and, for example, how many objects were measured simultaneously to collect 
the values.

Transport latencies occur during network communication between input devices, 
computers with VR software and output devices. In collaborative or multi-player 
applications, further, hardly predictable transport latencies occur during communi-
cation with remote computers. With wireless transmission technologies such as 
Bluetooth and WLAN, which are often used for communication between input 
devices and control computers, transport latencies of > 1 ms occur for individual 
messages. With wired transmission, e.g., via Ethernet or InfiniBand, the transport 
latencies are generally lower, for example in the range of 0.001 ms to 0.03 ms. The 
actual transport latencies depend on the data volume to be transmitted: a network 
level event is a single data packet sent from A to B. In the best case, for example, a 
message describing a 6 DOF movement event fits into a single such data packet. 
Generally, however, this is not the case because some tracking systems send much 
larger amounts of data per time step, for example, 3D point clouds. For calculating 
the transmission time for all data, the number of packets that are sent over the net-
work would then have to be known. Depending on the network topology, a parallel 
transport may be possible but also collision with other data services, e.g., file server 
accesses (best to use different network channels here). The actual latency at the 
network level is therefore difficult to estimate. For example, in scientific visualiza-
tion very large amounts of data have to be moved. Here VR systems should be 
designed whose network components feature transmission rates in the multi-digit 
gigabit range, which then usually also offer very good latency characteristics.

Simulation latencies and tolerable threshold values strongly depend on the 
respective application and are therefore excluded from this analysis.

Rendering latencies are closely related to the complexity of the scene to be ren-
dered (visually, acoustically, haptically). If the time needed for rendering dominates 
the overall latency of the VR system, multi-GPU systems may be considered. 
Hardware approaches for multi-GPU rendering include Nvidia SLI and AMD 
Crossfire, but software solutions also exist. For an overview of multi-GPU render-
ing see Dong and Peng (2019). For stereoscopic rendering, two images must be 
calculated per time step. If the images for the left and right eyes are computed one 
after the other, i.e., in two independent passes, the rendering frame rate is effectively 
halved compared with monoscopic rendering (as a counter measure one may need 
to halve the geometric complexity of the scene). A rendering technique known as 
single pass stereo reduces the computational effort for stereoscopic image genera-
tion (Hübner et al. 2007). This method takes advantage of the fact that the positions 
of the left and right eyes are close together and therefore see largely identical sec-
tions of the virtual world. By parallel geometry processing during rendering for the 
left and right eyes, scenes can be rendered almost as fast as in the monoscopic case. 
Single pass stereo can also be extended to more than two displays (single pass 
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multi-view rendering or multi-view rendering for short), e.g., to support tiled dis-
plays with multiple projectors (see Sect. 5.4.3) or multi-display HMDs (see Sect. 
5.3.4). Another optimization possibility arises when VR or AR is used in combina-
tion with eye tracking: foveated rendering draws high-resolution images only in 
regions that the user is looking at. Other regions can be displayed in low resolution, 
as there is no detailed visual perception possible anyway (see Sect. 2.2). Section 7.3 
discusses further methods for real-time rendering in more detail.

At the end of the 1990s, when CRT screens were still standard, display latency 
was unproblematic, at least on the desktop, as refresh rates of up to 200 Hz were 
achievable. This also made it possible to display content in stereo on the screens 
using shutter technology. However, the success of flat screens has largely pushed 
CRT screens out of the market – unfortunately without initially being able to offer 
similarly high refresh rates. In the meantime, however, flat screens have reached a 
comparable level of performance in terms of refresh rates, with current models 
exceeding 200 Hz. However, stereo solutions based on shutter technology are not 
offered broadly on the consumer market for desktop systems. In addition to the 
worse refresh rate, some LCD screens also have an input delay, which can some-
times be reduced by turning on a special low-latency gaming mode.

A precise determination of the latency can ultimately only be made on the real 
system. Therefore, in the following, different approaches are presented for how 
latency can be determined by experimental measurement.

 Measuring the Latency of Tracking Systems

Most VR systems include some type of spatial tracking system. Viewer-dependent 
rendering, for example, relies on head tracking and many spatial interactions are 
based on 3D tracked controllers. Tracking latency is the time needed by the tracking 
system to detect and report the position and/or orientation of the tracked user or 
devices.

A very simple way to measure latency exists for the widely used marker-based 
optical tracking systems. These markers are usually attached to the user’s body or 
an interaction device and either reflect or actively emit infrared light (see Sect. 
4.3.1). The tracking latency can be easily determined with a setup where an infrared 
LED is placed in the tracking area. A computer that is connected to the tracking 
system controls the LED. The time difference between a strobe pulse of the LED 
and the reception of a corresponding event by the tracking system is the tracking 
latency.

While this method is very easy to implement, it also has a disadvantage: a robust 
tracking system may include filter mechanisms to eliminate short-term disturbances, 
e.g., due to reflections from clothing or jewelry. If these filters cannot be switched 
off in the system to be measured, the measured latency will be higher than later in 
the running system, where reflective markers usually move continuously and thus 
more predictably. A reasonable extension is therefore the use of an LED array, 
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where the LEDs can be controlled individually and thus any movement pattern can 
be simulated.

Instead of simulated movements, real movements can of course also be used for 
latency measurement. Periodically oscillating physical systems, such as pendulum 
systems, have proven to be particularly suitable (see Liang et al. 1991; Mine 1993). 
The basic setup could look like Fig. 7.2, where two pendulums are installed cen-
trally in the tracked area. One pendulum serves as a reference for the direction of 
gravity. A tracking marker is attached to the second pendulum. This pendulum is 
made to swing during the measurement.

The measured position data of the marker and the current time stamp are dis-
played on a separate monitor (the monitor should feature a low display latency). The 
whole installation is recorded by a camera, which is positioned in such a way that 
the two pendulums are aligned in rest position (one occludes the other) and the 
monitor is also in view.

If one now starts the video recording and sets the pendulum in oscillation, it is 
later easy to navigate to the video frames where either the displayed y-position 
(y-axis in the direction opposite to gravity) is at a minimum or the two pendulums 
are fully aligned. The time difference between pendulum alignment and the subse-
quent minimum of the y-position is the latency of the tracking system. As an alterna-
tive to a purely visual comparison, and provided that a temporal synchronization 
between video camera and tracking system has been established beforehand, one 

Fig. 7.2 Typical setup of a pendulum system for measuring the latency of an optical track-
ing system
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may also analyze the recorded (and time-stamped) tracking data directly instead of 
their display on the monitor. This is advisable, for example, if the video camera has 
a significantly slower capturing rate than the tracking system.

With this setup, it must be considered that latencies for camera recording and 
displaying the time stamp and tracking data on the monitor may influence the result.

If one has more technology available, such as a precisely controllable robot arm, 
the measurement can also be carried out in an automated closed-loop setup where 
visual inspection of video recordings by a human is no longer necessary and thus 
larger quantities of data can be generated and analyzed. The idea is to attach a track-
ing marker to the robot’s end effector. Tracking data then can be compared easily to 
the positions calculated from the robot’s joint angle data (the robot in this sense acts 
a mechanical tracking system with close to zero latency). For example, Adelstein 
et al. (1996) used a motorized swing arm – a simple robot arm with one degree of 
freedom – that swings back and forth in the horizontal plane to evaluate the laten-
cies of different tracking systems. Modern industrial robot arms with six degrees of 
freedoms also offer high precision and the additional advantage that they can per-
form movements resembling those of human VR users. Further, such robots have 
also been used to evaluate the inside-out tracking capabilities of mobile XR devices, 
such as AR-enabled smartphones and certain HMDs. Inside-out tracking uses a 
combination of visual camera images and other internal sensors (particularly the 
IMU – inertial measurement unit) to track the movement of the device. Instead of 
attaching a marker to the end-effector, the XR device is attached to – or simply held 
by – the robot arm (Eger Passos and Jung 2020).

 Measuring End-to-End Latency

Uniform and very well controllable periodic motions can also be produced with a 
record player (Swindells et al. 2000). The idea is similar to that of the pendulum (cf. 
preceding section). An infrared LED is placed on a physical turntable to generate a 
live animation of a virtual turntable. The virtual turntable is projected onto the phys-
ical turntable. From the angular differences between the real and virtual rotating 
turntables, the latency of the entire setup, i.e., the end-to-end latency, can then be 
determined.

He et al. (2000) pursue a similar idea with their approach to determining the end- 
to- end latency in CAVEs and similar projection-based setups. A tracked input device 
(they used a wand) is moved by hand back and forth directly in front of one of the 
CAVE’s projection screens. The tracked position is displayed on the screen as a 
virtual cursor along with a grid. During controller movements, the virtual cursor 
may lag the physical controller by several grid cells, depending on the speed of 
movement. A video camera records the whole setup. During video analysis, the field 
differences between the physical input device and the virtual cursor are counted 
from which the end-to-end latency is determined by simple calculations.

This method can also be easily combined with a pendulum to eliminate the need 
for manual movement of the physical controller (or marker). It is also easier to 
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determine the speed of the pendulum. Steed (2008) describes two approaches for 
determining the latency between the real and virtual pendulum. In the one approach, 
he counts the number of video frames between the extreme positions of the real and 
virtual pendulums. In the other variant, he analyzes the trajectories of the two pen-
dulums by means of image processing methods and tries to find the most accurate 
mathematical approximation of the respective oscillation. Once this has been done, 
the phase shift and thus the latency can be easily determined. Steed reports that he 
achieves greater accuracy with the analytical method than by counting video frames.

7.1.5  Summary of Latency

In VR systems, low latency is a decisive factor for the creation of believable experi-
ences of virtual worlds. Low latency is especially important when HMDs are used, 
since the scene portion to be displayed depends on the current head orientation of 
the user. In projection-based VR systems, where the displayed scene portion does 
not depend on the head orientation, latency requirements are less strict but still high. 
AR applications have even higher latency requirements, as virtual objects need to be 
anchored in the real world and the real world always has zero latency.

If the latency of an optical tracking system, as often found in VR installations, is 
too high, a combination with a low-latency inertial tracking system may be advanta-
geous (You and Neumann 2001). Between phases of stable position tracking by the 
optical system, the inertial system can provide the necessary data for extrapolation 
of the new positions and orientations until stable data from the optical tracking sys-
tem are available again. In this way, gaps can be bridged, e.g., when optical markers 
are occluded from the tracking cameras’ views.

In practical operation, network management in particular has a major influence 
on transport latencies. For example, the VR system should be operated in a separate 
subnet to avoid collisions with other applications. Frequency range and channel of 
wireless access points should be selected in such a way that, if possible, no interac-
tions with other wireless networks in the environment occur.

7.2  Efficient Collision Detection in Virtual Worlds

Where one body is, there can be no other. This simple physical fact poses a serious 
problem for VR/AR systems and real-time computer graphics in general. Virtual 
objects may in principle be placed at arbitrary locations in the virtual world and 
therefore may also penetrate each other if no precautions are taken. In the case of 
statically arranged objects, the programmer, or designer, can take the necessary care 
to ensure that no penetrations are visible to the observer of the scene. For a realistic 
and immersive representation of dynamic content, however, it would be helpful if 
the objects in the scene showed (approximately) physically correct behavior. Objects 
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should therefore be able to collide with and exert forces on each other. In the case 
of simulating the physics of the real world, not only the mere question of whether a 
collision occurred or not is relevant. To simulate a suitable reaction to a collision 
event, further properties of the collision must often be determined such as penetra-
tion depth, exact penetration locations and exact collision time. In many gaming 
applications it often suffices that the simulation provides a plausible approximation 
of the real world. In contrast, e.g., CAD, virtual prototyping, scientific applications 
and robotics problems usually place higher demands on collision detection and han-
dling. In these cases, aspects such as numerical stability and physical correctness 
are often more important than the real-time capability required by VR applications.

The need for efficient collision detection is, however, not limited to physics sim-
ulations in the virtual world, but also occurs in many other areas of VR and AR 
systems. Even seemingly simple user interaction tasks like the selection of a scene 
object (see also Sect. 6.3) lead to related problems: to detect which object the user 
is pointing at, a ray may be generated from the user’s pointing device. The scene 
objects are then tested for collision with the pointing ray and the object with the 
shortest distance to the user is chosen as the selected one.

Modern 3D computer graphics scenes achieve remarkable visual quality. Which 
techniques are used to render these scenes? Part of the reason can be found in the 
high performance of modern GPUs. However, the high quality could not be achieved 
if the GPU had to process all objects of the virtual world for each image to be gener-
ated. If an object is not at least partially in the view volume (or in other words, if 
there is no overlap or collision between the object and the view volume), the object 
does not contribute to the result of the image generation and therefore does not need 
to be processed further. This process is also called view volume culling and is 
described in more detail in Sect. 7.3.1. Given the desired graphical complexity of 
modern applications, the removal of non-visible objects based on efficient collision 
testing makes an important contribution to maintaining real-time capability of 
rendering.

The above-mentioned application areas of collision detection essentially require 
that the necessary calculations can be performed “in real time”, i.e., once per image 
frame (at least 25 Hz, ideally 60 Hz). View volume culling inserts a new processing 
step into the rendering pipeline that requires additional computation time. To justify 
the use of this technique, this computation time must be less than the rendering of 
the entire scene would otherwise require.

Real-time requirements on collision detection may even be much higher for VR 
systems that make use of haptic interfaces: according to Weller (2012), refresh rates 
of 1,000 Hz are required to ensure realistic haptic feedback for the user. In this case, 
less than 1 ms is available for collision detection.

Efficient algorithms and data structure are key for all the above-mentioned use 
cases of collision detection to ensure the central real-time requirement of VR and 
AR systems.

Following this introduction, Sect. 7.2.1 introduces common bounding volumes 
used for efficient collision detection. Section 7.2.2 then deals with their arrange-
ment in hierarchical or spatial structures before collision detection methods in large 
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virtual world are discussed in Sect. 7.2.3. Then, in Sect. 7.2.4, the collision detec-
tion techniques are summarized and advanced topics in are addressed.

For more in-depth reading on the topic, we recommend the books by Akenine- 
Möller et al. (2018), Lengyel (2002) and Ericson (2005).

7.2.1  Bounding Volumes

Scene objects are constructed from primitives, typically in the form of triangle or 
polygon meshes. In a naive collision test between two polygon meshes, each poly-
gon of the first mesh would have to be tested against each polygon of the second 
mesh. For example, if the two meshes consist of 500 and 1,000 polygons each, 500 
× 1,000 = 500,000 tests would have to be performed between pairs of polygons. 
Considering that virtual worlds can consist not only of two objects but perhaps 
thousands of objects, it becomes clear that such a naive collision test is not practical 
for large virtual worlds.

Bounding volumes (BV) approximate the shape of the actual scene objects to 
facilitate efficient collision testing. Bounding volumes are stored in addition to the 
visible object geometry but are not rendered in the visual image. The additional 
storage requirements of bounding volumes, however, are usually justified by the 
reduced computational effort for collision testing. When scene objects are moved or 
otherwise transformed (e.g., translation, rotation, scaling), their bounding volumes 
must be updated too. The computational costs for such updates must also be consid-
ered when choosing appropriate bounding volumes. Generally, it is often desirable 
for a bounding volume to tightly fit a scene object such that the number of falsely 
reported collisions is minimized.

For some applications, e.g., gaming, bounding volumes may already provide for 
sufficiently precise collision testing. This is especially the case when the bounding 
volumes closely approximate the scene objects’ shapes.

Even if approximated collision testing based on bounding volumes alone is not 
sufficient for the demands of the application (e.g., CAD, virtual prototyping, hap-
tics, robotics), bounding volumes can still be used advantageously. In most virtual 
worlds, only a few objects will actually collide at a given time. Fast approximate 
collision tests based on bounding volumes can be used to determine that collisions 
between two objects do not occur. Only in cases where the approximate bounding 
volume-based test reports a collision is exact collision testing on the polygon 
meshes necessary.

Furthermore, hierarchal data structures may be used to quickly exclude large 
groups of scene objects from further collision testing. Examples of such data struc-
tures are Bounding Volume Hierarchies (BVH) and Binary Space Partitioning (BSP) 
discussed in Sect. 7.2.2.

Summarizing the above, desirable properties of bounding volumes include:

• simple and fast collision testing
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• tight fit/good approximation of the detail geometry (otherwise false positives are 
possible)

• easy update in case of dynamic objects
• memory efficiency

These properties are partly contradictory. For example, two spheres are easy to 
test for collision and the memory requirement is minimal (position and radius). 
However, if you look at the fit, it is easy to see that not every object can be approxi-
mated as a sphere in a meaningful way.

The following typical bounding volume and their most important properties are 
discussed in the next sections:

• Axis-Aligned Bounding Box (AABB)
• Bounding sphere
• Oriented Bounding Box (OBB)
• (k-dimensional) discrete oriented polytope (k-DOP)

The text mostly discusses these bounding volumes for the two-dimensional case. 
This can easily be extended to three dimensions.

 Axis-Aligned Bounding Box (AABB)

An AABB is a rectangle or cuboid whose edges are parallel to the axes of the global 
coordinate system and which encloses a given object with a minimum area. For 
three or more dimensions, this body is also called an axis-parallel (hyper-) cube. 
The orientation of the AABB is independent of the enclosed object and always the 
same (i.e., aligned to the global coordinate system). When the enclosed object 
changes its position, the new position must be applied to the AABB too. When the 
enclosed object is rotated or scaled, it is also necessary to update the shape of 
the AABB.

Memory space is required for four values in the two-dimensional case:

• positions (x,y) of two opposite corners; or
• position (x,y) of one corner + width and height; or
• center point + (half) width and height

To test two AABBs for collision, the boxes are projected onto the axes of the 
global coordinate system. For each axis, the projection intervals are tested for over-
lap separately. A collision occurs only if projections overlap on all axes. Conversely, 
the collision test can be aborted if a non-overlapping axis is found. Fig. 7.3 shows 
different configurations for AABBs and illustrates the collision test between 
two AABBs.

An AABB can be constructed in different ways. A simple approach is to deter-
mine the minima and maxima of all corner point coordinates along each axis. 
However, if the AABB needs to be updated frequently due to rotations of the 
enclosed object, this simple approach is inefficient for large meshes. In principle, 

M. Buhr et al.



259

only the vertices of the mesh that form its convex hull need to be considered for the 
construction of the AABB. This fact can be exploited, for example, by calculating 
the vertices of the convex hull once and saving them. To update the AABB it is then 
sufficient to consider the convex hull only. For further details see Ericson (2005).

 Bounding Spheres

Bounding spheres are very simple, easy-to-implement types of bounding volumes. 
They can be stored very efficiently (center point and radius) and collision testing 
can be carried out in a few steps: if the distance between the two center points is less 
than the sum of the two radii, then the two spheres collide. Otherwise, there is no 
collision.

A bounding sphere can be constructed by constructing an AABB first. The center 
of the AABB equals the center of the sphere and the distance to one of its corners 
gives the radius of the sphere. Alternatively, the sphere’s center can be calculated by 
averaging of all vertex positions of the enclosed object’s mesh. However, this 
approach does not necessarily result in a minimal envelope for any polygon mesh. 
In the worst case, the resulting bounding sphere could have twice the radius of a 
minimal variant and would therefore not be an optimal fit. The determination of a 
minimal bounding sphere from a point set has been the subject of various research. 
Welzl (1991) presents an algorithm for determining minimal circles and spheres 
from point clouds.

Due to the rotational symmetry of spheres, rotations of the enclosed object do not 
have to be transferred to the bounding sphere. Scaling and translations can be 
applied directly to the bounding sphere.

 Oriented Bounding Boxes (OBBs)

OBBs can be seen as an extension of AABBs. However, the edges of the bounding 
cuboid, or in the 2D case bounding rectangle, are not aligned to the global coordi-
nate system but oriented in such a way that the object is minimally enclosed. In 

Fig. 7.3 Collision testing with AABBs. Left: 2D objects A and B with overlap on one axis only 
(no collision). Right: A & B with overlap on both axes (collision)
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contrast to AABBs, the orientation of an OBB must therefore be saved explicitly. In 
the 2D case, this can be done using one of the following variants:

• positions of three corners (the fourth corner can be calculated from the 
three others)

• one corner + two orthogonal vectors
• center point + two orthogonal vectors
• center point + rotation (e.g., as rotation matrix, Euler angles or quaternion) + 

(half) edge lengths

These variants differ not only in terms of memory requirements but also in the 
amount of work required for collision testing. To save memory space in the two 
variants involving two orthogonal vectors, one of the vectors may be determined at 
runtime (using the cross product, see Chap. 11). However, in this case it is still nec-
essary to store the length of the vector explicitly.

Collision testing for OBBs can be performed based on the Separating Axis 
Theorem (SAT). This theorem states that two convex sets have no intersection 
exactly when a straight line/plane can be placed between them in such a way that 
one set lies in the positive half space and the other in the negative half space. The 
orthogonal projection of both sets onto an axis parallel to the normal of this line/
plane is then called the separating axis, because the projections onto this axis do not 
overlap (see Fig. 7.4). If a single separating axis can be found, a collision of the two 
sets can be excluded.

To apply the theorem in practice, it is obviously necessary to clarify how a sepa-
rating axis can be found. For three-dimensional OBBs it can be shown that 15 can-
didate axes have to be tested:

• The six axes orthogonal to the side faces of the OBBs (see Fig. 7.4, axes of the 
coordinate systems of the OBBs).

• The nine axes created by the cross product of one of the coordinate axes of each 
of the two OBBs.

Fig. 7.4 Collision test of two OBBs and a separating axis
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Similarly complex as the intersection test calculations is the generation of OBBs 
with a good fit. Exact algorithms for generating a minimal OBB typically belong to 
complexity class O(n3) and are therefore hardly applicable in practice. For this rea-
son, algorithms are often used that only provide an approximation of the minimal 
OBB but can be calculated easily and at runtime. In Ericson (2005) different 
approaches to the solution are discussed. The update costs for OBBs are lower as 
compared to AABBs (and k-DOPS), as in addition to translations and scaling, rota-
tions can also be applied directly to OBBs.

 Discrete-Oriented Polytopes (k-DOPs)

Discrete-oriented polytopes (k-DOPs) or fixed-directions hulls (FDH) are a gener-
alization of AABBs, as they are also always aligned to the global coordinate system. 
The term polytope refers to a polygon in the 2D case and, respectively, a polyhedron 
in the 3D case. A k-DOP is constructed from k half-spaces whose normals each take 
one of k discrete orientations. Opposite half-spaces are antiparallel, i.e., their nor-
mals point in opposite directions. The normals are usually formed from the value 
range M = {–1, 0, 1}. Since only the direction of the normals but not their length is 
relevant for further calculations, the normals do not have to be in normalized form 
(unit vector).

For the two-dimensional case, a 4-DOP (6-DOP for 3D) corresponds to an AABB, 
where the normals are parallel to the axes of the coordinate system. Different two- 
dimensional k-DOPs are shown in Fig. 7.5.

As the normals are identical for all k-DOPs of different objects, the memory 
requirements per object are reduced to the extension along each normal. For an 
8-DOP, for example, eight values must be stored.

Collision tests between two k-DOPs are again performed based on the separating 
axis theorem. Since the normals are known and are the same for all objects, the great 
advantage of k-DOPs over OBBs is that only k/2 candidate axes must be considered 
as separating axis (opposite normals are antiparallel and thus yield the same axis). 
Accordingly, a maximum of four potentially separating axes must be tested for an 
8-DOP. Collision tests can therefore be performed very quickly and easily.

Fig. 7.5 Two-dimensional k-DOPs in different variants
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The construction of a k-DOP is similar to that of an AABB: along each of the k/2 
axes, minimal and maximal extensions of the object must be found. Although in 
principle any axis (or orientation) could be used, in practice the normals/orienta-
tions are usually chosen from the discrete number of values mentioned above. For 
collision testing it is only important that the same orientations of the half spaces 
must be chosen for all objects.

A disadvantage of k-DOPs is caused by the time-consuming updates that become 
necessary when the enclosed polygon mesh is rotated (translations can be trans-
ferred directly to the k-DOP), as the minima and maxima along the k/2 axes must be 
recalculated. To avoid cost-intensive iterations over all vertices of the enclosed 
polygon mesh (or its convex hull), additional optimizations are often applied at this 
point (e.g., hill climbing and caching; see Ericson (2005)).

Summarizing, k-DOPs offer efficient collision testing and low memory require-
ments without sacrificing a good fit. However, the high update costs imply that 
k-DOPs are often only of limited use for dynamic objects.

7.2.2  Bounding Volume Hierarchies and Space 
Partitioning Techniques

Although the creation of bounding volumes will simplify and accelerate collision 
testing between two objects, the total number of collision tests required (object 
against object) remains unchanged. For a scene consisting of n objects still 
n(n − 1)/2 ∈ O(n2) collision tests must be performed in the worst case. To reduce the 
number of tests, several methods may be applied as discussed in the following.

 Bounding Volume Hierarchies (BVHs)

Bounding volume hierarchies (BVHs) are created by arranging bounding volumes in 
trees. The hierarchies are created by calculating new bounding volumes for several 
geometric objects (or their bounding volumes). These new bounding volumes can in 
turn be combined with neighboring objects (or their bounding volumes). The parent 
nodes do not necessarily have to completely surround the hulls of the child nodes. 
It is sufficient that the geometric objects at the leaf nodes are completely enclosed. 
However, the construction of BVHs is often easier in practice if the bounding vol-
umes are used for this process at each level of the tree. The granularity or depth of 
the tree is application-specific and can in principle be managed to such an extent 
that individual polygons and their bounding volumes are stored at the leaf nodes.

Examples of BVHs are AABB trees, OBB trees and sphere trees. An example of 
a sphere tree is shown in Fig. 7.6. The runtime gain of BVHs is due to the fact that 
the tree is tested against other objects, starting from the root. As an illustrative 
example, imagine a complex vehicle simulator that can display high-resolution 
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models with several million polygons. The user points at the scene and the system 
has to quickly determine which component of the vehicle intersects with the point-
ing ray. To do this, the root node of a sphere tree could be placed around the entire 
vehicle (the user may miss the vehicle while pointing). If the vehicle was hit, bound-
ing spheres of large components such as side/doors, rear/boot, front/engine com-
partment and tires may be tested on the second level of the tree. On the third level, 
individual parts of the respective branch could then be tested (e.g., for front/engine 
compartment: lights, air filter, battery, etc.). On each level, the collision test must be 
carried out only against a small number of bounding spheres, whereby the set of 
enclosed polygons becomes smaller and smaller. If no collision has been detected 
on one level (i.e., in all branches), the test can be aborted without testing lower lev-
els. If necessary for the application, the remaining part of the polygon mesh (i.e., 
enclosed polygons of leaf BVs) can be used as a last step for exact collision 
determination.

BVHs require extra memory space whose size depends on the depth of the tree 
and the type of bounding volume. For static objects, BVHs can be calculated once 
at the beginning of the simulation. If dynamic objects come into play, updating the 
tree can become a problem. In these cases, it is advisable to manage dynamic and 
static components separately to avoid the need for updating where possible.

 Space Partitioning Techniques

Space partitioning aims to minimize the number of collision tests required by 
assigning scene objects to spatial regions. With well-chosen partitioning strategies, 
collision testing can be reduced to objects known to be in the same or a close spa-
tial region.

Fig. 7.6 Sphere tree for a complex object. Left: Geometric data and corresponding bounding 
spheres. Right: Hierarchy of bounding spheres (sphere tree)
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World space can be divided in different ways. Quite common are regular grids, 
as they are easy to implement and grid cells can be addressed with simple modulo 
operations. Space partitioning into a regular grid is also called spatial hashing.

The choice of a good spatial resolution depends strongly on the application. 
Fig. 7.7 depicts three cases for different cell sizes. If the cell size is chosen too small, 
objects must be assigned to multiple cells. This case results in high update costs when 
the object is moved. In contrast, if the cell size is too large, many objects will be 
assigned to the same cell, which is the very situation that the space partitioning actu-
ally tried to avoid. In the ideal case, each object can be assigned to exactly one cell. 
The cell size should be chosen in such a way that there are always only small num-
bers of objects in a cell. Nevertheless, it should be noted that multiple assignments (at 
most four cells per object in 2D) cannot be avoided, even with favorable cell sizes.

The practical applicability of spatial hashing therefore depends strongly on the 
cell size and the memory space required for the necessary data structures. The 
method is less suitable for scenes with objects of very different sizes or resizable 
objects. A positive feature of spatial hashing is that it can be implemented 
quite easily.

In addition to regular grids, space partitioning hierarchies or trees can be con-
structed. One method is the binary space partitioning tree (BSP tree). Here, the 
space is recursively cut into two half spaces by a hyperplane at each recursion level. 
The two half spaces are also called positive and negative half spaces. When applied 
in two or three dimensions, the hyperplane is a straight line or, respectively, a plane. 
The space is usually recursively subdivided until only one primitive (triangle or 
polygon) can be assigned to a node. If a cutting plane intersects an individual poly-
gon, the polygon must be split into fragments. Fig. 7.8 shows an example of how a 
space containing one polygon could be partitioned by a BSP tree. Each inner node 
of the tree defines a cutting plane that partitions the space associated with the node 
into two halves and, thus, also the set of vertices enclosed by the node. During the 
subdivision process, new vertices/polygons may also be created. In Fig.  7.8, for 
example, the orange vertices are newly created during the subdivision. The original 
polygon in Fig. 7.8 could be further divided by additional half spaces. However, this 
has been omitted in favor of better readability. It should also be mentioned that other 
partitions are possible and could be considered for optimization of collision testing.

Fig. 7.7 Regular grids with different cell sizes. From left to right: grid too fine, grid too coarse, 
good grid size for the given objects
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The positions of the hyperplanes and the depth (granularity) of the tree can be 
freely chosen in the case of general BSPs. If all cutting planes are chosen to coin-
cide with one side of the object (edge of the polygon), the tree is also called autopar-
titioning, since there is no explicit calculation of the cutting planes.

Depending on the intended use, different forms of the tree are conceivable. For 
example, individual polygons or larger groups of polygons may be stored in the leaf 
nodes. Also, geometry data may be stored exclusively in the inner nodes of the tree 
(node-storing BSP trees). However, leaf-storing BSP trees are more relevant for 
collision testing. As the name suggests, they store geometry data in the leaf nodes. 
The BSP tree shown in Fig. 7.8 is an example. This form of data storage leads to a 
tree structure in which the positional relationships of the geometry data are reflected 
in the arrangement of the tree nodes. This property is particularly useful for colli-
sion queries.

In general, the cutting planes should be chosen in such a way that the following 
requirements are fulfilled as well as possible:

• The result is a balanced tree (all branches have equal or similar depth; for leaf- 
storing BSP trees each leaf node contains a similar number of objects).

• The number of half planes that cut through individual polygons (thus creating 
new vertices and polygon fragments) is minimal.

BSP trees can be constructed in various ways. The determination of the cutting 
planes according to the above requirements is often a non-trivial problem. Although 
the autopartitioning variant is easy to implement, it does not necessarily yield opti-
mal results. In addition to collision detection, BSP trees are also used to determine 
visibility, among other things (see Ericson (2005) for details).

BSP trees can be understood as a generalized form of a k-d tree (see Fig. 7.9). A 
k-d tree is also a binary tree that subdivides a space recursively. In the variant of a 
k-d tree presented in the following, the spatial subdivision is driven by the input 
data, a k-dimensional set of points. All inner nodes of the tree define a dividing 

Fig. 7.8 BSP tree. Left: Binary space partitioning of a space containing one complex polygon 
(green: vertices of the original polygon, orange: newly created vertices during decomposition). 
Right: Binary tree defining half-spaces 1, 2, 3, 4 with fragments A, B, C, D, E of the origi-
nal polygon
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hyperplane (straight line for 2D case, plane for 3D case). Fig. 7.9 (left) illustrates 
the construction of a k-d tree: (1) A set of k-dimensional (k = 2  in the example) 
points serves as input data. At each level of the tree one dimension – here: x or y – is 
selected for spatial partitioning. The cutting plane is perpendicular to the selected 
dimension. (2) An element of the input data, shown in orange in Fig. 7.9 (left), is 
now stored as the inner node of the tree and defines the position of this cutting plane 
by its coordinate value. (3) and (4) The newly created half spaces are subdivided 
further. At each tree level, a dimension different from the dimension in the level 
above is chosen – in the example, alternately x and y. To create a balanced tree, the 
position of the cut is chosen such that the same amount of data (approximately) 
remains in the positive and negative half spaces. Other k-d tree variants create the 
cutting planes explicitly and store data only in the leaf nodes.

When traversing a k-d tree from the root to a leaf node, only a single value needs 
to be compared at each level of the tree. For example, if a node of the tree defines a 
cutting plane orthogonal to the x-axis, then only the x-coordinate of the requested 
point needs to be compared with the value stored in the node. This process is there-
fore much easier to implement than for a BSP tree. Since the subdivision dimension 
can be anchored in the traversal algorithm, for example, dimension = depth modulo 
k, it does not have to be stored explicitly.

Quadtrees (or octrees for 3D) use two (or three) axis aligned cutting planes per 
recursion level and thus create four (or eight) child nodes each. This decomposition 
is usually done in such a way that a given maximum number of objects is assigned 
to a quadrant. Fig.  7.9 (right) shows a two-dimensional quadtree for a given set 
of points.

The discussed variants of space partitioning trees differ in their memory require-
ments, their update costs and the computational effort for collision queries. In the 
case of BSP trees, for example, the position and orientation of the cutting planes 
must be stored, whereas for a k-d tree only a single value (position of the plane, 
orientation is implicit) must be stored. Similarly, for a query in the k-d tree, only a 

Fig. 7.9 k-d tree and quadtree. Left: The first four levels of a k-d tree. Right: Complete quadtree 
for a given point set
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single comparison has to be made at each tree level (is the queried coordinate in this 
dimension greater or less than the stored value?).

It is quite common that dynamic objects are not integrated into the space parti-
tions discussed above, as the computational effort for updating them would be too 
large. Dynamic objects are usually managed separately.

7.2.3  Collision Detection in Large Environments

The collision detection methods presented so far may or may not be sufficient for a 
given application and use case. Whereas in a simple bowling simulation it might be 
possible to test polygon meshes directly against each other, a complex vehicle simu-
lator likely requires both bounding volumes and space partitioning – and possibly 
additional methods – to ensure real-time capability. In large environments with very 
high numbers of objects, the task of collision detection is often split into two phases: 
a global broad phase and a local narrow phase.

 Broad Phase Collision Detection

In a virtual world with thousands of objects, the vast majority of objects may collide 
with one or a small number of other objects but not with thousands. For any given 
pair of two objects, it is often easy to establish that they do not collide with each 
other, for example, because they are located far away from each other.

The goal of the broad phase is thus to quickly determine which objects certainly 
do not collide with each other. The result of the broad phase is a set of potentially 
colliding object pairs. As the tests are not exact, non-colliding object pairs can still 
be contained in the set.

Besides bounding volume hierarchies and space partitioning, depending on the 
granularity and size of the object set, the use of bounding volumes may also be 
considered a method of the broad phase. Only when the bounding volumes of two 
objects collide is it necessary to examine this object pair more closely in a detail 
phase. The classical algorithms of the broad phase, however, include spatial hash-
ing, bounding volume hierarchies, and especially the Sort & Sweep (or Sweep & 
Prune) algorithm by David Baraff (1992). All techniques except for the latter have 
already been explained in the previous sections.

Sweep & Prune first projects the extents of the AABB of each scene object onto 
an axis, say the x-axis, of the global coordinate system. Since the axes for AABBs 
are aligned with the global coordinate system, this process is trivial. For each object 
i this yields an interval on this axis with the start value Si and the end value Ei. The 
start and end values generated in this way are inserted into a list, which is then 
sorted by value (Sort). Two objects only form a potential collision pair if the pro-
jected intervals overlap. These collision candidates can be easily read out from the 
list by iterating over the list from left to right (Sweep). If a start value is encountered 
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during the sweep, object i is marked as “active”. The object becomes inactive when 
the end value Ei is encountered. If a second start value Sj is encountered while object 
i is active, the objects i and j form a potential collision pair. This procedure – project 
objects’ extents onto an axis, sort, sweep – is then repeated for the other axes of the 
global coordinate system. Only if the projections of objects i and j intersect on all 
axes will the algorithm report the two objects as potentially colliding. The result set 
of the algorithm is therefore a list of potentially colliding object pairs, which can be 
examined more closely in a subsequent detail step that uses more complex methods 
(exact polygon test or GJK for convex hulls; see the subsection below on the narrow 
phase). Fig. 7.10 shows a schematic diagram of the Sweep & Prune algorithm.

A key idea of Sweep & Prune is the exploitation of temporal coherence. Under 
the reasonable assumption that objects do not move erratically but will be roughly 
at the same position as in the previous time step, the sort orders from the previous 
time step can be reused. That is, after initial and one-time sorting for the first time- 
step, the lists are already presorted for the next time step. Certain sorting algorithms 
can update the list very efficiently when a presorted list is available as an extra 
input. Insertion Sort, for example, exhibits basically linear runtime behavior in 
these “best case” situations and is therefore particularly suitable.

However, it is precisely this temporal coherence that may also cause problems 
when scene objects form heaps. In these situations, small object movements can 
cause the list items of the intervals to be subject to major changes. As a result, sort-
ing operations often have to be performed in full, and temporal coherence can hardly 
be exploited. In Fig. 7.10 this situation occurs on the y-axis.

 Narrow Phase Collision Detection

After potential collision pairs have been found in the broad phase, the narrow phase 
performs exact collision tests on the objects’ detail geometry. Pairwise testing of all 
polygons of the two objects, however, has an algorithmic effort of O(n2) and would 
become inefficient for complex geometries. One possible measure is the insertion of 
an additional middle phase using bounding volume hierarchies, where parts of the 

Fig. 7.10 Sweep & Prune: Objects A, B, C and D with AABB and projected intervals on the x- 
and y-axes
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polygon meshes are approximated by bounding volumes. In this way, the set of 
polygons to be tested can be quickly limited to the relevant parts. However, depend-
ing on the type and objective of the application, other strategies may also be useful.

The near phase of collision detection can be broken down into subproblems:

• Removal of all false positives reported by the broad phase.
• Determination of the application-relevant collision parameters (e.g., contact 

points, penetration depth).

In practice, a third subproblem should be considered: objects may be in a state of 
permanent contact or collision. This state may occur, for example, when a thrown 
object comes to rest on the virtual floor. As long as no external forces other than 
gravity are applied, this state remains unchanged and, consequently, the two objects 
will be reported by the broad phase as a potential collision pair in all future time 
steps. Therefore, object pairs with similar contact information as in previous time 
steps should be marked as inactive, so that they are not examined by narrow phase 
collision detection over and over again.

A method often associated with the narrow phase is the GJK algorithm, named 
after its authors, Gilbert, Johnson and Keerthi (Gilbert et al. 1988). This algorithm 
determines the minimum distance between the convex hulls of two given point sets. 
If this distance is less than or equal to zero, the point sets collide with each other.

The GJK algorithm exploits the useful property of a Minkowski difference (see 
Fig. 7.11), i.e., that it contains the coordinate origin exactly when the convex hulls 
of the objects overlap. In this way, the collision detection between two point sets of 
size n and resp. m (number of vertices in the convex hulls of the two polygon 
meshes) can be reduced to calculating the distance of a single point set (the 
Minkowski difference of size n × m) to the coordinate origin. The explicit calcula-
tion of this large point set is avoided by iteratively checking whether the difference 

Minkowski Sum and Difference
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where A and B are two subsets of a vector space.

The result of the Minkowski sum is thus a set which contains the sum of each 
element from A with each element from B. The result set does not contain any 
element twice. Under a graphical interpretation, the result is obtained by mov-
ing B along the border of A. In Fig. 7.11 a graphical interpretation of both the 
Minkowski sum and the Minkowski difference is given. The latter is often 
used in the field of collision detection, where one of the properties of the 
Minkowski difference turns out to be especially useful: the Minkowski differ-
ence contains the coordinate origin if and only if the intersection of the two 
sets is not empty.
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can contain the coordinate origin. For this purpose, starting from any point of the 
difference a new point is searched for in each step, which is closer to the coordinate 
origin. If a point set containing the origin is found, a collision can be confirmed and 
the algorithm can be terminated. This method can further be used to determine the 
Euclidean distance of the convex hulls of the two polygon meshes as well as the 
points where the distance is minimal. This information can be used to determine 
contact points and collision depth. There are many publications around this algo-
rithm in the scientific literature. Some address improvements of particular aspects 
of the original algorithm, e.g., hill-climbing for vertex search (Cameron 1997; Lin 
and Canny 1991) while others examine the case of moving objects (Xavier 1997).

Thus, the GJK algorithm cannot only be used to answer the question of whether 
a collision has occurred. It can also provide the contact parameters for generation of 
a suitable collision response. The method is very efficient and can be used for a wide 
range of object configurations.

The result of the narrow phase is a list that contains definitely colliding object 
pairs and associated contact information. These results can then be used to resolve 
the collisions. This process is called collision response. However, not every applica-
tion area of collision detection requires the calculation of a collision response. For 
example, in the case of view volume culling, objects colliding with the view volume 
are displayed visually. All other objects are not rendered. Here, a spatial separation 
of the objects is not necessary. A physics simulation could, however, use the contact 
information to determine the forces necessary to separate the colliding objects.

7.2.4  Summary and Advanced Techniques

This section has examined basic procedures and strategies for collision detection 
between rigid bodies. Different types of bounding volumes were presented and their 
properties were discussed. Furthermore, it was shown how space partitioning and 
bounding volume hierarchies can be used to reduce the total number of collision 
tests required. In Sect. 7.2.3, the basic collision detection methods were put into the 
context of large environments with potentially thousands of objects.

Fig. 7.11 Minkowski sum and difference: (from left to right) Objects A, B, C defined in a 2D 
coordinate system; Minkowski sum A + B; Minkowski difference A − C
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The preceding subsections give an idea of how broadly the subject of collision 
detection can be approached. In the discussion it was always assumed that the simu-
lation of the objects is carried out time step by time step (i.e., discretely). Although 
this process is easy to understand and implement, it involves some risks. If the 
movement of an object in one time step is larger than its extension, situations may 
arise where a “tunnel effect” occurs. As a practical example a soccer shot at the goal 
can be used: in the time step t the soccer ball is in front of the goal. However, due to 
the high speed of the ball, there is a high probability that the ball is already com-
pletely behind the goal in time step t + 1. The presented methods for collision detec-
tion do not report a collision for either time step. The ball has “tunneled” through 
the goal. To avoid this effect, various solutions may be pursued:

• Smaller time steps (= more computational effort at runtime).
• Determine the motion volume or motion vector and test for collision.
• Continuous collision detection.

The latter approach takes a completely different perspective on the problem: 
instead of examining objects present in each time step for collision testing, continu-
ous collision detection calculates the exact place and time of a collision. An imple-
mentation of this technique can be found in the freely available 2D physics engine 
box2d (Catto 2020). Continuous approaches are also called a priori while discrete 
approaches are called a posteriori.

Modern applications and simulations increasingly require methods that can han-
dle not only rigid bodies but also soft bodies such as clothes and fluids. These 
objects pose completely different challenges. For example, bounding volume hier-
archies are rarely applicable for deformable objects, because costs for their initial 
creation and repeated updates at runtime would be too high. However, this problem 
can be addressed with the help of powerful, programmable GPUs. Research work 
on this topic has already existed for some time, for example (Sathe and Lake 2006). 
The Nvidia Flex simulation framework provides collision detection methods for 
soft bodies as well as support for popular game engines such as Unity and 
Unreal Engine.

7.3  Real-Time Rendering of Virtual Worlds

The visual sense is the most important one for human perception. Consequently, VR 
systems place particularly high demands on the real-time rendering of virtual 
worlds. In the literature it is generally assumed that the temporal resolution of our 
visual system is 60–90 Hz. A visual rendering system should therefore be able to 
provide at least 60 frames per second, so that the user is not able to perceive a 
sequence of individual images.

At present, typical display devices have resolutions of at least 1920 × 1080 pix-
els. If these are to be redrawn 60 times per second, almost 125 million pixels per 
second must be computed. This requires very powerful hardware to be able to 
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output the high-resolution content in real-time. The basic problem is to fill the pixel 
matrix in short time intervals. As this problem can be solved mostly independently 
for each pixel, special parallel computers are used for this task: the graphics pro-
cessing unit (GPU). Today’s GPUs often exceed the performance of CPUs many 
times over.

A naive program for the representation of virtual worlds could follow the follow-
ing procedure:

 1. Load the scene objects and build the virtual world.
 2. As long as the program is not terminated:

 (a) read the user input
 (b) change the virtual world according to the user input
 (c) pass the scene to the GPU
 (d) draw the scene on the GPU

In this naive approach, for each image to be drawn, the entire content of the vir-
tual world must be manipulated, transferred to the GPU and drawn. Despite the 
impressive computing capacity of today’s graphics hardware, it is not capable of 
providing an appropriate amount of visual detail at sufficiently high frame rates 
with this approach. A part of the VR system’s design should therefore include meth-
ods that support the rendering of visual images for high-resolution content, high- 
resolution displays, and in high temporal resolution, i.e., in real time.

General approaches for making the visual rendering as efficient as possible 
include:

• Draw only necessary, i.e., visible and perceptible, data.
• Use compact representations of the graphical data and avoid memory movement 

of the data whenever possible (time and energy costs).
• Use the available hardware as effectively as possible.

This section presents several methods for how these approaches can be 
implemented.

7.3.1  Algorithmic Strategies

Concerning the computational load of the graphics hardware, the best scene objects 
are those that do not need to be drawn at all. In the naive method above, all scene 
content is passed through the entire rendering pipeline, regardless of whether or not 
it can be seen by the viewer. For large virtual words with high-detail content, this is 
neither necessary nor efficient. At any time, large parts of the virtual world will be 
outside the user’s field of view, occluded by other objects, or simply too far away to 
be seen in full detail. Visibility testing of objects and graphics primitives and the 
subsequent removal of invisible ones from the rendering pipeline is called culling.
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 View Volume Culling

During rendering, a view volume is specified for each eye which describes a map-
ping of 3D coordinates to 2D image coordinates. In the case of the common per-
spective projection this visual volume is called a frustum (see Fig. 7.12 left). The 
basic idea of view volume culling (or view frustum culling) is that only objects that 
are at least partially inside the view volume have to be drawn.

Different approaches and methods exist to determine which objects are in view 
and which are not. The graphics hardware provides support for this process at the 
level of graphics primitives (i.e., points, lines, triangles, polygons, …) where it is 
called clipping (in addition to testing if a primitive is visible, partially visible primi-
tives are cropped – or “clipped” – to the view volume). At this point, however, parts 
of the graphics pipeline, namely the vertex, tessellation and geometry shaders, have 
already been executed. Thus, it might seem like a good idea to perform the clipping 
on the CPU. However, graphics processors are able to draw polygons much faster 
than it takes the CPU to clip them, so no speed-ups are to be expected.

A more useful level of abstraction for performing many visibility tests is the 
object level. As the object level is coarser than the polygon level, some polygons 
will be sent to the graphics hardware that will not contribute to the resulting image. 
However, culling costs are usually amortized easily as large amounts of polygons 
must not be transferred to the GPU. An optimal balance between the computational 
costs for culling and the savings in terms of polygons not sent to the GPU depends 
on the scenario and the application. It is important, however, that visibility testing 
should always be designed conservatively: it should be guaranteed that objects 
marked as invisible are truly not visible. Otherwise, there is a risk of removing con-
tent that is relevant for the resulting image.

Section 7.2 has already introduced most of the tools needed to implement view 
volume culling efficiently, particularly bounding volumes and bounding volume 
hierarchies. Since the view volume is generally not a cuboid but a truncated pyramid 
(a frustum), special methods for efficient collision testing with common bounding 

Fig. 7.12 View volume culling. Left: View frustum for perspective projection. Right: View vol-
ume culling with objects and bounding spheres (objects A, D, E and F are determined as visible)
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volumes (spheres, boxes) are required. Gregory (2009) sketches a simple test for 
bounding spheres: for each bounding sphere of an object in the virtual world to be 
tested, each plane that defines the frustum is shifted outwards by the radius of the 
sphere (the normal directions for the frustum planes are indicated in Fig. 7.12 right). 
If the center of the bounding sphere is now in the positive half space for all six 
planes (or four planes in the 2D case), the bounding sphere is at least partially 
within the view volume. Fig. 7.12 (right) illustrates the process of view volume cull-
ing, where the scene objects are enclosed by bounding spheres. The approximation 
of objects with bounding volumes may yield results where an object is marked as 
visible while actually being outside the view volume. An example for this is object 
A in Fig. 7.12 (right).

For bounding volumes other than spheres the following method can be used for 
conservative view volume culling (Assarsson and Möller 2000): the six planes 
defining the frustum can be specified by a transformation matrix. This matrix is 
called a projection matrix and describes the mapping of the view frustum content 
onto a unit cube. The inverse matrix of the projection matrix is applied to the bound-
ing volumes of the scene objects. For example, by applying the inverse projection 
matrix, a bounding box is “deformed” to the shape of a truncated pyramid (i.e., a 
frustum). For this “bounding frustum”, a new AABB (axis-aligned bounding box) is 
then constructed and used for intersection testing with the view volume (which is 
now a unit cube, after applying the projection matrix). In this way only AABBs have 
to be compared against each other.

 Hierarchical View Volume Culling

Hierarchical view volume culling is an extension of view volume culling that takes 
bounding volume hierarchies (BVHs) into account. When a separate bounding vol-
ume is used for each scene object, view volume culling may make up a significant 
part of the available compute time for large scenes with thousands of objects. The 
hierarchy-building techniques presented in Sect. 7.2.2 can lead to significant 
improvements in such cases. For example, instead of a list of all scene objects, a tree 
can be constructed that structures the scene objects (or their bounding volumes) in 
bounding volumes of increasing size. This requires a suitable method for identify-
ing suitable object groupings, and, in turn, groupings of groupings. Ultimately, the 
whole scene should be enclosed by a single bounding volume, i.e., the root of the 
BVH. In hierarchical view volume culling, the root node of the BVH is tested first. 
If it is not visible, no scene object is visible and the culling process finishes. 
Otherwise, deeper levels and branches of the tree can be tested recursively to deter-
mine the visible objects.

Other kinds of hierarchies, such as k-d trees and octrees, are also applicable and 
widely used for hierarchical view volume culling. Fig. 7.13 illustrates the hierarchi-
cal view volume culling method in 2D using a quadtree as example.

M. Buhr et al.



275

 Occlusion Culling

View volume culling provides a coarse test whether an object is potentially visible 
or not. However, just because an object (or its bounding volume) is within the view 
volume, this does not mean that it is actually visible in the rendered image: it may 
be occluded by other objects, such as walls, that are closer to the viewer. Filtering 
out objects that are within the view volume but hidden from the view by other 
objects is called occlusion culling.

Implementing occlusion culling in 3D object-space based on the objects’ geom-
etries could provide exact solutions, but is usually too costly. Instead one usually 
prefers an image-space solution that exploits a feature of modern GPUs: without 
special precautionary measures, the scene objects can be sent to the graphics hard-
ware in arbitrary order where they are automatically drawn with correct occlusions. 
A simplified description of the standard rendering pipeline is:

 1. Projection of the three-dimensional input data (primitives: triangles, quadrilater-
als, etc.).

 2. Rasterization of the primitive and generation of a fragment (fragment: data for 
one pixel, e.g., depth; also, but not used in simplified pipeline: interpolated color, 
normal, texture, etc.).

 3. Fragment-based calculations and writing the pixel to the output buffer.

Without any further mechanism, this pipeline could lead to situations where 
scene objects that are close to the viewer are drawn early only to be overwritten, 
falsely, by other objects drawn later. To avoid this effect, the so-called Z-buffer (or 
depth buffer) of the GPU can be used. For each pixel, this buffer stores the z- 
coordinate of the last drawn fragment. If the fragment to be drawn next has a higher 
z-value, it lies “deeper” in the scene from the viewer and must not be transferred to 
the output buffer. Transparent objects must be handled separately and are usually 
sorted according to their depth before drawing. Other, more effective, techniques 
based on programmable GPUs are possible.

This Z-buffering can now also be used for occlusion culling. For this purpose, the 
scene is rendered once in a pre-processing step, whereby the computationally 

Fig. 7.13 Hierarchical view volume culling. Left: A scene and its quadtree. Right: Hierarchical 
view volume culling using the quadtree (highlighted objects are determined as visible)
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expensive steps of the pipeline are deactivated beforehand (illumination, texturing, 
blurring, post-processing, etc.) and only the depth buffer is filled. The subsequent 
actual drawing process does not manipulate the Z-buffer, but only tests against the 
values in the buffer. The advantage of this procedure is that cost-intensive opera-
tions (e.g., illumination) are only carried out for fragments that contribute to the 
final image. In the literature, the described occlusion culling procedure is also 
referred to as early Z rejection or Z pre-pass.

An alternative occlusion culling method, which is also supported by the hard-
ware, is the so-called occlusion query. For an occlusion query, the primitives of the 
object geometry are not sent through the pipeline, but only the primitives of the 
associated bounding volume. Visual effects need not be calculated. Without manip-
ulating color or depth buffers, the graphics hardware counts the pixels that would be 
drawn for the bounding volume. The early stages of the rendering pipeline per-
formed on the CPU can request this value from the GPU after the request has been 
executed. If the number of pixels covered by a bounding volume is zero, it is 
occluded by another object and the actual scene object does not need to be drawn. 
The problem with this technique, however, is that the CPU has to wait for the pro-
cessing to finish for each request. In addition to sole processing time, a delay due to 
the comparatively slow communication channels to the GPU must also be expected. 
Fortunately, these requests can also be transferred asynchronously to the hardware, 
so that several tests can be processed in the GPU at the same time. Also, the CPU 
can process other tasks while waiting.

Occlusion culling is particularly interesting for applications whose runtime 
behavior is dominated by the computation time of the fragment shader (texturing, 
illumination, postprocessing).

 Backface Culling

When polygon meshes are rendered, it is usually possible to specify if a polygon 
should only be visible when seen from one side (one-sided polygon) or when seen 
from either front or back (two-sided polygon). Backface culling deals with the 
removal of polygons from the rendering pipeline that face away from the viewer. In 
general, associated normals are stored for each polygon. If the normals are not 
explicitly stored, the direction of the normals can also be derived by using a conven-
tion whereby the vertex order (clockwise or counterclockwise) determines the ori-
entation of the normal (see also Sect. 7.3.2). For backface culling the locally defined 
polygons and their normals are transformed into the camera’s coordinate system. 
Now the normals of the polygons are compared with the camera’s view direction. If 
the scalar product of a polygon’s normal with the view direction is smaller than 
zero, the two vectors point in opposite directions, meaning that the front face of the 
corresponding polygon is visible from the camera. Otherwise, a backfacing polygon 
is encountered and culled from the rendering pipeline. Backface culling is nowa-
days almost exclusively performed on the GPU, since the transformation step is an 
integral part of the graphics pipeline.
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 Small Feature Culling

In many cases, details of a scene can be omitted without the viewer noticing that 
they are missing. The basic idea of small feature culling is that very small or very 
distant objects affect only a few pixels in the resulting image. To determine whether 
this applies to a given object, its bounding volume can be projected and its size 
measured. If the size is below a specified threshold, the object is not drawn. This 
process is particularly easy to solve in connection with the occlusion query (see 
occlusion culling).

If small feature culling is enabled, the rendered output image will be slightly 
inaccurate. However, especially in dynamic scenarios (also including fast viewer 
movements, head tracking), the probability is high that the error will not result in 
noticeable differences but will give an improved frame rate.

 Portal Culling

The portal culling method is particularly suitable for virtual worlds that simulate 
closed rooms or buildings. For this purpose, the world is divided into sectors 
(rooms). The user can move from one sector to the next through defined portals 
(doors/passages). The sectors do not necessarily have to be spatially connected to 
each other. For portal culling it is only important that the polygon describing the 
portal is marked as such.

At a given time, the user (the camera) is in a sector. This sector is drawn us usual 
according to the camera’s viewing frustum. In addition, a new viewing frustum is 
determined for each portal in the field of view, which is defined by the viewer posi-
tion and the edges of the respective portal. With this new viewing frustum the sector 
on the other side of the portal is drawn (Fig. 7.14).

Thus, the number of sectors required for rendering is automatically limited to 
sectors that are actually visible through a portal. Furthermore, in these sectors, using 

Fig. 7.14 Portal culling: the viewer is located in sector A (view volume/frustum of the viewer 
drawn in grey). For each visible portal the view volume is highlighted in color
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view volume culling, only those objects have to be drawn that are located within the 
view volumes generated by portal culling.

As this method is very similar to view volume culling, these techniques can be 
combined without much effort. This makes portal culling not only easy to imple-
ment, but also very efficient for virtual worlds that are divided into different sectors 
or rooms.

 Level of Detail (LOD)

Small feature culling removes small – and therefore hardly visible – objects from 
the scene. However, the technique does not solve a problem that quickly arises with 
high-resolution objects: with increasing distance to the viewer, the details become 
less and less perceptible. Without further measures, possibly millions of polygons 
and high-resolution textures must be transferred to the graphics hardware and drawn 
completely, even if the object covers only a few pixels in the rendered image. This 
situation can be avoided by introducing replacement objects according to the level 
of detail (LOD) method (see also Sect. 3.3.4 and Luebke et al. 2003).

According to the LOD method, several simplified versions of decreasing detail 
are created offline for high-resolution scene objects and selectively rendered at run-
time. As soon as the object falls below or exceeds a certain distance threshold from 
the viewer, the system switches to a more or less detailed version. Alternatively, 
instead of the distance, the projected object size in screen space can be used as an 
indicator for the LOD level to be selected.

High-detail objects may be simplified in many ways. For example, versions with 
reduced polygon count are just as conceivable as versions with low-resolution tex-
tures or quality-reduced lighting. Provided that the switching times and quality lev-
els are correctly selected, the exchange of the levels can be unnoticeable in practice. 
Especially for objects with “infinite” detail, such as terrain data, the LOD method 
makes a decisive contribution for maintaining interactive frame rates. In general, 
scenes with many complex objects benefit most from the use of the LOD technique.

An obvious disadvantage of the LOD technique is the extra memory require-
ment, because in addition to the original model, several other, less detailed models 
must also be stored. However, since the low-detail models contain less information 
anyway, these costs are usually not a big concern in practice. A bigger problem is 
usually the generation of the LOD levels. The automated generation of visually 
appealing simplified versions of a high-resolution polygon mesh is a non-trivial 
problem. There are algorithms that can reduce the polygon count of given meshes. 
However, such algorithms usually require checking of results and manual correc-
tions to achieve appealing results.

In practice, therefore, the detail levels are often modeled by hand, which, how-
ever, significantly increases the effort and costs involved in their creation. Parametric 
models such as free-form surfaces allow the automatic creation of versions in differ-
ent resolutions. However, non-parametric, mesh-based modeling tools are much 
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more widespread and also more intuitive to use. A comprehensive overview of LOD 
techniques is given in Luebke et al. (2003).

7.3.2  Hardware-Related Strategies

There are good reasons to hide the complexities of modern (graphics) hardware 
from the application developer. Suitable abstraction levels enable the developer to 
write programs that can be executed on different devices with similar efficiency. 
Nonetheless, a certain knowledge of special hardware features can provide starting 
points for performance improvements of the application.

The following strategies for real-time rendering of virtual worlds show ways to 
minimize memory consumption, utilize hardware processing units and optimize the 
usage of hardware caches.

 Object Size

Current graphics hardware is capable of displaying several hundred million trian-
gles per second. This processing speed is achieved because the problem of image 
rendering can be solved mostly independently for each pixel and because the highly 
parallel graphics hardware is optimized for this task. Modern GPUs contain dozens 
of stream processors where each stream processor in turn consists of many shading 
units. For example, an Nvidia Geforce RTX 3080 has 68 stream processors with 128 
shading units each, for a total of 8,704 shading units. While all shading units exe-
cute in parallel, shading units within the same stream processor perform the same 
operations on different parts of the input data, e.g., projecting vertices to NDC 
(Normalized Device Coordinates). It is the task of the graphics driver (or the hard-
ware) to partition the input data, e.g., polygon meshes, into groups and assign them 
to the available stream processors. To make a very simplified example: assume a 
GPU with four stream processors with 32 shading units each. Now a scene object 
consisting of 100 vertices is to be transformed. For this purpose, four subtasks must 
be created, which are then assigned to the four available stream processors. Say 
three stream processors are tasked to transform 32 vertices each, and the last one the 
remaining four vertices. As all threads of a stream processor run the same code, 28 
of them are masked so as not to provide invalid results. That is, 28/128 ≈ 22% of 
computational resources are wasted! The problem also occurs in the following situ-
ation: 100 cubes of a scene are to be drawn. Since the cubes consist of only eight 
vertices each and each cube has to be assigned to a stream processor of its own (each 
cube is transformed/projected differently), the utilization of the hardware’s process-
ing resources is very unfavorable. From this it can be concluded that scene objects 
should be modeled with sufficient detail if graphics processors are to benefit from 
their parallel computing hardware. Another conclusion is that simple scene objects 
should be combined to larger objects so that they can be passed as a whole to the 
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GPU. This gives the graphics driver (or the GPU) the opportunity to allocate avail-
able execution and shading units in a resource-efficient way.

 Indexing

Often, the geometry data of scene objects are available as unsorted triangle meshes. 
This data representation is often the output of modeling tools and is also known as 
triangle soup or polygon soup. These terms highlight that the polygons of the mesh 
are completely unstructured and have no explicit relation to each other. 
Metaphorically, the triangles “float” at arbitrary places in the soup. The actual data 
structure is just a vector (array, list) of vertices. A sequence of three vertices defines 
a triangle. However, triangles (and vertices) that are close to each other in the mesh 
are not necessarily close to each other in the data vector. Another consequence is 
that the vertices of a triangle mesh are typically contained several times in the data 
vector (once for each triangle they belong to). The memory requirement for such 
triangle soups is actually about three times the size of a memory-optimized variant 
(see Sect. 7.3.2 “Stripping”). Furthermore, the disadvantageous fact that a vertex 
may be contained in multiple copies in the data vector also means that it must be 
processed by the graphics pipeline multiple times (transformation, lighting, projec-
tion, etc.). Without additional measures a previously calculated result of vertex pro-
cessing cannot be reused.

To avoid these inefficiencies, an indexing scheme can be introduced (see also 
Sect. 3.3.1: indexed face set or indexed mesh). The vertex coordinates (usually three 
floating point values with 4–8 bytes each per vertex) are stored in one data vector. A 
second data vector, the index vector, defines which vertices combine to a triangle. 
Each sequence of three indices (integer with 2–4 bytes per value) defines a triangle. 
While the index vector requires extra memory space, this is more than compensated 
by the absence of multiple copies of a vertex in the vertex vector. Overall, the mem-
ory requirements of a polygon mesh can be significantly reduced. Fig. 7.15 (left) 
illustrates the indexed mesh data structure.

Software systems for graphical data processing sometimes use not only one 
index vector for all vertex data but separate index vectors for vertex coordinates, 
normals and other attributes (e.g., colors). This can be useful if a vertex is to use 
different attributes depending on the triangle from which it is referenced. However, 
this multiple indexing is not supported by typical graphics hardware. If 3D objects 
have been modeled in such a representation, they must be re-sorted to a single index 
data structure before they are passed to the hardware.

 Caching

Indexing alone does not solve the problem of reusing already computed vertex pro-
cessing results when the vertex is part of more than one triangle. As the index vector 
presupposes no particular order of triangles, in particular, geometrically adjacent 
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triangles may occur at totally different positions in the index vector. To put it in 
slightly different words, a vertex shared by two triangles may occur at very different 
positions in the index vector. With caching it is possible to reuse recently computed 
vertex data. For this, it is necessary that a second occurrence of the vertex is close 
to its first one in the index vector. If the distance is too large, the vertex data in the 
GPU must be completely recalculated. The sort order of the index vector thus 
becomes relevant. A desirable property is a high locality of the index vector, i.e., 
spatially adjacent triangles are also in each other’s neighborhood in the index vector 
(see also Fig. 7.15: the geometric positions of the vertices are not reflected in the 
index vector, i.e., low locality).

The typical model of a computer – the von Neumann architecture – provides that 
data and instructions use the same memory. From the programmer’s point of view, 
the flow of a program is therefore strictly sequential. Problematic, however, is the 
data transfer between memory and the CPU, the so-called von Neumann bottleneck. 
Nowadays it takes much more time to transport the data to the CPU than it takes the 
CPU to actually process this data. Without further mitigations, a modern CPU could 
never be used to full capacity.

Caches were introduced to compensate for this memory latency. Caches are fast 
intermediate memories. Often, they store data in the form of an associative array. 
Such caches are also used on the graphics hardware to avoid or minimize memory 
latencies. An important limitation of these caches is their storage capacity. To keep 
access times to these caches as low as possible, they are physically placed near the 
processing units. But especially there, chip area is an expensive commodity. 
Therefore, the capacities (compared to RAM/VRAM) are usually very small and 
only a few entries can be kept in the cache. Exact data about GPUs is difficult to 
access but the capacities are typically in the low megabyte range for level-2 caches 

Fig. 7.15 Triangle mesh representation with indexing and stripping. Left: Vertex and index vec-
tors define a triangle mesh. Right: Vertex vector and a convention on vertex ordering yield the tri-
angle mesh
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and in the kilobyte range for level-1 caches. Since the cache size is usually much 
smaller than the GPU RAM, not all data can be cached. A strategy must be imple-
mented that defines the assignment of cache entries to memory entries. Often a 
memory entry cannot be placed at any position in the cache (full associativity), but 
several memory entries/regions are mapped to the same cache entry (set associativ-
ity). To make a practical example, this means: if a vertex is needed to project a tri-
angle A, it must first be transferred from the slow GPU RAM to the cache. If another 
triangle B accesses this same vertex immediately afterwards, it is highly probable 
that the vertex data is still available in the fast cache. However, if calculations are 
made in the meantime that require other data, these will replace the vertex data in 
the cache. Then, for the projection of triangle B, the vertex must be reloaded from 
the GPU RAM.

Since cache properties are generally very hardware-specific, it is hardly possible 
to define generally applicable procedures. One consequence for real-time rendering 
of virtual worlds, though, is that the index vector for a triangle mesh should be 
sorted in such a way that it fulfills the locality property well. Furthermore, the pro-
gram code (including shader code) should also take into account the properties of 
the available caches and, if possible, access memory sequentially (instead of ran-
domized access patterns).

If the cache size is known, the optimization can be done very well (Hoppe 1999). 
However, as Bogomjakov and Gotsman (2002) have shown, good results are pos-
sible even if the cache size is unknown. A concise discussion with sample code can 
be found in Forsyth (2006).

 Stripping (Triangle and Quadrilateral Strips)

One way to convert polygon data into a cache-optimized form is stripping. Stripping, 
i.e., the transformation of a polygon mesh into triangle strips or quadrilateral strips, 
was already introduced in Sect. 3.3.1. In the context of rendering efficiency, their 
second advantage, besides the cache-optimized form, is that they explicitly describe 
which vertices form a triangle (or quadrilateral). Thus, duplicate vertices or vertex 
indices are avoided, making triangle and quadrilateral strips also a very memory- 
efficient representation of polygon meshes.

The vertices of a data vector are interpreted according to a fixed convention. 
Assume a vector with four vertices A, B, C and D. These data can be interpreted, for 
example, in such a way that (ABC) and (BCD) each represent a triangle. The prob-
lem with this interpretation, however, is that the orientation differs between the two 
triangles, since by convention the clockwise direction determines the normal direc-
tion. In the interpretation presented here, the normals point to different sides (i.e., 
one triangle is front facing, the other one back facing). A better interpretation is 
therefore to specify the second triangle via the vertex sequence (BDC). Fig. 7.15 
(right) shows the stripping for a triangle mesh and also shows the orientation of the 
triangles. If vertex data are used as triangle strips, the geometric positions of the 
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associated triangles are also automatically reflected in the data vector. With respect 
to caching, the data are thus available in a favorable form.

By means of stripping, n triangles can be specified with only n + 2 vertices. As 
compared to indexing, which requires both a data vector and an index vector, strip-
ping is more favorable from a memory consumption perspective. Compared to poly-
gon soups (see Sect. 7.3.2 “Indexing”), stripping even reduces memory consumption 
by almost two thirds.

Strips offer a compact geometry presentation (no duplicate vertices, no index 
vector) and can positively influence the reuse of data on the GPU side. However, it 
is a non-trivial problem (NP-hard computational complexity) to find an optimal 
strip representation for an object. Instead, approximative greedy algorithms are usu-
ally used for strip generation that do not yield optimal but still very good results in 
very short times. Since, in general, an object cannot be represented by a single strip, 
either multiple strips or strips with degenerated triangles (i.e., triangles that degen-
erate into points or lines) must be used. This also results in reduced memory and 
display efficiency. To counteract this, modern 3D APIs offer “restart” interfaces 
(e.g., glPrimitiveRestartIndex for OpenGL). Instead of transmitting degenerated tri-
angles, this interface can be used to tell the GPU that the strip interpretation should 
be restarted from a given index.

In the literature, there are several articles and papers on the subject of calculating 
the strips (e.g., Evans et al. 1996; Reuter et al. 2005). Furthermore, programs are 
available that generate strips from polygon meshes (e.g., NVTriStrip (NVidia 2004) 
or Stripe (Evans 1998)). While polygon soups are easy to handle but memory- 
consuming, strips are at the other end of the scale: they are memory efficient but 
much more difficult to handle and create.

 Minimizing State Changes

As the saying goes, time is money. For this reason, a contract painter will be inclined 
to finish pictures in the shortest possible time. Since he needs different brushes and 
colors for the paintings, he will try to change the drawing equipment or the paint 
color as rarely as possible. After all, for every change of brush, the old brush has to 
be cleaned and stowed away. The graphics hardware is not unlike the painter in this 
respect – although an even more accurate metaphor would be a large group of paint-
ers who must all use brushes of the same kind with the same paint color at a time.

As discussed earlier, a GPU is composed of many parallel processing units. 
These execute the same instructions at different points of the input data where com-
mon state information specifies how, e.g., with which texture a vertex or fragment 
is to be processed. When drawing a given object it is therefore important to make 
only those state changes that are actually necessary.

Also, it is advisable to organize the order of object transfer to the graphics hard-
ware in such a way that as few state changes as possible have to be made for an 
image to be drawn. If many objects are to be drawn, where some use one material 
(textures, colors, shaders), others a second material, and even others are a third 
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material, etc., the objects could, e.g., be sorted by material before transferring them 
to the GPU.

Furthermore, changes to the graphics pipeline configuration (e.g., changing the 
shader program) can lead to time-consuming operations in the driver or hardware.

Virtual worlds are usually not designed according to the above principles. Which 
sort order (e.g., by material or shader program) is useful depends strongly on the 
specific virtual world and cannot be prescribed in a generally valid way. While this 
task cannot be performed by the graphics driver or the graphics hardware, software 
systems for virtual worlds can be helpful tools.

7.3.3  Software Systems for Virtual Worlds

The previous sections described a number of methods that can help to increase the 
rendering speed of a virtual world. Ideally, these methods would be part of the 
graphics driver or hardware and any application could achieve optimal performance. 
However, this is not the case.

The graphics driver (and the APIs provided, e.g., Direct3D, OpenGL, Vulkan) 
provides a thin abstraction layer between the actual hardware and the application 
program. It mainly serves as a unified interface to the hardware of different manu-
facturers and contains no application-specific optimizations. These are left to the 
application developer, who has the freedom and responsibility to flexibly make 
design choices that suit the needs of the specific application.

Furthermore, the graphics driver does not have information about the entire 
scene (but only of individual objects), so that certain optimizations (e.g., view vol-
ume culling) cannot be implemented in a meaningful way. To support the develop-
ers of VR software, who cannot be expected to completely implement all algorithms 
and procedures, software systems exist which take over this task and thus support 
and accelerate application development. A widespread principle is the scene graph.

 Scene Graph Systems

The general concept of a scene graph was introduced in Sect. 3.2. This section 
focusses on processing aspects of scene graphs that are useful for the real-time 
capability of a VR system.

The basic idea of scene graphs is to represent the entire virtual world, including 
some metadata, in a hierarchical graph, either a tree or a directed acyclic graph 
(DAG). At runtime, the scene graph software then traverses this graph and performs 
operations on individual nodes or subgraphs. In many cases, the hierarchy is tra-
versed top-down and depth-first. Examples for these operations are intersection test-
ing during a user interaction, updating the position of dynamic objects, calculation 
of bounding volumes for both leaves and inner nodes and visibility testing on the 
basis of these bounding volumes.
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During a single time step, a scene graph is typically traversed several times. In 
this context, one often speaks of different phases:

• APP: Application phase (change structure and states of the graph)
• CULL: View volume culling
• DRAW: Rendering on the GPU

A trivial implementation of a scene graph sends all contained nodes to the graph-
ics hardware, even those representing objects not seen by the camera. However, as 
the entire scene and its hierarchy are contained in the graph, the scene graph system 
can easily calculate bounding volumes and bounding volume hierarchies. Based on 
these data and the view volume specified by a special camera node, the scene graph 
system can determine during the CULL phase which objects are within the field of 
view. LOD calculations are also easily performed. However, before the objects 
within the field of view are sent to the graphics hardware to be finally rendered dur-
ing the DRAW phase, they are usually sorted in such a way as to minimize changes 
of the graphics state.

This APP-CULL-DRAW model became popular through Iris Performer and its 
successor OpenGL Performer (Rohlf and Helman 1994). The model is particularly 
interesting because it provides a good basis for parallelization of scene graph pro-
cessing. This enables scene graph systems to benefit from modern multi-core pro-
cessors and thus to process more complex scenes in real time.

Scene graph systems can significantly accelerate the development of complex 
VR applications. They offer a wide range of tools for scene generation, animation, 
user interaction and various optimizations (e.g., cache optimization of vertex data, 
merging of static structures). They abstract the complexity of these methods and 
provide VR developers with accessible interfaces that enable them to achieve their 
goals quickly. Many scene graph systems also support special effects that are not 
completely performed by the graphics hardware (e.g., shadow calculations).

The price for these benefits is often a somewhat limited flexibility. Adding new 
algorithms to a complex system, such as a scene graph system, can be much costlier 
than implementing them from scratch. It is therefore not surprising that, for exam-
ple, scientific visualization or virtual communication applications often implement 
customized solutions without using a scene graph system.

 Game Engines

Game engines are development and runtime environments for computer games. In 
the field of real-time 3D computer games, game engines often combine high visual 
quality with comfortable development tools. Besides target platforms such as desk-
top PCs, game consoles and smartphones, many game engines also support the 
development of VR/AR applications.

Modern game engines are complex software systems consisting of various sub-
systems, such as a rendering engine, physics engine and audio system. In addition, 
game engines offer support for animation, multiplayer play modes, game AI and 
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user interaction. For level design, i.e., the modeling of virtual worlds, some game 
engines provide their own development environments, which are usually strongly 
customized to the respective functionalities of the game engine. Virtual worlds are 
often modeled based on scene graphs. Typically, special modeling systems are also 
provided for the creation of vegetation, terrain and particle systems as well as for the 
animation of virtual humans (see Chap. 3). Most game engines also offer scripting 
support for programming the game logic.

Chapter 10 illustrates the authoring process in game engines as well as their 
configuration for VR/AR applications using Unity and the Unreal Engine as 
examples.

7.4  Summary and Questions

Real-time capability is of crucial importance for believable VR/AR experiences. In 
combination with head-tracking, a latency of at most 50 ms is recommended for 
HMD-based systems (Brooks 1999; Ellis 2009). Higher latencies are more tolerable 
for projection-based VR systems. Latencies occur in all subsystems of VR/AR sys-
tems. In addition, latencies of data transport between the subsystems must be con-
sidered to minimize the overall latency (end-to-end latency) of a VR/AR system. In 
this chapter, methods for measuring the latency of tracking systems as well as end- 
to- end latency were presented. Furthermore, typical latencies for different hardware 
components of VR/AR systems were discussed, including different types of track-
ing systems and network components. The latencies of other VR/AR subsystems, 
such as world simulation and rendering are more dependent on the specific applica-
tion. A generic task during world simulation is collision detection. For this purpose, 
a number of methods exist that allow efficient collision detection even in large envi-
ronments with a high number of objects. The scene graphs commonly used in VR 
systems support efficient rendering in a variety of ways, e.g., different culling meth-
ods, level of detail techniques, and memory-effective and cache-friendly data struc-
tures for polygonal models, as well as optimization of the rendering order of the 3D 
objects in the virtual world.

Check your understanding of the chapter by answering the following questions:

• Why is low end-to-end latency so important for VR/AR systems?
• Where do the latencies of VR/AR systems come from?
• Sketch a concrete VR application and discuss the relevance of different kinds of 

latency on this example!
• How can latencies be measured or estimated?
• What are the typical requirements for bounding volumes? What consequences 

result from these requirements?
• What is a separating axis and how can one be found for two OBBs?
• Explain the Sweep & Prune procedure using a self-drawn sketch. Explain the 

advantages and disadvantages of the procedure!
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• Scene graphs can be organized according to different criteria. In a logical or 
semantic structure, objects could be grouped according to their type, e.g., by hav-
ing one common group node for all cars, another common group node for all 
houses etc. In a spatial structure, on the other hand, objects that are close to each 
other would be grouped together. What type of grouping is more efficient for 
view volume culling? Also explain hierarchical view volume culling!

• In scene graphs, bounding volumes such as cuboids or spheres are automatically 
generated for all inner nodes. How can this be exploited with the different vari-
ants of culling (view volume culling, occlusion culling, small feature culling)?
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Chapter 8
Augmented Reality

Wolfgang Broll

Abstract This chapter covers specific topics of Augmented Reality (AR). After an 
introduction to the basic components and a review of the different types of AR, the 
following sections explain the individual components in more detail, as far as they 
were not already part of previous chapters. This includes in particular the different 
manifestations of registration, since these are of central importance for an AR expe-
rience. Furthermore, special AR techniques and interaction types are introduced 
before discussing individual application areas of AR.  Then, Diminished Reality 
(DR), the opposite of AR, is discussed, namely the removal of real content. Finally, 
Mediated Reality, which allows for altering reality in any form, including the com-
bination of AR and DR, will be discussed.

8.1  Introduction

The following overview provides a quick introduction to the most important aspects 
of augmented reality.

8.1.1  Getting Started

In accordance with the definition already given in Chap. 1 (see Sect. 1.3), Augmented 
Reality (AR) can generally be understood as the enrichment of reality by artificial 
virtual content. In doing so, a fusion of reality and virtuality occurs (see also 
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Milgram et al. 1995). Figure 8.1 shows an example of a real scene and its augmenta-
tion by a virtual object.

It is crucial that this augmentation does not happen statically and at once, as in 
the above illustration, but continuously and adapted to the current point of view of 
the respective viewer. In simplified terms and neglecting individual alternatives, AR 
can be realized through the following five steps:

 1. Video capturing
 2. Tracking
 3. Registration
 4. Visualization
 5. Output

The individual steps and components are only briefly explained here to give the 
reader an initial idea. As far as they were not already considered in previous chap-
ters, they will be discussed in detail in the following sections.

Video Capturing
In the first step, a video image or, more precisely, a video stream of the observer’s 
surroundings is usually recorded. The purpose is to capture the reality, i.e., the real 
environment of the user (see also Fig. 8.1, left). This can be done using any kind of 
camera (webcam, smartphone camera, television camera, etc.). It is important that 
the camera has been calibrated accordingly; see also Szeliski (2011). Later we will 
introduce other types of AR for which a camera image of the environment is not 
necessary (see Sect. 8.1.2).

Tracking
Tracking is generally understood to be the calculation (or more correctly the estima-
tion) of the position and/or pose/orientation (see Chap. 4). In the case of AR, it is 
necessary to capture the observer’s point of view continuously and as accurately as 
possible. However, when reality is represented by the video image just captured, the 
position and orientation of the camera used are usually estimated instead. Nowadays, 
pose estimation can usually be obtained quite reliably using hybrid 3-DOF pose 
sensors (consisting of inertial sensors, gyro sensors and magnetometers; see also 
Sects. 4.2.2 and 4.2.3). Such sensors are now built into all current smartphones and 
tablets, but can also be available as separate input devices. In contrast to pose 

Fig. 8.1 Fusing a real environment (left) with a virtual object (right) to achieve Augmented 
Reality (center). (Single images: © Tobias Schwandt, TU Ilmenau 2018. All rights reserved)
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estimation, sufficiently exact position estimation is mostly difficult. In outdoor 
applications, GPS or one of its alternatives typically provides the basis in the con-
text of AR, while for indoor applications, computer vision-based approaches are 
generally applied. The latter have the additional advantage that they can estimate the 
position as well as the orientation and may also additionally be used outdoors. 
Tracking thus results in a transformation from the user or camera coordinate system 
into the coordinate system of the real environment. Tracking in general is intro-
duced in detail in Sect. 4.2.

Registration
Registration (more precisely geometric registration) refers to the anchoring or cor-
rect fitting of the artificial virtual content into reality. On the basis of the position 
and orientation estimation from tracking, the coordinate system of the individual 
virtual content and the observed reality are put in relation to each other in such a 
way that the virtual content appears firmly located (registered) in reality. This leads 
to the situation that an artificial object not moving in the virtual world has an appar-
ently fixed place in reality, independent of a changing point of view of the observer 
(or the camera). A simple registration scheme is shown in Fig. 8.2. Geometric as 
well as photometric registration (the adaptation of the appearance of the virtual 
content to the illumination conditions of the environment) is presented in detail in 
Sect. 8.3.

Visualization
Based on the transformation resulting from the geometric registration and the 
respective camera perspective, the virtual content is rendered. Thereby, the virtual 
content is superimposed on the recorded video image in the correct perspective (see 
Fig.  8.2). For seamless superimposition, many other aspects, such as resolution, 
sharpness, color range and contrast ratio of the virtual image, may have to be 

Fig. 8.2 Simple registration using a fiducial marker
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adjusted. As an alternative to the video image overlay, an optical overlay of the 
observer’s view can also be performed directly – see Sect. 8.1.2 for details. Other 
aspects that are important include mutual superimposition of the real and virtual 
content (c. Sect. 8.4.2) and the mutual influence between the virtual content and the 
real environment, also known as photometric registration (c. Sect. 8.2.2). If some of 
these aspects are not sufficiently taken into account, the virtual content can very 
quickly appear detached from reality despite correct geometric registration (see 
Fig. 8.3).

Output
Finally, the superimposed video images (or the augmented video stream) are shown 
on a display to which the camera is usually attached. This can be a handheld device 
such as a smartphone (see Fig. 8.4), a tablet or AR glasses. In principle, the output 
can also be on a separate monitor or via projection. However, in this case, the 
impression of a seamless augmentation of reality is only partially created for the 
observer. AR glasses are discussed in detail in Sect. 5.3, while other more specific 
AR output techniques are presented in Sect. 8.4.

8.1.2  AR – An Overview

In addition to the examples of AR presented in the first subsection, many other types 
exist. However, all types of AR have in common that they are based on a perspective- 
correct projection of the virtual content into the user’s environment or onto the 
previously recorded video image. The point of view and the direction of view 
between the real and virtual environment must always be consistent. Furthermore, 
the virtual field of view must correspond to the actual field of view of the respective 

Fig. 8.3 Perspective superimposition of an image used for tracking by a 3D object. (Image source: 
Jan Herling, TU Ilmenau)
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display. Finally, the scaling of the virtual content must be adapted to the real 
environment.

Ideally, the perspective of the captured image and the perspective of the user 
(viewing the augmented image) should match as well, so that the user actually gets 
the impression that the real environment is really altered. Then, the user virtually 
looks through the display at the reality behind it (even if, depending on the charac-
teristics of the AR, only a video image of the reality may be visible on the display). 
In this case we speak of the Magic Lens metaphor (see also Fig. 8.5 and Brown and 
Hua (2006)). In practice, this is only achieved when using AR glasses, as handheld 
devices typically do not support stereo vision (c. also Sect. 8.3.1).

The individual types of AR are explained below and then compared in terms of 
their limitations and capabilities.

Video See-Through AR
So-called video see-through AR (VST-AR), also known as video pass-through AR, 
is very similar to the approach described in the introduction. Therefore, first the real 
environment is captured by a video camera. Then the video image is superimposed 
with virtual content in the correct perspective and displayed on an output device 
afterwards (see Fig. 8.6).

To achieve the aforementioned Magic Lens effect, it is crucial that the viewpoint, 
viewing direction and field of view of the video camera and the output (i.e., the 
virtual camera) match. Otherwise, the viewer will experience a decoupling between 
their real environment and the augmented environment observed (see also Sect. 8.4).

Fig. 8.4 Output of an augmented video stream on a smartphone (here from the viewpoint of a 
second observer). (Image source: Jan Herling, TU Ilmenau)
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Optical See-Through AR
In contrast to the AR technology described above, optical see-through AR (OST-AR) 
does not require video capturing of the real environment. Instead, the real environ-
ment is always perceived directly by the observer. For this purpose, virtual content 
is optically superimposed on reality by the output device. This requires an output 
device with a semi-transparent display, so that both the reality behind it and the 

Fig. 8.5 Example of a magic lens effect

Fig. 8.6 Perspectively correct superimposition of a camera image of the real environment by vir-
tual content using video see-through AR – here on a smartphone
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added virtual content can be perceived simultaneously. To ensure that the perspec-
tive of the real environment and the virtual extension match, the point of view of the 
observer in relation to the display must be known. Generally, it is necessary to use 
a separate display for each eye. If both eyes look at the same display, it must be 
ensured that the areas observed are separated, so that the perspective for each eye 
can be adjusted correctly. In monoscopic displays, which are viewed with both eyes 
simultaneously, the perspective is at best correct for just one eye.

Projection-Based AR
Projection-based AR is characterized by projecting virtual content onto objects in 
the real environment (see Fig. 8.7). When projecting on arbitrary surfaces, this typi-
cally does not allow for the creation of new spatial structures and thus is typically 
limited to the manipulation of surface properties (like color or texture) and the dis-
play of additional information on the objects’ surface (explanations, highlights, 
symbols, etc.). On suitable surfaces or with suitable channel separation techniques 
such as shutter glasses, front or back projections may be used to create objects 
before or behind the canvas similar to VR (see Sect. 5.4.4). This, however, also 
restricts virtual objects to the field of view covered by such surfaces (e.g., a dash-
board in a driving simulator (Weidner and Broll 2019)).

Projection-based AR is a variant of Spatial AR (SAR) (see Bimber and Raskar 
2005), in which the augmentation is not achieved using a display in an HMD or 
handheld device, but “in space”. However, in general, Spatial AR setups can also be 
based on video see-through or optical see-through AR.

Fig. 8.7 Example of projection-based AR (virtual door, virtual color design of the wall). (© Oliver 
Bimber 2005. All rights reserved)

8 Augmented Reality



298

Comparing the Individual Types of AR
Basically, the AR types described above differ in the extent to which they can 
expand or change reality. Using optical overlay techniques, dark virtual content and 
light backgrounds are particularly problematic. Tables 8.1, 8.2 and 8.3 provide an 
overview of the individual display capabilities and limitations.

In contrast to projection-based AR, both the optical see-through technique and 
the video see-through technique allow the display of virtual 3D objects at arbitrary 
positions within the space covered by the field of view (see Table 8.3, right column). 
Nevertheless, the perception of the surrounding reality and the virtual objects differs 
considerably between the two techniques, so that the respective other technique 
may be more suitable in a particular situation, depending on the application scenario.

When using OST AR as well as projection-based AR, dark virtual objects may 
appear completely transparent, as the overlay is purely optical, i.e., it is achieved by 
adding light (see Fig.  8.8). This means in particular that no shadows of virtual 
objects can be added (see Table 8.3, left column). This considerably limits the pos-
sibilities of photometric registration (see Sect. 8.3). Thus, the suitability of this tech-
nique depends very much on the respective real environment. Further, when 
illuminating the virtual scene and selecting the material properties, it must be taken 
into account that objects with a (too) low light intensity appear transparent. Such 
limitations may be overcome by applying an additional occlusion layer in OST 
glasses, which so far has only been demonstrated in research prototypes (see e.g., 
Hamasaki and Itoh 2019).

Table 8.1 Visibility of bright virtual content on different backgrounds depending on the AR type

On bright background On dark background

Optical see-through Partially visible, high transparency Good visibility, low transparency
Video see-through Good visibility Good visibility
Projection Partially visible Good visibility

Table 8.2 Visibility of dark virtual content on different backgrounds depending on AR type

On light background On dark background

Optical 
see-through

Not visible, almost complete 
transparency

Partially visible, high 
transparency

Video see-through Good visibility Good visibility
Projection Not visible Partially visible

Table 8.3 Display of virtual shadows and virtual objects in space depending on the AR type

Virtual 
shadows Universal object location

Optical 
see-through

Not possible Possible

Video see-through Possible Possible
Projection Not possible Not possible/limited (on surfaces allowing for stereo 

projections)
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In general, it can be said that when using optical see-through technology, reality 
is perceived directly, i.e., without a limitation of resolution, but is instead perceived 
significantly darkened (see Fig. 8.9, left). Thereby, the virtual objects always appear 
partially transparent, i.e., as described above. Depending on the brightness of the 
virtual object and the real background, the latter may be clearly visible through 
the former.

VST AR, in contrast, allows the real background to be displayed with the same 
optical quality and brightness as the virtual content (see Fig. 8.9, right). However, 
this leads to a reduced resolution for the representation of the real environment 
compared to reality and the optical see-through technique. The reason for this is the 
limited resolution of the camera and the display used. For a coherent overall impres-
sion, the camera resolution should not be lower than that of the display. Otherwise, 
virtual objects may stand out sharply against the background (see e.g., Fig. 8.18). To 
achieve a coherent overall impression, it may therefore be useful to reduce the reso-
lution of the virtual image to that of the camera.

Fig. 8.8 With the OST AR 
techniques, dark virtual 
objects sometimes appear 
transparent (here the less 
illuminated lower part of 
the red sphere)

Fig. 8.9 Typical perception when using the optical see-through technique (left) compared to the 
video see-through technique (right)
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8.2  Registration

As already introduced in Sect. 8.1, registration in the context of AR refers to the 
correct fitting of virtual content into the real environment. On the one hand, this has 
to be made perspective-correct (this is called geometric registration), but on the 
other hand it should also be correct with respect to appearance, i.e., in particular 
lighting. The latter case is also called photometric registration.

8.2.1  Geometric Registration

Tracking (see Sect. 4.3) provides the basis for geometric registration. Using the 
estimated transformation Tmc between the viewpoint of the camera (in the case of 
video see-through augmentation) or that of the observer respectively (in the case of 
optical see-through augmentation), and the tracked object, the latter is displayed in 
the current field of view with correct position and orientation. In other words: geo-
metric registration implies that a virtual object appears to be in the same place in 
reality even if the camera perspective is changed, i.e., if it is not an animated virtual 
object, it does not move in relation to the real environment (see Fig. 8.10). This is 
achieved by compensating for each change of the real camera position and orienta-
tion by a corresponding transformation of the virtual camera pose, and thus the 
displayed perspective of the virtual object is subsequently correct again with respect 
to the real pose.

The quality of the tracking used is crucial for the visual quality of the registra-
tion. However, the tracking update rate and the latency of the tracking may even 
have a larger influence on the visual appearance of the AR application.

Ideally, the tracking update rate exactly matches the frame update rate of the 
visual output (i.e., typically at least 60 fps). If the tracking rate is too low, the virtual 
objects seem to move with the head for some time (neglecting possible latency – see 
below) when the camera or head is moved, and then jump back to their correct posi-
tion in the real world (see also Fig. 8.11).

With video see-through AR, the effect can be mitigated by adjusting the frame 
rate to the tracking rate. The effect of the virtual objects jerking or jumping disap-
pears, but the abrupt image changes during strong camera movements can then be 
perceived as equally disturbing by the viewer. In addition, a discrepancy between 
the perceived motion (vestibular perception) and the optical perception (see also 
Chap. 2) is created. With optical see-through AR this possibility does not exist, 
because the observer perceives the surrounding and thus every faulty registration at 
any time.

Latency (see also Sect. 7.1) is another major problem regarding correct geomet-
ric registration. While the symptoms here are very similar to those of a too low 
tracking update rate and the latter also affects the latency, the actual problem is of a 
different nature. In tracking, latency is the delay between the moment of movement 
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(of the camera and/or the tracked object) and the moment when the resulting trans-
formation of the virtual objects can actually be observed. Neglecting the delays 
caused by the tracking rate (see above) and the actual rendering, here the time 
between measuring or estimating the position and orientation and applying it to the 
object transformation remains. The longer this time span is, the more noticeable is 

Fig. 8.10 Left image: Correct geometric registration of the virtual trash can. Image top right: 
Virtual object is displayed at the same position as in the left image, but it is geometrically not 
registered with the surrounding reality. Image bottom right: Based on the tracking data, the correct 
perspective of the virtual object is displayed from the current viewpoint and the current viewing 
direction of the camera; the virtual object is geometrically correctly registered with the surround-
ing reality
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the resulting effect. The causes of high latency can be manyfold: mostly it is due to 
relatively complex tracking techniques requiring a rather long time for calculation. 
In particular, feature-based approaches should be mentioned here. But also, other 
causes like long signal runtimes can result in high latency. Similar to a too low 
tracking rate, a virtual object will first move with the corresponding movement of 
the camera or the head of the observer. However, the movement does not jump or 
jerk, but the object remains (in the case of uniform movements) more or less at a 
fixed position in relation to reality, but has an offset to the correct position as long 
as the movement continues. Not until the movement of the camera or the head stops 
again is the virtual object registered correctly again (see Fig. 8.12).

In contrast to too low tracking rates, the problem of too high tracking latency, at 
least for video see-through AR, can be mitigated in most cases without serious deg-
radation of the user experience. For this purpose, it is necessary to measure the 
resulting latency, and the camera images must be buffered over the corresponding 
period of time. If the tracking data is available, the transformed virtual objects are 
now combined with the camera image at the time of their capturing (see Fig. 8.13). 
Thus, the latency no longer exists between the virtual and real content of the consid-
ered image, but for the entire image. However, as long as this latency does not 
become too high (see Sect. 7.1.2), this will not be noticed by the observer and thus 
has no disturbing effect. Here, too, a corresponding correction is basically not pos-
sible with OST-AR, since the surrounding is perceived immediately – without any 
delay. The only alternative here is estimating the tracking data to be expected. In the 

Fig. 8.11 Incorrect geometric registration due to a too low tracking rate: the camera moves from 
left to right; due to missing tracking updates, the virtual object (the black bin) first moves along 
with the camera (second and fourth images) and then suddenly jumps to the correct position (third 
and fifth images) when new tracking data becomes available (actual correct positions shown 
in green)
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past, Kalman filters were used for this purpose. Current approaches also partly use 
neural networks in this context.

A temporary incorrect geometric registration, whether caused by too low track-
ing rates or too high latency, destroys the illusion of a seamless integration of the 
virtual content into reality for the observer, which means that the corresponding AR 
application is only of limited use.

Fig. 8.12 Incorrect geometric registration due to high tracking latency: the camera moves from 
left to right; the virtual object first moves with the camera for a short time and then mostly freezes 
at a wrong position; only after stopping the movement of the camera does the virtual object move 
to its correct position (correct positions in green)

Fig. 8.13 Reduction of latency-related effects through caching of camera images and 
parallelization
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8.2.2  Photometric Registration

In contrast to geometric registration, which is a basic requirement for the use of AR, 
even today the photometric registration of virtual objects in the AR context is mostly 
performed only very rudimentarily, if at all. A prerequisite for a successful photo-
metric registration, i.e., a correct adjustment of a virtual objects’ appearance to its 
real environment, is – analogous to tracking for geometric registration – the acquisi-
tion or estimation of the respective data.

Generally, various methods can be used to capture the real lighting conditions. 
One option is the use of so-called light probes. In most cases, spheres are placed in 
the scene (Debevec 1998). Depending on the color and shininess of the spheres, 
different information about the lighting of the environment can be acquired. For 
diffuse lighting, corresponding virtual light sources are calculated and added to the 
virtual scene based on the highlights or bright parts of the image that are reflected 
there. For glossy reflections a mirroring sphere is used. While this approach can be 
used to adjust the appearance of the virtual objects well to the real environment, it 
is also fundamentally limited. On the one hand, it is often not possible or desirable 
to introduce corresponding light probes in the environment to be augmented, and on 
the other hand, the influence of the virtual objects and their virtual illumination on 
the illumination of the surrounding reality is neglected. An example of this is shown 
in Fig. 8.14.

Fig. 8.14 Illumination of virtual content influencing the real environment (virtual reflection on 
tablet computer). (© Tobias Schwandt, TU Ilmenau 2018. All rights reserved)
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A complete adaption of the illumination of real objects can only be done using 
video see-through AR. A prominent example is the shadow cast by a virtual object 
onto the real environment. When using optical see-through AR, changes are 
restricted to those adding light (in Fig. 8.14 the reflection of the virtual image on the 
tablet would be possible, but not the shadow of the sphere on the desk). For correct 
photometric registration, an augmentation of parts of the reality is crucial (see 
Fig. 8.15). Therefore, this can already be considered a simple form of Mediated 
Reality (as it is limited to lighting) (see Sect. 8.7.2). An incomplete or incorrect 
photometric registration can very quickly destroy the illusion of seamless integra-
tion of reality and virtuality. Conversely, correct or at least plausible photometric 
registration can dramatically increase the perceived credibility of an AR scene for 
the viewer.

Current AR frameworks (e.g., Apple’s ARKit or Google’s ARCore) allow, to a 
limited extent, easy analysis and simulation of ambient light using cameras inte-
grated into smartphones and tablets. One of the approaches used here is to estimate 
the direction of directional light sources based on face recognition and the bright-
ness distribution in these faces (see Knorr and Kurz 2014). In combination with 
camera images from different directions, the local lighting situation can be esti-
mated and simulated using so-called spherical harmonics coefficients (Kautz 
et al. 2002).

While a simple approximation of a virtual shadow for a virtual object lying on a 
flat surface (such as a table top) can still be done easily, correct shadow casting on 
arbitrary geometries requires precise knowledge of the topology of the real environ-
ment. While this knowledge may be available in individual cases, depending on the 
AR application (e.g., for projection-based AR or phantom objects; see also Sect. 8.3 
or Sect. 8.4.2), such information is often not readily available. The same applies to 

Fig. 8.15 Comparison of an AR scene without and with photometric registration: in the right 
image, (real) light is reflected by the red sheet onto the virtual object; furthermore, light from the 
virtual object is reflected onto the background. (Picture source: Philipp Lensing, TU Ilmenau)
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reflections between real and virtual objects. To be able to reproduce them close to 
reality, at least basic information about the surfaces or normals of the real environ-
ment of the virtual object must be available. This information can either be derived 
from SLAM (Simultaneous Localization and Mapbuilding) methods (see Sect. 
4.3.4), from the processing of depth camera images (see Lensing and Broll 2012), 
or more recently from LiDAR sensors now available in some tablets and smart-
phones. For example, ARKit uses Light Probes (see above) to realize glossy reflec-
tions. Instead of spheres, the physical objects used are the planar surfaces (or their 
illumination) detected by the framework. Unrecognized areas are initially black and 
are filled with color information using a neural network. Similar approaches can be 
found in Schwandt and Broll (2016) and Schwandt et al. (2018); see Fig. 8.16).

8.3  Visual Output

The visual output of the augmented content can be achieved using various devices. 
In Sect. 5.2.2, the use of head-mounted displays for AR has already been intro-
duced. When using the video see-through technique (see Sect. 8.1.2), VR glasses 
are used, which capture reality via integrated or external cameras. In contrast, spe-
cial AR glasses are used in order to provide a direct view on reality using the optical 
see-through technique (see Sect. 8.1.2) for augmentation. While AR glasses allow 
an immediate augmentation of the user’s visual field and thus represent the most 
immersive form of AR, most current AR applications use handheld display devices 
(smartphones and tablets).

Fig. 8.16 Reflective surfaces of virtual objects. (© TU Ilmenau 2018. All rights reserved)
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Besides visual output devices, AR usually only adds audio output devices. In 
mobile AR systems this is usually limited to stereo headphones, whereas stationary 
AR systems can use all kinds of audio output devices (see also Chaps. 2 and 3).

8.3.1  Handheld Devices

Due to the availability of corresponding AR frameworks for handheld devices 
(ARCore for Android and ARKit for iOS), handheld devices (tablet computers and 
smartphones) are currently the most important and most frequently used output 
devices for AR. They are equipped with a rear camera, which is used to capture the 
environment and for optical tracking, and mostly with sensors to detect the pose 
(see Sects. 4.2.2 and 4.2.3). Analogously to video see-through displays (see below), 
augmentation is usually performed correctly in terms of perspective for the position 
and orientation of the camera, but not for the actual viewing point of the observer.

The problem is mainly caused by the fact that the field of view of the camera 
used for video capturing is typically fixed in relation to the display, whereas the 
viewer’s field of view depends on the respective point of view and the viewing 
direction in relation to the display (see Fig. 8.17).

As a result, the Magic Lens effect described above is only achieved to a limited 
extent (see Fig. 8.18). Due to this and the very small proportion of such displays in 
the viewer’s field of view, the immersion is significantly lower.

8.3.2  Projection-Based Output

For realizing projection-based AR, one or more projectors illuminate surfaces of the 
environment in such a way that the perception of real objects changes (see Fig. 8.19). 
Due to this restriction to existing surfaces, no free positioning of the virtual contents 
in space is possible. For the correct projection of the virtual contents onto the real 
surfaces, the position and orientation of the individual projector in relation to the 
projection surface must be known. This can be achieved, for example, by determin-
ing the position and orientation of the projector. Additionally, a model of the objects 
to be projected onto must be available. If these are movable, they must also be 
tracked. If the additional content is now projected onto the virtual models (without 
having them illuminated otherwise) and the resulting rendered image is output by 
the projector, it is geometrically correctly registered (assuming the projector is cor-
rectly calibrated with respect to field of view, distortion, etc.). However, often the 
corresponding models of the environment are not available and/or tracking of the 
projector is not possible. In this case, other methods must be used to determine the 
depth information of the individual projection surfaces. For this purpose, approaches 
applying structured light (e.g., patterns like stripes or grids (see also Scharstein and 
Szeliski 2003)) can be used, as they are sometimes used in depth cameras. Due to 
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Fig. 8.17 Different fields of view of viewer and camera in handheld AR

Fig. 8.18 Left: Matching perspective between reality and augmented image (Magic Lens effect). 
Right: Camera image and reality are perceived with a deviating perspective
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the projection by the projector, approaches with structured light only require the 
attachment of a camera to the projector. In this case, as with the attachment of other 
sensor technology, one often speaks of so-called smart projectors.

In addition to the geometric registration, photometric calibration (not to be con-
fused with photometric registration; see Sect. 8.2.2) plays an important role in 
projection- based AR. Since projection surfaces are usually not ideal white diffuse 
surfaces, but rather the physical properties of the surface (structure, reflective prop-
erties, color, etc.) and the environment (brightness, shadows, highlights, etc.) influ-
ence the projected image, the resulting variations must be compensated by an 
appropriate photometric calibration. Of course, this is only possible within certain 
limits determined by the capabilities of the projector, the properties of the surfaces 
and the content to be projected. For a detailed discussion of the necessary calibra-
tion steps, please refer to the book by Bimber and Raskar (2005).

A special variant is rear projection on a screen or projection panel that is part of 
a real object. An example is a 3D dashboard in a driving simulator. Essentially, this 
corresponds to a 3D projection as used for VR (see Chap. 5). In contrast to VR, 
however, the projection surface itself is part of reality and its shape is modified by 
the projection.

8.3.3  Further Types of Spatial AR

Other forms of spatial AR (SAR) often use glass plates or foils as mirrors instead of 
projections onto surfaces to be augmented. Here, the user looks through the glass at 
the object to be augmented. However, since the glass is not perpendicular to the 
viewing direction, it acts as a mirror on a correspondingly placed display (see 

Fig. 8.19 Schematic structure of a system for projection-based AR
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Fig. 8.20). This results in a kind of optical see-through AR. For correct geometrical 
registration, the head position must be tracked as well. However, due to the fixed 
spatial arrangement of the components, the range of movement of the user is 
strongly limited. Therefore, only those applications where the user will usually only 
change her head position to a small extent are useful.

8.3.4  AR Mirrors

AR mirrors have in particular become popular to simulate the fitting of clothes. 
Here the viewer sees himself and his surroundings in a mirror. The mirror image is 
enriched by virtual content. Looking at the mirror image, the viewer gets the impres-
sion that the virtual content is part of the real environment. AR mirrors can be real-
ized via the video see-through approach as well as by optical see-through (see 
Fig. 8.21). For VST, a camera is attached to a display that represents the mirror, 
capturing the environment or the user. This image is then mirrored, superimposed 
with virtual content and then displayed (Mottura et al. 2007; Vera et al. 2011). For 
OST approaches, a real, semi-transparent mirror is used (Fujinami et al. 2005; Li 
and Fu 2012). The environment is perceived in the same manner as with a conven-
tional mirror, while the virtual content is represented by a display located behind the 
mirror. Only for the OST approach, are the real, mirrored objects automatically 
perceived stereoscopically. For correct localization of the virtual contents (in the 
case of VST also of the real contents) an additional technique for stereoscopic view-
ing is required (see also Sect. 5.4.4).

Fig. 8.20 Spatial AR using a transparent, reflective surface
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8.4  Special AR Techniques

In this section, a number of techniques found in AR applications will be discussed.

8.4.1  Head-Up Content

Head-up content, sometimes called a dashboard, refers to content that is displayed 
regardless of the position and orientation of the viewing direction. Typical examples 
are status displays or environment maps. Widely used in 3D games played from the 
first-person perspective, these techniques are sometimes also found in virtual reality 
applications. Here the position and orientation of the content are always unchanged 
in relation to the display. Often such content is just 2D objects, but 3D objects are 
also used, having a corresponding spatial position in front of the observer’s view-
point, although this is rarely the case. An example of 3D content would be (again in 
the tradition of games) the representation of the (apparently in the hand) weapon 
held by the user, known from first-person shooters.

Fig. 8.21 VST vs. OST AR mirrors
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8.4.2  Occlusions and Phantom Objects

As soon as real objects are closer to the observer than the virtual objects behind 
them, the perception and behavior of the virtual object no longer match. The reason 
for this is that the virtual content is always visible due to the optics of the HMD (in 
the case of optical see-through displays) or the superimposition of the video image 
(in the case of video see-through AR). For the observer this results in a conflict 
(which of the two objects is actually closer) that cannot be resolved. Hence, it 
immediately destroys the impression of the correct location of the virtual object in 
reality (see also depth cues in Chap. 2). To prevent this, the real objects, with respect 
to the image areas covered by them, which actually should occlude the virtual 
objects lying further away (occluders), need to be identified. This then allows for 
proper masking and hence removal of those areas of the virtual objects that should 
not be visible. The actual recognition and, if necessary, localization of the covering 
real objects can be accomplished in different ways. The most common case is occlu-
sion by the hands of the user, because they are typically closer to the point of view 
than most virtual objects. Cameras mounted on a handheld device or on HMDs can 
be used to identify the corresponding image parts (e.g., based on color segmenta-
tion). The virtual contents can be masked at the appropriate places so that they are 
apparently occluded by the hands. In the case of other real objects that could poten-
tially occlude virtual content, we distinguish between static and moving objects. 
While the position of static objects can be determined in advance, the position and 
orientation of moving objects may have to be tracked. In both cases, the objects 
must be available as virtual objects and must be integrated into the virtual scene at 
the corresponding position (i.e., correctly located, if necessary based on correspond-
ing tracking data). Since these virtual objects should not be rendered, but only serve 
to correctly occlude other virtual content, they are called phantom objects. For cor-
rect visualization, phantom objects are rendered as black, unlit objects in the case of 
optical see-through AR.  In places where such a phantom object is closer to the 
viewer than another virtual object, the content of the frame buffer is replaced by a 
completely black pixel. Since black pixels appear transparent in optical see-through 
AR, the viewer ultimately sees only the real object here (see Fig. 8.22).

In the case of video see-through AR, the procedure does not work in this way, 
because the black object surfaces would stand out from the video background. In 
this case, the phantom objects must therefore be rendered in a separate pass before 
all other objects. However, only the depth buffer must be modified accordingly. 
Therefore, virtual objects behind those areas do not affect the frame buffer in further 
render passes and the underlying video image thus remains visible. If there is no 
possibility of inserting the occluding real objects as 3D models or to detect their 
correct position and location, or if the objects are not rigid objects, such as a person 
who is sometimes partly in front and partly behind the virtual objects, phantom 
objects cannot be used. The only way to achieve correct masking in this case is to 
acquire or calculate the depth information for the field of view. In principle, this can 
be done with two cameras, but it is easier to use depth cameras (RGBD cameras). 
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After transformation to the perceived image segment, the image pixels can be set 
directly according to the procedures described above to guarantee correct occlusion. 
Due to the currently still quite low resolution and quality of most depth cameras, 
determination of the boundaries usually does not achieve the same precision as 
when using phantom objects.

8.4.3  Crossfading Markers

Due to their straightforward applicability, markers are still used for some AR appli-
cations, despite the alternatives that are meanwhile available. However, due to their 
clear distinguishability from the rest of the environment, which is important for 
tracking, they often appear to the viewer as particularly disturbing foreign objects. 
While the virtual content based on the position and location of the markers is usu-
ally superimposed on the image above them, the markers themselves often remain 
clearly visible in the background. A simple and effective way to remove disturbing 
markers from the displayed scene (as long as they are not completely covered by 
virtual objects anyway) is to superimpose them with a simple flat carmouflage 
object. This can visually match the surrounding background. However, since this 
background is often not known in advance, the option of a neutral object for cover-
ing should always be considered as well, as it is perceived as less disturbing in 
almost all cases. However, there are also AR applications that specifically cover 
markers with virtual objects, which in turn look exactly like these markers. This can 
be used, for example, to give the impression that the real marker can be removed, 
deformed, or otherwise modified, for example to reveal the view of an underlying 
(virtual) hole (see Sect. 8.4.4). This often leads to surprising reactions on the part of 
the viewer, since he or she (especially with video see-through AR) often cannot 
initially recognize the difference between the real and virtual markers.

Fig. 8.22 Phantom objects enable correct mutual occlusion between real and virtual objects. 
Without a phantom object, the virtual object seems to float in front of the real objects, whereas with 
correct masking by the phantom object it seems to be behind the real objects
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8.4.4  Virtual Holes

It is often overlooked that Augmented Reality can also be used to apparently take 
away parts of the real environment by adding virtual content. For example, it is very 
easy to model a virtual hole that extends through the floor or a tabletop (see 
Fig. 8.23), or to make an object such as a cube appear hollow. For a correct repre-
sentation the real parts around the virtual hole must be modeled as phantom objects. 
Since the observer can then (apparently) look more or less into the deepening, 
depending on the angle of view, the effect is usually much more amazing than a 
mere augmentation of reality. Although parts of reality are apparently removed, this 
is usually not referred to as Diminished Reality (see Sect. 8.7.1), since the virtual 
three-dimensional hole overlays reality, i.e., augments it, and does not allow a view 
of the floor beneath the table top.

8.4.5  X-Ray Vision

AR can also be used to look through, or at least into, solid objects, such as walls, as 
if looking through them with X-ray vision. Typical applications are the visualization 
of pipes and cables in walls (see Fig. 8.24) or under the pavement of streets. Other 
applications are in road traffic (viewing through the truck in front, through the forest 
to the road behind the bend, through the building at the street corner, etc.) and in the 
military application context (visualization of own and foreign units in buildings, in 
the forest, under water, etc.). As far as virtual content inside or behind real structures 
is just visualized without removing the real content, this is not considered Diminished 
Reality (c. also Sect. 8.7.1). However, the transition here is almost seamless.

In this context, occlusion is another problem. As already discussed in the context 
of phantom objects, the fusion of reality and virtuality is rendered effectively impos-
sible due to incorrect depth perception (see also Chap. 2) and the resulting conflict. 
There are various approaches to resolve this conflict or at least to significantly 

Fig. 8.23 By 
superimposing a marker on 
the table surface with a 
virtual object that has a 
deepening extending 
through the tabletop, the 
viewer gets the impression 
of an actual hole
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reduce its effects on perception. A simple option is the use of virtual holes or 
trenches (see Sect. 8.4.4) with corresponding phantom objects for the surrounding 
(occluding) surfaces. This way, the objects inside or underneath an object are only 
visible within the (virtual) hole, so they remain correctly registered in relation to the 
real surface. Another possibility is to reproduce the real surfaces by visible but par-
tially transparent virtual objects. In this case, these objects do not serve as phantom 
objects but suggest a partially transparent surface to the observer. A similar effect 
can also be achieved using spatial AR by projecting hidden (e.g., inner or underly-
ing) structures onto existing surfaces (see Fig. 8.25). If a part of reality is apparently 
taken away (e.g., by a previously taken picture), the perceived effect is quite com-
parable to that of Diminished Reality (see also Sect. 8.7.1). A sharp distinction from 
the latter is then sometimes difficult, although Diminished Reality would require a 
real-time generation of the view (in the simplest case e.g., by a camera).

8.5  Special AR Interaction Techniques

In principle, most interaction techniques from VR may also be used in AR environ-
ments (see Chap. 6). However, it should be noted that the aspect of user interaction 
in AR applications is still clearly underdeveloped, with many AR applications still 
focusing on visualization aspects.

Fig. 8.24 Pipes and cables behind a cover and in the wall are made visible using AR for X-ray 
vision. (© Leif Oppermann, Fraunhofer FIT 2018. All rights reserved)
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8.5.1  Interaction by Navigation

With AR, the user navigates through his movement in reality, i.e., an unintentional 
decoupling between the real movement and the virtual movement, which often 
occurs in VR environments, is not possible here. However, since AR content is inev-
itably closely related to reality, the interaction with virtual content is in turn mostly 
bound to its physical proximity. This means that an interaction is only possible 
when the user is at a certain location, partly additionally restricted by the user hav-
ing to look in a certain direction so that the objects are within her field of view. In 
outdoor AR applications especially, an explicit selection of virtual objects is often 
omitted and only a simple user action (for example, a keystroke or voice command) 
is used instead. In some cases, even this is waived, i.e., an interaction occurs when 
the observer simply approaches the virtual object.

Fig. 8.25 Use of SAR to 
represent hidden parts of 
reality
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8.5.2  Gaze-Based Interaction

In AR applications, the selection of objects or menu items is different and often 
more difficult than in VR environments, where corresponding input devices are usu-
ally available for hand-operated control. Eye-tracking, i.e., the detection of the point 
currently focused on by the viewer, represents a promising approach for realizing 
gaze-based interaction, but sufficiently precise mechanisms require either the inte-
gration of appropriate sensor technology into the AR glasses (as, e.g., used by the 
Hololens 2 or Magic Leap One) or the simultaneous use of the backward pointing 
camera of smartphones or tablets (selfie camera) as well as an appropriate calibra-
tion (see Sect. 4.5). The touch controls available on handheld devices can alleviate 
this problem, but at the price of massively obscuring the already quite limited field 
of view.

A simpler but robust form of this selection mechanism without the requirements 
of eye tracking can be achieved by using the orientation of the head (for AR glasses) 
or the camera (for handheld devices) instead of the actual line of sight, since it has 
to be tracked anyway. By aligning the orientation so that the object to be selected 
comes into the center of the field of view (often supported by a corresponding visual 
marker, e.g., a crosshair), simple and fast selection is possible, which only needs to 
be supplemented by a trigger action. To avoid additional input mechanisms (like 
language or a button press), a dwell time is often used here. When the selection 
sticks to an object for a certain time, the corresponding action is triggered. A draw-
back in this context is that even for experienced users this prevents faster operation.

8.5.3  Tangible User Interfaces

Tangible User Interfaces (TUI) (Ullmer and Ishii 2000; Azuma 1997), or Tangibles 
for short, are a tangible form of user interface. Here, real objects in the user’s envi-
ronment are linked with virtual objects in such a way that the state of the real object 
(placeholder object or proxy) is mapped to the state or a property of the virtual 
object. In the context of AR user interfaces, one can distinguish between a direct 
and an indirect form of use. In the direct form, the physical properties of a real 
object correspond directly to those of a virtual object. This is rather the rule in AR 
environments, since this is already the case when a virtual object is displayed on top 
of a marker and this marker can be moved by the user (see Fig. 8.26). Here, for 
example, the position and orientation of the real object and its virtual counterpart 
correspond. However, the approach is not limited to markers, but can be extended 
more generally to any objects whose properties can be captured and transferred to 
the corresponding properties of a virtual object.

In the indirect form of a TUI, however, the physical properties of the real object 
are mapped to the other attributes of one or more virtual objects. A simple example 
here would be a (real) cube whose position affects the color or size of a virtual 
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object. Ultimately, the interaction techniques possible in the context of AR are only 
limited by the possibilities to capture the physical properties of real objects. Further 
examples are a real pen, through which virtual writing is applied, or a real spray can 
for virtual graffiti as well as an orange as a real representative of a virtual ball.

8.6  AR Applications

AR applications are manyfold and, due to their often mobile or at least nomadic 
usage (see also Sect. 5.2) and their use on a large number of widely used mobile 
devices, they now clearly exceed those of VR. The following compilation of AR 
application areas can therefore only represent a selection giving an impression of 
the variety of possible applications.

 Training and Maintenance
The training of workers in the installation of wiring harnesses in aircraft at Boeing 
was the first known use of AR in a commercial environment. In the area of training 

Fig. 8.26 Tangible User Interfaces: a real proxy object is used to interact with a virtual object
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and maintenance, AR provides assistance by displaying appropriate hints, direc-
tions, etc., for the execution of work steps until they have been sufficiently learned. 
Furthermore, AR can also be used in the area of maintenance. This is particularly 
useful in cases where systems are extremely complex and many different variants 
exist, so that an individual cannot be sufficiently trained for all cases that occur. This 
occurs, for example, with cars and airplanes, as well as large machines and indus-
trial plants. AR can support necessary work processes by visualizing the work steps 
and, if applicable, the required tools and spare parts (see also Chap. 9).

 Television Broadcasting
One of the best known fields for the application of AR, which at the same time is the 
least associated with it, is the overlay of auxiliary information, especially in sports 
broadcasts. It is now state of the art that virtual help lines are drawn into television 
pictures in the correct perspective for sports such as soccer, American football and 
ski jumping, so that the viewer sees distances, offside positions or world records 
directly in the context of the current situation.

 Military Applications
AR has been used for many years in the helmets of fighter pilots. Graphics are typi-
cally restricted to line graphics. However, in particular for mobile units, AR offers 
new possibilities to combine information based on the knowledge of other units 
with reconnaissance data (from satellites, drones and airplanes) as well as terrain 
information into the visual field, depending on the individual viewing position and 
direction. Although recent developments can only be speculated about due to mili-
tary confidentiality, the lack of full daylight capability of optical see-through dis-
plays is probably one of the main obstacles to widespread use. It should be noted 
that Smartglasses are often used in the military context. However, as information 
displayed there is not really geometrically registered to the environment in 3D, this 
should not be considered as AR.

 Teaching, Education and Museums
In the field of teaching and learning, AR opens up completely new possibilities for 
teaching complex contexts. Physical as well as macroscopic or microscopic experi-
ments, which are otherwise often only taught through literature and video material, 
can be experienced interactively with AR. This increases understanding sustainably. 
Similarly, AR can be used in science centers and technical museums to explain 
effects directly at the exhibit instead of separating exhibit and explanation.

 Architecture and Urban Planning
While in the field of architecture and urban planning real models and sophisticat-
edly rendered films still dominate in large projects, the use of AR allows you to get 
a picture of future buildings or urban development changes on site, taking into 
account the real environment.

 Medicine
In the medical field, AR is particularly suitable for supporting surgical procedures, 
especially in the minimally invasive area. By combining different measurement data 
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(camera images, X-rays, previous model data from nuclear spin tomography, etc.), 
information that is otherwise only available separately can be displayed in parallel 
and in the correct perspective in the surgeon’s field of vision. However, so far, AR 
has been used mainly in the field of education and training.

 Information, Navigation and Tourism
With the spread of powerful smartphones and tablets, AR-enabled handheld devices 
are available to a wide range of users in virtually any location. This makes it possi-
ble to display general information, navigation instructions or descriptions of tourist 
attractions directly on top of the current video image. Often, however, the content 
here is limited to text, images and graphic symbols, where precise registration is not 
required. A prominent example is Google Maps’ “Live View” mode.

 Archaeology and History
AR here allows us to virtually complete buildings and objects that are only partially 
preserved and thus show the viewer the former state in context. Another possibility 
is the addition of further buildings or other objects or persons important for the 
historical context of a scenario. The augmentation here does not have to be limited 
to visual impressions, but usually conveys these impressions more easily if further 
senses are also addressed. It is sometimes the case that buildings and places still 
exist today, but their appearance has changed over time. Here, AR can be used to 
superimpose the former appearance on the present one.

 Games and Entertainment
Since the recent hype about Pokémon Go, AR games have become known to the 
general public. However, a real breakthrough in the distribution of AR games came 
with the availability of corresponding development frameworks from 2017 onwards. 
ARKit and ARCore made it possible for game developers to create AR games for 
the most important mobile platforms (iOS and Android) with relatively little effort. 
Meanwhile hundreds of AR games already exist in the respective online stores.

 In-Car AR
Many people associate AR in cars with Head-up Displays (HUD) (see also Sect. 
9.3). However, as these displays do not yet have the capability to provide individual 
images to each of the driver’s eyes, they do not allow stereo vision. Thus, correct 
geometric registration of the virtual content is not possible, which can be critical, 
e.g., when visually highlighting lane boundaries. Stereoscopic HUDs are currently 
still under development and it will probably be a few more years before we see them 
in standard vehicles. They will enable augmentation of other cars, pedestrians or 
traffic signs, as well as the perspective-correct projection of navigation instructions 
onto the road. Currently, however, AR is already being used almost universally in 
conjunction with rear-view cameras, for example to display lanes depending on the 
steering angle.
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8.7  Diminished and Mediated Reality

Of course, Diminished and Mediated Reality are not AR (see Fig. 1.6). Thus, why 
is there a section on them within the AR chapter of this book? As we have seen 
throughout this chapter, it can sometimes be difficult to tell the difference. For this 
reason, we will take a closer look at these concepts and show how they are related 
to AR with respect to how AR is part of them.

8.7.1  Diminished Reality

As already introduced in Chap. 1, Diminished Reality (DR) refers to the removal of 
parts of reality (see Fig. 8.27). For this purpose, an area – usually a specific object – 
is removed in real time from the view of the observer. This is done in such a manner 
that the compiled view provides a view of otherwise not visible content. Basically, 
one can distinguish between two different types of Diminished Reality: approaches 
that attempt to reconstruct the actual real background and approaches that merely 
create a plausible overall impression, i.e., showing some alternative content for the 
object removed.

Retrospective removal of persons from pictures has a long tradition – almost a 
century. Nowadays, context-sensitive or context-aware filling is a standard function 
in image editing software and therefore simplifies this process drastically in most 
cases. However, removing objects, buildings, backgrounds and people from videos 
is still relatively new. In motion picture productions especially, image areas have 
been and still are processed frame by frame to remove cameras, microphones, 

Fig. 8.27 Example of diminished reality: the sink drain is removed from the live video stream in 
real time. (© TU Ilmenau 2018. All rights reserved)
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holding ropes, etc. Automated removal of content from videos was shown by Wexler 
et al. (2007) and for more complex scenes by Granados et al. (2012). However, due 
to their computational time of up to several days in some cases, these approaches 
were not suitable for real-time representation and thereby Diminished Reality. The 
first approaches to real Diminished Reality were based on reconstructing the back-
ground of an obscuring object by further views, usually by additional cameras, 
using homographies (Zokai et al. 2003; Enomoto and Saito 2007). The areas cov-
ered by the objects to be removed are identified in other views and then transformed 
into the view to be diminished (see Fig. 8.28).

Another application area for DR was the removal of tracking markers (see Sect. 
8.4.3). Since these markers are often perceived as disturbing for the observer, the 
image area covered by them was superimposed by a background texture (Siltanen 
2006; Kawai et al. 2013). The approaches of Herling and Broll (2010, 2014) are 
among those that do not attempt to reconstruct the real background, but only a plau-
sible one. In this approach, an object to be removed is first marked and then tracked 
in each frame to find its silhouette in the current image. This silhouette is then 
masked and filled using context-sensitive filling (see Fig. 8.29).

It is crucial that tracking and filling are done in real time and that coherence is 
ensured not only with respect to the surrounding image areas, but also with respect 

Fig. 8.28 Reconstruction of the real background using several camera views. (Individual images: 
© TU Ilmenau 2018. All rights reserved)
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to the previous frame. This is possible by a randomized approach, which randomly 
selects image patches from the surrounding image areas (see Fig. 8.30) and opti-
mizes those selections using a combination of several cost functions, which can be 
taken as a measure of incoherence. Due to the required real-time capability, typi-
cally not an optimal but only a sufficiently good solution is found. Since the calcula-
tion is based exclusively on 2D image data (current and previous frame), the 
approach for removing 3D structures is problematic. It may happen that a previ-
ously hidden real background becomes visible by the camera movement and is not 
coherent with the previously synthetically assembled content. Due to the 

Fig. 8.29 Diminished reality by masking and context sensitive filling. (Individual images: © 
Tobias Schwandt, TU Ilmenau 2018. All rights reserved)

Fig. 8.30 Using information from the surrounding frame areas to fill the masked area. (© Jan 
Herling 2013. All rights reserved)
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homography used here, the approach basically only works if the background is on a 
single plane. Kawai et al. (2016) extended the approach to several planes, making it 
possible to remove objects on walls or in corners of rooms, for example. However, 
this does not allow the removal of arbitrary 3D backgrounds either. Thus, more 
recent approaches (Kunert et al. 2019; Mori et al. 2020) are based on a 3D recon-
struction of the real environment.

It can be assumed that deep learning approaches will increasingly be used for 
advanced forms of DR in the future (Kido et al. 2020). This will make it possible to 
create a plausible and coherent overall picture even without information available in 
the immediate vicinity of the object to be removed, especially when information is 
included that is not available in the original video stream.

8.7.2  Mediated Reality

As already introduced in Chap. 1, Mediated Reality involves altering the perception 
of reality in any form (Man 2001). This means in particular that both AR and 
Diminished Reality are partial aspects of Mediated Reality. However, Mediated 
Reality is in principle not limited to adding or removing content. Rather, it also 
enables the replacement of parts of reality. Finally, we can define a Mediated Reality 
continuum in analogy to Milgram’s Reality-Virtuality Continuum. In contrast to the 
former, however, it has two dimensions: one dimension where reality is increasingly 
replaced by virtuality, and a second dimension where reality is increasingly removed 
(diminished) (see Fig. 8.31).

If, for example, you want to see what a suite would look like in your own living 
room, the furnishing apps already available using AR are often of little help here, as 
they merely project the selected new furniture additionally into the current environ-
ment. However, since the existing furniture usually must remain in the room (Who 
wants to clear it out for this purpose?), the resulting overall impression is often 
unsatisfactory. If, however, the existing furniture is first removed virtually using 
Diminished Reality and then the new furniture is inserted using AR in a second step, 
the overall impression corresponds much more to the users’ expectations (see 
Fig. 8.32). The approach can be directly extended to other areas, such as new build-
ings in existing developments or the renewal of a machine in a factory.

Beyond that, Mediated Reality also allows us to change reality directly. The first 
examples of this have already been presented in the section on photometric registra-
tion (see Sect. 8.3), where parts of reality were changed in their illumination by 
virtual light sources, reflections from or on virtual objects, and shadows or caustics 
of virtual objects. However, changes can also affect the geometry of reality, which 
is modified in its spatial position or structure (see Figs. 8.31 and 8.33).
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Fig. 8.31 The mediated reality continuum: reality may be augmented (AR) by adding virtual 
content as well as diminished (DR) by removing real content. In combination, this allows both the 
replacement of real content with virtual content as well as its modification (Mediated Reality). 
(Still images: © Tobias Schwandt, TU Ilmenau 2018. All rights reserved)

Fig. 8.32 Combining dimished reality and AR. (© Christian Kunert, TU Ilmenau 2018. All rights 
reserved)
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8.8  Summary and Questions

Augmented Reality combines VR technologies with reality and thus enables users 
to seamlessly integrate virtual content into their natural (real) environment. Most 
AR applications are nowadays created on mobile handheld devices such as smart-
phones and tablets, as they already come with the necessary hardware (including 
appropriate sensor technology) and software. However, these are limited to video 
see-through AR. Optical see-through AR (based on HMDs) as well as spatial AR are 
further possibilities for augmenting the environment. The tracking methods used are 
in part similar to those used for VR, but here too the focus is very clearly on mobile 
use and therefore on a combination of sensors for position measurement and usually 
camera-based approaches. Crucial for the impression of seamless fusion between 
virtuality and reality is the correct registration of virtual content in the real environ-
ment. This must be done with respect to their position and orientation (geometric 
registration), but also with respect to correct illumination (photometric registration). 
While many VR interaction techniques can basically be used in AR applications, 
otherwise rather simple techniques (such as gaze-based selection) or techniques 
involving reality (such as tangibles) are used here, since the users must still (in par-
allel) continue to act in reality. In contrast to VR, AR can be used almost always and 
everywhere. On the one hand, this opens up a wide range of possibilities, but on the 
other hand it is also one of the biggest challenges, since AR systems have to work 
in very different environments.

With Diminished Reality, parts of reality can be specifically removed in real 
time. Although this functionality is not yet supported in commercial software, it is 
foreseeable that it will become available within the coming years, especially with 
regard to its use for Mediated Reality.

After working through the chapter, you can check your knowledge by answering 
the following questions. The questions are sorted by topic.

Fig. 8.33 Examples of changing real geometry using Mediated Reality. Left: virtual elevation of 
the tabletop and face on tablet. (© Tobias Schwandt, TU Ilmenau 2018. All rights reserved.) Right: 
virtual door in the monitor. (© Jan Herling 2017. All rights reserved)
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Magic Lens
• What is the Magic Lens metaphor and how does it relate to AR?
• What are the limitations of handheld AR and why?
• How could these limitations be mitigated or circumvented?

Registration
• What is the difference between tracking and registration?
• What is meant by geometric registration, and what by photometric registration?
• How are those realized?
• Which one is unidirectional and which one is bidirectional, and why?
• What are the effects on the user experience of an incorrect geometric or photo-

metric registration?

Visualization
• Which AR techniques can be used to create shadows of virtual objects?
• Should I use an OST or VST display in bright sunlight outside?
• Does this assessment change if the view of the (real) environment can be critical 

to safety (construction site, road traffic, etc.)?
• What aspects need to be considered for seamless visual integration of virtual 

objects into the real environment?

Tangible User Interfaces
• What do you understand by Tangible User Interfaces?
• Give an example of their usage, applying both direct and indirect interaction 

techniques.
• Are Tangible User Interfaces also suitable to be used in VR? Why or why not?

Occlusion Handling
• Why do you need phantom objects for AR?
• Why do they have to be realized differently depending on the type of 

augmentation?
• What is the consequence of missing or faulty phantom objects?
• What is the relationship between phantom objects and virtual holes?

Diminished Reality/Mediated Reality
• What are the two fundamental approaches to Diminished Reality? Why do they 

only make sense for certain scenarios?
• An application allows you to remove the facade of a real building and thus to 

have a look inside. Is this an AR or a Mediated Reality application?
• You would like to create a “Good Weather App” based on Mediated Reality, in 

which the sky is always blue and sunny during the day and full of stars at night. 
How would you proceed?
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 Recommended Reading

Bimber O, Raskar R (2005) Spatial augmented reality: merging real and virtual 
worlds: a modern approach to augmented reality. AK Peters. The book gives a 
comprehensive overview about Spatial AR

Furt B (2011) Handbook of augmented reality. Springer, New York. A collection of 
articles on various topics of AR, covering both the technical aspects and the 
application side. It is advisable to check beforehand which articles are of interest 
to the reader and to purchase only these

Szeliski R (2011) Computer vision: algorithms and applications. Springer. A must 
for all who are concerned with camera-based procedures, be it camera calibra-
tion or camera-based tracking

Schmalstieg D, Höllerer T (2016) Augmented reality: principles and practice. 
Addison Wesley. The book gives a comprehensive overview of augmented real-
ity, including a detailed description of computer vision techniques for AR 
tracking
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Abstract This chapter is a collection of selected VR/AR case studies from aca-
demia and industry.

9.1  Introduction and Overview

Ralf Doerner

For the conception of applications in VR and AR, a large design space exists with 
an unmanageable number of conceivable realization alternatives. The large number 
of available input and output devices alone, which are themselves available in dif-
ferent variants and which can be combined in different ways, makes a systematic 
analysis and evaluation of all implementation alternatives difficult. This is espe-
cially true since a sufficient theoretical foundation for such an analysis is not avail-
able today. Therefore, case studies in the sense of best practices provide a good 
orientation. VR/AR designers often take existing successful case studies as a start-
ing point for the initial conception. In case studies, one can see how different tech-
nologies interact and how interaction techniques can be selected and adapted for the 
technical circumstances in a meaningful way. Case studies are an important source 
of experience. Since most VR and AR applications today are “one-offs” for a spe-
cific VR/AR setup and a specific application goal, one cannot consult any standards, 
but one can try to benefit from the experiences of previous successful applications.
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This chapter contains a selected collection of case studies. On the one hand, they 
illustrate the basic principles of VR and AR taught in the other chapters and show 
examples of how virtual worlds have actually been realized or reality has been 
enhanced with virtual content. On the other hand, they provide an insight into how 
case studies can serve as a basis or inspiration for the development of future applica-
tions with VR/AR. Each case study is self-contained. Since the context in which 
case studies were created is also of interest, each case study not only mentions the 
authors directly, but also the organization or company in which the case study was 
created.

The first case study shows that the use of VR in certain applications, such as the 
construction of automobiles in the automotive industry, is already very well estab-
lished. VR and AR are therefore not only something that researchers in academia 
are dealing with in the prototype stage but something that is being used in a com-
mercial environment. In the assessment of Technology Readiness Levels (TRLs), as 
defined in the ISO 16290:2013 standard (ISO 2013), the maturity of VR/AR tech-
nologies today comprises all stages from basic technology research to system test, 
launch and operations. The next three case studies provide further examples of suc-
cessful commercial use of VR/AR in different application domains, such as enter-
tainment/infotainment, life sciences and diagnostics, as well as civil engineering. 
The case studies illustrate the added value of VR/AR. These include cost savings, 
for example, when physical models in the design process are at least partially 
replaced by virtual models that can be created more cheaply, or when costly excava-
tion damages during construction work are avoided. But the examples also illustrate 
other benefits, such as the improvement of human–machine interaction in Case 
Study 9.3 or the realization of telepresence and computer-supported collaboration 
in Case Study 9.4, as well as completely new possibilities of visualization.

While Case Study 9.5 uses mobile devices such as smart phones or tablets, the 
next two case studies (9.6 and 9.7) show examples of large installations that use 
specially equipped rooms. In contrast to Case Study 9.5, Case Study 9.6 does not 
visualize construction data such as blueprints in reality, but utilizing Spatial 
Augmented Reality in a permanently installed, dedicated hardware setup, which can 
display construction data flexibly and at life size in their spatial context. Case Study 
9.7 shows how a CAVE, a sophisticated hardware infrastructure, can be used to 
convincingly present a virtual world. This VR hardware is located in an academic 
environment and also highlights the added value of VR for scientific applications.

Case Study 9.8 is an example of the use of VR/AR in the field of medicine and 
health. It shows that AR can also be used for treatment, in this case for therapy of 
people who have suffered a stroke. It also shows how ideas and approaches for the 
use of VR/AR are developed in the academic environment. Case Study 9.9 shows 
how a transition from the academic environment to commercial exploitation can be 
accomplished.

The next three Case Studies, 9.9 through 9.11, demonstrate the value of integrat-
ing not only objects but also virtual characters into VR/AR. These virtual characters 
can be used either to graphically represent users as avatars in the VR/AR environ-
ment, or to populate the world with virtual people, e.g., in the form of virtual agents 
capable of acting autonomously. All three case studies also demonstrate the poten-
tial that VR/AR offers for teaching and training. For example, Case Study 9.9 
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illustrates basic research on collaborative virtual trainers. Case Study 9.10 shows 
how virtual patients already serve as established support in medical education. Case 
Study 9.11 is an example of how embodied social XR also supports social skills 
training. Furthermore, this case study also shows how avatars can be created and 
what effects avatars may have on the users they represent. This feedback effect can 
also be used for therapeutic purposes, for example. Case Study 9.12 is another 
example of how VR can be used for rehabilitation and training. This case study also 
shows that diverse user groups can benefit from VR/AR. In this case, VR opens up 
new possibilities for training that rely on playful effects, which can extend to seri-
ous games (Doerner et al. 2016) that are realized in VR/AR.

All in all, the 11 case studies show the wide range of possible applications of VR 
and AR technologies and the associated objectives, which can range from training 
to visualization, therapy, design, construction and entertainment.

9.2  Using Virtual Reality for Design Processes 
in the Automotive Industry

Alexander Tesch, Volkswagen AG

The design process of a car consists of various consecutive steps where several 
qualities such as aesthetics and feasibility are reviewed. For this purpose, physical 
mock-ups are manufactured on a 1:1 scale and presented at specific milestones. In 
Fig. 9.1 (left), an example of a partial physical model is shown. However, the pro-
duction of these mock-ups is time-consuming, as it can take weeks until the whole 
prototype is ready for presentation. As a consequence, prototypes do not represent 
the current state of the car development project. Moreover, they often lack several 
components, as the manufacturing costs for a fully detailed mock-up would be too 
high. The overall cost of one prototype varies with the desired quality and can take 
up to several hundred thousand US dollars.

Fig. 9.1 A physical mock-up serving as a real model of the front part of a car in reality (left) and 
a virtual counterpart (right). (©Volkswagen AG. All rights reserved)
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To mitigate the problems associated with physical prototypes, today’s design 
process employs Virtual Reality (VR). VR can support the decision-making already 
in the early phases of the development. Using powerwalls, CAVEs and VR Head 
Mounted Displays (HMD), car components are visualized and reviewed in different 
variants, leading to a reduction in the number of physical mock-ups needed. With 
VR being part of the daily work in a variety of different fields, such as ergonomics 
or lighting design, VR has become a valued technology and can be considered a 
standard technology throughout the development phase of a car.

For certain design reviews, a highly immersive virtual environment is required to 
guarantee that an executive is enabled to make a valid decision based on VR visual-
ization. Common examples of such reviews are ergonomics and visibility checks in 
a car’s interior. Besides photo-realistic rendering techniques, adjustable seating 
bucks are used to achieve a high degree of immersion in both examples. Figure 9.2 
shows an example of such a seating buck. These seating bucks are physical car seats 
in combination with VR HMDs. They provide the user with the feeling of being 
fully surrounded by the interior with a natural view out of the windows. For ergo-
nomic checks, the alignment of the virtual seating position with the physical seat is 
key for creating a highly immersive experience, as the executives are typically 
experts in the field of interior design and consequently highly sensitive to any posi-
tional discrepancies. They are capable of noticing offsets and height differences of 
only a few millimeters between the real seating position and the virtual seating posi-
tion. These discrepancies can result in a significant reduction in the feeling of pres-
ence, which in turn could make it impossible to continue with a meaningful 

Fig. 9.2 A seating buck as shown in this picture is used to provide haptic feedback for an immer-
sive experience in VR. (©Volkswagen AG. All rights reserved)
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evaluation. Thus, a precise alignment of the virtual and physical world is crucial for 
a valid evaluation result. Visibility checks deal with questions such as: To what 
extent do the C-pillars affect the driver’s visibility? Does the front vent glass restrict 
the driver’s visibility on pedestrians? Does the car’s shape limit visibility through 
the side- or rear-view mirrors? While the first two questions might be answered by 
varying the car’s geometry or exchanging certain components directly in VR, virtual 
mirrors require a correct simulation of how light rays behave.

For the evaluation of the car’s surfaces on the exterior and interior, the demands 
for a realistic depiction are particularly high. Here, a virtual presentation on a pow-
erwall represents the standard tool as it allows for an agile demonstration during 
which numerous variants can be presented instantaneously under the direct control 
of a presenter. Figure 9.3 shows an example of a presentation room equipped with a 
powerwall. The VR system allows the presenter to dynamically change the virtual 
environment as well as the materials on the interior’s surfaces. As a result, the visu-
alization of different variants of a component not only shows the changes made to 
the geometry but also emphasizes the impact on the impression of the whole car. As 
the model used in the VR visualization is automatically derived from the most 
recent version of the construction data, it is guaranteed that the presented compo-
nent is always up to date. Furthermore, a rendering cluster enables the rendering of 
virtual models on a powerwall with global illumination. Therefore, the powerwall 
can offer a high-quality presentation of the car. With advances in graphics hardware 
and rendering algorithms, the need for physical prototypes throughout the design 
process might be further reduced. On the other hand, a powerwall also enables the 

Fig. 9.3 A prototype is visualized on a powerwall. (©Volkswagen AG. All rights reserved)
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user to investigate the model from perspectives that no customer is likely to take. 
This in return can lead to inappropriate decisions and high costs.

A VR presentation using an HMD offers the possibility to confine the user to 
natural viewing perspectives. This enforces an examination of the car similar to how 
a potential buyer of this car would look at it. With the focus on surface evaluation, 
an expert study has shown that a surface analysis with a VR HMD can achieve 
almost equivalent results to the use of physical mock-ups (Tesch and Doerner 2020). 
Furthermore, a VR presentation on an HMD enables the user to experience the mod-
els with natural dimensions while also being able to interactively change not only 
the model itself but also the virtual scene. For instance, a virtual parking lot can be 
provided as a context, exhibiting a variety of different car models for comparison 
purposes. Another example is the provision of a virtual studio with sophisticated 
lighting controls that facilitates the design evaluation of exterior surfaces.

There are several challenges when using virtual reality with an HMD. One major 
problem is the occurrence of cybersickness in a variety of different scenarios, such 
as in driving simulations. Another drawback of a VR presentation with an HMD is 
that experts have low confidence in the validity of the appearance of virtual objects. 
One reason for this is imperfections in VR presentations. For instance, displays in 
an HMD still exhibit the screen-door effect, i.e., the pixel grid can be perceived. 
Even though there are technologies to achieve an almost realistic look of the virtual 
data such as raytracing, a real-time presentation with sufficient quality on an HMD 
is currently not feasible.

In summary, there are multiple use cases where VR has the potential to reduce 
costs and to accelerate the development phase of a car. Among these use cases are 
visibility checks and surface evaluations. More examples of VR applications can be 
found in Berg and Vance (2017). VR opens up new ways of interaction between 
multiple users as well as between the user and the virtual data. For example, while 
two experts or executives can only discuss a physical prototype from different per-
spectives (while sitting next to each other), a virtual environment enables them to be 
in the same position, allowing them to have a similar view. Nonetheless, physical 
models remain the most trusted basis for final decisions and are still indispensable. 
Even though the use of VR has proven to be successful and has already led to a 
reduction in the need for physical mock-ups, there is room for improvement (e.g., in 
the area of usability of VR tools or the area of dedicated VR authoring processes). 
The potential of VR for design processes in the automotive industry has not been 
fully exploited yet. Besides VR, also Augmented Reality (AR) is set out to be used 
frequently in a variety of different areas, such as for constructing and designing 
vehicles. For instance, AR offers the possibility to enrich simple physical mock-ups 
by superimposing virtual data on top of these prototypes (Zimmermann 2008). 
Dummy components on these models can be replaced with the most recent con-
struction data when viewing a live video image augmented with AR methods on a 
tablet. Thus, AR also facilitates new ways to reduce the level of detail worked into 
the physical mock-up and thereby further reduces manufacturing cost. By using the 
camera of a tablet and a precise tracking algorithm that merges a virtual model with 
its physical counterpart, the image of the physical exterior can be virtually projected 
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on a physical mock-up. Thus, a simple physical object can be augmented with addi-
tional virtual details in the correct position. Examples of such details are gaps, dif-
ferent car paints or car components such as different headlights.

9.3  AR/VR Revolutionizes Your In-Car Experience

Axel Hildebrand, Stephan Leenders, Tobias Tropper, Wilhelm Wilke,  
and Christian Winkler, Daimler Protics GmbH

Although VR and AR have become commodity technologies with high awareness 
even in the non-tech community, employing AR/VR in a car is still a challenging 
objective. In doing so, several conditions need to be considered to ensure a seamless 
and well-received in-vehicle AR/VR experience.

The advantages are obvious and numerous use-cases exist, e.g., getting the right 
information at the right place via AR without the need to take the driver’s eyes off 
the road, or gaining a new quality of in-vehicle entertainment leveraging 
VR. However, aligning the almost non-predictable vehicle motion and vehicle space 
to an augmented or virtual environment requires a careful and well-defined transi-
tion to achieve consistent storytelling. In addition, specifically regarding AR, a pre-
cise localization of the vehicle is of particular importance.

This case study describes our journey, lasting more than 15 years, from prototyp-
ing and research up to the MBUX 2.0 Augmented Reality Head-Up Display avail-
able within the new Mercedes S-Class launched at the end of 2020 (see Fig. 9.4). 
Furthermore, we present how Head-Mounted Displays (HMDs) can become part of 
an immersive in-car gaming or entertainment solution.

Given the recent advances in navigation and driver assistance systems, there are 
three major questions that arise during the path to fully autonomous driving:

Fig. 9.4 Different AR features (left to right): Distronic (adaptive cruise control), lane departure 
warning, assisted lane change, route guidance, destination. (©Daimler Protics GmbH. All rights 
reserved)
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 1. How can the driver oversee, understand and leverage the growing number of 
increasingly powerful assistance systems of a car?

 2. How can the driver gain trust and lie back while the car takes over part of 
their job?

 3. How can an entirely new in-car experience be created when there is no 
human driver?

AR can play a key role in all these questions and it is happening already. From a 
technical point of view there are multiple ways in which AR can be used within a 
car. These include showing an augmented video on a screen, AR glasses or project-
ing the virtual content directly on the windshield. The latter can be achieved by 
using a recent head-up display with a comparatively large field of view (e.g., 
10° × 5°).

After the introduction of the video-based MBUX Augmented Reality for 
Navigation in 2018, Mercedes-Benz introduced a novel AR HUD starting with the 
S-Class presented in 2020. It features both contact analog visualization of naviga-
tion as well as assistance systems to address the first two questions in particular. So 
why are there no other AR HUDs available yet? Apart from the hardware, imple-
menting such a system is much more challenging than it might seem in the first place.

Pose Estimation and Sensor Fusion For the navigation use case especially, it is 
crucial to know exactly the position and orientation of the car. Every little bump on 
the street needs to be considered, as the contact analogy would suffer otherwise. A 
precise and high-resolution pose is important for the quality of AR in general, but it 
is even more crucial for the HUD, as it acts like a magnifier that makes changes of 
orientation of well below 0.1° obvious. This is aggravated by the fact that most of 
the sensor data comes with a different frequency, latency, reliability, coordinate sys-
tem and resolution.

Projection The content of the head-up display must appear in a way that fits 
exactly to the reality in front of the car. To achieve this, every piece of hardware 
involved needs to be calibrated. Additionally, the head position of the driver (head 
tracking) as well as the windshield distortion need to be taken into account (warping).

Latency A head-up display does not forgive visual inaccuracies. As you directly 
see the reality behind the windshield, the requirement is no less than to have zero 
latency on the screen as well. As this cannot be achieved, the goal is at least to 
reduce the latency as much as possible and then use proper prediction to make up 
for the rest.

User Interface Although the size of HUDs has become bigger and bigger over 
time it is still limited to a rather small area just in front of the car. Thus, it easily 
happens that relevant information leaves the field of view. So, the challenge for the 
UI is to get the most out of AR, but at the same time not to overload the screen and 
to handle information outside the screen.
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Autonomous driving is going to release huge amounts of free time in the car. But 
already (rear seat) passengers are looking for distraction during long-haul trips. 
While traditional activities such as reading, working, playing games or watching 
movies on smartphones and in-car displays will have their place, car movements 
easily induce motion-sickness during these activities. In addition, unfavorable view-
ing angles for handheld devices (eyes below road level) and the confined space of 
the car can further limit perceived comfort and enjoyment for a significant amount 
of people during longer periods of transit.

Head-Mounted Displays (HMDs) that allow full immersion into a virtual or (in 
the future) augmented reality promise to alleviate many of these problems. They can 
present any content at eye level (AR/VR) and, considering VR, include the car 
motion to counteract motion sickness and place the user in completely new environ-
ments to escape the confines of the car. In addition, the interior of a car, with all its 
sensors/actuators and the computable driving forces that act on human bodies, rep-
resents an instrumented environment with unprecedented opportunities for new 
types of entertainment and gaming pertaining especially, but not only, to HMDs. 
Potential use-cases for VR headsets include:

• gaming (e.g., a space shooter where the story and route depend upon the real 
navigation route)

• entertainment (e.g., VR roller coaster or scenic ride through a fictitious or his-
toric landscape (Haeling et al. 2018))

• working (e.g., virtually larger office inside the confined car space)
• recreation scenarios (e.g., sailing over a calm sea while listening to relax-

ing music)

However, enabling the use of HMDs inside cars is very different compared to 
living rooms in multiple aspects. First, the space for body movement is much more 
confined. To one side of the seat, in particular, there is usually almost no space avail-
able. Thus, the virtual interfaces must be intelligently adapted so that users do not 
accidentally collide with the car interior. Yet more importantly, the driving forces 
work on the body and induce motion sickness if the visual perception cues contra-
dict those that the body senses through the vestibular system. That means that for 
any shown VR content, some visual representation of movement of the real car and 
the surrounding environment is beneficial for the user.

Other remedies against motion sickness are the visualization of landmarks, rest 
frames in the real world (e.g., a part of the car that appears in the virtual environ-
ment to hold on to) and subtle information cues about the expected acceleration or 
deceleration of the car. These showed that they are even able to reduce motion sick-
ness instead of increasing it (Carter et  al. 2018). For AR, digital content has to 
match the real-world environment precisely, by analogy with the head-up-display. 
Because motion sickness, once experienced, can take hours for symptoms to resolve, 
solving this problem is a key enabler for prolonged use of both AR and VR HMDs 
inside cars.

However, all these visualizations require precise alignment of the virtual and 
physical worlds (see Fig.  9.5). The previous section has already elaborated the 
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challenges of calculating a precise car pose in relation to the real world. In combina-
tion with HMDs, the precise alignment is further impeded, since conventional track-
ing methods for HMDs will not work out of the box in a vehicle. This is because the 
physical forces measured by the HMD’s Inertial Measurement Unit (IMU) will 
reflect the car and head motion combined (e.g., accelerating will have your virtual 
head turn slightly down), while other tracking sensor data (e.g., optical tracking) 
may still only provide evidence for the head motion. This creates observation con-
flicts during the sensor fusion for the final HMD pose. This sensor fusion, however, 
is required, as the drift of today’s IMUs is much too high for them to deliver suffi-
cient tracking quality while driving on their own.

Regarding storytelling, the biggest challenge is to create thrilling experiences 
on-the-fly for dynamic routes at dynamic paces (e.g., sudden stops at red lights or 
traffic jams) which can both change at any time during the course of the experience. 
To this end, the car can provide a lot of interesting information, like the current 
route, traffic situation along the route, immediate traffic surrounding and possible 
alternative routes the driver could take. This data can help game designers redesign 
their game story and content positions according to dynamic properties, which 
could be part of an SDK offered by car manufacturers.

Finally, the crash safety of HMDs is a topic that must be researched and solved 
for wide adoption. Overall, while technical challenges such as fusing precise car 
and HMD poses at low latency are coming into reach (e.g., as demonstrated by 
Haeling et al. (2018), questions regarding social acceptability (Is it okay to use VR 
HMDs over the whole duration of a family trip?), safety concerns (e.g. crash safety 
and driver distraction), and business plans (What are users willing to pay for these 
experiences?) increasingly gain importance, for which McGill et al. (2020) provide 
a good overview. Both software in general and user interfaces in particular will gain 
even more importance to deal with the increasing complexity of driving situations, 
especially considering the trend towards autonomous driving. In addition, technical 
innovations such as waveguides or holographic displays, as well as more natural and 
holistic user-interaction will lead towards a seamless human–machine interface. For 

Fig. 9.5 Different types of dynamic virtual entertainment matched to the route ahead (left to 
right): original view – dynamic procedural environment as basis for, e.g., virtual cinema – space 
shooter game  – edutainment  – all viewed inside a (mobile) VR headset. (©Daimler Protics 
GmbH. All rights reserved)
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gaming and entertainment especially, in the short term the usage of HMDs has 
already enabled new applications.

9.4  VR-Based Service Training in the Life Sciences 
and Diagnostics Industry

Julian Hillig, realworld one GmbH & Co. KG

The adoption of virtual (VR) and augmented reality (AR) technologies has expanded 
rapidly across various enterprise sectors, and the technology is now experiencing 
accelerated integration within the life sciences and the analytical and diagnostics, 
pharmaceutical, chemical, and processing industries. While VR and AR are consid-
ered breakthrough technologies and are expected to substitute for computers and 
smartphones in the coming decades, the global crisis of COVID-19 has forced many 
companies to accelerate the digitalization of their workforce and operations, leading 
to increasing general adoption of the technology. VR represents the ideal technol-
ogy for companies to continue conducting training courses and holding group 
events without any risk to health and safety. In addition to being an important con-
tribution to a company’s overall digitalization and global sustainability strategy – as 
drastic reductions in air travel for companies will result in a significant decrease in 
their carbon emissions – the cost-saving potential from VR-based training is around 
US$450,000–650,000 per product per year.

Along with the continuous growth of businesses in the life sciences and diagnos-
tics industry, the global headcount of their Field Service Engineers (FSEs) is consis-
tently increasing. Additionally, as product lines have become increasingly complex, 
the knowledge and skill requirements for FSEs have also grown. Previously, FSEs 
conducted only basic maintenance and repair tasks, but now they also provide 
expanded services. Because of these factors, the post-service and support teams are 
reaching their full training capacities, resulting in extended waiting periods for 
newly hired FSEs to conduct their on-site training. By implementing VR into the 
training process, businesses can significantly increase their global training capaci-
ties and will be able to meet both their short- and long-term training needs. VR 
provides the global FSEs with highly realistic and fully interactive training scenar-
ios created by service specialists that can be accessed at any time from any location.

While there will be pre-recorded training content prepared for FSEs, any internal 
specialist within a company can easily connect to the VR environment and join the 
FSEs at any time to answer specific questions or even test an FSE, without the need 
for anyone to leave the office or home. Also, FSEs can always revisit any training 
material on their own to refresh their knowledge of particular aspects of the instru-
ments and equipment.

The VR-based software platform developed by realworld one now serves as a 
standard for applications in training, sales, marketing and service (see Fig.  9.6). 
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This software platform has been specifically designed for the life sciences and ana-
lytical and diagnostics industries and includes the following functionalities:

• The CAN functionality enables users to create and preserve their own VR con-
tent and share it with others across the globe. People can record and save interac-
tive training sessions, product explanations, events, meetings, and more within 
their VR environments.

• The multiuser-based software allows users from all over the world to meet and 
collaborate in real time, as well as interact directly with products in virtual envi-
ronments (see Fig. 9.7).

• Users can upload 3D and CAD data, PDFs, PowerPoint presentations, images, 
videos, and notes from their desktop into VR to share them with colleagues and 
business partners.

• The virtual desktop function lets people use their personal computers in VR. One 
can browse the web, view files, answer emails or work with BI (business intelli-
gence), CRM (customer relationship management) or ERP (enterprise resource 
planning) systems on a giant virtual screen.

• The avatar configurator gives users the option to select and configure their own 
avatars for a personalized virtual experience.

• realworld one provides multipurpose rooms, including user, conference, training 
and showrooms, as well as an auditorium hall for larger events. Users can host 
and invite people to join at any time.

• The realworld one software is designed to be used with the latest virtual and 
mixed reality head-mounted display devices from various manufacturers.

Fig. 9.6 Example view within a multiuser VR training session. (© realworld one. All rights 
reserved)
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• The non-VR mode enables users to connect to virtual environments without 
requiring a VR headset.

The implementation of VR solutions into the service training process provides 
companies with the following performance enhancements:

• Consistency: Access to highly consistent information throughout the entire orga-
nization, while providing a coherent format for product user education.

• Efficiency: Significant gains for global service and support teams through a VR- 
based strategy that provides easier and quicker access to service experts, while 
simultaneously reducing the resources required from these experts.

• Time: Significant reduction in the time required to train personnel on instru-
ments. This shortens the length of the certification process for staff, as there is no 
waiting period to participate in training sessions.

• Capacity: The capacity to conduct training on certain instruments is determined 
by training staff, facilities and hardware availability. By implementing VR-based 
training with virtual instruments, these dependencies can be significantly 
reduced.

• Cost savings: As the number of training participants has considerably increased 
over the years, the costs incurred by companies for hosting trainees, by providing 
travel, accommodation and food expenses, have risen markedly. In addition, the 
depreciation and maintenance of instruments required for training also represent 
a significant cost that can be saved by moving them into a virtual environment.

• Flexibility: The ability to receive/conduct training can be made as flexible as is 
necessary, using a VR-based approach, as content is available at any time and 
experts can quickly connect into the various environments for one-on-one 
sessions.

Fig. 9.7 Example interaction in VR training. (© realworld one. All rights reserved)
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The typical rollout plan for VR software implementation at realworld one is usu-
ally a 3- to 6-months process, requiring extensive consultation with the client’s tech-
nical team to bring the full spectrum of training features into a virtual environment. 
The initial phase calls for the complete 3D rendering of all technical equipment 
involved in the training. After the client provides feedback on the VR prototype 
module, the final version will be completed for international distribution.

9.5  Utilizing Augmented Reality 
for Visualizing Infrastructure

Alec Pestov, vGIS Inc

Municipalities and utility companies maintain vast networks of underground and 
aboveground infrastructure. This infrastructure is difficult to access – many assets 
such as pipes, cables, valves, etc., are buried underground – and often complex, as 
multiple utility types reside densely near each other. The combination of complexity 
and inaccessibility leads to the high cost of any infrastructure-related initiative. 
Additionally, utility workers’ inability to see buried assets directly occasionally 
leads to excavation damages, which are estimated at U$6 billion annually for North 
America alone.

The traditional approach to locating utility assets relies on using printed and digi-
tal maps in conjunction with specialized equipment such as electromagnetic locator 
devices. The locator then paints the horizontal location of the asset on the ground, 
produces a sketch and compiles a report. The sketch and report are then provided to 
the excavator. Often, locations are independently validated by another person 
through a quality assurance process. The location work process is complicated, 
relies on records that can – at times – be inaccurate or incomplete, involves person-
nel with varying degrees of experience and is an important component of the dam-
age prevention and workplace safety programs of the construction industry.

In the AEC (architecture, engineering and construction) industry, unseen infra-
structure can cause design errors or construction problems in the field. At the design 
phase, it can be costly to redesign an already developed plan. If issues come up dur-
ing construction, they can be extraordinarily costly, leading to long delays and proj-
ect cost overruns. Furthermore, it can be difficult for engineers to analyze blueprints 
to understand 3D spatial relationships with regard to construction projects. As a 
result, it takes longer to work on designs, and those designs are more likely to have 
errors, which could lead to delays, rework and cost overruns.

Emerging technologies such as Mixed Reality (MR) and especially Augmented 
Reality (AR) have great potential to positively influence the fieldwork (see Fig. 9.8). 
Using AR tools, field workers and engineers can see an unobstructed physical world 
in front of them, as well as virtual representations of lines, pipes and proposed struc-
tures that can be perceived similar to holograms (see Fig. 9.9). By interacting with 
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virtual ‘digital twins’, the user should be able to perform the job faster, more easily, 
more safely and more accurately.

vGIS is an AR/MR application designed by vGIS Inc. for high-accuracy field 
services operations (vGIS 2021). The app either uses the HoloLens, a holographic 
headset by Microsoft equipped with cameras, audio, various sensors or traditional 
smartphones and tablets to display underground pipes and other assets as holo-
grams. While wearing the HoloLens or using the smart device, workers see an unob-
structed physical world in front of them as well as carefully placed virtual imagery 
of proposed buildings and bridges, lines of wastewater pipes underground and real-
ity capture displays. The virtual representations are color-coded and projected to 
scale at job sites, while advanced positioning algorithms designed by vGIS Inc. 
maintain its real-time-created virtual imagery world  – positioned at the correct 
physical location – with up to 1 cm accuracy (see Fig. 9.10).

The vGIS platform combines client-provided BIM (building information model-
ing), GIS (geographic information system), Reality Capture and other types of spa-
tial data with third-party information from multiple sources to create visuals to 

Fig. 9.8 Using smart devices with a location sensor to visualize underground infrastructure such 
as buried pipes and cables for construction: (a) with a tablet and (b) with a smart phone. (© vGIS 
Inc. All rights reserved)

Fig. 9.9 Screenshots from the vGIS application showing AR scenes with additional annotations 
such as distances measured. (© vGIS Inc. All rights reserved)
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power purpose-built applications. The information is converted into unified 3D 
visuals in real time to display on the end user’s devices (see Fig. 9.10).

The broad range of devices covered by vGIS allows AR users to deploy tools that 
work better in specific environments. Phones and tablets offer a unique combination 
of accessibility and convenience. They are familiar, easy to use and always on, 
which enables apps to run within a few seconds or less after unlocking the phone. 
Depending on the model and screen size, they are fast and offer excellent visuals, 
even in bright light. On top of this, they already run numerous apps that comprise a 
standard toolkit of any enterprise. It is not surprising that approximately 90% of 
vGIS app deployments are on mobile devices.

HoloLens and other dedicated AR devices are the best tools for complex or busy 
visualizations. These include visualizations of sophisticated BIM models, struc-
tures, multi-layered utility corridors, subsurface utilities of a busy downtown street, 
intertwining fibre-optic cables, etc. HoloLens delivers depth perception, which 
helps the user understand complex 3D objects almost instantly. The superiority of 
the stereoscopic 3D visuals exclusive to HoloLens and similar devices warrant 
deploying at least a few of these units to support advanced construction and engi-
neering jobs, critical utility maintenance tasks (e.g., field crew supervisors), utility 
location validators, public works and similar roles where speed, deeper understand-
ing and accuracy are important.

The hands-free environment is another type of deployment where HoloLens 
shines. If the user needs to remain hands-free to perform his or her job, paper records 
and tablet/phone-based tools will not suffice. HoloLens provides a rich and interac-
tive user experience for displaying manuals, guides and collaboration tools while 
keeping the user’s hands free to do the job.

vGIS helps field technicians close service tickets more quickly by reducing the 
time required to locate assets. Depending on the complexity of location and avail-
ability of utilities data, the system can save up to several hours on a single locate job. 
A study conducted by vGIS clients found that utility locators could reduce the time 
required to complete jobs by 50%. At the same time, QA validation time was 
reduced by 66–85%. This translated to cumulative savings of 12–20 h per locator 
per month.

Fig. 9.10 Visualizing BIM data in AR. (© vGIS Inc. All rights reserved)
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Additionally, vGIS helps avoid costly repairs and line breaks. A line strike means 
that work comes to a halt until repairs are made. Many of those problems occur 
because the aboveground markings are inaccurate or incomplete. A simple two-hour 
markup may easily turn into a $23,000 dig up and repair. vGIS helps reduce the 
number of such strikes.

The impact in the AEC space is yet to be measured. However, early deployments 
conducted by several multinational corporations have demonstrated tangible 
improvements in infrastructure-related projects, such as light rail construction and 
road work.

9.6  Enhancing the Spatial Design Process with CADwalk

James A. Walsh and Bruce H. Thomas, University of South Australia 
Gerhard Kimenkowski and Stephen Walton, CADwalk Global Group Pty Ltd

Building design remains a uniquely challenging problem, involving a variety of 
stakeholders (novices to experts), waterfall development and high costs. In addition 
to these problems, given the huge physical size of the buildings being created and 
the fact that they must be scaled down for planning, design becomes increasingly 
abstract and complex in nature. This is especially difficult for clients who are not 
architects themselves, but instead are stakeholders who will have to utilize the end 
product. Fundamentally, clients require some way to bring abstract CAD plans into 
the real world for collaborative validation and optimization of the proposed project. 
Design experts can visualize the designs as final built constructs, but this is a com-
plicated process for clients on plans given in a non-1:1 scale, with many layers of 
complexity (electrical, heating and cooling, etc.). Ideally, clients would be able to 
see the life-size end result as early in the design phase as possible, and throughout 
the entire process.

Projection mapping as a research topic enables the real world to be augmented 
and enhanced. More specifically, Spatial Augmented Reality (SAR) allows large- 
scale collaboration with a blend of physical and virtual experiences. Given the 
unique affordances of SAR as a display and interaction medium, the question arose: 
how could we leverage the unique affordances of SAR for visualizing and editing 
large-scale, life-size building designs (Thomas et al. 2011)? In exploring this prob-
lem, a joint project between the University of South Australia and Jumbo Vision 
International (now CADwalk Digital) was established to explore how SAR could be 
employed. The end result of the research project and subsequent commercialization 
is CADwalk Lifesize, a large-scale, projection-based, collaborative building design 
tool that allows end-users (novices and experts alike) to explore their plans in real 
time and at life size.

Built using the Unreal Engine, CADwalk utilizes multiple floor-facing projectors 
working in concert with a wall-facing projector in large warehouse-style spaces (see 
Fig.  9.11). The floor-facing 2D projectors display life-size blueprints and CAD 
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designs of buildings, enabling end-users to physically walk through their new spaces 
before they have been built. Using the wall-facing projector, a 3D view is projected, 
showing the 3D textured real-time rendering of the current plans, allowing users to 
see both 1:1 blueprints on the floor and the rendered 3D floor view of the space 
simultaneously. A roaming Surface tablet is used as a control screen for the session 
facilitator.

To collaboratively edit the plans a novel interaction device is used: a “tree”, 
which consists of an aluminum pole approximately 2 m high, on a wheeled base, 
with retro-reflective balls attached to the top. Using an optical-tracking system pres-
ent throughout the whole space, users can wheel the trees onto content, rapidly spin 
the tree one way, and then back, to have the tree “pick up” the content underneath, 
which is then fixed to the tree to be moved and rotated around the scene. The user 
then rapidly spins the tree back-and-forth again to uncouple the projected content 
from the tree, leaving it in its new location. The trees act as a shared, mobile method 
for directly interacting with projected content, along with other functions, such as a 
digital tape measure showing the distance between multiple trees. For plans larger 
than the physical space available, blueprints can be panned and scaled as desired, 
including moving between floors in multi-floor structures.

Additional functions, such as adding/removing models, is performed with the aid 
of a user at a desktop placed to the side of the main space. Newer versions of 
CADwalk seek to leverage tablet input, and employ head-mounted displays (i.e., 
Microsoft HoloLens) to let users visualize and interact with the full 3D CAD model 
rendered above the projected blueprints. A miniature version of CADwalk 
(CADwalk Mini) also allows users without access to a purpose-built installation to 

Fig. 9.11 CADwalk session showing blueprints on the floor and perspective correct 3D rendering 
of the scene on the end wall. Trees are visible in the scene as the thin vertical stands. (© 2020 
CADwalk Global Group Pty Ltd. All rights reserved)
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still leverage the collaborative and direct interaction offered by CADwalk, albeit at 
a much smaller, non-1:1 scale. A Virtual Reality (VR) view is also offered, allowing 
the current scene to be immediately viewed by users in a VR headset. While VR 
obviously also allows users to view the plans in 1:1 scale, the lack of natural col-
laboration and the spatial perception issues present in VR (Henry and Furness 1993) 
impact its effectiveness when needing to ensure accurate representation of structural 
plans to end users. Multiple CADwalk installations can be networked together, 
enabling remote collaboration at real-world scale.

A CADwalk session starts with ingesting the CAD models from the designers/
architects. Given the plethora of data formats in use, data must first be prepped for 
import to the system in a compatible format. As CAD models are increasingly com-
plex, data preparation may involve polygon reduction, among other tools, to create 
a scene that can be rendered effectively by the system. This process is done offline, 
before the session begins.

When the session commences, a CADwalk staff member (facilitator) is present 
to facilitate the session and system, enabling the stakeholder’s users present to focus 
on their discussions around the space, not on the system itself. Users are able to 
freely roam the space and use the multiple trees to modify the layout of the environ-
ment, measuring, moving and rotating items in the scene, such as doors, walls, fur-
niture or other fixtures. Scenarios can be saved, and actions can be undone/redone 
and recalled for final decision-making from all stakeholders.

Project stakeholders can then commence their own interaction regarding points 
of concern, either previously identified or new factors identified from being able to 
view the plans at scale in CADwalk. These include not just cosmetic changes, but 
legal requirements (safe distances, minimum clearances, etc.), clash detection (e.g., 
does the air-conditioning duct interfere with the placement of other elements?) and 
domain-specific investigations.

Given the wide application domains across which spatial design occurs, e.g., 
manufacturing/industrial, domestic housing, aerospace, defense and city planning, 
the applicability of CADwalk for improving the current design process has been 
demonstrated for its fast, efficient and cost-saving properties. CADwalk Lifesize 
Studios are used from kitchen and bathroom design validation and optimizing 
“dream home layouts”, to highly specialized mission-critical control centers. The 
European Space Agency (ESA) utilized CADwalk to understand current workflows 
and spaces for their current and future space exploration missions, and subsequent 
validation and optimization of new workstations for their highly specialized opera-
tors. This will be the blueprint for all future ESA facilities globally.

While largely ignored for consumer AR, the use of projection in SAR provides 
unique affordances for commercial and industrial applications, where requirements 
such as having a fixed setup are not a restriction to adoption. In representing struc-
tural plans at life size, CADwalk allows novice and expert end users to collabora-
tively explore plans on an equal footing. Whereas novice users looking at traditional 
blueprints or CAD plans may only be able to visualize and understand a subset of 
the overall plans, including spatial relationships, the intuitive representation of 
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those plans in CADwalk means structural plans are now accessible to all stakehold-
ers, for both viewing and modification.

9.7  The aixCAVE at RWTH Aachen University

Torsten W. Kuhlen, RWTH Aachen University  
Geert Matthys, Barco

At a large technical university like RWTH Aachen, there is enormous potential to 
use VR as a tool in research. In contrast to applications from the entertainment sec-
tor, many scientific application scenarios – for example a 3D analysis of result data 
from simulated flows – not only depend on a high degree of immersion, but also on 
the high resolution and excellent image quality of the display. In addition, the visual 
analysis of scientific data is often carried out and discussed in smaller teams. For 
these reasons, but also for simple ergonomic aspects (comfort, cybersickness), 
many technical and scientific VR applications cannot just be implemented on the 
basis of head-mounted displays. To this day, in VR Labs of universities and research 
institutions it is therefore desirable to install immersive large-screen rear projection 
systems (CAVEs) to adequately support the scientists (Kuhlen and Hentschel 2014). 
Due to the high investment costs, such systems are used at larger universities such 
as Aachen, Cologne, Munich or Stuttgart, often operated by the computing centers 
as a central infrastructure accessible to all scientists at the university.

At RWTH Aachen University, the challenge was to establish a central VR infra-
structure for the various schools of the university with their very different require-
ments for VR solutions. In cooperation between the RWTH IT Center and the 
Belgian company Barco, a concept was therefore developed and implemented as 
aixCAVE (Aachen Immersive eXperience CAVE), which, as a universal VR dis-
play, equally meets the requirements of full immersion and high-quality projection.

To achieve the highest possible degree of immersion, a configuration consisting 
of four vertical projection walls was chosen, completely surrounding the user. To 
enter and exit the system, an entire wall can be moved using an electric drive. This 
avoids door elements that interfere with immersion – when closed, no difference to 
the other projection walls is visible. However, extensive security measures had to be 
implemented so that no one could be locked in the CAVE in an emergency. Although 
a ceiling projection would have further contributed to the degree of immersion in 
the system, it was not used, as the complex audio and tracking integration planned 
for the CAVE in Aachen would not have been possible then. To nevertheless achieve 
largely complete immersion, the vertical screens are 3.3 m high.

The 5.25 × 5.25 m area, which is quite large compared to conventional CAVE 
installations, offers smaller teams of scientists enough space for collaborative anal-
ysis session, enables natural navigation (“physical walking”) within certain limits, 
and creates a realistic feeling of space in the virtual environment (“spatial 
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Fig. 9.12 Concept of the aixCAVE with 24 projectors. (© TW Kuhlen, G Matthys. All rights 
reserved)

awareness”). Since the floor should not bend noticeably even with such a large base, 
6.5 cm thick glass was used, on which thinner acrylic glass was placed as the actual 
display. This two-stage structure decouples the static requirements from the display 
requirements. Glass has better rigidity, while the acrylic glass has very similar prop-
erties to the sidewalls, which are also made of acrylic glass. For structural reasons, 
two glass elements lying next to each other had to be installed instead of a single 
glass plate. This inevitably creates a gap that, with a suitable mechanical design and 
skillful alignment of the projectors, turned out to be very narrow at 2 mm.

Figure 9.12 shows the basic structure of the solution with a total of 24 projectors. 
To achieve the required high image quality, projector and screen technologies were 
used that guarantee sufficiently high resolution, brightness, brightness uniformity 
and luminance. The final solution (see Fig. 9.13) is based on active stereo projection 
technology with 3-chip DLP projectors, each with a light output of 12,000 lumens 
and a WUXGA resolution (1920 × 1200 pixels). To meet the requirements for the 
resolution of the system as a whole, four of these projectors were used for each 
vertical side and eight for the floor, each in a 2 × 2 tiled display configuration with 
soft edge blending (see also Sect. 5.2)

Apart from the resolution and the brightness of the selected projectors, the prop-
erties of the rear projection screens are critical for the resulting image quality. These 
should provide a uniform brightness distribution without hotspots, so that users can 
walk from one corner to another within the CAVE without the image quality or 
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perceived brightness suffering from the different perspectives. This requirement 
was achieved by using canvas materials with excellent diffuse properties (low peak 
and half gain, see also Sect. 5.2.2).

Figure 5.2 shows the fully installed aixCAVE in operation. By combining a pre-
cise mechanical construction with high-quality projection technology, a CAVE sys-
tem could be implemented that allows an intuitive visual analysis of high- resolution 
scientific data in three-dimensional space. Ergonomic factors such as high lumi-
nance and brightness uniformity, high contrast and excellent channel separation of 
the stereo projection, as well as small gaps between the individual screens have 
been consistently taken into account. As a result, the Aachen CAVE goes beyond a 
pure presentation system, providing a valuable tool that users from science and 
industry actually use in longer, intensive sessions for exploratory data analysis. In 
particular, the clear ergonomic advantages over HMDs, as well as the possibilities 
of a combined analysis of geometric and abstract data resulting from the high reso-
lution, justify – at least at RWTH Aachen University – the very high installation and 
operating costs. Since its inauguration in 2013, the aixCAVE has proven to be a 
valuable tool in research projects in production technology, fluid mechanics, archi-
tecture, psychology and neurosciences. In addition, the CAVE is not only used as a 
tool for data analysis, but also as a tool for basic VR research by the computer sci-
entists at RWTH to develop new navigation and interaction paradigms in virtual 
environments (Kuhlen 2020).

Fig. 9.13 Complex installation of the glass plates for the floor rear projection of the aixCAVE. (© 
TW Kuhlen, G Matthys. All rights reserved)
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9.8  Augmented Reflection Technology: Stroke 
Rehabilitation with XR

Holger Regenbrecht and Chris Heinrich, University of Otago, Dunedin, 
New Zealand

Millions of people experience a stroke and require rehabilitation therapy every year. 
Most stroke survivors are left with unilateral impairments, e.g., the inability to move 
one arm, and have to undergo a very long period of rehabilitation and training to 
regain motor function. The efficacy of this training depends on four intertwined fac-
tors: (1) the patient’s (stroke survivor’s) motivation, (2) the meaningfulness of the 
tasks in training, (3) the training intensity, and last but not least (4) the provision and 
effectiveness of stimuli for neuroplastic change. XR techniques, i.e., the full spec-
trum of computer mediation of reality between Virtual Reality and Augmented 
Reality, can play a major role here and we are presenting two systems based on the 
concept of augmented reflection technology (ART) we have developed and empiri-
cally and clinically tested.

With ART we are focusing on the factor of neuroplasticity, i.e., the brain’s ability 
to lastingly change in response to environmental stimuli, while maintaining patient 
engagement with the other three factors for rehabilitation efficacy (motivation, 
meaningfulness, intensity). The neuroplastic effect is achieved by “fooling the 
brain” (Regenbrecht et  al. 2011) about what it is “perceiving”, e.g., by visually 
exaggerating movement capabilities of a limb or by mirroring over the healthy 
limb’s movements to the impaired side (Regenbrecht et al. 2012; Hoermann et al. 
2017). XR offers great possibilities here for (1) precisely directing what the patient 
controls and perceives, (2) suppressing potential disbelief, i.e., believing in the vir-
tual magic of the technology and (3) keeping patients engaged with the rehabilita-
tion process.

ART is based on the principle of decoupling what the patient is doing from what 
they are seeing. We sense and capture patients’ limb movements (here upper limbs), 
feed this into an XR system and manipulate the perceivable output in a way that the 
(neurorehabilitation) effect can be achieved. Over the last decade we have built dif-
ferent versions of ART using tailored input, computing and output modalities.

ART4 (Fig. 9.14, left) comprises two closed boxes into which the patient puts 
their hands and lower arms. The boxes are closed with curtains, like with magician’s 
boxes, so that the patient cannot see their actual hand movements. Both boxes are 
equipped with a particular form of diffuse lighting and cameras, which capture what 
is inside the boxes. The camera feeds are used to (1) foreground segment the hands 
and (2) track the hand movements. The segmented hands are put inside (in front of) 
a virtual environment, so that the user gets the impression to interact within that 
space. These segmented hands can then be selectively shown, hidden and/or mir-
rored at the therapist’s discretion. We can also augment the users’ perceived hand 
movement: for instance, an actual movement of say 10 mm will result in 30 mm 
movement as perceived by the patient on the screen. ART4 was designed for use in 
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clinical settings for the treatment of chronic stroke patients. However, XR features 
were implemented to allow for its use in other rehabilitation scenarios. These 
include hot/cold virtual environments for burn victims, enlarged or smaller hands 
for pain management and the ability to change the color appearance of hands (com-
plex regional pain).

If we want to apply ART in users’ homes, then we have to (1) allow the system 
to be self-controlled and (2) be suitable for installation in people’s homes. ART6 
(Fig. 9.14, center and right) utilizes a head-mounted display, a Leap motion control-
ler, big arcade-style push buttons and foot pedals, individualized virtual hands and 
machine learning-based feedback mechanisms in conjunction with a tailored reha-
bilitation protocol (Heinrich et al. 2020). Our stroke application scenario has unique 
requirements in that our user has an impaired arm (no/limited movement), their 
unaffected arm is carrying out the mirrored hand movements (and thus cannot be 
used to control the system while in VR), and survivors can have low technical com-
petency, which means the system has to be easy and intuitive to use. To account for 
these requirements, we developed an interface that consists of arcade style push 
buttons for the user to interact with the system outside of VR (start/stop system, 
switch between system modules). While in VR, the user can interact with the system 
by using two foot pedals (move on to next hand exercise or show a virtual training 
hand which demonstrates the hand exercise to the survivor in VR). Our XR hard-
ware was chosen for survivors’ home use because it provides an inherent decou-
pling of the survivors’ view from their home (real) environment into our XR 
environment. For our stroke rehabilitation scenario, this serves three purposes. (1) 
Survivors are completely immersed in our virtual illusion and this can lead to a 
more convincing “fooling of the brain” because of the mixing of what is real (hand 
movements, real-world/virtual environment correspondence) and augmented (mir-
rored hand position and mirrored movement), which can help lead to that suppres-
sion of disbelief that is desired for neuroplastic effects to occur. (2) It allows for the 
mirrored virtual hand to be observed in the most spatially congruent and natural 
position for the survivor. (3) It disconnects the survivor from their home 

Fig. 9.14 Augmented Reflection Technology systems in action. Left: ART4 with “magician’s 
boxes” and operator; center: ART6 for home use without an operator; right: ART6 mirroring a 
stroke survivors’ right (unaffected) hand movement and presenting it to them in XR as their left 
(affected) hand carrying out the mirrored hand movements. (© H Regenbrecht, C Heinrich. All 
rights reserved)
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environment, which often consists of various distracting stimuli, and allows them to 
focus their complete attention/gaze on their mirrored virtual hand and rehabilitation 
exercises.

Besides the neurorehabilitation effects of ART, both systems are valuable instru-
ments for patient engagement. The “newness” of XR, the game elements of the 
training tasks, the control of the exercises, including the individually tailored pace, 
and the realism and meaningfulness of the experience lead to increased patient 
engagement.

To make ART more widely available  – currently, our systems are used with 
patients and users in Dunedin, New Zealand (Dunedin Hospital) and Berlin, 
Germany (MEDIAN Klinik Kladow) – we are going to bring our systems to market 
in the near future. The improvements in the quality of XR technology in combina-
tion with increasing affordability of that technology will allow more and more users 
to benefit from our ART approach. While stroke rehabilitation is our main focus at 
the moment, ART can be used with other conditions, like traumatic brain injuries, 
(phantom limb) pain management and hand therapy, but also for education and 
training, entertainment and other related sectors.

9.9  Collaborative Virtual Trainers in VR Applications

Xiumin Shang and Marcelo Kallmann, University of California, Merced

We use the term “virtual trainer” to refer to a simulated human-like character that 
can collaborate with humans to complete a given task with the use of interactive 
verbal and/or non-verbal movements and behaviors. Virtual trainers collaborating 
with human users can be achieved in different ways. Here we discuss two important 
types of collaboration that are representative of indirect and direct types of interac-
tion. We consider an indirect collaboration when the virtual trainer collaborates 
with the user only by providing verbal or non-verbal feedback as instructions, there-
fore helping the user to complete a given task but letting the user perform the task 
independently. In a direct collaboration, the virtual trainer will instead jointly com-
plete the task with the user. Here we focus on the particular case of collaborative 
object manipulation where both the virtual trainer and the user need to manipulate 
a virtual object together in order to complete the given task. We summarize in this 
chapter our current work on implementing both indirect and direct types of collab-
orative virtual trainers. Both of our projects are being developed with the use of the 
Unity game engine.

To achieve effective interactions when assisting humans to perform tasks in a 
given scenario, a feedback strategy has to be identified and implemented. In general, 
feedback is a language or gesture signal given by the virtual trainer and which might 
change the user’s thinking or behavior to improve his/her learning or training 
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performance (Arif et al. 2017; Blair 2013). A feedback strategy will specify how 
feedback is provided, including types of feedback and several other parameters, 
such as frequency and adaptation. We have investigated two particular types of feed-
back strategies for virtual trainers assisting participants in a VR task, as illustrated 
in Fig.  9.15. Strategies based on Correctness Feedback (CF) and Suggestive 
Feedback (SF) were compared as possible feedback strategies used by the virtual 
trainer to help users to memorize relative areas of given countries.

A scenario was designed where the virtual trainer assists the user to sort cubes 
representing countries according to the area of the countries. The user needs to 
complete the sorting task with different levels of difficulty, which are imple-
mented with an increasing number of countries to be sorted. Under this task 
scenario, CF is defined as providing correctness feedback by fully correcting 
human responses at each stage of the task, and SF is defined as providing sugges-
tive feedback by only notifying if and how a response can be corrected. We have 
conducted a pilot user study with four participants and a formal user study with 
14 participants to investigate the effects of the feedback strategies provided by 
the virtual trainer on the user’s performance. Our final study results show that CF 
was more effective because it had higher user preference and shorter task com-
pletion time with equivalent performance outcomes. This study exemplifies the 
importance of implementing an appropriate feedback strategy for a given sce-
nario and application. More details are available in our previous work (Shang 
et al. 2019).

Using virtual trainers to assist users during direct manipulation tasks, in either 
simulated environments or physical environments, requires the use of some spe-
cific approach for achieving adaptive motion control. While in some cases a 

Fig. 9.15 In this VR training environment the virtual trainer provides feedback to assist the user 
to sort virtual cubes such that the represented countries appear in increasing area order. (© X 
Shang, M Kallmann. All rights reserved)
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hard-coded solution involving a step-by-step procedure for the virtual trainer to 
follow may be possible, in such cases the virtual trainer will not be able to adapt 
and execute a similar but different task, or to address the same task in a different 
environment. To increase the adaptability of this type of collaborative virtual 
trainer, different machine learning methods can be applied. A common approach 
is to rely on imitation learning methods able to learn human behaviors using some 
type of action mapping and then to apply the learned knowledge to the robotic or 
virtual trainer for it to cooperate with human users on given tasks. Another popular 
approach is to apply reinforcement learning to improve a robotic or virtual train-
er’s sequential decision-making policy by interacting with the environment 
periodically.

Previous work (Yu et al. 2020) has demonstrated the effectiveness of using deep 
reinforcement learning (DRL) for virtual trainers or robotic agents, and for agent–
human collaboration. We focus on applying the DRL methodology to a virtual 
trainer collaborating with a human user immersed in a VR environment. In our 
simulated environment we have designed a task involving two virtual trainers col-
laboratively moving a tray from a random position to a target position in a dynamic 
environment with an object on top of the tray. The goal is to reach the target location 
while avoiding collisions with obstacles and while keeping the tray balanced. Based 
on this design, we have trained an efficient initial policy in this virtual environment, 
as illustrated in Fig. 9.16.

The use of virtual trainers assisting humans in a variety of scenarios represents a 
promising application for VR technologies and the study of collaborative behaviors 
for virtual trainers is key for achieving effective virtual trainers. When properly 
implemented the discussed types of collaborative virtual trainers can significantly 
enhance the learning and training experiences of users by achieving interactions that 
can closely resemble intuitive human–human exchanges.

Fig. 9.16 Two virtual trainers move a tray collaboratively in the VR environment. (© X Shang, M 
Kallmann. All rights reserved)
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9.10  Virtual Patients: A Case Study from Research 
to Real-World Impact

Benjamin Lok, Computer and Information Science and Engineering,  
University of Florida  
Francisco A. Jimenez and Cheryl Wilson, Elsevier

In this case study, we will explore the journey of virtual patient technology from 
research to a commercial system that is educating hundreds of thousands of health-
care students a year. Virtual patients are computer simulations of a real patient 
encounter. Virtual patients are used in the training of healthcare students, including 
nursing, physician, pharmacy and physical therapy. Virtual patients provide students 
with opportunities for practice, remediation, feedback and exposure to a wide range 
of conditions and symptoms. Virtual patients are diverse in their background, being 
able to present patient scenarios that involve various ages, genders, ethnicities, races 
and personalities. Virtual patients are used by educators to develop psychomotor, 
cognitive and social skills in learners. This case study will cover the research that 
was conducted by the Virtual Experiences Research Group at the University of 
Florida, lessons learned through commercialization of the research by Shadow 
Health® from Elsevier and implications for nursing education and virtual reality as 
their simulations are the most used virtual patient platform in the world.

Research began in the early 2000s into using virtual patients to improve health-
care students’ conversational skills. Early systems experimented with a wide range 
of modalities including head-mounted displays, large projection displays and desk-
top monitors (Johnsen and Lok 2008). Research studies evaluated multiple input 
modalities, including enabling the user to speak to the virtual patient, type questions 
to the virtual patient and gesture to the virtual patient.

Dozens of user studies were conducted with healthcare students to explore the 
potential and limitations of virtual patients, including exploring the validity of vir-
tual patients (Johnsen et al. 2007), learning empathy with virtual patients (Deladisma 
et al. 2007), the impact of different display types (Johnsen and Lok 2008), physical 
mannequin integration (Kotranza et al. 2008), reflection with virtual patient training 
(Raij and Lok 2008) and team training (Robb et al. 2014).

The resulting body of publications demonstrated the educational benefits of virtual 
patients, including developing clinical reasoning, empathy and communication skills. 
With the benefit and limitations identified through scientific study, the next stage was 
to identify how to help as many healthcare students as possible with a curriculum of 
virtual patients. Designing a curriculum of virtual patients would require resources 
that were beyond standard academic mechanisms of grants and collaborations.

The researchers worked with the University of Florida Office of Technology 
Licensing to identify pathways to commercialization. In 2011, a team of entrepre-
neurs and some of the core researchers founded Shadow Health.

Three important pivots occurred during the transition from a research platform to 
a commercial product: market identification, change in delivery mechanism, and 
adapting the virtual patient to curriculums. First, the nursing student market was 
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identified as the healthcare group that had the largest need for virtual patient train-
ing. There are over 400,000 nursing students in the United States and Canada alone. 
Second, an effective method for delivery of the virtual patients was identified. As 
head-mounted displays were not widely available at the time, standard laptop/desk-
top computers with both typed and speech recognition capabilities were used. 
Finally, the virtual patients moved from short 15-min scenarios used in the research 
studies to a series of virtual patient assignments that could be integrated throughout 
a course and provide over a dozen hours of educational content.

As of 2020, thousands of universities and colleges use virtual patients from 
Shadow Health® in their curriculum. Each year, over 100,000 nursing students use 
Shadow Health® products in their classes, reaching over 25% of nursing students in 
the United States and Canada. When they graduate, these nursing students will see 
approximately half of the US and Canada population, making the impact of the 
research into virtual patients a reality that is improving healthcare.

Each Shadow Health® product has a set of Digital Clinical Experiences™  
(DCE). The DCE is the virtual patient encounter (see Fig. 9.17). Each DCE simula-
tion starts with a pre- brief with a virtual preceptor that introduces the scenario, 
provides goals and instructions, and delineates what is expected from the learner in 
terms of performance. Next, the learner conducts a patient interview and physical 
assessment with the virtual patient, engages in therapeutic and non-judgmental 
communication, documents findings, and applies clinical reasoning skills to develop 
nursing diagnoses, care plans or interventions relevant to the scenario (e.g., admin-
ister medications, write a prescription or conduct a mental status exam). Upon com-
pletion of the patient exam in each DCE simulation, the learner is presented either 
with self- reflection prompts or a structured debrief where they can revisit actions 
and decisions taken throughout the simulation as well as reflecting on how they 
could improve in future patient interactions.

After submitting their attempt to their instructor for review, the learner is auto-
matically scored on their clinical reasoning. Shadow Health’s team of instructional 

Fig. 9.17 Learning scenario with a virtual patient. (© B Lok, FA Jimenez, C Wilson. All rights 
reserved)
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designers, psychometricians, nurse educators and computer scientists have collabo-
rated with educators to develop the scoring for each DCE simulation. This develop-
ment process includes rigorous discovery, design, construction, pilot testing and 
psychometric evaluation of each instrument so that it is aligned to the learning 
objectives and target learner population of each DCE simulation.

Shadow Health® DCE is addressing evolving nursing education needs. The land-
scape of nursing education allows for increased innovation and technological 
advancement in education programs. Students growing up as digital natives embrace 
the utilization of technology in their training programs. Faculty of nursing have rec-
ognized the impact that the technology has on the learning potential of their students.

With the development of technology delivering virtual patients, faculty time can 
be devoted to translating the virtual patient experience into clinically relevant appli-
cations instead of developing, implementing, debriefing and evaluation of the simu-
lation experience. Faculty can also be assured their students are participating in a 
standardized experience. Integration of virtual patient experiences has allowed fac-
ulty to see how their students develop communication skills and clinical reasoning 
throughout a course.

Virtual patients are one of a growing number of virtual reality technologies that 
are transitioning from research to commercial product that is impacting our daily 
lives. So the next time you interact with a nurse or physician, you will know that 
your healthcare provider has likely practiced and improved their interpersonal skills 
using a virtual human.

9.11  Embodied Social XR for Teaching, Learning 
and Therapy

Marc Erich Latoschik, Carolin Wienrich, and Silke Grafe, University  
of Würzburg, Germany  
Mario Botsch, TU Dortmund University

The Breaking Bad Behaviors (BBB) system utilizes the power of embodied social VR 
to teach and test classroom management skills with student teachers (Latoschik et al. 
2016). The system simulates individual and group behavior through a parameterized 
AI-based model. The model includes typical patterns of student behaviors and their 
dynamic development from real classroom situations. Users can then slip in a teach-
er’s role in front of a simulated class and experience different, even critical situations 
in a realistic way. BBB lets them try out and reflect on suitable response strategies 
alone or in groups and acquire important media skills during the process. Figure 9.18 
shows snapshots from real-life use, which has been implemented for several years at 
the Julius-Maximilians-Universität Würzburg in the teacher training program. Initial 
empirical findings show significant advantages compared to the previous gold standard.

In principle, Virtual Reality has the power to release us from the need to physi-
cally meet at the same places and times and thus significantly increase the potential 
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for participation. Virtual agents can realize group experiences for individuals at any 
time. At the same time, the virtual worlds can include and support the ever- increasing 
volume of digital data, multimedia content, and information required by almost 
every aspect of collaborative knowledge work, specifically in the domain of learn-
ing and teaching.

The project ViLeArn explores teaching and learning with avatars and agents in 
an immersive social VR (Latoschik et al. 2019). ViLeArn preserves the diversity of 
embodied interpersonal communication for digital teaching. For example, a hetero-
geneous group of avatars that are not homogeneously represented (see Fig. 9.19, 
left) does provoke some eeriness but also increases the perceived possibility of 

Fig. 9.18 Virtual training of classroom management skills in the 2018 FraMediale  – Award- 
winning Breaking Bad Behaviors project. Left: a user within a virtual class of AI-simulated virtual 
agents. Right: a student teacher discusses her classroom management experiences with fellow 
students, showing her first-person view. (© ME Latoschik et al. All rights reserved)

Fig. 9.19 Left: A virtual classroom with a different embodiment of participants during work in 
small groups. Right: Discussion in front of an interactive screen. The personalized photorealistic 
avatars maintain important non-verbal communication cues while providing a shared spatial refer-
ence system for communication. (© ME Latoschik et al. All rights reserved)
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interaction. In this context, an immersive realistic personalized embodiment 
increases body ownership, presence and emotional response (Waltemate et  al. 
2018). Moreover, non-verbal communication signals such as gestures, facial expres-
sions or gaze and eye contact are important mediators of, for example, our inten-
tions (Roth et  al. 2018). These are important factors, especially for the intended 
collaborative learning progress.

The work on ViLeArn has contributed, among other things, to the first non- 
commercial German social VR platform that supports a wide range of avatar 
embodiments up to photorealistic avatars. The system provides access to multime-
dia and text-based teaching/learning content: it supports a markdown-to-HTML5 
processing pipeline and integrates personal and shared virtual large-screen interac-
tive HTML5 panels. It also supports necessary functions for text input and sketch 
creation. The platform is largely independent of big IT service providers and also 
takes into account important data protection and privacy issues.

In general, avatars are our digital replicas in virtual worlds. The acceptance of 
virtual bodies as our own is called the Virtual Body Ownership (VBO) illusion. The 
VBO illusion is significantly determined by three different factors. These are (a) the 
perception and acceptance of the virtual body as our own body and thus as the 
source of sensory input (body ownership), (b) the perception of control over the 
virtual body and thus control over actions taken in the environment (agency), and 
(c) the change in the perceived body schema evoked by the stimulation (change). 
Figure 9.20 illustrates these three factors. A VBO illusion, in turn, is one of the 
central initiators and promotors of the Proteus Effect (Yee et al. 2009). The Proteus 
effect describes a change in behavior induced in the user/wearer of the avatar solely 
by the appearance of the virtual body and the properties associated with this body 
by the user/wearer.

The plasticity of one’s own body schema opens up far-reaching possibilities for 
therapies, e.g., in the treatment of chronic pain, or in eating disorders such as obe-
sity and anorexia, which, in indicated cases, also correlate with a disturbance of the 
body schema. The goals of the project ViTraS (Virtual Reality Therapy through 
Stimulation of Modulated Body Perception) are the development of the necessary 
avatar technologies and the design of appropriate therapy concepts. ViTraS utilizes 

Fig. 9.20 Illustration of the three identified embodiment factors (from left to right): body owner-
ship (a), agency (b) and change (c). The user appears in gray, the avatar in orange. Illustration after 
Roth and Latoschik (2020). (© ME Latoschik et al. All rights reserved)
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the plasticity of one’s own body schema for therapeutical interventions to help 
patients that suffer from obesity. The project explores different approaches from the 
wide spectrum and design space of XR-based therapies, including interactive sketch 
systems, social VR group therapies, or mirror expositions as shown in Fig. 9.21.

The application scenario of the ViTraS project combines new methods for virtual 
embodiment, self-(mis-)perception, and faithful avatar reconstruction and its 
manipulation using digital XR-based interventions. Among other things, the devel-
oped solutions increase participation, as they also support distributed therapies for 
the rampant worldwide health problem of eating disorders, especially obesity, which 
has far-reaching negative individual as well as overall social and economic conse-
quences. The project strongly demonstrates the great potential of embodiment, 
especially embodied XR with photorealistic avatars.

The avatars for XR-assisted therapy are created via an optimized photogrammetry- 
based approach (Wenninger et al. 2020). The method combines 3D reconstruction 
of geometry and textures with an automated rigging process. As a result, personal-
ized fully animated photorealistic virtual replicas of a user’s body are created within 
a few minutes (see Fig. 9.22). These avatars can then instantly be used with com-
mon XR platforms (e.g., Unity 3D). Therapeutically, they can be used to realisti-
cally modify and simulate body proportions at the push of a button (or change of a 
slider). The avatars in Fig. 9.19 were created by the same process. Personalization 
and photorealism are important to increase the efficacy of XR exposures and the 
therapeutic interventions. The accompanying user-studies identified personalization 
and photorealism as strong promoters, especially of the VBO illusion and other 
important XR factors like presence, acceptance or emotional response (Waltemate 
et al. 2018).

Fig. 9.21 Mirror confrontation with the digital self. Left: Illustrating the consequences of obesity 
by looking into one’s virtual body. Right: A user testing a mirror therapy with a modified (made 
fatter) avatar. The overlay shows the user from outside the VR surrounded by a camera-based 
tracking system. (© ME Latoschik et al. All rights reserved)
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9.12  Virtual Reality for Teaching Literacy to Prisoners

Holger Regenbrecht and Jonny Collins, University of Otago, Dunedin, 
New Zealand

Numeracy and literacy skills are very low in corrections facilities around the world – 
New Zealand not being an exception. A large proportion of prisoners are illiterate to 
a degree that their reading skills do not allow them to participate in normal social 
life, e.g., being able to comprehend job advertisements or to write a job application. 
Hence, when released from prison they often cannot reintegrate successfully into 
society and the chances are that they will end up in criminal activity again. This 
negative cycle can be broken by, for example, giving prisoners better opportunities 
to learn how to read and write.

While in prison, prisoners’ motivation to learn is usually much lower than with 
average people outside prison – for many, complex reasons. Classes in literacy are 
offered within the prison, but in rather traditional classroom settings, i.e., front of 
class teaching using standard literacy teaching methods. For some prisoners, those 
settings have positive effects, but many drop out of classes or do not fully engage in 
learning. The question arises: How to motivate and engage prisoners in literacy 
learning? Immersive Virtual Reality (VR) might be one promising vehicle for this – 
at least it is new and potentially exciting for a number of prisoners; for many it is 
probably their first encounter with such technology.

The Methodist Mission South, a provider of learning services to our local correc-
tions facility, approached us at the Otago University Human-Computer Interaction 

Fig. 9.22 Photogrammetry system at the Chair of HCI at the University of Würzburg with about 
100 SLR cameras for photorealistic 3D reconstruction of user avatars. Left: The multi-camera 
system that was initially used. Center: A user during the 3D scan process. Right: The result of the 
reconstructed avatar in a virtual scene. Figure adapted from Latoschik et  al. (2019). (© ME 
Latoschik et al. All rights reserved)
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(HCI) lab about developing a VR system that can be used for literacy training with 
prisoners. This task is not without challenges (McLauchlan and Farley 2019): 
Which technology can be used within a prison? Which virtual environment is excit-
ing and motivating enough to carry the literacy learning task? How to test and evalu-
ate solutions and how to bring them sustainably into the prison environment? We 
addressed all of those challenges and developed a prototypical system, the “Virtual 
Mechanic”, which was tested in a lab and in the prison environment, and handed 
over to a commercial partner for product development and market introduction 
(Collins et al. 2020).

For inherent reasons, corrections facilities are closed off from the rest of the 
societal environment. Being allowed to bring a VR system comprising a head- 
mounted display, a high-end computer and plenty of needed wiring and peripherals 
requires a huge amount of willingness, motivation and constructive cooperation 
from corrections facilities staff. The primary concerns of staff include outside com-
munications potential, access to unmediated content and any other type of unauthor-
ized behavior that could be facilitated by the technology. Prisoners are highly 
creative when it comes to exploiting the materials around them for their own pur-
poses; therefore, what comes in and out of the facility is highly regulated.

Because our main focus was on how to motivate and engage prisoners in literacy 
learning, we tried to develop a virtual environment which aligns with the existing 
interests of prisoners. We learned that a common interest amongst prisoners is auto-
motive engineering and cars in general. We selected this common interest as our 
context, and we built an environment that simulates a car workshop. We took 360° 
panoramic photos of an existing car workshop, stitched them together, and used this 
as a background (Fig. 9.23, left) including ambient workshop noise. We explored 
other environments as a context for learning; however, the remaining most common 
interests extracted from prisoners were not ethically viable.

Throughout the stages of development, an Oculus Rift HMD was used as the 
visual medium. During the prototyping stage, we opted for an Xbox controller com-
bined with gaze-based selection to allow users to interact with the environment. In 

Fig. 9.23 Virtual environment with panoramic environment (left), virtual brake system broken 
apart showing (1) syllabic version of a word as a voice reads it aloud for the user (middle), and (2) 
an active task in which a user attempts to complete rhyming words (right). Tasks are embedded in 
the context of the environment. (© H Regenbrecht, J Collins. All rights reserved)
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this way they could explore the different virtual components and activities that were 
available. In the later commercial development iteration, the Oculus Touch control-
lers were used to enable interactions with the virtual world. Compared to the prior 
gaze-based approach combined with an Xbox controller, Oculus touch controllers 
lead to a more embodied experience, as users’ real hand movements are mapped 
directly into the environment for interaction. This is a more intuitive form of inter-
action and can therefore lead to higher levels of engagement.

The actual task we chose was to disassemble and assemble the brakes of a virtual 
car. Therefore, we introduced a virtual car model with detailed parts modeled for the 
front disc brake which have been animated in a way to step-by-step reveal the inner 
structure of the brake. This task was then used as the medium to deliver literacy 
skills training by giving (interactive) instructions with words. The verbal instruc-
tions have been given in three different ways: displayed as words next to the parts 
of the virtual brake, decomposed into syllables, and read aloud by a computer- 
generated voice (Fig.  9.23, middle). In addition, we also developed some word 
rhyming exercises as part of the instructions in a multiple-choice, quiz-like style 
(Fig. 9.23 right).

Due to the prototypical nature of the application and therefore the lack of actual 
content during prisoner exposures to date, tangible learning gains have been diffi-
cult to evaluate empirically. However, we have gained some insights from our ses-
sions. For instance, trust emerged as an issue with some prisoners, as wearing an 
HMD meant impeding their view of the real-world environment, which was shared 
with a small number of other prisoners. Issues arose regarding exposure times, as 
some prisoners’ attention spans and patience levels are more volatile. We also found 
that a self-directed lesson approach is desirable, as outside intervention reduces a 
user’s momentum and presence in/engagement with the system. The project is cur-
rently in the hands of the commercial sector, where it is in continued development. 
Hopefully, more robust evaluations of the application’s educational impact will be 
conducted soon and can eventually lead to wider dissemination.

The entire process of research and development of this prototype application has 
been a very enlightening exercise for us. Everyone involved saw this as a clear step 
forward, especially the prisoners themselves. Virtual Reality carries a lot of poten-
tial for delivering training in those kinds of challenging environments. Despite the 
current lack of content and inability to robustly measure learning outcomes, col-
lectively we could show that implementing VR-based, contextual learning applica-
tions in a prison can be done. The idea to “piggy-back” a less engaging task, here 
literacy training, on a more exciting and motivating task, here immersive VR car 
maintenance, seems to work well. Whether this approach will lead to transferrable 
results for the prisoners when leaving prison is still to be shown. VR has the poten-
tial to make a real difference here.
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Chapter 10
Authoring of VR/AR Applications

Wolfgang Broll, Florian Weidner, Tobias Schwandt, Kai Weber, 
and Ralf Doerner

Abstract This chapter deals with the authoring of VR and AR applications. The 
focus here is on the use of authoring tools in the form of software development kits 
(SDKs) or game engines. First, the actual authoring process will be briefly dis-
cussed before selected authoring tools for VR and AR are reviewed. Subsequently, 
the authoring process and the use of the tools will be illustrated through typical case 
studies. The other chapters of this book deal with the fundamentals and methodolo-
gies of VR and AR. These are generally applicable over a longer period. In contrast 
to this, this chapter looks at some very specific authoring tools and the authoring 
process based on them, which can inevitably only represent a snapshot in time. 
Features, releases and availability of these tools can change at short notice, so that 
individual sections may no longer be up to date when this book is in press. To take 
this aspect into account, the case studies listed here are stored in an online reposi-
tory, where they are regularly updated to reflect the latest versions of the authoring 
tools and runtime environments.

10.1  Supporting Authors

The authors of a VR/AR application are confronted with a wide range of different 
tasks, which together require many individual skills. These include, for example, 
programming skills, knowledge of real-time computer graphics and image 
processing, human–machine interface design skills and usability know-how. They 
also often require knowledge of the generation of VR/AR assets (e.g., 3D models, 
textures and sounds), special algorithms and methods (like collision detection in 
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virtual worlds or 3D registration in AR), and properties as well as software- 
engineering aspects, e.g., for connecting special VR/AR input and output devices. 
On top of that, knowledge and skills regarding the application itself are indispens-
able: in the case of a VR application for training minimally invasive surgery, for 
example, this requires knowledge of medicine as well as didactics. Hardly a single 
author will possess all these skills. Therefore, it is crucial to enable and foster inter-
action between different authors, but also to support each author individually in her 
tasks. Adequate support for authors is not only the key to an efficient and high- 
quality realization of VR/AR applications, but also allows particular people to par-
ticipate actively in the creation process in the first place. Thus, providing good 
support not only enables the necessary experts to be involved, but additionally helps 
to reduce costs. In many cases, this is what makes the use of VR/AR applications 
technically and economically feasible.

Common support comes in the form of programming libraries together with pro-
gramming tools (Software Development Kit, SDK) or programming interfaces 
(Application Programming Interface, API) to software packages and systems. For 
example, ARToolKit (Kato and Billinghurst 1999), which has been available as 
open source software since 2001, gave a boost to the use of AR at that time, as appli-
cation developers could simply rely on an existing implementation of an essential 
foundation of AR, namely the realization of stable (in this case marker-based) track-
ing or working camera calibration, without having to deal with the corresponding 
concepts and algorithms themselves beforehand.

Another form of support is the use of software tools supporting various authoring 
tasks. Section 10.2 presents examples of such tools. But tools that are not specific to 
VR/AR are also used, e.g., image editing programs like Photoshop or The Gimp for 
creating textures and (utilizing special plugins) normal maps, or 3D modeling and 
animation tools like Blender or 3ds Max. Typically, multiple tools are used (in paral-
lel or sequentially) to address different aspects of VR/AR application development 
but also to serve different authoring groups. One speaks of a tool chain when one 
tool exports data that is then imported by another tool for further processing. Such 
exchange of data can be a source of problems if there is no common usable or open 
data format, or if the import and export processes involve a loss of information. For 
example, a 3D object such as an automobile may be designed in a CAD tool, but the 
exported CAD data is not directly usable for a VR tool and must be preprocessed 
(e.g., by reducing complexity). For this purpose, corresponding conversion tools 
(often also in the form of plug-ins) are available for existing CAD tools.

Authoring processes need to be carefully planned so that authors can collaborate 
efficiently and without any frictional losses using tools, APIs and SDKs. 
Development environments that integrate a variety of support functions into a single 
tool are popular. This often implicitly prescribes the authoring process, at least in 
part. Increasingly, game engines, development and corresponding runtime environ-
ments originally intended for the creation of computer games, are also being used 
for VR/AR applications. The processes for creating a 3D game world and a virtual 
world are fundamentally similar in many respects. In addition, modern game engines 
offer mechanisms such as plug-ins or APIs to support the special needs of VR/AR 
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applications, such as the use of certain VR controllers or the rendering of pre- 
distorted stereo images for HMDs (see Sect. 5.2.3).

Unfortunately, there is neither a universal authoring process nor a single tool that 
would be sufficient on its own to support the creation of arbitrary VR/AR applica-
tions. Rather, authoring processes and their support must be individually assessed 
and determined for each VR/AR application. Criteria for the selection include the 
existing skills of the authors, functionality offered, quality, performance, maturity, 
licensing costs, licensing model applied, quality of documentation and tutorials, and 
the availability of an active and responsive user community.

10.2  Foundations of Authoring Software

In this section, we will present two examples of popular game engines used for the 
development of VR applications, i.e., Unity (2021) and Unreal Engine (2021). 
Furthermore, we will present two frameworks used for developing AR applications: 
ARKit (2021) and ARCore (2021). As they are largely limited to AR-specific 
aspects, they are usually used in conjunction with game engines. While many game 
engines, including the two presented here, support a variety of different platforms 
(PC/Mac, consoles, mobile devices, web browsers), the two AR frameworks are cur-
rently exclusive to one of the major mobile platforms (ARCore: Android, 
ARKit: iOS).

Two of the most popular game engines are currently Unreal Engine (UE) and 
Unity. These game engines offer similar core functionality. Both support level 
design, realistic rendering, multiplayer applications, artificial intelligence, user 
interfaces, physics simulations, global illumination, animations and more. Also, 
both platforms offer distribution platforms for assets and applications (Unity: asset 
store; Unreal Engine: marketplace). After installing and starting one of these engines, 
both allow for the setup of a project. Such a new project can be based on a template 
or it can be a new and empty project. If we open such a project, both applications 
show a similar layout. It contains an area showing details and letting us change pref-
erences, one area that lists all objects in our current scene, and an area that shows us 
all of the game assets (3D models, sounds, animations, textures, etc.) included in this 
project, which usually looks like the Windows Explorer (see Fig. 10.1).

However, if we have a closer look at both engines, we will notice some differ-
ences. For example, while both engines allow us to view their source code and by 
that, understand how they work, only Unreal Engine also allows us to modify the 
source code and change engine functionality (as of March 2021).

Both applications allow us to create and design levels by dragging objects into 
our scene following the what-you-see-is-what-you-get principle (WYSIWYG). 
However, if we need more complex functionality, there are again differences 
between them: Unity supports common programming languages like Javascript and 
C# to add functionality. Unreal Engine uses Blueprints and C++. Blueprints rely on 
a visual programming approach. Both C++ and Blueprints can be combined and are 

10 Authoring of VR/AR Applications



374

almost always interchangeable. However, the usage of C++ is in complex cases 
more straightforward and less troublesome.

In the past, support for novel AR and VR hardware was often included in Unity 
before Unreal Engine supported them. Meanwhile, both engines support almost all 
common hardware and VR headsets, AR headsets, and ARKit and ARCore. 
Currently, VR devices based on OpenVR (2021) are slightly better supported by 
Unreal Engine, as not all hardware manufacturers already provide support for a 
recent redesign of Unity’s plugin system. However, except for some extra effort, 
hardware support is basically the same in UE and Unity.

Fig. 10.1 Unreal Engine (top) and Unity (bottom) user interfaces of the development environment
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When developing with Unity, the community and forums are bigger compared to 
Unreal Engine. This might be especially important for people who are new to these 
engines, as a quick search on the internet can easily solve many problems. While the 
community of Unreal Engine is growing, the engine is not known for being beginner- 
friendly as it is quite complex and overwhelming in the beginning.

Finally, while free (except for royalties for sold applications), Unity also offers 
some Plus and Pro subscription plans. Unreal Engine is free to use until you sell 
your work (royalties).

In the end, selecting an engine for a new project depends on many factors (sup-
ported hardware, community, programming languages, cost, access to source code, 
etc.). Also, a very important aspect is the prior knowledge and skills of the team 
members working on the VR/AR application. Table 10.1 summarizes these aspects.

The following two subsections each explain the use of these engines for the 
authoring process.

10.2.1  Unity

Unity is a popular game engine that supports a variety of VR/AR hardware. This 
includes almost all VR HMDs as well as current AR HMDs like the Microsoft 
HoloLens 2 or the Magic Leap 1. Development for these devices is fully supported 
in Unity. Further, we can develop utilizing AR frameworks like ARKit and ARCore. 
In addition to that, Unity is known for being beginner-friendly and easy to use.

 How It Works

Unity applies the entity-component model. Here, every object in a scene (or in the 
game) is an entity and has a relation to one or more other entities. In Unity, entities 
are also called GameObjects, Prefabs or Scripts. Scripts contain source code in C# 
or Javascript and allow for adding functionality and behaviors to an object. A 

Table 10.1 High-level comparison of the game engines Unity and Unreal Engine regarding the 
development of AR and VR applications

Unreal Engine Unity

Community  ☺
Price ☺  
Beginner friendly  ☺
Source Code Access Yes (modifiable) Yes (read-only)
Programming languages C++, Blueprint C#, Bolt
VR Support ☺  
AR HMD Support ☺ ☺
Mobile AR Support ☺ ☺
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GameObject is a collection of one or more assets like 3D models, sounds, textures 
and more. A Prefab is a special type of GameObject. It encapsulates several 
GameObjects and in that way eases reusability and sharing of content. Both Prefabs 
and GameObjects are hierarchically structured. For Scripts, developers can use typi-
cal concepts known from programming, like inheritance. Scripts can be added to 
GameObjects, so that we can add animations, behaviors, other GameObjects, artifi-
cial intelligence or other effects. Together, all GameObjects comprise our scene. 
Figure 10.2 shows the Unity development user interface for a sample scene, with 
hierarchy window, scene view, inspector window and the project explorer.

A scene in Unity represents a level in our application. Further, a scene in Unity 
is represented by a scene graph. The scene graph is a hierarchical data structure that 
contains all the GameObjects of a single scene. In the scene view in the center of the 
Unity application, we can see and also arrange all elements of our scene, and design 
the level according to our liking or external requirements. To modify not only the 
position and rotation but also other properties of a GameObject, the inspector on the 
right-hand side provides us with a variety of settings: among others, settings of 
attached scripts, behavior settings, positional attributes and lighting options. To get 
a preview of our scene, we can switch to the Game view. Here, we see the game in 
a pre-final version – it looks like the exported version. The project explorer contains 
all the scripts, assets, and prefabs that we have added to our project. It also allows 
us to manage them. The console lists all errors and warnings that arise during devel-
opment and is a helpful tool when fixing errors.

Fig. 10.2 Full view of the Unity editor. The Inspector shows a GameObject “CameraRig” with an 
attached Script called “Steam VR_Play Area”. The Hierarchy window shows the hierarchical orga-
nization of the GameObjects of a scene. The Scene view shows a 3D preview of the current level 
and the Project view all files of the project
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 VR/AR Development with Unity

Creating a VR application with Unity requires, as usual, that the drivers and sup-
porting software of the VR headset like the Oculus software or SteamVR are 
installed on the system. These programs manage the communication between Unity 
(and any other VR application) and the HMD, tracking system and controllers. 
Without them, development for a VR headset is not possible. Assuming the neces-
sary software is installed, we can open a Unity project. Depending on our VR HMD, 
we most likely need either a dedicated plugin from Oculus or from Valve. The latter 
uses OpenVR and can be used for most SteamVR-based headsets. While the Oculus 
plugin is already available within Unity, the OpenVR plugin needs to be installed or 
downloaded from Github (SteamVR Unity Plugin 2021). Similarly, development 
for VR HMDs that are based on Windows Mixed Reality require the installation of 
the Windows Mixed Reality Toolkit (MRTK Release 2021). If you do not depend on 
external plugins, you can directly enable your device for Unity in the Edit → Project 
Settings as shown in Fig. 10.3. The Unity documentation supports developers when 
setting up new projects or upgrading older projects to VR (Unity XR 2021).

All plugins – Oculus, StreamVR and Windows Mixed Reality – can be used as a 
starting point but can also be integrated into a project at a later stage in develop-
ment. In addition to the core functionality, they offer sample scenes, prefabs and 

Fig. 10.3 Project settings showing the supported XR frameworks of Unity 2020.1.16f1. Only 
Oculus devices are directly supported without the need for additional external tools. Windows 
Mixed Reality requires an additional plugin
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scripts that support developers by offering code examples for, e.g., basic navigation 
and interaction techniques.

When developing for AR, the respective plugins for devices like Microsoft’s 
HoloLens, the Magic Leap 1 or recent smartphones using ARKit and ARCore need 
to be downloaded and installed. After the installation procedure for these third-party 
tools has been completed, development for AR applications becomes similar to that 
of VR and traditional desktop applications using the scene view and the game view. 
It is noteworthy that Unity also offers MARS (2021) a WYSIWYG editor for MR 
and AR. This editor promises to streamline the development of AR applications by 
integrating sensor data from devices into the development process.

 Summary

In summary, Unity is a well-suited tool for developing AR/VR applications. All 
assets are organized in a scene graph and represented by different types of 
GameObjects. Behaviors can be added using scripts written in C# or Javascript. 
Such GameObjects and Scripts can be grouped to Prefabs to foster reusability and 
interchangeability. Several device manufacturers also provide prefabs for their 
HMDs to ease development for VR and AR devices. Among others, Unity supports 
the popular VR headsets from Oculus, HTC, Valve and HP. It further supports AR 
devices like the Microsoft HoloLens 2 and Magic Leap 1. AR development for 
smartphones is also supported via the integration of ARKit and ARCore. For AR 
development, Unity also offers a rich authoring tool called MARS.

10.2.2  Unreal Engine

Unreal Engine (UE) is the successor to the Unreal Development Kit. Generally, it 
offers similar features as Unity. The current version as used in this chapter is UE4 
(as of March 2021). However, a tech demo of UE5 was presented in 2020. The 
development of applications with UE is quite comfortable. While the development 
of 2D or 2.5D games is also supported, the entire engine has been designed and 
optimized for the realization of 3D first-person applications.

 How It Works

UE provides two alternative ways to develop applications: traditional C++ program-
ming and a visual programming approach called Blueprints. Blueprints are based on 
nodes and connections between those nodes. A node represents a function like 
move, get or set, or operations such as loops or if-statements. Each node has one or 
several pins. The pins are entry or exit points for connections. Developers can place 
nodes (squares with rounded corners and a header with different colors) in the 
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editor. Then, connections (white lines) are connected to the pins of nodes (either 
white or colored triangles at the nodes) to create the data and control flow. Adding 
nodes, and thus functionality, is supported by a context-sensitive auto-completion. 
As with other programming languages, developers can debug Blueprints using a 
debugger and can also copy and paste them between files. Figure 10.4 shows an 
example Blueprint from a VR example that sets the tracking origin depending on the 
connected HMD.

The main disadvantage of this variant of programming is that large Blueprints 
are prone to getting confusing and cluttered. Here, using advanced concepts like 
inheritance, interfaces and Blueprint libraries can help to declutter Blueprints. 
Further, it is important to know that developers can combine both methods, C++ and 
Blueprints. For beginners, Blueprints offer an easier entry point when working with 
UE. Unfortunately, many functions provided by UE as Blueprints are not similarly 
easy to use in C++. However, C++ provides more flexibility. It is noteworthy that 
internally, UE translates every Blueprint into C++ code. That means that using them 
does not result in performance loss. Microsoft Visual Studio is recommended when 
developing with C++.

Similarly, to Unity, UE follows the entity-component model. Instead of 
GameObjects, it uses Actors. Unity’s scripts correspond to Blueprints, other actors, 
or C++ code files in UE. Actors are hierarchically organized in a scene graph and 
can be directly edited. Assets can be viewed, moved and otherwise organized using 
the file explorer of UE.

UE offers several preview modes for testing. Developers may test their game in 
the editor (Play-in-Editor), start it as a standalone game (Play-as-Standalone- 
Game) to simulate a build version of the game, or build and start a final version of 
the game via Launch. In addition to that, it offers the possibility to test the game 
using a simulated VR HMD without having access to a real one.

Fig. 10.4 Example of a Blueprint. This Blueprint sets the tracking origin of the application’s 
HMD during start-up
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 Developing VR/AR Applications

After downloading the Epic Games Launcher, we can install the most recent version 
of Unreal Engine 4. If we intend to develop with C++, it is also possible to install 
debugging symbols. They ease the debugging process by providing more detailed 
error messages in case of an engine error. Next, we can open UE and create a new 
project. The project launcher already offers a template ready for VR applications 
(see Fig. 10.5). If possible, developers should base their applications on this tem-
plate. If this is not possible – for example when upgrading from an old project – the 
template can still act as a useful reference. This template offers (in UE4.25) simple 
interaction and navigation methods that can be used by developers for their own 
applications.

Usually, no additional plugins need to be installed. Support for Oculus, HTC, 
Valve, Windows Mixed Reality (2021), HoloLens 2 and Magic Leap 1 is already 
integrated into UE. This also extends to the AR frameworks ARKit and ARCore. 
However, vendor-specific SDKs (e.g., SteamVR) still need to be installed.

If developers have no HMD at their disposal, they can enable a virtual HMD via 
Edit → Plugins → Virtual Reality → SimpleHMD. In this way, the application runs 
in VR preview mode and content is displayed in such a way that is like a real VR 
HMD. The key here is that the same rendering algorithms are used. That means that 
UE renders separate images for each of the eyes – however, without a dedicated 
HMD-specific barrel distortion (see Sect. 5.2.3). This simplifies level design and 
testing. Figure 10.6 illustrates this view.

Fig. 10.5 Template browser of UE4 (the VR template is highlighted)
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UE4 offers an immersive modelling/authoring mode. This VR-Edit-Mode allows 
designers and developers to create their level while wearing a VR HMD.  In this 
mode, they can manage their actors, e.g., by adding, moving, rotating and scaling 
them or changing their properties. The advantage of this immersive authoring mode 
is that the scene can be viewed directly in VR. Thus, there is no need to constantly 
put the headset on and take it off. Also, it is easier to judge if the scales and distances 
of the VR scene are appropriate. This may result in more comprehensive level 
design and a faster development process. Figure  10.7 shows the entry point to 
this mode.

As mentioned above, UE natively provides support for many popular devices, 
including those from Oculus and HTC, as well as Windows Mixed Reality headsets. 
These plugins can be enabled or disabled on demand via the project settings. It also 
offers native integration for ARKit and ARCore as well as HoloLens 2 and Magic 
Leap 1. When activated, these plugins enable access to the device via C++ or 
Blueprints. In addition to the native plugins, further plugins may be added to UE.

 Summary

Notably, the Unreal Engine has been designed for first person-games, i.e., games 
played from an egocentric perspective. It plays to these strengths in the development 
of AR and VR applications. Applications based on UE consist of levels and the lev-
els contain actors. The actors are organized in a scene graph. UE natively supports 
many AR and VR devices, while also allowing the development for additional 
devices via its plugin system. The engine is free (at least until the lifetime gross 
revenue of the game exceeds US$1,000,000), and the source code may be modified 
at one’s own discretion.

Fig. 10.6 The left image shows the default view of a game. The right image shows the preview 
using the SimpleHMD plugin

Fig. 10.7 VR-Edit-Mode of Unreal Engine
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10.2.3  AR Frameworks: ARCore and ARKit

Both Apple and Google have published their own frameworks in the field of aug-
mented reality (AR), which can be used to develop mobile AR solutions. Both 
frameworks were specifically adapted to the hardware of recent smartphones. Since 
both ARCore (Google) and ARKit (Apple) became available at the end of 2017, 
more and more applications have been published that use AR technologies. This 
subsection is intended to provide an overview of the basic functionalities as well as 
the main differences between these two frameworks.

 Availability

Both AR frameworks are available on devices with recent hardware and software. 
ARKit is available on all iPhone and iPad devices with iOS 11 or higher, including 
iPadOS (Apple 2021). For Android, these are smartphones with the Android 7.0 
(Nougat) operating system or higher, as well as other selected devices (Google 
2021). Recent data from 2020 shows that the availability of ARKit-enabled devices 
(1185 million) is noticeably higher than that of ARCore-enabled devices (633 mil-
lion). Among active users of the frameworks, this difference is even more pro-
nounced, with 950 million for ARKit and 122 million for ARCore (Makarov 2021).

The continued availability and distribution of corresponding hardware is a key 
factor here. However, only the latest hardware (currently, for example, LiDAR sen-
sors on some Apple devices) offers the possibility of fully exploiting the functions 
available for AR. Due to the short life cycle of mobile hardware, it can be assumed 
that by the time this book is published, almost all active smartphones and tablets 
will be able to use one of the two AR frameworks.

 Tracking and Mapping

One of the most important functionalities of an AR framework is tracking, which is 
based on a SLAM approach in both frameworks (see Sect. 4.3.4). Both frameworks 
can track the device (camera), planes, faces and 2D images. At the time of writing, 
ARKit additionally supports 3D object tracking and body tracking. However, the 
tracking of the camera in particular is crucial for sufficiently good visualization, and 
both frameworks deliver very good results in this area. This is mainly due to the 
utilization of the hardware installed in the mobile device. In addition to the camera, 
acceleration sensors, gyroscopes and partly LiDAR sensors are used. For mapping, 
both frameworks create a virtual map by detecting and storing features in space. 
When testing various applications, both can demonstrate robust mapping, although 
ARKit shows some advantage with respect to fast camera movements.
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 Reconstruction

In both frameworks the environment is defined by a set of feature points. For this 
purpose, features are detected in the environment and tracked over several frames, 
and their position in space is continuously improved. Based on these features it is 
possible to detect planes in space (plane detection). These planes provide a rough 
representation of the real environment. Figure 10.8 shows the reconstruction of a 
vertical plane based on feature points using ARCore. Both frameworks can create 
vertical as well as horizontal planes. By using LiDAR sensors, even the detection of 
complex (non-planar) geometries is possible.

 Estimation of Environment Light

Both ARKit and ARCore provide a simple estimation of environment light to illu-
minate virtual objects of an AR scene correspondingly (cf. also photometric regis-
tration, Sect. 8.2.2). This estimation is based on the current environment, with each 
framework supporting different light estimation features (ambient light, specular 
highlights and reflections). Both support ambient light, which represents the overall 
diffuse lighting originating from arbitrary directions in the environment. This ambi-
ent light detection is provided by determining an intensity value between 0 and 1 as 
well as a color temperature. For a more sophisticated representation the frameworks 
offer an illumination detection for the complete HDR environment lighting, which 
also allows for plausible reflections. For ambient light, both frameworks apply (dif-
ferent) estimation approaches based on neural networks. ARKit uses reconstructed 
geometry like planes, renders them into a cubemap and completes the latter by a 
neural network. ARCore, in contrast, uses the current camera image only to 

Fig. 10.8 Detection of a vertical plane (red) reconstructed from detected feature points (cyan). (© 
Tobias Schwandt, TU Ilmenau 2018. All rights reserved)
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determine a 360° HDR environment cubemap. In combination with the integrated 
detection of the main light source, more realistic shadow casts or even specular 
reflections are enabled, for example, Fig.  10.9 illustrates the difference between 
using a simple intensity value and an HDR illumination using ARCore.

 Summary

While having their individual strengths and weaknesses, both frameworks provide 
very similar functionality, which will likely further converge in the future. Even 
supposedly decisive advantages, such as the support of LiDAR in ARKit, can be 
relativized with the next version.

However, Apple has a clear advantage in terms of market penetration. Any device 
with the latest iOS or iPadOS operating system can automatically display AR. In 
contrast, it can hardly be estimated to what extent current devices for Android sup-
port ARCore. Nevertheless, it can be assumed that more smartphones with AR sup-
port and further sensors will become available for Android. Thus, the question of the 
right framework remains a question of the target group, personal interests, the 
devices available and the type of application to be developed.

10.3  Examples of the Creation of VR/AR Applications

In this section, the creation of VR and AR applications will be illustrated using four 
practical case studies. The first example deals with a VR application for the presen-
tation of CAD data with Unity using the Vive Cosmos. The second example creates 
an interactive VR application with the Unreal Engine using the Vive Cosmos again. 
The third example describes an AR application for Microsoft’s HoloLens 2. The 
fourth and final example describes an ARCore application for Android.

Note that these examples can only provide a snapshot of what is currently avail-
able and possible. Obviously, a much wider range of game engines, toolkits, 

Fig. 10.9 Illustration of the illumination in ARCore with a 360° HDR ambient illumination in 
HDR (left) and simple intensity detection (right). Metallic objects in particular benefit from the 
360° illumination reconstruction
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frameworks, and devices exist, which cannot be covered here. We would, for exam-
ple, have loved to include an example using a non-commercial game engine such as 
Godot (2021), or to show how easy AR development may be even for non- 
programmers using RealityKit (2021). We were also unable to include Oculus 
HMDs due to the limitations imposed by the manufacturer’s service conditions. We 
will closely monitor ongoing developments and update the examples in future edi-
tions, but also more frequently in the online repository.

10.3.1  Making of: Immersive VR Presentation of CAD Files 
with the Vive Cosmos in Unity

In this section, we will set up a VR application in Unity. It will allow us to view a 
CAD model and offer simple interaction with it – we will be able to grab it with a 
handheld controller and release it again. For this, we assume that your headset is 
correctly set up and all necessary drivers like SteamVR or Viveport are installed.

We start with a Unity project, install and open Unity Hub, and then create a new 
project using the 3D template. This case study is based on Unity version 2019.4.6f1. 
After loading Unity, we need to install the SteamVR Unity Plugin. We can download 
the package directly from within Unity via the Asset Store or at Valve Cooperation 
(2021). Such packages extend Unity with functionality and content. For this tuto-
rial, we use the Asset Store. Search for “Steam VR” and import it to your project. 
This package contains all the necessary content for Unity to recognize your headset 
and to communicate with it. It will also work for other headsets that are based on 
OpenVR. In addition to that, it contains some sample content that we can use to real-
ize our case study. Right after clicking Import, Unity downloads the package. Then 
we are offered a list of files for import. By default, all files are selected. Thus, select 
Install all here. One further needs to confirm the necessary settings by selecting 
Accept all in the upcoming dialog. If a project settings window pops up, we can 
safely close it.

Before we can fully utilize the plugin, we must create input mappings. To do this, 
we select Window → Steam VR Input. Unity then asks if we want to use the default 
input bindings, which we confirm with Yes.

Now, we already have a working VR setup. We can open the Simple Sample 
scene which is in Assets → SteamVR in the project window. The project window is 
in the lower left part of our application window. Figure 10.10 shows the scene view 
of this example. If we hit Play in our Unity application, SteamVR starts up and we 
can already see a scene in our headset. Also, head-tracking and controller tracking 
are already working, as shown in Fig. 10.11.

For our example, let us create a new scene. We can do this via File → New Scene. 
We name our new scene MyExample. In the beginning, it contains a Directional 
Light and MainCamera. First, we delete the MainCamera. We do not need this 
GameObject as the SteamVR plugin already provides us with a setup working with 
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the VR HMD. In the project explorer, we search for Player and add this prefab to 
our scene via drag and drop. Inspecting it more closely in the hierarchy panel, we 
can see that it not only contains a camera but also GameObjects for the 
controllers.

Next, we create a cube with size (0.1, 0.1, 0.1). This cube is going to be our 
object that we want to grab. To make it grabbable, the SteamVR plugin provides a 

Fig. 10.10 Scene view and hierarchy of the example scene “Simple Sample” in Unity

Fig. 10.11 Game view and hierarchy of the example scene “Simple Sample” in Unity after hitting 
play in Unity
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script called Interactable. In the Inspector of our cube, we click AddComponent and 
add this script to it. Next, two options are available: First, the SteamVR plugin pro-
vides a script in Assets/SteamVR/InteractionSystem/Samples/Scripts/
InteractableExample.cs. We can open this script and delete everything that is related 
to text fields, as we do not need those for our example. Second, we can use the 
SimpleGrab.cs script, which is provided as online material to this book. We now add 
this script (either the modified InteractableExample.cs or the SimpleGrab.cs) to our 
cube. The final composition of our scene is illustrated in Fig. 10.12. Note the two 
scripts of the cube.

Now, if we start our application, we can grab the cube and move it around. When 
we release it, it returns to its initial position. In addition to that, the object gets high-
lighted if our controller (or hand) gets close to it). The grabbed object is highlighted 
in Fig. 10.13.

To really display a CAD model and interact with it, we first must load our CAD 
model and then add these scripts to it. However, Unity natively supports only .fbx, 
.dae (Collada), .3ds, .dxf and .obj files. For CAD models, it provides a Pixyz (2021) 
package to load various CAD formats. Having this plugin enabled (for example in 
the test version), we can add our CAD file as a GameObject, add the scripts, and 
grab and release it the same way we did with the cube. Alternatively, we can try to 
directly export our CAD model to a file format that is supported by Unity (e.g., 
.obj). Or, we can use a third-party tool like Blender (2021). Using Blender, you can 
import various formats and export them again to a format that is accepted by Unity.

Fig. 10.12 Setup of our newly created scene MyExample, showing the player with controllers and 
a cube in the hierarchy
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10.3.2  Making of: Interaction in VR Using the Vive Cosmos 
and Unreal Engine

This case study will outline how to realize easy interaction techniques like grabbing 
objects in Virtual Reality using Unreal Engine. For this, we will use the Vive Cosmos 
and the accompanying motion controller. However, this example should work with 
all Virtual Reality HMDs that use StreamVR. We assume that the drivers and run-
time software necessary for using the HTC Vive such as SteamVR and/or Viveport 
have already been installed on the computer. In this example, we will setup an 
Unreal Engine project, configure the virtual camera, create some objects and finally 
implement the grabbing mechanism.

First, we launch the Epic Games Lauchner and create a new project for Unreal 
Engine. This case study is based on UE 4.25.4. When creating a new VR applica-
tion, we recommend using an existing template as a starting point. Unreal Engine 
offers a template called Virtual Reality that has been designed especially for our 
purpose. It is located under the category Games (c.f. Fig. 10.5). In the next screen, 
we do not have to change anything. Using the template, our project has preconfig-
ured settings and plugins that allow for easy development of VR applications.

After Unreal Engine has loaded the project, we can explore the Content Browser 
in the lower left part of the application window. We first create a new level with a 
right-click into the content browser. A level is the equivalent of Unity’s scene. When 
we open this new map (a map in Unreal Engine is similar to a scene in Unity cor-
responding to a level in a game), we see only a black screen. That is because we 
don’t have any objects in our scene  – we can see that by looking at the World 
Outliner in the upper right part of the application window. Let’s switch to the 
Landscape mode by clicking Modes → Landscape Mode. Here we can change, edit 
and create our level. For now, we just hit Create. After that, we switch back to the 
Select Mode via the Modes dropdown menu. In the World Outliner, we see that we 
now have a landscape. However, it is still dark. On the left side of the application 
window, we see the Place Actors panel. Here we can switch to Lights and drag a 
Directional Light into our scene. This acts as the sun. Now we should be able to see 
our checkerboard floor that we created earlier as part of the landscape. Because our 
project is based on the VR template, we can see some predefined objects in our 

Fig. 10.13 Left: The virtual hand approaches the cube, which is then highlighted. Right: The 
virtual hand grabs the cube, which now follows the movement of the hand
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Content Browser. The HMDMotionControllerPawn in Content → VirtualRealityBP 
is the item we now drag into our scene. It provides us with the necessary means to 
use the VR HMD and the controllers in our project. If you select the 
HMDMotionControllerPawn in the World Outliner, you can also see a small camera 
window that shows a preview of the VR view. If we now select the 
HMDMotionControllerPawn in the World Outliner, we can see that the Details 
panel just below it shows some options for this game object. If we change the option 
Auto Possess Player from Disabled to Player 0, we already have our first working 
example! We can test it directly in VR by selecting the little arrow next to Play and 
then select VR Preview. Our app should now be visible in your VR HMD (see 
Fig. 10.14).

The hands already move, and the view is updated when we turn our head and 
move around in our play area. If we push the grab button on our controller, the hand 
changes as well.

The HMDMotionControllerPawn is a Blueprint (see also Sect. 10.2.2). It encap-
sulates functionality but can also have a 3D model attached. Almost all game objects 
in Unreal Engine are blueprints. A part of the HMDMotionControllerPawn Blueprint 
is shown in Fig. 10.15.

Nodes with a red header are events. Nodes with a blue header are functions. In 
this example, Left Controller is variable. In plain words, the snippet does the follow-
ing: If we receive an input action called GrabLeft, execute the function Grab Actor 
on the Left Controller and when we release the button, execute Release Actor.

Next, we add objects that we can grab with our controllers. For this, Unreal 
Engine provides another Blueprint. This is called BP_PickupCube and is in Content 
→ VirtualRealityBP → Blueprints. We can simply drag this cube in our scene. In the 
game, we can now use the controller to grab the cube and release it again. If we open 

Fig. 10.14 Startup sequence to create a new Unreal Engine project based on the VR template
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this blueprint with a double-click, the Blueprint editor opens. We can see two events, 
Event Pickup and Event Drop. The former activates the physics calculation for our 
cube and attaches the cube to our hand. The latter reverses these changes (cf. 
Fig. 10.16).

If we want to make other 3D models grabbable, we simply copy these snippets 
into their blueprint. We also must make sure to add the interfaces Drop and Pickup. 
They allow for calling Pickup and Drop from other objects, such as motion control-
lers. We can do this via Class Settings → Interfaces → Add.

We can see the result of our demo in Fig. 10.17. The integrated system of Unreal 
Engine also allows us to test this project with other devices like the HTC Vive Pro 
or the Oculus Rift.

10.3.3  Making of: An Application for the Microsoft HoloLens 
2 with Unity

This section explains the basic handling and functionality of the Microsoft HoloLens 
(HoloLens Documentation 2021) as well as an introduction to creating a simple 
HoloLens AR application with Unity.

The interaction with the HoloLens, the virtual world and the virtual objects 
(referred to as holographic objects by Microsoft) in it is realized by a combination 
of the viewing direction, gestures and voice commands. In the real world, it seems 
natural for us to look at things we want to interact with. The selection of objects for 
interaction within HoloLens applications is likewise represented by the focused 
gaze of the user. Since the HoloLens (1st Gen.) does not support eye tracking (cf. 
Sect. 4.5 Eye Tracking), the position and orientation of the head are primarily used 
for this purpose. The HoloLens 2, however, provides built-in eye tracking, here 

Fig. 10.15 When Unreal Engine receives a GrabLeft event, it calls Grab Actor or Release Actor 
via the respective Controller
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called eye-gaze (Microsoft 2021a). It allows for using the actual viewing focus of 
the user in interactive AR applications.

The basis of the HoloLens gestures is the air tap gesture, which can be compared 
to a conventional mouse click. It is initialized by raising the index finger (called 
ready position) within the field of view of HoloLens’ frontal camera. The target 

Fig. 10.16 When our 3D object receives a Pickup or Drop event, physics simulation is turned on/
off and the 3D object is attached/detached to the controller (which means it follows the controller 
motion or not)

Fig. 10.17 Cube that can be grabbed and released using the motion controllers
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object is then focused using the gaze or, in the case of the HoloLens 2, the eye-gaze. 
The index finger and thumb are brought together in a gripping movement and then 
moved back to their original position (cf. Fig. 10.18, right). If the fingers are not 
immediately returned to the starting position and held, it is called air tap and hold. 
This gesture, in combination with the subsequent movement of the hand, the gaze, 
or eye-gaze, offers the user different interaction, manipulation and navigation 
options, such as selecting and positioning virtual objects or scrolling through menu 
items (Microsoft 2021a).

The bloom gesture, which is reserved for the HoloLens (1st Gen.), represents the 
home functionality within the Windows operating system and always leads the user 
back to the start menu. This is done by bringing all the fingertips together and then 
quickly splaying the fingers (cf. Fig. 10.18, left). The HoloLens 2 uses a virtual 
Windows symbol, which appears next to the wrist when the hand is stretched out 
(wrist button) instead. Alternatively, the start menu can also be opened with just one 
hand, by focusing the wrist button with the eyes and performing an air tap gesture 
with the same hand. The HoloLens 2 also supports the execution of natural interac-
tions through hand or finger tracking (cf. Sect. 4.4 Finger Tracking). This includes 
direct contact and interaction with virtual objects such as a button or menu options. 
With the touch gesture, which is characterized by stretching out the index finger 
with the hand closed, a floating cursor similar to a mouse pointer appears next to the 
fingertip. This is very suitable for direct interaction with virtual objects in the imme-
diate vicinity of the user. The hand ray gesture is recommended for distant objects. 
This is characterized by an outstretched, open hand with the palm facing forward, 
where a laser pointer (hand ray) is projected from the palm. This gesture is used to 
target virtual objects at a distance, and in conjunction with the air tap gesture, rep-
resents another method for further interaction (Microsoft 2021a).

The voice commands of the Microsoft HoloLens are more flexible in their han-
dling and can contain functionalities of different complexity depending on the 
implementation. The basic voice commands of the HoloLens include “Select”, 

Fig. 10.18 Basic gestures for interacting with the HoloLens. The bloom gesture (left) and air tap 
gesture (right)
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“Place”, “Face me”, “Enhance”, “Bigger” and “Smaller”. In addition, most of the 
menu items and options as well as other controls on the HoloLens can also be 
applied using voice commands. The voice command “Select” is, for example, used 
in conjunction with the HoloLens 2 to show the user the corresponding voice com-
mands for menu items. With the HoloLens (1st Gen.) the existing voice commands 
are automatically displayed as a voice dwell tooltip (Microsoft 2021a).

The relationship between the real and virtual worlds (cf. Sect. 8.3 Registration) 
is implemented by Microsoft using what is known as Spatial Mapping. This pro-
vides the user with a mesh representation of the real environment, allowing virtual 
3D objects to interact with real-world locations or objects (cf. Fig. 10.19). The pri-
mary objects used for Spatial Mapping are the Spatial Surface Observer and the 
Spatial Surface. The Spatial Surface Observer is responsible for the recording and 
management of the detected surrounding areas, whereas each Spatial Surface 
describes the virtual representation of a physical surface in the real world. With the 
help of the four integrated environment understanding cameras, the user’s surround-
ing is scanned for recognizable surface areas. The integrated depth cameras (time- 
of- flight cameras) work in two different operating modes (Ungureanu et al. 2020). 
The AHAT (Articulated HAnd Tracking) mode is used for a range of up to one 
meter with a rather high sampling rate of 45 fps. This is used for recognizing and 
tracking the user’s hands. The second operating mode, also called Long Throw, is 
used with a low-level sampling rate of 1–5 fps for the acquisition of depth informa-
tion of the distant environment contributing to Hololens’ SLAM approach (cf. Sect. 
4.3.5.). The recognized surfaces, called Spatial Surfaces, are transferred into a met-
ric, Cartesian, right-handed coordinate system as a reconstructed triangle mesh. 
This spatial assignment and the visualization of the recognized surfaces can be 
viewed directly in the Microsoft Device Portal (cf. Fig. 10.19).

The Scene Understanding SDK, which is new in the HoloLens 2, offers develop-
ers the option of using a static but very well-structured high-level representation of 

Fig. 10.19 Visualization of the Spatial Mapping in the Microsoft Device Portal of the HoloLens 
(1st Gen.)
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the 3D environment. This is made possible by a combination of the less structured, 
but dynamic and very detailed Spatial Mapping and with the help of artificial intel-
ligence approaches (Microsoft 2021a).

When creating a HoloLens application with Unity, it is recommended to use the 
Mixed Reality Toolkit (MRTK Documentation 2021) from Microsoft. This open- 
source framework contains a collection of components, scripts and tools allowing 
for cross-platform development of VR and AR applications. In addition, numerous 
MR scenes with various application examples are offered in additional packages, 
providing the user with a comprehensive overview of the individual components 
and their functionalities. It is therefore well suited for a quick introduction to the 
development of HoloLens applications and due to its integration in Unity reduces 
the overall implementation effort.

To start developing a HoloLens application in Unity, it is first necessary to ensure 
that all of the basic requirements are met. This includes the installation and configu-
ration of the essential software, frameworks and SDKs as well as the settings for the 
used hardware or emulators. Among other things, this includes enabling developer 
mode on Windows and HoloLens, installing Visual Studio with Universal Windows 
Platform (UWP) development workload, using the current Windows 10 SDK and 
the activation and connection with the HoloLens Device Portal. All necessary 
requirements are listed and described in detail by Microsoft in the documentation of 
the MRTK (MRTK Documentation 2021).

Then, a new Unity project is created and the MRTK packages, Foundation and 
Tools are imported into the development environment via the menu option: Assets 
→ Import Package → Custom Package and the project is set up for the development 
of MR applications (Note: if using the Unity Version 2019.4 and above, the Unity 
Package Manager can alternatively be used). For this purpose, the default settings 
of the MRTK, which are automatically suggested for configuration after the suc-
cessful import, are accepted and applied. For realizing 3D audio, the MS HRTF 
(Head-Related Transfer Function; see Sect. 5.5 Audio Output Devices) Spatializer 
is selected as Audio Spatializer. Then further configurations must be made under the 
Build Settings (menu option: File → Build Settings). Here the Platform is set to 
UWP (Universal Windows Platform) and the Target Device is set to the Microsoft 
HoloLens. If Unity 2019 is used, it must be ensured that the Architecture option is 
set to either ARM or ARM64 – the latter is recommended. All other options can be 
left at the standard configuration or individually adjusted later. Under the Player 
Settings you should check whether the VR support is configured correctly (cf. Sect. 
10.2.1 Unity. During development, it is advisable to deactivate the menu option: 
Player Settings → Other Settings → Optimize Mesh Data, as this option can drasti-
cally slow down the build process of the application. To ensure consistent real-time 
execution on the HoloLens, it is also recommended to configure the standard quality 
settings for UWP applications under the menu option: Edit → Project Settings → 
Quality to Very Low or Fastest (Microsoft 2021a; MRTK Documentation 2021).

After that, a new Unity scene is created (menu option: File → New Scene) and all 
essential components are automatically added via the menu option: Mixed Reality 
Toolkit → Add to Scene and Configure. The Mixed-Reality-Toolkit-Object created 
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in this way contains the DeviceManager and SpatialMeshObserver as well as the 
other different systems for configuring the Mixed Reality application. These include 
the systems for Camera, Spatial Awareness, Diagnostics, Boundary and the systems 
that are required for processing input and voice commands. In this step, the Unity 
Main Camera is also automatically provided with the necessary components, such 
as the MixedRealityInputModule or the GazeProvider, and assigned to the 
MixedRealityPlayspace within the scene graph. The resulting camera object has all 
the properties and components that are necessary to utilize the camera movement 
when using the HoloLens or to simulate it in the Unity editor.

The settings of the Mixed Reality Toolkit and its components can be fully config-
ured within the Unity Inspector under their component entry of the same name. All 
settings of the MRTK and its sub-categories are managed in their individual profiles. 
Either the default profiles of the Mixed Reality Core SDK already contained in the 
MRTK can be used or individual profiles can be created. For example, to configure 
the visualization of the Spatial Mapping, it is advisable to choose one of the stan-
dard profiles such as the DefaultMixedRealityToolkitConfigurationProfile or, if a 
HoloLens 2 application is to be developed, the DefaultHoloLens2Configuration 
Profile. The selected profile is cloned using the menu option of the Inspector and is 
then available to the user as an individual profile. This process must be carried out 
individually for each category. It is then possible to configure all settings of the 
MRTK according to the individual requirements of the application to be developed 
and to save them as separate profiles for future use. The form of visualization and 
the associated material for displaying the Spatial Mapping can then be configured 
under the settings Spatial Awareness → Spatial Mesh Observer → Display Settings.

Since there are initially no objects in the scene for the user to interact with, new 
3D objects are now created using the menu option: GameObject → 3D Object and 
positioned in the scene (with the sub-item → Sphere e.g., a sphere). The position 
and size of a generated object and its relative location with respect to the camera 
may still have to be adapted. According to Microsoft, approximately 2 m is consid-
ered to be an optimal distance for using gaze and interacting with virtual objects. 
The 3D objects created are then assigned their respective materials. A wide selec-
tion of materials that are optimized for usage in AR applications can be found under 
Assets → MRTK → SDK → StandardAssets → Materials. When the user’s gaze 
wanders over the 3D object that has been created, only the cursor is projected onto 
the object’s CollisionObject. By adding the script TapToPlace (Assets → MRTK → 
SDK → Features → Utilities → Solvers), the 3D object can be selected using the air 
tap gesture and freely positioned in the room using the gaze or placed on any sur-
face recognized by Spatial Mapping. Additional settings can be made in the 
Inspector under the SolverHandler script, which is automatically added. An exam-
ple is the Tracked Target Type defining the reference point of the tracking used. It is 
possible to use the hand of the user or a hand ray instead of the head movement of 
the HoloLens. The BoundingBox script (Assets → MRTK → SDK → Features → 
UX → Scripts → BoundingBox) equips the 3D object with a visible bounding box 
(cf. Sect. 7.2.1). Thanks to the previously mentioned interaction options of the 
HoloLens, such bounding boxes allow the associated 3D object to be scaled and 
rotated at runtime. Another useful component is the PointerHandler script (Assets 

10 Authoring of VR/AR Applications



396

→ MRTK → SDK → Features → Input → Handlers), which equips a 3D object 
with the function of reacting to individual air taps. This can be used to implement 
individual functionalities, such as a change to the material used while the 3D object 
is selected or moved. In addition, the MRKT package Examples offers a wide range 
of practical example scenes. These are helpful for getting to know the numerous 
components and their functionalities as well as being a starting point for your own 
projects. The HandInteractionExample is particularly suitable for testing the hand 
tracking functionality of the HoloLens 2, as it provides many ready-to-use interac-
tive virtual objects (MRTK Documentation 2021).

To deploy the application on the HoloLens, the current scene must first be added 
to the Build Settings. After that, the Unity application and the APPX package must 
be built using the Build Window, which is included in the MRTK Tools package 
(menu option: Mixed Reality Toolkit → Utilities → Build Window). Alternatively, 
the deployment can also be done conventionally using Visual Studio (MRTK 
Documentation 2021). The HoloLens is then connected to the PC via USB to con-
nect to the Device Portal. The Device Portal is a web server on the HoloLens, which 
can be reached via the browser at the IP address 127.0.0.1:10080. Alternatively, it is 
possible to access the Device Portal via a shared WiFi connection and the specific 
IP address. The APPX package can be installed under the menu entry: System → 
Apps of the Device Portal. It is important to consider all the necessary dependencies 
of the package. After the application has been successfully installed, it can be exe-
cuted on the HoloLens. Another possibility to start the application directly on the 
hardware is realized by the Holographic Remoting Player (HRP). First, the HRP 
application from the Microsoft Store is installed on the HoloLens and launched. 
Based on the information provided by the HRP, the HoloLens is then connected to 
the Unity editor using the menu option: Windows → XR → Holographic Emulation. 
The Device Portal enables the user to manage the configuration of the HoloLens and 
has many useful tools to analyze your own applications and support their develop-
ment. For further information Microsoft provides detailed documentation 
(Microsoft 2021a).

10.3.4  Making of: Basics for the Development of a Native 
ARCore Application for Android

This case study describes the development of an AR application using ARCore, 
including an insight into more general aspects of creating AR applications. The 
underlying principles can also be applied to other frameworks.

Rather than using Java code and framework APIs, native development of an 
Android application allows us to develop parts of the application or even the entire 
project in C++. Android Studio provides easy access to many configuration tasks 
required to develop a native application. Additionally, the Native Development Kit 
(NDK) provided by Google is required. Nevertheless, it is necessary to write some 
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helper classes in Java to provide basic functionality. In this case the Java Native 
Interface (JNI) is used as the interface.

Before ARCore can be used, a session based on the current instance of the appli-
cation is required. For this purpose, the function ArSession_create is called with 
information about the current Java environment, the current context, and the instance 
of the application. An ARSession describes and manages the current state of the 
system as well as the complete AR life cycle.

Using such a session, individual (camera) frames can be retrieved from a smart-
phone. A frame represents the current camera image and provides the necessary 
functions to determine trackables – objects that can be tracked with ARCore. To 
create a session, the desired screen size of the application and orientation of the 
device must be provided.

When the current camera image is provided by the session object, ARCore allows 
to store it as a texture directly in the graphics memory. For this purpose, a texture 
with the OpenGL-ES extension GL_OES_EGL_image_external_essl3 is created 
and its native ID is passed to the session. The dimension of this texture does not 
depend on the settings of the session but is based on the resolution of the built-in 
camera. Usually, its aspect ratio is not identical to the aspect ratio of the screen or 
the application. Since the session has already been informed about the screen size, 
the UV coordinates of the camera image can be adjusted accordingly. These adjusted 
coordinates are also created by the AR session. This allows the camera image to be 
displayed at the desired size. In most cases, the camera image is displayed as full 
screen. For this purpose, the generated coordinates are used and passed to a shader 
for the visualization on the screen. The camera image can also be rendered in a 
separate texture (render target). This allows further use of the texture for special 
effects or for further analysis.

Essential parts of an ARCore application are so-called trackables. Trackables are 
objects in space that are recognized as geometries by the application and may be 
planes or points. These trackables are created, maintained and, if necessary, deleted 
by ARCore based on the session and the current camera image. It is important to 
consider the dynamics of these trackables accordingly. Anchor points can be set on 
trackables, which then give objects a position and orientation in space, i.e., allowing 
for a geometrical registration in world space (see Sect. 8.2.1).

The dimension and orientation of a trackable are determined by ARCore. 
However, the individual points of a plane can be extracted via the interface. 
Additionally, the transformation matrix for the center of the plane can be deter-
mined. Thus, all information is now available for further usage and rendering. The 
accompanying code example shows, for example, how planes can be visualized on 
the screen.

Besides a list of planes, points can also be used as trackables. Similar to a plane, 
points are objects in space. However, these points do not have their own transforma-
tion matrix, but define themselves as a single vertex (3D coordinate), having a posi-
tion in the world. This makes visualization of these points easy, as each vertex must 
be transformed by the projection matrix only.
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As already explained, anchor points can be set on trackables, which can then be 
used to arrange virtual geometries inside the scene (see Fig. 10.8). To add an anchor 
to a trackable a ray is cast from the screen-space coordinates of a user tap gesture 
into 3D world space. The framework then provides a list of trackables hit by the ray. 
Now, an anchor point is created close to a trackable from this list. ARCore allows 
for requesting the transformation of an anchor point, which may then be used for the 
visualization of objects at that location.

In this example, the light intensity of ARCore is a single value calculated based 
on a complete frame (see Sect. 10.2.3). This is a floating-point number between 0 
and 1. How this value is finally interpreted and used depends on the developer. A 
reasonable way to use this value is to consider it as the ratio of the illumination 
value related to the maximum illumination intensity. If a virtual light source is avail-
able, the author should design the lighting conditions for a bright room. In the case 
of a dark environment, the intensity of the light source can then be adjusted accord-
ingly. This value can be used to attenuate the light intensity, for example by simple 
multiplication. Figure 10.20 shows the adjustment of the intensity in a dark room 
(left) and a bright room (right). It is clearly visible that in the first case the materials 
appear darker and specular reflections are less pronounced.

The information provided in this section represents the basis for creating a native 
ARCore application. However, the underlying principles can be transferred to other 
AR frameworks like ARKit without much effort.

10.4  Summary and Questions

In this chapter, the process of authoring VR and AR applications was first illustrated 
in general and then specifically using individual frameworks and case studies. Based 
on this chapter, the reader should have gained a rough idea of the authoring process 
using modern runtime environments and recent VR and AR hardware. Ideally, the 
reader has downloaded the examples, tried them out and developed them individu-
ally to get a good sense of the possibilities and limitations of the respective tools.

Fig. 10.20 Illustration of two differently illuminated scenes and the influence of the illumination 
situation on the material properties
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Check your understanding of the chapter using the following questions:

• You will be tasked with implementing a VR/AR training application for mini-
mally invasive surgery using a common consumer VR HMD and an end effector 
display (cf. Sect. 5.6) as haptic input/output device. What authors are needed for 
this? Plan a suitable authoring process and select appropriate software to support 
the authors.

• What is a tool chain? At what point in the development process should you deal 
with it?

• You want to create an AR application with Microsoft’s HoloLens. Which frame-
work can you use for this?

• You want to create a mobile AR application for a wide variety of smartphones 
and tablets. Can you get by with a single code base for this? How can you keep 
your development effort as low as possible?

• You are to develop an AR application that realistically displays objects in both 
light and dark areas. How can you determine the illumination?

• When starting the application, an error occurs with a session. What is a session 
and what is it needed for?

• You are asked to develop an AR application dealing with complex geometry. 
Which framework and hardware are you going to use?
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Chapter 11
Mathematical Foundations of VR/AR

Ralf Doerner

Abstract In Virtual Reality and Augmented Reality, mathematical methods offer 
fundamental principles to model three-dimensional space. This makes it possible to 
provide exact information and perform calculations, e.g., to determine distances or 
to describe the effects of transformations such as rotations or translations exactly. 
This chapter compiles the most important mathematical methods, especially from 
linear algebra, that are frequently used in VR and AR. For this purpose, the term 
vector space is defined and extended to a Euclidean space. Afterwards, some basics 
of analytic geometry are introduced, especially the mathematical description of 
lines and planes. Finally, changes of coordinate systems as well as affine transfor-
mations are discussed and their computation with matrices in homogeneous coordi-
nates is explained.

11.1  Vector Spaces

In Virtual Reality, we are concerned with the real space that surrounds us. It is help-
ful to model this space with methods of mathematics, e.g., to be able to make exact, 
formal, mathematically provable statements or to perform computations. In VR, we 
use a vector space, a construct of linear algebra (a branch of mathematics), for this 
modeling.

Each vector space is formed over a field G. The elements of G are called scalars 
and we denote them by small Latin letters. Being a field in the sense of algebra 
means that G is a set with the two binary operations “+” (addition) and “·” (multi-
plication), which combine two elements of G and as a result give an element of 
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G. Moreover, there is an element 0 in G, called the additive identity, and an element 
1 in G, called the multiplicative identity. Finally, the elements of G satisfy the fol-
lowing field axioms. For any scalar a, b, c, d (with d ≠ 0):

 
a b c a b c� �� � � �� � � � �associativity of addition

 

 
a b b a� � � � �commutativity of addition

 

 
0 � � � �a a commutativity of addition

 

For each a ∈ G there exists a −a ∈ G with −a + a = 0 (additive inverses)

 
a b c a b c· · · ·� � � � � � �associativity of multiplication

 

 
a b b a· ·� � �commutativity of multiplication

 

 
1·d d� � �multiplicative identity

 

For each d ∈ G \{0} there exists a d−1 ∈ G with d−1 · d = 1 (multiplicative inverses)

 
a b c a b a c· · ·�� � � � � �distributivity

 

The set of real numbers R, which comprises the set of natural numbers (e.g., 1, 2, 
3, …), integers, rational numbers and irrational numbers (e.g., π), fulfills the field 
axioms and is usually chosen in VR.

The set of elements of a vector space V over a field G is called vectors. We denote 
them by Latin letters, over which an arrow is placed. Two operations are defined on 
vectors. First, vector addition takes two vectors and assigns them a third vector. We 
write this operation as “+” (not to be confused with addition in scalars). The vector 
addition adheres to the associativity of addition and the commutativity of addition. 
There exists also an identity element of addition, the zero vector 



0 . For each vector 


u there exists an additive inverse −u  in V. Secondly, scalar multiplication takes a 
scalar and a vector and assigns them a vector. we write it as “·”. Scalar multiplica-
tion adheres to distributivity:

 
� � � � �� � � � �� � � �a b G u v V a u v a u a v a b u a u b u, , , :

        

· · · · · ·and
 

An example of a set V that fulfills these properties of a vector space is the set of 
3-tuples over the real numbers, i.e., the set of all lists of real numbers of length 3. 
We call this set R3. The 3-tuple (5, –2, 3), for example, is an element from the set R3. 
In the following, we will not write the elements of R3 as a list next to each other but 
on top of each other:
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To specify the set R3 completely as a vector space, we still have to specify the two 
operations “+” and “·” of the vector space. We do this by defining these operations 
based on the addition and multiplication of the real numbers (i.e., the field over 
which R3 was formed).
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In vector spaces, vector addition and scalar multiplication are generally used to 
define a linear combination of a number of n scalars and n vectors:

 
   u a u a u a un n� � ���1 1 2 2· · ·  

If all n scalars must have the value 0 for the linear combination to yield the zero 
vector, the n vectors of the linear combination are called linearly independent. If 
one finds a maximum of d linearly independent vectors in a vector space V, then d 
is the dimension of the vector space V. In our example, the vector space R3 has 
dimension 3. By the way, it is not only the set of all 3-tuples that forms a vector 
space. If k is a natural number, then the set of all k-tuples of real numbers forms a 
vector space Rk, which has dimension k.

If V is a vector space of dimension n and we find n linearly independent vectors, 
these vectors are called a base of V. We can then represent each vector of V by a 
linear combination of these base vectors. The n scalars that occur in this linear com-
bination are called the components or coordinates of a vector.

11.2  Geometry and Vector Spaces

In geometry, directed line segments are called geometric vectors. You can visualize 
them with an arrow, having a length and a direction. The beginning of the geometric 
vector is called the tail, and the end of the geometric vector is called the tip. We 
define an addition operation of two geometric vectors as follows. We place the tail 
of the second vector at the tip of the first vector – the result of the addition is a geo-
metric vector that then runs from the tail of the first vector to the tip of the second 
vector. We also define a scalar multiplication, where we choose the real numbers R 
as scalars (see Fig. 11.1). If we multiply the scalar a by a geometric vector, we get 
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as a result a geometric vector with a × the length of the original geometric vector. If 
a is positive, the resulting vector points in the same direction; if not, the result vector 
points in the opposite direction. With these two operations the set of geometric vec-
tors forms a vector space over R.

Directed line segments are useful constructs when we want to model the space 
surrounding us. However, performing computations with them directly proves to be 
difficult. Therefore, we take a base from the space of geometric vectors – if we are 
in the three-dimensional space, it consists of three base vectors. We can represent 
each geometric vector as a linear combination of these three base vectors. The coor-
dinates in this linear combination are three real numbers – which in turn we can 
understand as 3-tuples, i.e., an element of the vector space R3.

We can proceed as follows. We assign a vector from R3 to each directed line seg-
ment, i.e., to each geometric vector, with the help of a base. In R3 we can calculate 
with vectors based on the addition and multiplication of real numbers. The result of 
the calculation is then transferred into the space of the geometric vectors by insert-
ing the calculated result as a scalar into the linear combination of the base vectors. 
If, for example, we want to add two geometric vectors, then we assign two vectors 
from R3, the “world of numbers”, to these two vectors from the “world of geome-
try”. In the “number world” we can calculate the result vector. We transfer this result 
vector back into the “world of geometry” and thus we have determined the geomet-
ric vector resulting from the addition by computation.

11.3  Points and Affine Spaces

However, the usefulness of our mathematical model is still limited: geometric vec-
tors possess only length and direction, but no fixed position in space. This also 
means that we cannot model essential concepts from the real world, such as dis-
tances. Therefore, we introduce the term point in addition to scalar and vector. We 
write points with capital Latin letters. Points have no length and no direction, but a 
position. Let P and Q be two elements from the set of points. Then we define an 
operation “–”, called point-point subtraction, which connects two points and results 
in a vector:

Fig. 11.1 Vector addition and scalar multiplication of geometric vectors
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 P Q u P u Q� � � � � 

 

With this we also define an addition between a point and a vector (called point- 
vector addition), where the result is a point. Thus, we can represent any point P in 
three-dimensional space as an addition of a point O (called the origin) and a linear 
combination of three linearly independent geometric vectors 

  

u v w, , , the base 
vectors:

 P O a u b v c w O p� � � � � � � � �
   

 

We call these three base vectors, together with O, a coordinate system K. We call 
the 3-tuple (a, b, c) the coordinates of P with respect to K. Thus, every point in our 
“world of geometry” for a given K can be represented by an element from R3, our 
“world of numbers”. So, we can “calculate” not only with vectors, but also with 
points, i.e., with fixed positions in our world. We call 



p  the position vector belong-
ing to P.

A vector space that has been extended by a set of points and an operation, the 
point-point subtraction, is called an affine space in mathematics. Geometrically, we 
can interpret point-point subtraction like this: P – Q is a vector that we get when we 
choose a directional path with starting point Q and final point P.

11.4  Euclidean Space

We add the concept of distance to our existing mathematical model of the space 
surrounding us. For this purpose, we introduce another operation, which we denote 
by “·” and which takes two vectors and results in a scalar. We call this operation the 
scalar product (not to be confused with scalar multiplication, which takes a scalar 
and a vector and results in one vector – even if we write both operations with “·”, we 
always know which operation is meant because of the types of the two operands). 
The scalar product must adhere to commutativity of multiplication and the follow-
ing axioms for scalars a, b, vectors 

  

u v w, , and the null vector


0 :

 
a u b v w a u w b v w� � �� � � � � � � � �
      

 

 
  



u u u· � �0 0if  

 
 

0 0 0· =  

In our vector space R3, we can define a scalar product as follows so that all the above 
conditions are fulfilled:
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In honor of the Ancient Greek mathematician Euclid of Alexandria, an affine 
space supplemented by the scalar product operation is called a Euclidean point 
space. Using the scalar product, we define the amount of a vector as follows:

 
  u u u� �

 

In our three-dimensional space, the amount of a vector is equal to its length. Thus, 
we can also determine the distance d between two points P and Q as

 
d P Q P Q P Q� � � �� � � �� �

 

The angle α enclosed by two vectors can be determined from the following equation:

 
   u v u v� � � � cos�

 

In the case α = 90° (i.e., the two vectors are perpendicular to each other) the scalar 
product of the two vectors is 0. Two vectors whose scalar product is 0 are called 
orthogonal. If the two vectors also have length 1, they are called orthonormal. For 
the base in our space, we want to use orthonormal vectors in the following. A cor-
responding coordinate system (base vectors are perpendicular to each other and 
have length 1) is called a Cartesian coordinate system. In the case of R3, we take the 
three unit vectors
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in the given order and the point O as the origin point, whose position vector is the 
zero vector.

To be able to easily find a vector orthogonal to two vectors in R3, we define an 
operator “×”, which we call the cross product and which takes two vectors and 
results in one vector:
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The resulting vector is called a normal vector. In this order, the vectors 
  

u v n, , form 
a right-handed system, i.e., if you take them as geometric vectors and place their tail 
on a common point, the vectors are oriented like the thumb, index finger and middle 
finger of the right hand. The vector product is not commutative. While one can gen-
eralize our definition of the scalar product from R3 to Rn and thus obtain Euclidean 
point spaces of dimension n, the cross product is defined exclusively in R3.

11.5  Analytical Geometry in ℝ3

In R3, our mathematical model of the space surrounding us, we can solve geometric 
problems by computation, e.g., finding an intersection of lines or determining the 
distance of a point to a plane. A line is the generalization of a directed line segment: 
it has no direction and has infinite length. A line is defined by two points. 
Mathematically we model a line g through points P and Q as a subset of R3 that 
includes all points X whose position vector 



x satisfies the equation of the line, using 
the position vectors associated with P and Q:

 
g x t x p t q p� � � � � � �� �� �     3| , ·

 

The scalar t is called the parameter and the equation above is also called the vector 
equation of a line. The vector that is multiplied by t is called the directional vector 
of the line g. Similarly, we can model a plane E as a subset of R3. It is defined by 
three points P, Q, R and the equation of the plane contains two parameters and two 
directional vectors:

 
E x t s x p t q p s r p� � � � � � �� � � �� �� �       3| , , · ·

 

By means of the cross product, we can compute the normal vector 


n  from the direc-
tional vectors, which is perpendicular to E. For the distance d of a point X to a plane 
E we know the following equation in linear algebra, where the sign of the scalar 
product indicates on which side of E the point X is located:

 

d n
n

x p� � �� �




 

 

Thus, we can reformulate the condition that points X belong to the subset E. This is 
because all points X that have the distance 0 from E lie on the plane E. Thus, we 
obtain the point-normal form of a plane:

 
E x n x p� � �� � �� �   3 0| ·
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With these definitions you can compute intersections between lines and between a 
line and a plane as well as intersections between planes. The first step is to equate 
the equations that define the set of points that form a line or a plane. Alternatively, 
substitution can sometimes be used. This results in either an equation to be solved 
or a linear system of equations, the solution of which can be computed by mathe-
matical methods (for example, Gaussian elimination).

11.6  Matrices

In virtual reality, another mathematical construct is often used to compute transfor-
mations such as rotations or translations in three-dimensional space: the matrix 
(plural: matrices). A matrix is a table of n rows and m columns where each entry is 
a scalar. In the following, we will always assume that entries are real numbers. We 
find the scalar aij in row i and column j of the matrix. It is called the entry in place 
(i, j). We write matrices with bold capital letters: A = [ aij ] and say A is an n × m 
matrix. The matrix M in our example has two rows and four columns, so it is a 2 × 4 
matrix, and the entry m1,3 has the value 5:

 
M �

�

�
�

�

�
�

1 0 5 3

1 9 2 0  

For matrices, we define three operations. First, the scalar-matrix multiplication, 
denoted by “·”, which combines a scalar s and a n × m matrix A = [aij] to form an 
n × m matrix: s·A = s·[aij]:=[s·aij]. This operation adheres to associativity. Secondly, 
matrix-matrix addition, denoted by “+”, links two matrices A and B of the same size 
n × m to form a matrix of size n × m: A + B = [aij] + [bij] := [aij + bij]. This operation 
adheres to associativity and commutativity. Third, matrix-matrix multiplication, 
denoted by “·”, combines a matrix A of size n × k and a matrix B of size k × m to 
form a matrix of size n × m:

 
A B· : ·� �� �� �

�
�c c a bij ij
l

k

il ljwi ht
1  

This operation adheres to associativity. It should be emphasized that commutativity 
does not apply to matrix-matrix multiplication: A·B does not always equal B·A.

If we swap the rows and columns in a matrix, we get the transposed matrix. The 
transposed matrix of matrix M = [aij] is MT=[aji]. The following applies: (A·B)T = 
BT · AT. A special case are matrices that have the same number of rows and columns. 
These are called square matrices. The square matrix I for which the follow-
ing applies
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I � �� �� �

��
�
�

a a
i j

ij ij,
1

0

if

otherwise  

is called the unit matrix. The following applies: A·I = I·A = A, where A and I are 
both n × n matrices If a matrix A–1 of the same size exists for an n × n matrix A and 
the equation A·A–1 = I applies, then A–1 is called the inverse matrix of A. A is then 
called invertible. The following applies: (A·B)–1 = B–1·A–1. If the following applies 
to a matrix A: A–1 = AT, then A is called orthogonal.

11.7  Affine Transformations

Assume that the point P has coordinates (x, y, z) with respect to a Cartesian coordi-
nate system. If we translate P by tx in the x-direction, by ty in the y-direction and by 
tz in the z-direction, we map point P to a new point P′. What are its coordinates? To 
calculate such transformations, we utilize matrices. We introduce a special notation 
for matrices that consist of only one column: we write them with small bold letters 
and call them column matrices. Now we want to represent the point P by the column 
matrix p. We do this as follows:

 

p �

�

�

�
�
�
�

�

�

�
�
�
�

�

w x
w y
w z
w

w w

·

·

·
, for any real number with 0

 

We call (w·x, w·y, w·z, w) the homogeneous coordinates of P. In practice, for the 
sake of simplicity, usually w = 1 is chosen. If one chooses w = 0, one can represent a 
vector in a column matrix instead of a point by means of homogeneous coordinates:
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The translation from P to P′ can be described by a matrix M. The following simple 
equation applies:

 
� � �p M p  
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In our translation example, this equation looks like this:
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From the resulting column matrix p′, we can obtain the coordinates of point P′ after 
division by w: (x + tx, y + ty, z + tz). If instead of p, which represents a point, we were 
to use the column matrix v, which represents a vector, in the above equation, then v 
would be mapped exactly back to v. This is also what we expect: since a vector has 
no fixed position in space, it is not changed by a displacement. As we will see below, 
the transformation of a vector by a more complex transformation is slightly more 
complicated.

Let us take a closer look at the matrix M that represents this translation. You can 
think of its four columns as column matrices. The first three columns represent vec-
tors, because the value in the fourth row is zero. In fact, these are the base vectors of 
our three-dimensional space if we apply the translation to them. They do not change, 
because a translation does not change the length or the direction of a vector. The 
fourth column vector represents a point, because the value in the fourth row is not 
zero. This column vector represents the origin when the translation is applied to it. 
As a result of the translation, the origin (0, 0, 0) is mapped to (tx, ty, tz). Therefore, 
this transformation can be seen as a change from one coordinate system of our 
three-dimensional space to another coordinate system. In fact, mathematicians have 
been able to show that each change of coordinate systems can be represented as a 
matrix M. With 4 × 4 matrices M, not only can translations be computed, but also 
other affine transformations that map one affine space into another. Besides transla-
tion, the following geometric transformations are also included: rotation, scaling, 
reflection and shearing. If you invert the matrix M, you get the matrix M–1, which 
represents the inverse mapping of M, i.e., it reverses the mapping represented by M.

Let us assume that we perform n geometric transformations of the point P. We 
represent the transformation performed first by M1, the second by M2 and so on, 
until finally the transformation performed last is represented by Mn. This allows us 
to determine the coordinates of the point P′ resulting from the back-to-back execu-
tion (concatenation) of these transformations as follows:

 
� � �� �p M M M M pn · · · · ·3 2 1  

Note the order of the matrices and keep in mind that matrix multiplication is not 
commutative. If you perform the computation as indicated by the brackets, you only 
need to compute the product of all n matrices once, even if you transform hundreds 
of points with the same transformation. For a large number of points to be trans-
formed, this results in a considerable saving of computing time. Matrix operations 
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for 4 × 4 matrices are implemented directly in hardware in graphics processors, 
which leads to another reduction in computing time.

Besides points, vectors can also be transformed by a matrix M that describes an 
affine transformation. If we want to know where the vector 



v  is mapped to after the 
transformation described by M, we represent the vector in the column matrix v. We 
compute v′ = (M–1)T · v and the first three rows of the column matrix v′ contain the 
coordinates of the transformed vector.

11.8  Determination of Transformation Matrices

To calculate geometric transformations or to perform a change between coordinate 
systems, we need a matrix M that represents this transformation, as described in the 
last section. But how do we determine this matrix M? In principle there are two ways.

The first alternative is to know formulas for these matrices for certain standard 
cases. The formula for translation has already been given in Sect. 11.7. For rotation 
by an angle α around the x-axis around the origin point, the following formula can 
be found for the matrix M:

 

M �
�

�

�

�
�
�
�

�

�

�
�
�
�
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Accordingly, one can also find formulas for transformation matrices for rotation 
around the y-axis, around the z-axis or around any other axis, for reflection, or for 
scaling in computer graphics textbooks. From these standard cases, more complex 
transformations can be computed by concatenation (see Sect. 11.7). For example, if 
you want to calculate a rotation of 30° around the x-axis around the center of rota-
tion (1, 2, 3), you divide this transformation into three transformations for which a 
formula is known: first, you perform a translation by (–1, –2, –3), which takes the 
center of rotation to the origin (because we only know the formula for rotations 
around the origin). Then you rotate 30° around the x-axis around the origin point 
and reverse the first translation performed with the inverse translation. The matrix 
for the entire transformation is obtained by multiplying the three matrices for the 
standard cases (note the order):
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The second alternative to determine the matrix M, which we need according to the 
formula p′ = M·p to compute a transformation or to change coordinate systems, is 
to construct M directly:

• We start with our coordinate system K, which consists of three base vectors and 
the origin point. We also need to know the target coordinate system K′ after the 
transformation, which results from the geometrical transformation of the three 
base vectors and the origin point of K. Let M be the matrix that changes coordi-
nates from coordinate system K to K′, i.e., M computes the geometric transfor-
mation from K to K′.

• We represent the first base vector of K′ as a column matrix of size 4 by entering 
its three coordinates with respect to K in the first three rows of the column matrix 
and a zero in the fourth row. Analogously, we obtain column matrices for the 
second and third base vector of K′. We represent the origin point of K′ by enter-
ing its coordinates with respect to K in the first three rows of a column matrix of 
size 4 and a one in the fourth column. From these four column matrices, we form 
the matrix M–1 of size 4 × 4 by writing them next to each other according to the 
above order. By inverting M–1 we obtain the matrix M that we are looking for.

If a point P has coordinates (x, y, z) with respect to the old coordinate system K, 
its new coordinates with respect to K′ are calculated with the matrix M as follows:

• We represent P as a column matrix p with the homogeneous coordinates (x, 
y, z, 1).

• We calculate the matrix product p′ = M·p
• The values in the first three rows of p′ are the coordinates of P with respect to the 

new coordinate system K′

R. Doerner



413© The Author(s), under exclusive license to Springer Nature  
Switzerland AG 2022 
R. Doerner et al. (eds.), Virtual and Augmented Reality (VR/AR), 
https://doi.org/10.1007/978-3-030-79062-2

 About the Authors

Dr. Steffi Beckhaus is an expert on VR/AR and HCI. Her main research interest is 
to understand human perception, the power of imagination and, ultimately, the 
influencing factors on our felt sense of “reality”. She works as a coach and consul-
tant for women, entrepreneurs and people pursuing advanced academic careers in 
STEM. Here, her topics include potential development, creativity and innovation 
training, career counselling, leadership development and hypnosystemic coaching. 
She was professor for interactive media and virtual environments at the University 
of Hamburg from 2004 to 2011. The R&D in her lab included the chairIO, multisen-
sory, immersive VR-systems including floor-haptics and olfactory elements, quali-
tative, emotional experience spaces, storytelling, and media art. In 2011/2012 she 
was guest professor at TU Darmstadt. She holds degrees in Physics (1991) and 
Computer Science (1993) and certifications in generative and systemic coaching 
and consulting (2014–2018). At the beginning of her career, she worked for 8 years 
in the private sector as a researcher and IT consultant. In 2002, she obtained her 
multiply awarded PhD on navigation in virtual environments, while being part of 
the Virtual Environments Group of IMK at GMD.  In this book, she authored 
Sect. 6.8.

Mathias Buhr studied Engineering & Computing at the TU Bergakademie 
Freiberg and continued as a research assistant at the Institute for Computer Science. 
In addition to his teaching activities in the field of human–machine communication, 
multimedia and parallel computers, his focus was on methods for distributed and 
parallel rendering techniques for virtual environments. Since 2014 he has been 
working in the field of audio/video signal processing and real-time communication 
protocols for LogMeIn, Inc. Mathias Buhr is the author of Sect. 7.2 and co-author 
of Sect. 7.3.

https://doi.org/10.1007/978-3-030-79062-2#DOI


414

Dr. Wolfgang Broll is a full professor at TU Ilmenau (Ilmenau University of 
Technology), heading the Virtual Worlds and Digital Games group. He received his 
Master’s (Dipl.-Inf.) in Computer Science from TU Darmstadt (Darmstadt 
University of Technology) in 1993 and a PhD in Computer Science from Tübingen 
University in 1998. He was a lecturer at RWTH Aachen (Aachen University of 
Technology) from 2000 to 2009. From 1994 to summer 2012 he headed the VR and 
AR activities at Fraunhofer FIT in Sankt Augustin. He has been doing research in 
augmented reality, shared virtual environments, multi-user VR and 3D interfaces 
since 1993. In addition to his academic activities, he was the founder and CEO of 
fayteq GmbH, and later a member of the board of fayteq AG until it was sold to 
Facebook Inc. in 2017. He is a SIGGRAPH pioneer, and vice chair of the steering 
committee of the VR/AR chapter of Germany’s computer society (GI). He is a 
member of the Steering Committee of the IEEE Symposium on Mixed and 
Augmented Reality (ISMAR), where he served as Program Chair in 2016 and 2017. 
He is currently concerned with AR-related technologies, including, but not limited 
to, collaborative augmented environments, Diminished and Mediated Reality, 
global illumination, natural interaction and the application of deep learning 
approaches to those. Prof. Broll contributed to this book as editor for Chaps. 5, 8 
and 10 and as second editor for Chaps. 3 and 6. As an author, he contributed to 
Chaps. 1, 4, 5, 8 and 10.

Dr. Carolina Cruz-Neira, a member of the National Academy of Engineering, is 
a pioneer in the areas of Virtual Reality and interactive visualization, having created 
a variety of VR technologies that have become standard tools in industry, govern-
ment and academia. She is known for being the inventor of the CAVE. Having dedi-
cated a part of her career to the transfer of research results into daily use she 
spearheaded several open-source initiatives and VR-related commercialization 
efforts. She is also recognized for having founded and led very successful VR 
research centers, such as the Virtual Reality Applications Center at Iowa State 
University, the Louisiana Immersive Technologies Enterprise and the Emerging 
Analytics Center at the University of Arkansas at Little Rock. She has been named 
one of the top innovators in VR and one of the top three greatest women visionaries 
in VR. She is an IEEE Fellow and has been inducted as an ACM Computer Pioneer. 
She has received the IEEE Virtual Reality Technical Achievement Award and the 
Distinguished Career Award from the International Digital Media & Arts Society, 
among other national and international recognitions. Currently, Dr. Cruz-Neira is 
the Agere Chair in Computer Science at the University of Central Florida. As an 
author, she contributed to Chap. 5 (mainly Sect. 5.4) and Sect. 7.3.

Dr. Ralf Doerner has been professor of Computer Graphics and Virtual Reality in 
the Design, Computer Science, Media department of the RheinMain University of 
Applied Sciences in Wiesbaden, Germany since 2004. After obtaining his Diploma 
degree in Computer Science from the Technical University of Darmstadt with dis-
tinction, he worked for the Fraunhofer Society, first as a researcher at the Fraunhofer 

About the Authors



415

Institute for Computer Graphics, and later as head of the Mixed Reality department 
and vice director of Fraunhofer AGC in Frankfurt. After receiving his PhD (Goethe-
University in Frankfurt, summa cum laude) and working as a scholar in the United 
States (University of New Hampshire/NOAA) with a DAAD PostDoc grant, he 
became a professor at Harz University of Applied Sciences before becoming full 
professor in Wiesbaden. He received an honorary professorship from the University 
of Transylvania, is a member of ACM SIGGRAPH, whose Recognition of Service 
Award he received, and has been elected to the board of the GI-working group VR/
AR. His research interests lie in the field of visualization (interactive information 
visualization, visual data analysis), VR and MR (especially in the field of authoring 
systems) and the use of Computer Graphics for e-Learning and entertainment. He 
has been responsible for numerous research projects and has published over 150 
peer-reviewed articles. Ralf Doerner served as editor of this book, being responsible 
for Chaps. 1, 2, 6, 9, and 11. He served as secondary editor for Chap. 7 and contrib-
uted as author to Chaps. 1, 2, 6, 9, 10, and 11.

Dr. Christian Geiger has been Professor of Mixed Reality and Visualization at the 
Düsseldorf University of Applied Sciences since 2004. Before that, he was a profes-
sor of 3D graphics and animation at the Harz University of Applied Sciences in 
Wernigerode. He studied computer science at the University of Paderborn and 
received his doctorate there in 1998 with a thesis on the creation of interactive 3D 
animations. From 1997 to 2000 he was responsible for R&D projects in the field of 
3D graphics, multimedia and VR/AR at Siemens AG in Paderborn. His research 
interests lie in the design and implementation of novel user interfaces, mixed reality 
applications and interactive visualization techniques. As an author he contributed to 
Chap. 6, especially Sects. 6.1, 6.4 and 6.5

Dr. Martin Göbel is a consultant at the Institute of Visual Computing at the Bonn- 
Rhein- Sieg University of Applied Sciences in Sankt Augustin, Germany. Before 
that, he was CEO of 3DAround GmbH and of flexilution GmbH. From 1996 he was 
a competence center director for Virtual Environments in the GMD in Birlinghoven, 
where he implemented the first CAVE in Europe. From 1987, he was a senior scien-
tist in the Fraunhofer Institute for Computer Graphics. Martin Göbel studied 
Computer Science at the Technical University of Darmstadt where he received the 
diploma degree (Master in Science) in 1982 and his PhD (Dr.-Ing.) in 1990. He is 
author and editor of several books on Graphics Standards, Visualization and Virtual 
Reality and over 100 scientific publications. He established the Eurographics 
Workshops on Virtual Environments (EGVE) in 1993 and chaired them. In 2003 the 
ARVR-group of the German Computer Society (GI-ARVR) was founded by him. 
Göbel has been program cochair of the EUROGRAPHICS ‘95 and ‘98 conferences 
and the IEEE VR 2001, 2002 & 2004 conferences and General Chair of IEEE 
VR2005 and 2006 as well as the Honorary Chair of IEEE VR 2015, IEEE VR 2018 
and the ACM VRCAI 2019.

About the Authors



416

Dr. Paul Grimm is professor for Software Design and Architecture of Extended 
Reality and 3D Game Engines at Darmstadt University of Applied Sciences (h_da) 
in Germany. He has been Professor of Computer Graphics at Fulda University of 
Applied Sciences from 2011 until 2021. Before, he was Professor for Computer 
Graphics at Erfurt University of Applied Sciences since 2004. After studying com-
puter science and physics at Technical University of Darmstadt, he worked as a 
research assistant at the Fraunhofer Institute for Computer Graphics (Fraunhofer 
IGD) in Darmstadt and at the Fraunhofer Application Center for Computer Graphics 
(Fraunhofer AGC) in Frankfurt. From 1997 to 1998 he was a visiting scientist at the 
National Center for Supercomputing Applications (NCSA) in Urbana-Champaign, 
USA. From 2009 to 2010 he did a research semester at Daimler Protics GmbH in 
the Virtual Engineering & Consulting division. His research interests focus on sim-
plifying the creation of Virtual and Augmented Reality, and he has been pursuing 
this for more than 20 years in various national and international projects. He is a 
member of ACM and the German society of computer science (Gesellschaft für 
Informatik, GI) and was spokesman for the GI interest group for Animation and 
Simulation as well as a member of the management committee of the GI interest 
group VR and AR. Prof. Dr. Paul Grimm contributed to this book as editor, espe-
cially as editor of Chap. 4. For Chap. 5, 8, 9 and 11 he acted as a second editor. For 
Chap. 10, he collected four examples. As an author, he contributed to Chap. 1, 
4 and 5.

Dr. Rigo Herold is a research scientist for Augmented Reality systems based on 
data glasses at the Westsaxony University of Applied Sciences, Zwickau. He 
received a diploma degree and an MS degree in electrical engineering from the 
University of Applied Sciences, Dresden, Germany in 2006 and 2007. He received 
a doctoral degree in electrical engineering from University of Duisburg-Essen in 
2011. From 2007 to 2013 he was a research assistant at Fraunhofer-Gesellschaft. In 
2013 he was appointed to a professorship at the Westsaxony University of Applied 
Sciences, Zwickau. His research interests are in mobile AR systems based on data 
glasses, human–computer interaction, mobile computing and the customized design 
of data glasses. As an author, he contributed to Chaps. 4 and 5.

Johannes Hummel was a PhD student at the German Aerospace Center (DLR) in 
Braunschweig in the field of virtual assembly simulations in orbit. Before that, he 
studied computer science and electrical engineering at the Technical University of 
Munich (TUM) from 2003 to 2009 and graduated with a diploma. From 2005 to 
2010 he was a freelance software developer responsible for projects in the field of 
user interfaces and data management in the automotive industry. His research inter-
ests are in the field of Virtual Reality, especially multimodal interaction techniques 
for virtual assembly simulation in space. He wrote Sect. 4.4.

Dr. Bernhard Jung has been the chair for Virtual Reality and Multimedia at the 
Institute of Computer Science, Freiberg University of Mining and Technology since 
2005. He studied computer science and computer linguistics at the University of 

About the Authors



417

Stuttgart, Germany, and the University of Missouri, Saint Louis. He received his 
doctorate in 1996 from the University of Bielefeld with a thesis in artificial intelli-
gence as well as a Habilitation degree in 2002 for a thesis on intelligent virtual 
environments. From 2003 to 2005 he was full professor for Media Informatics at the 
University of Lübeck’s International School of New Media. He is a member the 
German Society for Computer Science (GI) and the German Society for Cognitive 
Science (GK). Prof. Jung’s research interests are in the fields of virtual & mixed 
reality, large data visualization, virtual prototyping with HPC workflows, human–
computer interaction and advanced robotics. He served as one of the co-editors of 
this book, primary editor of Chaps. 3 and 7, secondary editor of Chaps. 1, 2 and 10 
and co-author of Chaps. 1, 3 and 7.

Rolf Kruse has been teaching and researching in the field of digital media at the 
Applied Computer Science department at the Erfurt University of Applied Sciences, 
Germany, since 2012. At the beginning of the 1990s, parallel to his degree in archi-
tecture, he conducted research at the 1st Demonstration Center for Virtual Reality of 
the Fraunhofer Institute for Computer Graphics Darmstadt (IGD). This research 
was continued in 1994 at Art & Com in Berlin with a focus on urban planning and 
the interaction of lay people with digital spatial content. As founder of the Laboratory 
for Media Architectures in 1997 and Invirt GmbH in 2008, he created hybrid inter-
active installations for well-known companies and public clients. From 2002 to 
2005 he headed Cybernarium GmbH, a spin-off of IGD, which developed XR appli-
cations for educational and entertainment purposes and ran exhibitions attracting a 
wide audience. His current research focuses on applications and technologies for 
immersive learning and user experience design for spatial computing. Rolf Kruse 
actively supported the editors and authors of this textbook in structuring the content 
and uniform graphical presentation.

Dr. Leif Oppermann is head of the Mixed and Augmented Reality Solutions 
group at Fraunhofer FIT in Sankt Augustin, Germany, which is a part of their 
Cooperation Systems research department. He is researching into applications of 
mobile Mixed Reality, web-based collaboration and ubiquitous computing for intel-
ligence augmentation using a user-oriented cooperative design approach. Prior to 
joining FIT, he was a research fellow at the Mixed Reality Lab of the University of 
Nottingham, UK, under Steve Benford und Tom Rodden, where he worked on per-
vasive gaming projects and completed his PhD in 2009 with a thesis on “Facilitating 
the Development of Location-Based Experiences”. Leif has a background in real- 
time graphics programming and finished his Mediainformatics studies in 2003 at 
the Hochschule Harz with a work on interacting with surfaces in AR using head- 
mounted displays and a pointing device with distinction. He continued to work as a 
research associate on AR projects with Christian Geiger and Ralf Doerner before 
moving to Nottingham in 2004. Dr. Oppermann joined FIT in 2009 and currently 
leads the German national project “IndustrieStadtpark” on mobile applications for 
5G in an industrial campus setting. For this book he contributed to Chap. 6, espe-
cially to Sects. 6.1, 6.3, 6.4 and 6.5.

About the Authors



418

Dr. Volker Paelke has been professor of Human–Computer Interaction at the 
University of Applied Science in Bremen since 2015. In 2002 he completed his 
doctorate on the “Design of Interactive 3D Illustrations” at the University of 
Paderborn, working in C-LAB, a joint venture with Siemens AG. From 2002 to 
2004 he worked as a postdoc in the special research cluster SFB 614 Self-Optimizing 
Systems, researching the use of VR in collaborative engineering applications. In 
2004 he was appointed to the junior professorship for 3D geovisualization and aug-
mented reality at the Leibniz University of Hanover. From 2010 to 2012 he worked 
as institute professor and head of the 3D visualization and modeling group at the 
Geomatics Institute in Barcelona. From 2013 to 2014 he deputized as the professor 
for user-friendly design of technical systems at the Ostwestfalen-Lippe University 
of Applied Sciences in Lemgo and set up the User Experience Design group at 
Fraunhofer IOSB-INA in Lemgo. His research interests lie in the user-centered 
design of visual-interactive applications, with a focus on 3D visualization, AR/MR 
techniques and natural user interfaces. Prof. Paelke contributed to Chap. 6, espe-
cially Sects. 6.3 and 6.6.

Dr. Thies Pfeiffer is Professor for Human-Computer Interaction and Head of the 
Mixed Reality Laboratory at the Department for Electrical Engineering and 
Information Technology, Faculty of Technology, University of Applied Sciences 
Emden/Leer, Germany. He received his PhD in Informatics in the Artificial 
Intelligence Group headed by Prof. Dr. Ipke Wachsmuth at Bielefeld University in 
2010. From 2013 to 2019 he was Technical Director of the Virtual Reality Lab and 
the Immersive Media Lab at the Cluster of Excellence Cognitive Interaction 
Technology (CITEC) at Bielefeld University. In his research, he focuses on Mixed 
Reality technologies for assistance and training. As author he was happy to contrib-
ute to Sect. 7.1.

Dr. Dirk Reiners is an Associate Professor in the Department of Computer Science 
at the University of Central Florida. He has Masters and PhD degrees from the 
Technical University of Darmstadt, Germany. Before joining academia, he worked 
for more than 10 years at the Fraunhofer Institute for Computer Graphics, the larg-
est research group in the world for computer graphics, leading a variety of industry 
and public research projects in virtual and augmented reality and directing the 
development of the OpenSG system. His research interests are focused on software 
systems for Virtual and Augmented Reality, different applications of interactive 3D 
graphics and immersive display systems of all kinds. As an academic, he has 
received several best paper awards, over $15 million in funding and several patents 
and open source licenses. He is a member of IEEE and ACM. As an author, he con-
tributed to Chap. 5 (mainly Sect. 5.4) and Sect. 7.3.

Dr. Tobias Schwandt is a research assistant at the Ilmenau University of 
Technology in the Virtual Worlds and Digital Games research group. In his disserta-
tion, he was particularly concerned with the illumination of virtual content in AR, 
its influence on the real environment, the reconstruction of environmental light and 

About the Authors



419

the manipulation of real geometry by virtual content. Prior to that, he obtained a 
Master of Science in Applied Computer Science at the Erfurt University of Applied 
Sciences in 2014. He has a strong background in computer graphics and visualiza-
tion of  virtual content. He also spent some time at Fraunhofer IDMT in the research 
area of exer-learning games as part of the project HOPSCOTCH. At TU Ilmenau, 
eXtended- Reality (XR) became his professional and personal focus. His results 
were presented and published, among others, by IEEE ISMAR, GRAPP, CW and 
Springer. He co-authored Sects. 10.2 and 10.3.

Dr. Frank Steinicke is full professor of Human–Computer Interaction at the 
Department of Informatics at the University of Hamburg, and head of the Human–
Computer Interaction research group. His research interests focus on three- 
dimensional user interfaces for computer-generated environments, with a special 
focus on virtual and augmented reality, multi-sensory perception and human–com-
puter interaction. He studied mathematics with a minor in computer science at the 
University of Münster and graduated in 2002. In 2006 he received his doctorate in 
computer graphics and visualization at the Institute for Computer Science at the 
University of Münster. He then worked as a visiting professor at the Department of 
Computer Science at the University of Minnesota in Duluth (USA) in 2009. In 
2010, Frank Steinicke received the Venia Legendi for computer science from the 
University of Münster. Before he accepted the call to Hamburg in 2014, he worked 
as a W2 professor for media informatics in Würzburg between 2011 and 2014. As 
an author, he contributed Sects. 2.1, 2.2, 2.3, 2.4.5, 2.4.6 and 2.5.2.

Dr. Arnd Vitzthum currently heads the media informatics group at the University 
of Cooperative Education in Dresden and educates students in the fields of Computer 
Graphics and Virtual Reality. He studied Computer Science at the Dresden 
University of Technology. From 2003 to 2008, he worked as a research and teaching 
assistant at the University of Munich, where he wrote his doctoral thesis on Software 
Engineering of 3D-Applications. From 2008 to 2011, he was a scientific staff mem-
ber at the TU Bergakademie Freiberg where he contributed to the VR-related project 
“Virtual Workers” and led the project “Roundtrip 3D”, which was based on the 
results of his dissertation. Both projects were funded by the Deutsche 
Forschungsgesellschaft (DFG). Dr. Arnd Vitzthum wrote Sects. 3.2, 3.3, 3.4, 
and 3.5.

Kai Weber is studying applied computer science as a masters student with a focus 
on media informatics at the University of Applied Science in Fulda. He works as a 
research associate in the field of data analysis and was previously involved in sev-
eral research projects in the field of augmented reality. Furthermore, he also acted 
as a supporting teacher in the field of 3D modeling, animation and game program-
ming. Before that, he worked as a freelance in the field of media production and as 
a system administrator. During his bachelor’s thesis, he dealt with the generation 
and analysis of synthetic training data for artificial neural networks in the field of 
context- based image segmentation. In addition, he contributes as a 3D artist and 
developer in a video game project. Kai Weber contributed Sect. 10.3.3.

About the Authors



420

Dr. Florian Weidner has been working as a research assistant in the Virtual Worlds 
and Digital Games Group at the Ilmenau University of Technology since 2016. As 
part of his dissertation, he worked on the development and impact of Spatial 
Augmented Reality for virtual dashboards in vehicles. From 2009 to 2015, he stud-
ied Media Informatics with a minor in Biomedical Engineering at the Dresden 
University of Technology, where he received his M.Sc. degree. His other research 
interests include Virtual Reality, Mixed Reality and Augmented Reality, as well as 
input and output devices for these technologies. His results were presented, among 
others, at the IEEE Conference on Virtual Reality and 3D User Interfaces and the 
ACM Conference on Automotive User Interfaces and Interactive Vehicular 
Applications. He contributed to this book as an author on Sects. 10.2 and 10.3.

About the Authors



421© The Author(s), under exclusive license to Springer Nature  
Switzerland AG 2022 
R. Doerner et al. (eds.), Virtual and Augmented Reality (VR/AR), 
https://doi.org/10.1007/978-3-030-79062-2

A
AABB tree, 262
acceleration, 114
accommodation, 41, 45
accommodation-convergence discrepancy, 56
accommodation distance, 165
accretion, 47
accuracy, 107
acoustic, 113
acoustic attenuation, 95
acoustic tracking, 113
action at a distance, 212
active stereo method, 190
affine space, 405
albedo, 83
ambient light, 94
ambient occlusion, 85
ambient reflection, 82
ambisonics, 96
analysis of variances (ANOVA), 233
animation, 89
APP-CULL-DRAW, 285
appearance, 81, 211
application programming interface (API), 372
AR applications, 318
arcball, 213
ARCore, 396
area lights, 94
AR glasses, 151
AR System, 29, 30
ARToolkit, 25, 372
asthenopia, 60
asymmetrical viewing volume, 63
ataxia, 60
atmospheric perspective, 46

attention, 64
attention map, 65
AttrakDiff, 230
audible output, 193
audio source, 95
auditory perception, 48
augmented reality (AR), 10, 18–20, 291
augmented reflection technology (ART), 353
augmented virtuality, 19
author, 371
authoring process, 372, 375
autostereoscopic methods, 191
avatar, 97, 216, 362
axis-aligned bounding box (AABB), 258–259

B
backface culling, 276
backfaces, 81
background sound, 95
base, 403
behavior, 75, 91–93, 98
behavior trees, 92
believability, 17
between-group design, 229
bias, 229
billboards, 88, 100
binary space partitioning tree  

(BSP tree), 264–266
binaural hearing, 95
binocular depth cue, 45
Binocular HMD, 166
Blender, 387
blending, 184, 351
Blueprints, 378, 389

Index

https://doi.org/10.1007/978-3-030-79062-2#DOI


422

Bonferroni correction, 233
boundary representation (b-rep), 80
bounding sphere, 259
bounding volume (BV), 80, 90, 257, 274, 

276, 285
bounding volume hierarchies (BVHs), 

262, 285
box-and-whisker diagram, 231
box plot, 231
break in presence, 17
brightness, 118
brightness uniformity, 154
broad phase, 267
building information modeling (BIM), 345
bump mapping, 84

C
C#, 375
C++, 378
caching, 281
calibration, 112
camera-based tracking, 108
“camera-in-hand” technique, 217
carmouflage object, 313
Cartesian coordinate system, 406
causation, 233
cave automatic virtual environment 

(CAVE), 25, 350
ChairIO, 221
change blindness, 220
channel separation, 185
Chi-square test, 234
circular polarization filter, 187
clipping, 273
Cochran’s Q test, 234
coding, 230
cognitive map, 214
cognitive processor, 40
Cohen’s kappa, 230
collabative virtual environment (CVE), 155
Collada, 387
collision detection, 255–271
collision engine, 90
collision response, 270
color picking, 206
color reproduction, 153
color space, 153
complete survey, 232
concatenation, 410
cones, 41
constraints, 208
context-aware filling, 321
context-sensitive, 321

contingency coeffi-cient, 234
continuous collision detection, 271
contrast, 117
contrast ratio, 138
controlled experiment, 233
control techniques, 217
convergence, 43, 45
conversion tools, 372
Cook-Torrance model, 83
coordinates, 403
coordinate system, 405
Coriolis stimulation, 61
correlation, 233
corresponding points, 43
coupling-in, 158
coupling-out, 158
crossed disparity, 43
cross product, 406
cross-reality, 20
crosstalk, 187
culling, 272
curved screen, 176
cybersickness, 60, 247
cyclopean scale, 54

D
dashboard, 311
data glasses, 24
DataGlove, 24
DaVinci-stereopsis, 44
debriefing, 229
decision trees, 92
deep learning, 324
deep neural network, 86
deformable object, 91
depersonalization, 236
depth buffer, 275, 312
depth cameras, 306, 307
depth cameras (RGBD cameras), 312
depth cues, 45
depth of field, 56
descriptor, 127
design activities, 225
diamond square algorithm, 101
diffuse reflection, 82
digital light projector (DLP), 162
dimension, 403
diminished reality (DR), 20, 21, 314, 315, 321
diplopia, 53
directed acyclic graphs (DAGs), 75, 284
directed line segments, 403
directional light, 93
direct manipulation, 203

Index



423

discrete-oriented polytopes 
(k-DOPs), 261–262

disparity, 43, 45
displacement mapping, 84
display, 111
display latency, 249, 252
display surface, 44
distance, 406
distortion maps, 169
DLP link, 191
dome projection, 176, 179
Doppler effect, 96
double vision, 53, 54
drift, 111
dwell time, 317
dynamic depth cue, 45
dynamic range, 153

E
early Z rejection, 276
edge collapse, 86
elastic interface, 220
electrical muscle stimulation, 197
electromagnetic tracking system, 250
elevation grid, 101
ELSI/ELSA, 237
Emmert’s law, 57
end effector, 144
end effector displays, 144
end-to-end latency, 249, 254
energy conservation, 83
entity, 375
entity-component model, 375, 379
equirectangular function, 169
escapism, 236
ethics, 237
ethics guidelines, 237
Euclidean point space, 406
exit pupil, 164
exoskeleton, 135
exploration, 215
eXtended reality (XR), 19
eye-directed control, 216
eye motion box, 164
eye relief, 164
eye-tracking, 252, 317

F
factor, 233
feature-based tracking techniques, 127
feature integration theory, 65

feature points, 383
features, 382, 383
field, 401
field of view (FOV), 52, 76, 215
finger tracking, 111
finite state machines (FSM), 91
first person-games, 381
Fisher’s test, 234
Fitts’ Law, 208
fixation maps, 66
fixed-directions hulls (FDH), 261
flashlight technique, 210
focus, 208
force feedback, 195
fovea, 41
foveated rendering, 252
fractal shape, 102
fragment shader, 85
frame cancellation, 55
frame rate, 247
frame-rate induced delay, 249
frames per second (fps), 153
Fresnel reflection, 84
Friedman test, 234
front luminance, 158
front projection, 175
frustum, 273
functional decomposition, 227
fusion, 44

G
gabor filter, 66
gain factor, 183
gains, 59
game AI, 92, 98, 285
game engines, 74, 83, 103, 285, 372
GameObjects, 375
gamut, 153
gaze-based interaction, 317
geographic information system  

(GIS), 345
geometric field of view, 58
geometric registration, 293, 300
geometric vector, 403
gestures, 205
ghosting, 187
GJK algorithm, 269
global illumination models, 94
glossy reflections, 306
gl transmission format (glTF ), 82
go-go technique, 210
graphical user interfaces (GUIs), 14

Index



424

graphics processing unit (GPU), 86, 251, 256, 
271–273, 275, 279, 282, 283, 285

grounded theory, 230
guided navigation, 222

H
haptic feedback, 256
haptic loop, 195
haptic perception, 49
haptics, 49
hard edge, 184
Hawthorne effect, 229
Head Related Transfer Function (HRTF), 194
headlight, 95
head-mounted displays (HMDs), 12, 13, 306
head-related transfer function (HRTF), 48
head-tracking, 12
head-up content, 311
head-up displays (HUD), 320
height field, 101
height in the field of view, 46
hermann grid, 3
heuristic evaluation, 229
hierarchical finite state machines, 92
hierarchical view volume culling, 274
holodeck, 12
holographic objects, 390
holographic optical elements (HOE), 159
HoloLens, 390
HOMER, 210
Homogeneity, 154
homogeneous coordinates, 409
homography, 322, 324
horizontal prototypes, 228
horopter, 43
HTC Vive, 388
human-centered design, 224, 225
human–computer interaction (HCI), 202
human information processing, 41
hybrid tracking system, 250
hybrid tracking techniques, 131

I
illumination model, 82
image blur, 45
image layer technique, 210
image sharpness, 154
immersion, 13, 51
inattentional blindness, 64
indexed face set, 79, 280
indexed mesh, 79, 280
indexing, 280

indirect illumination, 94
indirect lighting, 94
inertial navigation system (INS), 115
inertial sensor, 114
inertial tracking, 114–115
inertial tracking system, 250
informed consent, 229
inhibition, 66
input devices, 107–146
inside-out, 113
inside-out tracking, 113
interaction by navigation, 316
Interactivity, 72
interference filter, 188
interpupillary distance (IPD), 166
interview, 230
intuitive user interface, 15
inverse kinematics, 98
inverse matrix, 409
involvement, 17
isometric interface, 220
isotonic interface, 220
ISO 9241-210, 225

J
java native interface (JNI), 397
Javascript, 375
joy of use, 202

K
Kalman filters, 131
k-d tree, 265, 266, 274
keyframe, 89
keyframe animation, 89
kinaesthesia, 49
known size, 46
Kruskal-Wallis test, 234

L
landmark knowledge, 214
Laser-based tracking, 115–116
latency, 245–248, 250–252, 300
latency determination, 250
latency requirements, 247
Latin square, 229
leaning-based interface, 220
lenticular lenses, 191
level of detail (LOD), 87, 278, 285
light attenuation, 93
light detection and ranging (LiDAR), 382, 383
lightmap, 94

Index



425

lightmap baking, 94
light probes, 94, 304
light sources, 93
Likert scale, 231
line, 407
linear combination, 403
linearly independent, 403
linear perspective, 46
local coordinate system, 76
local illumination models, 94
local interaction techniques, 208
logical input devices, 203
L-shapes, 175
luminance, 153
luminous flux, 153
luminous intensity, 153

M
magical 3D interaction, 203
magic lens, 307
magic lens metaphor, 295
magic wand, 207
magnetic field-based tracking, 114
maneuvering, 216
manipulation, 211
Mann-Whitney-U-test, 234
mapping, 382
marker-based methods, 118–122
marker-based optical tracking, 252
marker-based tracking, 122
markerless, 118
material, 82, 283
material systems, 82
matrix, 408
matrix-matrix addition, 408
matrix-matrix multiplication, 408
McNemar’s test, 234
mechanical tracking system, 254
median, 231
mediated reality, 20, 305
mental model, 202
metalness, 83
metaphor, 15, 202
micro-facets, 83
Midas touch problem, 209
midpoint displacement method, 101
Minkowski difference, 269
Minkowski sum, 269
mixed reality (MR), 19
mobile position tracking, 116
mobile systems, 155
mock-up, 227
mode errors, 209

monocular depth cue, 45
Monocular HMD, 166
morality, 237
motion capture, 98
motion parallax, 47
motion sickness, 60
motion sickness assessment questionnaire 

(MSAQ), 62
motion-to-photon latency, 249
motor processor, 40
multi-channel audio systems, 194
multimodal, 13
multisensory perception, 48
multi-sided projection systems, 195

N
narrow phase, 267, 268
natural 3D interaction, 203
natural user interfaces, 213
navigation, 214
negative parallax, 44
Newtonian physics, 100
nimbus, 208
nominal, 231
non-player characters (NPCS), 97
normalized device coordinates (NDC), 279
normal mapping, 84
normal vector, 407
null hypothesis, 232
number of degrees of freedom, 110, 208

O
OBB tree, 262
obtrusiveness, 112, 155
occluders, 312
occlusion, 45
occlusion culling, 275, 276
occlusion query, 276
octree, 266, 274
off-axis method, 63
omni light, 93
one-sample t-test, 234
one-tailed test, 233
one-way ANOVA, 234
opacity, 84
openVR, 385
optical flow, 50
optical see-through AR (OST-AR), 296
optical see-through displays  

(OST displays), 158
optical tracking system, 250
ordinal, 231

Index



426

oriented bounding boxes (OBBs), 259–261
origin, 405
orthogonal, 406
outdoor position tracking, 116–117
outside-in, 118
outside-in tracking, 146
overuse, 238
overview knowledge, 215

P
paired t-test, 234
Panum’s fusional area, 44
paradoxical window, 55
parallax, 44
parallax barriers, 192
parallax budget, 54
particle system, 88, 99
path planning, 222
pathtracing, 94
Pearson correlation, 234
perceptual processor, 40
perspective, 295
PHANTom, 25
phantom objects, 312
Phong model, 82
photogrammetry, 73
photometric registration, 293, 304, 309
physically based rendering (PBR), 82
physics engine, 90
physics simulation, 256, 270
picking, 206
pictorial depth cue, 45
pilot, 229
place illusion, 17
plane, 407
plausibility illusion, 17
point & teleport method, 221
pointing device, 206
pointing gestures, 213
point light, 93
point-normal form, 407
point-point subtraction, 404
point-vector addition, 405
polarization, 186
polygon, 78
polygon mesh, 79
polygon soup, 280
portal culling, 277
pose estimation, 292
position estimation, 293
position vector, 405
positive parallax, 44
postural instability theory, 61

post-WIMP interface, 15
preattentive processing, 65
Prefabs, 375
presence, 17, 51
pre-test, 229
priming, 235
primitive instancing, 81
prism-based glasses, 159
probability value (p-value), 233
procedural knowledge, 215
procedural modeling, 73, 101–103
programming interface, 372
programming libraries, 372
projection matrix, 274
projection system, 151
proprioception, 49
props, 205
Proteus effect, 362
prototype, 228
proxy, 317
pupil distance, 53
pupil forming HMDs, 164

Q
q% quantile, 231
quadrilateral strips, 282
quadtree, 266
qualitative analysis, 230
quasimodes, 209
questionnaire, 230

R
radiosity, 94
randomized approach, 323
RANSAC, 127
rational, 231
ray-casting, 206, 210
raytracing, 86, 94
reality–virtuality continuum, 19
real-time capability, 72, 246
real-time rendering, 271
rear projection, 174
redirected free exploration with distractors 

(RFED), 219
redirected walking (RDW), 67, 219
refresh rate, 247, 256
registration, 300
regression analysis, 233
relative size, 46
remote interaction techniques, 208
rendering latency, 249, 251
repeated measures ANOVA, 234

Index



427

resolution, 110
retina, 41
retinal HMDs, 161
RGBD, 128
rigging, 97
right-handed system, 407
rigid bodies, 89
robustness of linear perspective, 52
rods, 41
roughness, 83
route knowledge, 215
rubber hand illusion, 235

S
saccades, 41
salience, 65
saliency, 65
saliency map, 65
sample, 232
scalar, 401
scalar-matrix multiplication, 408
scalar multiplication, 402, 403
scalar product, 405
scale invariant feature transform (SIFT), 128
scenario-based design, 227
scene, 75
scene graph, 74–77, 376, 378, 395
scene graph systems, 284–285
Scripts, 375
seamless display, 180
search, 216
seasickness, 60
seating buck, 334
selection, 205
self-perception, 237
semantic differential scale, 231
sensitivity, 112
sensory conflict theory, 61
separating axis, 260
separating axis theorem (SAT), 260
serious games, 333
shader, 83, 85, 86
shadow cast, 305
shadows, 46
shape from shading, 46
Shapiro-Wilks test, 232
shutter glasses, 177
significance level, 233
simplification of polygon meshes, 74
simulator sickness, 60
simulator sickness questionnaire  

(SSQ), 62

simultaneous localization and mapbuilding 
(SLAM), 306, 382

single pass stereo, 251
single-sided displays, 173
size constancy, 46, 57
skeleton-based animation, 97
skinning, 97
sky box, 96
sky sphere, 96
small feature culling, 277
smart projectors, 309
soft bodies, 89
soft edge, 184
software development kit (SDK), 372
software tools, 372
solid model, 80, 81
solid particle systems, 100
Sort & Sweep, 267
sound, 95, 96
space partitioning, 263
spatial AR (SAR), 297, 309
spatial audio sources, 95
spatial augmented reality (SAR), 347
spatial hashing, 264
spatial mapping, 393
Spearman correlation, 234
specular reflection, 82
speed constancy, 50
speeded up robust features (SURF), 128
speed teleporting method, 222
sphere tree, 262
spherical displays, 175
spherical harmonics, 305
spot light, 93
standard deviation, 232
state machines, 91, 98
stationary systems, 151
statistically significant, 233
steamVR, 385
stereo blindness, 44
stereo display, 44
stereopsis, 42
stereoscopic rendering, 251
stereoscopic window violation, 55
stereotype, 235
strafing, 216
stripping, 282
structured light, 307
superimposition, 293
supernatural user interfaces, 213
surface model, 78
suspension of disbelief, 7
Sweep & Prune, 267, 268

Index



428

T
tail, 403
tangibles, 205, 317
tangible user interfaces (TUI), 317
task analysis, 227
task load index, 230
task maps, 65
technology assessment (TA), 237
technology readiness levels (TRLs), 332
teleportation, 217
temporal coherence, 268
terrain modeling, 101
test plan, 229
tethered, 211
texture, 84, 85
texture baking, 87
texture gradient, 46
texturing, 84
thinking aloud test, 230
3D computer graphics, 13
3D cursor, 207
3D interaction, 12
3D widgets, 204
tiled displays, 151
tiled projections, 179
tiling, 101
time, 107
Time of Flight (TOF), 113
tip, 403
toe-in method, 63
tool chain, 372
tracking, 12, 292, 300, 382
tracking latency, 248, 250, 252
tracking systems, 250
tracking techniques, 107
tracking update rate, 300
tracking using black and white 

markers, 122–126
transcutaneous electrical nerve 

stimulation, 197
transformation matrix, 76
translucency, 83
transparency, 83
transport latency, 248, 251
transposed matrix, 408
traveling, 215
treatment factor, 233
triangle strips, 79, 282
Tukey box plot, 231
two-tailed test, 232

U
ultimate display, 12, 23
ultrasound-based systems, 197
UML use case diagram, 227
uncrossed disparity, 43
uniformity, 151
Unity, 375, 385, 390
unpaired t-test, 234
unreal engine (UE), 378, 388
update rate, 111
urban canyon, 116
usability, 202
use case, 227
user experience, 202
user tests, 228–234

V
vection, 50, 62
vector, 402
vector addition, 402
vector space, 401
vergence-accommodation conflict, 56
vergence-focus conflict, 56
vertex shader, 85
vertical parallax, 63
vertical prototypes, 228
vertigo, 247
vestibular sense, 50
vestibulo-ocular reflex, 248
video pass-through AR, 295
video see-through AR (VST-AR), 295
video see-through displays (VST 

displays), 158
video stream, 292
view frustum culling, 273
view volume, 256
view volume culling, 256, 273, 274, 278, 285
vignetting, 183
virtual body ownership (VBO) illusion, 362
virtual display, 161
virtual environment, 6
virtual eye separation, 53
virtual field of view, 294
virtual hand, 207, 213
virtual humans, 97
virtual prototyping, 97
virtual reality (VR), 20
virtual reality locomotion, 216
virtual reality markup language (VRML), 74

Index



429

virtual world, 6, 71
visibility testing, 272
visual field, 151
visual programming, 373
visual programming approach, 378
visual realism, 72
visual SLAM, 130
visual system, 2
Vive Cosmos, 388
voice commands, 205
volumetric displays, 44
von Neumann bottleneck, 281
voodoo dolls, 214
Vortex rings, 197
VR/AR application, 371
VR/AR assets, 371
VR glasses, 136
VR sickness, 60
VR system, 6, 26–28

W
walking in place, 218
wave field synthesis, 96
waveguide optics, 158

wavelength multiple, 188
wayfinding, 214
what-you-see-is-what-you-get principle 

(WYSIWYG), 373
white flash, 191
whole-body illusion, 235
Wilcoxon rank sum test, 234
Wilcoxon signed rank test, 234
Windows, Icon, Menu, Pointer  

(WIMP), 202
winner-takes-all approach, 66
wired clothing, 27
within-group design, 229
world-in-miniature (WIM), 210

X
X-ray vision, 314
X3D, 74

Z
Z-buffer, 275
zero vector, 402
Z pre-pass, 276

Index


	Foreword
	Preface
	Contents
	Chapter 1: Introduction to Virtual and Augmented Reality
	1.1 What Is VR/AR About?
	1.1.1 The Perfect Virtual Reality
	1.1.2 The Simulation of the World
	1.1.3 Suspension of Disbelief
	1.1.4 Motivation

	1.2 What Is VR?
	1.2.1 Technology-Centered Characterizations of VR
	1.2.2 VR as an Innovative Kind of Human–Computer Interaction
	1.2.3 Mental Aspects of the VR Experience

	1.3 What Is AR?
	1.4 Historical Development of VR and AR
	1.5 VR Systems
	1.6 AR Systems
	1.7 Using the Book
	1.7.1 Structure of the Book
	1.7.2 Usage Instructions
	1.7.3 Target Groups
	Lecturers in the Field of VR/AR
	Students
	Users and Those Who Want to Become Users
	The Technology-Savvy


	1.8 Summary and Questions
	Recommended Reading
	References

	Chapter 2: Perceptual Aspects of VR
	2.1 Human Information Processing
	2.2 Visual Perception
	2.2.1 Stereo Vision
	2.2.2 Perception of Space

	2.3 Multisensory Perception
	2.3.1 Auditory Perception
	2.3.2 Haptic Perception
	2.3.3 Proprioception and Kinaesthesia
	2.3.4 Perception of Movement
	2.3.5 Presence and Immersion

	2.4 Phenomena, Problems, Solutions
	2.4.1 Deviating Observation Parameters
	2.4.2 Double Vision
	2.4.3 Frame Cancellation
	2.4.4 Vergence-Focus Conflict
	2.4.5 Discrepancies in the Perception of Space
	2.4.6 Discrepancies in the Perception of Movement
	2.4.7 Cybersickness
	2.4.8 Vertical Parallax Problem

	2.5 Use of Perceptual Aspects
	2.5.1 Salience
	2.5.2 User Guidance

	2.6 Summary and Questions
	Recommended Reading�
	References

	Chapter 3: Virtual Worlds
	3.1 Introduction
	3.1.1 Requirements on 3D Object Representations for Virtual Worlds
	3.1.2 Creation of 3D Models
	3.1.3 Preparation of 3D Models for VR/AR
	3.1.4 Integration of 3D Models into VR/AR Runtime Environments

	3.2 Scene Graphs
	3.3 3D Objects
	3.3.1 Surface Models
	Polygonal Representations
	Polygons
	Polygon Meshes
	Triangle Strips

	3.3.2 Solid Models
	Boundary Representations (B-Reps)
	Primitive Instancing

	3.3.3 Appearance
	Materials
	Textures
	Shader

	3.3.4 Optimization Techniques for 3D Objects
	Simplification of Polygon Meshes
	Level-of-Detail Techniques
	Texture Baking
	Billboards


	3.4 Animation and Object Behavior
	3.4.1 Keyframe Animation
	3.4.2 Physics-Based Animation of Rigid Bodies
	3.4.3 Object Behavior
	3.4.4 Behavior and Animation in Scene Graphs

	3.5 Light, Sound, Background
	3.5.1 Light Sources
	3.5.2 Sound
	3.5.3 Backgrounds

	3.6 Special Purpose Systems
	3.6.1 Virtual Humans
	3.6.2 Particle Systems
	3.6.3 Terrain
	3.6.4 Vegetation

	3.7 Summary and Questions
	Recommended Reading
	References

	Chapter 4: VR/AR Input Devices and Tracking
	4.1 Fundamentals of Input Devices
	4.2 Tracking Techniques
	4.2.1 Acoustic Tracking
	4.2.2 Magnetic Field-Based Tracking
	4.2.3 Inertial Tracking
	4.2.4 Laser-Based Tracking
	4.2.5 Outdoor Position Tracking

	4.3 Camera-Based Tracking
	4.3.1 Marker-Based Methods
	4.3.2 Tracking Using Black and White Markers
	Use of Marker Tracking
	Basic Operation
	Intrinsic and Extrinsic Camera Parameters

	4.3.3 Feature-Based Tracking Techniques
	Geometry-Based Tracking
	Other Feature-Based Tracking Techniques

	4.3.4 Visual SLAM
	4.3.5 Hybrid Tracking Techniques
	Cloud-Based Tracking
	Microsoft Hololens Tracking


	4.4 Finger Tracking
	4.5 Eye Tracking
	4.5.1 Eye Movements
	4.5.2 Methods
	4.5.3 Functionality of an Eye Tracker
	4.5.4 Calibration
	4.5.5 Eye Tracking in Head-Mounted Displays
	4.5.6 Remote Eye Tracker

	4.6 Further Input Devices
	4.6.1 3D Mouse
	4.6.2 Mechanical Input Devices
	4.6.3 Treadmills for Virtual Reality

	4.7 Summary and Questions
	Recommended Readings
	References

	Chapter 5: VR/AR Output Devices
	5.1 Introduction
	5.2 Basics of Visual Output
	5.3 Head-Mounted Displays (HMDs)
	5.3.1 VR Glasses
	5.3.2 AR Glasses
	5.3.3 General Characteristics and Properties of HMDs
	5.3.4 Special HMDs

	5.4 Stationary VR Systems
	5.4.1 Single-Sided Displays
	5.4.2 Multi-Sided Displays
	5.4.3 Tiled Displays
	5.4.4 Stereo Output Methods

	5.5 Audio Output Devices
	5.6 Haptic Output Devices
	5.7 Summary and Questions
	Recommended Reading
	References

	Chapter 6: Interaction in Virtual Worlds
	6.1 Fundamentals of Human–Computer Interaction
	6.2 System Control
	6.3 Selection
	6.3.1 Pointing in Virtual Worlds
	6.3.2 Interaction Design
	6.3.3 Examples of Selection Techniques

	6.4 Manipulation of Objects
	6.5 Navigation
	6.5.1 Control Techniques for Traveling
	6.5.2 Walking Technique for Natural Movement Control
	6.5.3 Leaning Interfaces for Movement Control
	6.5.4 Teleportation for Movement Control
	6.5.5 Route Plan, Goal-Based and Guided Movement Techniques
	6.5.6 Criteria for Navigation Techniques

	6.6 Processes for the Design and Implementation of Interaction
	6.6.1 Characteristics of VR/AR User Interfaces
	6.6.2 Human-Centered Design of VR/AR Interactions
	Analysis of the Context of Use
	Specification of Requirements
	Concept, Design and Implementation
	Evaluation (Especially User Tests)


	6.7 User Tests
	6.8 Ethical, Social and Legal Aspects of VR/AR
	6.9 Summary and Questions
	Recommended Reading
	References

	Chapter 7: Real-Time Aspects of VR Systems
	7.1 Latency in VR Systems
	7.1.1 What Are the Requirements on Latency?
	7.1.2 Where Do Latencies Actually Arise?
	7.1.3 Is Latency in a VR System Constant?
	7.1.4 What Are the Approaches to Determining Latency?
	Latency Estimation from Datasheets
	Measuring the Latency of Tracking Systems
	Measuring End-to-End Latency

	7.1.5 Summary of Latency

	7.2 Efficient Collision Detection in Virtual Worlds
	7.2.1 Bounding Volumes
	Axis-Aligned Bounding Box (AABB)
	Bounding Spheres
	Oriented Bounding Boxes (OBBs)
	Discrete-Oriented Polytopes (k-DOPs)

	7.2.2 Bounding Volume Hierarchies and Space Partitioning Techniques
	Bounding Volume Hierarchies (BVHs)
	Space Partitioning Techniques

	7.2.3 Collision Detection in Large Environments
	Broad Phase Collision Detection
	Narrow Phase Collision Detection

	7.2.4 Summary and Advanced Techniques

	7.3 Real-Time Rendering of Virtual Worlds
	7.3.1 Algorithmic Strategies
	View Volume Culling
	Hierarchical View Volume Culling
	Occlusion Culling
	Backface Culling
	Small Feature Culling
	Portal Culling
	Level of Detail (LOD)

	7.3.2 Hardware-Related Strategies
	Object Size
	Indexing
	Caching
	Stripping (Triangle and Quadrilateral Strips)
	Minimizing State Changes

	7.3.3 Software Systems for Virtual Worlds
	Scene Graph Systems
	Game Engines


	7.4 Summary and Questions
	Recommended Reading
	References

	Chapter 8: Augmented Reality
	8.1 Introduction
	8.1.1 Getting Started
	8.1.2 AR – An Overview

	8.2 Registration
	8.2.1 Geometric Registration
	8.2.2 Photometric Registration

	8.3 Visual Output
	8.3.1 Handheld Devices
	8.3.2 Projection-Based Output
	8.3.3 Further Types of Spatial AR
	8.3.4 AR Mirrors

	8.4 Special AR Techniques
	8.4.1 Head-Up Content
	8.4.2 Occlusions and Phantom Objects
	8.4.3 Crossfading Markers
	8.4.4 Virtual Holes
	8.4.5 X-Ray Vision

	8.5 Special AR Interaction Techniques
	8.5.1 Interaction by Navigation
	8.5.2 Gaze-Based Interaction
	8.5.3 Tangible User Interfaces

	8.6 AR Applications
	8.7 Diminished and Mediated Reality
	8.7.1 Diminished Reality
	8.7.2 Mediated Reality

	8.8 Summary and Questions
	Recommended Reading
	References

	Chapter 9: VR/AR Case Studies
	9.1 Introduction and Overview
	9.2 Using Virtual Reality for Design Processes in the Automotive Industry
	9.3 AR/VR Revolutionizes Your In-Car Experience
	9.4 VR-Based Service Training in the Life Sciences and Diagnostics Industry
	9.5 Utilizing Augmented Reality for Visualizing Infrastructure
	9.6 Enhancing the Spatial Design Process with CADwalk
	9.7 The aixCAVE at RWTH Aachen University
	9.8 Augmented Reflection Technology: Stroke Rehabilitation with XR
	9.9 Collaborative Virtual Trainers in VR Applications
	9.10 Virtual Patients: A Case Study from Research to Real-World Impact
	9.11 Embodied Social XR for Teaching, Learning and Therapy
	9.12 Virtual Reality for Teaching Literacy to Prisoners
	References
	References for Sect. 9.1
	References for Sect. 9.2
	References for Sect. 9.3
	References for Sect. 9.5
	References for Sect. 9.6
	References for Sect. 9.7
	References for Sect. 9.8
	References for Sect. 9.9
	References for Sect. 9.10
	References for Sect. 9.11
	References for Sect. 9.12


	Chapter 10: Authoring of VR/AR Applications
	10.1 Supporting Authors
	10.2 Foundations of Authoring Software
	10.2.1 Unity
	How It Works
	VR/AR Development with Unity
	Summary

	10.2.2 Unreal Engine
	How It Works
	Developing VR/AR Applications
	Summary

	10.2.3 AR Frameworks: ARCore and ARKit
	Availability
	Tracking and Mapping
	Reconstruction
	Estimation of Environment Light
	Summary


	10.3 Examples of the Creation of VR/AR Applications
	10.3.1 Making of: Immersive VR Presentation of CAD Files with the Vive Cosmos in Unity
	10.3.2 Making of: Interaction in VR Using the Vive Cosmos and Unreal Engine
	10.3.3 Making of: An Application for the Microsoft HoloLens 2 with Unity
	10.3.4 Making of: Basics for the Development of a Native ARCore Application for Android

	10.4 Summary and Questions
	Recommended Reading
	References
	Software, Online Documentation and Tutorials


	Chapter 11: Mathematical Foundations of VR/AR
	11.1 Vector Spaces
	11.2 Geometry and Vector Spaces
	11.3 Points and Affine Spaces
	11.4 Euclidean Space
	11.5 Analytical Geometry in ℝ3
	11.6 Matrices
	11.7 Affine Transformations
	11.8 Determination of Transformation Matrices

	About the Authors
	Index

