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Preface

This next volume in the cell biology and translational medicine series
continues to address the topic of stem cells in both normal and pathological
situations. The volume includes such topics as the use of decellularized
extracellular matrix in tissue transplantation, scaffolds for tissue engineering.
It also includes new insights into animal models, exosomes in the context of
their role not only in lineage progression in normal development and aging but
also in what goes awry that leads to disease states.

I remain very grateful to Gonzalo Cordova, the Associate Editor of the
series and wish to acknowledge his continued support.

I would also like to acknowledge and thank Mariska van der Stigchel,
Assistant Editor, for her outstanding efforts in helping to bring this volume to
the production stages.

A special thank you goes to Shanthi Ramamoorthy and Rathika Ramkumar
for their outstanding efforts in the production of this volume.

Finally, sincere thanks to the contributors not only for their support of the
series, but also for their willingness to share their insights and all their efforts
to capture both the advances and the remaining obstacles in their areas of
research. I trust readers will find their contributions as interesting and helpful
as I have.

Ottawa, ON, Canada Kursad Turksen
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Conventional and Emerging Markers
in Stem Cell Isolation
and Characterization

Chavali Kavyasudha, Joel P. Joseph, Rama Jayaraj,
Aruthra Arumugam Pillai, and Arikketh Devi

Abstract

Stem cells have emerged as a promising source
of cell-based therapy in regenerative medicine
with several stem cell-based products currently
in clinical trials. Despite the immense therapeu-
tic potential, their isolation from some of the
emerging sources and their characterization has
been naïve owing to the lack of standard
markers for the same. Some biomarkers have
now been well established for the isolation and
characterization of stem cells. However, there
are emerging markers that can be used in addi-
tion to these conventional markers or indepen-
dent of them to establish the identity of the stem
cells. In this review, an attempt has beenmade to
describe a few conventionally used markers and
emerging markers for the identification, isola-
tion and characterization of stem cells from var-
ious niches across the three germ layer origins.

Keywords

Conventional markers · Emerging markers ·
Epidermal SCs markers · MSC markers · NSC
markers · Stem cell markers
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FGFR4 Fibroblast Growth Factor
Receptor – 4

Flk1 Fetal Liver Kinase 1
Gata5 GATA binding protein 5
GPI Glycosyl – phosphatidylinositol
hBMSCs Human Bone Marrow Stem

Cells
HER-2 Human Epidermal Growth

Factor Receptor 2
HMG High Mobility Group
Hopx Homeodomain only protein

Homo Sapiens
HPP – CFU High Proliferative Potential

Colony Forming Cell
ISCT International Society for Cellu-

lar Therapy
Isl1 Islet 1
Kdr Kinase Insert Domain

Receptor
Lgr5 Leucine Rich Repeat

containing G Protein-Coupled
Receptor 5

Lrig1 Leucine Rich Repeats and
Immunoglobulin-Like
Domains Protein 1

MAP 2 Microtubule associated protein 2
MAPK Mitogen Activated Protein

Kinase pathway
MCAM Melanoma Cell Adhesion

Molecule
MDR1 Multi Drug Resistant gene 1
MSCs Mesenchymal Stem Cells
Myocd Myocardin
NeuN Neuronal Nuclei
NK cells Natural Killer cells
NSCs Neural Stem Cells
OCN Osteo Calcin
PNS Peripheral Nervous System
POU family Pit-Oct-Unc family
PSA-NCAM Poly-sialylated Neuronal Cell

Adhesion Molecule
RUNX2 Runt-related Transcription

Factor 2
SB-10 Sleeping Beauty Transposon

system 10
SH3 Src – homology 3
SSEA-1 Stage Specific Embryonic

Antigens – 1

STRO – 1 Stromal Cell Surface marker
TA Transiently Amplifying
Tert Telomerase Reverse

Transcriptase
TGF – β R
complex

Transforming Growth Factor
Beta Receptor Complex

TPO Thyroid Peroxidase

1 Introduction

Stem cells are undifferentiated cells that have the
ability to self-renew and the potential to termi-
nally differentiate into cells of one or more
lineages (Kafienah et al. 2006). Although stem
cells isolated from the inner cell mass of the
blastocyst have the potential to differentiate into
many cell types barring the trophoblast (Thomson
et al. 1998), the technical complexities and ethical
concerns associated with this source has led sci-
entific fraternity across the globe to look for alter-
native sources of stem cells (Freed 2002).

Bone marrow derived mesenchymal stem cells
(MSCs) were the first stem cells which were
widely used for transplantation, identified and
isolated as a source of multipotent adult stem
cells. These cells had the capacity to differentiate
into cell lineages like adipocytes, chondrocytes,
and osteocytes (Friedenstein 1966). With bone
marrow being established as an eminent source of
adult stem cells, additional sources of mesenchy-
mal stem cells were identified in the later years
from 2004 till 2012 (Joannides et al. 2004; Laino
et al. 2005; Yen et al. 2005; Meng et al. 2007;
Haranova et al. 2011; Hassiotou et al. 2012; Lee
et al. 2015; Macrin et al. 2017) and were compared
against bone marrow as the gold standard (Baksh
et al. 2007; Xie et al. 2012; Kao et al. 2015).

At the initial stages of stem cell research, the
identity and the potency of the stem cells were
determined by means of in vivo colony forming
assays like spleen colony forming assay (CFU-S)
and in vitro assays like colony-forming unit (CFU)
assay, burst-forming unit erythroid (BFU-E) assay,
granulocyte, erythroid, megakaryocyte, Colony
Forming Unit – Granulocyte, Erythrocyte, Macro-
phage, Megakaryocyte (CFU-GEMM) assay, CFU
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granulocyte-macrophage (CFU-GM) assay and
high proliferative potential colony forming cell
(HPP-CFU) assay (Moore 1991). These stem
cells possess ability to differentiate into multiple
cell lineages by including growth factors and
cytokines (Pittenger et al. 2004; Dominici et al.
2006; Muller et al. 2007). For characterising these
stem cells, refined methods were reported in which
the predominant one being the identification of
markers expressed by stem cells (Dominici et al.
2006; Phinney and Prockop 2007; Ka et al. 2014).

The characterization of stem cells based on the
presence of markers requires affirmation of their
conformation to the standards of both the positive
and the negative markers (Moore 1991). Positive
markers are those proteins that are expected to be
expressed on a particular stem cell population
(Christensen and Weissman 2001; Potten et al.
2003), whereas negative markers refer to those
proteins that are expected to be absent or present
in very low levels in a particular stem cell popu-
lation (Osawa et al. 1996). For instance, nestin
positive cells i.e., the expression of nestin on cell
surface is representative of neural stem cells
(NSCs) (Cregan et al. 2007) suggesting that
nestin is a postive marker for NSCs. Similarly,
cells that do not express CD34 marker have been
categorized as mesenchymal stem cells (MSCs),

suggesting CD34 to be a negative marker for
MSCs (Pittenger et al. 1999). A combination of
these positive and negative markers have been
standardized for the characterization of stem cell
population of various niches (Moore 1991; Amoh
et al. 2005). For instance, the minimum accepted
standard for characterization of stem cells as
MSCs is the coexpression of the markers CD73,
CD90, CD105 (Dominici et al. 2006; Phinney
and Prockop 2007; Ka et al. 2014).

Of the different types of markers, CD markers
were the initial markers identified and used to
characterize different cell types and later several
newly identified proteins have emerged as stem
cell markers that are representative of specific
stem cell populations (Barker et al. 2007). This
review describes a few conventional and
emerging markers that have been reported for
use in the identification, isolation and characteri-
zation of stem cells from sources arising from any
of the three germ layers. (Fig. 1)

2 Conventional Markers

Conventional markers in this review refer to the
genes and their proteins used by the scientists for
identification and isolation of stem cells. As stem
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Fig. 1 A flow chart depicting the stem cell markers for characterizing stem cells that are precursors to cells of different
lineages
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cells are functionally defined, these conventional
markers must be linked with the cell’s function. In
general, these conventional markers are of two
types: cell surface markers and intracellular
markers. Conventional markers, as selected by
the authors, comprise of those stem cell markers
that have been reported before the year 2000 and
have been largely accepted as a standard for the
characterization of stem cells of a particular niche.
Markers of stem cells from various niches that
cover all the three germ layers have been reported.

2.1 Neural Stem Cell (NSC) Markers

Neural stem cells constitute a pool of stem cells,
present in the brain, having the ability to differen-
tiate into neurons. NSCs, which are ectodermal in
origin, are the potential source of stem cells used
for replacing degenerated neurons in neurodegen-
erative diseases. Initially, when biomarker based
characterization had not surfaced, the standard
method used to isolate NSCs was to dissect out
a part from any region of Central Nervous System
(CNS) containing a dividing cell population and
expose the cells to a dose of mitogens on a matrix
(Gage 2000). However, with the identification of
specified cell-surface markers and intracellular
markers the method of identification and isolation
of NSCs have transformed for the better. One of
the earlier established markers for the characteri-
zation of neural stem cells was Nestin, a class VI
intermediate filament protein transiently
expressed in NSCs with downregulation during
differentiation (Lendahl et al. 1990). Further-
more, Nestin endows the stem cells with survival
and self-renewal capacities (Park et al. 2010) and
has been considered as a predominant marker not
only for NSCs but also in other cells of Central
Nervous System (CNS) and Peripheral Nervous
System (PNS) (Lendahl et al. 1990; Clarke et al.
1994), glioma cells (Sugawara et al. 2002) and
muscle cells (Zimmerman et al. 1994). For these
reasons, Nestin has been considered as a poor
biomarker that cannot be used as a unique marker
for the characterization of NSCs (Kornblum and
Geschwind 2001). Also, CD133 or Prominin-1 is
another cell-surface marker expressed in a variety

of brain cells and is associated with brain tumors.
It is also found expressed on the surface of NSCs
and thus has been widely used to isolate NSCs
from brain (Corti et al. 2007). This is due to its
involvement in the mechanisms influencing cell
polarity, juxtacrine comunications and migration
(Zhang et al. 2008).

Recent reports showed that neuronal marker –
Neuron specific class III beta-tubulin (Tuj1) was
used for the identification of neural stem cells and
they were stained with Microtubule associated
protein 2 (MAP 2) and Neuronal Nuclei (NeuN)
markers that were specific for mature neurons
(Pan et al. 2018). There are also other neural
markers including neurofilament and β-tubulin
III used for the neural stem cell identification
(Wu et al. 2013). Though there are reports
showing the specific markers for identification
of neural stem cells, CD-15 – a stage specific
embryonic antigen-1 (Pruszak et al. 2009) and
CD24 were also used as markers of NSCs (Yuan
et al. 2011; Kim et al. 2015).

2.2 Epidermal Stem Cell Markers

Another major type of stem cells of the ectoder-
mal origin is the epidermal stem cells. Although
the identification of epidermal stem cells using
molecular markers is not very promising, few
markers have been found to be expressed on
these cells facilitating the identification and isola-
tion of these stem cells. β1 integrin, which confers
adhesiveness to the epidermal cells, is essential
for keratinocytes to maintain their stemness
through the mitogen-activated protein kinase
(MAPK) pathway (Zhu et al. 1999). Additionally,
α6 integrin expression is also considered as a
marker due to its association with the anchorage
and long-term proliferative capacity of the basal
cells (Li et al. 1998).

P63 is another traditional marker, which is a
transcription factor belonging to the same family
that includes p53 and p73 genes, reported to be
necessary for the regenerative potential of
epithelial cells (McKeon et al. 1999). It has
been reported to be abundantly expressed by the
epidermal clonal population of stem cells and

4 C. Kavyasudha et al.



there is a downregulation in their transiently
amplifying (TA) clones. This can distinguish
these stem cells from their TA progeny in the
squamous stratified epithelia (Pellegrini et al.
2001; Senoo et al. 2007).

Keratin 19, Keratin 15 (Janes et al. 2002) and β
catenin (Zhu and Watt 1999) are other intracellu-
lar proteins associated with epidermal stem cell
characterization, but these cannot be used in iso-
lation for characterization.

2.3 Mesenchymal Stem Cell (MSC)
Markers

When MSCs derived from bone marrow emerged
as a novel source of stem cells, laboratories across
the world developed methods to isolate and
expand the MSCs. However, the lack of univer-
sally accepted standards to define this cell popu-
lation caused much ambiguity and made the
comparison of data from various laboratories dif-
ficult. This issue was addressed by the Mesenchy-
mal and Tissue Stem Cell Committee of the
International Society for Cellular Therapy
(ISCT), which set forth some criteria to identify
MSCs. Besides the plastic adherence property
and multilineage differentiation potential of
MSCs, the differential expression of specific sur-
face antigens was also advocated. (Dominici et al.
2006). The presence and the absence of some of
these positive markers and negative markers are
conventionally considered to be the minimum
standard to identify the cells as MSCs.

CD73, also known as ecto-50-nucleotidase is a
glycosyl-phosphatidylinositol (GPI) linked cell
surface enzyme that serves to convert Adenosine
MonoPhosphate (AMP) to adenosine and is pre-
dominantly used as a marker for lymphocyte dif-
ferentiation (Resta et al. 1998; Colgan et al.
2006). This was first identified by Pittenger
et al., on mesenchymal stem cell population
isolated from bone marrow as SRC Homology
3 (SH3) (Pittenger 1999). Later on, immunopre-
cipitation studies using SH3 antibody revealed
that SH3 was an epitope present on CD73
(Barry et al. 2001). CD73 is reported to have
various functions including its involvement in

BM stromal interactions (Barry et al. 2001).
Also, along with CD29, it is known to modulate
the migratory capacity of MSCs by reducing the
migration, thus, enabling the cells to get
entrapped at a fracture site to fulfill their regener-
ative functions (Ode et al. 2011). Furthermore,
CD73 expression is acquired by natural killer
(NK) cells upon its interaction with MSCs and
these CD73-positive NK cells can regulate NK
cell activation in either autocrine or paracrine
manner (Chatterjee et al. 2014).

CD105, also known as endoglin, is a type I
membrane glycoprotein and is a component of
transforming growth factor receptor (TGF-βR)
complex. It is known to play a role in cardiovas-
cular development (Sanz-Rodriguez et al. 2004),
angiogenesis (Duff et al. 2003) and also cancer
(O’Connor et al. 2007). It was first identified on
MSCs, similar to CD73, as Src Homologue
2 (SH2)-a component of the receptor complex of
transforming growth factor – beta (TGF-β)
involving in cell proliferation, differentiation
and migration (Pittenger 1999) which was later
recognized as an epitope of CD105 (endoglin)
(Barry et al. 1999). Besides MSC population, it
is also a marker for hematopoietic stem/progeni-
tor cells (Pierelli et al. 2001).

CD90 (Cluster of Differentiation 90), also
known as Thy1 (cell surface antigen), is a
Glycosylphosphatidylinositol (GPI) – linked cell
surface protein belonging to the Ig superfamily
and originally discovered as a thymocyte antigen.
It is speculated to play roles in cell-cell and cell-
matrix interactions (Rege 2006) and adherence of
CD34-positive hematopoietic cells (Craig et al.
1993). CD90 expression has been identified in
varied cell populations like hematopoietic stem
cells (Craig et al. 1993), fibroblasts and endothe-
lial cells (Saalbach et al. 1999).

Stromal Cell Surface Marker (STRO-1), the
murine IgM monoclonal antibody produced from
an immunization with a population of human
CD34+ bone marrow cells, was found to identify
a cell surface antigen expressed by stromal
elements in human bone marrow (Simmons and
Torok-Storb 1991). A STRO-1 positive enriched
subset of marrow cells was reported to be capable
of differentiating into multiple mesenchymal

Conventional and Emerging Markers in Stem Cell Isolation and Characterization 5



lineages including hematopoiesis-supportive stro-
mal cells with a vascular smooth muscle-like
phenotype, adipocytes, osteoblasts and
chondrocytes (Gronthos et al. 1994; Liu et al.
1999; Dennis et al. 2002).

3 Emerging Markers

With the popularization of characterization based
on protein markers expressed on the cell surface
and/or found in the intracellular space, several
proteins have been recently tested for their use
as markers for stemness. The emerging markers
that have been reported post 2000 as markers for
stemness of cells from various niches that cover
all the three germ layers have been discussed
here. Some of these markers include those that
have been repurposed in the sense that the
markers that have been established in one source
are also being used as marker for stem cells from
a different niche.

3.1 Neural Stem Cell (NSC) Markers

Neural stem cells (NSCs) are unique cells
endowed with self-renewing, multipotent poten-
tial, responsible for the generation of main
phenotypes of the nervous system. (De Filippis
and Binda 2012)

Although conventional markers like prominin-
1 (CD133) and nestin have been widely used for
isolation of human NSCs, it was found that the
integrin subunits α6 and β1 are highly expressed
by human neural precursors and make suitable
markers for the prospective isolation of NSCs
(Hall et al. 2006).

The Pit-Oct-Unc (POU) family of transcription
factors SRY-box transcription factor 1 (SOX1)
and SOX2, the plasma membrane proteins Fibro-
blast Growth Factor Receptor �4 (FGFR4) and
Stage Specific Embryonic Antigens�1 (SSEA-1)
also have emerged as NSC markers in the recent
times, all of which are highly expressed in the
multipotent NSCs (Cai et al. 2002) (Capela and
Temple 2002). SOX1, which is expressed exclu-
sively in the CNS, is suggested to function as one
of the earliest markers for neural fate decision of

embryonic stem cells and marks the proliferating
progenitors residing in the neural tube (Muñoz
et al. 2012). The proliferation of stem cells that
are positive for SOX2, an High Mobility Group
(HMG) box transcription factor (Graham et al.
2003; Ellis et al. 2005), is reported to generate
neural precursors along with cells identical to
themselves (Suh et al. 2007). Graham et al.,
associated the inhibition of this gene with delam-
ination of cells from the ventricular zone and exit
from cell cycle (Graham et al. 2003), thus stating
the importance of SOX2 in maintaining progeni-
tor identity.

Furthermore, Musashi, Nestin and
Nucleostemin also have been identified as NSC
markers that are especially useful in their isola-
tion (Cai et al. 2003b). Musashi1 is an evolution-
arily conserved RNA-binding protein that is
important for cell fate determination, mainte-
nance of the stem-cell state and differentiation,
found to be localized to the neuron cell bodies
(perikarya) of CNS stem-like cells and
non-oligodendroglial progenitor cells (Kaneko
et al. 2000). Besides the nervous system, it is a
known marker for intestinal stem cells (Potten
et al. 2003). Nucleostemin is a nucleolar protein
that is found predominantly associated with the
proliferation of rat neural and embryonic stem
cells and is emerging as a proliferative marker
for human neural stem cells. It has also been
reported that NS is necessary for the proliferative
activity of both normal and cancerous cell lines
(Kavyasudha et al. 2018).

Poly-sialylated Neuronal Cell Adhesion Mole-
cule (PSA-NCAM) is another emerging marker
of neuronal development and synaptogenesis that
is expressed not only during the prenatal life but
also adulthood (Quartu et al. 2008), and it is
reported to be important for synaptic-plasticity
(Muller et al. 1996) and also contributes to the
early development of adult neurogenesis (Seki
2002).

Other membrane markers for mature neural
cell types, such as O4 for oligodendrocytes and
CD44 for astrocytes, can also be used to separate
NSCs from more mature mixed populations.
There are also reports showing successful isola-
tion of multipotent NSCs using a negative selec-
tion strategy, in which cells not expressing
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epitopes commonly expressed in lineage-
restricted cells. These negative selection markers
include CD271, CD44 and CD184 (Cai et al.
2003b; Yuan et al. 2011) (Vishwakarma et al.
2014).

3.2 Epidermal Markers

Stem cells (SCs) residing in the epidermis and
hair follicles not only ensure the maintenance of
adult skin homeostasis and hair regeneration, but
they also participate in the repair of the epidermis
after injuries (Blanpain and Fuchs 2006).

Like other adult stem cells, those that reside in
the skin are critical in tissue homeostasis and
wound healing. Epidermal stem cells, multipotent
skin stem cells thought to reside within the hair
follicle, are reported to be generally quiescent but
could also be stimulated to proliferate and differ-
entiate into the specialized cells that compose a
hair follicle, thus facilitating in regenerative
wound healing. Epidermal stem cells have been
characterized in vitro for skin graft purposes and
are known to express Integrin alpha 6/CD49f and
the general stem cell marker, CD34 (Blanpain and
Fuchs 2006, 2009).

Although markers like Tumour protein (p63),
Keratin 19 (K19), β-catenin and α6 integrin have
been suggested as putative epidermal stem cell
markers, β1 integrin has emerged as the most
promising epidermal marker that has been espe-
cially useful in the isolation of subpopulation of
keratinocytes that are rich in stemness (Watt
1998; Reiisi et al. 2016).

However, researchers are on the lookout to
identify additional stem cell markers for the iso-
lation of skin or epidermal stem cells to obtain
greater target specificity than at present. (Watt
1998)

MTS24 is an another cell-surface marker that
identifies uncharacterized population of hair folli-
cle keratinocytes located between the bulge and
the sebaceous glands. MTS24 reactivity is first
detected in the early stages of hair follicle devel-
opment, and is increased during hair growth.
MTS24-positive keratinocytes are distinct from
the epidermal stem cells located in the bulge.

Results suggest that the MTS24-positive
keratinocytes represent an important new
committed progenitor or stem cell compartment
within the hair follicle (Nijhof et al. 2006).

3.3 Cardiac Stem Cell Markers

Cardiac stem cells, that track its origin to the
mesodermal lineage, are thought to be a quies-
cent, heart-resident population of stem cells that
can reenter the cell cycle following injuries such
as acute myocardial infarction. Cardiac stem cells
have self-renewal capabilities in vitro and the
ability to differentiate in vivo into all three major
cardiac cell types viz., cardiomyocytes, vascular
smooth muscle cells and endothelial cells. For
these reasons, considerable efforts have been
made to identify specific markers of stem cells
with cardiomyogenic potential (Beltrami et al.
2003; Cai et al. 2003a; Passier et al. 2008; Segers
and Lee 2008; Laflamme and Murry 2011).
Among the various markers employed to identify
resident CSCs, c-kit has played a prominent role
(Torella et al. 2006; Anversa et al. 2013). Some of
the emerging markers for the cardiac stem cell
population include c-kit/CD117, Multi Drug
Resistant gene 1 (MDR1), and Spinocerebellar
ataxia type 1 (Sca-1) cells (Urbanek et al. 2003).
In vitro identification of a class of human c-kit-
positive cardiac cells that possess the fundamental
properties of stem cells – self-renewal,
clonogenicity and multipotency – has been
reported (Bearzi et al. 2007). Sca-1/Ly6-negative,
(Lineage-negative) (Lin-), Sca-1-positive subset
of cell population is found to display a mesenchy-
mal profile, characterized by a limited ability to
generate cardiomyocytes in vitro and in vivo,
even after injury. Although, in other organs,
Sca-1 expression is mainly observed on
mesoderm-derived cells and not restricted to
stem/progenitor cell populations, CPCs (Cardiac
progenitor cells) have been isolated based on the
expression of surface markers including Sca-1 and
c-Kit suggesting the role of Sca-1 as an emerging
CSC marker (Valente et al. 2014). Sca-1 has been
suspected to be an essential component in the
promotion of CSC proliferation and survival,
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resulting in direct facilitation of early engraftment,
with a possible indirect effect exerted on late car-
diovascular differentiation after CSC transplanta-
tion (Tateishi et al. 2007). Markers for the
embryonic stem cell derived cardiac progenitor
cell population were found to initially express
genetic markers representing all the three lineages
viz., cardiomyocytes, vascular smooth muscle
cells and endothelial cells, which included markers
like c-kit, Fetal Liver Kinase 1 (Flk1) (also known
as Kinase Insert Domain Receptor (kdr) and
Homeodomain factor (Nkx2.5), but not brachyury,
and were subsequently found to express Islet-1
(Isl1). Other cardiac proteins that are expressed
along with Nkx2.5 include Myocardin (Myocd),
Bone Morphogenic Protein (BMP2/4) and GATA
binding protein 5 (Gata5) (Qsfdvstps et al. 2008).

FLK-1 (Fetal Liver Kinase 1), also known as
Kinase Insert Domain Receptor (Kdr), an
flt-related receptor tyrosine kinase is an early
marker for endothelial precursors. The expression
of FLK1, an early marker of lateral mesoderm,
where cardio genesis occurs, aids to characterize
and isolate cardiac stem/progenitor cells. Reports
have confirmed that FLK1, especially
FLK1 + CD31-, Cadherin-, is a feasible marker
for detecting cardiac stem/progenitor cells (Iida
et al. 2005).

NKX2.5, a homeobox transcription factor
required for ventricular cardiogenic differentia-
tion, is one of the factors reported to be expressed
in developing embryonic cardiac regions and
could be used to delineate CPCs (Lints et al.
1993; Raffin et al. 2000). It is one of the transcrip-
tion factors of the heart primordium that is known
to be expressed most strongly in cardiomyocytes
of the heart tube during early cardiac develop-
ment (Lyons et al. 1995) and is recognized as an
early marker for cardiac cell differentiation (Lints
et al. 1993; Jamali et al. 2001). Experiments
suggesting the close correlation between the
expression of the Nkx2.5 and FLK1 genes have
been reported, implying the plausibility of the two
proteins as markers in the detection cardiac stem/
progenitor cells (Iida et al. 2005).

Islet1 (Isl1) is a LIM homeodomain protein
expressed in distinct subdomains of the heart and

in diverse cardiovascular lineages, and has been
reported to have a critical role in cardiac
progenitors of the second heart field (Sun et al.
2007). Isl1 expression and lineage tracing of Isl1-
expressing progenitors have demonstrated that Isl1
is a marker for a distinct population of undifferen-
tiated cardiac progenitors that give rise to the car-
diac segments that were found to be missing in Isl1
mutants. The prominence of Isl1 in cardio-genesis
has confirmed its position as a marker for undiffer-
entiated cardiac progenitor state (Cai et al. 2003a).

3.4 Osteoprogenitor Markers

Another important stem cell niche of the
mesodermal origin is the bone. Certain genes
that have served as predominant osteoprogenitor
markers include Transforming Growth Factor β
(TGFβ), Bone Morphogenic Protein 2 (BMP-2),
and basic Fibroblast Growth Factor (bFGF) or
gremlin 1, Alkaline Phosphatase Protein
(ALPP), Melanoma Cell Adhesion Molecule
(MCAM), collagen I, collagen II, Runt-related
Transcription Factor 2 (RUNX2), decorin, Thy-
roid Peroxidase (TPO) are also used (Worthley
et al. 2015). Putative osteoprogenitor marker
genes include Calcium/Calmodulin dependant
protein Kinase II Inhibitor 1 (CAMK2N1), Colla-
gen Type VIII Alpha 1 (COL8A1), Creatine
Kinase B Type (CKB), Crystalline alpha B
(CRYAB), and Dickkopf WNT signaling path-
way inhibitor 1 (DKK1), which are expressed at
high levels in osteogenic cells (Ng et al. 2008).

Although multiple relevant markers like Alka-
line Phosphatase (ALP), Runt-related Transcrip-
tion Factor 2 (RUNX2) and Osteo Calcin (OCN)
were known, no single surface marker or panel of
markers was distinctly known to identify the
osteoprogenitor stem cell population until 2014
(Phillips et al. 2014) (Guo et al. 2015). The sur-
face markers CD10 and CD92 have been reported
to demonstrate significantly increased expression
in hBMSCs differentiated towards the osteogenic
and adipogenic lineages along with a slight
increase in CD10 expression correlated with
chondrogenic differentiation suggesting the use

8 C. Kavyasudha et al.



of these proteins as markers for osteogenic stem
cells identification (Granéli et al. 2014).

Crystalline – aB (CRYaB), an intracellular
protein and a small heat shock protein belonging
to the alpha family, which is composed of two
gene products alpha-A (acidic) and alpha-B
(basic) proteins, is also a potential novel osteo-
genic marker (Granéli et al. 2014). The gene
expression of CRYaB has been shown to be sig-
nificantly regulated in the early stages of the
chondrogenic differentiation of the ATDC-5
chondroprogenitor cell line (Chang et al. 2013;
Granéli et al. 2014).

Collagen Type 1 alpha 1 (CoL1A1) is another
protein known to be an early marker of
osteoprogenitor cells whose maximum expres-
sion level was reported at day 21 of differentia-
tion in adult mouse (Jikkoa et al. 1999).

Cell surface markers like activated leucocyte-
cell adhesion molecule (ALCAM), similar to
Sleeping Beauty Transposon system 10 (SB-10),
(Torella et al. 2006) and STRO-1 (Urbanek et al.
2003; Bearzi et al. 2007) also have been identified
to be useful in detecting the earliest stages of the
osteoblast lineage in bone marrow stromal cell
(MSC) cultures (Kalajzic et al. 2002).

3.5 Mesenchymal Stem Cell (MSC)
Markers

MSCs derived from Bone Marrow (BM-MSCs)
are postnatal stem cells capable of self-renewing
and differentiating into osteoblasts, chondrocytes,
adipocytes and neural cells that express a panel of
key conventional markers such as CD10, CD13,
CD29, CD73, CD90, CD105, CD271, CD146,
Oct4, STRO-1, and SSEA4 and emerging
markers include CD140b, Human Epidermal
Growth Factor Receptor 2 (HER-2)/Erb-B2
Receptor Tyrosine Kinase 2 (erbB2) (CD340),
and frizzled-9 (CD349) (Urbanek et al. 2003).

3.6 Intestinal Stem Cell Markers

The intestinal epithelium is the most rapidly self-
renewing tissue in adult mammals. (Barker et al.

2007). The G-protein coupled receptor Leucine
Rich Repeat containing G Protein-Coupled
Receptor 5 (Lgr5) and polycomb group protein
B-cell specific Moloney murine leukemia virus
integration site 1 (Bmi1) are two recently
described molecular markers of self-renewing
and multipotent adult stem cell populations resid-
ing in the crypt of the small intestine, capable of
supporting regeneration of the intestinal epithe-
lium. (Yan et al. 2012).

An important stem cell niche of the endoder-
mal origin includes the stem cells in the intestinal
crypts that are currently defined by the cycling
crypt base columnar (CBC) cells and quiescent
‘+4’ cells (Muñoz et al. 2012; Yan et al. 2012).

Lgr5 (Leucine rich repeat containing recep-
tor) is an emerging intestinal stem cell marker
that is being used to identify multipotent stem
cells in the intestine (Muñoz et al. 2012).

Additionally, stem cells of the small intestinal
crypt – the quiescent/‘+4’ cell have been reported
to be negative for B-cell specific Moloney murine
leukemia virus integration site 1 (Bmi1), Telome-
rase Reverse Transcriptase (Tert), Homeodomain
only protein Homo Sapiens (Hopx) and Leucine
Rich Repeats and Immunoglobulin-Like
Domains Protein 1 (Lrig1) implying their use as
negative stem cell markers for intestinal stem
cells (Montgomery et al. 2011; Lin and Scott
2012; Powell et al. 2013; Takeda et al. 2013).

4 Conclusion

Recent stem cell biology research from across the
world is focusing on identifying novel sources of
stem cells and isolation and identification of the
stem cells from these sources. This research has
been driven by the immense therapeutic potential
that stem cells hold for several degenerative
ailments. Although there are several conventional
markers that facilitate the isolation of stem cells
from different niches, newer sources have posed
newer challenges in this process. For this reason,
standardization of markers to identify and charac-
terize stem cells that are being isolated from
emerging sources has become indispensable. In
this regard, several reports have suggested
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various new markers that enable the isolation of
stem cells from various sources. Newer markers
are being identified and standardized across the
world. With the identification of each new
marker, the naivety of the stem cell population
is being cleared, paving way for the revelation of
a better perspective about the newly identified cell
population. This facilitates us to avoid misidenti-
fication and misrepresentation of cell populations.
Furthermore, some of the conventional marker
expressions overlap in several cell populations.
For all these reasons, it is important to identify
innovative markers that are specific to various
stem cell niches, thus aiding easier identification
and isolation of adult stem cells while being dis-
tinctive about different cell populations.
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Abstract

Adipose stem cells (ASCs) have gained atten-
tion in the fields of stem cells regenerative
medicine due to their multifaceted therapeutic
capabilities. Promising preclinical evidence of

ASCs has supported the substantial interest in
the use of these cells as therapy for human
disease. ASCs are an adult stem cell resident
in adipose tissue with the potential to differen-
tiation along mesenchymal lineages. They also
are known to be recruited to sites of inflamma-
tion where they exhibit strong immunomodu-
latory capabilities to promote wound healing
and regeneration. ASCs can be isolated from
adipose tissue at a relatively high yield com-
pared to their mesenchymal cell counterparts:
bone marrow-derived mesenchymal stem cells
(BM-MSCs). Like BM-MSCs, ASCs are eas-
ily culture expanded and have a reduced
immunogenicity or are perhaps immune
privileged, making them attractive options for
cellular therapy. Additionally, the heteroge-
neous cellular product obtained after digestion
of adipose tissue, called the stromal vascular
fraction (SVF), contains ASCs and several
populations of stromal and immune cells.
Both the SVF and culture expanded ASCs
have the potential to be therapeutic in various
diseases. This review will focus on the preclin-
ical and clinical evidence of SVF and ASCs,
which make them potential candidates for ther-
apy in regenerative medicine and inflamma-
tory disease processes.
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Abbreviations
AD Alzheimers disease
ALS Amyotrophic Lateral Sclerosis
APP Amyloid precursor protein
ASCs Adipose stem cells
Aβ Amyloid-beta
BM-
MSCs

Bone marrow-derived mesenchymal
stem cells

BrdU Bromodeoxyuridine
CNS Central nervous system
EAE Experimental autoimmune

encephalomyelitis
GM-
CSF

Granulocyes-macrophage colony
stimulating factor

IHD Ischemic heart disease
LVEF Left ventricular ejection fraction
MI Myocardial infarctions
MS Multiple sclerosis
MWM Morris water maze
PD Parkinson’s disease
PLGA poly(lactic-co-glycolic) acid
PVA Poly(vinyl alcohol)
RA Rheumatoid arthritis
SNpc Substantia nigra pars compacta
SVF Stromal vascular fraction
T1DM Type 1 diabetes mellitus
Th CD4+ helper T
Tregs regulatory T cells
WT Wall thickness
ALS Amyotrophic lateral sclerosis

1 Introduction

Stem cells are capable of asymmetric cell division
promoting self-renewal and multi-lineage differ-
entiation potential (Verfaillie 2002). Due to the
controversy over the use of embryonic stem cells,
recent interest has grown surrounding the poten-
tial of adult stem cells. Adult stem cells have been

identified in most adult organs and tissues includ-
ing bone, cartilage, skeletal muscle and adipose
tissue (Gage 2000; Reyes and Verfaillie 2001;
Jankowski et al. 2002; Gimble and Guilak 2003;
Herrera et al. 2006; Barker et al. 2007). Although
adult stem cells have a lesser capacity for self-
renewal and differentiation than embryonic stem
cells, there is a rapidly growing body of evidence
that suggests that the therapeutic potential of adult
stem cells is much more significant than was once
thought.

Adipose tissue serves as a reservoir for mesen-
chymal stem cells, which we will refer to as
adipose stem cells (ASCs) in this review. Adipose
tissue is a multifaceted organ with many functions
including endocrine functions with the secretion
of various adipokines, structural and lipid storage
functions and an immunology function as there
are many immune cells and immunomodulatory
cells, namely ASCs, resident in adipose tissue.
ASCs can differentiate into mature cells of the
adipogenic, osteogenic, chondrogenic, and myo-
genic lineages (Gimble et al. 2007). Adipose tis-
sue is harvested and enzymatically digested to
isolate the stromal vascular fraction (SVF). SVF
is composed of many cell types: ASCs (15–30%),
endothelial cells (10–20%), pericytes (3–5%),
and immune cells (25–45%) (Bourin et al. 2013;
Lee et al. 2013). After SVF isolation, the hetero-
geneous cell composition can be cultured, and the
plastic adherence capacity of ASCs allows for the
acquisition of homogenous populations of ASCs.
Human ASCs can be phenotypically identified as
CD45�CD235a�CD31�CD34+ and cultured
ASCs can be phenotypically identified as CD13+

CD73+CD90+CD105+CD31�CD45�CD235a�

(Bourin et al. 2013). ASCs do not express human
leukocyte antigens including HLA-DR molecules
and co-stimulatory molecules that are important
for immune recognition of “self” versus “non-
self” that would trigger significant immune
responses, making ASCs potential candidates for
not only autologous therapy but possibly alloge-
neic therapy (Gimble et al. 2007; DelaRosa et al.
2012).

Adipose tissue confers an advantage because
stem cell yield from is 100–500 times higher per
tissue volume than from bone marrow rendering
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ASCs a more attractive candidate for therapeutic
use (D’Andrea et al. 2008; Zhang et al. 2013).
Harvesting adipose via liposuction can yield large
quantities of fat tissue with minimal risk to the
patient. This procedure is very commonly
performed, but the removed adipose tissue/
lipoaspirate is discarded as medical waste
(DelaRosa et al. 2012; Zhang et al. 2013). The
American Society of Plastic Surgeons 2015
annual report registered a total of 222,051 lipo-
suction procedures in 2015 alone https://
plasticsurgery.org 2017. Thus, there is a vast
number of potential ASCs going to waste.

Many reasons that make ASCs such an attrac-
tive cell type for regenerative medicine
applications are: their multipotent potential for
regenerative uses; ease of isolation; plentiful
source; either autologous or allogeneic use; and
their innate ability induce angiogenic traits. ASCs
have been demonstrated to mediate robust anti-
inflammatory and immunomodulatory effects,
which have led to various preclinical studies and
clinical trials to investigate therapeutic efficacy.
Tissue inflammation activates ASCs to produce
anti-inflammatory cytokines and angiogenic
factors (Zuk et al. 2001; Gimble et al. 2007;
Bourin et al. 2013). The immunomodulatory
function of ASCs results in an environment
where ongoing inflammation is minimized, and
a regenerative environment is promoted to restore
homeostasis. The regenerative and anti-
inflammatory potential of these cells have led to
studies using these stem cells across various
disciplines, examples of which are covered in
this chapter.

2 ASCs in Regenerative Medicine

2.1 ASCs as Therapy for Cardiac
Disease

ASCs are multipotent and retain the ability to
differentiation into mesodermal tissues. The
potential to regenerate cardiomyocytes with
ASCs has drawn substantial research attention
due to the increasing incidence of myocardial
infarctions (MI) and the poor prognosis

associated with scar tissue formation in the myo-
cardium post-MI (Nian et al. 2004; Gnecchi et al.
2008; Segers and Lee 2008; Aguirre et al. 2013;
Le and Chong 2016).

Ischemic heart disease (IHD) is the leading
cause of death worldwide. Much of the burden
of IHD is due to the inability of the cardiac tissue
to regenerate after cardiac events. Instead,
infarctions lead to an inflammatory response,
which ultimately results in necrosis of the infarct
zone, rendering the region unable to participate in
electrical conduction or cardiac muscle contrac-
tion. Currently, there are no effective ways to
regenerate cardiac muscle tissue. ASCs have
been studied for their ability to regenerate cardiac
tissue and/or improve cardiac function in multiple
model systems. The first study to demonstrate
mesenchymal stem cells’ ability to differentiate
into cardiomyocytes by Rangappa et al. used rab-
bit ASCs (Rangappa et al. 2003). Another group
demonstrated differentiation of human ASCs
after exposure to rat cardiomyocyte proteins
(Gaustad et al. 2004). These studies examined
structural and functional capacities of
cardiomyocytes to characterize differentiation;
however, no in vivo experiments were preformed.

Valina et al. used a porcine model to show that
intracoronary administration of autologous ASCs
15 min after reperfusion improved various cardiac
functions post-infarction (Valina et al. 2007). The
results showed significantly greater capillary den-
sity in the infarct border zone, wall thickness
(WT) and left ventricular ejection fraction
(LVEF), all in the ASC-treated group compared
to the control 30 days post-procedure. A rat
model was also used to assess the benefits of
ASCs in the setting of chronic heart failure. The
ASC-treated group showed a significantly
improved LVEF and reduced infarct area (Mazo
et al. 2008).

A Phase 1/2 clinical trial has also investigated
the safety of SVF in patients with post-MI IHD. A
total of 28 patients participated in the study. After
noticing similar results as in the aforementioned
studies (significantly increased LVEF and
increased WT) and better patient performance in
the 6-min walk test at the 3-, 6- and 12-month
follow up compared to baseline (before cell
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transplantation), with no significant adverse
effects, the authors concluded that the intra-
myocardial injection of 30 million cells was safe
and efficacious (Comella et al. 2016). Despite a
limited number of patients tracked at the various
time points and lack of a control group, these
results provide some support that SVF may
benefit patients with decreased ventricular perfor-
mance due to MI-induced scarred cardiac tissue.

2.2 ASCs and Biomaterials

ASCs represent a cell source that has the potential
to transform the field of tissue engineering and
regenerative medicine. Seeding biomaterials, like
poly(lactic-co-glycolic) acid (PLGA), Poly(vinyl
alcohol) PVA, decellularized extracellular matrix
or chitosan with ASCs has been used to assist in
healing and regeneration of muscle, cartilage,
functional fat tissue, tendon, and bone (D’Andrea
et al. 2008; Dufrane et al. 2015; Vaicik et al.
2015; Choi et al. 2016; Bjorninen et al. 2017;
Dufrane 2017; Farnebo et al. 2017).

Once implanted, one of the most important
considerations for any tissue engineering product
is the supply of nutrients to the scaffold and
removal of cellular waste from the scaffold, either
through transport through the biomaterials via
diffusion and/or by encouraging neovascu-
larization within the tissues. In the field of tissue
engineering a major roadblock is blood vessel
formation, especially for thick or dense materials.
Substantial research is required to overcome these
barriers by utilizing the innate proangiogenic
traits of ASCs to induce blood vessel formation
to supply engineered tissues with the necessary
route for nutrients and waste transport.

2.2.1 ASC and Biomaterials
for Angiogenesis

Harnessing and enhancing the angiogenic traits of
ASC using biomaterials is of interest to the regen-
erative medicine field. It was demonstrated that
the ASC encapsulated in larger PLGA spheroids
were found to upregulate angiogenic growth
factors and adipogenesis in vitro, and allowing

of the scaffolds to recapitulate significant vascular
ingrowth in vivo in a nude mouse model (Zhang
et al. 2017). Similarly, other groups have also
been working towards capitalizing on the angio-
genic and/or adipogenic capabilities of ASC in
tissue engineering application (Vaicik et al. 2015;
Miyamoto et al. 2017). ASC have also been
encapsulated in thermosensitive hydrogels, like
chitosan/ gelatin mixtures, to create an injectable
for therapeutic angiogenesis for ischemic
materials by allowing for more prolonged sur-
vival of dissociated ASC (Cheng et al. 2017).
Utilizing materials like these with pre-seeded
ASC, it has been found to increase angiogenic
growth factor concentration in the growth media
in vitro, allowing for a more considerable amount
of tubule formation in the hydrogel when
co-cultured encapsulated with endothelial cells.
Data from in vivo studies demonstrate higher
densities of capillaries were found when applying
the encapsulated ASCs in a chick embryo chorio-
allantoic membrane assay (Cheng et al. 2017).
Like adipose tissue, other soft tissue applications
have benefitted from ASCs. Choi et al. used an
elastin-like polypeptide matrix with ASCs where
the hydrogel would coagulate in the wound site.
This is beneficial because it could mold to any
wound shape, enabled retention of the ASCs at
the wound site to promote regeneration, and
activated wound clotting to promote faster regen-
eration (Choi et al. 2016). Conductive
biomaterials were used with ASCs to help stimu-
late vascular smooth muscle repair. These
scaffolds with stimulation improved ASC viabil-
ity and differentiation towards smooth muscles
cells improving their utility in vascular tissue
engineering applications. Electrical stimulation
systems may be a means to enhance differentia-
tion for tissue engineering applications
(Bjorninen et al. 2017). Alternatively,
decellularized porcine small intestinal submucosa
with human ASCs have been shown to be an
effective biological scaffold for hernia repair in
rat models. Treating the scaffold with fibronectin
before ASC seeding improved ASC attachment
and histology demonstrated the presence of the
stem cells in the scaffold up to 1 month post-op
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(Klinger et al. 2016). The retention of stem cells
in these living scaffolds makes them attractive
candidates for long-term sustainable regenerative
therapies.

3 ASCs as Immunomodulators

3.1 ASCs as Therapy
for Autoimmune Diseases

Lymphocytes are integral cells of the immune
system. More specifically, CD4+ helper T
(Th) cells can be divided into subsets that distin-
guish the effector cells, Th1, and Th2 cells, and
the regulatory T cells (Tregs) that maintain the
balance between autoimmunity and immune tol-
erance, respectively. These effector T cells play a
critical role in promoting autoimmune diseases,
especially Th1 cells, which have been further
delineated to include Th17 cells. Secreted
pro-inflammatory cytokines by Th1 and Th17
cells perpetuate antigen-specific responses. Dur-
ing autoimmunity, Th1 and Th17 aberrantly rec-
ognize self-antigens and drive an immune
response that propagates a cascade of pathologic
events (Skapenko et al. 2005; Gonzalez et al.
2009; Zhou et al. 2011).

The immunomodulatory capacities of ASCs
have been investigated to regulate the Th1/ Th2
balance and promote Tregs to restore immune
tolerance in autoimmune diseases. ASCs secrete
anti-inflammatory cytokine interleukin-10
(IL-10) that enhances Tregs’ activity, which
responds by further secreting and amplifying
IL-10 signaling (Chaudhry et al. 2011; Park
et al. 2015). Tregs and associated IL-10 attenuate
the activities of Th1 and Th17, which, in turn,
reduce the recruitment of additional
pro-inflammatory immune cells to sites of pathol-
ogy (Skapenko et al. 2005; Chaudhry et al. 2011).
These anti-inflammatory and immunomodulatory
effects of ASCs have been demonstrated in sev-
eral preclinical models of autoimmune diseases.

3.1.1 Multiple Sclerosis
Multiple sclerosis (MS) is an autoimmune disease
against integral components of the central

nervous system (CNS) that leads to
neurodegeneration and inflammation. Using the
murine experimental autoimmune encephalomy-
elitis (EAE) model of MS, ASCs have
demonstrated attenuation of disease that leads to
comprehensive improvements. Treatment with
ASC before the onset of EAE led to amelioration
of the disease course by robust immunomo-
dulation that countered Th1-mediated pathology.
Collectively, infusion of ASCs resulted in
reductions in tissue damage, and cellular
infiltrates and preservation of myelin in the
CNS, which ameliorated symptoms of this dis-
ease (Constantin et al. 2009; Riordan et al. 2009;
Semon et al. 2013, 2014).

3.1.2 Rheumatoid Arthritis
Another common autoimmune disease, rheuma-
toid arthritis (RA), is characterized by
Th1-mediated tissue damage and inflammation
within joints. Th17 cells have also been correlated
with the production of granulocyte-macrophage-
colony stimulating factor (GM-CSF) that leads to
the recruitment and subsequent infiltration of cells
causing an inflammatory milieu and tissue dam-
age (De Bari 2015; Lopez-Santalla et al. 2015).
Using a mouse model of RA, treatment with
ASCs diminished this pathogenic signaling
while increased the Tregs. The production of
IL-10 and generation of antigen-specific Tregs
was attributed to treatment with ASC, which
suggests re-establishment of immune tolerance.
These studies demonstrate the immunomodula-
tory potency that attenuated pathogenic processes
and countered autoimmunity that led to reduced
incidence and severity of experimental arthritis
(Constantin et al. 2009; Gonzalez et al. 2009;
Zhou et al. 2011; Lopez-Santalla et al. 2015).

3.1.3 Type 1 Diabetes Mellitus
Type 1 diabetes mellitus (T1DM) is caused by
autoimmune destruction of insulin-producing
cells of the pancreas that results in hyperglycemia
and abnormal glucose metabolism due to insulin
deficiency (Lin et al. 2015). In a preclinical model
of T1DM, intravenous administration of ASCs
reportedly reduced fasting blood glucose levels,
increased expression of insulin protein, and
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suppressed islet injury (Li et al. 2012). Another
interesting approach using ASCs for treatment of
T1DM led to promising results. ASCs were trans-
duced to express insulin and subsequently
transplanted into the pancreas of T1DM animals.
By harnessing the anti-inflammatory effects and
the production of insulin, treatment with trans-
duced ASCs lowered blood glucose levels and
decreased glucose tolerance while improving the
overall appearance of the animals (Lin et al.
2009).

3.2 ASCs in Neurodegenerative
Diseases

Neurodegenerative diseases involve several
pathophysiological mechanisms beyond the loss
of neurons that determine the course and severity
of illness, including neuroinflammation, mito-
chondrial dysfunction, and protein aggregation.
While the brain is thought to be immune
privileged there are several cell types that mediate
debris clearance and regulate the environment of
the CNS. Microglia are tissue-resident
macrophages, and whether polarized to the clas-
sical pro-inflammatory or alternative anti-
inflammatory activation states, can fight against
or contribute to the hallmarks of neurodegenera-
tive pathology. ASCs have been gaining attention
as therapeutic candidates due to their ability to
secrete neurotrophic and immunomodulatory
mediators, restore mitochondrial function, pro-
mote neurogenesis, modulate glial activation
states, enhance protein clearance, and fight
neuroinflammation in neurodegenerative
pathologies. The following section will summa-
rize recent findings on the efficacy of ASCs in
treating three distinct neurodegenerative diseases:
Alzheimer’s disease, Parkinson’s disease, and
Amyotrophic Lateral Sclerosis (ALS).

3.2.1 Alzheimer’s Disease
Alzheimer’s disease (AD), the most common
cause of dementia amongst the aging population,
is characterized by amyloid-beta (Aβ) plaques
and neurofibrillary tangles, limbic system
neurodegeneration, and progressive cognitive

decline (Tanzi 2013). Using a mouse model of
familial early-onset AD, ASCs were tested for
their preventive and therapeutic effects by
administering therapy at pre- and post-
symptomatic time points. Both groups showed
improved performance on the Morris Water
Maze (MWM) task, a significant reduction in
Aβ plaque formation in the cortex, and reduced
protein levels of Aβ and amyloid precursor pro-
tein (APP) with enhanced levels of Aβ-degrading
enzymes (Kim et al. 2012). In another AD mouse
model, ASC treatment led to increased secretion
of anti-inflammatory cytokines, enhanced expres-
sion of Aβ-degrading enzymes, and improved
performance on learning and memory tasks
(Ma et al. 2013). Additionally, mice showed
increased brain levels of the anti-inflammatory
cytokine IL-10, which polarizes microglia
towards the alternative activation phenotype,
and several angiogenic and neurotrophic factors
(Kim et al. 2012; Ma et al. 2013; Hu et al. 2015).

Other studies demonstrated that ASCs might
attenuate symptoms of AD by promoting
neurogenesis. Intracerebral injection of ASCs
gave rise to significantly higher numbers of
newly generated bromodeoxyuridine (BrdU)-
positive cells than vehicle-treated controls in
both the dentate gyrus and subventricular zone,
some of which differentiated into mature neurons
(Yan et al. 2014). One proposed mechanism for
this enhanced neurogenesis is the leptin secreted
from ASCs, as this hormone alone has been
shown to promote neurogenesis and reduce
neurodegeneration in an AD mouse model
(Perez-Gonzalez et al. 2011). Together, these
studies highlight the capacity of ASCs to promote
enhanced clearance of harmful protein
aggregates, stimulate neurogenesis, and modulate
the neuroinflammatory environment by secreting
immunomodulatory cytokines in Alzheimer’s
disease models.

3.2.2 Parkinson’s Disease
Parkinson’s disease (PD) is the second most com-
mon cause of neurodegeneration and is
characterized by progressive dopaminergic neu-
ronal loss in the substantia nigra pars compacta
(SNpc) and progressively worsening motor
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symptoms. ASCs have been investigated in PD
animal models to determine if and how they may
attenuate neurodegenerative damage. In a rat
model of PD, ASCs injected directly into the
SNpc exerted neuroprotective effects via
enhanced secretion of soluble growth factors
(McCoy et al. 2008). Additionally, ASC treated
rats had significantly decreased numbers of
activated microglia in the lesioned brain areas
compared to untreated controls, suggesting that
these soluble factors are also impacting the
neuroinflammatory aspects of PD (McCoy et al.
2008). ASCs also enhanced both acute and long-
term neurogenesis in rat models of PD, which
correlated with amplified secretion of anti-
inflammatory cytokines and brain-derived
neurotrophic factor (BDNF) (Schwerk et al.
2015). Despite this observed benefit, ASCs were
unable to protect dopaminergic neurons from
acute damage, and the newly created neurons
are not able to functionally replace lost dopami-
nergic neurons (Schwerk et al. 2015). However,
in a mouse model of PD long-term dopaminergic
cell survival was significantly higher with ASC
treatment (Choi et al. 2015).

3.2.3 Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a
debilitating neurodegenerative disease
characterized by the rapid and progressive loss
of upper and lower motor neurons, muscle
wasting, and death for most patients within
5 years of diagnosis (Rowland 2001). In recent
years ASC therapies have been investigated in
animal models for their potential benefit in ALS,
with some successes. In ALS mouse models, both
single and repeated daily injections of ASCs
resulted in preserved motor neuron survival,
delayed disease progression, and fewer reactive
astrocytes in the spinal cord that can contribute to
neuronal cell death (Marconi et al. 2013;
Fontanilla et al. 2015). Similar results were seen
when ASCs were given before symptom onset,
suggesting ASCs may have preventive capability
(Kim et al. 2014). The injected ASCs persisted in
the CNS in their undifferentiated state, indicating
that the therapeutic benefit resulted from soluble
factors secreted by the transplanted cells rather

than engraftment and differentiation (Kim et al.
2014). Several lines of evidence further support
the notion that ASCs exert their beneficial effects
via secretion of paracrine factors. ASCs
co-cultured with ALS mouse astrocytes
demonstrates increased production of angiogenic
and neurotrophic factors, upregulation of a criti-
cal suppressor of glutamate excitotoxicity and
inhibition of apoptotic signals (Rothstein et al.
1995; Rossi et al. 2008; Gu et al. 2010). When
neural stem cells from ALS mice are co-cultured
with ASC-derived exosomes, small vesicles
secreted from the cells, aberrant protein aggrega-
tion was suppressed while imbalanced mitochon-
drial protein levels were restored (Lee et al.
2016).

4 Clinical Applications of ASCs

4.1 Clinical Trials

To report on completed and ongoing clinical trials
studying the utility of ASCs in the treatment of
human disease, information was collected from
the database http://clinicaltrails.gov/ 2017. The
parameters of this search included studies using
“adipose stem cells” and/or “stromal vascular
fraction” that were ongoing or completed and
excluded trials that had been withdrawn, were
terminated, were not yet recruiting, or had
unknown status. The details of the clinical studies
were evaluated to include reports of using the
stromal/stem progenitors from adipose tissue
and/or SVF, excluding duplicates and studies of
other mesenchymal stem cells, i.e., BM-MSCs.
To date, there have been 165 clinical trials involv-
ing ASCs and/or SVF in the treatment of human
disease. These studies have taken place in various
fields with most of the trials focused orthopedic
applications (n ¼ 39) followed by autoimmune
disorders (n ¼ 26). Figure 1 details the areas in
which ASCs are administered as a potential ther-
apy in clinical trials found from the search. These
clinical trials are conducted around the world with
the majority taking place in the United States
(n ¼ 54) followed by South Korea (n ¼ 25) and
Spain (n ¼ 21).
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5 Future Directions

There has been growing evidence in vitro and
in vivo suggesting the potential role of ASCs as
therapy for numerous disease processes. ASCs
constitute a seemingly attractive option for clini-
cal treatment. Adipose tissue is abundant and
readily procured with minimal risk to patients.
ASCs obtained through lipoaspirate are easily
expanded. Additionally, these stem cells are
immune privileged, meaning allogeneic cells
could potentially be used for cellular therapy
(though autologous cells are preferred). While a
large number of studies exist, more preclinical
and clinical evidence is needed to determine if
ASCs will meet the expectations of their utility to
treat diseases with limited/inadequate current
therapeutic options. In the continued work with
these cells, it will be essential to study the appro-
priate timing of treatment in various diseases, the
optimal method of delivery whether it be local or
systemic, as well as the number of stem cells
needed for therapeutic efficacy. The field has
come a long way, and there is evidence
supporting the use of ASCs and SVF in the clinic.

However, it is essential to address these gaps as
we move forward to harness the full potential of
ASC therapy.
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Abstract
Decellularization technique is a favorable
method used to fabricate natural and tissue-
like scaffolds. This technique is important
because of its remarkable ability to perfectly
mimic the natural extracellular matrix (ECM).
ECM-based scaffolds/hydrogels provide struc-
tural support for cell differentiation and matu-
ration. Therefore, novel natural-based bioinks,
ECM-based hydrogels, and particulate forms
of the ECM provide promising strategies for
whole organ regeneration. Despite its effica-
cious characteristics, removal of residual

detergent and the presence of various
protocols make this technique challenging for
scientists and regenerative medicine-related
programs. This chapter reviews the most effec-
tive physical, chemical, and enzymatic
protocols used to remove the cellular
components and their challenges. We discuss
the applications of decellularized ECM
(dECM) in tissue engineering and regenerative
medicine with an emphasis on hard tissues.
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1 Introduction

The extracellular matrix (ECM) provides struc-
tural support and controls cellular behavior.
Although the major components of the ECM are
conserved among various tissues, each tissue
ECM contains several specific and unique
compositions. Therefore, mimicking the
biological and structural arrangements of each
ECM provides an appropriate network to generate
related organs and overcome tissue donor leak-
age. An excellent scaffold for engineered tissue
would be natural ECM derived from the target
tissue. However, it is difficult to accurately mimic
native ECM because of the versatility in
functions, multiple compositions, and dynamic
nature of native ECM. Tissue engineering is a
promising strategy for development of artificial
organs and tissue regeneration, which has used
decellularization to create tissue-like scaffolds.
The decellularization process used to isolate the
ECM of a tissue is a desirable procedure for
fabrication of natural and tissue-like scaffolds.

Thus far, decellularization has been used to
derive scaffolds from the skin (Brouki Milan
et al. 2019), fat (Morissette Martin et al. 2018),
pericardium, heart (Sesli et al. 2018), skeletal mus-
cle (Naik et al. 2019), and liver (Willemse et al.

2020) tissues for both in vivo and in vitro
experiments. These scaffolds have assisted with
regeneration or formation of site-appropriate
tissues when used as biomaterials in vivo. In
some cases, the tissue-specific effects of these
scaffolds were observed on cellular behaviors
(Fernandez-Perez and Ahearne 2019). Recently,
hydrogels that originated from decellularized
tissues have emerged as an ideal network to pro-
vide a local reservoir of growth factors, and struc-
tural and biochemical cues for cellular regrowth.
Hydrogels are injectable biomaterials that enable
on-demand personalized three-dimensional
(3D) scaffold fabrication with 3D-bioprinting and
bio-plotting. Various organ-derived decellularized
ECM (dECM) bioinks have been created from
different tissues such as muscles, cartilage, the
heart, liver, skin, and adipose tissue, as the most
biomimetic bioinks; however, they suffer from
limitations attributed to decellularization (Dzobo
et al. 2019). Here, we describe the chemical, phys-
ical, and enzymatic treatments used to generate
ECM that has the highest similarity to native
ECM, with a major focus on hard tissues. We
discuss how researchers could balance removal
of potentially immunogenic components and
maintain indispensable ECM components that are
necessary for proper cell function. In addition, we
review recent advances using dECM in tissue engi-
neering and regenerative medicine.

2 Natural Extracellular Matrix
(ECM), a Naïve Version of ECM
Versus Decellularized ECM
(dECM)

The ECM composition of each tissue and organ
are determined by its resident cells, which are
distinct in number and nature. The ECM is
comprised of various molecules that have specific
structural and biological properties which deter-
mine the final fate of the cells. These molecules
consist of various structural and functional
proteins, glycoproteins, and glycosaminoglycans
(GAGs) organized in a unique ultrastructure. Col-
lagen, especially type I, a variety of proteoglycans
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(e.g., decorin), GAGs (e.g., heparin, heparan sul-
fate, chondroitin sulfate, and hyaluronic acid),
and adhesion molecules (e.g., fibronectin) are
some of the ECM molecules (Dzamba and
Desimone 2018). Matrix molecules fill the spaces
between cells and their junctions provide 3D
structural support for the surrounding cells.
These tissue-specific networks modulate cell
migration, biomechanical force transmission,
and mechanical behaviors of tissues (Jansen
et al. 2017).

The ECM plays a crucial function in fetal
development and determination of stem/progeni-
tor cell fate, and influences cellular shape, sur-
vival, and proliferation. The physical features of
the ECM such as topography, insolubility, rigid-
ity, and porosity originate from its matrix compo-
sition and determines the mechanical behavior of
each tissue. More precisely, integrin and the
direction of collagen fibers, particularly in
anchorage-dependent cells, modulate intra- and
extracellular signals (Aiyelabegan and
Sadroddiny 2017).

This unique and natural microenvironment has
attracted the attention of researchers who aim to
fill the present gap in biomaterial science. Spe-
cific ECM-based substrates that consist of unique
ECM elements have been used in a wide range of
preclinical and clinical applications (Hinderer
et al. 2016; Masaeli et al. 2017; Giobbe et al.
2019). The ECM has been extracted from various
tissues, including the skin, heart valves, nerves,
blood vessels, skeletal muscles, ligaments,
tendons, urinary bladder, submucosa of the
small intestine (Stapleton et al.), and liver
(Hoshiba et al. 2016). Nature, orientation, and
the quantity of matrix molecules differ from tis-
sue to tissue and are the fundamental factors used
to specify the scaffold.

Given the complexity of the ECM, it is almost
impossible to completely mimic this unique 3D
structure. Therefore, decellularization is an alter-
native approach to obtain ECM from natural
tissues. The aim of decellularization is to maxi-
mize removal of cellular components while
minimizing loss and damage to the ECM (Xing
et al. 2015). The decrease in immunogenicity of
decellularized tissues makes them suitable for

allogenic use. dECM is a natural scaffold that
provides mechanical, structural, biological, and
biochemical cues for cell proliferation, adhesion,
migration, and differentiation. Both biocompati-
bility and a natural structure, as inherent features
of dECM, represent off-the-shelf biomaterials
that have favorably mimicked the extracellular
niche (Gao et al. 2017). Although dECM
preserves native bioactive proteins and
molecules, scientists are looking for a permanent
dECM that has broad applications in multiple
tissues and solve the problem of inaccessibility,
complexity, compactness or laxity that is present
in some tissues. For example, Wharton’s jelly
ECM has been used as a permanent dECM for
articular cartilage regeneration. Wharton’s jelly
dECM (WdECM) is an ideal candidate due to
the type and levels of some of the chondrogenic
growth factors such as IGF-I and TGF-β.
Research results have indicated that WdECM
has a unique function and performance compared
with cartilage tissue (Xiao et al. 2017). Since
skeletal muscle ECM (sECM) is similar to cardiac
muscle ECM (cECM) in terms of structure and
mechanical properties, the use of decellularized-
sECM as a scaffold has been suggested for
myocardial tissue engineering. Cell adhesion,
proliferation, and cardiac differentiation potency
were compared between the decellularized-cECM
and decellularized-sECM. Upregulation of
cardiac-specific markers α-MHC, MLC2v, and
ANP at day 16 confirmed the higher cardiac dif-
ferentiation potency of sECM. sECM is superior
to cECM because it can be easily harvested,
which enables a replacement for cECMs with
low immunogenicity and excellent biocompati-
bility (Hong et al. 2018). These features of
dECM make it a naïve scaffold that can be
functionalized with different moieties and has
the potential to be implanted as a permanent
ECM in various tissues.

3 Versatility of Decellularization
Protocols

The main goal of decellularization protocols is to
eliminate most cellular ingredients in order to
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reduce immunological responses and preserve
physiochemical properties of the ECM. Various
parameters, such as tissue thickness, density, and
cellularity can be effective in selection of an
appropriate decellularization protocol. The
decellularization procedure may affect the com-
position and ultrastructure of ECM biomolecules,
and these alterations adjust the cell behaviors
during recellularization. It is highly desirable to
minimize the deterioration of the ECM during
decellularization and preserve an acceptable bal-
ance between cellular elimination and retention of
ECM components.

Traditionally, the processes of
decellularization can be categorized into physical,
chemical, and enzymatic methods. It is essential
to select a proper method or the correct chemicals
to decellularize a distinct tissue to attain perfect
decellularization and preserve an intact ECM.
The type and the rigidity of the tissue or organ
has tremendous impact on the decellularization
outcome. It is challenging to obtain dECM from
hard tissues, such as bones and biphasic tissues
(osteochondral tissues).

The detailed process and methods described in
the literature combine several of these major
techniques to improve the efficacy of
decellularization and simultaneously reduce
undesirable effects on the ECM ultrastructure.
An overview of some commonly used chemical,
enzymatic, and physical agents, including their
efficiency in the decellularization process and
preservation of extracellular tissue components
is provided (Fig. 1).

3.1 The Efficiency of Physical
Methods for Decellularization

Some studies have evaluated the use of physical
methods for decellularization rather than chemical
agents, which have adverse effects. Hung et al.
combined freeze-drying and sonication during the
defreezing process to remove cellular components
from larynx tissue. The drying was performed to
eliminate ice produced during the freezing process
and assist with sonication treatment after freezing.
The main advantage of this method was the

propensity of tissue to absorb fluids during rehy-
dration after freeze-drying. Moreover, this tech-
nique might be used to promote the infusion of
other decellularization reagents such as detergents
and enzyme solutions (Hung et al. 2013). Multi-
ple freeze-thaw cycles have also been used to
decellularize tissues (Burk et al. 2013). Although
freeze-thaw cycles make negligible disruptions in
the ECM structure and the mechanical properties
of tissues, they are insufficient for complete cell
removal. It has been suggested that this procedure
can be modified by the addition of other chemical
or enzymatic decellularization protocols (Hung
et al. 2013).

Sonication, mechanical agitation, direct pres-
sure, and non-thermal irreversible electroporation
(NTIRE) are other physical methods used for
tissue decellularization. These methods have
been simultaneously employed with enzymatic
or chemical treatments to accelerate cell lysis
and removal of cellular debris.

3.2 The Efficiency of Chemical
Methods for Decellularization

Different types of chemical agents that used for
decellularization include detergents (ionic, non-
ionic, or zwitterionic), acids, and bases. These
agents generally lyse and disrupt the cell
membranes, resulting in removal of cells and
genetic materials.

White et al. used time of flight secondary ion
mass spectroscopy (ToF-SIMS) to analyze
detergent-based decellularization. The increased
sensitivity of ToF-SIMS enabled them to assess
the differences in the composition of porcine uri-
nary bladder matrix (UBM) following treatment
with sodium dodecyl sulfate (SDS), Triton X-100
(TX-100), sodium deoxycholate (SDC), peracetic
acid (PAA), and 3-[(3-cholamidopropyl)
dimethylammonio]-1-propane sulfonate
(CHAPS). Scaffolds treated with TX-100 and
SDC preserved the complex fiber network of
native UBM samples; however, treatment with
CHAPS, SDS, and PAA changed collagen fiber
organization. ToF-SIMS analysis found residual
detergent pieces in the UBM scaffolds treated
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with SDC, SDS, and TX-100. Particularly, more
intense deprotonated molecular ions were
recorded in UBM samples treated with either
SDC or TX-100 in comparison with the other
detergent treatments. Samples treated with SDS
exhibited the highest molecular ion intensity,
which was concentration-dependent. CHAPS
detergent was not detected due to its neutral
charge, and might have been eliminated by wash-
ing. Furthermore, this zwitterionic detergent is
highly susceptible to fragmentation. This study
indicated the capability of ToF-SIMS to find cel-
lular nuclei and membrane segments in biological
scaffolds. ToF-SIMS analysis showed the exis-
tence of choline, phosphocholine, and
glycerophosphocholine ions, which are crucial
for the structural integrity of cell membranes in

native, PAA, and CHAPS treated UBM. Higher
intensities of phosphate groups, the main feature
of cell nuclei, were observed in in the PAA and
CHAPS treated UBM in comparison with
TX-100, SDC, and SDS treated samples.
Although the intensity of the phosphocholine in
UBM treated with PAA was identical with the
native sample, the phosphate group was less
intense in this group when compared with native
tissue. This finding showed that PAA was more
efficient in elimination of cell nuclear
components than cell membrane ingredients.
The presence of phosphate and phosphocholine
ions, which are indicative of cellular remnants,
provides the criteria for an efficient
decellularization process. Particularly, UBM
samples treated with PAA or CHAPS did not

Fig. 1 Schematic representation of decellularization
approaches and application of decellularized matrix-
based materials for hard tissue engineering.
Decellularization approaches can be classified into three
categories: Physical with inefficient decellularization,
chemical or enzymatic with effective decellularization

along with ECM disruption and combinational approaches
which lead to effective decellularization and ECM reten-
tion. Decellularized tissues can be manipulated to create
various types of engineered scaffolds such as injectable
hydrogels or bio-printed constructs
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completely remove the cellular components as
demonstrated by the presence of residual cellular
components. Treatments with 1% SDS or SDC
were the most effective for complete
decellularization due to the high efficiency of
these ionic detergents. However, decreased
intensities of phosphate and phosphocholine
ions showed that treatment with 0.1% SDS and
non-ionic TX-100 were not as efficient as the
higher concentration ionic detergents (White
et al. 2017).

Chen et al. developed a novel, cost-effective,
easily reproducible decellularization process
based on acid treatments for porcine menisci tis-
sue. This method was developed to avoid any
surfactant treatment or enzymatic digestion. The
researchers used different concentrations of acetic
acid, formic acid, and PAA within a 2–12 h incu-
bation time. The results indicated that acetic acid
treatment for 2 h caused a significant reduction in
collagen content (Chen et al. 2015a). Dong et al.
previously demonstrated that decellularization of
bovine pericardium with acetic acid resulted in
severe destruction of collagen and, therefore,
reduced tissue strength despite retention of the
majority of the GAG (Dong et al. 2009). Treat-
ment with PAA for 2 h showed a small effect on
decellularization of the menisci, while 15% PAA
treatment for 10 h resulted in reductions of DNA
(4.68%), collagen (44.98%), and GAG (19.04%).
PAA was unable to infiltrate throughout the
menisci within a short period of time due to the
dense architecture of the tissue. However,
prolonged processing with PAA led to deteriora-
tion of the ECM.

Treatment with formic acid for 2 h resulted in
efficient menisci decellularization but preserved a
substantial portion of the ECM. Formic acid
induced swelling in the menisci and exposed the
embedded chondrocytes because of its high capa-
bility for infiltration through the dense meniscal
structure. The amount of DNA within the dry
menisci tissue was 37.20 ng/mg after 2 h treat-
ment with formic acid. In this study, formic acid
treatment was introduced as an economical, effi-
cient, and convenient procedure for
decellularization of meniscus tissue. This acellu-
lar scaffold promoted the chondrocyte phenotype

and chondrogenic differentiation of human mes-
enchymal stem cells (hMSCs) (Chen et al.
2015a, b).

Although chemical approaches are more effi-
cient than physical treatment in decellularization,
their function mainly depends on maintenance of
the ECM structure, which is critical for repair of
targeted tissue.

3.3 Combined Chemical and Physical
Methods for Decellularization

Physical methods facilitate tissue
decellularization but they are insufficient for com-
plete decellularization, especially in tissues that
have complicated structures. Chemical and enzy-
matic treatments are more effective in removing
cellular components such as nuclear residues and
cytoplasmic proteins from dense tissues. On the
other hand, these treatments may damage the
main components of the ECM (collagen, GAGs,
and growth factors). Therefore, a combination of
decellularization methods have been used to
develop an acellular scaffold to reconstruct target
tissues (Woods and Gratzer 2005; Faulk et al.
2014).

Farag et al. used static and perfusion systems
to assess different protocols for the
decellularization of human periodontal ligament
cell sheets. They utilized an electrospun
polycaprolactone membrane to reinforce the cell
sheet during decellularization. Assessments of
various protocols showed that treatment with
ammonium hydroxide, TX-100, and DNase
resulted in effective DNA removal, preserved
the integrity of the ECM, and retained growth
factors (Farag et al. 2018). Researchers have
reported the benefits of the perfusion technique
in terms of economics, practicality, and less com-
plicated features, all of which could be important
for future commercialization. Therefore, the
nature of the chemicals, detergents, and enzymes
used during the decellularization determine the
maintenance and integrity of the ECM
ultrastructure.

The combination of freeze-thaw cycles with
chemical reagents has been extensively used to
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enhance the efficiency of the decellularization
process for hard tissues. Burk et al. evaluated
the decellularization of equine superficial and
deep digital flexor tendons after treatment by
repeated cycles of freeze-thawing and two chem-
ical detergents, TX-100 and SDS. Four different
protocols that included TX-100 and SDS treat-
ment alone and the combination of freeze-thaw
cycles with either TX-100 or SDS were
evaluated. The results demonstrated that the
freeze-thaw cycles could improve the efficiency
of the decellularization process. However freeze-
thaw cycles alone could not adequately remove
DNA. The combination of freeze-thaw cycles
with detergent led to increased cell and DNA
removal compared to the groups that were only
treated by detergent. Freeze-thaw cycles com-
bined with TX-100 facilitated cell distribution
into the scaffold (Burk et al. 2013). In a similar
study, Youngstrom et al. developed a protocol
based on the combination of treatment with 2%
SDS detergent, a freeze/thaw cycle,
trypsinization, DNase-I digestion, and ethanol
sterilization to remove cellular components from
equine flexor digitorum superficialis tendons. The
authors reported that their protocol efficiently
removed cellular components and also preserved
the biochemical composition, ultrastructure, and
mechanical properties of the decellularized tissue
(Youngstrom et al. 2013).

Lu et al. compared seven methods for
decellularization of ECM derived from a 3D cell
culture. These researchers cultured human bone
marrow MSCs in PLGA (poly(lactic-co-glycolic
acid)) templates for 5 days to allow the ECM to
deposit around the PLGA substrate. After con-
struction of a cell-ECM-PLGA complex, they
removed the cellular components. dECM
scaffolds were prepared after treatment with
seven decellularization methods: freeze-thaw
cycling; ammonium hydroxide; osmotic shock;
combined freeze-thaw cycling with either ammo-
nium hydroxide or osmotic shock; detergent
(TX-100) extraction; and detergent extraction
with osmotic shock (Lu et al. 2012). A compari-
son of these methods showed that combined
freeze-thaw cycling with ammonium hydroxide
and detergent extraction along with osmotic

shock (treatment with 1.5 M KCl) efficiently
removed the cellular components. These two
methods preserved the gross appearance and
microstructure of the ECM and induced mild
host responses following subcutaneous implanta-
tion in mice. Freeze-thaw cycling alone was inef-
fective for cell removal even after ten cycles.
Ammonium hydroxide alone could not properly
decellularize the scaffold because of the dense
architecture of the 3D matrix that prevented its
infiltration into the scaffolds. However, the com-
bination of freeze-thaw cycling with ammonium
hydroxide resulted in efficient removal of the
cellular components. In agreement with these
results, freeze-thaw cycling combined with deter-
gent (SDS) and nuclease (DNase and RNase)
treatment led to optimal decellularization of por-
cine meniscus (Stapleton et al. 2008). Although
TX-100 and osmotic shock (1.5 M KCl) alone did
not successfully remove the cellular components,
the combination of these methods efficiently
decellularized the scaffold.

A similar study was conducted to optimize
the decellularization process for ECM generated
by MC3T3-E1 pre-osteoblast cells. dECM
obtained via three freeze-thaw cycles and treat-
ment by TX-100 provided a suitable niche for
proliferation and stemness preservation of bone
marrow MSCs (BMSCs). The decellularization
procedure almost entirely eliminated the DNA;
however, both the architecture and protein dis-
tribution of the ECM were properly retained
without loss of bioactivities in the BMSCs cul-
ture. The results demonstrated a positive effect
of TX-100 for permeabilization of the cell mem-
brane and assisted in efficacious cell disruption
induced by the freeze-thaw cycles. The dECM
had minimum DNA content with high integrity
as evidenced by morphology, protein content,
and distribution analysis, which resulted in
biological function of the BMSCs. The complex
protein profile of dECM was analyzed by mass
spectrometry. Proteomic analysis has identified a
total of 178 proteins that participate in numerous
cellular activities and signaling pathways. For
example, three ECM proteins (Wnt2, Wnt5a,
and Wnt6) were recognized in the dECM.
These ECM proteins might play crucial roles in
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signaling pathways that adjust the stem cell
pluripotency (Li et al. 2019).

The results of these studies show that physical
and chemical approaches can be combined to
complement each other for efficient tissue
decellularization. Although physical methods are
moderate approaches that retain the ultrastructure
of tissues, they fail to completely remove the
immunogenic component of these tissues. On
the other hand, decreased concentrations of chem-
ical agents alone may not remove all cellular
remnants. Thus, the combination of the two
approaches in a multistep procedure can yield a
synergistic effect for proper decellularization.

3.4 Combination of Chemical
and Enzymatic Methods
for Decellularization

Chemical approaches, with the assistance of
enzymatic treatments can efficiently eliminate
undesirable cellular and genetic constituents of
the ECM. In order to achieve a convenient
decellularization protocol for porcine annulus
fibrosus (AF) (Kajbafzadeh et al.) tissue, Xu
et al. investigated three different agents for the
decellularization process. TX-100, as a non-ionic
detergent, SDS, an anionic detergent, and trypsin,
an enzymatic agent, were used to decellularize the
AF tissue (Xu et al. 2014). This tissue is a multi-
lamellar fibrocartilaginous structure mainly com-
posed of collagen and proteoglycans. In this tis-
sue, proteoglycan-rich matrix encompasses the
collagen fibers in an orderly arrangement (Hickey
and Hukins 1980). All three agents effectively
decellularized the tissue and retained collagen.
However, trypsin caused detachment of the
matrix proteins from proteoglycans and led to a
reduction in GAG content. Trypsin slightly
deteriorated the concentric lamellar structure.
SDS is an anionic detergent with a negatively
charged head-group that can change the native
conformation of proteins by disrupting
non-covalent interactions. No significant
differences were detected in mechanical
properties of ultimate stress, elastic modulus,
and toughness between the TX-100, trypsin, and

control treatments; however, these parameters
were lower in the SDS-treated group than the
control group. The mechanical properties of
specimens treated with SDS were lower than nat-
ural tissue due to the destructive effect of SDS,
which disturbed the structure of the collagen
fibers. Among these three agents, TX-100 effec-
tively preserved the major ECM components,
concentric lamellar structure, and tensile mechan-
ical properties of the decellularized tissue. The
proper biocompatibility of TX-100 makes it a
promising candidate for efficient decellularization
of AF tissue.

In order to decellularize porcine articular car-
tilage grafts, Luo et al. developed a
decellularization protocol that consisted of sev-
eral chemical reagents, including SDS and
nucleases. The decellularized cartilage explants
were seeded with human infrapatellar fat
pad-derived stem cells (FPSCs) and cultured in
chondrogenic medium under static or dynamic
conditions for 10 days. For decellularization, the
researchers first applied a hypotonic buffer that
contained Tris-HCl, EDTA, KCl, MgCl2, and
dithiotheritol (DTT), followed by two additional
treatment cycles with a hypotonic buffer
supplemented with 0.5% SDS. The presence of
KCl, MgCl2, and DTT improved the solubility of
the cell membrane proteins and antigens in the
decellularization solution and accelerated their
removal. Then, hyaluronidase treatment was
performed to eliminate hyaluronic acid and pro-
teoglycan trapped within the cartilage ECM.
According to Luo et al., this treatment eliminated
DNA and subsequently repopulated the scaffold.
The researchers believed that this treatment could
be used to develop a more porous decellularized
matrix. Subsequently, the cartilage disks were
incubated in hypotonic buffer that contained
DNase I and RNase A (25 U/ml), and subse-
quently treated with 0.5 M NaOH to digest
small collagen fibers and increase the porosity of
the decellularized matrix. This protocol signifi-
cantly reduced the DNA content of the cartilage
tissues and resulted in a substantial decrease in
sulfated glycosaminoglycan (sGAG). The reduc-
tion in sGAG contents associated with the use of
hyaluronidase enzyme in the decellularization

34 A. Ebrahimi Sadrabadi et al.



procedure led to a significant decrease in the
equilibrium modulus of the tissue (Luo et al.
2016).

A similar study was performed by Kheir et al.
A decellularization protocol that included freeze/
thaw cycles, repetitive treatment with hypotonic
Tris buffer and 0.1% SDS, along with nuclease
treatment and disinfection with PAA was devel-
oped. This protocol removed about 99% of DNA
from cartilage tissue within 6 days (Kheir et al.
2011). In agreement with these results, Elder et al.
developed a protocol that contained 2% SDS with
a short incubation period (8 h), which resulted in
only a 40% reduction in DNA content of the
cartilage tissue (Elder et al. 2010). In these stud-
ies, both the collagen content and tissue organiza-
tion were properly retained. However, SDS
treatment in the absence of hyaluronidase caused
significant reduction of sGAG in articular carti-
lage. Subsequently, removal of sGAG from the
articular cartilage led to a substantial reduction in
the mechanical properties of the tissue. Therefore,
it is essential to develop a protocol that can effi-
ciently decellularize cartilage tissue.

3.5 The Combination of Physical,
Chemical, and Enzymatic
Methods for Decellularization

A decellularization protocol that combines chem-
ical, physical, and enzymatic treatments is an
ideal option for cellular removal and ECM reten-
tion. Whitlock et al. decellularized human Achil-
les tendons after freeze-drying, followed by
treatment with hypotonic aqueous solutions, tryp-
sin digestion, and processing with the combina-
tion of an oxidizing agent (PAA) and a detergent
(TX-100). This protocol effectively removed
infectious viral material and produced a
decellularized, architecturally modified, cyto-
compatible scaffold that could promote cell infil-
tration in vivo, yet retain tensile properties similar
to native tissue. The oxidative and enzymatic
treatments were effective for increasing porosity
and removing infectious particles and donor cel-
lular material during scaffold production, and

eventually led to increased cell infiltration
in vivo (Whitlock et al. 2012).

In an attempt to develop a biologic scaffold
using a rabbit decellularized periosteum
(D-periosteum) for bone tissue engineering,
Chen et al. combined physical, chemical, and
enzymatic treatments. For physical processing,
multiple freeze-thaw cycles were performed,
which led to efficient lysis of periosteum-derived
cells (PDCs) and minimal disruption of the
physicomechanical properties of the ECM, along
with modification in diffusion of decellularization
solutions throughout the tissue and the elimina-
tion of cellular components.

In order to solubilize the cell membrane, they
used two chemical detergents (TX-100 [non--
ionic] and SDS [ionic]). Although SDS was
more efficient than TX-100 for cell elimination,
it was more destructive to the ECM ultrastructure.
In order to diminish undesirable immunological
responses, DNase I was used to completely elim-
inate the DNA fragments. The decellularized tis-
sue had a higher swelling ratio in comparison to
native tissue because of the increased porosity
that was created by the removal of cells and
movement of the solution within the tissues. The
increase in swelling ratio might improve cell infil-
tration through the scaffold.

PDCs could adhere, proliferate, and infiltrate
into the D-periosteum in vitro. The host response
to the D-periosteum scaffold was evaluated by
subcutaneous implantation in rabbits during
28 days. D-periosteum did not represent an
intense immunogenic response; rather, there was
low-grade inflammation, scarce scaffold degrada-
tion, and thin fibrous encapsulation. These results
demonstrated that D-periosteum could be a bio-
compatible scaffold for bone tissue engineering
(Chen et al. 2015b).

4 Challenges Faced by Emerging
Decellularization Technique

The advantages and disadvantages of several
procedures currently used in the decellularization
process were previously discussed.
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Notably, most of the decellularization agents
and protocols cannot completely preserve the
native 3D architecture of the ECM and might
result in changes in its composition, arrangement,
biological activity, and mechanical properties.
Therefore, creating optimal protocols to minimize
these undesirable effects and keep native ECM
for clinical use is a major challenge of the
decellularization process.

The ultimate goal of each decellularization
protocol is to eliminate all cellular substances
without negatively affecting the composition,
mechanical integrity, and biological activity of
the remnants of the ECM and successfully extract
an intact version of the ECM. It is critical to
obtain pure and intact ECM from the desired
organs to achieve complete regeneration
(DeQuach et al. 2010; Frantz et al. 2010). How-
ever, nearly all approaches have resulted in dam-
aged ECM organization or arrangement (Rana
et al. 2017; Somuncu 2019).

Effectiveness, efficiency, and safety of
decellularization depends on the quality of cell/
antigen removal and preservation of structural
proteins. Extraction of the ECM from entire
mammalian tissues needs several processing
steps, which strongly alter the ECM structure
and subsequently impact the host response. Each
step changes the architecture and integrity of the
dECM and affects the mechanical and biological
properties of the extracted ECM. Despite the var-
ious protocols that have been used to fully
decellularize the dermis, urinary bladder, skeletal
muscle, and adipose tissue, no protocol has fully
eliminated all of the cellular components and
antigens, and preserved the most crucial
components (GAGs and collagens) of the ECM.
Nevertheless, these protocoles does not encom-
pass any organs and tissues. For example, there
are a limited protocols for decellularization of
hard and dense tissues like bones, cartilage, and
teeth. This limitation is particularly noted for the
tendon-bone interface. Four different tissues with
different matrix densities such as bone, calcified
fibrocartilage, fibrocartilage, and tendon are
located in a small zone (1 mm) of the tendon-
bone interface. This feature is a major obstacle for
efficient cell removal. Therefore, specific tissue

characteristics, matrix density, cell density, and
type of detergent must be considered to achieve
the most effective method. A few protocols have
been developed for tendon-bone interface
decellularization. Bronstein et al. used a specified
protocol that could roughly preserve the bio-
mechanical properties of the flexor tendon–bone
interface. The combination of physical
(ultrasonication) and chemical (PAA, EDTA,
and SDS) treatment resulted in a decellularized
multi-tissue scaffold (Bronstein et al. 2013). Xu
et al. estimated the various physical procedures
and chemical treatments to create an effective,
time-saving, and repetitive protocol to
decellularize whole fibrocartilage enthesis ECM.
DNA analysis and biochemical characterization
of the resultant ECM confirmed that the matrix
structure and biomechanical features were
maintained. This suggested protocol could
decellularize bone, tendon, and its interface
region (Xu et al. 2017).

The removal of detergent from decellularized
tissues is another issue that affects the functional-
ity of prepared cell-free ECM in clinical settings.
Detergents are amphipathic molecules composed
of a hydrophilic head group and a hydrophobic
chain. These characteristics enable them to emu-
late, destruct, and insert themselves into cell
membranes. The penetration rate and lysis capa-
bility of detergents differ, and consequently make
it difficult to exclude the residual surfactant from
decellularized tissues and cells (Daugs et al.
2017). The remaining detergents that have high
penetration capability infiltrate through the cell
membrane and disrupt the basement membrane
complex in decellularized tissues. This might
denature the native ECM structure and negatively
affect the cell-ECM scaffold interaction (Faulk
et al. 2014). To address this issue, Farrokhi et al.
compared the effectiveness of a detergent-free
method with a detergent-based method. The
results indicated that the detergent-free methods
because of their effectiveness, safety and minimal
disruption to native ECM would be excellent
alternatives and prevail over detergent-based
challenges (Farrokhi et al. 2018). Aside from
detergent-based protocols, enzyme-based
methods have a disruptive effect on the ECM
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and basement membrane component. Enzymes
trapped in the ECM network substantially reduce
the ECM content of elastin and GAGs over time
and may diminish recellularization (Kim et al.
2016; Naso and Gandaglia 2018). Accordingly,
there is a need to develop methods that concur-
rently accelerate both the decellularization and
recellularization processes.

5 Potential Opportunities
and Possibilities

Despite limitations and weaknesses, numerous
organs such as the lungs, esophagus, urinary blad-
der, kidneys, cornea, and trachea, as well as heart
valves and blood vessels have been successfully
regenerated by using dECM. In the next section,
we discuss advances attributed to the
decellularization technique.

5.1 Extracellular Matrix (ECM)-Based
Bioink

The regeneration of complex solid organs such as
the heart, liver, or kidneys is faced with various
difficulties due to the lack of suitable materials
that can mimic the 3D structure of tissues. dECM
is one of the promising materials that can generate
complicated tissues. Researchers have the capa-
bility to prepare gel-like shear-thinning bioink
from these cell-free ECM. The combination of
bioprinting technology and the dECM bioink is
an optimistic approach to generate on-demand
tissue-like scaffolds. ECM hydrogels are com-
posed of functional, structural, and signaling
molecules such as collagen, laminin, fibronectin,
GAGs, and growth factors that can be preserved
in dECM. Therefore, organ-derived bioinks pro-
vide a biomaterial that exhibit the highest degree
of similarity to native tissue (Chameettachal et al.
2019).

dECM of the skin (Ahn et al. 2017), urinary
bladder, small intestine (Choudhury et al. 2018),
heart (Jang et al. 2016), cartilage (Pati et al.
2014), and muscle (Choi et al. 2016) have been
successfully bioprinted. Unlike soft tissues,

which are easily decellularized and solubilized
to form bioink, preparation of solubilized bioink
from hard tissues faces distinct challenges.
Among the hard tissues, cartilage dECM has
been bioprinted. Pati and colleagues have
decellularized porcine hyaline cartilage and
solubilized the obtained dECM. Preservation of
type II collagen and GAGs in dECM directed
MSCs into chondrocyte lineage (Pati et al.
2014). The major challenge in hard tissue
derived-ECM bioinks that restricts application of
the hard tissue decellularized bioink is the com-
plete maintenance of dECM.

Regardless, dECM has distinct advantages.
The presence of collagen and fibronectin in
dECM makes the gelation process more respon-
sive to temperature alterations and triggers the
formation of a crosslinked network. This feature
leads to the crosslinking of bioink without the
presence of a crosslinker. Moreover, the concen-
tration of collagen and other fibrous molecules in
dECM-derived bioink, due to their physical inter-
action and meshwork nature, could directly
enhance bioink printability (Wang et al. 2017;
Osidak et al. 2019). Ahn et al. have introduced a
novel heating system based on this dECM bioink
feature. An intrinsic characteristic of skin-derived
dECM led to the construction of an integrated
scaffold that had improved fidelity and
maintained cell viability (Ahn et al. 2017).

5.2 Particulate Form
of the Extracellular Matrix (ECM)

The application of powder-like biomaterial and
biodegradable material has been proven in various
tissues (Choi et al. 2009). Different biomaterials in
the form of particles, powders, and granules have
been successfully used as fillers, stabilizers,
leaching agents, and bioactive factors to accelerate
tissue regeneration (Sheikh et al. 2015; Iulian
Antoniac et al. 2017). Recently, decellularized
tissue-derived particles and powders have cap-
tured more attention due to their ease of access,
high efficiency, and reservoir of signaling cues,
bioactive peptides, and matrix metalloproteinases
(Brown and Badylak 2014; Blaudez et al. 2019).

Decellularized Extracellular Matrix as a Potent Natural Biomaterial for. . . 37



ECM powders and particles can be packed,
sprayed, or solubilized, and minimally invasive
techniques can be used to efficiently deliver
them to irregular defects. ECM powder can be
used to optimize synthetic substances that have
poor biocompatibility in 3D bioprinting (Edgar
et al. 2018). Bioactivity, accessibility, higher effi-
ciency, and lower invasive intervention are dis-
tinct features of ECM powders.

The powder-like demineralized bone matrix
has widely been used in periodontal and orthope-
dic regeneration to take advantage of the distinct
capability of the bone matrix (Maddox et al.
2000; Tsai et al. 2002). Nevertheless,
disadvantages include the lack of osteogenicity
and osteoconductivity, and residual cellular
debris make dECM powder-like materials a better
alternative matrix for hard tissue regeneration
(Sawkins et al. 2013). The results from a number
of investigations have confirmed the remarkable
capability of the powder and particulate forms of
the ECM in various tissues. Penolazi and
co-workers used powder and a purified form of
urinary bladder dECM (BdECM) to evaluate its
capability to induce osteogenic differentiation of
Wharton’s Jelly derived mesenchymal stem cells
(WMSCs). BdECM could successfully maintain
cell morphology and viability, and induce typical
osteoblastic markers (Penolazzi et al. 2012).
Soucy et al. have suggested that particulate
ECM can be a biological substitute to improve
cardiac function and increase cell proliferation
when injected into left ventricular assist devices
(Soucy et al. 2015). Human adipose tissues that
contain adipose stem cells (ASCs) have increased
application in stem cell delivery. Choi et al.
reported that ECM powder-derived adipose tissue
is an ideal carrier for adipose tissue engineering.
The findings of an in vivo study that used cell-
seeded ECM powder showed excellent tissue
regeneration without any necrosis or fibrous tis-
sue after 8 weeks (Choi et al. 2009). Maintenance
of the avascularity feature of tissues such as cor-
nea and cartilage is necessary to avoid
de-differentiation of stem cells into unwanted
lineages. Choi et al. have utilized chondrocyte-
derived ECM powder to investigate its angio-
genic inhibitory effect on rabbit cornea. The

anti-angiogenic properties of chondrocyte-
derived ECM are allocated to type II collagen-
derived N-terminal propeptide (PIIBNP), chon-
droitin sulfate, and GAGs components. Both
in vivo and in vitro analysis confirmed that
chondrocyte-derived ECM efficiently hindered
neovascularization (Choi et al. 2014). These
data confirmed that ECM powder could highly
support a 3D stem cell culture and maintain spe-
cific characteristics of the desired tissue.

The particulate form of dECM offers a
promising approach that can be used in hard tissue
engineering and regenerative medicine. Particulate
meniscal ECM has been utilized to overcome its
inadequate intrinsic regeneration capacity. Mobini
et al. reported a novel and effective method for
decellularization and micronization of the menis-
cus. The resultant powder-like meniscus was com-
bined with platelet-rich plasma (PRP) and
analyzed ex vivo in a canine model. A long-term
culture confirmed both cellular infiltration and pro-
liferation of the dECM+PRP scaffold, which
suggested that the micronized meniscus ECM
could be a novel candidate treatment for full-
thickness meniscal defects (Monibi et al. 2016).
Zahiri and co-workers have reported that cartilage
decellularized nanoparticles could be an adequate
biomolecule delivery system in chondrogenesis.
Their results indicated that cartilage dECM
nanoparticles clearly improved chondrogenic dif-
ferentiation of human chondrocytes (Zahiri et al.
2018).

These studies confirmed the efficacy of
decellularization and highlighted that the
powder-like ECM preserved the inherent features
of ECM. Ease of extraction, increased accessibil-
ity, and reproducibility make the particulate form
of dECM more applicable for commercial and
clinical use compared to its solubilized form.
Regardless of the final product, there are no stan-
dard guidelines and processes for powder fabrica-
tion and treatments. The application of this
promising scaffold is limited by the lack of a
standardized protocol. Therefore, developing
this protocol for each tissue would offer the
same ECM compositions after processing and
enable decellularization to be used in the clinical
setting.
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5.3 Mimicking the Vascular System

Complete regeneration of tissues and organs is
restricted because of the lack of vascularization.
Various techniques and investigations have
attempted to generate vascularized constructs
(Huling et al. 2016; Datta et al. 2017; Kant and
Coulombe 2018; Esser et al. 2019). Utilization
and stimulation of pre-existing vascular networks
render the most beneficial strategy to recapitulate
the vascular pattern and trigger the angiogenesis
process (Rancy et al. 2019). Vascularized grafts
and implants have the advantages of presenting
the vasculature bed and are under consideration,
especially in bone tissue engineering (Jiang et al.
2018). The most promising result that has used
the vascularized bed was achieved by seeding
endothelial cells directly into decellularized
scaffolds, which took advantage of the channels
that remained from the pre-existing vascular net-
work (Pellegata et al. 2018). Therefore,
decellularization offers a simple solution for the
vascularization issue.

An intact vascular network is more important
for whole organ decellularization. In order to
maintain the vascular network, two prominent
components of the ECM, laminin and fibronectin,
must be preserved. Laminin and fibronectin both
play critical roles in cell adhesion and differentia-
tion (Schwarzbauer 1991; Li et al. 2002;
Kajbafzadeh et al. 2019). In order to have an
intact vascular bed, it is crucial to tightly control
the decellularization method. For instance, the
utilization of an ionic detergent destroys the
ECM ultrastructure. A decrease in GAG alters
the viscoelastic features of the ECM scaffold,
which is a significant factor in decellularized
vein functionality (Cheng et al. 2019).

It is a challenge to maintain the decellularized
vascular network (DVN) and prevent clotting or
clogging of the implanted DVN.
Re-endothelialization of the DVN before the
implantation process by seeding endothelial
cells on the vessel wall is a promising technique
(Zambon et al. 2018). The vascular corrosion
casting method has been refined in an attempt to
examine both the morphology and architecture of

recellularized blood vessels and capillaries
(Bagetti Filho et al. 2008). Creation of a method
to preserve increased ECM components (mainly
collagen and GAGs) could allow a more intact
DVN (Lin et al. 2018). Despite the difficulties,
DVN offers a reliable vascular bed to facilitate the
recellularization of targeted tissue, especially in
highly vascularized organs.

Regeneration of hard and dynamic tissues like
dentin and bone are highly dependent on the
vascular network due to their cell turnover.
Unlike bone, dentin is avascular and nutrition
for odontoblasts is provided by blood vessels
located in pulp tissue (Florencio-Silva et al.
2015; Bedran-Russo et al. 2017). The dental
pulp, which is a highly vascularized connective
tissue in the center of the tooth, regulates the
dentin-pulp complex through the dentinal tubules.
Typical therapeutic approaches to cure infected
dentin lead to elicit pulp tissue, expansion of
apical periodontitis, and eventual tooth loss.

Decellularized dental pulp ECM (dDP-ECM)
can extend the therapeutic strategy of tooth regen-
eration by providing an intact vascularized scaf-
fold. An in vivo study on a canine root canal
confirmed both the feasibility and superiority of
dDP-ECM in tooth regeneration (Alqahtani et al.
2018). Another study has shown regeneration of
the pulp vascular network by xenograft
dDP-ECM. The expression of matrix proteins
like collagen-IV and laminin, which play a lead-
ing role in blood vessel formation, were substan-
tially upregulated (Hu et al. 2017). These findings
have shown the clinical use of dECM for tissue
regeneration.

6 Conclusion and Outlooks

dECM is a biocompatible and versatile scaffold
that includes essential components such as struc-
tural proteins and GAGs; hence, it regulates cell
behaviors and tissue regeneration. Numerous
studies have demonstrated the biological
advantages of dECM biomaterials for tissue engi-
neering. Decellularization could reduce the
immunogenicity of allogenic or xenogeneic
tissues by removing the cellular components. It
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may be useful in tissue remodeling because of
improvements in cell invasion and repopulation
following removal of cellular debris. Different
parameters such as tissue thickness, density, and
cellularity could influence the efficiency of
decellularization protocols.

Given the advantages of dECM biomaterials in
tissue engineering applications, tremendous
developments have been made in the past few
decades in pre-clinical and clinical applications.
However, numerous challenges remain. One of
the most important steps following cell removal
is proper recellularization of the dECM by using
both the appropriate cell type and an efficient
method. It is important to note that all changes
of the ECM scaffolds may influence the cell
behaviors during recellularization. On the other
hand, currently, there is no defined mechanism
for the interaction of ECM with cells and in the
in vivo microenvironments. Further studies in this
area would be of benefit. Furthermore, more
attention should be paid to the immunological
responses of dECM biomaterials in vivo. It may
be necessary to optimize and improve the current
decellularization protocols to achieve more bio-
compatible and functional scaffolds for tissue
regeneration. Recent technologies that include
the development of bioprinting could provide
suitable microenvironments for cell growth and
tissue regeneration, which would be physically
and biologically optimized. Thus, a promising
future exists for dECM biomaterials in the field
of tissue engineering and regenerative medicine.
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Abstract

Exosomes are nano-sized vesicles involved in
intercellular communication via delivery of
molecules including lipids, nucleic acids,
proteins, or other cellular components to dis-
tant or neighboring sites. Their ability to pass
biological barriers, stability in physiological
fluids without degradation, and distinctive
affinity to target cells make exosomes very
remarkable therapeutic vehicles. Virus-based
approaches are some of the most widely used
gene therapy methods; however, there are
many issues need to be clarified such as high
immunogenicity. Using of the exosomes
procures the functional transfer of their cargo
with minimal intervention from the immune

system and it has been reported to be secure
and well-tolerated. When the regenerative
medicine is taken into consideration, stem
cell-based approaches have been aimed to uti-
lize but the general efficacy and safety profile
of stem cell therapy has still not been
enlightened. At this point, stem cell-derived
exosomes exhibit a way to procure cell-free
regenerative medicine with their unique
characteristics. Exosomes are considered as
appropriate and highly stable biological nano-
vectors taking part in a wide variety of healthy
and pathological processes for advanced
targeted therapies. However, there are still cru-
cial obstacles to achieve efficient isolation of
large amount of specific and pure exosomes.
Thus, large-scale exosome production under
good manufacturing practice is required. The
purpose of this review is to focus on stem cell-
based exosomes for gene delivery and to intro-
duce synthetic exosome-mimics as a potential
alternative in the field of targeted gene
therapies. Further, we aim to highlight the
biobanking and large-scale manufacturing
methods of exosomes.
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Abbreviations

AAV Adeno-associated virus
ALIX Apoptosis linked gene 2-interacting

protein X
AV Adenovirus vector
BBB Blood brain barrier
CSC Cancer stem cell
dsDNA double-stranded DNA
ECM Extracellular matrix
EGF Epidermal growth factor
EGFR Epidermal growth receptor
EMT Epithelial-mesenchymal transition
ESC Embryonic stem cell
ESCRT Endosomal Sorting Complex

Required for Transport
EV Extracellular vesicle
exo-AAV exosomes-enveloped viral vector
FBS Fetal bovine serum
GFP Green fluorescent protein
GMP Good manufacturing practice
HIF-1α hypoxia-inducible factor-1α
HSC Hematopoietic stem cell
iPSC Induced pluripotent stem cell
MSC Mesenchymal stem cell
MTX Methotrexate
MV Micro-vesicle
NK Cell Natural killer cell
PLGA Poly Lactic-co-Glycolic Acid
ssDNA single-stranded DNA
TGF-β Transforming growth factor beta
Th T helper
TRAIL Tumor Necrosis Factor-Related

Apoptosis-Inducing Ligand
TSG101 Tumor susceptibility gene 101 protein

1 Introduction

Exosomes are one sub-population of extracellular
vesicles (EVs) released from a majority of cell
types in the organism and isolated from a wide
number of body fluids such as semen, urine,
breast milk, saliva, amniotic fluid, sputum, and
cerebrospinal fluid (Ela et al. 2013). EVs are
classified into three subsets based on their mor-
phology and cellular origin; namely, exosomes,

micro-vesicles (MVs), and apoptotic bodies.
Exosomes are nano-sized membrane vesicles
(30–100 nm in diameter), which originate from
the endosomal pathway and released to the extra-
cellular space by a process of exocytosis (Fig. 1)
(Ratajczak and Ratajczak 2017; Colombo et al.
2014). In addition to their specific morphology,
protein and lipid compounds in their structures
are used in the determination of exosomes. Owing
to their endosomal origin, each exosome harbors
membrane transport and fusion proteins (Rab
GTPases, Annexins, flotillin, Endosomal Sorting
Complex Required for Transport (ESCRT) 0, I, II
and III.), heat shock proteins (Hsc70, Hsp90),
tetraspannins (CD9, CD63, CD81, CD82),
proteins take part in multivesicular body biogen-
esis (Apoptosis linked gene 2-interacting protein
X (ALIX), Tumor susceptibility gene 101 protein
(TSG101)), as well as phospholipases and lipid-
related proteins (Subra et al. 2010; Conde-
Vancells et al. 2008). In spite of utilizing these
proteins as positive markers, there is wide variety
among exosomes released from different sources.
Apart from these well-known membrane-
associated proteins, over 4400 various proteins
have been defined in relation with exosomes,
probably serving as cargo for intercellular com-
munication (Mathivanan and Simpson 2009).
Besides proteins, exosomes are covered by phos-
pholipid bilayer and they contain abundant cer-
tain raft-related lipids such as ceramide,
cholesterol, other sphingolipids, and
phospoglycerides with long and saturated fatty-
acyl chains (Trajkovic et al. 2008; Skotland et al.
2017; Raposo and Stoorvogel 2013). This lipid
composition is in charge of their unique rigidity.
The importance for ceramide in budding of
exosome vesicles into multivesicular bodies has
been shown (Trajkovic et al. 2008). It has been
recently reported that exosomes have saccharide
groups on their outer surface and these groups are
enriched in α-2,6 sialic acid, mannose,
polylactosamine, and complex N-linked glycans
(Batista et al. 2011). Furthermore, metabolic
enzymes, growth factors and cytokines are also
detected inside exosomes. Besides the afore-
mentioned structures, exosomes also harbor dif-
ferent variants of nucleic acids such as mRNAs

46 M. B. Küçükgüven and B. Çelebi-Saltik



and miRNAs (mi-214, mi-29a) (Waldenstrom
and Ronquist 2014).

As each exosome has a particular cargo which
is related to the parental cell, exosomes retain the
molecular signature of the cell origin. They
broadly express protein and RNA factors distinc-
tive to their originating cell. For example, MHC
class-II molecules, CD80 and CD86 are
expressed by exosomes released from dendritic
cells (Robbins and Morelli 2014). Additionally,
the expression profiles of exosomes have been
exploited to elucidate the situations of the paren-
tal cell, changing in relation with a pathogenic
condition. It has been shown that tumor and
healthy cells secreted various populations of
exosomes. For instance, exosomes secreted by
papillary thyroid tumors overexpress miR-146b

and miR-155 (Lee et al. 2015a, b). Therefore,
exosomes have become a burgeoning area as a
potential prognostic and diagnostic indicator for
diseases ranging from cancers to neurodegenera-
tive disorders. Formerly, it was considered that
exosomes just released the undesirable or toxic
materials for the cell (De Toro et al. 2015). On the
other hand, today those vesicles are thought as
natural signaling carriers and they are considered
to have a crucial role for the intercellular neigh-
boring and remote communication (Shahabipour
et al. 2017). The capability of cross biological
barriers including the cytoplasmic membrane
and blood brain barrier is the one of the most
beneficial properties of exosomes (Ha et al.
2016). This situation enables us to transport spe-
cific therapies to targeted cell types or distant sites

Fig. 1 Schematic presentation of stem cell-derived
exosomes biogenesis and secretion. Exosomes are formed
as ILVs by budding into early endosomes and MVBs.
Many molecules take part in the formation of ILVs, such
as lipids (such as ceramide), the ESCRT system and
tetraspanins. MVBs can be fusion with lysosomes or
fusion with the plasma membrane. Many Rab proteins
have been indicated to participate in the transfer of
MVBs to the plasma membrane and in exosome secretion.

Moreover, SNAREs probably have a role in fusion of
these MVBs with the plasma membrane. Other types of
secreted vesicles bud directly from the plasma membrane,
and are frequently called microvesicles. Abbreviations:
ILV Intraluminal vesicle, MVB Multivesicular body,
ESCRT Endosomal sorting complex required for transport,
SNARE Soluble N-ethylmaleimide-sensitive factor attach-
ment protein receptor
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such as central nervous system. Besides their role
in cellular crosstalk, they are involved in the
transport of small molecules between cells,
which usually regulate a wide range of functions
associated with immunity. Exosomes have been
implicated as important structures in the develop-
ment of organs or in some diseases, such as car-
diovascular pathologies (Sancho-Albero et al.
2020). Owing to their critical role in the cellular
cross-talk, exosomes are also fundamental for the
interactions among tumor cells and their niche
and therefore they participate in cancer develop-
ment stages, such as evasion of the immune sys-
tem, development of tumor niches, supporting of
angiogenesis and proliferation of tumor cells
(Kahlert and Kalluri 2013). There has been a
growing attention towards exosomes rather than
synthetic delivery systems which have critical
drawbacks, such as increasing the blood circula-
tion time, evading the immune system
(Raemdonck et al. 2014; O’Loughlin et al.
2012). As exosomes are inherently exist in body
fluids, they are stable in the physiological envi-
ronment. Moreover, they are less immunogenic
and detrimental in comparison to its synthetic
options and due to their membrane lipids and
proteins, they can provide cargo to certain
targeted cells. Lastly, they can be kept for
extended periods. All these mentioned significant
features make exosomes convenient, ideal and
feasible biological nano-vectors to deliver nucleic
acids, proteins, drugs, or nanoparticles.

In this review, we will focus on stem cell-
derived exosomes as a therapeutic carrier and
cutting-edge combinations of genetic materials,
viruses and engineered tools together with
exosomes in the field of targeted gene therapies.
Moreover, biobanking and manufacturing
methods of exosomes will be emphasized in the
present review.

2 Gene Delivery Systems

Gene therapy is the unprecedented method that
utilizes the gene to hamper or ameliorate any
diseases. The way of gene therapy may enable
clinicians to treat a disease by inserting a gene

into a specific cell instead of performing surgery
or using drugs. During the history of gene ther-
apy, there are some important milestones (Fig. 2).
The gene delivery systems are formed by three
components: gene expression system that
modulates the function of a gene in the targeted
cell, a gene that codes a certain therapeutic pro-
tein, and a gene delivery system that regulates the
delivery of the gene expression to particular loca-
tion (Han et al. 2000). The efficient gene delivery
system needs the foreign genetic material to
remain stable in the host cells (Mali 2013).

To date, several gene therapy delivery
methods have been developed: viral vector gene
delivery systems and non-viral vector gene deliv-
ery systems (gene delivery systems based on cat-
ionic polymers, gene delivery systems based on
polysaccharides, gene delivery systems based on
poly(L-lysine), and gene delivery systems based
on poly(ethylenimine)s). Currently, viral vectors,
such as adenoviral vectors, retroviruses,
lentiviruses, adeno-associated viruses (AAVs),
poxviruses, are the primary carriers of nucleic
acids used in gene therapy approaches to the
certain sites, particularly in vivo (Table 1). But
there are some drawbacks regarding virus-based
vectors such as high immunogenicity and some
organ related limitations. Using liposomes or
polymer-based vectors to provide a wide hydro-
philic lumen for the packaging of the virus has
been presented in the literature. But high cytotox-
icity of this approach and its difficulty make it
unpreferable (Wang et al. 2019). Initially, adeno-
virus vectors (AVs) were a promising way regard-
ing therapeutically in gene delivery in vivo with
high efficiency due to their high transduction
effectivity and absence of integration into the
host genome (Wold and Toth 2013). But many
issues still need to be enlightened to obtain better
long-term patient results. The high host immune
response still causes a serious concern; indeed,
changeable expression of receptor proteins on
target cells and an elevated prevalence of anti-
AV vector immunity in the humans have been
noted during preclinical and clinical researches
(Atasheva and Shayakhmetov 2016; Gregory
et al. 2011). Moreover, the inclination of AV
vectors to be hijacked in the liver after systemic
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implementation hinders effective transgene trans-
duction, giving rise to hepatotoxicity and death
(Shayakhmetov et al. 2004). So far, although AVs
continue being improved for various clinical
administrations, including vaccine efforts, anti-
cancer therapeutics, and neurological diseases,
several researchers have concentrated toward the
improvement of emerging viral vectors that
would combine low genotoxic impacts and poten-
tial clinical immunogenicity with highly influen-
tial deliveries. Currently, AAV vectors are the
most frequently used viral vectors at gene therapy
(Wright 2008; Drouin and Agbandje-McKenna
2013). AAV vectors surround a linear single-
stranded DNA (ssDNA) genome of roughly 4.7
kilobases (kb); moreover, these vectors harbor
two open reading frames coding the structural
Cap (capsid) and nonstructural Rep (replication)
proteins, which are interchanged with exogenous
DNA of choice. When they are delivered, the
ssDNA genome is turned into double-stranded
DNA (dsDNA) by the host cell. This stage is
conducted by two cis-acting nucleotide inverted
terminal repeats having 145 nucleotides in length,
permitting the integration, packaging, and repli-
cation of the viral genome (Buning and
Srivastava 2019). A new generation of recombi-
nant AAV, which is lack of viral DNA, has lately

been engineered able to traverse the cell mem-
brane, where they could eventually deliver their
cargos into the nucleus of a target cell (Penaud-
Budloo et al. 2018). To date, AAVs have been
applied for the treatments of hereditary blindness
and spinal muscular atrophy (Gene therapy’s next
installment 2019; Bainbridge et al. 2015). Other
clinical trials are continuing to evaluate the AAV
for other disorders; but like AV vectors, it has
been reported that symptoms of autoimmune
response were encountered (Vandamme et al.
2017; Clement and Grieger 2016). Furthermore,
their limited genome packaging capacity
(~4.5 kb) is the other primary hindrance
(Chamberlain et al. 2016).

Previous studies of the potential use of
retroviruses for gene therapy began in the 1980s.
Retroviral vectors were first implemented to treat
monogenic diseases caused by a defect in a spe-
cific gene (Blaese et al. 1995; Bordignon et al.
1995). The crucial property of retroviruses is that
they contain a preferential area for genome inte-
gration. Adverse effects of gene therapy caused
by insertional mutagenesis were named
“genotoxicity”. Lentiviruses are much better
vectors for gene therapy regarding genotoxicity.
One of their advantages is the absence of prefer-
ential integration site (Cattoglio et al. 2010).

Fig. 2 Some crucial milestones of gene therapy
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Experimental data reported that lentiviral vectors
stimulated oncogenesis considerably less fre-
quently than retroviral vectors (Montini et al.
2006).

The investigations on exosomes are ongoing to
reach valuable information in terms of their
intrinsic features in controlling complex

intracellular pathways (Sharma et al. 2019;
Agarwal et al. 2020). Counter to AAV vectors,
using of the exosomes procures the functional
transfer of their cargo with minimal intervention
from the immune system and it has been proven
to be secure and well-tolerated (Vlassov et al.
2012). A crucial side to emphasize consists of

Table 1 Primary delivery methods of gene therapy products

Transgene
delivery
method

Size of
inserted
transgene,
kb

Time of
transgene
expression

Preferred way
of
administration Immunogenicity Safety

Main field of
application

Adenoviral
vectors

Up to 30 Short
(days)

Subcutaneous,
intramural,
local

High Low; systematic
administration can
lead to a systemic
inflammatory
response, lethal
case described

Vaccines,
oncolytic
viruses

Lentiviruses Up to 10 Life-long Ex vivo
transduction of
stem cells

Low Acceptable in case
of lethal diseases;
risk of insertional
oncogenesis

Correction of
inherited
genetic defects,
mainly of
hematopoietic
system

Retroviruses Up to 10 Life-long Ex vivo
transduction of
stem cells

Low Unacceptably low;
high risk of
insertional
oncogenesis

Adeno-
associated
viruses

Up to 4 Long
(months,
years
maybe
life-long)

Intramuscular Low High Correction of
inherited
genetic defects,
first therapy of
polyetiological
diseases

Poxviruses Up to 20 Short
(days)

Subcutaneous,
local

High Relatively high,
tested on hundreds
of thousands of
people during the
vaccination
program; when
using nonmodified
vaccinia virus
severe side effects
are possible

Vaccines,
oncolytic
viruses

RNA
viruses

Up to 2 Short
(days)

Subcutaneous,
intramural,
local

Medium Not enough data for
the estimation;
depends on each
vector

Oncolytic
viruses, niche
applications

Plasmids Up to 10 Short
(days,
weeks)

Gene gun,
liposomes

Low High Vaccines

RNA Up to 10 Short
(days)

Gene gun,
liposomes

Low High Therapy of
polyetiological
diseases
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the status of exosomes to mediate the propagation
of disease related proteins participate in neurode-
generative disorders (Lim and Lee 2017). Due to
their unique functions, exosomes provide
improved transfection competence in gene ther-
apy (Firquet et al. 2015). When those reasons are
taken into consideration, the advantages and nov-
elty of the combination of viral carrier ways
together with exosomes are remarkable (van der
Grein et al. 2018; Yao et al. 2018). Viruses are
able to participate in the exosomes biogenesis
pathway and integrate its viral RNA genome,
miRNAs, mRNAs and proteins. After the unifica-
tion, biologically active viral components would
be delivered by those exosomes-enveloped viral
vectors (exo-AAVs or vexosomes) from infected
cells to the distant unaffected cells (Longatti
2015). Exo-AAV can also be designed to exhibit
targeting peptides on their surfaces to allow
improved deliveries to the target areas. In the
literature, it has been shown that exo-AAVs
have displayed an enhancement of transduction
profiles in various AAV serotype in vitro and
in vivo conditions (Frank 2010; Hudry et al.
2018). It has been noted that an improvement of
the transgene expression originating from two
different AAV serotypes (AAV6 and AAV 9)
encapsulated with exosomes limited mostly to
oligodendrocytes and neurons (Orefice et al.
2019). Clinical researches have explained that
the trigger of neurodegenerative disorders could
appear in a focus of genetically altered cells and
spread from one site of the central nervous system
to another (Frank 2010). There is a remarkable
point in terms of optimizing the exo-AAV as an
effective therapeutic gene delivery. The perpetual
expansion of engineered optical fiber-based
endoscopes allowed real-time visualization to
track the exo-AAV spread into the brain,
indicating it more widespread in the opposite
hemisphere than conventional AAVs following
intracerebral injections (Orefice et al. 2019).
This study emphasizes the potential of utilizing
exo-AAVs for gene delivery, especially to
address the hardship of diffusion restrictions
related with large fragments of DNA to arrive
central nervous system cells distant from the
intervention site. Encapsulated viral carriers with

exosomes also propose notable benefits, both in
decreasing the number of injections necessary for
achieving spreading into a desirable brain area
and delivering the optimal dose required to obtain
the target concentration. All these mentioned
properties make this type of EVs a promising
delivery approach in vivo. Although, miRNAs
and siRNAs, so called small RNAs, have been
successfully loaded into EVs for various delivery
implementations, the possible using of various
vesicles based on their content, size, biogenesis,
and secretion pathway to load and transfer foreign
DNA is still relatively unclarified (Zhang et al.
2020; Zhao et al. 2020).

3 Stem Cells and Their Exosomes

Stem cells, which have the ability of self-renewal
and can differentiate into any cell type, are undif-
ferentiated cells of the human body. Asymmetric
stem cells division is resulting in two unequal
daughter cells: a committed progenitor and one
new stem cell can enable stem cells to self-renew
and create cellular diversity while maintaining a
steady number of stem cells, therefore undesir-
able depletion or overgrowth of the stem cell
population can be precluded and it helps maintain
tissue homeostasis (Aguilar-Gallardo and Simon
2013). Stem cells are present in both adult cells
and embryos. There are numerous steps of spe-
cialization. Totipotent stem cells, which have the
highest differentiation potency, are able to form
the whole organism. Zygote exemplifies totipo-
tent stem cell regarding its characteristics. Plurip-
otent stem cells create all germ layers without
extraembryonic structures. The pluripotency is a
duration, commencing from entirely pluripotent
cells such as embryonic stem cells (ESCs) and
induced pluripotent stem cells (iPSC) and ending
up with less potent cells – multi-, oligo- or
unipotent cells. Multipotent stem cells or adult
stem cells have a more limited differentiation
scope, but they are able to specialize in separate
cells of specific cell lineages (Zakrzewski et al.
2019). Additionally, stem cells can be categorized
into five subgroups based on their origin: ESCs,
adult stem cells such as mesenchymal stem cells
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(MSCs) and hematopoietic stem cells (HSCs),
fetal stem cells, iPSCs and cancer stem cells
(CSCs) (Kolios and Moodley 2013). CSCs are
described as a small subgroup of cancer cells
that form a population of self-sustaining cells
with the specific ability to give rise to the hetero-
geneous lineages of cancer cells involving the
tumor. These cells must demonstrate three major
features including having a strong potential to
generate the tumor from a limited number of
cells, showing self-renewal in-vivo and having a
differentiation capacity to cause heterogeneous
progenitors (Chen 2009).

CSC-derived exosomes impact tumor micro-
environment. Indeed, CSC-released exosomes are
able to regulate cross-talk among other malignant
cells or modify healthy surrounding cells to sup-
port immune tumor escape, tumor growth and
metastasis. Many studies reported that
CSC-derived exosomes have a crucial impact on
tumor progression (Lindoso et al. 2017). EVs
derived by CSCs may enable to create a conve-
nient microenvironment for cancer development
locally and to support distant metastatic niche
formation. It has been shown that cancer
exosomes play an important role in induction of
chemo-resistance, tumor vascularization,
remodeling of extracellular matrix (ECM), and
epithelial-mesenchymal transition (EMT) with
an improved migration, invasion, and metastasis
(Corcoran et al. 2012; Chen et al. 2014; Sung
et al. 2015). Moreover, EVs also take part in the
intercellular communication between cancer cells
and niche cells, like fibroblasts, that release EVs
to provide invasiveness and chemo-resistance to
cancer cells (Santi et al. 2015). Exosome-
mediated exRNA and protein transfers have
been defined and used as diagnostic markers.
Especially, miRNA-mediated responses have
been comprehensively studied. It has been
shown that miRNAs in exosomes derived from
lung cancer (miR-100-5p), breast cancer
(miR-100, miR-222, miR30a, miR-17), and ovar-
ian cancer (miR-21) induce chemo-resistance
(Richards et al. 2017; Yeung et al. 2016). It has
been discussed that cancer EVs may support the
angiogenesis by stimulating the pro-angiogenic
miRNAs like miR-155, miR-210, and miR-494

which are regulated by the hypoxia-inducible fac-
tor (HIF)-1α (Zhou et al. 2018). Recently, it has
been shown that the formation of a pre-metastatic
niche is supported by oncogenic miRNAs which
has been transferred from cancer cells exosomes
(Costa-Silva et al. 2015). Interestingly, exosomes
which are released by CSCs, contribute to the
tumor immune-escape response by the activation
of tumor-related suppressor myeloid cells,
macrophages, and the suppression of natural
killer (NK) cell activity (Ludwig et al. 2017;
Chow et al. 2014; Chalmin et al. 2010). It has
been also reported by many researchers that can-
cer EVs play an immunosuppressive role in T
cells by expressing Programmed Death Ligand-
1, TGF-β, the Fas ligand, and the Tumor Necrosis
Factor-Related Apoptosis-Inducing Ligand
(TRAIL) (Chen et al. 2018; Yen et al. 2017;
Abusamra et al. 2005).

As other stem cells, HSCs are able to generate
EVs including MVs and exosomes. It has been
reported that among the cargo molecules of
HSCs-released exosomes many miRNAs and
anti-apoptotic and pro-angiogenic proteins are
offered to be the mediators of heart regeneration,
frequently via neovascularization (Seeger et al.
2013). However, the definitive evidence of the
cardioprotective effects of exosomes and MVs
derived from HSCs is still unclear in the litera-
ture. Besides, EVs generated in HSC-derived
cells, particularly endothelial progenitor cells
and dendritic cells, have been demonstrated to
procure direct cardioprotective influences in car-
diovascular diseases (Vasa et al. 2001; Liu et al.
2016). It has been shown that malign HSCs are
able to run away from the immune system by
various mechanisms such as, impairment in lym-
phocyte T-reg, downregulating target antigens on
their surface and excretion of immunosuppressive
substances (Vinay et al. 2015). TGF-β1 is one of
the major cytokines which alleviate the function
of immune cells such as lymphocyte T cytotoxic
and helper (Kehrl et al. 2014; Kulkarni et al.
1993). Recently, it has been demonstrated that
leukemic exosomes have an immunosuppressive
impact that damage the function of immune sys-
tem cells. The study conducted by Szczepanski
et al. revealed that higher levels of TGF-β1 have
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been indicated in acute myeloid leukemia patient
exosomes, thus expression of NKG2D on NK
cells is decreased and anti-leukemic features of
NK cells are interfered (Szczepanski et al. 2011).
Another study has highlighted that lymphoma
and leukemia cells secrete malignant exosomes
with high amounts of NKG2D ligands which
inhibit the anti-leukemic features of NK cells
(Xiao et al. 2012). Additionally, exosomes in
chronic myelogenous leukemia patients harbor
TGF-β1 which restrain the proliferation and func-
tion of many immune cells. Exosomal TGF-β1 in
patients with malignant solid tumors are able to
alleviate the function of lymphocyte T cytotoxic
(Clayton et al. 2007).

MSCs, which are stromal cells, possess
multipotent capacity to self-renewal and show
multilineage differentiation. MSCs are frequently
applied as a source of cellular therapy owing to
their powerful immunosuppressive and regenera-
tive impacts (Galipeau and Sensebe 2018). It has
been formerly offered that MSCs display their
therapeutic influence by migrating to areas of
engrafting, injury, and interacting with other
cells following infusion. Recently several in vivo
researches showed that the therapeutic benefit of
MSCs is mostly conducted by the paracrine secre-
tion of a wide list of cytokines, chemokines, and
growth factors (Wang et al. 2015). However,
these pathways are not determined completely
and still under research. In spite of their useful
therapeutic impacts, MSCs have various
drawbacks including ectopic tissue formation,
immune reactions by the host, infusional
toxicities given rise by the large cells physically
trapped in the lung vasculature, and some
concerns in terms of safety profile of the cells
regarding tumor formation (Fennema et al.
2018; Jeong et al. 2011).

Recently, it has been demonstrated that MSCs
secrete many EVs, including exosomes and MVs
which may behave as paracrine mediators among
MSCs and target cells (Mendt et al. 2018). It has
been also reported that MSC-derived exosomes
can replicate MSCs biologically and may serve as
an alternative to entire cell therapy (Bagno et al.
2018; Lou et al. 2017). The utilization of
exosomes may provide significant benefits over

their cellular counterparts owing to lower immu-
nogenicity, a higher safety profile, and the inade-
quacy to directly generate tumors (Liew et al.
2017). In comparison with the relatively exten-
sive MSCs (30–60 um in diameter), nanosized
exosomes, are able to migrate effectively to the
target site after infusion without getting trapped in
the lung microvasculature (Borger et al. 2017).
Likewise, exosomes secreted from other cells,
MSC-derived exosomes take part in cellular
cross-talk and carry proteins, microRNA and
mRNA into desired cells (Heldring et al. 2015).
So far, more than 850 unprecedented gene
structures and 150 miRNAs have been defined
in MSC-secreted exosomes (Lai et al. 2012). In
the literature, it has been indicated that the func-
tion and phenotype of MSC-released exosomes
may be different depending on the source of
MSCs (Borger et al. 2017). There are explicit
discrepancies in tRNA species between
MSC-secreted exosomes isolated from human
adipose tissue and bone marrow regarding the
differentiation condition of MSCs (Baglio et al.
2015). Furthermore, the source of MSCs has been
demonstrated to affect the biological influences of
MSC-derived exosomes (Borger et al. 2017).
Human MSCs derived from bone marrow, endo-
metrium and adipose tissues have been compared
in a rat model of myocardial infarction. The
outcomes confirmed the highest cardio-protection
by endometrial MSCs relative to adipose and
bone marrow derived MSCs (Wang et al. 2017).
These data offer that innate variations of
MSC-secreted exosomes owing to their original
source may have a key role in their clinical influ-
ence. Along with their intrinsic features,
MSC-derived exosomes are convenient vectors
to carry and deliver drugs, therapeutic genes,
RNA, or enzymes to targeted areas. It has been
shown that MSC-derived exosomes are able to
preserve their cargo towards degradation and
enable their intracellular uptake by endocytosis
(Bagno et al. 2018). Lately, it has been
demonstrated that exosomes display intrinsic
homing abilities similar to their parental cell
type. Thus, MSC-derived exosomes may reflect
an optimum delivery system to regulate processes
in certain target cells. Furthermore, similar to
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their parental cells, the outer surface of exosomes
could be altered or modified in order to improve
cell-free based treatment approaches (Yang et al.
2018).

Although MSC-derived exosomes have been
reported in pre-clinical studies to be secure, the
clinical use of MSC-derived exosomes is limited.
There is a challenge to transfer MSC-derived
exosome-based therapies from the preclinical
works to the clinical practice. Obtaining of the
optimal MSC culture conditions and protocols for
exosome generation, isolation and storage are
some primary issues to be addressed (Squillaro
et al. 2016). It has been reported that
MSC-derived exosomes effectually suppress
autoimmunity and hamper the onset of the disease
in designed mouse models with type 1 diabetes
and experimental autoimmune uveoretinitis
(Ezquer et al. 2012; Zhao et al. 2012). Outcomes
showed that MSC-derived exosomes restrain
development of T helper 1 (Th1) and Th17 cells
improving the balance among Th1 and Th2
immunological responses. The clinical trial
conducted by Nassar et al. revealed that
MSC-derived exosomes enhanced urinary albu-
min creatinine ratio and eGFRs, as well as
remarkable decreases in creatinine and blood
urea nitrogen at 1 year in patients with chronic
kidney disease. Additionally, the patients
displayed a remarkable soar in plasma levels of
IL-10 and TGF-β with persistent substantial
decreases in TNF- α (Nassar et al. 2016). In
another ongoing clinical trial is assessing the
security and efficiency of exosomes obtained
from cord tissue derived MSCs to support healing
of refractory and wide macular holes in the eye.
Previous preclinical research reported that sys-
temic implementation of MSCs decreased the
inflammatory response and restricted the damage
in a laser-injured retina model by regulation of the
intraocular microenvironment in a paracrine atti-
tude (Jiang et al. 2014). The experimental study
indicated that transplantation of both MSCs
and/or their exosomes decreased retinal injury
and blocked apoptosis caused by laser injury
partly by the downregulation of monocyte
chemoattractant protein-1 (MCP-1) (Yu et al.
2016). These outcomes offer that MSCs and
MSC-secreted exosomes may enhance the vision

function following refractory macular hole
surgeries. Lastly, it has been revealed that
MSC-derived exosomes loaded with miR-124
supported neurovascular healing following
stroke, cured brain injury, and hindered post-
ischemic immunosuppression in mice (Yang
et al. 2017). As a result, clinical implementation
of MSC-derived exosomes is a promising
approach to treat many diseases.

3.1 Exosomes or Stem Cells?

In recent years, regenerative medicine has aimed
to utilize human stem cells to cure tissue
damages. The use of MSCs, ESCs, and iPSCs
has a promising way regarding differentiation
and proliferation to heal human tissue. Stem
cells release various molecules including
cytokines, growth factors, and EVs, in a paracrine
way that lead to their therapeutic impacts (Thery
2011). However, these pathways are not
elucidated entirely and still under research. In
spite of their useful therapeutic impacts, stem
cell based treatments have various drawbacks
including ectopic tissue formation, immune
reactions by the host, infusional toxicities given
rise by the large cells physically trapped in the
lung vasculature, and some concerns in terms of
safety profile of the cells regarding tumor forma-
tion (Fennema et al. 2018; Jeong et al. 2011). The
idea back in the early 2000s was that adult stem
cells (MSCs) or progenitor cells may be
administered to patients with diseases or damaged
sites in order to treat them. It has been considered
that by injecting stem cells into the body, these
cells would replace the patient’s unhealthy cells.
But the general efficacy and safety profile of stem
cell therapy has still not be enlightened (Marks
et al. 2017). Although it looks like there are some
benefits, cellular therapy for clinical regenerative
applications has approval issues (Cuende et al.
2018). Today, only the use of blood-forming
stem cells for patients with particular blood pro-
duction diseases has received Food and Drug
Administration approval in the clinical practice.

Exosomes harbor umpteen various types of
products and this feature makes them extremely
encouraging in the field of regenerative medicine.
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Their bilayer lipid membranes have certain
marker proteins that describe them particularly
to specific cells. Therefore, exosomes have a cru-
cial impact on cell-to-cell communication
(De Jong et al. 2014). A broad diversity of
molecules can be carried via exosomes, such as
RNA, specific proteins, and miRNA. Moreover,
many studies reported that horizontal transfer of
protein and mRNA take place by exosomal
machinery and the genetic data delivered success-
fully translated into the convenient proteins
(Ratajczak et al. 2006; Neviani and Fabbri
2015). It has been shown that endothelial progen-
itor cells-released MVs are able to protect the
kidney from ischemic conditions by packaging
miRNA which is accountable for stimulating
regenerative pathways in the kidney (Cantaluppi
et al. 2012). These studies demonstrate the power
of exosomes in regenerative interventions.

In spite of many shortcomings in terms of
manufacturing exosomes, recently there are
many benefits and promise in clinical
applications. Due to their stability in physiologi-
cal conditions such as pH or temperature, and
multidimensional packaging, exosomes are
appropriate candidates for therapeutic medicine
and stem cell-derived exosomes exhibit a way to
procure cell-free regenerative medicine. Their
specific and unique markers, such as tetraspanins,
flotillin, ALIX, enable exosomes with a cell spe-
cific manner to uptake and unload their cargo.
This distinctive affinity to target cell makes
exosomes very potent carriers to deliver
miRNA, drugs, protein, nanoparticles, and so
forth in the body fluids without being degraded.
Moreover, exosomes are less immunogenic and
toxic compared to synthetic delivery vectors.
Additionally, they are able to pass through the
blood brain barrier (BBB) and reach certain areas.
Despite further required evidence, some authors
reported that exosomes may pass through the
BBB via active endocytosis mechanisms (Thery
2011; Druzhkova and Yakovlev 2018). Further,
peripheral EVs may lead to alterations in BBB’s
features by interaction with the barrier. A recent
study showed that zebrafish neurons-derived

exosomes are able to control BBB integrity via
miR-132 (Zhao and Zlokovic 2017).

Up to date, 91 ongoing and completed clinical
trials are present about exosome-based
applications. Three primary sources, namely
MSCs, dendritic cells, and patient-derived tumor
cells, of getting exosomes, are subjected to clini-
cal trials. As a diagnostic and prognostic marker
for many cancer types such as oropharyngeal
cancer, sarcoma, and clear cell renal cell carci-
noma, exosomes are promising tools. Moreover,
their therapeutic impacts on various diseases are
remarkable. Immature dendritic cell-derived
exosomes have been utilized for non-small cell
lung cancer and melanoma, for which the
outcomes of reliance are similar, however in
case of non-small lung cancer, MAGE-specific
T-cell responses have been defined (Morse et al.
2005). To improve T-cell stimulation, dendritic
cell maturation method has been laid out for
non-small cell lung cancer patients.

Due to tumor antigens, such as
carcinoembryonic antigen, could be derived
from a patient with cancer, ascites-derived
exosomes from patients were obtained. Well-
tolerance and safety in phase I trial have been
revealed, and a tumor-related antitumor cytotoxic
T lymphocyte response has been detected in the
ascites-derived exosomes plus granulocyte-
macrophage colony-stimulating factor group
(Dai et al. 2008). In addition to carrying tumor
antigen, exosomes harboring chemo drug or
siRNA have been utilized in the cancer treatment.
There are two clinical trials (NCT02657460 and
NCT01854866) applying chemo drug for the
treatment of malignant pleural effusion. Metho-
trexate (MTX) and cisplatin has been used respec-
tively as the anticancer drugs. The survival ratio
has been found higher when MTX has been
applied. KraG12D siRNA has been used as
another anticancer drug type to treat patients
with metastatic pancreas cancer (NCT03608631).

Consequently, exosomes are proper and highly
stable biological nano-vectors taking part in a
wide scope of healthy and pathological processes,
for advanced targeted therapies.
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4 Synthetic Exosome-Mimics

Pure populations of exosome could be obtained
from exosome-releasing cells but these exosomes
have oncogenic and immunogenic potential. Fur-
thermore, EVs have complicated roles in health
and disease conditions, including delivery of
pathogens and disease-related proteins between
cells, which are still not enlightened entirely
(Saa et al. 2014). Lastly, there is a limitedness
regarding the number of naturally secreted
exosomes. These issues are the major obstacles
for translation of naturally secreted exosomes to
the clinic applications. Artificial exosome-mimics
may help to overcome these limitations. Synthetic
lipid vesicles or liposomes which have a spherical
phospholipid bilayer pattern approximately
100 nm in diameter, can act as a primitive struc-
ture for engineered exosomes (Kooijmans et al.
2012). Liposomes could be loaded with exosome
related constituents and therapeutic molecules
such as nucleic acids, recombinant proteins, and
synthetic drugs (Malam et al. 2009). The lipid
content of liposomes can be modified. Phosphati-
dylserine which improves the stability of
exosomes and regulate dendritic cell maturation,
is one of the proper substances to imitate naturally
occurring exosomes (Chen et al. 2004). Along
with phosphatidylserine, cholesterol may
improve cation-induced fusion (Shavnin et al.
1988). Therapeutics based on liposomes and
nanoparticles have been approved for clinical
practice (Fenske and Cullis 2008). A great num-
ber of engineered exosome-mimics can be pro-
duced through two methods: cell extrusion or
polymer nanoparticles coated with cell
membranes. Firstly, exosome-mimetic
nanovesicles are fabricated via extruding cells
method. Differently from liposomes, these
nanovesicles loaded with doxorubicin have been
targeted to tumors and displayed anti-tumor
impacts like exosomes in vivo (Jang et al. 2013).
Moreover, green fluorescent protein (GFP)-
silencing siRNA loaded into monocyte-secreted
nanovesicles by electroporation could be caught
by endothelial cells and ultimately knocked down
GFP (Lunavat et al. 2016). Nanovesicles

produced by extruding fibroblasts transfected
with shRNA could also be utilized as a vector to
deliver functionally active miRNAs to targeted
cell groups. The other group exploited multiple
microchannels to break down murine ESCs into
membrane-bound nanovesicles with a size of
60–120 nm in diameter (Jo et al. 2014a). These
nanovesicles could be included in fibroblasts to
deliver endogenous proteins and RNAs of stem
cells to fibroblasts. Additionally, the same
researchers improved a device that can produce
large-scale nanovesicles utilizing centrifugal
force in order to extrude cells through 10 um
and 5 um filters (Jo et al. 2014b).

Lately, cell-membrane coated nanoparticles
have been a burgeoning area regarding drug
delivery with benefits of stability, immune-
compatibility and targeting ability (Cao et al.
2016). Anti-tumor drug sTRAIL has been deliv-
ered by MSC membrane-produced nanoparticles
to tumor site and inhibited tumor development
in vivo, while sTRAIL with liposome did not
have any anti-tumor impact (Furman et al.
2013). Cancer cell membrane-cloaked
nanoparticles displayed homotypic targeting to
pathological tissue with immune-compatibility,
thus may behave as a possible vector for anti-
tumor therapeutic delivery (Fang et al. 2014).
Recently, it has been reported that cell
membrane-coated Poly Lactic-co-Glycolic Acid
(PLGA) microparticles may have protective
impacts and serve as exosome-mimics for drug
therapy in myocardial infarction (Tang et al.
2017).

5 Banking of Exosomes

Biobanks can be described as establishments
where high-quality biospecimens are obtained,
processed, and conserved by long-term storage
for future researches of clinical applications
(Shaw et al. 2014). The emerge of patient or
disease specific therapies requires high-quality
human biospecimens with proper clinical inter-
pretation, particularly in complicated diseases
such as cancer, cardiovascular,
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neurodegenerative, and metabolic changes in
which sample heterogeneity and patient-related
responses usually complicate the development
of sensitivity therapeutic interventions (Natasha
et al. 2014). In the burgeoning area of EVs stud-
ies, exosomes have been defined as a prognostic
biomarker, diagnostic tool, drug vectors, and ther-
apeutic targets (Vader et al. 2014; Lai et al. 2013;
Properzi et al. 2013). But there is a lack of con-
sensus on isolation procedures and meticulous
criteria to characterize exosomes. When
biobanking of exosomes is taking into consider-
ation, some questions in terms of isolation, char-
acterization and storage of exosomes need to be
addressed and then biobanking of exosomes may
take part in this growing area. The possibility of
storing exosomes in biobanks can provide a ben-
eficial way for several clinical interventions as
well as for research aims.

5.1 Exosome Isolation
and Characterization Methods

Different protocols have been defined to isolate
and enrich exosomes from supernatants and some
body fluids (Muller et al. 2014; Zlotogorski-
Hurvitz et al. 2015). Mostly, centrifugation of
the body fluid or the cell culture supernatant at
2000 g in order to eliminate the dead cells is
effective and then centrifugation at 10,000 g to
eliminate non-exosomal vesicles like MVs and
the cellular debris has been reported. Later, a
200 nm filter, which segregates all larger particles
of size over 200 nm, is used to pass through the
supernatant involving exosomes. This step is
continued by any well-accepted separation
methods like immune-affinity sorting utilizing
antibodies to the exosomal surface markers; ultra-
centrifugation at 100,000 g; size exclusion chro-
matography; isopycnic centrifugation;
ultrafiltration of polymer-based precipitation
(Abramowicz et al. 2016). Ultracentrifugation
approach is the most commonly used method
and proper for isolation of large volumes of the
sample at low cost (Greening et al. 2015). Density
gradient centrifugation utilizes a gradient medium
like iodixanol or sucrose to segregate vesicles
relying on their floatation densities. This

technique is thought as a ‘gold standard’
approach for isolation of exosomes and combina-
tion of these two methods is indicated to provide
high-grade quality exosomal samples for
proteomic analysis (Abramowicz et al. 2016).
Size exclusion chromatography provides high
purity outputs with minimal protein contamina-
tion, but insufficient sample yield and sparseness
of the final sample are the drawbacks of this
method (Lobb et al. 2015). The simplest method
to isolate exosome is the polymer-based precipi-
tation technique in which exosomes are incubated
with polymers such as polyethylene glycol
followed at low-speed centrifugation. The men-
tioned method provides an adequate throughput
of exosomes but possible contamination of
non-exosomal particles jeopardizes the purity of
sample (Zlotogorski-Hurvitz et al. 2015). The
most specific way to isolate exosomes and even
subgroups of exosomes is immuno-affinity sepa-
ration. A diversity of platforms such as ELISA
plates, microfluidic devices, modified chromatog-
raphy columns, and immune beads have been
improved to catch exosomes by targeting their
surface biomarkers (Greening et al. 2015; Li
et al. 2017).

Various properties for the characterization of
exosomes have been suggested based on their
contents or physical features. As exosomes can-
not be detected via conventional microscopic
approaches, electron microscopy techniques
including scanning electron microscopy, whole
mount electron microscopy, transmission electron
microscopy, and electron tomography are utilized
(Peterson et al. 2015; Fertig et al. 2014; Gyorgy
et al. 2011). In comparison with conventional
methods, electron microscopy techniques are
more formidable and laborious. Alternatively,
particle tracking analysis may be used but this
morphological analysis does not procure func-
tional data of the isolated exosome-fraction
(Mehdiani et al. 2015). Along with CD9, CD63,
and CD81, tetraspanin markers, other markers
such as TSG 101, Annexins, of exosome content
have been proposed as functional markers
(Peterson et al. 2015; Taylor and Shah 2015).
But currently there is no consensus regarding
functional specific markers. Typically, function-
ality is assessed by measuring exosome binding,
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delivery, and release of their cargo to targeted
cells. Fluorescently labeling exosomes via inter-
nal fusion proteins or via tracking dyes are
achieved through live tracking, flow cytometry,
or other types of fluorescence-based imaging
methods. Notedly, the PKH67 uptake dye assay
was applied to display the capacity of exosomes
obtained from the plasma samples and preserved
at -20 �C for over 30 days in order to fuse with
LIM 1215 colorectal cancer cells (Kalra et al.
2013). ELISA-based techniques and Acetyl-
CoA cholinesterase colorimetric methods are
utilized for total protein measurements. However,
these approaches measure overall functions
which harbor contribution from various EV
types. Therefore, the outcomes regarding function
are estimated roughly (Savina et al. 2002; Gupta
and Knowlton 2007).

5.2 Exosomes Storage Conditions

So far, ideal conditions for isolating or storing
exosomes are not defined strictly. There is no
explicit data in terms of influence of
anticoagulants in the obtaining and storage of
exosomes, neither optimal storage period, tem-
perature, thawing conditions, freezing-thaw
cycles, or other storage factors have been
assessed in detailed. It was reported that when
exosomes were stored at �80 �C, there was an
advantage regarding the stability of exosomes in
comparison with other degrees (Kalra et al. 2013).
However, this outcome may vary for exosomes
obtained from various sources and /or specific
isolation methods. Moreover, the kind of lipid
content of exosomes (Llorente et al. 2013; Record
et al. 2014), which is source-dependent as well, is
anticipated to play a role in ideal cryopreservation
procedures, soaring an additional hardship for
biobanking of exosomes.

6 Manufacturing Exosomes

Paracrine-like activity of exosomes and their
usage as a shuttle of nucleic acid or proteins in
the therapeutic interventions make a demand in
the large-scale manufacturing of purified

exosomes (El Harane et al. 2018; Zhang et al.
2015). There are still remarkable obstacles to the
effective and potent isolation of wide quantities of
specific and pure exosomes due to the lack of
understanding of the relationship among exosome
functions and characteristics. Therefore, exosome
production under good manufacturing practice
(GMP) are required. Generally, current exosome
isolation and purification methods has proven to
be challenging and isolation of a specific subpop-
ulation of exosomes is even more grueling
(Cvjetkovic et al. 2014; Witwer et al. 2013). No
centrifugation approach provides a great number
of highly purified EVs or distinct exosomes from
other subtypes of EVs. Moreover, it is hard to
distinguish among various types of exosomes via
centrifugation methods. Besides, microfluidic
techniques are considered very efficient on
exosome isolation and analysis. But the drawback
of this method is insufficient capacity for large-
scale manufacturing aims (Thery et al. 2006).

Several cultured cells will release exosomes
utilizing standard cell culture media and
T-flasks. As yield of cells, the production of
exosomes is related to the ability to generate
wide quantities of cells in ways that do not change
distinct cell attitude and properties (Isasi et al.
2016). The possibility for alterations in cellular
characteristics in the course of technical transfer
such as equipment change and scale-up, should
be taken into consideration. The consequences of
alterations in culture environmental parameters
such as mass transfer, pH gradient, and hydrody-
namic force, upon the exosome product are not
entirely found out (Brindley et al. 2011). In scal-
ing up, some primary lines display more
decreased proliferative capacity, restricted ulti-
mate culture dimension, duration, amount of
generating masses or reproducibility (Chen et al.
2011a). Serum-free medium are usually not
recommended because several of the cultured
cells for exosome investigations are anchorage-
dependent and to some degree serum supplemen-
tation are necessary. Further proteomic analysis
revealed that the serum-free exosomes harbor dif-
ferent component levels in comparison with fetal
bovine serum (FBS) exosomes. Whereas stress-
related proteins and reactive oxygen species were
found in serum-free exosomes, FBS exosomes
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exhibited higher levels of RNA-processing
proteins. The serum-free media seems to induce
alterations in the composition and function of the
exosomes (Li et al. 2015). However, there is a
concern regarding use of FBS: contamination of
bovine exosomes. In order to hinder this situation,
exosome-depleted versions of FBS may be
utilized.

Stem cells secrete many crucial growth factors
and stem cell conditioned medium is usually
essential for effective stem cell culture in vitro.
The lack of source for wide volumes of
conditioned medium for exosome manufacturing
from stem cells is another formidable factor.
Accordingly, the possibilities for generating
large number of stem cell-conditioned medium
with which to support significant scale-up
investigations on exosome manufacturing are
limited (Colao et al. 2018). Moreover, it also
reported that the expression of distinct exogenous
proteins in cultured cells may affect the properties
and type of exosomes (Whitford and Guterstam
2019).

Currently, state of art approaches, which
improve culture surface area, such as hollow-
fiber reactors, culture in fixed-bed or
microcarriers in stirred-tank reactors have been
focused on (Panchalingam et al. 2015). Along
with large-scale cell production demands, it is
mandatory to regulate environmental parameters
such as pH, temperature, and cell’s phenotype
(Chen et al. 2011b). Large-scale mass exosome
manufacturing is achieved in such formats like
using many of large flasks, wide fixed-bed
bioreactors, multiple stacked array multilayer cul-
ture flasks, stirred-tank bioreactors employing
microcarriers or continuous production in perfu-
sion reactors (Colao et al. 2018). These modern
approaches exist for improvement of mass
manufacturing and a clinically-related exosome
production format.

Owing to the poor ability of in vitro exosome
production, the present scale-up of standard
batch-mode manufacturing could harbor
hundreds of flasks or a remarkable investment in
the more complicated and more costly multilayer
flask systems. Drawbacks of these methods

include the cost of culture expansion prior to the
main production stage or the extra cost and timing
of beginning of the production phase in serum-
modified or serum-adjusted medium. Secondly,
stirred-tank bioreactor cultures using
microcarriers have been defined that there are
not too many difficulties associated with this
upstream production method. There are several
scale factors and fundamental environmental
conditions differentiating impeller-based bioreac-
tor culture and small-scale flask culture. Gas mass
transfer differences, cell-to-microcarrier binding,
and the hydrodynamic forces created in agitation
and sparging are some of the factors that cause
concerns regarding production efficiency and cul-
ture progression (Chen et al. 2011b). Thirdly,
perfusion-based production systems may over-
come some of these concerns and hamper the
additional processes and restrictions related to
microcarriers. These approaches can not only
promote culture over a prolonged period but
also can concentrate exosomes in a membrane
separated compartment, facilitating feeding and
harvest. The cell containing side of the perfusion
apparatus also promotes the sorting of growth
factors, permitting a severe decrease in additional
serum, factors or conditioned medium (Wen et al.
2011). For even larger mass production, many
porous 3D scaffolds and fiber-based packed and
fixed-bed bioreactors are now available (Habibi
et al. 2020). Hollow-fiber perfusion bioreactors
have been utilized in cell culture for years and
their use in mass manufacturing of exosomes
have been reported (Watson et al. 2016). These
reactors are able to support wide quantities of
cells at high densities in perpetual culture mode
without splitting the cells and maintain larger
secreted products such as exosomes.

Several various productions platforms and
modes exist and they are laid out to produce
different types of exosomes for investigations
and clinical applications. Standard exosome iso-
lation, characterization techniques have not been
established entirely. Further tailoring and
standardization for specific exosome subgroups,
within the larger-scale exosome production, is
required.
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7 Conclusion

As mediators of crosstalk among cells, EVs can
be exploited for therapeutic and diagnostic goals.
Whereas naturally secreted exosomes may have
beneficial impacts on definite diseases, targeted
exosomes loaded with therapeutic molecules may
make outcomes optimal. Biological molecules,
such as recombinant proteins, siRNA and
miRNA, are hard to be delivered intracellularly
without the use of a carrier. EV obtaining and
characterization methods have become more
common in clinical implementations. But the
complicated structure, the changeable composi-
tion and oncogenic, immunogenic potential of
exosomes may restrict their applications. A
potential alternative is the advancement of
exosome mimetics which may improve stability,
targeting, immunogenicity, and uptake. Taken
together, with the improvement of gene delivery
tools, the ongoing advancement of exosome-
based carrier methods will thrive the targeted
gene treatments as accessible therapies for gruel-
ing diseases in the future. Bioproduction of
exosomes for preclinical tests, diagnostic and
therapeutic purposes continue to be discovered.
Further standardized and potent approaches
regarding large-scale manufacturing of exosomes
under GMP and storage conditions are required to
transfer exosomes to the clinical practice.
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Abstract

Periodontitis is an infectious inflammatory dis-
ease characterized by clinical attachment loss
and tooth supporting tissue destruction. As
exosomes demonstrated pro-regenerative abil-
ity, their use in periodontal treatment has been
suggested. The aim of this systematic review is

to gather and summarize the most recent data
regarding exosomes to determine their poten-
tial impact in bone and periodontal regenera-
tion. Electronic databases (Pubmed, Web of
Science) were searched up to February 2020.
Studies assessing the impact of exosomes
administration in experimental bone and
periodontal defects have been identified
according to PRISMA guidelines. Among the
183 identified articles, 16 met the inclusion
criteria and were included in this systematic
review. Experimental bone defects were
mainly surgically induced with a dental bur
or distraction tools. All studies considered
bone healing after exosomes administration
as the primary outcome. Results showed that
mesenchymal stem cells derived exosomes
administration promoted bone healing and
neovascularization. Nevertheless, a dose-
effect relationship was observed. Exosomes
administration appears to promote signifi-
cantly the bone healing and periodontal regen-
eration. However, only a limited number of
studies have been carried out so far and the
optimized protocols in this context need to be
evaluated.
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Abbreviations

APSC Apical papilla stem cell
BMC Bone marrow cell
BMMSC Bone marrow mesenchymal stem cell
DFSC Dental follicle stem cell
DMOG Dimethyloxaloyglycine
DPSC Dental pulp stem cell
EMD Enamel matrix derivative
EPC Endothelial progenitor cell
Exos Exosomes
GMSC Gingiva-derived stem cell
GTR Guided tissue regeneration
HA Hydroxyapatite
hASC Human adipose mesenchymal stem

cell
hBSC Human bone stem cell
hiPSC Mesenchymal stem cells derived

from human induced pluripotent
stem cell

hiPS-
MSC

Human induced pluripotent stem
cell-derived mesenchymal stem cell

hMSC Human mesenchymal stem cell
HSP Heat shock protein
hucMSC Hypoxic mesenchymal stem cell

from human umbilic cord
HUVEC Human umbilical vein endothelial

cell
Micro-
CT

Micro-computed tomography

MSC Mesenchymal stem cell
MVBs Multivesicular bodies
PBS Phosphate-buffered saline
PC Periosteum-derived cell
PDGF Platelet derived growth factor
PDL Periodontal ligament
PDLSC Periodontal ligament stem cell
PLGA Poly(lactic-co-glycolic acid)
PSC Perivascular stem cell

SHED Stem cell from human exfoliated
deciduous teeth

SMC Sinus mucosa cell
TLR Toll-like receptor
uMSC Umbilical cord mesenchymal stem

cell
β-TCP Tricalcium phosphate β

1 Introduction

Periodontitis is an infectious inflammatory dis-
ease caused by oral dysbiosis that affects 50%
of adults and is more prevalent in men (Kinane
et al. 2017; Eke et al. 2015). Periodontitis leads to
the destruction of tooth supporting periodontal
structures such as alveolar bone, periodontal liga-
ment and cementum (Kinane et al. 2017). This
disease is considered the sixth most widespread
disease in the world and is the leading cause of
tooth loss. Global economic burden owing to high
grade periodontitis alone has been estimated to be
54 billion USD each year (Tonetti et al. 2017).

Periodontal treatment mainly consists of
non-surgical scaling and root planing or surgical
approach in severe cases with adjuvant therapy
such as antibiotics, antiseptics or other therapeu-
tics to optimize the treatment outcomes (Graziani
et al. 2017). However, in most of the cases, only a
repair of the degraded tissue is achieved resulting
in the appearance of a long junctional epithelium,
consequently, compromising an ad integrum
regeneration (Caton et al. 2018) (Fig. 1). In the
last decade, periodontal surgery has not seen
much evolution in terms of techniques and
materials used. According to the type of defect
and the amount of remaining bone walls, different
regenerative procedures with several types of
biomaterials such as enamel matrix derivative
(EMD), bone graft materials or membranes have
been proposed (Cortellini and Tonetti 2015).
Indeed, EMD induces and promotes periodontal
regeneration in intrabony containing, deep and
narrow defects (Cortellini and Tonetti 2015)
which is 2.46 times more likely to achieve a
clinical attachment level (CAL) gain greater
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than 3 mm in periodontal lesions of 22� than in
periodontal lesions of 36� (Tsitoura et al. 2004).
In the absence of bone walls or in wide defects,
autologous or heterologous bone graft can pro-
vide space provision and blood clot stability. The
bone graft acts as a scaffold while enhancing
osteo-conductivity and osteo-inductivity
(Trombelli and Farina 2008; Rosen et al. 2000).
At long term, the results of such therapeutic
strategies are stable over the years provided the
patients have a rigorous follow-up (Nygaard-
Østby et al. 2010; Sculean et al. 2006; Pretzl
et al. 2009; Petit et al. 2019).

Despite the success of these methods, innova-
tive periodontal regenerative techniques are still
under development and the use of stems cells and

growth factors has been suggested in order to
stimulate host regenerative potential. Indeed,
22 studies concerning periodontal regeneration
induced by stem cells were identified in a recent
systematic review (Tassi et al. 2017). Such studies
demonstrated that the use of mesenchymal stem
cells (MSCs) may provide beneficial effect in the
context of periodontal regeneration. Notably, sev-
eral MSCs harvested in oral cavity have been
tested for their pro-regenerative properties with
interesting results. It includes dental pulp stem
cells (DPSCs), periodontal ligament stem cells
(PDLSCs), gingiva-derived stem cells (GMSCs),
stem cells from human exfoliated decidual stem
cells (SHED), dental follicle stem cells (DFSCs)
and apical papilla stem cells (APSCs)(Yang et al.

Fig. 1 Periodontal destruction associated with periodon-
titis. Current therapeutic strategies including scaling and
root planing will lead to tissue repair through the establish-
ment of a long junctional epithelium. Use of guided tissue

regeneration (GTR) and specific bioactive materials will
induce an ad integrum regeneration of the periodontium
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2020). Nevertheless, other strategies have been
proposed comprising the use of growth factors
aiming to activate the healing process. Earlier,
Nevins et al., showed an induction of periodontal
regeneration by Platelet Derived Growth Factor
(PDGF) treatment in localized defects (Nevins
et al. 2013). Additionally, Lynch et al.
demonstrated the efficacy of an aqueous gel
functionalized with PDGF and Insulin Growth
Factor (IGF) in periodontal regeneration (Lynch
et al. 1989). Other studies have exhibited the pos-
sible positive effects of other growth factors such
as Fibroblast Growth Factor (FGF), PDGF, IGF,
Transforming Growth Factor (TGF), Epidermal
Growth Factor (EGF) in periodontal wound
healing and regeneration (Caffesse and Quiñones
1993). However, the use of stem cells and growth
factors in dental practice is still debated. For
instance, their use is prohibited in Europe due to
potential risk related to malignant transformation
and/or uncontrolled differentiation emphasizing
the need of cell-free therapy (Volponi et al. 2010;
Grayson et al. 2015).

The potential of exosomes in the context of
tissue regeneration has been tested. Exosomes are
microvesicles ranging from 40 to 100 μm released
by cells in both physiological and pathological
conditions after fusion of the multivesicular bodies
(MVBs) with the plasma membrane (Carretero-
González et al. 2018; Skotland et al. 2017).
Exosomes are composed of a complex lipid bilayer
membrane (Carretero-González et al. 2018) formed
by proteins, nucleic acids, lipids and other
metabolites (Skotland et al. 2017). These vesicles
contain different molecules including mRNA,
miRNA and proteins, and play a role in intercellu-
lar communication (Carretero-González et al.
2018). However, they can be rendered a cell-
derived therapeutic carrier for efficient drug deliv-
ery as demonstrated with anti-cancerous agents
(Carretero-González et al. 2018).

In a similar manner, exosomes can be used as a
therapeutic tool to carry active molecule for the
treatment of periodontitis, therefore, the aim of
this systematic review was to identify the
pro-regenerative effects of exosomes administra-
tion in several osseous lesion models.

2 Materials and Methods

2.1 Focused Question

In this systematic review, the authors addressed
the following question:

• Does exosomes administration induce a
pro-regenerative effect in bone and periodon-
tal defects?

2.2 Screening and Selection Criteria

Two blinded independent reviewers performed an
electronic literature search of the Pubmed and
Web of Science databases up to February 2020
and reported according to the preferred items for
systematic reviews (PRISMA) guidelines
(PRISMA-P Group et al. 2015). Two different
following search terms, filters, and combinations
were used in the search using Boolean operators
and an asterisk symbol (*) as truncation to iden-
tify papers using MesH, keywords and other free
terms: ((exosome) AND (regeneration) AND
(bone)) and also ((exosome) AND (bone regener-
ation OR periodontal regeneration OR periodon-
tal healing OR bone healing) AND (in vitro OR
in vivo)). The titles and abstracts of identified
articles were screened by two reviewers and
were categorized as suitable or not for inclusion
in this review. Later, a careful assessment of the
full text was performed for each study and
disagreements between reviewers were resolved
after discussion.

2.3 Eligibility Criteria

In this systematic review, the following criteria
were used to determine the eligibility of a study
for inclusion: (1) use of exosomes, (2) periodontal
or bone defect, (3) in vivo study. Meta-analysis,
reviews, and studies not focused on bone or peri-
odontal regeneration induced by exosomes
administration were excluded.
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2.4 Outcomes

Quantitative and qualitative measurements rela-
tive to bone, cement and periodontal ligament
regeneration were collected from the included
studies.

3 Results

3.1 Study Selection

The flow diagram of the literature search has been
described in Fig. 2. Briefly, following an initial

search by querying selected databases (Medline/
Pubmed and Web of Sciences), 183 articles were
identified. 100 other articles were further
identified after a manual search in the articles’
references. After elimination of duplicates,
164 articles were screened. Based on the titles
and the abstracts, 143 records were excluded.
Among the 21 articles selected for the full-text
screening, only 16 studies were included for the
review. Three studies were excluded as they
evaluated the in vivo effect of stem cells
preconditioned by exosomes, another one for
not being focused on the effect of exosomes and
one due to the absence of a control group.

Records identified through 
database searching

(n = 183)

gnineercS
dedulcnI

ytilibigilE
noitacifitnedI

Additional records identified 
through other sources

(n = 100)

Records after duplicates removed
(n = 164)

Records screened
(n = 164)

Records excluded
(n = 143)

Full-text articles assessed 
for eligibility

(n = 21)

Full-text articles excluded, 
with reasons

(n = 5)

Studies included 
(n = 16)

Fig. 2 Flow diagram of the literature search
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3.2 Studies Characteristics

All the included studies were published between
2016 and 2020 and were performed in rodents.
Among the 16 studies included, only one (Chew
et al. 2019) focused on periodontal regeneration,
while the remaining 15 focused on bone regener-
ation. Three studies used Wistar rats aged
10–12 weeks old (Takeuchi et al. 2019; Zhang
et al. 2019, 2020) (Tables 1 and 2) and 7 studies
used Sprague-Dawley rats (adults, 8 and
10 weeks old) (Chew et al. 2019; Chen et al.
2019a; Jia et al. 2019; Liang et al. 2019; Sun
et al. 2019; Wu et al. 2019; Zhang et al. 2016)
(Tables 1, 2, 3 and 4). One study was performed
in osteopenic 12-weeks-old female Sprague-
Dawley rats (Qi et al. 2016) (Table 1). Four
studies were performed on mice, 1 study used
5-weeks-old male BALB/C mice (Li et al. 2018)
and 2 studies used 10-weeks-old to 3-months-old
C57BL/6 mice. Another study used CD9�/�
mice in addition to C57BL/6 mice (Furuta et al.
2016; Luo et al. 2019; Xu et al. 2019) (Tables 1
and 2). One study used 10–12-weeks-old mice
without specifying the strain (Liu et al. 2020)
(Table 2).

3.3 Induction of the Periodontal or
Bony Defect

Several tools and techniques were used to induce
a bone defect, mainly in calvaria and long bone.
Calvarial defects were created with a dental bur
which was used to create a critical size defect of
5 mm (Takeuchi et al. 2019; Chen et al. 2019a;
Liang et al. 2019; Zhang et al. 2016; Qi et al.
2016) (Table 1) except in 2 studies where a
smaller bone defect (diameter of 1.8 mm or
4 mm) was created (Li et al. 2018; Xu et al. 2019).

For long bone fracture models, fractures were
created by bender devices or scissors (Furuta et al.
2016; Luo et al. 2019; Liu et al. 2020) (Table 2).
One study induced a bone defect by drilling in the
diaphysis (Sun et al. 2019). In the alveolar model,
a defect of 4�2�1.5 mm(Tonetti et al. 2017) was

created with a bur at the buccal aspect of mandib-
ular bone in molar area (Wu et al. 2019) (Table 3).
Finally, in one study, a periodontal defect was
developed by drilling the bone on the mesial
aspect of the first molar resulting in a periodontal
defect of 2�2�1.5 mm (Chew et al. 2019)
(Table 4).

3.4 Exosomes Sources

Exosomes were isolated from different sources.
Most of them were from stem cells, progenitor
cells and stromal cells (Takeuchi et al. 2019;
Zhang et al. 2019, 2020; Chen et al. 2019a; Jia
et al. 2019; Liang et al. 2019; Wu et al. 2019;
Zhang et al. 2016; Qi et al. 2016; Li et al. 2018;
Furuta et al. 2016; Luo et al. 2019; Xu et al. 2019;
Liu et al. 2020) (Tables 1, 2 and 3). However,
1 study used non-progenitor cells such as sinus
mucosa-derived cells (SMCs) and periosteum-
derived cells (PCs) (Sun et al. 2019) (Table 2).

3.5 Mode of Exosomes
Administration and Dose

Exosomes were administered directly in the
defect in association with β-TCP particles in
3 studies (Wu et al. 2019; Zhang et al. 2016; Qi
et al. 2016) (Tables 1 and 3), with hydrogel in
2 studies (Zhang et al. 2019; Chen et al. 2019a)
(Tables 1 and 2), with collagen sponge in 2 studies
(Chew et al. 2019; Takeuchi et al. 2019) (Tables 1
and 4), and with hydroxyapatite (HA), Bio-Oss®
Collagen or PLGA respectively (Liang et al.
2019; Sun et al. 2019; Li et al. 2018). In 5 other
studies, exosomes were directly injected in the
defect without a scaffold (Zhang et al. 2020; Jia
et al. 2019; Furuta et al. 2016; Xu et al. 2019; Liu
et al. 2020). Lastly, one study involved aptamer-
functionalized exosomes injection in the tail vein
(Luo et al. 2019). Moreover, a wide range of
concentrations were used among studies
(Tables 1, 2, 3 and 4).
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3.6 Timing and Administration
of Exosomes

In 2 studies, single exosomes administration was
performed percutaneously after the bone defect
creation (Jia et al. 2019; Liu et al. 2020) (Table 2).
In 4 other studies, exosomes injection recurred
with differences in timing, ranging from every
3 days to every week with a 1-week to 12-weeks
duration (Zhang et al. 2020; Furuta et al. 2016;
Luo et al. 2019; Xu et al. 2019) (Tables 1 and 2).
In 9 studies, exosomes were implanted on a scaf-
fold and placed into the defect (Chew et al. 2019;
Takeuchi et al. 2019; Zhang et al. 2019; Chen
et al. 2019a; Liang et al. 2019; Wu et al. 2019;
Zhang et al. 2016; Qi et al. 2016; Li et al. 2018)

(Tables 1, 2, 3 and 4). In addition to using a
scaffold to deliver exosomes at the lesion site,
one study injected a similar dose of exosomes
every 2 weeks at the surface of the defect area
(Sun et al. 2019) (Table 2).

3.7 Bone Healing

Most of the studies used micro-CT and histologi-
cal analysis in order to compare and evaluate
bone healing (Chew et al. 2019; Takeuchi et al.
2019; Zhang et al. 2019, 2020; Chen et al. 2019a;
Jia et al. 2019; Liang et al. 2019; Sun et al. 2019;
Wu et al. 2019; Zhang et al. 2016; Qi et al. 2016;
Li et al. 2018; Furuta et al. 2016; Luo et al. 2019;

Table 4 Interest of exosomes in periodontal regeneration

Authors
Animal
type

# of
animals

Origin of
exosomes

Exosomes
dose

Extraction
method

Scaffold and
administration
mode Results

Chew
et al.
(2019)

10-
weeks-old
male
Sprague-
Dawley
rats
weighing
289-413 g

18 total,
3 groups
(n ¼ 12/
group
(left
right))

MSCs 40 μg Tangential
flow filtration

Collagen sponges
(CS) (HealiAid®,
Maxigen biotech
Inc. Taoyuan City,
Taiwan), loaded
with exosomes
and implanted in
the defect.

At 2 weeks,
significantly
higher
percentage of
BV/TV in the
exosomes group
compared to the
control group
(p ¼ 0.025)

Characterized
with: CD81,
ALIX,
TSG101

The exosomes
group was
significantly
higher at
4 weeks
compared to the
control group
(p ¼ 0.010) and
untreated group
(0.007).
Significant
improvements in
bone gap from
2 to 4 weeks for
exosomes group
(p ¼ 0.025).
Exosomes
enhanced
periodontal
regeneration
including bone
and periodontal
ligament.
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Xu et al. 2019; Liu et al. 2020). All studies
showed an improvement in terms of bone healing
in the test groups (groups treated with exosomes)
when compared to the control group. Interest-
ingly, studies demonstrated the differential effect
obtained according to different pretreatments or
types of exosomes. Indeed, Takeuchi et al. found
better results in MSCs exosomes treated groups in
comparison to the angiogenesis inhibitor
associated MSCs exosomes treated group
(Takeuchi et al. 2019). In another study, regular
MSCs exosomes were compared to MSCs
exosomes preconditioned with a low dose of
dimethyloxaloylglycine (DMOG) which showed
that bone volume/total volume (BV/TV) was
higher in the DMOG-MSC-exosomes group
(Liang et al. 2019) (Table 1). Similarly, enriched
exosomes with miR-375 induced a significantly
improved bone regeneration compared to that in
the control group (Chen et al. 2019a) (Table 1).
Liu et al. compared exosomes derived from
MSCs under hypoxia (Hypo-Exos) to exosomes
derived from MSCs under normoxia (Exos) and
demonstrated that Hypo-Exos had a greater effect
on bone fracture healing than Exos (Liu et al.
2020) (Table 2). Furthermore, Luo et al. conju-
gated bone stromal cells (ST)-derived exosomes
with a BMSC-specific aptamer to target bone and
found a significant acceleration in bone healing
with their use upon comparison with regular
ST-exosomes (Luo et al. 2019) (Table 2). Four
studies used different exosomes concentrations
among study groups (Jia et al. 2019; Zhang
et al. 2016; Qi et al. 2016; Xu et al. 2019)
(Tables 1 and 2). Interestingly, three of them
demonstrated a correlation between exosomes
dose and bone healing (Jia et al. 2019; Zhang
et al. 2016; Qi et al. 2016) (Tables 1 and 2).

3.8 Exosomes Role in Angiogenesis

Nine studies demonstrated a link between
exosomes use and increase of angiogenesis
(Takeuchi et al. 2019; Zhang et al. 2019, 2020;
Jia et al. 2019; Liang et al. 2019; Wu et al. 2019;
Qi et al. 2016; Furuta et al. 2016; Liu et al. 2020)
(Tables 1, 2 and 3). In some studies, the exosomes
were derived from human bone marrow stem cells

(hBMCs) and human mesenchymal stem cells
(hMSCs) (Takeuchi et al. 2019; Liang et al.
2019; Furuta et al. 2016) (Tables 1 and 2). More-
over, given their high proliferation and migration
capacities, their low immunogenicity, and their
easy collection, 2 studies used stem cells from
human umbilical cord (Zhang et al. 2019; Liu
et al. 2020), while the others used endothelial
progenitor cells (EPCs), human induced pluripo-
tent stem cells (hIPSCs), stem cells from human
exfoliated deciduous teeth (SHEDs) and rat bone
marrow stem cells (BMCs) respectively (Zhang
et al. 2020; Jia et al. 2019; Wu et al. 2019; Qi
et al. 2016) (Tables 1, 2 and 3). In order to detect
the progression of angiogenesis, all of the studies
used CD31 immunohistochemical marker
(Takeuchi et al. 2019; Zhang et al. 2019, 2020;
Jia et al. 2019; Liang et al. 2019; Wu et al. 2019;
Qi et al. 2016; Liu et al. 2020) (Tables 1, 2 and 3).
Furthermore, most of the studies used micro-
computed tomography to detect the formation,
or the volume increase of vessels (Zhang et al.
2019, 2020; Jia et al. 2019; Liang et al. 2019; Qi
et al. 2016; Liu et al. 2020) (Tables 1 and 2). All
the studies found either new vessels formation or
an augmentation in vessels volume (Zhang et al.
2019, 2020; Jia et al. 2019; Liang et al. 2019; Qi
et al. 2016; Liu et al. 2020) (Tables 1 and 2).
Concerning the different markers targeted, all
studies which used angiogenic markers have
shown an increase in vessels in test groups
(Takeuchi et al. 2019; Zhang et al. 2019, 2020;
Jia et al. 2019; Liang et al. 2019; Wu et al. 2019;
Qi et al. 2016; Furuta et al. 2016; Liu et al. 2020)
(Tables 1, 2 and 3).

3.9 Exosomes Role in Cells
Proliferation and Migration

Most of the studies demonstrated a link between
exosomes use and cells migration and/or prolifer-
ation (Chew et al. 2019; Takeuchi et al. 2019;
Zhang et al. 2019, 2020; Jia et al. 2019; Liang
et al. 2019; Sun et al. 2019; Wu et al. 2019; Zhang
et al. 2016; Qi et al. 2016; Li et al. 2018; Xu et al.
2019; Liu et al. 2020) (Tables 1, 2, 3 and 4).
5 studies demonstrated a positive effect of
exosomes on migration and proliferation of
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human umbilical vein endothelial cells
(HUVECs) (Zhang et al. 2019, 2020; Liang
et al. 2019; Wu et al. 2019; Liu et al. 2020)
(Tables 1, 2 and 3), 5 others on MSCs and
BMCs (Takeuchi et al. 2019; Sun et al. 2019;
Zhang et al. 2016; Qi et al. 2016; Li et al. 2018)
(Tables 1 and 2), and 3 on osteoblastic cells
(Xu et al. 2019) (Table 1), endothelial cells (Jia
et al. 2019) (Table 2) and on periodontal ligament
(PDL) cells (Chew et al. 2019) (Table 4). Analy-
sis of cellular migration has been assessed by
transwell migration assay (Chew et al. 2019;
Takeuchi et al. 2019; Sun et al. 2019; Wu et al.
2019; Li et al. 2018; Liu et al. 2020) or scratch
wound healing assay (Zhang et al. 2019, 2020; Jia
et al. 2019; Liang et al. 2019; Zhang et al. 2016;
Xu et al. 2019), and proliferation has been
assessed by cell counting (Jia et al. 2019; Liang
et al. 2019; Sun et al. 2019; Wu et al. 2019; Zhang
et al. 2016; Qi et al. 2016; Li et al. 2018; Liu et al.
2020) and by immunofluorescence (Chew et al.
2019; Zhang et al. 2019, 2020; Xu et al. 2019)
(Tables 1, 2 and 4).

4 Discussion

This systematic review demonstrated the poten-
tial interest in the utilization of exosomes in bone
and periodontal regeneration. However, it has
been shown that the outcomes in periodontal
and bone regeneration are dose-dependent and
that some exosomes pre-treatment can lead to
enhanced healing outcome.

Stem cells therapy was developed to treat oral
diseases especially periodontal diseases.
(Mimeault and Batra 2008; Rajabzadeh et al.
2019). In 2004, Kawaguchi et al. used autologous
bone marrow MSCs to treat experimental class III
defects in beagle dogs. Such treatment procedure
was associated with a significant increase in the
percentage of new cementum length and new
bone area in the test group (stem cells +
atelocollagen) when compared to the control
group (atelocollagen alone) (Kawaguchi et al.
2004). Such improved healing was also found in
another study assessing the combination of MSCs
and other scaffold such as anorganic bovine bone
mineral (ABBM) in comparison with ABBM

alone in a surgically and ligature-induced
intrabony defects in a dog model (Paknejad
et al. 2015). As mentioned previously, MSCs
from the oral cavity that are easily harvested are
also of great interest (Yang et al. 2020; Yu et al.
2015). Their use in association with specific
scaffolds such as multi-layered PDL-derived cell
sheets has been evaluated and has demonstrated
positive outcomes, for instance, in 3-walls peri-
odontal defects (Iwata et al. 2009).

Besides their strong pro-regenerative
properties, MSCs display also anti-inflammatory
and immunomodulatory effects through the inhi-
bition of the secretion of cytokines such as
TNF-α, IFN-γ, and IL-1β (Du et al. 2014).

Despite such promising results, stem cell ther-
apy presents some limitations due to the costs but
also due to potential safety concerns as they may
promote tumor growth and metastasis (Volarevic
et al. 2018). Accordingly, alternatives have been
proposed. Indeed, the use of exosomes is a new-
found technique which has been already tested in
early-stage lung cancer diagnosis (Shin et al.
2020) and several other diseases (Palanisamy
et al. 2010) as a diagnostic tool. Shin et al. have
used exosomes as tools for detecting early-stage
lung cancer, with high accuracy without resorting
to specific biomarkers (Shin et al. 2020). Further-
more, exosomes can also be found in the saliva, a
procedure that has notable advantages such as its
noninvasive nature, no risk of hemorrhage, good
patient compliance, a content similar to plasma
and its ease of collection (Han et al. 2018). How-
ever, only a limited amount of clinical data is
available so far. In animal models, the use of
exosomes was studied in organs after ischemia-
reperfusion injury (Huang et al. 2017), and it has
been shown that exosomes provided a powerful
cardio-protection partly through heat shock pro-
tein HSP-70 and toll-like receptor TLR-4 path-
way. In cutaneous regeneration, exosomes have
proven their efficacy during each phase of healing
by delivering various molecules such as RNAs,
including mRNA and miRNAs, trophic factors
and functional proteins (Wu et al. 2018). More-
over, this review has indicated that exosomes are
also studied in bone and periodontal regeneration
(Chew et al. 2019). The improvement in bone and
periodontal regeneration is partly explained by
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the activation of angiogenesis/vasculogenesis
through Wnt/β-catenin pathway (Zhang et al.
2015). Furthermore, the promotion of cell migra-
tion and proliferation by exosomes has also been
demonstrated, such process playing a role in the
tissue regeneration (Qin et al. 2016).

Surprisingly, the effects of exosomes on inflam-
matory state have not been elaborated in the
selected articles but some authors demonstrated
that exosomes can play both positive and negative
roles in the regulation of inflammatory cascade
(Pivoraitė et al. 2015; Wang et al. 2019). Pivoraitė
et al. demonstrated that dental pulp exosomes can
exert strong anti-inflammatory effects through
carrageenan-induced edema inhibition, compara-
ble to the effects of glucocorticoids. These effects
may be due to Annexin A1 and 15d-PGJ2, both of
which are found on the exosomes surface
(Pivoraitė et al. 2015). Moreover, Wang et al.
concluded that exosomes can have either pro- or
anti-inflammatory effects, depending on the car-
ried component (Wang et al. 2019).

To enhance the utility of exosome application
and optimization of the healing outcome, exosome
source, condition, and concentration should be the
focus of future studies. In this review, it is evident
that varying exosome conditions (Takeuchi et al.
2019; Zhang et al. 2019; Chen et al. 2019a; Liang
et al. 2019; Luo et al. 2019; Liu et al. 2020) and
concentrations (Jia et al. 2019; Zhang et al. 2016;
Qi et al. 2016; Xu et al. 2019) can have different
effects on bone healing, however, significant evi-
dence is yet to be confirmed for exosome source
variations (Zhang et al. 2019; Sun et al. 2019).
Furthermore, origin of exosomes is another major
determinant of exosome action due to certain
origin-specific proteins and markers found on the
exosome surface(Luan et al. 2017; Willms et al.
2016). While surface proteins and markers help to
determine the origin of an exosome, only some of
them are specific to certain cell types. The list of
surface proteins, markers and RNAs carried by
exosomes according to species and cell origin is
available on exocarta.org, a database that could
help determine the optimal exosome source for
different therapies.

Exosome functionalization is another interest-
ing strategy where exosomes can be loaded with

therapeutic proteins, molecules, RNA, or imaging
molecules using different functionalization
techniques and, therefore, act as a tool to transport
therapeutic products to for tissue-targeted deliv-
ery (Luan et al. 2017). For instance, Munagala
et al. used exosomes to encapsulate chemothera-
peutic and chemo-preventive agents against lung
cancer and demonstrated that these functionalized
exosomes had an anti-tumoral effect in vivo
(Munagala et al. 2016). Another study loaded
curcumin inside peptide-conjugated-exosomes
and showed that the conjugated-exosomes
targeted desired tissues more easily and had a
higher anti-inflammatory effect than conventional
exosomes (Tian et al. 2018).

Exosomes demonstrate a great therapeutic
potential owing to their capacity to enhance regen-
eration of different tissues (Chew et al. 2019;
Huang et al. 2017; Wu et al. 2018). Their adminis-
tration is considered a cell-free therapy which
reduces the risk of malignant transformation that
can be induced by stem cells or growth factors
therapy (Volponi et al. 2010; Grayson et al.
2015). However, additional studies are needed to
further establish the safety of such cell-free treat-
ment application involving exosomes. In all
identified studies (Chew et al. 2019; Takeuchi
et al. 2019; Zhang et al. 2019, 2020; Chen et al.
2019a; Jia et al. 2019; Liang et al. 2019; Sun et al.
2019; Wu et al. 2019; Zhang et al. 2016; Qi et al.
2016; Li et al. 2018; Furuta et al. 2016; Luo et al.
2019; Xu et al. 2019; Liu et al. 2020), exosome
isolation was performed after cell harvesting and
culture. Some existing techniques allow exosome
isolation directly from the blood of the patient or
animal. These techniques open doors to new sam-
pling techniques and allow a more convenient
clinical use in the future (Shushkova et al. 2018).

In this review, we have highlighted different
manners to treat bone or periodontal defects with
exosomes. In addition to the several scaffolds
described in this review such as β-TCP particles
(Wu et al. 2019; Zhang et al. 2016; Qi et al. 2016)
(Tables 1 and 3), hydrogel (Zhang et al. 2019;
Chen et al. 2019a) (Tables 1 and 2), collagen
sponge (Chew et al. 2019; Takeuchi et al. 2019)
(Tables 1 and 4), hydroxyapatite (HA), Bio-Oss®

Collagen or PLGA (Liang et al. 2019; Sun et al.
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2019; Li et al. 2018), some studies also focus on
other scaffolds such as titanium oxide nanotubes
(Wei et al. 2019), 3D printed extracellular matrix/
gelatin methacrylate scaffolds (Chen et al. 2019b)
or protein nanocages (Cho et al. 2018).

As previously mentioned, a multitude of stud-
ies demonstrated the loading of biomaterials with
different exosomes concentrations, which
highlights the importance of exploring further
the best exosomes scaffolds and concentrations
to achieve an optimal regenerative outcome
(Fig. 3).

It is note-worthy that this systematic review
presents certain limitations. Herein, only one pub-
lication discusses exosome interest in periodontal
defect. Moreover, these studies evaluated the
effect of exosomes in different animal models, at
different sites and different defects, which hinder
the performance of a meta-analysis.

5 Conclusion

Exosomes use appears to be an innovative cell-
free therapy with potential clinical application in
the future, especially, in the treatment of peri-
odontal defects, a therapy that presents ongoing
challenges. Despite the limitations of this system-
atic review, it has been established that exosome
therapy seems to enhance significantly the bone
and periodontal regeneration. A dose-related
effect has also been observed, however, no
study has compared the influence of the source
of exosomes on promotion of tissue healing and
bone/periodontal regeneration. Further studies are
required to determine more precisely their thera-
peutic perspectives.

Conflict of Interest The authors declare no conflict of
interest.

Fig. 3 Schematic representation of different exosomes sources and scaffolds potentially useful in periodontal
regeneration
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Abstract

Objectives: Aging as an inevitable and com-
plex physiological process occurs through a
progressive decrease in the potential of tissue
regeneration. Given the increasing global out-
break of aging and age-related disorders, it is
important to control this phenomenon.
Parkinson’s disease (one of the age-related
neurodegenerative and progressive disorders)
resulted from predominant dopaminergic
neurons deficiency. Usual Parkinson’s disease
treatments just can lead to symptomatically

relieving. Recently, cell therapy and regenera-
tive medicine a great promise in the treatment
of several types of disorders including
Parkinson’s disease. Herein, before starting
clinical trials, preclinical studies should be
performed to answer some fundamental
questions about the safety and efficacy of vari-
ous treatments. Additionally, developing a
well-designed and approved study is required
to provide an appropriate animal model with
strongly reliable validation methods. Here-
upon, this review will discuss about the design
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and application of an appropriate Parkinson’s
disease animal model in regenerative
medicine.

Evidence acquisition: In order to conduct
the present review, numbers of Parkinson’s
disease preclinical studies, as well as
literatures related to the animal modeling,
were considered.

Results: Appropriate animal models which
approved by related authorize committees
should have a high similarity to humans from
anatomical, physiological, behavioral, and
genetic characteristics view of point.

Conclusion: It is concluded that animal
studies before starting clinical trials have an
important role in answering the crucial
questions about the various treatments safety
and efficacy. Therein, it is recommended that
all of animal modeling stages be assessed by
animal ethics and welfare guidelines and also
evaluated by different validation tests. How-
ever, it is better to find some alternatives to
replacement, refinement, and, reduction of
animals. Nowadays, some novel technologies
such as using imaging methods have been
introduced.

Keywords

Animal welfare · Parkinson’s disease ·
Regenerative medicine · Research design ·
Validation
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1 Introduction

Aging reflect growing, developing, maturing, and
all changes in the period of life which reveal
particular physical and mental signs (Reeve
et al. 2014; Buczak-Stec et al. 2018). In the
other words, aging is a normal biological process
that happens inevitably and associated with grad-
ual changing in the biochemical and physiologi-
cal status of the cells, which can increase the risk
of different kinds of diseases (Arking and Arking
2006; Sharma and Ebadi 2014). According to
World Health Organization (WHO) estimation,
between 2010 and 2050 the growth rate of the
aged population will be increased especially in
less developed countries. This increase will be
associated with more illness and disability and it
can impose a great impact on healthcare and
social costs. Additionally, aged people are sus-
ceptible to multiple infections and frailty. Hence,
a global effort to provide a healthy longevity is
seriously needed (Reeve et al. 2014). In summary,
aging can be considered as a risk factor for some
disorders called age-related disease. Parkinson’s
disease (PD) is one of the most prevalent
age-related neurodegenerative diseases (Sharma
and Ebadi 2014). It is a voluntary movement
disorder and comprised of complex symptoms
such as tremor, bradykinesia, rigidity, and other
motor and non-motor symptoms. Although, sev-
eral treatment methods (such as multiple
medications, deep brain stimulation, neurosurgi-
cal treatments, and etc.) have been developed, PD
has been remained a progressive disorder and the
advanced PD is still one of the most important
challenges (Jankovic and Poewe 2012). Recently,
stem cell-based therapy and regenerative medi-
cine (RM) has been introduced as a novel and
promising strategy for managing age-related
disorders including PD (Goodarzi et al. 2015).
However, there are multiple stages for translating
basic researches and moving from bench to bed-
side. For instance, one of the most crucial stages
in developing a safe and effective pharmaceutical
or cell-based product is to design an appropriate
preclinical study for demonstrating its safety and
efficacy and applicability (Knoepfler 2015).

Preclinical evaluation as a powerful tool has an
important role in assessing various interventions
for developing a validated and less invasive tech-
nique for clinical studies. In this regard, providing
an appropriate and valid animal model seems to
be critical in development of novel treatments
including cell-based therapies (Knoepfler 2015).
This review is going to describe different animal
models with several validation methods in PD. In
addition, advantages and disadvantages of differ-
ent models and methods will be addressed.

2 Current Treatments
for Parkinson’s Disease

PD is a chronic neurodegenerative disease that
comprise of motor and non-motor symptoms
(Group, P.M.C 2014). The diagnosis of PD usu-
ally is based-on cardinal motor symptoms. In
other words, motor symptoms are most important
for diagnosis of early PD (Lane 2019). PD is a
progressive disease in which there is no definitive
cure for it and available treatments only can
improve some of its symptoms. The main charac-
teristic of PD is progressive degeneration of dopa-
minergic (DA) neurons. Dopamine is a
monoaminergic transmitter which its neurons
project to the corpus striatum (Fig. 1). In fact, it
is a neuromodulator with an important role in
CNS and its deficiency affects motor function,
cognition, motivation, and etc. which cause neu-
rological disorders. There are various types of
dopamine receptors (D1, D2, D3, D4, and D5).
These receptors have several differences includ-
ing: different sequences, receptor structures and
functions. Among the mentioned receptors, D2
has a pivotal role in control of motor functions
and decrease of its expression cause locomotor
impairment. Therefore, any treatment strategy
which compensates this deficiency could be ben-
eficial. Accordingly, 3, 4-dihydroxy-L-phenylal-
anine (L-DOPA) as a dopamine precursor has
been considered as a gold standard treatment for
PD. It can impose an effective role in diminishing
of motor symptoms in the early stages of
PD. However, its long-term application could be
associated with adverse side effects (Lane 2019).
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Additionally, using of dopamine receptor
agonists (e.g., pramipexole, apomorphine,
piribedil) is another therapeutic tool for PD
(Blandini and Armentero 2014). They stimulate
dopaminergic receptors directly and can improve
motor symptoms of PD. These agonists are less
effective than l-DOPA but they cause continues
stimulation on receptors and fewer side effects
(Katunina et al. 2015). MAO-B and COMT
inhibitors, anticholinergics, and amantidine are
other examples of conventional treatments. In
the past decades, some new therapeutic methods
such as combination therapy, application of vari-
ous dosages, advancement of drug delivery, exer-
cise, deep brain stimulation (DBS) have been
progressed (Fox et al. 2011). However, the cur-
rent treatment strategies which generally try to
postpone the PD symptoms in its early stage and
improve motor complications such as motor
fluctuations and dyskinesia seem to be crucial to
achieve more constant benefits (Fox et al. 2011;
Pahwa and Lyons 2014). Recently, cell therapy
and RM reveal a great promising horizon to

optimize the existing treatments through improv-
ing the DA neurons survival and providing a
suitable supply of dopamine (Snyder and Olanow
2005; Goodarzi et al. 2014a). For instance, they
could induce cell differentiation potency to pro-
vide specific types of dopaminergic neurons
which can eliminate different side effects of the
conventional treatments. In this regard, they
could be considered as the appropriate
alternatives, superior to current therapies
(Sonntag et al. 2018).

3 Developmental Process
of Regenerative Medicine

RM as a novel multidisciplinary technology deals
with regenerating the damaged and dysfunctional
cells, tissues, and organs to restore their normal
structure and function. RM represents the new
therapeutic methods which can revolutionize the
treatment of incurable diseases like PD (Rahim
et al. 2018a; Payab et al. 2018a; Ghodsi et al.

Fig. 1 Affected brain areas in Parkinson’s disease. SN
located in the midbrain contains DA neurons which
regulates different critical functions. These dopamine-
containing neurons have autonomous activity in normal
condition (a). Degeneration of DA neurons leads to altered
dopamine neurotransmitter levels which causes both

motor and non-motor symptoms of PD (b). SN color loss
and abnormal protein aggregations are the other hallmarks
of this neurodegenerative disorder (Dickson 2018; Blesa
et al. 2015). (PD: Parkinson’s disease. DA Dopaminergic,
SN Substantia Nigra)
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2012). Due to the unique regenerative properties
of stem cells, they have a basic role in RM. For
example cell replacement as a novel therapeutic
approach in RM can be a notable achievement in
RM field (Turksen 2018; Saberi et al. 2008, 2011;
Ai et al. 2014; Goodarzi et al. 2014b). Fundamen-
tally, prior to translation of basic researches to the
clinic, their efficacy and safety should be
evaluated according to related guidelines and
regulations. In the process of RM, after scientific
approaches, the hypotheses with regards to gap
analysis are constructed. In the next step, these
hypotheses are tested by preclinical studies
(in vitro and in vivo). In vitro analyses provide
evidences of efficiency and safety prior to trans-
lation into animals and humans. Moreover, In
vivo investigations are the main part of preclinical
studies. Animal studies can demonstrate the
safety, efficacy, and potential side effects in a
living organism. In the journey from bench to
bedsides, general principles must be considered
by scientists for instance: selection the appropri-
ate animal model and cell type, duration of study,
number of animals, the differences between ani-
mal model and human disease, animal ethics and
welfare, and communication with regulatory bod-
ies. Following this step and after appropriate tox-
icology, pharmacodynamics, and
pharmacokinetic studies for cell-based products,
the achievements in the preclinical phase can be
translated to clinical trials (Okura and Matsuyama
2016). Finally, if the product or method has the
overall criteria and is validated by related
authorities and organizations it will be ready to
use in a clinical manner (George 2011; Halme and
Kessler 2006; Payab et al. 2018b).

4 Animal Study Design
for Parkinson’s Disease

Preclinical studies are key prerequisites of large
scale clinical trials. Thus, it is important to choose
the suitable animal species, considering the most
anatomical, physiological, behavioral, and genetic
similarities to human for in vivo studies (Potashkin
et al. 2011). For instance, rodents and nonhuman
primates (which can mimic many aspects of the

pathophysiology of human neurodegenerative
diseases) are used frequently in PD investigations.
Due to probable breaks in model validation pro-
cesses, some animal models cannot imitate the
pathophysiology of PD. Accordingly, in some
cases outcomes of such studies cannot be trans-
lated to the clinic (Potashkin et al. 2011). Hence,
an animal model should meet a set of validation
criteria to be appropriated for human pathology.
On the other hand, the study design and ethics,
animal selection, and model validation should be
approved by related authorities and committees
before starting the program. However, there are
some ethical arguments against the animal
experiments (Albus 2012). Herein, the ‘3Rs’ rule
(replacement, reduction, and refinement) is almost
a universal and broad-acceptable tenet (Fig. 2).
However, complete animal modeling replacement
is still not feasible. Therefore, it is necessary to
provide the appropriate and accurately validated
animal models in accordance with the scientific
standards and regulations. Additionally, develop-
ment of fundamental infrastructures such as animal
housing and husbandry to achieve standard
validated animal models is important (Lahman
et al. 2011; Fenwick et al. 2009; Festing and
Wilkinson 2007).

5 Appropriate Animal Model

Animal modeling as a powerful tool is applied to
mimic and predict the various pathophysiological
human conditions to investigate multiple thera-
peutic approaches, especially when it is difficult
to directly monitor in human. On the other hand,
it also can provide some conditions of human
disease processes and their pathogenesis (Xiong
et al. 2017). Therefore, developing an appropriate
animal model is the most important stage of
designing an experimental study. According to
Wessler’s definition: an animal model is “a living
organism with an inherited, naturally acquired, or
induced pathological process that in one or more
respects closely resembles the same phenomenon
in man” (Ben-Hur et al. 2004; Yang et al. 2008).
PD is the first neurological disorder that was
modeled in an animal while it is a human specific
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disease (Garcia-Ruiz and Espay 2017). Therefore,
some additional considerations are required than
other animal modeling strategies. On the other
word, animal species which have the most
physio-anatomical and genetic similarities with
human are acceptable choices for PD modeling
(Cai et al. 2009). Nowadays, several types of
animals are commonly used which has
advantages and disadvantages (Table 1). They
ranged from single-celled microorganisms to the
highest order of animals. Experimentally, specific
characteristics such as sensitivity to specific
chemical compound, physiological
characteristics, availability, and type of disease
make an animal species suitable for PD modeling.
For instance, monkeys, the gold standard model
of PD, mainly used for modeling of motor
symptoms and behavioral studies due to their
phylogenetically proximity to human species,
while mice are suitable to model the molecular
and cellular mechanism of PD (Tieu 2011; Kim
et al. 2009). Additionally, non-mammalian

organisms are used for investigation of gene
expression pattern in PD most recent (Tansey
and Goldberg 2010). Generally, an acceptable
humanized animal model must be experimentally
rational and cost-effective (Sonntag et al. 2007).
Furthermore, the ideal model should represent
DA neurons loss, Lewy body-like inclusions,
and DA reduction in striatum to mimic most
aspects of human PD (Halbach 2006).

6 Humanized Animal Modeling

Investigations on PD have benefited a lot from
animal models. Two common approaches to pro-
vide PD animal models are toxin and genetic-
based modeling (Table 2). Various known
neurotoxins are used to target dopaminergic
neurons either systemically or locally according
to their ability to cross blood-brain barrier (BBB).
ROS formation is the most common mechanism
of neurotoxins. Perhaps reserpine was the first

Sharing Results

In vitro Studies

Mathematical Models

Careful Design and Analyzing Better Handling

Invertebrates
Models

Better Housing

Imaging
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Fig. 2 The 3Rs rules. Replacement, Reduction, and
Refinement are given a framework for implementing ani-
mal researches. Replacement refers to methods which
replace the use of animals such as doing in vitro studies
and using invertebrates, mathematical, and computational
models. Reduction refers to methods which reduce the

number of animals used per experiment such as sharing
and publishing results and careful design and analyzing.
Refinement refers to methods which decrease animal
suffering and ameliorate welfare such as better animal
housing, handling, and imaging (Lahman et al. 2011;
Fenwick et al. 2009)

94 B. Larijani et al.



Table 1 Commonly used animal species in modeling
of Parkinson’s disease. A wide range of animal species
such as primates, rodents, mammals, fishes, and single-
celled organisms can be used as the PD animal models.
Each of them are suitable for studying different aspects of

the disease. While single-celled microorganisms as well as
small species usually are used for studying of molecular
and cellular pathways, other animal species with more
phylogenetic proximity to human are suitable choices for
modeling of motor symptoms and behavioral studies

Animal Species Advantages Disadvantages

Monkeys Exhibit behavioral
and neuroanatomical similarities to the
human condition

Usually represent an acute model
Difficult availability
Costly

Showing a bilateral parkinsonian syndrome Difficult handling
Provide all stages of PD treatment research
prior to starting clinical trials
Gold standard model

Marmosets Small new world primate Difficult availability
Relatively ease in handling
High reproductive efficiency
Specific cognitive and behavioral
characters

Mice Generated data has led to a better
understanding
of molecular mechanisms

Difficult to develop a level of
impairment equal to the human
condition

Genetically modifications
Useful for testing neuroprotective therapies
Useful to study of neuronal death process
Low cost
Common for MPTP (1-Methyl-4-Phenyl-1,
2,3,6-Tetrahydropyridine) model
Readily available
High reproductive efficiency

Rats Relatively low cost Resistant to MPTP
Readily available Difficult to develop a level of

impairment equal to the human
condition

Genetically malleable
High reproductive efficiency

Cats, Dogs, Guinea pigs Suitable for MPTM models Difficult availability and handling
Sheep Non-primate large animal model Difficult handling

Physiological parallel with human
Suitable for modeling of rare genetic
disorder

Costly

Appropriate for trial new treatments of rare
human disease in animals

Göttingen minipigs Large gyrencephalic brain Difficult availability and handling
Suited for examination at conventional
clinical scanning modalities
Allows to apply neurosurgical techniques
Possibility of use DBS and electrodes
Relatively low cost

Zebrafish Highly amenable to genetic alterations No usage in study many of the
clinical manifestations of the diseaseSmall size

Short generation time
Low maintenance costs

Goldfish Being modeled with single dose of MPTP No usage in study many of the
clinical manifestations of the diseaseRelatively simple and low cost model

Accessible nervous system
Abbreviated BBB

(continued)
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neurotoxin used to model the PD animals by
Carlsson and Hilarp in the 1950s. They
demonstrated that reduced catecholamine level
in the brain due to reserpine toxicity can mimic
the PD phenotype and L-DOPA alleviates the
related symptoms partially (Cannon and
Greenamyre 2010; Carlsson 2002). Temporary
cell damage is a challenge in reserpine applica-
tion. α-methyl-para-tyrosine is another pharmaco-
logical agent depletes the dopamine synthesis
through inhibiting tyrosine hydroxylase, an
enzyme of dopamine synthesis pathway, which
shares the same limitation of impermanent
neurodegeneration effect with reserpine. Con-
comitant reserpine and a-methyl-para-tyrosine
application can prolong the duration of their
neurodegeneration effects (Tieu 2011). MPTP
has a lipophilic structure and this property helps
MPTP to cross the BBB easily. After MPTP
entrance to BBB and neurons, it metabolizes to
MPP+ by monoamine oxidase-B enzyme. MPP+
as a potent mitochondrial complex 1 inhibitor can
destroy the DA neurons. MPTP is considered as
one of the popular systemic neurotoxins. MPTP-
treated monkeys are the gold standard of PD
animal models, however this model like the
other models has its own pros and cons. Recently,
some herbicides, pesticides, and fungicides like
paraquat (PQ), rotenone, maneb, and ziram are
applied as neurotoxins in PD animal modeling.
Due to similar molecular structure between PQ
and MPP+, it has the similar MPP+’s toxic
effects. In addition, the PQ’s neuron loss effect

is controversial but recent researches have
reported that its toxicity is dose dependent and
DA neurons loss can be reached in high doses of
PQ. 6-hydroxydopamine (6-OHDA), the oldest
catecholamine neurotoxin, is another suitable
choice for pharmacological studies. 6-OHDA
cannot cross the BBB therefore it should be
administered locally. Injection of 6-OHDA into
the striatum, SN, or nigrostriatal tract induces DA
neurons death. To avoid the severe adverse
consequences of bilateral injection, 6-OHDA is
injected unilaterally. In this approach the
unlesioned hemisphere of animal can be left intact
to serve as its own control. Recently, scientists
have focused on the genetic pathogenesis of PD
and novel discoveries in this area have provided
an opportunity to develop genetic models.
Mutations in α-syn and LRRK2 genes lead to
autosomal dominant PD and mutations in
PINK1/Parkin and DJ-1 genes lead to autosomal
recessive PD. The noteworthy privilege of genetic
models is their potential to represent the chronic
nature of PD. α-syn a modulator protein in pre-
synaptic terminals is the major protein of LBs.
Some of the common applied genes in producing
genetic-based PD models include SNCA,
LRRK2, GBA, PRKN, PINK1, PARK7,
VPS35, EIF4G1, DNAJC13, CHCHD2,
UCH-L1 (Blesa et al. 2012; Cannon and
Greenamyre 2010; Dauer and Przedborski
2003). Accordingly, several genetic-based studies
are applied to investigating such crucial genes
which can improve targeted therapies (Sardi

Table 1 (continued)

Animal Species Advantages Disadvantages

Drosophila, Medaka fish,
Caenorhabditis elegans, yeast,
frogs

Useful for studying fundamental cellular
processes involved with PDa

No usage in study many of the
clinical manifestations of the disease

Suitable for investigation of basic
mechanism of PD
Rapid alternatives
Drosophila will allow the rapid
characterization of enhancer and suppressor
mutation

Lack of replicate the loss of neurons
in the brain

Drosophila is suitable for mitochondrial
dysfunction model

Potashkin et al. (2011), Jackson-Lewis et al. (2012), Blesa et al. (2012), Beal (2001), Okano et al. (2012) and Bretaud
et al. (2004)
aIncluding: apoptosis, autophagy, oxidative stress, protein misfolding
PD Parkinson’s disease

96 B. Larijani et al.



Table 2 Neurotoxin and genetic-based approaches in
animal modeling for Parkinson’s disease: Their
methods, induced pathologies, and symptoms. Different
modeling approaches cause PD through different
mechanisms. Neurotoxin-based methods are classified

according to the mod of action and their neurotoxic effects.
Using PD-causing genes, it is possible to produce genetic-
based PD models with the potential to represent the
chronic nature of PD

Approach
Method of
modeling PD pathology

PD
symptoms Mode of action

Development
of LBsa like
inclusions Additional points

Neurotoxin-
based

6-OHDA Non-progressive
nigrostriatal
dopaminergic
neurons death

Quantifiable
motor deficit

Induced stress
oxidative in
neural cells

No Usable in both
in vitro and in vivo
screenings but
frequent favorite
animal is rat

Akinesia

Rigidity Requirement to
intracerebral
injection

Tremor

Rotational
behavior

Induction of acute
effects

Inducing
degeneration of
both dopaminergic
and noradrenergic
neurons

Rare presence of
parkinson’s tremor
in lesioned rodents
with 6-OHDA

Poor construct
validity

MPTP Non-progressive
nigral DA neurons
death

Tremor Mitochondrial
complex I
Inhibitor-

Rare Systemic
administrationRigidity

Akinesia

Postural
instability

Reduced
ATP/induced
stress oxidative

Good construct
validity

Less
evident of
models
motor
deficits In
rodent

Rotenone
(herbicide and
insecticide)

Progressive nigral
DA neurons loss

Decreased
motor
activity

Non-selective
mitochondrial
complex I
inhibitor

Yes Frequent animal is
rat

Systemic
administrationAbnormal

postures Penetrated cell
membrane

Low construct
validitySlowness of

movement Induced
oxidative stress

Paraquat (N,N
-dimethyl-4-4-4
–bypiridinium/a
herbicide)

Dose-dependent
loss of DA neurons

Reduced
motor
activity

Oxidative stress No Systemic
administration

Low construct
validity

(continued)
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Table 2 (continued)

Approach
Method of
modeling PD pathology

PD
symptoms Mode of action

Development
of LBsa like
inclusions Additional points

Genetic-
based

Overexpression
of α-syn

DA neurons loss Progressive
loss of motor
function

Reduced the
activity of
tyrosine
hydroxylase (TH)

Yes, but these
inclusions are
generally not
seen in SN
nucleus

Slight DA
pathology

Good construct
validityDA

responsive
locomotor
deficits

Granular
intracytoplasmic
inclusions

Some
aspects of
the
pathology
of dementia

α-syn-knockout
(A53T)

Low DA neuron
loss

Severe motor
deficits

Enhanced α-syn
aggregation

Yes, level of
these
inclusions are
high in
contrast to
A30P
mutated form

Slight DA
pathology

Good construct
validity

α-syn-knockout
(A30P)

Low DA neuron
loss

Less motor
deficits

Enhanced α-syn
aggregation

Yes, level of
these
inclusions are
low in
contrast to
A53T
mutated form

Slight DA
pathology

Good construct
validity

Mutated parkin No or low nigral
cell loss

Motor
impairment
is obvious in
most cases of
exon deleted

Mitochondrial
dysfunction

No or in low
levels

Slight DA
pathology

Good construct
validity

Mutated form of
LRRK2

No or low levels of
DA neurons loss
(age-dependent
neurodegeneration)

Few
behavioral
deficits

Autophagic and
mitochondrial
abnormalities

Generally not
observed

Positive relation
between the levels
of LRRK2 and
α-syn
phosphorylation
and aggregation in
PD brains

Different
levels of
motor
impairment
dependent
on its
mutation
form

Enhancing α-syn
aggregation

Mutated form of
PINK1

No or low nigral
cell loss

No or low
motor
impairment

Mitochondrial
dysfunction

No or in low
levels

Slight DA
pathology

Good construct
validity

Mutated form of
DJ-1

No or low nigral
cell loss

Motor
impairment
is depend on
the exon
deleted
region

DJ-1
accumulation in
mitochondria/
oxidative stress

No or in low
levels

Slight DA
pathology

Good construct
validity

Blesa et al. (2012), Dauer and Przedborski (2003), Terzioglu and Galter (2008), Lim and Ng (2009) and Ramonet et al.
(2011)
aLewy Bodies
PD Parkinson’s disease
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et al. 2018). Generally, each animal model has
advantages and disadvantages for example related
toxin-based models are suitable options for phar-
maceutical studies and toxicology, while genetic-
based models are generally used to study the
genetics effects on the pathogenicity of diseases.
It is predicted that to achieve more appropriate
animal models for PD future humanized animal
models will be provided considering environmen-
tal and aging factors too.

7 Validation and Critical
Evaluation of Provided Model

Laboratory animals which can provide models of
different human diseases, have cause several
breakthroughs in medical science. Accordingly,
it reveals the importance of selecting appropriate
animals and also modeling and research methods.
Despite to several advantages of animal models,
none of them can mimic all aspects of human
diseases especially in neurodegenerative
disorders with the coexistence of cognitive and
motor impairment, such as PD (N Prasad 2017).
Therefore, according to the main purpose of stud-
ies such as investigating the behavioral
symptoms, molecular mechanisms and pathways,
the best model of disease can be selected and
developed. After this stage, selected appropriate
model should pass various validation stages.
Based-on the standards of developing animal
models, there are different evaluation criteria
and processes. Generally, validation method
could be categorized to five main types; (1) inter-
nal validity, (2) face validity, (3) predictive valid-
ity, (4) construct validity, and (5) external validity
(van der Staay et al. 2009). Basically, a well-
designed PD animal model should possess the
main pathological and behavioral hallmarks.
Todays, several behavioral analysis methods are
used by investigators in order to validate the
induction of behavioral deficits, for example;
locomotor activity test, catalepsy test, rearing
test, stepping test, rotarod/accelerod test, and
probabilistic learning test are commonly used.
Further, some of the mentioned behavioral tests
are used as the gold standard in different
conditions. For example asymmetric circling

behavior is the gold standard validation for the
unilateral lesions (Bezard and Przedborski 2011).
Despite the existing gold standard tests which
provide desirable validation aspects, they are not
strongly reliable. This limitation is resulted from
different validation methods using by
investigators and restricted comparison opportu-
nity. On the other word, the mentioned techniques
provide subjective results. Therefore, to over-
come this limitation, developing alternative
objective methods for tracking the PD-related
biomarkers seems to be essential. Recently, new
technology-based devices have been produced to
record manifestations of PD with decrease effects
of confounders on data management (Garcia-Ruiz
and Espay 2017). These devices can provide
objective results in both basic and clinical
researches (Godinho et al. 2016; Heldman et al.
2017). They are divided in wearable and
non-wearable devices. Some examples of these
instruments are available in the market such as;
Mobility Lab System (APDM), Physilog®,
StepWatch3 (SAM), TriTracRT3,
WiiBalanceBoard, and GAITRite®. Most of them
can optimize validity, reliability, and sensitivity in
addition to assessing various clinical parameters
(Godinho et al. 2016; Heldman et al. 2017; Lopane
et al. 2018). However, the incidence of motor
symptoms of PD is associatedwith advanced stages
of disease which is hard to manage. Therein,
molecular genetics with a special focused on
“OMICs” technologies can provide early diagnosis
of disease using validated biomarkers of PD
(Gilany et al. 2018; Rahim et al. 2018b). On the
other words, it would be able to distinguish “at
risk” people and provide a great opportunity for
monitoring of disease progression results in
improving PDmanagement. Clinically, biomarkers
are characteristics which objectively reflect the nor-
mal or pathological processes and pharmaceutical
responses to specific interventions. They can be
assessed through blood and cerebrospinal fluid
(CSF) analysis and can be easily standardized
because of its objective results. Biomarkers analy-
sis is possible with a small sample size and a
reasonable repeatability (Shi et al. 2011; Miller
and O’Callaghan 2015). Therefore, they are con-
sidered as valuable translators of preclinical studies
to clinic as they can be used as disease stage

The Design and Application of an Appropriate Parkinson’s Disease. . . 99



specific markers to provide the possibility of
assessing various drug effects in different stages
of disease (Fig. 3). Interestingly, biomarkers are
powerful tools in drug development for the proof
of drug mechanisms, toxicity and dosage (Miller
and O’Callaghan 2015). Furthermore, biomarker
studies represent a remarkable impact on
RM. Through the assessment of biomarkers in
different stem cells secretome profile, potency and
efficiency will be predictable and leads to
optimized and efficient cell-based therapies
(Mimeault et al. 2007; Kim et al. 2019). Overlay,
PD as a neurodegenerative disease is a progressive
disorder which resulted from the dysfunction of
neural networks, alteration of neurotransmitters
and receptors. Substantially, all of these procedures
occur gradually and need to be monitored and
recorded according to their chronicity. In this
regard, more attention has been drawn to some
novel strategies such as “OMICs” assessments
and neuroimaging techniques in clinical diagnosis
and medical management of PD.

8 Neuroimaging and Validation
of Parkinson’s Disease Model

Modern techniques of imaging have been applied
to diagnosis of neurodegenerative disorders such
as PD (Sarkaki et al. 2008). Neuroimaging
methods are widespread, non-invasive, and cost-
efficient tools for continuous evaluation of motor
and non-motor impairments of PD. They are
categorized to structural and functional groups
to monitor different biomarkers and demonstrate
the progression and changes of disease (Yang
et al. 2018; Burciu and Vaillancourt 2018; De
Micco et al. 2018). For instance, magnetic reso-
nance imaging (MRI- T1-weighted and
T2-weighted) as a structural technique is the
most common used scan in PD. Additionally,
voxel-based morphometry (VBM) is one of the
widely used techniques in primates to distinguish
differences between specific brain parts in differ-
ent experimental groups, actually, it provides
studying of focal differences in brain regions

Fig. 3 Different validation methods in Parkinson’s
disease. A prepared PD model is evaluated using different
validation methods such as behavioral tests, neuroimaging
techniques, and biomarkers analysis. Each of them has
their own advantages and disadvantages. Behavioral anal-
ysis methods present beneficial outcomes for validation of
behavioral deficits; though, their results are subjective and
difficult to conclude. However, some other validation

methods like evaluating the physiological biomarkers
and different neuroimaging techniques are more useful in
the case of early diagnosis, monitor different stages of the
disease, and personalized analysis. They represent more
objective results which are easy to standardize while pos-
sess rapid outcomes (Bezard and Przedborski 2011; Shi
et al. 2011; Yang et al. 2018)
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using MRI (Okano et al. 2012). However, VBM
techniques are failed to identify brain regional
differences in PD models. Accordingly, tensor-
based morphometry (TBM) technique have been
introduced to overcome major weak points of
VBM (Kielar et al. 2012). As another example,
diffusion-weighted MRI (dMRI) is sensitive to
changes in water molecules diffusion caused by
microstructural tissue alterations (Burciu and
Vaillancourt 2018; Mateos-Pérez et al. 2018;
Cordes et al. 2018; Guimarães et al. 2018). 0ne
of the clinical approved functional neuroimaging
methods is positron emission tomography (PET),
which can specify the cellular and molecular
mechanisms, such as neurotransmitter and recep-
tor changes (dopamine), protein aggregation
(beta-amyloid), and etc. It will be easy to identify
and predict different stages of PD using this tech-
nique (Brumberg et al. 2019; de Natale et al.
2018; Hammes et al. 2018). Recently, several
supportive techniques such as machine learning
(ML) algorithms have been added to the men-
tioned neuroimaging methods to provide a better
prediction or assortment of broad-spectrum
diseases using neuroimaging technique outcomes
as input data (Katako et al. 2018; Aich et al. 2018;
Cuadrado-Godia et al. 2018; Wan et al. 2019).
Generally, deficiency of available and gold-
standard method to reveal linear results is consid-
ered as a remarkable problem. Fortunately,
approved guidelines and standards are available
as most beneficial tools to upgrade the quality of
animal study designs.

9 The Importance of Guidelines
and Standards to Model
Animals for Parkinson’s
Disease

Globally, non-human animal studies are progres-
sively increased (Politis et al. 2010). Therefore,
more concerns about ethical principles have
been aroused. Interestingly, animal ethics has a
long history in several cultures around the world
which reveals the importance of animal rights
(Szűcs et al. 2012). In different religions and

cultures such as Christianity, Judaism, Islam,
Hinduism, and Sikhism animal ethics and
welfare has been considered. Universally, global
guidelines and regulations on animal research
are recommended by World Organization for
Animal Health (OIE) and International Council
on Laboratory Animal Science (ICLAS). Fur-
thermore, several animal code of ethics have
been established by ethical committees, for exam-
ple in Iran, National Committee for Ethics in
Biomedical Research authorizes ethical standards
throughout the research centers, further examples
are Regional Ethics Committees(Sweden), Institu-
tional Animal Care (or Animal Care and Use)
Committees(Canada, USA), and Animal Ethics
Committees(Australia, New Zealand) which are
consider different conditions of the animal life
like; nutrition, habitat, and health. Basically, all
stages of a standard experimental study should be
assessed by ethics committees through the ethical
and legal approved guidelines. An animal ethics
committee has some mechanisms to balance
cost and benefits of animal use for research.
They are also trying to establish different
guidelines and standards to protect laboratory
animals that are used for either scientific or
educational purposes and strongly restrict ani-
mal abuse and cruelty based-on 3Rs principles
(Politis et al. 2010; Giles 1987; Council, N.R
2010). According to the practical guidelines;
before the use of animals, all the stakeholders
should be aware of the animal requirements,
welfare, genetic characteristics, and breeding
management to reduce the animal suffering,
furthermore, they should study the research
protocols carefully to diminishing unnecessary
use of animals, and in the end of the study,
they should euthanize animals through standard
procedures (Touitou et al. 2004; Association, A.
P 1986; Guillén et al. 2018; Green 2019). Since
the animal models play a fundamental role in
experimental biomedicine and considered as a
cornerstone of biomedical researches, it is
important to design and establish standard and
ethical approved animal study to achieve more
reliable data sources for biomedical researches
(Chiorazzi et al. 2018).
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10 Conclusion and Future
Perspectives

Regarding to the worldwide development of aging,
there is a need for the management of age-related
problems and disorders such as PD (Reeve et al.
2014). Hereupon, several types of pharmacological
and non- pharmacological treatments are applied
for the management of PD. Recently, cellular-
based therapies as a novel approach to PD can be
useful through regeneration and replacement of
dopaminergic neurons, and also symptomatic
relieving. Therein, it is exceptionally essential to
be cautious about new therapies (with different
ranges from pharmacological to using cell based
medicinal products) which will be brought to the
bedside following safety and efficacy assessment.
Accordingly, conducting toxicity, pharmacody-
namic, and pharmacokinetic studies are needed as
the preclinical evaluation for development of
advanced therapeutic medicinal products
(ATMPs) (Okura and Matsuyama 2016;
Broichhausen et al. 2014). Additionally, animal
models have been used for the assessment of
advanced therapies and they have a fundamental
role in all pathways of drug development. In the
case of PD, identification of involved genes has
shed light on the knowledge of the genetic patho-
genesis of PD, the novel medications, and new
animal modeling methods. On the other hand, the
toxin-based animal modeling methods are rela-
tively older than the genetic-based. Nowadays,
due to several scientific evidences like feasibility
and cost-effectiveness, the old approach is univer-
sally more acceptable. For example, MPTP-
treatment is the gold standard of PD modeling.
However, the future models can provide the com-
bined properties of not only toxin and genetic-
based models but also the environmental and
aging factors (Dauer and Przedborski 2003;
Schober 2004). Generally, finding an appropriate
model with a suitable validation method is the most
important stage in experimental studies. Accord-
ingly, several validation strategies have been
provided for different manifestations of
PD. However, applying more reliable methods
can result in perfect models. Therefore, more

applicable validation methods with objective
results have to be standardized. While, animal
models are essential tools for experimental studies,
it has some limitations that should be considered.
According to ethical and legal principles, the use of
animals for different research approaches should be
justified. On the other word, despite the using of
several animal models, its justification still is con-
troversial. Thus different ethical declarations,
guidelines, and codes have recommended some
alternatives to replace animal models (Harriss
et al. 2017). For this purpose, novel technologies
such as microfluidics and “OMICs” should be
developed. Moreover, progression in computer
simulation models and synthetic replacements
could provide reasonable alternatives for animal
testing. Computer-based technology can simulate
animal metabolism and its interaction with the
environment. Moreover, it could optimize profit-
ability with predicting of different outcomes. In the
future, more development of computer models will
be required for advanced experimental studies as
the substitutes for animal models (Lennernas et al.
2017). Additionally, ‘OMICs’ technologies have
presented advances in histopathological analysis
through improving diagnosis procedures,
shortening the period of time, and using small
samples (Bennett 2010; Grafström et al. 2015). In
summary, providing appropriate animal model and
performing accurate validity in preclinical study is
strongly recommended.
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Abstract

Autism spectrum disorders as a group of pedi-
atric neurodevelopmental diseases is a crucial
part of the worldwide disabilities which have
influence in communication skills, social
interactions, and ability to understand the

concepts. The precise pathophysiology of
autism spectrum disorders due to the abun-
dance of involved mechanisms is unknown.
Some of these involved mechanisms are
related to genetic factors, chronic neuro
inflammation, mitochondrial dysfunction,
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oxidative stress, immune dysregulation, hor-
monal imbalance, and environmental factors.
Current main treatments for autisms are behav-
ioral, nutritional and medical therapies, how-
ever there is not definitive treatment approach.
Therein, more novel therapies are still required
to improve the symptoms. Several preclinical
and clinical evidence were shown that stem
cell therapy is a potential treatment option for
autism spectrum disorders individuals. Con-
sidering the significant factors which can
affect the outcome of stem cell therapeutic
effects including stem cell types, route and
dosage of administration, and mechanism of
activity along with selecting best animal
models can be very important in performing
clinical trials.

Keywords

Autism spectrum disorders · Neuro
inflammation · Neurological disorders ·
Regenerative medicine · Stem cell therapy

Abbreviations

ABA Applied Behavior Analysis
ADHD Attention Deficit Hyperactivity

Disorder
ASD Autism spectrum disorders
AUCB Autologous Umbilical Cord Blood
BBB Blood Brain Barrier
BDNF Brain-Derived Neurotrophic Factor
BMMNCs Bone marrow Mononuclear Stem

cells
BTBR Black and Tan, Brachyuric
CBMNCs Cord Blood Mononuclear Cells
CDD Childhood Disintegrate Disorders
CGI Clinical Global Impression
CNS Central Nervous System
CSF Cerebrospinal Fluid
DAT1 Dopamine Transporter gene 1
DRD4 Dopamine D4 Receptor gene
DSM-5 Diagnostic and Statistical Manual

of Mental Disorders
ESCs Embryonic Stem Cells
FIM Functional Independence Measure

GI Gastrointestinal
GRM Glutamate metabotropic receptors
GSH Glutathione
HSCs Hematopoietic Stem Cells
ID Intellectual Disability
IL-1 Inteleukin-1
IL-10 Interleukin 10
IL-12 Interleukin-12
IL-6 interleukin-6
iPSCs induced Pluripotent Stem Cells
IQ Intelligence Quotient
ISAA Indian Scale for Assessment of

Autism
MD Mitochondrial Damage
MSCs Mesenchymal Stem Cells
mtDNA Mitochondrial DNA
NF-κB Nuclear Factor kappa-light-chain-

enhancer of activated B cells
NHIS National Health Interview Survey
NLGN Neuroligin
NRXN Neurexin
PCOS Polycystic Ovary Syndrome
PDD-
NOS

Pervasive Developmental Disorder
Not Otherwise Specified

PRT Pivotal Response Treatment
RTT Rett syndrome
SSRIs Selective Serotonin Reuptake

Inhibitors
UCMSCs Umbilical Cord-derived Mesenchy-

mal Stem Cells
VEGF Vascular Endothelial Growth

Factor
VPA Valproic Acid

1 Introduction

Autism spectrum disorders (ASDs) as a group of
neurodevelopmental diseases which being more
prevalent in boys than girls, affects about 14.5 per
1000 eight-year-old children over the past
decades (Christensen et al. 2018; Ichim et al.
2007a). Indeed, ASD encompasses autism,
Asperger’s syndrome, Rett syndrome (RTT),
and childhood disintegrate disorders (CDD).
Problem in social interaction, repetitive or
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restrictive behavior and problem with speech and
impairment in communication can be introduced
as three main clinical conditions of ASD
(Christensen et al. 2018; Ichim et al. 2007a).
More associated symptoms are aggression, com-
pulsion, irritability, gastrointestinal (GI) issues
and sleep disorders (Siniscalco et al. 2018a).
Additionally, some abnormalities such as synap-
tic connectivity problems and disorganization of
white matter lead to impaired communication
skills in children (Sivanesan et al. 2017). Further,
neural hypoperfusion, oxidative stress, mitochon-
drial dysfunction and dysregulation of immune
system are some other pathophysiological
mechanisms, however the exact pathophysiology
of it remains unclear and it needs further
investigations (Siniscalco et al. 2013a; Sharma
et al. 2017a). Since genetic alterations are one of
the causes of ASD, it is considered to be one of
the most heritable diseases. Generally, based on
the genetic point of view, there are two forms of
ASD: the syndromic form and the non-syndromic
form (de la Torre-Ubieta et al. 2016). On the other
hand, ASD can be influenced by environmental
factors including pre and post-natal exposures to
infections and pesticides (Yang and
Shcheglovitov 2019). Diagnosis of ASD is quite
difficult as it is a heterogeneous disorder and the
related symptoms are seen in other neurological
and/or psychiatric conditions such as epilepsy,
Attention deficit hyperactivity disorder (ADHD)
and intellectual disability (ID) (Yang and
Shcheglovitov 2019). Autism is generally
diagnosed definitely around 24–36 months, but
in some cases it may occur in adulthood as long as
its severity varies and some children grow as
independent adults (Ichim et al. 2007a). Using
diagnostic and statistical manual of mental
disorders, autism is determined and basically, it
is diagnosed by observational and psychometric
tests (Ichim et al. 2007a; Siniscalco et al. 2018a;
Siniscalco et al. 2013a). Hence, current main
treatments for autisms are behavioral
(e.g. applied behavior analysis, speech therapy,
social skills training), nutritional (e.g. use of
vitamins and supplements) and medical
(e.g. selective serotonin reuptake inhibitors

(SSRIs) and antipsychotic drugs) therapies, how-
ever there is no gold standard approach (Ichim
et al. 2007a; Siniscalco et al. 2018a). Therefore,
novel therapies are still required to improve the
symptoms of ASD. One of these new potential
treatments is stem cell therapy and due to stem
cell regenerative capability, it is a beneficial
choice for neurologic disorders (Goodarzi et al.
2014, 2015, 2019a; Arjm et al. 2013; Rahim et al.
2018; Soleimani et al. 2016; Derakhshanrad et al.
2015; Larijani et al. 2019a; Rahim and Arjmand
2017) like neurologic impairment in ASD. There-
fore, many preclinical and clinical studies have
tested stem cell transplantation and indicated ther-
apeutic promises. Further, paracrine effects and
immune modulatory capacity of stem cells can
influence the related abnormalities in ASD.
Accordingly, various types of stem cells includ-
ing embryonic stem cells (ESCs), fetal stem cells
(FSCs), adult stem cells, and induced pluripotent
stem cells (iPSCs) have been investigated
(Siniscalco et al. 2018a; Ichim et al. 2007b).Gen-
erally this review will be focused on ASD and its
known underlying mechanisms, the types and
relevant investigations of stem cells and their
targeted sites of action, and procedures for stem
cell therapy in ASD.

2 Background and History
of Autism

The term “autism” was first used at 1943, in the
title of a clinical case report by Kanner: “Autistic
Disturbances of Affective Contact”. It was about
11 children who had similar autistic symptoms to
the present form of criteria. Before that, in 1900s,
there were reports of childhood schizophrenia and
childhood disintegrative disorder (Heller’s syn-
drome) and patients with similar conditions to
autism (Evans 2013; Feinstein 2011). Nowadays,
autism is known as one of the lifelong complex
neurodevelopmental disorders and its symptoms
appear in the first 3 years of life. It displays
impairment in social and communication skills
and cognitive functions (Siniscalco et al. 2018a;
Evans 2013; Freitas et al. 2014, 2018; Eissa et al.
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2018). Various etiologies can cause quite same
behaviors so many disorders which show autistic
features are grouped as ASD. It affects more than
1% of the general population and there are het-
erogeneity and variety in severity, functional
disabilities and symptoms (Siniscalco et al.
2018a; Freitas et al. 2014). Classical autism, per-
vasive developmental disorder not otherwise
specified (PDD-NOS), Asperger’s syndrome,
RTT and CDD are included in ASD group
(Freitas et al. 2014). Not only autism causes
higher mortality rate, but also most of the adults
with autism have problems in personal and social
life, however varying developmental processes
have indicated insignificant autistic symptoms
and normal social communication (Fein et al.
2013; Lai et al. 2014). Considering screening
and early identification of ASD, there are differ-
ent instruments to be used for children,
adolescents, and adults. Although individuals
with autisms were not diagnosed until
3–4 years, now toddlers are frequently identified,
however it becomes hard in many cases (Lai et al.
2014). Accordingly, in order to diagnose ASD
based on diagnostic and statistical manual of
mental disorders (DSM-5) (one of the major diag-
nostic criteria for developmental disorders),
individuals must meet following social communi-
cation/interaction criteria including deficits in
reciprocating social or emotional interaction,
severe problems in developing, maintaining and
understanding relationship, and problem in non-
verbal communication. Additionally, they must
fulfill at least 2 of the 4 criteria for restricted and
repetitive behaviors which include: repetitive or
stereotyped speech, use of objects or motor
movements, adherence to routines, resistance to
change, restricted interests that have abnormal
intensity of focus and hypo or hyper- reactivity
to sensory input or unusual interests in sensory
aspects of the environment. As it was mentioned
before, some associated co -occurring conditions
may be found related to ASD such as GI
problems, immune dysregulation, anxiety,
depression and aggressive behaviors (Evans
2013; Lai et al. 2014; DeFilippis and Wagner
2016). These conditions affect more than 70%

of patients and it seems that they can persist into
adolescence from childhood and the more they
become, the worse the disability of patients will
be (Lai et al. 2014). Despite its growing preva-
lence and investigations, there is no efficient ther-
apy especially for problems of social
communication and repetitive/restricted behavior
(Eissa et al. 2018). Current quite applicable
treatments can be divided in to behavioral ther-
apy, pharmacological intervention, and comple-
mentary alternative medicine (DeFilippis and
Wagner 2016). Among many psychosocial
interventions which target core and associated
symptoms of ASD, applied behavior analysis
(ABA) and pivotal response treatment (PRT) are
known as extensively studied methods
(DeFilippis and Wagner 2016; Landa 2007).
ABA is based on principles of operant condition-
ing and theories of learning. Intensive ABA ther-
apy can lead to positive effects on features like
intelligence quotient (IQ), intellectual and social
functioning, language development and daily liv-
ing skills (DeFilippis and Wagner 2016; Landa
2007). However, it needs a significant length of
time and it is costly. PRT requires less time and it
includes methods targeting specific skills and
leads to generalized gains in areas such as joint
attention (DeFilippis and Wagner 2016). In the
category of pharmacological intervention, variety
of medications are studied and some of them are
used to control associated symptoms of ASD such
as hyperactivity, anxiety, insomnia, inattention,
irritability, aggression, repetitive behavior and
self-injury (Eissa et al. 2018; DeFilippis and
Wagner 2016). Several classes of drugs are
under investigation in different phases of clinical
trials and so far, risperidone and aripiprazole-as
atypical antipsychotics- have been approved by
FDA to improve behavioral symptoms (irritabil-
ity) (Eissa et al. 2018; DeFilippis and Wagner
2016). Risperidone reduces repetitive behavior,
aggression, irritability, anxiety and aripiprazole
is able to decrease irritability, hyperactivity and
stereotypy. Other examples of the medications
that are being used including SSRIs, anti
convulsants, and psychostimulants and their
major therapeutic effects are described in
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Table 1 (Eissa et al. 2018). In regard to comple-
mentary medicine, melatonin seems to be a safe
option for sleep in children with ASD and has
been studied in some trials. Omega-3 fatty acids
and methyl B12 are other proposed alternative
treatments (DeFilippis and Wagner 2016). After
all, since the drugs and other available therapies
are not adequately effective and helpful, there is
still the need for finding a suitable, applicable and
efficient treatment for ASD and further studies on
etiology and underlying mechanisms of the dis-
ease are demanded.

3 Causes and Mechanisms
of Autism

In general, the exact pathophysiology of ASD is
remained unknown due to the abundance of
involved mechanisms (Strunecka et al. 2018;
Ansel et al. 2017). Indeed, subjects who are
genetically susceptible to ASD in the face of
environmental factors are more likely to develop
various ASD affecting conditions such as hor-
monal imbalance, immune dysregulation, chronic
neuroinflammation, mitochondrial dysfunction,
and oxidative stress conditions (Fig. 1).

3.1 Genetic Factors

Investigations around the ASDs associated genes
have shown some mutations through the common
molecular pathways related to neurexin (NRXN),
CACNA, glutamate metabotropic receptors
(GRM), CNTN genes (Uzunova et al. 2014;
Hadley et al. 2014; Almandil et al. 2019).
Accordingly, it has been revealed that modifying
the synaptic structure and function during the
mutation of NRXN, related neuroligin (NLGN),
and ProSAP/Shank gene families, can more
increase the risk for ASDs. Indeed, these
mutations can participate in transsynaptic
pathways and excitatory synapses maturation in
the central nervous system (CNS) (Almandil et al.
2019; Arons et al. 2012; Lin et al. 2016;
Washbourne 2015). Moreover, alterations of
genes involved in the roles of neurotransmitters
such as dopamine transporter gene (DAT1) and
dopamine D4 receptor gene (DRD4) may notably
change the risk of autism (Almandil et al. 2019;
Qian et al. 2003). On the other hand, based on
different types of research studies, epigenetic
variations (heritable modifications in gene
expression (via molecular factors at regulatory
regions of DNA) which occur without a variation
of primary DNA sequence) can be considered as
an essential cause of the alternations in the risk of
autism (Wiśniowiecka-Kowalnik and

Table 1 Some of currently used medications for ASD, SSRI Selective serotonin reuptake inhibitors

Name of
medication Class Effect

Risperidone Atypical
antipsychotics

Decrease in irritability, repetitive behavior, aggression, anxiety, depression, and
nervousness. Increase in brain antioxidant activity

Aripiprazole Atypical
antipsychotics

Decrease in irritability, hyperactivity, and stereotypy

Clozapin Atypical
antipsychotics

Improvement in aggression and hyperactivity

Fluvaximine SSRI Improvement in compulsive repetitive behavior and aggression
Fluoxentine SSRI Decrease in repetitive and stereotyped behavior
Clomipramine Tricyclic

antidepressant
Improvement in compulsive behavior and anger

Methylphenidate Psycho-
stimulant

Improvement in attention. Hyperactivity, impulsivity, and social
communication

Lamotrigine Anticonvulsant Improvement in whole autistic symptoms
Amantadine Glutamate

antagonist
Improvement in speech disturbance and hyperactivity
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Nowakowska 2019; Tremblay and Jiang 2019;
Loke et al. 2015).

3.2 Chronic Neuro Inflammation

There is a growing interest to investigate about
the role of the inflammation and immune system
in the development of ASD. Therein, investiga-
tion summaries are indicated that the possible
maternal viral infection occurred during the first
trimester of gestation, can lead to acute immune
activation and finally raise the risk of ASD in
children. On the other hand, maternal anti-brain
autoantibodies (which found in ~20% of mothers)
lead to fetal brain development can bind to
embryonic proteins and alter neural development
pathways (Patterson 2011; Brucato et al. 2017;
Fox et al. 2012; Jones and Van de Water 2019).
Consequently, the immune profile of individuals
with ASD specifically pro-inflammatory markers

such as inteleukin-1(IL-1), interleukin-6 (IL-6),
interleukin-8 (IL-8), and interleukin-12 (IL-12)
along with nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) expression
and microglial and astrocytic activation are dif-
ferent from healthy people (Tonhajzerova et al.
2015; Siniscalco et al. 2018b). Generally, due to
some of evidences the function of the immune
system and inflammation has pathogenic effects
through various mechanisms. All of these
mechanisms can result in low-grade chronic
inflammation as well as changes in the central
nervous system and immune responses (Chen
et al. 2017).

3.3 Mitochondrial Dysfunction

Mitochondrial dysfunction can be created by
either primary mitochondrial damage
(MD) (because of hereditary defects in

Fig. 1 Causes and mechanisms of autism spectrum
disorders. Several basic physiological mechanisms that
are related together including genetic susceptibility along
with environmental factors and hormonal imbalance,

immune dysregulation, chronic neuroinflammation, mito-
chondrial dysfunction, and oxidative stress conditions can
cause ASD
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mitochondrial DNA (mtDNA) or deficiency of
vital genes for the function of mitochondria) or
secondary MD (which can be induced by genes
that participate in hereditary non-mitochondrial
diseases) (Nicolson 2014; Niyazov et al. 2016).
A lot of studies were indicated that mitochondrial
dysfunction has been tied to ASD (especially
some forms of syndromic ASD) (Varga et al.
2018a; Frye and Rossignol 2011; Palmieri and
Persico 2010). In general, neural tissue as one of
the tissues with high-energy demands is more
affected by mitochondrial dysfunction than
others. Accordingly, in mitochondrial dysfunc-
tion conditions, neurodevelopmental diseases
such as ASD, intellectual disability, and child-
hood epilepsy are more prevalent than others
(Valenti et al. 2014; Patel et al. 2011). In this
context, many biochemical modifications (includ-
ing raised levels of lactate, carnitine, pyruvate,
creatine kinase, alanine, and ammonia) detected
in the serum of subjects with ASD and changed
respiratory chain enzyme functions found in the
autistic brain, indicating mitochondrial dysfunc-
tion (Rossignol and Frye 2012; Griffiths and Levy
2017; Varga et al. 2018b).

3.4 Oxidative Stress

According to several recent large-scale studies
oxidative stress (damaging of proteins, lipids,
and DNA along with variations in function of
valuable enzymes in redox metabolism) is
intended to be momentous in the etiology of
ASD (Rose et al. 2012; Rossignol and Frye
2014; Yui et al. 2016; Mandic-Maravic et al.
2019). Herein, genetic variations in glutathione
(GSH) -related pathways, a decrease in mitochon-
drial GSH (the important cellular antioxidant),
and an increase in oxidative stress markers (spe-
cifically peripheral markers containing those
found in blood and urine) have been reported in
individuals with ASD. Also, more molecular
evaluations have demonstrated that there is sig-
nificant oxidation of protein, lipids and DNA in
their brain tissue (Yui et al. 2016; Atkuri et al.
2009). On the other hand, it was shown that

oxidative stress has been associated with the GI
difficulties severity in ASD individuals (Dhaliwal
et al. 2019).

3.5 Immune Dysregulation

Frequent immune-mediated comorbid health
problems were indicated in ASD individuals.
Additionally, based on National Health Interview
Survey (NHIS), ASD children have a higher prev-
alence of most medical conditions defined in
autoimmune areas than other children. Hereupon,
they need higher health care use. Therein,
investigations are remarked that immune dys-
function and dysregulation underlined the bulk
of these comorbidities (Hughes et al. 2018a; Xu
et al. 2018). Furthermore, rises in inflammatory
cells and cytokines along with reduces regulatory
T cells were observed in subjects with ASD
(Ashwood et al. 2011; Hughes et al. 2018b).

3.6 Hormonal Imbalance

Investigating the role of endocrine factors and
their effect on different stages of the neurodeve-
lopmental process and understanding the possible
importance of endocrine etiopathogenesis in ASD
has shown that hormonal imbalance during preg-
nancy (such as polycystic ovary syndrome
(PCOS)) can increase the risk of having a child
with autism. Additionally, it is known that
women with PCOS are more susceptible to obe-
sity than healthy women while obesity through
pregnancy has been independently connected to
autism (De Leo et al. 2016; Long et al. 2019;
Kosidou et al. 2016; Moosa et al. 2018). Gener-
ally, chemical messengers including different
hormones, hormone-like substances, and
neuropeptides, accompanied by neurotransmitters
can promote the social behaviors encoding in the
developing brain (Kovács 2004). Hence, any
imbalance in this chemical transmission can lead
to incomplete encoding and abnormal social
behaviors as prominent features of ASD (Kovács
2004; Tareen and Kamboj 2012).
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3.7 Environmental Factors

According to recent studies, about the half per-
centage of causes for increased autism risk are
related to the influence of environmental factors
including maternal smoking, most likely assisted
reproductive technologies, vaccination, birth
complications (associated with trauma or ische-
mia and hypoxia), heavy metals as environmental
toxins (most famous inorganic mercury and lead),
and etc. Indeed, they can influence the pathogen-
esis of ASD via epigenetic effects (Karimi et al.
2017; Emberti Gialloreti et al. 2019).

4 Stem Cells and Autism
Spectrum Disorders

The advent of stem cell technology has provided
exciting opportunities to treat a wide range of
neurodegenerative disorders such as ASD. Here-
upon, multiple factors including the types of stem
cells, dosage and routes of administration, and
frequency of transplantation can alter the outcome
of stem cell therapy (Siniscalco et al. 2018a;
Sharma et al. 2017b).

4.1 The Types of Applied Stem Cells
for the Autism Treatment

According to regenerative potential of stem cells,
various fetal and adult tissue-derived stem cells
such as mesenchymal (MSCs) and hematopoietic
(HSCs) stem cells along with ESCs and iPSCs are
applied in the road of ASD treatment (Siniscalco
et al. 2018a; Ichim et al. 2007b; Siniscalco et al.
2014). Until now, several preclinical and clinical
investigations were demonstrated that using the
bone marrow mononuclear stem cells
(BMMNCs) and umbilical cord-derived mesen-
chymal stem cells (UCMSCs) for ASD are more
common than other sources (Siniscalco et al.
2018a; Sharma et al. 2017b; Liu et al. 2019a).
Herein, finding and choosing an appropriate route
and dosage of stem cell administration for creat-
ing best treatment outcomes is of great

importance. Additionally, it is clear that different
types of stem cells play their roles through vari-
ous mechanisms (Siniscalco et al. 2018a; Biehl
and Russell 2009). Therein, studying these func-
tional mechanisms can be helpful in selecting the
best cell type for treatment.

4.2 Appropriate Dosage
and Delivery Route of Stem Cells

Like selecting the type of stem cell to be used for
individuals with autism, There are three main
routs including intrathecal, intracerebral and
intravenous transplantations (Sharma et al.
2017a; Liem NT et al. 2018). Using lumbar punc-
ture for delivering the cells in intrathecal route is
considered a minimally invasive method (Sharma
et al. 2017a; Bakshi et al. 2004). However, it is
known to be efficient as the injected cells can get
to the target tissue through cerebrospinal fluid
(CSF). On the other hand, intravenous route is
the least invasive one but since the cells need to
pass the blood brain barrier (BBB) and a consid-
erable number of them do not reach the target site,
it is less efficient (Sharma et al. 2017a; Bakshi
et al. 2004). Although the direct delivery of cells
is the most efficient one and the intraventricular
(intracerebral) injection is favorable, it is risky
and invasive for clinical application (Sharma
et al. 2017a; Liem NT et al. 2018; Bakshi et al.
2004). It should be mentioned that to date, the
clinical trials have used intrathecal, intravenous
and even both forms of injections to apply cell
therapy for ASD and it is claimed that they are
safe, so a more precise examination of this issue is
absolutely required (Siniscalco et al. 2018a;
Bradstreet et al. 2014; Lv et al. 2013; Sharma
et al. 2013a). Regarding appropriate dosage,
which is another important part of therapy, there
is a variety of cell sources and numbers in the
clinical trials which studied stem cell therapy for
ASDs (Siniscalco et al. 2018a). For instance,
about 8.19 � 107 autologous BMMNCs were
used intrathecally in an open label study while
in another trial, approximately 1�106 /kg
UCMSCs and 2�10 6/kg cord blood mononuclear
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cells (CBMNCs) were injected intravenously
(Lv et al. 2013; Sharma et al. 2013a). Noticing
this variety, determining the effective and optimal
cell dosage is essential in order to find the best
unified one for helping and treating patients
(Siniscalco et al. 2018a). More examples of cell
dosages and delivery routes can be found in
Table 2.

4.3 Mechanism of Stem Cell Function

Since there are inflammatory abnormalities,
imbalance in innate and adaptive immunity, and
disruption of synapse function and plasticity in
ASD subjects, stem cell therapy can be useful via
some key-action mechanisms including immuno-
modulatory properties, paracrine effects, and dif-
ferentiation ability (Siniscalco et al. 2013a; Liu
et al. 2019b; Siniscalco et al. 2013b). In this
context, stem cells can play their role within
some potential mechanisms for synaptic function
and plasticity modulation by secreting specific
growth factors, maintaining synaptic plasticity,
regenerating synaptic transmitter release, and
combining into existing synaptic networks
(Siniscalco et al. 2014; Sharma et al. 2013a). On
the other hand, they can perform their act on the
adaptive and innate immune system through
inhibiting the maturation of dendritic cells,
repressing the pro-inflammatory activities,
supporting the regulatory T cells generation,
polarizing macrophages towards the anti-
inflammatory state, decreasing the proliferation
and activation of B cells, passing the BBB and
migrating to sites of inflammation, and
suppressing the proliferation and cytotoxicity
effects of NK cells (Siniscalco et al. 2014; Joel
et al. 2019). Moreover, the differentiation abilities
of injected cells into neural cells may contribute
to ASD treatment (Siniscalco et al. 2018a).

4.4 Scientific Evidences

Among various studies investigating properties of
stem cells to find new therapeutic options for

different diseases, there are many studies explor-
ing their effects on treating autism. Accordingly,
there are a growing number of animal studies and
clinical trials focusing on different features of
each type of stem cells related to pathophysiology
of ASD (Siniscalco et al. 2013a, 2018a).

4.4.1 Preclinical Investigations
As ASDs are about human behaviors, animal
models cannot reproduce this condition thor-
oughly, yet. They can present information on the
effect of stem cells on ASD- associated
phenotypes. Animal models can be divided into
drug-induced and mutagenesis generated models.
For instance, valproic acid (VPA) maternal chal-
lenge in rodents can produce a valid autism model
and administration of Propionic acid (PPA)
results in autism similar abnormalities in rats.
The exact genetic basis of autism is still unclear,
so, some mutant mouse models are generated to
develop associated mutations in patients to inves-
tigate mutations and alterations in the proteins
related to autism such as shank, NRXN, NLGN,
Mecp2,Foxps, Cntnap2,Ube3a, and Tsc (Tania
et al. 2014). In this context, the Mecp2-null
murine model underwent a transplantation of
wild- type bone marrow, resulting in positive
effects and improvements in Rett syndrome
which suggested the bone marrow transplantation
as a potential therapy for ASD (Tania et al. 2014;
Derecki et al. 2012). Notably, an emerging animal
model for investigating neurodevelopmental
disorders like ASDs is Zebrafish. Zebrafish
models can develop ASD associated symptoms
and be potential useful models to study autism
(Meshalkina et al. 2018). Additionally, an animal
model which is commonly used is the black and
tan brachyuric (BTBR) inbred mouse strain
(Segal-Gavish et al. 2016). The mice indicate
behavioral deficits and brain abnormalities and
when human MSCs were transplanted into them,
repetitive and social behaviors were improved
and cognitive rigidity and stereotyped repetitive
behaviors were decreased. However, there was no
difference in anxiety-related behavior and the
transplantation did not have any impact on gross
motor activity. The humanMSCs increased brain-

Cell Therapy Targets for Autism Spectrum Disorders: Hopes, Challenges and Future Directions 115

115



Ta
b
le

2
C
lin

ic
al
tr
ia
ls
on

st
em

ce
ll
th
er
ap
y
in

A
S
D
s

A
ut
ho

rs
T
ri
al

T
yp

e
of

tr
an
sp
la
nt
ed

ce
lls

an
d
nu

m
be
r

F
ol
lo
w
-u
p

du
ra
tio

n
M
od

e
of

tr
an
sp
la
nt
at
io
n

N
um

be
r
of

pa
rt
ic
ip
an
ts

S
ca
le
s

R
es
ul
ts

S
ha
rm

a
et
al
.

(2
01

3a
)

O
pe
n-
la
be
l,
pr
oo

f
of

co
nc
ep
t

8.
19

�1
07

au
to
lo
go

us
B
M
M
N
C
s

26
m
on

th
s

In
tr
at
he
ca
l

32
C
G
I

S
af
et
y

IS
A
A

Im
pr
ov

em
en
t
in

be
ha
vi
or

pa
tte
rn
,

co
gn

iti
ve

co
m
po

ne
nt
,s
oc
ia
l

re
la
tio

ns
hi
p,

em
ot
io
na
l
re
sp
on

se
,

sp
ee
ch

do
m
ai
n,

ba
la
nc
in
g
of

br
ai
n

m
et
ab
ol
is
m

F
IM

W
ee
-F
IM

L
v
et
al
.

(2
01

3)
N
on

-r
an
do

m
iz
ed
,

op
en
-l
ab
el
,s
in
gl
e

ce
nt
er
,p

ha
se

I/
II

2�
10

6
/k
g
C
B
M
N
C
s

1�
10

6
/k
g
U
C
M
S
C
s

24
w
ee
ks

In
tr
av
en
ou

s
an
d
in
tr
at
he
ca
l

C
on

tr
ol
:1
4

C
A
R
S

S
af
et
y

C
B
M
N
C
:1
3

C
G
I

Im
pr
ov

em
en
t
in

be
ha
vi
or
-b
od

y
us
e-

vi
su
al
,e
m
ot
io
na
l
an
d

in
te
lle
ct
ua
l
re
sp
on

se
-n
on

ve
rb
al

co
m
m
un

ic
at
io
n-
ac
tiv

ity
le
ve
l

C
ob

in
at
io
n:
9

A
B
C

B
ra
ds
tr
ee
t

et
la

(2
01

4)

O
pe
n-

la
be
l
pi
lo
t

st
ud

y
1.
6
m
lo

f
>
30

�1
06
/m

il
fe
ta
l
liv

er
de
ri
ve
d
H
S
C
s
an
d
2.
12

�
0.
49

m
lo

f
>
8.
70

�1
06
/m

l
fe
ta
l
br
ai
n
de
ri
ve
d

nu
cl
ea
te
d
ne
ur
op

ro
ge
ni
to
r
ce
lls

12
m
on

th
s

In
tr
av
en
ou

s
an
d

su
bc
ut
an
eo
us

45
A
T
E
C

S
af
et
y

A
B
C

Im
pr
ov

em
en
ts
in

sp
ee
ch
,

so
ci
ab
ili
ty
,b

eh
av
io
r,
co
gn

iti
ve

ab
ili
ty

an
d
im

m
un

e
sy
st
em

B
an
sa
l

et
al
.

(2
01

6)

N
on

-r
an
do

m
iz
ed

op
en
-l
ab
el

A
ut
ol
og

ou
s
B
M
M
N
C
s

24
m
on

th
s

In
tr
at
he
ca
l

10
IS
A
A

S
af
et
y

W
ee
-F
IM

Im
pr
ov

em
en
ts
in

so
ci
al
iz
in
g

ab
ili
ty
,h

yp
er
ac
tiv

ity
,m

ea
ni
ng

le
ss

pl
ay
,c
on

fi
de
nc
e,
m
ot
or

sk
ill
s,

ag
gr
es
si
ve

be
ha
vi
or

D
aw

so
n

et
al
.

(2
01

7)

S
in
gl
e-
ce
nt
er
,

ph
as
e
I
op

en
-
la
be
l

T
ar
ge
t:
1–
5
�1

07
/k
g
A
U
C
B
ce
lls
,

m
ed
ia
n
T
N
C
co
un

t:
2.
6�

10
7
/k
g

12
m
on

th
s

In
tr
av
en
ou

s
25

V
A
B
S

S
af
et
y

E
O
W
P
V
T
-

4
Im

pr
ov

em
en
t
in

be
ha
vi
or
,

so
ci
al
iz
at
io
n,

co
m
m
un

ic
at
io
n,

no
nv

er
ba
l
IQ

C
G
I

P
D
D
B
I

C
he
z
et
al
.

(2
01

8)
R
an
do

m
iz
ed
,

do
ub

le
-b
lin

de
d,

pl
ac
eb
o-
co
nt
ro
lle
d,

cr
os
so
ve
r

M
ea
n
A
U
C
B
T
N
C
do

se
:1

6.
16
�1

06
/

kg
49

w
ee
ks

(c
ro
ss

ov
er

at 24
w
ee
ks
)

In
tr
av
en
ou

s
29

R
O
W
P
V
T
-

4
S
af
et
y

E
O
W
P
V
T
-

4
N
o
si
gn

ifi
ca
nt

ef
fi
ca
cy

C
G
I

V
A
B
S
-I
I

S
B
F
R

S
B
K
N

116 B. Larijani et al.

116



L
ie
m

N
T

et
al
.

(2
01

8)

O
pe
n-
la
be
l
un

co
nt
ro
lle
d

M
ea
n
au
to
lo
go

us
B
M
M
N
C
s:
19

.3
�1

06
/k
g

6
m
on

th
s

In
tr
at
he
ca
l

24
C
A
R
S

S
af
et
y

Im
pr
ov

em
en
ts
in

be
ha
vi
or
,b

od
y

us
e,
vi
su
al
re
sp
on

se
,f
ea
r
or

ne
rv
ou

s
sc
or
e,
ta
st
e,
sm

el
l,
to
uc
h

sc
or
e

R
io
rd
an

et
al
.

(2
01

9)

S
in
gl
e-
ar
m

ph
as
e

I/
II

36
�1
06

U
C
M
S
C
s
(9
�1
06

vi
ab
le
)
ea
ch

in
fu
si
on

(T
ot
al
:4

in
fu
si
on

s)
89

w
ee
ks

(1
ye
ar

af
te
r
th
e

la
st
do

se
)

In
tr
av
en
ou

s
20

C
A
R
S

S
af
et
y

A
T
E
C

Im
pr
ov

em
en
ts
in

so
ci
al

co
m
m
un

ic
at
io
n,

aw
ar
en
es
s
an
d

m
ot
or

ab
ili
ty

(i
n
8
su
bj
ec
ts
)

B
M
M
N
C
s
B
on

e
m
ar
ro
w
-d
er
iv
ed

m
on

on
uc
le
ar

ce
lls
,
C
B
M
N
C
s
C
or
d
bl
oo

d
m
on

on
uc
le
ar

ce
lls
,
U
C
M
SC

s
U
m
bi
lic
al

co
rd
-d
er
iv
ed

m
es
en
ch
ym

al
st
em

ce
lls
,
A
U
C
B
A
ut
ol
og

ou
s

um
bi
lic
al
co
rd

bl
oo

d,
H
SC

s
H
em

at
op

oi
et
ic
st
em

ce
lls
,T

N
C
T
ot
al
nu

cl
ea
te
d
ce
ll,

C
G
I
C
lin

ic
al
gl
ob

al
im

pr
es
si
on

,I
SA

A
In
di
an

sc
al
e
fo
r
as
se
ss
m
en
t
of

au
tis
m
,F

IM
F
un

ct
io
na
l

in
de
pe
nd

en
ce

m
ea
su
re
,C

A
R
S
C
hi
ld
ho

od
au
tis
m

ra
tin

g
sc
al
e,
A
B
C
A
be
rr
an
tb

eh
av
io
r
ch
ec
kl
is
t,
A
T
E
C
A
ut
is
m

tr
ea
tm

en
te
va
lu
at
io
n
ch
ec
kl
is
,V

A
B
S
V
in
el
an
d
ad
ap
tiv

e
be
ha
vi
or

sc
al
es
,E

O
W
P
V
T
-4

E
xp

re
ss
iv
e
on

e-
w
or
d
pi
ct
ur
e
vo

ca
bu

la
ry

te
st
,f
ou

rt
h
ed
iti
on

,P
D
D
B
I
P
er
va
si
ve

de
ve
lo
pm

en
ta
ld

is
or
de
r
be
ha
vi
or

in
ve
nt
or
y,
R
O
W
P
V
T
-4

R
ec
ep
tiv

e
on

e
w
or
d

pi
ct
ur
e
vo

ca
bu

la
ry

te
st
,f
ou

rt
h
ed
iti
on

,S
B
F
R
S
ta
nf
or
d-
B
in
et
fl
ui
d
re
as
on

in
g,

SB
K
N
S
ta
nf
or
d-
B
in
et
K
no

w
le
dg

e

Cell Therapy Targets for Autism Spectrum Disorders: Hopes, Challenges and Future Directions 117

117



derived neurotrophic factor (BDNF) levels and
hippocampal neurogenesis (Siniscalco et al.
2018a; Segal-Gavish et al. 2016). In another
study, human ASCs were transplanted into
VPA-induced autism mouse model, resulting in
decreased anxiety, increased social behaviors and
motor coordination. They increased vascular
endothelial growth factor (VEGF), interleukin
10 (IL-10) expression, PTEN, and p-AKT/AKT
ratio in the brains of mouse models that can
somehow explain the pathways and mechanisms
of therapeutic effect of ASCs (Siniscalco et al.
2018a; Griffiths and Levy 2017). Studying ASD-
derived stem cells as they show some different
properties and gene expression, makes them
another area of concern especially for autologous
cell transplantation. For instance, maternal
immune activation mouse models exhibited
changes in HSCs differentiation (Siniscalco
et al. 2018a; Hsiao et al. 2012). Therefore, more
investigations on both these stem cells and appli-
cation of different types of them for uncovering
biologic mechanisms of autism are required
(Siniscalco et al. 2018a).

4.4.2 Clinical Investigations
Evaluating the safety and efficacy of cellular ther-
apy for ASDs is a fundamental step in the road of
clinical application that is carried out through
performing clinical trials (Siniscalco et al. 2018a).
Accordingly, there are some clinical trials on using
stem cells in autism; for instance, some trials used
BMMNCs in years 2013, 2015, and 2018 (Liem
NT et al. 2018; Sharma et al. 2013a; Bansal et al.
2016). In an open label proof- of – concept study in
2013, autologous BMMNCs which consists of
HSCs, MSCs, multipotent adult and endothelial
progenitors, were separated from aspirated bone
marrow of each patient and transplanted. The
patients underwent other forms of therapies includ-
ing occupational therapy interventions, activities
of daily living training, psychological intervention,
speech therapy, and specific dietary
recommendations. The core symptoms of autism
were reported based on Indian scale for assessment
of autism (ISAA), Clinical global impression

(CGI) scale (indicates the effect of treatment and
severity of the disease), Functional independence
measure (FIM), and Wee-FIM scales. Along with
some adverse events such as nausea, vomiting,
aspiration, minimal increase in hyperactivity and
seizures (in 3 patients), there were improvements
in social relationships, cognitive aspects, speech
and language patterns and also decrease in
exaggerated and inappropriate emotions. Also,
CGI scale showed improvement in disease severity
and considering hypo perfusion in staple brain
areas in ASDs, the metabolism of hypo metabolic
areas increased probably because of improved
function and oxygenation of the damaged neurons.
Since cell therapy has the capacity of repairing
damaged neural tissue, it is hypothesized that
they can restore the specialized neural system
with the help of their immunomodulatory activity
and paracrine effects (Ichim et al. 2007a;
Siniscalco et al. 2018a; Sharma et al. 2013a). In
quite same time, there was a case report of autolo-
gous BMMNCs transplantation on 14-year-old
boy followed for 1 year, resulting in decreased
childhood autism rating scale (CARS) score,
improved behavior, social interaction, attention
and emotion. Also, the PET scan showed enhanced
Fluoro-deoxyglucose (FDG) uptake in brain
(Siniscalco et al. 2018a; Sharma et al. 2013b).
Furthermore, there was a small study of bone
marrow aspirate concentrate (BMAC) stem cells
transplantation in patients in addition to occupa-
tional therapy, speech therapy, and psychological
intervention and it was revealed that the interven-
tion did better in younger patients and the severity
of the disease affects the outcomes (Bansal et al.
2016). In another open label uncontrolled trial in
2015, same cells (BMMNCs) were injected for
2 times at baseline and 3 months after that in
autistic children. Although no severe
complications were reported and the safety was
supported, some cases presented transient or
prolonged increased hyperactivity. Improvements
were reported in 19 patients (79.2%) and their total
CARS scores became considerably lower, espe-
cially in some domains including body use, intel-
lectual response, and visual response. However, no
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change in three domains of relating to people,
emotional response, and activity level (Liem NT
et al. 2018). Surprisingly, Sharma et al. recently
performed a same therapy on an a 25-year- old
autistic male and injected MNCs separated from
his bone marrow aspiration in lumbar region. The
cell therapy was along with psychological inter-
vention, special education occupational therapy
and physiotherapy and he was followed for
6 months. There was no recording of adverse
events yet his concentration, social interaction,
memory, sitting tolerance, objects utilization and
attention improved as well as his CARS, ISAA and
FIM scores. He was developed regarding to daily
activities like bathing independently. His hyperac-
tivity decreased and as it was showed in F-FDG
PET scan, the brain hypometabolism enhanced
(Sharma et al. 2018).

In another phase I/II trial in 2011, the experi-
mental group underwent CBMNC or combination
of CBMNC and UCMSC transplantation and also
rehabilitation therapy in order to investigate the
safety and efficacy (Lv et al. 2013). The control
group received only the rehabilitation therapy.
Each experimental group received 4 cell
transplantations as the CBMNC one had one
intravenous and 3 following intrathecal transplan-
tation and the combination group received
2 injections of each type. Interestingly, the com-
bination group indicated better results which
proposes that CBMNCs and UCMSCs act in a
positive synergistic way. As it was mentioned
before, two potential pathogenesis of autisms are
immune dysregulation and cerebral
hypoperfusion. Accordingly, MSCs have
immuneregulatory properties, so based on recent
investigations, UCMSCs may act as a controller
in related pathologic mechanisms (Lv et al. 2013;
Chen et al. 2010; Kaplan et al. 2011). Moreover,
the angiogenesis capacity of CD34+ cells which
are enriched in CBMNCs has been proved, so it
can be useful for hypoxia in brains of autistic
patients (Siniscalco et al. 2018a; Lv et al. 2013).
In 2017, a phase I/II clinical trial of allogenic
UCMSCs with repeated dose of administration
was performed. In this single-arm study, autistic
children received UCMSCs every 12 weeks for

4 times and followed for 1 year after the last dose.
The aim of this study was to evaluate the safety
and effectiveness of repeating injections and also
the relations between inflammatory properties
and ADS symptoms (Riordan et al. 2019). It
seems that the severity of autism is connected
with inflammation and increased serum levels of
macrophage-derived chemokine (MDC) and thy-
mus activation-regulated chemokine (TARC)
(Riordan et al. 2019; Al-Ayadhi and Mostafa
2013). Like previous studies, it can be said that
no serious adverse events were reposted and those
treatments related ones were resolved without
using any medication. CARS and ATEC scores
of 40% of subjects were reduced and most of
them, indicated a decrease in MDC and TARC
level. So, there might be a potential link between
the symptoms and inflammation but it does not
encompass all the improvements and changes
found in the subjects. There was a variability in
results as some showed improvements in social
communication, awareness and motor ability but
also an increase in anxiety and emotional liability
were seen in some subjects. Using repeated dose
of UCMSCs exhibited more efficient anti-
inflammatory effect of them which affected
TARC and MDC levels (Riordan et al. 2019).
Additionally, the safety of the application of
FSCs in ASD children was assessed in an open
label pilot study. Two cell suspensions were used,
one contained HSCs from fetal liver
(administered intravenously) and another one
neuroprogenitors of fetal brain (injected into the
subcutaneous abdominal adipose tissue). After
the transplantation, some positive effects such as
improved appetite, eye contact, socialization,
cognitive ability, and behaviors and no side-
effects were observed. FSCs caused enhanced
cell- mediated immunity due their immunomodu-
latory functions. FSCs can migrate to the spinal
cord and brain through BBB and as it appeared
that the permeability of the BBB is increased in
autistic patients, they may potentially have a ther-
apeutic impact on that. Moreover, they can exert
paracrine effects to influence the tissues and prob-
ably, restore the neural tissues (Siniscalco et al.
2018a; Bradstreet et al. 2014). Unfortunately, the
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results of experimenting Autologous umbilical
cord blood (AUCB) (rich in HSCs) on ASD chil-
dren do not comply with each other as in a phase I
open-label study, the safety of the transplantation
was assessed for 12 months and significant
improvements in behavior, communication and
socialization were reported (Siniscalco et al.
2018a; Dawson et al. 2017; Chez et al. 2018).
However, the results of a placebo-controlled
crossover study in 2016 showed the safety of
this transplantation but there seems to be a mini-
mal clinical effectiveness. In this form of study,
(one group received placebo and the other one
received cord blood and at 24 weeks, the first
group received cord blood and the second
group, received saline injection) subject acts as
their control which is an advantage in comparison
to the previous study (Chez et al. 2018). There-
fore, more studies including a blinded investiga-
tion and a control group are needed to find out the
exact impact of AUCB transplantation on autistic
patients (Chez et al. 2018). Besides, electroen-
cephalography (EEG) is known to be useful as a
biomarker of treatment efficacy, so in the open-
label study, EEG measures were explored to find
whether they show any change after the trans-
plantation. It appeared that the U-shaped power
profile of autistic patients (increased power in
delta, theta, and gamma and decreased power in
alpha and beta) normalizes by 12-month post-
transplant. In addition, EEG can be used as a
predictive tool for improvement in social commu-
nication and treatment response (Murias et al.
2018). Another study was conducted as a part of
the mentioned phase I trial to investigate the
possible link between changes in white matter
connectivity and improvements in behaviors.
Differences in white matter developmental
patterns are related to autism symptoms, so by
using MRI and some other scales it was found
that increased connectivity between the hippo-
campus and the left thalamus is associated with
enhanced social skills. Also, it appeared that the
mutual connectivity in the right hemisphere,
between the frontal lobe and temporal poles
increased as clinical and communication features
improved. More areas of brain faced increased

connectivity resulting in improvements in ASDs
symptoms possibly due to decrease in neural
inflammation by AUCB transplantation (Carpen-
ter et al. 2019).

Currently, the number of clinical trials on stem
cell transplantation for ASDs is not considered
enough and also, their different results, methods,
enrolled subjects and cell types do not develop a
definitive claim that which type of stem cell can
be used as a new treatment. Yet, there are some
ongoing trials. To date, considering the present
outcomes, this field is known as a promising
therapeutic approach that need more
investigations and large trials (Siniscalco et al.
2018a). A more classified version of some main
details of mentioned trials is described in Table 2.

5 Conclusions and Future
Research Directions

Since ASD as one of the pediatric neurological
disorders is a major part of the worldwide
disabilities by affecting communication skills
and social interactions as well as the ability to
understand the concepts, from early childhood,
trying to resolve this social-health problem is a
very critical issue (Geschwind 2009; Magnuson
and Constantino 2011). In this respect, billions of
dollars are spent on ASD investigations and
treatments, yearly. In recent years, there are
pieces of preclinical and clinical evidence that
stem cell therapy is not only safe but also
improves the behavior of ASD subjects. There-
fore, stem cell therapy as a potential treatment
option for ASD individuals has received more
support. Considering the limitations along with
promising sedative effects of cellular therapies in
the treatment of ASD, more comprehensive
research and large trials will be demanded to
claim definite results (Siniscalco et al. 2018a;
Ichim et al. 2007b). Herein, analyzing the factors
affecting the outcome of stem cell therapeutic
functions such as stem cell types, route and dos-
age of administration, and mechanism of activity
is of great importance in conducting clinical trials
(Siniscalco et al. 2018a; Sharma et al. 2013a;
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Herberts et al. 2011). Additionally, future
researches should be considered to employ mod-
ern radiological tools and OMICs technology
(as new biomarker discovery tools) for tracking
changes occurring at the cellular and molecular
level after stem cell therapy (Arjmand 2019;
Larijani et al. 2019b; Goodarzi et al. 2019b) in
ASD subjects.
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Abstract

Polycystic ovary syndrome (PCOS) is the
most common gynecologic endocrine disorder
in women between the ages of 15 and 40, with
uncertain etiology. It is mostly presented with
hyperandrogenism and insulin resistance
along with a variety of comorbidities that sig-
nificantly reduce a patient’s quality of life.
Many disturbed metabolic pathways are
correlated with PCOS. Moreover, it is evident

that there is a strong genetic factor for PCOS.
Indeed, several altered gene expressions have
been found in PCOS subjects, but the exact
genetic origins are still unclear. The major
treatment options such as pharmacological
treatments are to improve the symptoms. In
addition, surgical procedures (Bariatric sur-
gery and assisted reproductive technologies)
can be used to treat some of the patient’s
complications and reduce their severity.
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Generally, using pharmacological agents for a
long period of time can increase the risk of
adverse effects. Moreover, surgical options
may have high-risk consequences. Herein,
there is an undeniable need for a different
multidisciplinary approach to PCOS. Regener-
ative medicine with the help of stem cells can
develop a worthy alternative approach for the
treatment of PCOS. Furthermore, animal
models can provide valuable knowledge of
genetic alterations and metabolic pathway dis-
turbances in PCOS. They can also be used for
testing novel treatments in pre-clinical stages.
Therein, the current knowledge of PCOS and
investigation about the potential role of regen-
erative medicine in developing new and more
efficient treatments for PCOS are
summarized here.

Keywords

Disease modeling · Polycystic ovary
syndrome · Regenerative medicine · Stem cells
transplantation

Abbreviations

ACTH Adrenocorticotropic hormone
AE-
PCOS

Androgen-excess-PCOS society

AMH Antimullerian hormone
AR Androgen receptor
ArKO Aromatase knockout
ASCs Adipose stem cells
BAT Brown adipose tissue
BMI Body mass index
BM-
MSCs

Bone marrow-derived mesenchymal
stem cells

BMSC Bone marrow stem cell
BPA Bisphenol A
COCP Combined oral contraceptive pills
CRH Corticotropin-releasing hormone
DEHP Di-(2-ethylhexyl) phthalate
DGE Differential gene expression
DHEA Dehydroepiandrosterone

DHEAS Dehydroepiandrosterone sulfate
DHT Dihydrotestosterone
EB Estradiol benzoate
ESCs Embryonic stem cells
EV Estradiol valerate
FAH Functional adrenal hyperandrogenism
FSH Follicle stimulating hormone
GnRH Gonadotropin-releasing hormone
Gsdf Gonadal soma derived factor
HDL High-density lipoprotein
hESCs Human embryonic stem cells
HSC Hematopoietic stem cell
hUC-
MSCs

Human umbilical cord blood mesen-
chymal stem cells

ICSI Intracytoplasmic sperm injection
IL-6,8 Interlukin 6,8
iPCSs Induced pluripotent stem cells
IUI Artificial insemination
IVF In vitro fertilization
IVM Immature oocyte in vitro
LDL Low-density lipoprotein
LH Luteinizing hormone
MCR Metabolic clearance rate
MDS Meyelodysplastic syndrome
NC-
CAH

Non-classical congenital adrenal
hyperplasia

NGF Nerve growth factor
NZO/
HILt

New Zealand obese mice

OHSS Ovarian hypersensitivity syndrome
PCO Polycystic ovary syndrome
PCOM Polycystic ovarian morphology
POF Premature ovarian failure
POI Primary ovarian insufficiency
PORs Poor ovarian responders
PPARγ Peroxisome proliferator-activated

receptor gamma
SCID Severe combined immunodeficient
T reg Regulatory T cells
TBT Tributyltin
TGF-β Transforming growth factor β
TNF-α Tumor necrosis factor α
UCP1 Uncoupling protein 1
VEGF Vascular endothelial growth factor
WAT White adipose tissue
ZFP423 Zinc finger protein 423

126 B. Arjmand et al.



1 Introduction

PCOS is the most commonly recognized gyneco-
logic endocrine disorder in women of reproduc-
tive age. Indeed, PCOS is considered a clinical
syndrome in which several diagnostic criteria
have been defined for it. In other words, based
on various criteria, diagnoses can be confirmed or
ruled out to select the best treatment option and
the correct prevalence estimate can be reached.
On the other hand, it has been suggested that
PCOS is a lifelong condition presenting as early
as prenatal stages, but there are no definitive
statistics in younger ages as well as screening in
infants (Bellver et al. 2018). PCOS presentation
varies in individuals due to different extents of
hormonal imbalance. It affects the patient’s qual-
ity of life as it can cause obesity, insulin resis-
tance, infertility, cardiovascular diseases,
endometrial cancer, and psychological disorders.
Aetiologically, a number of genes associated with
PCOS have been discovered (Wolf et al. 2018).
Variations in these genes mutations and
epigenetics are a strong determinant in disease
development. Herein, current available treatment
options for PCOS are either pharmacological or
surgical. Pharmacological therapies are divided
into the following groups: Pharmacological
treatments for ovulation induction (aromatase
inhibitors, Metformin, and gonadotropins), for
menstrual dysfunction (cyclic progestin or oral
contraceptive), and for adrenogene-related
symptoms (antiandrogens, oral contraceptive
pills, and insulin sensitizer agents) which are
often advised in combination. In general, all
available therapies are insignificantly effective
and have several adverse effects (Patel 2018).
Hereupon, there is an immense need for multidis-
ciplinary approaches to develop new and more
effective treatments for PCOS. Regenerative
medicine (RM) is a new field of research that
can be a starting point for developing regenerative
and personalized treatments for PCOS. Further-
more, it aims to replace the damaged tissues caus-
ing disease with de novo generated cells
(Goodarzi et al. 2014, 2015, 2018a, b, 2019a;
Larijani et al. 2015, 2019, 2020; Mao and

Mooney 2015; Arjmand et al. 2017). In this
respect, human pluripotent stem cells (hPSCs)
can be differentiated into any cell type and there-
fore offer the potential of tissue engineering
(Tabar and Studer 2014). Moreover, bone marrow
stem cells (BMSC) have shown promising results
in treating premature ovarian failure (POF).
BMSC transplantation recovers menstrual cycles
and improves ovarian reserve (He et al. 2018).
RM and tissue engineering also offer the potential
for drug development and testing. Generally,
since there is not a clear understanding of PCOS
pathophysiology and available treatments have
some side effects, RM can help in understanding
cellular mechanisms of PCOS pathophysiology
and developing cellular treatments that are more
efficient and have fewer side effects than the
current treatment regimen. In this context,
research on the potential role of RM in creating
new and more powerful treatments for PCOS is
reviewed here.

2 Polycystic Ovary Syndrome
and Its Pathophysiology

PCOS was first introduced by Stein and
Leventhal in 1935 as a combination of oligo/
amenorrhea, polycystic ovary, hirsutism, obesity,
and acne (Azziz and Adashi 2016; Rosenfield and
Ehrmann 2016; Bani Mohammad and Majdi
Seghinsara 2017). Later, some criteria were pro-
posed in order like NIH criteria that include clini-
cal and/or biochemical evidence of
hyperandrogenism and evidence of oligo/
anovulation. After a while, Rotterdam criteria-as
the broadest one- added polycystic ovarian mor-
phology (PCOM) by using ultrasound to the two
previous criteria. Finally, in 2006 androgen-
excess-PCOS society (AE-PCOS) criteria pro-
posed presence of androgen excess accompanied
by PCOM, oligomenorrhea, or both. It could help
diagnose women with PCOS who do not have
anovulatory symptoms (ovulatory PCOS)
(Rosenfield and Ehrmann 2016; Bani Mohammad
and Majdi Seghinsara 2017). Also, exclusion of
other hyperandrogenism disorders such as
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non-classical congenital adrenal hyperplasia
(NC-CAH), hyperprolactinemia, endogenous
secretory-related cancers, thyroid disorders, and
Cushing’s syndrome should be considered (Bani
Mohammad and Majdi Seghinsara 2017). In ado-
lescence, symptoms may be overlapped with
physiological changes during maturity. Here-
upon, it is difficult to definitively diagnose poly-
cystic ovaries in adolescence (Rosenfield 2015).
Besides, it seems that there are no definite diag-
nostic criteria for post- menopausal women
(Rosenfield and Ehrmann 2016). Androgens
-secreted mostly by gonads and adrenal glands –
play an important role in physiological processes
and generation of estrogen in women. They are
controlled by the hypothalamic-pituitary-adrenal
and hypothalamic-pituitary-ovary axis. In the first
axis, CRH is produced by the hypothalamus and
stimulates the secretion of ACTH by the pituitary
and eventually, it makes adrenal glands generate
androgens, glucocorticoids, and mineralo-
corticoids (Pasquali et al. 2011; Indran et al.
2016). On the other hand, GnRH from the hypo-
thalamus increases secretion of LH, so the ovar-
ian theca cells secrete androgens in response to
LH. It should be noted that peripheral tissues such
as adipose tissue, hair follicles, and genital skin
are involved in the synthesis and circulation of
androgens. For example, adipose tissue can con-
vert androgens like testosterone and androstene-
dione to more potent agents (Indran et al. 2016).
Among different types of androgens, androstene-
dione and testosterone are produced in the
ovaries, adrenal glands, and peripheral tissue
while DHEAS is almost just from the adrenal
cortex (Pasquali et al. 2011). Under normal
circumstances, the androgens production rate
and their metabolic clearance rate (MCR) act in
balance and have daily rhythm (Pasquali et al.
2011). In PCOS women production rate of andro-
stenedione, and testosterone increases more than
their MCR, and ovaries secrete steroids and
androgens excessively as a result of gonadotropin
stimulation which makes them hypersensitive to
LH (Pasquali et al. 2011; Rosenfield and
Ehrmann 2016). Another androgen-related dys-
function is functional adrenal hyperandrogenism
(FAH) which can be seen in PCOS as a type of

adrenal abnormality that results in DHEA hyper
responsiveness and ACTH hypersensitivity
(Rosenfield and Ehrmann 2016). Additionally,
insulin resistance and the following hyperinsulin-
ism is a contributing factor to hyperandrogenism
in PCOS. Insulin help adrenals androgen
secretions, ovarian stimulation, and LH adjust-
ment. Therefore, hyperinsulinism and resistance
to insulin can be major underlying causes of
PCOS. Moreover, androgen excess triggers
abdominal and visceral adiposity and their dys-
function that then leads to insulin resistance
(Escobar-Morreale 2018). Another associated
factor with hyperandrogenism and PCOS is
increased sympathetic activity. It is demonstrated
that the density of catecholaminergic nerve fibers
and the production of nerve growth factor (NGF)
(a marker of sympathetic activity) by the ovaries
are enhanced in PCOS (Pasquali et al. 2011).
Interestingly, it was reported that modulating
sympathetic activity by physical exercise and
electro-acupuncture decreases levels of
androgens, estrogens, and sex steroid precursors
and also improves menstrual cycles in these
patients (Jedel et al. 2011; Pasquali et al. 2011).
Furthermore, granulosa cells and folliculogenesis
are abnormal in PCOS. In an unusual physiologic
condition, primordial follicles grow to primary
follicles and then maturation arrests in the antral
phase. Hence, the number of small antral follicles
increases as a feature of folliculogenesis dysfunc-
tion. It is attributed to hyperandrogenism and
insulin excess (Rosenfield and Ehrmann 2016).
The enhanced folliculogenesis leads to increased
anti-Mullerian hormone (AMH) production
which is secreted by granulosa cells and has a
regulatory role in follicular development
(Rosenfield and Ehrmann 2016; Bani Mohammad
and Majdi Seghinsara 2017). In addition,
granulosa cells are luteinized prematurely in
PCOS women and they are hyper responsive to
LH and follicle stimulating hormone (FSH)
(Rosenfield and Ehrmann 2016). It is stated that
there are several disturbances in biologic
mechanisms like fatty- acid metabolism, oxida-
tive metabolism, and inflammatory responses.
Accordingly, ovarian hyper vascularity is due to
increased vascular endothelial growth factor
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(VEGF) levels that causes the presence of inflam-
matory cytokines and dense cortex of ovaries
(Rosenfield and Ehrmann 2016). Generally,
inflammation is said to be a key underlying factor
in the pathogenesis of PCOS (Kalhori et al.
2018). Besides, oocyte gene expression is
affected in PCOS and may increase the risk of
pregnancy loss (Rosenfield and Ehrmann 2016).

3 Hereditary and Environmental
Factors

PCOS has a complex trait along which genetic,
epigenetic and environmental factors affect
hyperandrogenism and insulin resistance
(Rosenfield and Ehrmann 2016, Escobar-
Morreale 2018). Accordingly, studies on twins
have revealed that familial factors are quite strong
in PCOS pathogenesis and it appears to have a
variable penetrance and an autosomal dominant
pattern of inheritance (Rosenfield and Ehrmann
2016). However, there is still a long way to iden-
tify the exact genetic causes of PCOS (7). Several
gene variants, polymorphisms, and linkages have
been studied. For example, changes in fibrillin
3 have been proposed for hyperplasia of ovarian
stroma as they affect transforming growth factor β
(TGF-β) signaling (Hatzirodos et al. 2011;
Rosenfield and Ehrmann 2016). Also,
DENND1A expression is enhanced in theca
cells and it has become a significant locus for
PCOS etiology although it needs more investiga-
tion (McAllister et al. 2014; Rosenfield and
Ehrmann 2016). Considering epigenome, envi-
ronmental insults which occur during the devel-
opment of the fetus or child can lead to PCOS.
For instance, congenital virilization and
androgenization can cause PCOS features
(Barnes et al. 1994; Rosenfield and Ehrmann
2016). Besides. It is said that insufficient fetal
nutrition and low birth weight are associated
with PCOS (Ibanez et al. 1998; Rosenfield and
Ehrmann 2016). Similarly, some harms and
conditions during pregnancy such as maternal
diabetes, smoking, and hypertension may cause
growth retardation which can then induce resis-
tance to insulin, overweight, and

hyperandrogenism (Escobar-Morreale 2018). In
addition, risk factors related to the postnatal envi-
ronment including insulin resistance, androgen
excess, and excessive LH stimulation at puberty
can promote the manifestation of susceptible
traits (Rosenfield and Ehrmann 2016). Based on
what was mentioned above, it should be noted
that PCOS has a variety of phenotypes and is a
heterogeneous disorder. It can develop without
the presence of important factors like obesity or
insulin resistance or it may not occur in women
with extreme obesity or hyperinsulinism. Thus, it
seems that the most essential intrinsic factor is
hyperandrogenism and genetic factors can trigger
it to manifest (Escobar-Morreale 2018). Unfortu-
nately, the pathogenesis of PCOS is not fully
understood yet and more precise studies are
required.

4 PCOS Current Treatments

Although PCOS is described as a manifestation of
symptoms which vary according to different
guidelines, they mostly include hypergonadism
and menstrual irregularities that cannot be other-
wise explained. The presence of ultrasound evi-
dence of PCOS a diagnostic criterion along with
clinical symptoms can assistance to diagnose.
However, its absence does not rule out the disease
in the presence of the other two symptoms
(El Hayek et al. 2016). PCOS can be associated
with high risk of some comorbidities which
strongly affected the patient’s quality of life
including endometrial cancer. Since the definitive
mechanism of PCOS formation is not yet known,
current treatments are prescribed to reduce clini-
cal symptoms (e.g. menstrual disorders, infertil-
ity, and the hyper-endogenous symptoms) of the
disease. The recommended first line of treatment
is always lifestyle interaction, restricted calorie
intake, exercise, creating healthy habits, giving
up smoking and drinking that can improve
PCOS comorbidities such as insulin resistance,
excess serum androgen levels, hirsutism, acne,
etc. Herein, some trials show that lowering body
mass index (BMI) with diet, exercise or a combi-
nation of both is equally effective in ameliorating
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PCOS comorbidities (Thomson et al. 2008;
Nybacka et al. 2011). In different studies
recommended exercise varies from moderate aer-
obic exercise to high-intensity resistant exercise
or the combination of both, while all have proven
effective there is still no specific recommendation
about diet or exercise plan. The 2018 EB guide-
line suggests 150 min per week moderate-
intensity exercise or 75 min of intense training
per week (Teede et al. 2018). Pharmacological
treatments for PCOS include combined oral con-
traceptive pills (COCP) (which can decrease free
testosterone levels and help with symptoms
associated with hormonal imbalance. However,
it has been associated with insulin resistance
development and adverse effects on the cardio-
vascular system and developing thrombosis),
insulin sensitizers (such as metformin that
decreases gluconeogenesis in the liver and
increases glucose consumption in other tissues
and inositol which can be very effective in com-
bination with other medications to improve
outcomes and ameliorate metabolic syndrome,
irregular menstruation cycles, insulin resistance,
and lipid profile), anti-obesity, anti-androgen
agents, infertility treatments (including letrozole,
Clomiphene Citrate, and Gonadotrophins)
(Lidegaard et al. 2012; Ganie et al. 2013; El
Hayek et al. 2016; Williams et al. 2016; Jin and
Xie 2018; Teede et al. 2018). Furthermore, there
are some invasive methods for PCOS treatment
e.g. bariatric surgery (which can lead to lower
BMI index and improve obesity in obese
women who have not responded to the aforemen-
tioned therapies), assisted reproductive technics
(ART) (including in vitro fertilization (IVF),
immature oocyte in vitro (IVM), artificial insemi-
nation (IUI), and intracytoplasmic sperm injec-
tion (ICSI) which are costly techniques lead to
ovarian hyperstimulation syndrome (OHSS))
(Mourad et al. 2017; Patel 2018; Teede et al.
2018). In general, all treatment strategies are
symptom-oriented and only partially effective.
Pharmacological options need to be taken for a
long time and there are often multiple adverse
effects. Invasive treatments are expensive and
may cause serious complications. Therefore,
there needs to be an effort to find treatments that

can address all the pathologies of PCOS with
minimum adverse and long-term therapeutic
effects. Hereupon, RM and stem cell researches
can be the means of developing a more effective
treatment for PCOS. In this respect, also charac-
terization of stem cells from PCOS subjects can
be valuable. Indeed, the mentioned characteriza-
tion can be useful in selecting the most appropri-
ate sources for stem cell-based regeneration.
Additionally, choosing the appropriate animal
model to simulate PCOS and conduct preclinical
studies can be very helpful in advancing regener-
ative medicine at the clinical level.

5 Animal Models of PCOS

In order to find an appropriate and effective treat-
ment for any disease, some steps should be taken
prior to the clinical application including in vitro
and in vivo studies. Also, developing and
selecting suitable animal models for in vivo stud-
ies is of great importance for preclinical evalua-
tion of treatments and investigational products
based on significant similarities between the
animals and humans (Goodarzi et al. 2019b;
Larijani et al. 2019). However, there are still
some variations and the outcomes of animal stud-
ies do not always comply with the ones from
studies on humans (Goodarzi et al. 2019b).
Hence, validating the models can help reach the
maximum quality of testing and as a result, there
are various animal models for different kinds of
diseases such as Alzheimer’s disease, obesity,
diabetes, ovarian failure (Steindler 2007;
Gunawardana and Piston 2012; Liu et al. 2015;
Sheikhansari et al. 2018; Goodarzi et al. 2019b;
Larijani et al. 2019). In regard to RM, animal
models are used to understand the underlying
pathways of regeneration and eventually, find a
new therapeutic option (Steindler 2007). For
instance, mice and rats are widely used in stem
cell therapy such as neural progenitor cells trans-
plantation on NOD-severe combined immunode-
ficient (SCID) mice or MSC transplantation on
MI rat models (Tang et al. 2005; Steindler 2007).
Considering tissue transplantation, BAT was used
in nude mice to treat type1 diabetes
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(Gunawardana and Piston 2012). Also, different
kinds of stem cells have been used in mice for
POF (Sheikhansari et al. 2018). Therefore, it can
be said that animal models in RM can facilitate
the process of translating the investigational prod-
uct in to the clinical application. In this context,
there is a lack of a gold standard model for PCOS,
so there are a variety of species including sheep,
monkeys, and rats with their different benefits and
relevance to humans (Indran et al. 2016). Devel-
oping models can be done through different
mechanisms and phases but the hallmark of
PCOS condition is hyperandrogenism, so

increasing androgens like testosterone level is
considered the main factor (Divyashree et al.
2019). Also, PCOS can be induced at different
developmental stages of animals including prena-
tal, postnatal, prepubertal, and adult. For instance,
dihydrotestosterone (DHT) can be used at prena-
tal, prepubertal and adult stages but letrozole
(an aromatase inhibitor) is not used at the prenatal
phase (Divyashree et al. 2019). Further, the main
mechanisms of inducing PCOS are defined as
hormonal intervention, genetic manipulation,
environmental factors, and lifestyle (Fig. 1)
(Divyashree et al. 2019).

Hormonal treatment: Hormonal treatment:

Hormonal treatment:

Sheep
Primates

Rats

Zebrafish

Mice

Animal
models of

PCOS

(Rhesus
monkey)

Hormonal treatment:

Testosterone, DHT
Environmental factors:

BPA

Testosterone, DHT

Genetic manipulation:
Mutation in gsdf gene

Testosterone, DHEA,
DHT, Letrozole,
RU486, EB, EV

Environmental
factors:

BPA, DEHP, TBT
Lifestyle:

Constant light, stress

DHEA, DHT,
Letrozole

Genetic
manipulation:

Environmental
factors:

BPA, DEHP

ARKO, ArKO,
Tg (Cga-

LHB/CGB)94Jhn/J,
ob/ob, db/db,

NZO/HILt

Fig. 1 Different mechanisms of generating animal
models in PCOS. Animal models of polycystic ovary
syndrome (PCOS) can be produced through different
mechanisms including hormonal intervention (such as
using androgens or progesterone receptor antagonists),
genetic manipulation and mutations, environmental
factors and lifestyle. In addition, the widely used models
in this field are rats and mice, however, primates, sheep
and recently zebrafish have been used. In this figure, some

staple mechanisms of inducing each animal model are
depicted (Paixão et al. 2017; Osuka et al. 2018; Ryu
et al. 2019; Stener-Victorin et al. 2020). DHT Dihydrotes-
tosterone, DHEA Dehydroepiandrosterone, EV Estradiol
valerate, EB Estradiol benzoate, ARKO Androgen receptor
knock out, ArKO Aromatase knockout, gsdf Gonadal
soma derived factor, BPA Bisphenol A, DEHP
Di-(2-ethylhexyl) phthalate, TBT Tributyltin, NZO/HILt
New Zealand obese mice
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6 Characteristics of Stem Cells
in PCOS Patients

Since the exact underlying pathophysiology of
PCOS and its characterization such as hyperinsu-
linism, infertility and obesity are not fully under-
stood, attempts to identify these mechanisms have
led to analyzing features of stem cells from PCOS
patients. PCOS-derived stem cells provide a
medium to study disease pathogenesis, gene
mapping and therapeutic options with gene or
stem cell therapy. Embryonic stem cells (ESCs)
from PCOS subjects present normal
morphologies and have the same developmental
and differentiation ability as stem cells from nor-
mal control cells. In-vitro cultures of ESCs
showed normal karyotype and gene expression
profiles of gene markers of the three germ layers
using immunohistochemistry. Induced pluripo-
tent stem cells (iPSCs) derived from epithelial or
endometrial cells of PCOS patients have the abil-
ity to differentiate into three germ layers and form
different tissues and thus provide the opportunity
to develop cell models to study PCOS and dis-
ease- specific pathogenesis. iPSCs derived from
PCOS patients’ epithelial stem cells have normal
morphologies, characteristics, and karyotype to
that of normal cells and can be induced to form
adipocytes. PCOS-derived iPSCs have stronger
potential and higher efficacy in differentiating
into adipocytes (Yang et al. 2016). There are
controversies regarding glucose consumption
and insulin response in adipocytes differentiated
from PCOS-derived iPSCs. One study states that
adipocytes present significantly higher glucose
consumption in the absence of insulin on day
27 of induction indicating higher insulin
response-ability in the cells, however, another
study reports no significant difference between
PCOS and non-PCOS adipocytes in insulin
response on day 21 of induction. In both studies,
PCOS-derived adipocytes had significantly
higher glucose consumption (Liu et al. 2015;
Yang et al. 2016). Adipose stem cells (ASCs) of
subcutaneous abdominal tissue of normal-weight
PCOS patients exhibit significant differential
gene expression (DGE) change in 120 genes

compared to the control group. DGE showed
altered expression in genes of both functional
and canonical groups and primarily included
androgen receptor function, lipid metabolism,
extracellular matrix, and angiogenesis. Most sig-
nificant changes in functional genes were in
developmental disorders, embryonic develop-
ment, and cellular movement genes; and in the
canonical pathway group primarily included
LXR/RXR activation, notch signaling and
CDK5 signaling pathway. The expression of
genes in the functional group was associated
with fasting insulin and serum testosterone levels
(Dumesic et al. 2019). ASCs in normal-weight
women also exhibit strong pre-adipocyte commit-
ment. Increased zinc finger protein 423 (ZFP423)
and peroxisome proliferator-activated receptor
gamma (PPARγ) protein expression showed a
significant correlation with higher lipid content
of adipocytes derived from ASCs, however, this
gene expressions’ correlation with serum testos-
terone levels were insignificant. Fasting plasma
glucose levels exhibit a negative correlation with
ZFP423, independent of serum testosterone levels
(Fisch et al. 2018). A brief review of altered
genomic function and characteristics in PCOS-
derived stem cells provided in Table 1.

6.1 Differential Expression of Genes
Responsible for Insulin
Resistance and Obesity
in Adipocytes Derived from
Human ESCs of PCOS Subjects

NR0B2 is a gene that participates in many meta-
bolic pathways such as adipocyte differentiation,
fatty acid metabolism, glycometabolism, hepato-
cyte, and pancreatic islet cell transcription and is
associated with obesity, fasting insulin levels,
diabetes and intrauterine growth of the fetus. Dif-
ferential expression of the NR0B2 gene was sig-
nificantly higher in embryonic stem cells drive
from PCOS patients compared to the control
group, although much more evidence is needed
to prove the role of NR0B2 in PCOS pathogene-
sis (Wang et al. 2014). DNA methylation analysis
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results on canonical pathways of iPSCs derived
from granulosa cells of PCOS women compared
with control group revealed altered expression of
genes of CREB signaling pathway which is
responsible in glucose and lipid metabolism,
although it did not reach statistical significance
which could be due to small sample size (Huang
et al. 2019). PCOS-derived iPSCs present meta-
bolic abnormalities and mitochondrial dysfunc-
tion compared to non-PCOS iPSCs. Gene
ontology results of PCOS-derived iPSCs revealed
altered expression of genes responsible for lipid
and glucose metabolism along with decreased
mitochondrial ability of respiration and glycoly-
sis, although the number of mitochondrial copies
and their biogenesis had increased (Min et al.
2018). Glucose metabolism-related genes was
altered in favor of decreased glycolysis, glucose
transportation and increased gluconeogenesis that
can lead to insulin resistance and glucose
intolerance.

6.2 Inflammatory and Oncogenic
Potential

Endometrial mesenchymal stem cells of the obese
or overweight PCOS women showed
up-regulated expression of inflammatory and

oncogenic genes independent of BMI in compar-
ison to the obese or overweight control group.
Interleukine-8 (IL-8) and ICAM1 up-regulation
can induce a pro-inflammatory state and disrupt
normal endometrial function. The most
up-regulated oncogenic gene was the LCNZ
gene which has a correlation with endometrial
cancer, however, due to the small sample size
and possible confounding factors, more studies
are required to support this research (Piltonen
et al. 2013).

6.3 Neuroendocrine Characteristics

Gene ontology revealed that genes associated
with neurogenesis, endocrine differentiation, and
low-density lipoprotein (LDL) particle binding
process were down-regulated in PCOS-derived
iPSCs. IPSCs derived from the endothelium of
PCOS patients also revealed higher testosterone
secretion than non- PCOS derived iPSCs, which
is consistent with hypergonadism in PCOS. How-
ever, no significant difference was observed in
estradiol secretion between the two groups.
Increased GnRH and consequently LH levels in
PCOS is mediated through GABAergic neurons.
GABRA5 is a type of a GABA receptors that
were found to have up-regulated gene expression

Table 1 A brief review of differentially expressed genes in PCOS-derived stem cells (Chuang et al. 2015; Min et al.
2018, 2019; Sun and Pisarska 2019)

Cell type Function Genes

PCOS-derived iPSC Androgen receptor function FDX-R, CXCL2, ST3GAL5, IGFBP7
Lipid synthesis TAC1, BDNF, EDNRB, ST3GAL5
Lipid accumulation GULP1, RGS4
Lipid metabolism SCD, APOC1, NR0B1, PLTP, UGCG
Extracellular matrix
function and formation

CHI3L1, CRISPLD2, LM07, ITGA6

Cardiovascular development CXCL5, TNC, ST3GAL5, CTSB
Inflammatory response REG3A
Cellular growth cycle CGA, IGFBPL1
Organ development HAS2, CER1,IFI16, TBX5
Mitochondrial biogenesis PGC1-α, TFAM, NRF1

PCOS iPSC-derived
granulosa cells

Cell adhesion MLCP(reg), PKC-α, α-actinin, TGF1-β, TGFβ receptor
Immune response MHC11-α and β chain, PKC-α, LY75
Neurophysiology process NMDA receptor, PyK2(FAK2), B-Raf, GRB2, NSF,

Dynein1, GABA-A receptor, dynamin
Oxidative stress TR10, PKC-α, MEK1 and2, cPKC
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in PCOS-derived iPSCs, possibly resulting in
both psychological and endocrine presentations
of PCOS (Min et al. 2019). Neural stem cells
differentiated from PCOS-derived iPSCs display
normal morphology, neural progenitor markers
expression and normal gene expression of
pluripotency, however, they display decreased
mitochondrial respiratory ability compared to
the control group. The maximum respiratory
function of mitochondria was decreased in
PCOS-derived iPSCs.

7 Challenges in iPSC-Based
Models and Therapies for PCOS

Recent advances in our knowledge about stem
cells can be useful for understanding biological
and molecular processes which causing dysfunc-
tion in cells. In this context, using IPSCs can be
helpful to develop more efficient models and
methods of cellular treatments (e.g. autologous
transplantation) (Kanherkar et al. 2014). Even
though iPSCs are a very powerful tool in RM
for disease modeling, cell therapy and drug dis-
covery, there are challenges that need to be
addressed. Studies have shown that iPSCs might
still be carrying epigenetic memory from the
somatic tissue they were derived from. Since der-
mal cells are prevalently used as the source of
iPSCs, there might be many genetic mutations
due to mechanisms of aging like a high rate of
cell turnover and increased exposure to ultraviolet
light (Lo Sardo et al. 2017). Another area of
concern in iPSC-based treatments is the tumori-
genicity potential of transplanted cells (contain
undifferentiated iPSCs). However, there are
methods that purify cells and selectively cause
death in undifferentiated iPSCs. There is no evi-
dence of tumor formation in transplantations but
these outcomes are unlikely to be reported.
Herein, there is still more evidence needed to
see if these methods are adequate for preventing
tumors after transplantation (Hunt and Lako
2016).Immune rejection concerns are another
major challenge in iPSC-based treatments. Since
the use of immunosuppressants can cause many
complications, there have been some new

methods to escape immunity such as inactivation
of both classes of MHC genes. These new
methods can solve the rejection challenge of
transplantation. Additionally, iPSC production is
quite expensive which may not be affordable for
many patients (Bravery 2015). On the other hand,
the efficiency of this method for disease modeling
depends on the nature of the disease. IPSC-based
disease modeling is much more accurate when the
disease is monogenic and has an early onset,
whereas PCOS is a polygenic disorder and has
an unclear onset. As the cells then spend a period
of time in an in-vitro culture they are likely to
develop mutations and genetic instability. The
longer they are kept in culture the risk of mutation
bursts increases (Doss and Sachinidis 2019).
Another major challenge in iPSC-based PCOS
treatment is the lack of cohort studies and clinical
and pre-clinical research. Most literature in this
field is based on a small sample size in a short
period of time. Therein, more data is needed to
make a conclusion about the use of iPSCs in
PCOS disease modeling and treatment.

8 Regenerative Medicine in PCOS

Despite the advancements of current available
treatments, in the attempt to find therapies that
can restore the function or somehow replace the
absent tissue or organ of the female reproductive
system, RM has emerged as an alternative thera-
peutic option (Magalhaes and Atala 2019).
Hence, tissue engineering, tissue and stem cell
transplantation have been used in this field for
different kinds of impairments in uterus, vagina,
and ovaries (Magalhaes and Atala 2019). Notic-
ing the disorders related to ovaries, several animal
studies and some clinical trials have been
performed to treat POF, primary ovarian insuffi-
ciency (POI) and poor ovarian responders(PORs)
(Chen et al. 2018; Herraiz et al. 2019). For
instance, POF induced by chemotherapy, human
umbilical cord blood mesenchymal stem cells
(hUC-MSCs) and bone marrow-derived mesen-
chymal stem cells (BM-MSCs) were
administered in rats and mice respectively,
resulting in promoting folliculogenesis,
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improving ovarian function and endocrine system
(Elfayomy et al. 2016; Song et al. 2016; Yoon
2019). Further, among clinical trials, an example
is the transplantation of autologous BM-MSCs on
10 women with POF that led to resuming men-
struation (in 20%) and one pregnancy following
with healthy delivery (Edessy et al. 2016). About
PCOS, there are a few animal studies and a case
report in this context, which are summarized in
this review.

8.1 Preclinical Investigations About
RM in PCOS

8.1.1 Tissue Transplantation in PCOS
Models

There are two main types of adipose tissue in
humans and other mammals: white adipose tissue
(WAT) and brown adipose tissue (BAT) (Payab
et al. 2018). While the responsibility of WAT is
storing energy, BAT maintains body temperature
through thermogenesis and energy expenditure
by uncoupling protein 1 (UCP1) and several
secretory cytokines (Liu et al. 2015; Yuan et al.
2016). Also, it is revealed that increasing BAT
mass or activating it can have a therapeutic effect
on some metabolic disorders such as obesity and
insulin resistance (diabetes) (Gunawardana and
Piston 2012; Liu et al. 2015). On the other hand,
as it was mentioned before, insulin resistance is a
key etiological characteristic of PCOS and
women with PCOS have low BAT activity, so
BAT transplantation may have a beneficial role in
improving related features of PCOS (Yuan et al.
2016; Shorakae et al. 2019). Accordingly, BAT
was transplanted on DHEA-induced rats in a
study in comparison with control, sham-operated
and muscle transplanted groups. In addition to
increased BAT activity and thermogenesis and
improved insulin sensitivity, menstrual cyclicity
and plasma LH level normalized in 70% of the
BAT –transplanted group. In connection with
ovarian histology and infertility, the thickness of
theca cell layer was increased and corpora luteal
number was decreased in sham and muscle
transplanted groups while they were normal in
the BAT transplanted group and the

transplantation helped eats to give birth to a litter.
In addition, it is reported that sympathetic tone is
increased in the ovaries in women with PCOS,
which is reduced after transplantation. Since BAT
transplantation increases adiponectin level (which
is attenuated in patients with PCOS), in order to
find out the possible role of this hormone in BAT
effects, recombinant adiponectin protein was
injected daily in a PCOS rat. The results showed
same changes such as increased endogenous BAT
activity, improved glucose homeostasis, LH/FSH
ratio, acyclicity, and ovarian phenotype. There-
fore, adiponectin seems to be partly in charge of
some of the BAT beneficial effects. As a result,
BAT transplantation or possibly, enhancing BAT
activity, might be an appropriate strategy to
improve PCOS phenotypes (Yuan et al. 2016).
As it was said that BAT activation may be bene-
ficial in PCOS treatment, endogenous BAT in
DHEA-induced PCOS rats was treated with
rutin (a flavonoid) to test this hypothesis
(Hu et al. 2017). It was observed that BAT activ-
ity and related genes and also the expression of
lipid metabolism – related genes were increased
in comparison with the PCOS group treated with
DMSO. Moreover, there were improvements in
insulin sensitivity and glucose homeostasis and
serum adiponectin and high-density lipoprotein
(HDL) levels were increased in the rutin group.
Considering PCOS phenotypes, rutin treatment
had a beneficial influence on LH/FSH ratio,
acyclicity, the morphology of corpus luteum,
ovarian steroidogenic enzymes, and fertilization
ability (Hu et al. 2017). Generally, it was
demonstrated that activating endogenous BAT,
whether by transplantation or rutin treatment,
improves PCOS and due to limitations and risks
of transplantation in clinical application, using an
activating compound might be more applicable
and a novel therapeutic option in the clinic. How-
ever, the effect and safety of such procedures are
to be investigated in humans (Hu et al. 2017).

8.1.2 Cell–Based Approaches in PCOS
Models

Based on studies on the etiology of PCOS,
inflammation and oxidative stress are suggested
to be involved in the pathogenesis of PCOS
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(Kalhori et al. 2018). Besides, obesity has inflam-
matory properties and inflammatory cytokines
can trigger androgen production and follicle atre-
sia (Xiong et al. 2011; Gunawardana and Piston
2012; Kalhori et al. 2018). Therefore, targeting
the mentioned mechanisms can be a promising
area. Accordingly, BM-MSCs have been used in
the treatment of different inflammatory diseases
due to their anti-oxidative, immunomodulatory
and anti-apoptotic qualities (Singer and Caplan
2011; Lv et al. 2013; Kalhori et al. 2018). In
addition, BM-MSCs transplantation is reported
as being useful in treating damages and disorders
of ovarian function (Fu et al. 2008; Kalhori et al.
2018). Hereupon, to investigate the potential ben-
eficial effects of these cells on PCOS, BM-MSCs
were injected in testosterone-induced PCOS mice
(Kalhori et al. 2018). The transplanted group
showed an increase in the volume of ovary and
cortex and the number of corpus luteum and
antral follicles to the control level when compared
with the PCOS group. This result was probably
because of testosterone reduction in the
transplanted group. Further, hyperinsulinemia
affects oocyte size and follicles and MSCs
increase insulin sensitivity, so oocyte volume
was increased in the BM-MSC group. Addition-
ally, an anti-apoptotic feature of MSCs on
granulosa cells caused an increase in zona
pellucida thickness, which is reduced in PCOS.
Similar to BAT transplantation, LH/FSH ratio
decreased in the transplanted group and serum
levels of inflammatory cytokines such as IL-6
and TNF-α were reduced (Kalhori et al. 2018).
Referring to the inflammatory aspect of PCOS
and immunomodulatory potential of MSCs,
hUC-MSCs were used in DHEA- induced
PCOS mice in contrast to the control and DHEA
group treated with normal saline (Xie et al. 2019).
Somehow similar to previous studies, MSC treat-
ment reduced the number of cystic follicles,
increased the number of corpus luteum and
mature follicles and the normalized estrous
cycle. Besides changes in the ovary, uterine tissue
in PCOS mice was congested and full of a hydro-
cele that indicated an inflammatory state of the
uterus. However, MSC transplantation led to the
thinner endometrial epithelium and normal

morphology of uterus. Accordingly, the expres-
sion of inflammatory and fibrosis factors was
inhibited in ovarian tissue due to MSC transplan-
tation. Analyzing immunity alteration has
revealed that MSC could modulate macrophages
decrease their infiltration into ovaries and uterus.
Also, in regard to adaptive immunity MSC
promotes regulatory T cells (T-reg) differentia-
tion and inhibits B cell proliferation in contrast
to the PCOS group treated with normal saline
(Xie et al. 2019). In conclusion, MSC transplan-
tation is reported to have significant curative
effect on the wide range of PCOS phenotypes
via its beneficial capacity (Xie et al. 2019). How-
ever, more studies on the safety and precise
underlying mechanism of its therapeutic impacts
are required. A simplified picture of the men-
tioned studies is illustrated in Fig. 2.

8.2 Clinical Advancements

Unlike POI or POF, there has been no clinical
trial on using tissue or stem cell transplantation
for PCOS so far. However, there is a case report
of women with PCOS and myelodysplastic syn-
drome (MDS) in the form of refractory anemia
who underwent mega chemotherapy and alloge-
neic hematopoietic stem cell (HSC) transplanta-
tion and delivered a full-term baby (Usnarska-
Zubkiewicz et al. 2010). A 21-year-old woman
was first hospitalized and PCOS (hirsutism,
oligomenorrhea and irregular menstrual cycles)
and refractory anemia were diagnosed in 2000.
After 3 years, it was decided to perform HSC
transplantation from her brother and then, she
received different drugs before and after the trans-
plantation. The patient lost 20 kg in peritrans-
plantation period and examination in 2 years
post intervention showed regular menstruation,
resulting in a pregnancy with no anemia or other
hematopoietic disturbances and no episode of
hypertension or raised glucose level. Despite the
fact that chemotherapy impairs ovarian function
and production of sex hormones, the reproductive
system in this patient remained quite normal.
Also, 2 years after the delivery her hormonal
findings exhibited normal testosterone level but
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there were irregular menstrual bleeding and
relapse of obesity (Usnarska-Zubkiewicz et al.
2010).

9 Conclusion

Although PCOS and its comorbidities including
insulin resistance and obesity are so common in
women around the world, the current existing
treatments cannot cure PCOS and its long term
administration only alleviate symptoms while
they have substantial complications. Hereupon,
RM which has been used in similar disorders
such as POI and POF has recently stepped into
proposing novel therapeutic options for PCOS.
Herein, in the current review brief summary of

running treatments, experimental models of
PCOS along with recent studies on BAT and
MSC transplantation on animal models is
provided. Also, a case report of pregnancy in
women with MDS and PCOs following with
HSC transplantation was introduced. In general,
according to the bulk of studies, RM seems to be
an astonishing alternative for treatment and con-
trol of PCOS phenotypes but further clinical
explorations in a variety of regenerative medicine
strategies for PCOS are demanded. In this con-
text, considering that stem cells can control
angiogenesis and inflammatory responses, stem
cell application for PCOS individuals can be a
unique approach in the road of chronic inflamma-
tion inhibition, metabolic abnormalities improve-
ment, and ovarian androgen output reduction.
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DHEA-induced
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Fig. 2 Preclinical Studies on PCOS in The Field of
Regenerative Medicine. In order to find new therapeutic
options for polycystic ovary syndrome (PCOS), brown
adipose tissue (BAT) and mesenchymal stem cells
(MSCs) have been used in mice and rats resulting in
promising outcomes. In addition, activation of endoge-
nous BAT has been proposed as a less invasive way to
control this disease. On the other hand, MSCs from differ-
ent sources were used in mice and they were beneficial in

improving the PCOS-like phenotype. In this figure, some
examples of these studies, control and investigational
groups, and a summary of their results are depicted
(Yuan et al. 2016; Hu et al. 2017; Xie et al. 2019).
DHEA: Dehydroepiandrosterone, BM-MSCs: Bone mar-
row mesenchymal stromal cells, hUC-MSCs Human
umbilical cord derived MSCs, Mus Skeletal muscle-
transplanted, NS Normal saline, LH Luteinizing hormone,
FSH Follicle – stimulating hormone
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Accordingly, the well-known positive effects of
MSCs, make them a potential therapeutic tool for
PCOS cases. On the other hand, stem cells
derived from PCOS subjects –specifically
iPSCs- poses some different features with the
normal ones. Therefore, this phenomenon should
be noticed in order to use them either for trans-
plantation or experimental studies on pathogene-
sis mechanisms. Indeed, they can be also used as
a potential model to mimic the metabolic
abnormalities of PCOS individuals. Therein,
they can provide a suitable solution to reduce
the use of animal models and related ethical
concerns. In other words, they could directly or
indirectly increase the animals’ welfare and lead-
ing to 3R (Replacement, Reduction, and Refine-
ment) rules enforcement.
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Abstract

Studying aging, as a physiological process that
can cause various pathological phenotypes,
has attracted lots of attention due to its increas-
ing burden and prevalence. Therefore, under-
standing its mechanism to find novel
therapeutic alternatives for age-related
disorders such as neurodegenerative and car-
diovascular diseases is essential. Stem cell
senescence plays an important role in aging.
In the context of the underlying pathways,
mitochondrial dysfunction, epigenetic and

genetic alterations, and other mechanisms
have been studied and as a consequence, sev-
eral rejuvenation strategies targeting these
mechanisms like pharmaceutical interven-
tions, genetic modification, and cellular
reprogramming have been proposed. On the
other hand, since stem cells have great poten-
tial for disease modeling, they have been use-
ful for representing aging and its associated
disorders. Accordingly, the main mechanisms
of senescence in stem cells and promising
ways of rejuvenation, along with some
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examples of stem cell models for aging are
introduced and discussed. This review aims
to prepare a comprehensive summary of the
findings by focusing on the most recent ones to
shine a light on this area of research.
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Aging · Model · Partial reprogramming ·
Rejuvenation · Stem cell
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1 Introduction

Epidemiological studies show that by 2050, 22%
of the world population will be over 60 years of
age (Kanasi et al. 2016). This increased life
expectancy has led to aging and age-related
disorders such as neurodegenerative and cardio-
vascular diseases, cancers, and aging frailty
(López-Otín et al. 2013; Shetty et al. 2018;
Goodarzi et al. 2019a; Larijani et al. 2019; Oliva
et al. 2019; Baradaran-Rafii et al. 2020).
Although these diseases have been treated and
discussed as isolated disorders, there are
recognized links between them and the aging
process (Saeidimehr et al. 2016; Oliva et al.
2019). Accordingly, the field of geroscience is
about finding the pathways and biology of this
relationship which can contribute to preventing
the development of such disorders through
targeting the aging itself (Oliva et al. 2019;
Picca et al. 2019). In that regard, the general
cause of aging is the accumulation of cellular
damage. In addition, aging is characterized by
different hallmarks, including genomic instabil-
ity, telomere attrition, epigenetic alterations and
changes, impaired proteostasis, deregulated nutri-
ent sensing (e.g. changes in insulin-like growth
factor 1(IGF-1) signaling pathway), mitochon-
drial dysfunction, cellular senescence, changes
in intercellular communication, stem cell exhaus-
tion and the decline in the regenerative capacity.
All of these hallmarks provoke the aging process
and its phenotype (López-Otín et al. 2013; Picca
et al. 2019). However, one of the most obvious
ones, the stem cell aging, has become a novel
theory that states aging happens partly due to
the diminished regenerative potential of stem
cells and impairment in their function as they
grow old (Sharpless and DePinho 2007; López-
Otín et al. 2013; Ahmed et al. 2017; Wang et al.
2019). On the other hand, aging impairs the ther-
apeutic potential of stem cells (in-vitro cultured
stem cells in several passages) or isolated stem
cells from aged subjects exhibited diminished
productivity and function (Sharpless and
DePinho 2007; Ahmed et al. 2017). Therefore,
in either case, the age-associated diseases may

develop as a result of the deterioration of
adult stem cells, such as neural stem cells
(NSCs), mesenchymal stem cells(MSCs) and
hematopoietic stem cells (HSCs) (Ahmed et al.
2017). Consequently, studying mechanisms and
pathways involved in stem cell aging like mito-
chondrial dysfunction and changes in epigenetic
regulation is essential in order to find new
therapies for aging and aging-related diseases
(Oh et al. 2014; Ahmed et al. 2017).

2 Stem Cell Aging

Stem cells are known as a population of cells
characterized by their self-renewal capacity and
the ability of differentiation to various cell types
(Arjmand et al. 2017; Khorraminejad-Shirazi
et al. 2018). Whether stem cell aging is the
cause or consequence of aging is not yet fully
understood, however, it has been demonstrated
that stem cell exhaustion can lead to premature
aging in mice. Inducing stem cell exhaustion with
partial repetitive depletion of adult sex determin-
ing region Y-box 2 + (SOX2+) Cells caused more
gray hair, reduced hair regrowth capacity and
decreased epithelial cellularity in esophagus and
trachea. The senescence associated beta-
galactosidase activity was significantly higher in
kidney frozen sections, after stem cell exhaustion.
This funding suggests a systematic response to
stem cell exhaustion since SOX2 is not expressed
in kidney cells. In a longer exposure to repetitive
depletion of SOX2+ adult cells, mice subjected to
stem cell exhaustion had a progressive decline in
spontaneous activity and exploratory behavior. It
is proposed that adult stem cell depletion can lead
to premature tissue aging by triggering a system-
atic response (Vilas et al. 2018). Hence, adult
stem cell dysfunction is an essential factor of
aging and its associated diseases, since adult
stem cells (or somatic stem cells) that are found
in each tissue type and organ, have a pivotal role
in the maintenance of tissue homeostasis and
regeneration (Ahmed et al. 2017; Ren et al.
2017). For instance, NSCs are responsible for
generating different specific cells in the CNS
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like neurons, astrocytes, oligodendrocytes, and
ependymal cells (Ahmed et al. 2017; Conover
and Todd 2017). As the age increases, their neu-
rogenic capacity diminishes and some cognitive
deficits occur as a consequence of aging, includ-
ing neurodegenerative diseases (notable
Alzheimer’s disease (AD)), olfactory dysfunc-
tion, and spatial memory deficits (Ahmed et al.
2017; Conover and Todd 2017; Hou et al. 2019).
Although there are reports of the persistent
neurogenesis in adults, NSC aging and the
decline in the proliferation ability have been
indicated in many studies on animals and human
(for example by investigating the in vitro culture
of NSCs) and also, it is suggested that the loss of
neurogenesis might be associated with the deeper
quiescent state of stem cells and their activation
defects (Daniele et al. 2016; Audesse and Webb
2020; Han et al. 2021). HSCs are another group
of stem cells, which are susceptible to aging
(Ahmed et al. 2017; Lee et al. 2019). They reside
in the red bone marrow and continuously produce
blood cells, including erythrocytes, immune cells,
and platelets (Ahmed et al. 2017, Lee et al. 2019).
With aging, cell-intrinsic/extrinsic factors cause
HSCs to have a functional decline in repopulation
capacity, defects in homing and mobilization and
unbalanced differentiation (lineage skewing from
lymphopoiesis toward myelopoiesis), which
results in several types of immune diseases such
as anemia, myeloid and lymphoid leukemia, and
compromised adaptive immunity (Rossi et al.
2008; Kikushige and Miyamoto 2014; Lee et al.
2019). Therefore, rejuvenating aged HSCs can
improve the quality of life for the elderly patients
(Lee et al. 2019). MSCs contribute to the mainte-
nance of the organs and differentiate to
mesodermal derivative including chondrocytes,
osteocytes, adipocytes, and myocytes (Goodarzi
et al. 2015, 2018a, b, 2019b; Ahmed et al. 2017;
Arjmand et al. 2019, 2020; Fafián-Labora et al.
2019; Baradaran-Rafii et al. 2020; Parhizkar
Roudsari et al. 2020). They can be isolated from
different organs as well as umbilical cord tissue
and blood, but the most common sources are bone
marrow-derived MSCs(BMMSCs) and adipose
tissue-derived MSCs(ADSCs) (Ahmed et al.
2017). Due to their beneficial properties such as

keeping tissue homeostasis and modulating
inflammation, they have been used in many stud-
ies in order to find new therapeutic approaches.
However, aging influences these properties and
functions by senescence and its associated
mechanisms such as oxidative stress (Yang
2018; Fafián-Labora et al. 2019). These changes
can be divided into in-vitro and in-vivo
behaviors. For instance, after in-vitro expansion,
it was demonstrated that the self-renewal capacity
and cell viability were decreased and immuno-
suppressive properties and differentiation poten-
tial (significantly in the case of chondrogenesis
and osteogenesis) were reduced(Yang 2018,
Fafián-Labora et al. 2019). Additionally, shifting
in their morphology, genetic instability and
changes in the expression of specific surface
markers expression were found. In-vivo senes-
cence of MSCs is characterized by reduced
proliferative capacity, colony forming efficiency,
and differentiation potential (adipogenesis, osteo-
genesis and chondrogenesis). Moreover, the num-
ber of isolated MSCs from the bone marrow
aspiration declines with age (Yang 2018).
Hence, the aging of MSCs seems to be detrimen-
tal in regard to their essential functions (Ahmed
et al. 2017). Further, stem cells of skeletal muscle
-called satellite cells -are responsible for sustain-
ing the regeneration throughout life. Aging
impacts the remarkable regenerative capacity of
skeletal muscle as it is associated with a decline in
the number and functionality of the satellite cells
(García-Prat et al. 2013; Muñoz-Cánoves et al.
2020). Both environment alterations as an extrin-
sic factor and intrinsic changes such as genomic
instability, metabolic defects, and drop in
autophagy (which is important in senescence)
contribute to satellite cell impairment. Therefore,
old satellite cells generate insufficient progeny,
which possess limited differentiation and myo-
genic potential, and accumulation of the altered
progeny results in deterioration of the function
and structure of the tissue (García-Prat et al.
2013; Fafián-Labora et al. 2019; Muñoz-Cánoves
et al. 2020). Cardiovascular diseases, as one of
the leading causes of mortality and morbidity, are
affected by aging since intrinsic aging can cause
progressive changes in the structure and functions
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of the heart regardless of other risk factors like
hypertension and diabetes (Dai et al. 2012). Some
of the physiological changes of cardiac aging are
the increase in left ventricle wall thickness, myx-
omatous degeneration of the valves and valvular
sclerosis, which lead to increased prevalence of
related diseases (Dai et al. 2012). The underlying
mechanisms of these alterations include mito-
chondrial dysfunction, free radicals and reactive
oxygen species (ROS), nutrient signaling, and
cardiac stem cell aging (Sussman and Anversa
2004; Dai et al. 2012). Nowadays it is accepted
that cardiac myocytes are generated after birth.
One of the hypotheses of the underlying causes of
the myocyte turnover is the resident stem cells.
Cardiac stem cells play an important part in car-
diac homeostasis and their senescence is thor-
oughly involved in the cardiac aging and heart
failure, though its mechanisms are not fully
understood (Anversa et al. 2005; Dai et al. 2012;
Cesselli et al. 2018).It was found that the senes-
cence of cardiac stem cells and the expression of
some of the associated genes were increased in
the aging mouse model and human hearts (as it
was demonstrated in the in-vitro study of
evaluating and comparing normal donor hearts
and explanted hearts in end-stage heart failure)
(Torella et al. 2004; Anversa et al. 2005; Cesselli
et al. 2011). Also, the deletion of the
pro-senescent gene p66shcin a diabetic mouse
model can prevent age-related changes (Rota
et al. 2006; Dai et al. 2012). Moreover, telomere
shortening is another factor of senescence in car-
diac progenitors and human cardiac stem cells
(Cesselli et al. 2011; Dai et al. 2012). These data
suggest that stimulation of cardiac stem cells can
prevent the effects of aging on the heart, though
more investigations are needed (Anversa et al.
2005; Dai et al. 2012).

3 Mechanisms of Aging in Stem
Cells

As stem cells age, they lose their self-renewal and
regenerative potential, thus contributing to aging-
related tissue dysfunction. Understanding the
mechanisms underlying stem cell aging can help

us in the prevention and treatment of aging related
symptoms, especially in reversible mechanisms.
Factors and mechanisms involved in stem cell
aging can be cell-intrinsic or cell-extrinsic that
are essentially inter-dependents and interacting
(de Haan and Lazare 2018). We can also catego-
rize stem cell aging mechanisms into tissue spe-
cific stem cell mechanisms of aging and common
mechanisms of aging. Common mechanisms of
aging include genetic damage to nuclear and
mitochondrial DNA, epigenetic aging related
changes, cell cycle alterations, ROS and
mitochondria dysfunction, protein homeostasis
disruption, signaling pathway alterations or
extrinsic and systematic changes (López-Otín
et al. 2013). Accumulated DNA damage is a
common factor in aging and premature aging
diseases (Burtner and Kennedy 2010). The DNA
replication system is not error-proof and through
numerous replications, repair error can cause per-
manent damage in the form of accumulated
mutations. The number of divisions stem cells
have made correlates directly with the risk of
cancer in the tissue (Tomasetti and Vogelstein
2015). The stem cell’s quiescent state makes
them more prone to DNA damage once they
enter replicative phase because double strand
breaks are more likely to be repaired with
non-homologous ends joining rather than homol-
ogous recombination which is used by replicative
cells and is less prone to errors (Kanaar et al.
2008). Repair error is not the only source of
DNA damage, chemical agents such as ROS or
UV-induced photoproducts and gamma radiation
can cause defects on DNA (Han et al. 2014;
Robinson et al. 2018). HSCs are one type of the
stem cells with the highest rate of self-renewal
that makes them more susceptible to DNA dam-
age. Double strand breaks in the DNA tend to
increase with age along with accumulated muta-
tion and telomere attrition (Rübe et al. 2011).
Accumulated DNA damage results in genomic
instability. These DNA damages can cause cell
death or senescence. These genotoxins do not just
affect the DNA, but also other nucleophiles such
as RNA and phospholipid (Miquel et al. 1980;
López-Otín et al. 2013). Aging-associated epige-
netic changes include alterations in DNA
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methylation, histone modification, non-coding
RNA, transcription factor binding and nucleo-
some positioning. One of the most prominent
characteristics of epigenetic changes in cellular
senescence is DNA methylation. DNA methyla-
tion level changes are associated with a cell’s
biological age and are among the most accurate
biological age estimators. DNA-methylation
changes happen regularly throughout cell cycle
as an adaptive response; however, it can act as an
aging accelerator. DNA-5 methyl cytosine (5-mc)
is the most common type of DNA methylation
that primarily prevents the binding of transcrip-
tion factor to promoter region and therefore
prevents gene expression. DNA methylation
induces aging by loss of proteostasis, mitochon-
drial dysfunction, stem cell exhaustion and
immunosenescence (Jiang and Guo 2020).
Alterations in DNA-methylation patterns show a
generalized hypo methylation along with locus
hyper methylation in tumor suppressor genes.
Altered histone methylation pattern along with
global heterochromatin loss and redistribution
increases transcriptional noise, chromosome
instability and RNA processing aberrations (Tan
et al. 2017). DNA methylation in aging not only
disrupts DNA degradation, it also affects protein
synthesis. Hyper methylation of the promoter
region of r-RNA causes replication senescence
in cells (Sanokawa-Akakura et al. 2019). Aging
is associated with autophagic activity. The pro-
moter regions of Atg5 and LC3 genes are hyper
methylated in aged macrophages and therefore
the expression of these autophagy proteins are
down regulated. DNA methylation also affects
other autophagy-related genes such as FOXO3a
or Beclin-1 (Khalil et al. 2016; Jiang and Guo
2020). As another example, it was indicated that
the deficiency of excision repair cross
complementing-group1 (ERCC1), which is an
endonuclease responsible for incision of the dam-
aged strand of DNA in some of the repair
pathways, promotes cellular senescence and apo-
ptosis. Cultured ERCC1 depleted human fibro-
blast shoed that the senescence is p53-dependent
and Ercc1�/Δ mice showed greater levels of
tumor necrosis factor-α (TNFα), a senescence-
associated secretory phenotype (SASP) factor

which induced apoptosis, and it is secreted by
senescent cells. Also, the stem cell depletion
was found via decreased expression of marker
of epithelial, basal and hair follicle stem cells
(p63,K14,Lgr6 respectively) that might be due
to apoptosis and can be one of the main causes
of premature aging in the ERCC1 deficient-mice
(Kim et al. 2019). ROS production is a side effect
of mitochondria’s aerobic metabolism. It has been
suggested that ROS production has a central role
in cellular aging (Jung et al. 2016). Elevated ROS
levels and irradiation in HSCs lead to P38 activa-
tion. P38 is a protein kinase that is involved in cell
proliferation and differentiation, apoptosis and
senescence. In bone marrow suppression disease
like Myelodysplastic Syndromes, P38 activation
has been reported. P38 inhibition in human
umbilical cord blood can improve stem cell
expansion and engraftment post transplantation
(Zou et al. 2012). Moreover, it has been
demonstrated that mammalian target of
rapamycin complex1 (mTORC1) increases intes-
tinal epithelial aging by enhancing p38 Mitogen-
Activated Protein Kinase (MAPK)s signaling via
p53 and p16. These kinases are involved in cell
proliferation, differentiation and survival
(Wagner and Nebreda 2009). Inhibition of P38
MAPK alleviated villus aging phenotypes
(He et al. 2020). The mitochondrial theory of
aging suggests mitochondria’s ROS production
damages mitochondrial DNA and subsequently
affects mitochondrial respiration, leading to
more ROS production and oxidative damage and
creating a vicious cycle (Miquel et al. 1980).
Since the introduction of this theory core
principles are still approved, however, further
studies led to a better understanding of ROS and
oxidative damage’s role in aging. Studies have
suggested that ROS production may not decrease
lifespan while higher ROS production leads to
longevity. These studies have shown rather a
protective role against stress signals for ROS.
Findings in rodents and Caenorhabditis elegans
(C.elegans)can show that the former observed
association between elevated ROS levels and
aging were due to the role of ROS in mediating
stress responses to age- related damages rather
than their primary role in aging (Hekimi et al.
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2011; López-Otín et al. 2013). Besides, mito-
chondrial dysfunction can contribute to aging
not only by producing ROS but also by biogene-
sis impairment and it can cause premature apo-
ptosis. Mutation accumulation and damage
instability are other sources of mitochondrial
DNA damage; however, we now know that
ROS is not the only factor in DNA instability
and mutation (Jang and Van Remmen 2009;
López-Otín et al. 2013). Furthermore, studies
have revealed that nuclear genome instability by
itself can induce senescence and raise ROS and
oxidative damage in-vivo (Robinson et al. 2018).
Telomere shortening has been associated with
aging, longevity and aging-related diseases.
Telomeres are terminal DNA structures of
eukaryotic chromosomes that protect DNA from
degradation, recombination and fusion by
contributing to the pairing of homologous
chromosomes and distinguishing true chromo-
somes ends from double-stranded-break DNA.
With each cell division, telomeres shorten. The
amount of this shortening is variable, possibly
due to individual variations of telomere length,
different methods of telomere length measure-
ments along with cell type and age difference in
telomere measurement studies. When telomere
reaches a critical length, chromosome fusion
increases and contributes to cellular senescence
(Ishikawa et al. 2016; Zhu et al. 2019b). Mecha-
nistic target of Rapamycin (m-TOR) is a serine-
threonine kinase that integrates cellular and envi-
ronmental signals to control cell growth, metabo-
lism and proliferation. M-TOR induces anabolic
processes while inhibiting autophagy and subse-
quently cell growth and proliferation. A wide set
of stimuli, including hormones, growth factors,
oxygen and amino acids can affect m-TOR func-
tion. The correlation of aging processes and
hallmarks with m-TOR signaling pathway is
very complex and not yet fully understood.
M-TOR levels during aging can decrease or
increase depending on sex or tissue. M-TOR
also functions as an immunosuppressant that
will make its inhibition effects on aging contro-
versial, because of aging-associated inflammation
or inflammaging. Despite all controversies, it is

clear that m-TOR inhibition by pharmacological
means, or caloric restriction increases lifespan,
however, more studies are needed to discover
m-TOR are related mechanisms of cellular aging
(Mannick et al. 2014; Papadopoli et al. 2019).
Environmental and extrinsic aging factors have
been studied by exposing young stem cells to
senescent milieus. CCL11 levels in blood
increase with aging; this cytokine impairs NSC
function and neurogenesis via CCR3 receptors.
TGF-β also inhibits the satellite cell function and
repair (Mendelsohn and Larrick 2011). Other
pro-inflammatory factors also increase in blood
with aging. Complement component 1q (C1q)
induces senescent phenotype in muscle stem
cells by accelerating Wnt signaling pathway
which is associated with the impaired regenera-
tion ability and enhanced fibrogenic response
(Brack et al. 2007; Villeda et al. 2011; Naito
et al. 2012). Low-grade chronic inflammation,
caused by age-related immunologic changes, has
been recently recognized as an important
contributing factor in stem cell aging. Basal levels
of pro-inflammatory chemokine such as interleu-
kin-6(IL-6), TNF- α and C-reactive protein (CRP)
increase in serum with aging, they are mostly
known for causing myelopoiesis in HSCs, which
is a characteristic of HSC aging. Furthermore,
myeloid cells produce more inflammatory
cytokines and cause an even further myeloid
dominance. Inflammation also induces intracellu-
lar ROS production (Kovtonyuk et al. 2016;
Hormaechea-Agulla et al. 2020). However,
assessing microRNAs(miRNAs) involved in
controlling the inflammation revealed that both
pro and anti-inflammatory miRNAs were
upregulated but the pro inflammatory phenotype
could prevail over the anti- inflammatory type
(Alicka et al. 2020). To be mentioned, there is
growing evidence that the geometry, volume and
density of extracellular space regulate neural stem
cell proliferation and differentiation (Syková et al.
2002). In addition to common mechanisms of
aging in all cells, each line of stem cells goes
through different changes in aging. More details
on specific mechanisms driving aging in specific
tissue stem cells are provided in Table 1. Also,
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some other examples of aging pathways which
have rejuvenation strategies are introduced in the
next subtitle and Fig. 1.

4 Rejuvenation Strategies

Rejuvenation has been considered a fascinating
topic in many cultures and human history, which
has become a challenge in the modern world
(Ludke et al. 2014).Accordingly, as the aging of
stem cells is one of the contributing factors of
aging, defining strategies which reverse the aged
stem cells, and rejuvenate them is a potential
therapeutic approach (Ludke et al. 2014; Ahmed
et al. 2017). Some of the proposed mechanisms
for treating age-related dysfunctions in stem cells
are summarized briefly.

4.1 Genetic Modification and DNA
Damage

Accumulation of DNA damage has a critical role
in the loss of aged-stem cell function, so increas-
ing the repair pathways can prevent related
defects (Wang et al. 2019).An example of this
phenomenon is the deletion of Atm (which is a
sensor for the DNA damage)in HSC, leading to
increased ROS and decreased repopulation capac-
ity. Accordingly, treating ATM�/� mice with
antioxidant N-acetyl-L-cysteine (NAC) can
restore the HSC function (Ito et al. 2006; Oh
et al. 2014; Wang et al. 2019). In addition, alter-
ation in gene expression is another factor of aging
in stem cells. Moreover, the regulation of
autophagy and protein homeostasis is essential
for maintaining quiescence. In this context,
overexpression of Atg7, which is involved in
autophagy and the formation of autophagosomes,
in satellite cells exhibited reduced senescence and
restored regenerative capacity (Oh et al. 2014;
García-Prat et al. 2016; Zhu et al. 2020). Further,
heat shock protein 70 (HSP70), a chaperone pro-
tein and a key regulator of cellular defense, has a
pivotal role in protecting tissues such as brain and
skeletal muscle from aging and improving stem
cell survival(Feng et al. 2014; Oh et al. 2014). In

addition, it preserved the number of satellite cells
in muscles of the transgenic mice with
overexpression of HSP70 after immobilization
(Miyabara et al. 2012). Besides, overexpression
of Satb1, which organizes chromatin, and it was
reduced in aged HSCs, can partially enhance the
lymphopoietic potential (Satoh et al. 2013;
Wahlestedt et al. 2015; Zhu et al. 2020). More-
over, one of the causes of genetic instability is
mobile DNA elements called retro transposons.
L1 retro transposons are reported to have a role in
aging and their activity can be repressed by
SIRT6, suggesting a therapeutic approach for
slowing down the aging process (Oh et al. 2014;
Van Meter et al. 2014). Also, in intestinal stem
cells (ISCs) the epithelial homeostasis can be
improved by the overexpression of Piwi which
can reduce the expression of the related retro
transposons and decrease apoptosis and DNA
damage (Sousa-Victor et al. 2017; Wang et al.
2019). Further, the expression of a protein kinase
named Pim-1 increases due to injury as it has anti-
apoptotic and pro-proliferative actions, it can
have a protective effect against myocardial
infarction.Pim-1 expression in human cardiac
progenitor cells (hCPCs) is decreased via aging
(Kaur and Cai 2018). Accordingly,
overexpression of Pim-1 in engineered hCPCs
obtained from patients with heart failure and
injected into the hearts of mice revealed enhanced
cellular differentiation and engraftment,
improved vasculature, and decreased infarct size
(Mohsin et al. 2012). Besides, the other markers
of aging in the heart are miRNAs as a post tran-
scriptional regulation way .After myocardial
infarction, the expression of miR-34 family
increases, and inhibiting them improves systolic
function, angiogenesis and increased Akt activity
(Bernardo et al. 2012; Kaur and Cai 2018). In
addition, downregulation of miR-29c in
h BMMSCs could suppress p53-p21 and
p18-pRB pathways resulting in inhibition of cel-
lular senescence (Shang et al. 2016; Kaur and Cai
2018). It was reported that increased expression
of miR-195deteriorates the regenerative ability of
old BMMSCs since it targets and deactivates
telomerase reverse transcriptase (Tert). Therefore,
abrogating miR-195 contributes to Tert
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Fig. 1 Rejuvenation strategies for different types of stem
cells. There are different kinds of strategies for
rejuvenating adult stem cells including genetic and epige-
netic modifications, targeting signaling pathways, improv-
ing mitochondrial function, and altering the extrinsic
factors. For instance, overexpression of Tet2 in old
NSCs, prevents regenerative decline and improves
neurogenesis. Some examples of these methods are
shown in this figure (Torella et al. 2004; Ito et al. 2006;
Haider et al. 2008; Chakkalakal et al. 2012; Florian et al.
2012; Miyabara et al. 2012; Elabd et al. 2014; Oh et al.

2014; Price et al. 2014; Sinha et al. 2014; Baht et al. 2015;
Chang et al. 2015; Wahlestedt et al. 2015; Yousef et al.
2015; Zhu et al. 2015; García-Prat et al. 2016; Khatiwala
and Cai 2016; Ahmed et al. 2017; Neves et al. 2017;
Grezella et al. 2018; Grigoryan et al. 2018; Kaur and Cai
2018; Egerman and Glass 2019; Fafián-Labora et al. 2019;
Lin et al. 2019; Lukjanenko et al. 2019; Wang et al. 2019;
Zhu et al. 2019a; Muñoz-Cánoves et al. 2020; Sarkar et al.
2020; Wu et al. 2020) MSCs Mesenchymal stem cells,
BMMSCs Bone marrow-derived MSCs, HSCs
Hematopoietic stem cells, NSCs Neural stem cells,
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reactivation and re-lengthening of the telomere.
In order to examine the functional effect, old
MSCs with miR-195 inhibitors were transplanted
into the infarcted heart of mice and caused
improved cardiac function (left ventricular func-
tion) and reduced infarction size (Okada et al.
2016). Hence, miRNAs seem to be potential ther-
apeutic targets for preventing aging, but more
research is needed to find various related
mechanisms in different stem cells. As was previ-
ously mentioned, reactivating telomerase or telo-
mere lengthening can somehow reverse the
senescent phenotype (Kaur and Cai 2018).
Reactivating mouse telomerase RNA component
(mTERC) in mice led to reverse neurode-
generation and neural stem cells restored their
proliferative and neurogenic capacity (Jaskelioff
et al. 2011; Oh et al. 2014; Wang et al. 2019). The
shelterin complex is involved in the regulation of
telomere length and its protection. Protection of
telomeres1 (POT1) is one of the six subunit
proteins of this complex and Pot1a in mice
prevents DNA damage response (DDR) at
telomeres. Pot1a is expressed higher in young
HSCs and its overexpression increases the
proliferative and self-renewal capacity. In addi-
tion, treating aged HSCs with exogenous Pot1a
improved their activity and engraftment ability
(Hosokawa et al. 2017; Wang et al. 2019).
Recently, it was reported that curcumin increased
the expression of Tert gene in ADSCs of rats. It
improved the lifespan of stem cells and decreased
the number of senescent cells and it had some
antioxidant properties that can prevent oxidative
stress- induced –apoptosis (Pirmoradi et al.

2018). Although upregulation of the telomeric
pathway can be used in anti-aging mechanisms,
it is also used by cancer cells. Therefore, it should
be taken into account that such alterations in
telomerase activity may result in malignancies
and they should be studied and investigated
more precisely (Oh et al. 2014).

4.2 Epigenetic Modification

The different epigenetic regulatory mechanisms
such as DNA methylation and histone modifica-
tion can alter the function of stem cells, their
senescence, and their differentiation potential
(Wang et al. 2019). For example, the expression
of the gene homeobox A9(Hoxa9), a member of
Hox genes that regulate stem cells during
embryogenesis, is increased as a result of global
and locus-specific changes in the epigenetic stress
response in aged satellite cells. This over-
expression induces senescence signaling
pathways like JAK/STAT. Hereupon, deletion
or inhibition of the Hoxa9 gene enhanced the
myofiber regeneration in the injured muscle of
aged mice, increased the regenerative capacity
of aged satellite cells (Schwörer et al. 2016;
Wang et al. 2019). Also, regarding the DNA
demethylation, the level of the enzyme ten eleven
translocation methylcytosine dioxygenase2
(Tet2), which catalysis the 5-hydroxymethyl-
cytosine(5hmC) generation and regulates neuro-
genesis in NSCs and neural progenitor cells and
neurogenic niche, is decreased in the aged hippo-
campus of mice. Hence, overexpression and

��

Fig. 1 (continued) MuSCs Skeletal muscle stem cells,
ADSC Adipose tissue-derived MSCs, CSCs Cardiac stem
cells, miR:micro RNA, DMOG Dimethyloxalyglycine,
ALK5Activin receptor-like kinase 5, TGF-β Transforming
growth factor β, iPSCs induced pluripotent stem cells,
POT1 Protection of telomeres1, mTOR Mammalian target
of rapamycin, β3-AR β3-adreno receptor, IGF1 Insulin-
like growth factor 1, mTERC Mouse telomerase RNA
component, Sirt Srtunin, Tet2 Ten eleven translocation
methylcytosine dioxygenase2, NR Nicotinamideriboside,
UPRmt Unfolded protein response, LVCP Lateral ventricle

choroid plexus, BMP5 Bone morphogenic protein5,GnRH
Gonadotropin releasing hormone, GDF11 Growth differ-
entiation factor 11, HSP70 Heat shock protein 70, FGF
Fibroblast growth factor, spry1 Sprouty1,MAPKMitogen-
activated protein kinase, JAK/STAT Janus kinase and sig-
nal transducer and activator of transcription, 5, 15 DPP
5,15-diphenylporphirine, DKK1 Dickkopf-1, sFRP3 Solu-
ble frizzled-related protein3, WISP1 WNT1 inducible sig-
naling pathway protein 1, Tert Telomerase reverse
transcriptase, Nrf2:Nuclear factor erythroid2-related fac-
tor2, CYGB Cytoglobulin, CoPP Cobalt protoporphyrin
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restoring Tet2 increased neurogenesis, prevented
regenerative decline during aging, improved
cognitive processes, and it seemed that it
could promote rejuvenation via its associated
hydroxymethylation (Schwörer et al. 2016,
Wang et al. 2019). Another mechanism is histone
modification in which acetylating histone tails
results in a more open transcriptional state.
Accordingly, the level of histone H4 lysine
16 acetylation (H4K16ac) was reported to be
decreased during aging in HSCs. However, treat-
ment with Casin which is a Rho GTPase cell
division cycle52(Cdc42) inhibitor and it is men-
tioned in targeting signaling pathways, can
restore the level and spatial distribution of
H4K16ac in aged HSCs similar to young
ones, accompanied by other rejuvenating
functions (Florian et al. 2012; Wang et al. 2019;
Zhu et al. 2020). Recently, it was found that
other factors are also involved in histone modifi-
cation of H4K16ac including chromosome
11 architecture which is affected by the nuclear
envelope protein LaminA/C. Increasing Cdc42
activity is associated with repression of LaminA/
C, deficiency of which causes premature aging in
HSCs. So, it was found that Casin treatment
and reducing the Cdc42 activity resulted in
restoring chromosome 11 architecture and
regulating nuclear volume and shape (Grigoryan
et al. 2018). Besides, another approach in
epigenetic modification is the application of
iPSCs which are generated directly from
adult somatic cells reprogrammed and reached
an embryonic stem cell (ESC)-like state
(Wahlestedt et al. 2013, 2015; Ahmed et al.
2017). In another study, iPSCs from fibroblasts
of patients with Hutchinson-Gilford progeria
syndrome (HGPS), a premature aging disorder,
were so similar to the control group and
their differentiated cells could recapitulate
disease progression (although not entirely).
(Chen et al. 2017). Also, iPSCs were used in
different studies in order to model aging-
associated disorders like Parkinson’s and
Alzheimer’s diseases (Ahmed et al. 2017). Over-
all, this technique seems beneficial, though the
efficacy of it in comparison to other strategies
should be evaluated.

4.3 Repressing the Levels of Cell
Cycle Inhibitors

There are several cell cycle inhibitors including
p16Ink4a, p53/p21,and p19Arf that can promote
senescence by arresting the cell division.p16Ink4a

is involved in stem cell self-renewal in different
tissues and its expression increased in aging in
stem cells like HSCs, MuSCs, and NSCs
(D’Arcangelo et al. 2017; Wang et al. 2019).
Aged HSCs from p16Ink4a knockout mice
exhibited increased number and function, lower
apoptosis frequency, and enhanced repopulation
ability while deletion of p16Ink4a in young mice
decreased the repopulation ability (Janzen et al.
2006). Furthermore, geriatric satellite cells are not
able to maintain a normal quiescent state and their
regenerative ability is impaired. Silencing and
depression of p16Ink4a in old satellite cells can
make them restore their quiescence and self-
renewal capacity (Sousa-Victor et al. 2014).
Moreover, old p16Ink4a deficient mice improved
the decline in proliferation in the subventricular
zone (SVZ) (but not in the dentate gyrus and
enteric nervous system), neurogenesis in the
olfactory bulb, and progenitors activity
(Molofsky et al. 2006; Wang et al. 2019).Further-
more, Slug is a member of the zinc-finger tran-
scription factors, which acts as a transcriptional
repressor of p16. Recently, it was reported that
skeletal muscles of slug deficient mice showed
impaired regenerative potential, and its forced
expression in cultured satellite cells led to
suppressed expression of p16 and restored regen-
erative potential of satellite cells (Zhu et al.
2019b). Besides, it was found that ROS regulates
the gene INK4 and autophagy reduced the p16
expression. Therefore, treatment with antioxidant
or stimulating autophagy can repress INK4 locus
and restore the regenerative capacity of satellite
cells (García-Prat et al. 2016; Wang et al. 2019).

4.4 Targeting Signaling Pathways

Various signaling pathways are involved in stem
cell functions and aging, so modulation of these
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pathways can enhance the repair system of stem
cells and tissues (Wang et al. 2019). For instance,
the p38α/β MAPK pathway plays an important
role in the proliferation capacity of satellite cells,
their exit from quiescence, and their self-renewal.
Over-activation of p38α/β MAPK, which is seen
in aged satellite cells compared to young cells,
impairs self-renewal capacity and disrupts asym-
metric divisions, while inhibiting p38α/β MAPK
by a specific inhibitor molecule (SB203580,
SB202190) enhances the engraftment potential
and self-renewal ability of aged satellite cells in
culture (Bernet et al. 2014; Cosgrove et al. 2014;
Neves et al. 2017; Wang et al. 2019). It has also
been demonstrated that increased P38MAPK
activity is associated with NSC senescence
in-vitro and in-vivo. P38MAPK pharmacological
inhibition resulted in NSC rejuvenation, however,
the role of p38 in NSC senescence is integrated
with many molecular pathways such as Wnt sig-
naling pathway, EGF orinteractions with neuro-
genic niches (Moreno-Cugnon et al. 2020). It is
estimated that P38α is responsible for around
50% of P38MAPK activity. Genetic deletion of
P38α seems to reduce age-associated phenotype
such as neuron-loss, neuro-inflammation, cogni-
tive decline and NSC exhaustion (Moreno-
Cugnon et al. 2019). Further, inhibition of JAK/
STAT-a cytokine receptor pathway that increases
with age- by knocking down Jak2 or Stat3 or
pharmacological intervention improves engraft-
ment in ex-vivo and enhances regenerative capac-
ity after intramuscular delivery of the drugs (Price
et al. 2014; Wang et al. 2019; Muñoz-Cánoves
et al. 2020). On the contrary, the regeneration of
aged muscle impairs as a consequence of the
decrease in Delta/Notch signaling, so Notch sig-
naling stimulation restores the proliferative ability
of satellite cells (Carlson et al. 2009; Wang et al.
2019). Moreover, the activity of the mTOR path-
way is found to be increased in aged HSCs.
Accordingly, using its inhibitor, rapamycin,
reduced HSC numbers(that were increased due
to aging) and improved the reconstitution poten-
tial and self-renewal capacity (Wahlestedt et al.
2015; Wang et al. 2019). Also, inhibiting
mTORC1 in MuSCs and epithelium stem cells
(intestine of the fly and the trachea of the mouse)

by using genetic manipulation or rapamycin can
prevent the stem cell loss during aging and
repeated episodes of regeneration (Haller et al.
2017; Wang et al. 2019). During aging, Wnt
signaling shifts from canonical to non-canonical
as the expression Wnt5a which is associated with
canonical signaling increases and Wnt5a
haploinsufficiency in mice reduces aging in
HSCs (Florian et al. 2013). On the other hand,
the activity of Cdc42 which regulates cell polarity
is elevated in aged HSCs and results in loss of
polarity and reduced reconstitution capacity
(Florian et al. 2012, Neves, Sousa-Victor et al.
2017). It was demonstrated that Wnt5a pathway is
associated with Cdc42, so the activity of Cdc42
was reduced in Wnt5a knockdown aged HSCs,
which led to increased frequency of polarized
cells and rejuvenated the aged HSCs. In addition,
using Casin prevented the aging-related differen-
tiation skewing (the myeloid bias) in aged HSCs
treated with Wnt5a (Florian et al. 2013;
Wahlestedt et al. 2015).

4.5 Improving Mitochondrial
Function and Targeting
Oxidative Stress

Aging of stem cells is associated with a decline in
mitochondrial function, so improving its function
is a potential target for rejuvenation (Oh et al.
2014; Kaur and Cai 2018). Sirt3 is responsible
for regulating the acetylation of mitochondrial
proteins and its expression decreases by aging,
so upregulation of sirt3 could enhance the regen-
erative potential of HSCs (Brown et al. 2013; Zhu
et al. 2020). Also, SIRT3 is demonstrated to
increase cell survival, decrease cell apoptosis,
and enhance the antioxidant activity of
hBMMSCs by increasing the expression of man-
ganese superoxide dismutase (MnSOD) catalase
(Wang et al. 2014). Studies have shown that
cytoglobulin (CYGB) is associated with nitric
oxide (NO) metabolism and mitochondrial respi-
ration. It is reported that overexpression of CYGB
in human cardiac stem/progenitor cells (hCPCs)
enhances cell survival, decreases apoptosis and
generation of ROS by upregulating the NFκB/
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iNOS pathway and NO production. So, it
provides a new target for the effectiveness and
efficiency of hCPCs for therapeutic use (Zhang
et al. 2016; Kaur and Cai 2018). Due to the
importance of oxidative stress and toxic
metabolites in the process of aging, different
ways of targeting them have gained attention,
some of which were mentioned. Further, melato-
nin was reported to inhibit the senescence of
canine ADSCs and improved their survival and
efficacy after transplantation through activating
nuclear factor erythroid2-related factor2(Nrf2),
which regulates many antioxidant and detoxifica-
tion enzymes and inhibiting NF-κB pathway and
endoplasmic reticulum stress(ERS) (Fafián-
Labora et al. 2019; Wang et al. 2019). Caloric
restriction (CR) is known to have a preventive
effect on the onset of aging in different species
and short-term CR was able to enhance satellite
cell functionality through increased mitochon-
drial content and oxygen consumption. CR not
only influences mitochondrial function, but also
has other effects on different pathways and
mechanisms in stem cells like modulating DNA
damage, autophagy induction, and SIRT and
AMPK pathways (Oh et al. 2014; Muñoz-
Cánoves et al. 2020). Besides, NAD+is revealed
to have a pivotal role in mitochondrial activity
and SIRT1 is involved in its related pathway.
Moreover, increasing the amount of NAD+ in
NSCs from aged mice by treatment with its pre-
cursor nicotinamide riboside (NR) increased pro-
liferation and neurogenesis in the SVZ and
dentate gyrus (Oh et al. 2014; Zhang et al.
2016). In addition, NR treatment in MuSCs
activates unfolded protein response (UPRmt) and
induces prohibition proteins that resulted in an
improvement in mitochondrial function, homeo-
stasis, and also preventing senescence of MuSCs
in the Mdx mice (model of Duchenne muscular
dystrophy) (Zhang et al. 2016). Moreover, it was
proposed that NAD precursor supplementation in
HSCs could improve the function of
mitochondria probably through the SIRT1 path-
way (Moon et al. 2018).

4.6 Pharmaceutical Administration

As previously stated, there are different pharma-
cological drugs used in preventing aging and stem
cell senescence. For instance, rapamycin, which
inactivates m-TOR, and Resveratrol that activate
AMPK and increases mitochondrial function
were used on CSCs from explanted
decompensated hearts (E-CSCs) of patients and
this combination led to restoring the capacity of
the stem cells to improve myocardial healing,
increased their reparative ability in-vivo in mice
and reduced their senescence. Despite the side
effects of rapamycin, which need further research,
it can be used in order to avoid genetic
modifications, which might have detrimental
effects (Avolio et al. 2014; Kaur and Cai 2018).
Additionally, rapamycin re-established prolifera-
tion and enhanced autophagy in old satellite cells
(García-Prat et al. 2016). Another change in sig-
naling pathways occurred in a study increasing
WNT/β-catenin pathway in MSCs. BMMSCs
from cardiovascular patients were isolated and
they exhibited reduced WNT/β –catenin signaling
along with decreased proliferation and myogenic
differentiation. Treating aged MSCs with lithium
chloride caused recovered potential for myogenic
differentiation as it increases the β-catenin bio-
availability (Brunt et al. 2012; Kaur and Cai
2018). Moreover, Casin was said to be an inhibi-
tor of Cdc42, so it can rejuvenate aged HSCs.
Recently, it was demonstrated that aged HSCs
treated with Casin reconstituted an immune sys-
tem in T- and B- cell deficient RAG�/� mice
similar to young animals (Leins et al. 2018; Zhu
et al. 2020). In addition to rejuvenating the activ-
ity of p38 MAPK inhibitor (SB203580) in satel-
lite cells, it can reduce the ROS levels in HSCs, so
it restored the repopulation capacity and
maintained quiescence of HSCs (Ito et al. 2006;
Zhu et al. 2020). Similarly, a cell penetrating
peptide-conjugating peptide derived from
Thioredoxin-interacting protein (TXNIP) named
TN13, can inhibit p38 activity and it was able to
rejuvenate aged HSCs in-vitro and in-vivo as well
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as increasing their homing ability (Jung et al.
2016; Zhu et al. 2020). Besides, another strategy
in pharmacological intervention is clearing the
senescent cells. Accumulation of senescent cells
and expression of the complex SASP change the
microenvironment and causes the development of
aging and its related diseases (Wang et al. 2019;
Zhu et al. 2020). Therefore, suppressing SASP
and using senolytic drugs can be a potential ther-
apeutic approach (Kaur and Cai 2018; Wang et al.
2019). There are different senolytics which were
used in animal models and they have been found
successful in reducing senescent cells and
alleviating many senescence-related phenotypes
(Shetty et al. 2018). Accordingly, some of these
drugs are reported to be useful in the depletion of
aged stem cells (Wang et al. 2019). For instance,
ABT263 which induces apoptosis by inhibiting
the anti-apoptotic proteins BCL-2 and BCL-xl,
was able to kill aged HSCs and MuSCs after
oral administration in mice. This agent acts selec-
tively on senescent stem cells and attenuated
total-body irradiation (TBI) associated premature
aging of HSCs and rejuvenated them and also
resulted in improved function of remaining
HSCs and MuSCs. However, it has some toxic
side effects, which should be taken into account
in further human and animal studies (Chang et al.
2015; Wang et al. 2019; Zhu et al. 2020). Lately,
ABT263 was revealed to have senolytic effects
on aged human BMMSCs and decreased
SA-β-gal staining but did not have a positive
effect on telomere length or epigenetic rejuve-
nation (Grezella et al. 2018). In addition,
dasatinib(D) and querectin(Q) were administered
orally in old mice reduced the number of aged
BMMSCs by interfering with apoptosis pathways
along with improvement in cardiac function,
exercise capacity, and carotid vascular reactiv-
ity.Additionally, in-vitro studies exhibited the
death of senescent human preadipocytes by D
(Zhu et al. 2015; Kaur and Cai 2018). Moreover,
rapamycin has senolytic effects by reducing the
pro inflammatory phenotype of senescent cells.
This concept seems promising and various drugs
have shown therapeutic effects by eliminating
senescent cells(not specifically stem cells) but

further research is required (Grezella et al. 2018;
Wang et al. 2019).

4.7 Extrinsic Strategies

4.7.1 Modification of Stem Cell Niche
Alteration of the stem cell environment, including
vasculature, innervating neural fibers, ECM,
immune, somatic and stromal cells have a pivotal
role in the rejuvenation of the aged stem cells
(Wang et al. 2019). There are different examples
of intervening approaches for rejuvenation via
manipulating stem cell niches, some of which
are shown in Fig. 1. For instance, the lack of
Lnk, an adaptor protein and negative regulator
of HSC homeostasis, which reduces signals of
extrinsic cytokines, enhanced the self-renewal
capacity and prevented the aging- related lineage
bias in mice (Bersenev et al. 2012; Wahlestedt
et al. 2015). Similarly, knocking out the inflam-
matory cytokine Rantes/C-C motif chemokine
ligand 5(Ccl5) resulted in decreased m TOR
activity, increased lymphoid lineages and engraft-
ment potential (Ergen et al. 2012; Wang et al.
2019). Besides, the sympathetic nervous system
(SNS) regulates the function of HSCs and using a
sympathomimetic (β3-adreno receptor
(AR) agonist, BRL37344) as a supplementation
was able to rejuvenate senescent HSCs in mice
(Maryanovich et al. 2018; Zhu et al. 2020). Addi-
tionally, chronic treatment of progeroid mice with
this agonist decreased premature myelopoiesis
and restored the megakaryocyte-HSC interaction
(promoting quiescence of HSCs) (Ho et al. 2019;
Zhu et al. 2020). Since vessel formation in the
niche is reduced during aging, overexpression of
Notch signaling by inhibiting a p16-dependent
pathway can restore the endothelial cells and pro-
long their lifespan. It can be a new target for
treating aging- associated vascular disorders
(Kaur and Cai 2018, Wang et al. 2019). A
circulating factor involved in cardiac disease and
its recovery is IGF-1 that is responsible for stem
cell mobilization and angiogenesis and its
overexpression in transgenic BMMSCs caused
reduced cell apoptosis and improved engraftment
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in the infracted hearts of rats (Haider et al. 2008;
Kaur and Cai 2018). Similarly, IGF-1 transgenic
mice indicated increased nuclear phospho-AKt
and telomerase activity and the overexpression
of IGF-1 preserved CSCs and prevented their
senescence (Torella et al. 2004). Regarding
MuSCs aging, FGF-2 is known to be upregulated
in the niche of aged satellites causing their deple-
tion and diminished regenerative potential. So,
inhibiting FGF signaling by overexpression of
Sprouty1 (spry1) or inhibitory molecule can pre-
vent this depletion (Chakkalakal et al. 2012;
Wang et al. 2019). Moreover, it was found that
the lateral ventricle choroid plexus (LVCP), a
component of ventricular-subventricular zone
(V-SVZ) and producer of CSF, is an important
niche for NSCs during aging and affects their
behavior. It has a role in colony formation and
proliferation and its secreted factors like BMP5
and IGF-1 can improve the function of the aged
NSCs, elucidating new insights into therapeutic
approaches toward NSCs behavior (Silva-Vargas
et al. 2016; Wang et al. 2019). Another factor in
the stem cell niche is the oxygen level. It is
reported that expansion of hCSCs in hypoxia led
to improved engraftment in infarcted hearts in
mice and culturing MSCs under hypoxic
conditions is beneficial as it is similar to the
physiologic condition of the bone marrow
(Hu et al. 2008; Kaur and Cai 2018).

4.7.2 Modification of Systemic
Environment

Not only is the stem cell niche altered during
aging, but also circulatory signals, including
hormones, secreted molecules from different
tissues and immune cells are changed and change
the function of stem cells (Oh et al. 2014; Wang
et al. 2019). In contrast to Wnt signaling in the
myogenic differentiation potential of MSCs, it
can induce aging in MSCs by activating ROS
and in satellite cells, canonical Wnt signaling
can antagonize Notch signaling (Zhang et al.
2013a; Kaur and Cai 2018; Wang et al. 2019).
So, injecting and incubating Wnt inhibitors,
Dickkopf-1(DKK1), and soluble frizzled-related
protein (sFRP3) caused reduced fibrosis and
enhanced muscle regeneration in aged mice

(Brack et al. 2007; Wang et al. 2019). On the
other hand, fibro-adipogenicprogenitors (FAPs),
a regulatory cell in MuSC niche, is impaired
during aging and the secretion of the
FAP-derived matricellular protein WNT1 induc-
ible signaling pathway protein 1(WISP1) is
reduced. Recently, systemic treatment with
WISP1 was able to rescue skeletal muscle regen-
eration and restore the myogenic potential and
function of MuSCs in old mice (Lukjanenko
et al. 2019; Muñoz-Cánoves et al. 2020). Addi-
tionally, IkB kinase-b (IKKb)/Nf-κB have a role
in the hypothalamus- developed –aging and they
inhibit gonadotropin releasing hormone (GnRH).
Therefore, in order to improve neurogenesis and
cognitive ability, systemic treatment with GnRH,
as a potential strategy, could decelerate aging
(Zhang et al. 2013b; Wang et al. 2019). Intrigu-
ingly, oxytocin was reported to be beneficial and
required for regeneration and homeostasis of
muscle tissue. The plasma levels of this hormone
and its receptor on MuSCs decline with age that
reduces muscle regeneration. Accordingly, sys-
temic administration of oxytocin can enhance
the proliferation and myogenesis of MuSCs via
activating MAPK/ERK pathway and it might be a
potentially safe treatment for maintaining aged
muscles and prevent aging (Elabd et al. 2014;
Wang et al. 2019). Moreover, there are controver-
sial data about the effects of circulating protein
growth differentiation factor 11(GDF11), one of
the members of the TGF-β family, the systemic
level of which declines during aging. Injecting
recombinant GDF11 in aged mice could increase
the number of satellite cells and their regenerative
capacity in addition to enhancing autophagy and
improving exercise endurance (Sinha et al. 2014;
Wang et al. 2019). However, several studies have
reported a negative effect of GDF11 on satellite
cells and muscle regeneration including inhibited
differentiation of MuSCs and their reduced popu-
lation, increased fibrosis, and wasting of skeletal
muscle. Also, there are similar opposite findings
of the GDF11effect on bone and cardiac muscle,
so more studies are needed to find out the exact
role of this factor on aging and its associated
complications (Egerman and Glass 2019, Wang
et al. 2019). On the other hand, data on the
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injection of recombinant GDF11 have shown
beneficial effects on neurogenesis and angiogen-
esis in old mice as a rejuvenating factor (Rochette
and Malka 2019; Wang et al. 2019). An interest-
ing approach in the category of systemic modula-
tion is parabiosis which is about the anatomical
joining of two animals. Heterochronic parabiosis
is an experiment in which an old tissue is exposed
to a young systemic environment (for instance a
young and old mice are surgically linked) through
creating a conjoined and shared blood circulation
(Oh et al. 2014; Sinha et al. 2014; Ahmed et al.
2017; Kaur and Cai 2018). The signals from a
young circulation influence the aging tissue and
its function, for example, heterochronic
parabioses in mice could upregulate Notch sig-
naling and restore satellite cell activation (Sinha
et al. 2014; Kaur and Cai 2018). Conboy et al.
reported that parabiotic pairing between young
and old mice increases the proliferation and
regeneration rate in old mice both in-vitro and
in-vivo. They established parabioisis between
young and old mice (heterochronic parabiosis),
two young mice and tow old ones. The muscle of
their hindlimbs was injured and it was revealed
that in contrast to old isochronic prabiosis,
heterochronic parabiosis enhanced the regenera-
tion of muscle in aged mice which was mainly
doe to the activation resident progenitor cells of
the old mice. Also, in heterochronic parabiosis
the Notch ligand Delta was upregulated in aged
satellite cells. Similarly, the aged satellite cells
cultured in the presence of young mouse serum
shoed up regulated Delta expression and
enhanced proliferation (Conboy et al. 2005). Fur-
ther, adult stem cells in the CNS produce new
myelin sheaths as a regenerative process, which
declines with aging. Heterochronic parabiosis in
mice indicated that the remyelination was
enhanced in old mice in addition to restored
neurogenesis of aged stem cells (Katsimpardi
et al. 2014; Oh et al. 2014; Ahmed et al. 2017).
It should be mentioned that despite the promising
outcomes, due to ambiguous and indefinite
known effects of some factors like GDF11, this
method is not completely safe and beneficial
(Ahmed et al. 2017, Kaur and Cai 2018). Besides,
prolonged fasting can protect cells from toxins

and toxicity in mice and humans. In addition, it
was demonstrated that it can rejuvenate HSCs
since it reduced the circulating level of IGF-1
and activity of protein kinase A (PKA). Hence,
it could promote self-renewal and increase
lymphoid-biased lineage (Cheng et al. 2014;
Wahlestedt et al. 2015; Zhu et al. 2020).
Preconditioning is another way to improve sur-
vival and proliferation of stem cells after trans-
plantation (especially for myocardial repair) and
to provide a basis to prevent their senescence
(Khatiwala and Cai 2016). It can be induced by
pharmacological intervention, using anti-aging
compounds and their associated molecular modi-
fication and in-vitro hypoxic shock. As it was
mentioned before, hypoxia is beneficial for cell
therapy to treat infracted heart. Preconditioning
MSCs with hypoxia increased the expression of
anti-apoptotic (Bcl-2) and pro-survival (NF-κB)
proteins and enhanced angiogenesis after trans-
plantation in the infarcted heart (Hu et al. 2008;
Khatiwala and Cai 2016; Kaur and Cai 2018).
Moreover, preconditioning of hCSCs with cobalt
protoporphyrin (CoPP), which induces heme
oxygenase-1(HO-1) and causes cellular protec-
tion, increased their survival, proliferation, and
resistance to stress-induced apoptosis (Kaur and
Cai 2018). Further, prolyl1 hydroxylase enzymes
activate the pro-apoptotic pathways. Hence, using
pharmacological agent Dimethyloxalyglycine
(DMOG) for preconditioning BMMSCs resulted
in increased cell survival, reduced infarct size,
and enhanced cardiac function after transplanta-
tion into infarcted hearts of rats, mimicking the
effects of hypoxia (Liu et al. 2014; Khatiwala and
Cai 2016). A brief summary of these strategies
and some other examples of each rejuvenation
mechanism are exhibited in Fig. 1.

4.8 Cellular Reprogramming

Somatic cell nuclear transfer (SCNT) revealed
that somatic cells could reacquire pluripotency
and thus reverse all differentiation and
age-associated characteristics. This method
required somatic nucleus implantation in an
enucleated oocyte. The molecular factors
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initiating and affecting the differentiation process
in this method are not fully understood (Han et al.
2015). The recent introduction of reprogramming
factors facilitated the process of dedifferentiation
and led to deriving iPSC from senescent somatic
cells. It was proposed that reprogramming aged
somatic or stem cells into iPSCs could reset the
aging- related memory (Oh et al. 2014). For
instance, hematopoietic stem and progenitor
cells (HSPCs) were reprogrammed into iPSCs
and then redifferentiated to HSCs via blastocyst
complementation. The iPCS-derived HSCs
exhibited young functional characteristics and
did not resemble aged HSCs (Wahlestedt et al.
2013; Wahlestedt et al. 2015). IPSCs can be
re-differentiated into young somatic cells that
have lost the senescent phenotype (Takahashi
and Yamanaka 2006; Singh and Newman 2018).
The first, introduced reprogramming factors were
Yamanaka factors or OSKM (Oct4, Sox2,Klf4,
c-Myc), since then, more specific reprogramming
factors have been introduced like NKx3 or Gata4,
Mef2c, Tbx5 (GMT) for cardiomyocytes (Mai
et al. 2018; Tani et al. 2018). In these methods,
both age reprogramming and developmental
reprogramming occur concomitantly. Partial
reprogramming is a method in which the induc-
tion stops when cells are rejuvenated while still
possessing their specialized phenotype and before
the expression of pluripotency associated features
(point of no return). In partial reprogramming
epigenetic rejuvenation is the first step, preceding
dedifferentiation. The most accurate indicator of
rejuvenation in partial reprogramming is called
the epigenetic clock that is based on the level of
cytosine methylation at 353 CpG sites. With the
transient cyclic induction of reprogramming
factors in partial reprogramming senescence-
associated gene expressions, DNA damage
markers and ROS levels decrease without dedif-
ferentiation, teratoma formation or iPCS detec-
tion (Mendelsohn et al. 2017). Since the
introduction of partial reprogramming method, it
has been implanted to rejuvenate senescent cells
in-vivo, identifying stages of differentiation and
directly reprogramming somatic cells into other
differentiated cell types, bypassing the pluripotent
stage (Tani et al. 2018; Hsu et al. 2019; Jasper

2020). Although, this method has not been as
abundantly experimented in the field of senescent
stem cell rejuvenation. Somatic aging stem cells
can also be targeted for partial reprogramming
and rejuvenation. The implantation of partial
reprogramming on mouse-derived skeletal mus-
cle stem cells improved the cells’ myogenic
potential and ability to differentiate into myotubes
and improved single cell’s ability to form
colonies. Transient reprogramming also reduced
the time of the first division and mitochondrial
mass without any effect on the myogenic marker
(MyoD) and the myogenic fate of stem cells.
Rejuvenated stem cells showed higher potency
to regenerate new tissue post-transplantation
compared to aged stem cells and their regenera-
tive potency was equal to young stem cells.
Rejuvenated stem cells also produced a higher
number of myofibers compared to aged stem
cells and had higher cross-sectional area, even
compared to the young untreated stem cells. No
neoplastic lesions or teratomas were discovered
on a three-month follow-up biopsy. On a second
artificial injury, 60 days post-transplantation,
rejuvenated stem cells still produced better results
than both aged and young stem cells. These
results revealed a new method to rejuvenate
senescent stem cells and enhance their regenera-
tion potential (Sarkar et al. 2020) . Cyclic in-vivo
induction of reprogramming factors can induce
expansion in muscle stem cells of old mice and
improve muscle regeneration after injury
(Ocampo et al. 2016).

5 Stem Cells’ Potential to Model
and Study Aging

Whether we consider aging an independent dis-
ease per se or a risk factor for most comorbidities,
in all approaches to aging, the root cause is
biological and molecular mechanisms that lead
to cellular dysfunction and consequently to the
associated diseases. Thus modeling aging in stem
cells can significantly contribute to our under-
standing of cellular mechanisms of aging (Stern
2012; Costantino et al. 2016; Soenen et al. 2016;
Fulop et al. 2019; Hou et al. 2019; Sarbacher and
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Halper 2019). Different animal model organisms
have been used in order to discover cellular aging
mechanisms. Studies on rodent models have led
to great discoveries on aging mechanism and
possible preventive interventions. The effects of
calorie restriction on aging and different
mutations associated with longevity like the
mutation in DNA helicase Wrn., that causes pre-
mature aging, have been studied on mice
(Lombard et al. 2000). The relatively short
lifespan of mice (compared to human), conve-
nience of environmental control and low cost
maintenance are the advantages of rodent models,
however, since different strains show different
prevalence of pathologies and lifespan, choosing
the most suitable rodent models for each study is
still a major obstacle. Furthermore, since these
studies are usually conducted on a single strain,
the results may not be fully representative of
human population (Mitchell et al. 2015).
Non-human primates have also been used to
model and study aging. Their similarity to
humans on many levels is an undeniable advan-
tage; however, long lifespan, complicated and
expensive maintenance, lower reproduction rate
and potential of aggressive behavior are all
drawbacks in using non-human primates as
models to study aging (Mitchell et al. 2015).
Fish, including several fish and killifish, have
also been used to study aging. Short lifespan
and high reproductive rate along with low cost
maintenance are the advantages of using fish as
animal models. Zebra fish has an exceptional
regenerative potential that makes it an ideal
model for regenerative experiments (Gut et al.
2017). There are also invertebrate models of
aging which are mainly used in preclinical devel-
opment of anti-aging drugs. C.elegans are mostly
used in studying neurodegenerative and meta-
bolic aspects of aging, since genes and pathways
involved in neurological and metabolic disorders
in humans have orthologues in C.elegans. The
effects of anti-aging drugs such as Metformin
and Rapamycin have been studied and on inver-
tebrate animal models such as Drosophila
Melanogaster (Folch et al. 2018). While studying
aging in animal models provides invaluable infor-
mation on systematic and cellular pathways of

aging, there are still questions about molecular
factors that induce aging, the relationship
between systematic, cellular and nuclear aging,
the rule of stem cell aging in the aging phenome-
non as well as tissue specific ageing mechanisms.
Answers to these questions are much easier and
reliable found in using stem cells to model and
study aging. Each tissue has its own reserve of
stem cells, which are aging along with the rest of
the cells. Since stem cell function is vital in tissue
regeneration and longevity potential, discovering
stem cell-specific pathways of aging can lead to
preventing stem cell aging and therefore increase
tissue’s longevity. The study of tissue-specific
aging is now possible, since the reprogramming
method gives us a tool to produce tissues and
model aging faster, easier and more precise than
animal modeling. By using iPSCs we can simu-
late aging in any tissue and thus study molecular
factors and biological pathways along with treat-
ment strategies (Brunauer et al. 2017). Both neu-
rodegenerative disorders and cognitive reserve
decline are most prevalently associated with
aging. With the iPSCs derived from human
donors, studies so far have been able to discover
numerous key features of neurodegenerative
disorders, although, since iPSCs-derived neural
cells have lost disease and aging-specific
characteristics and need stressors to induce dis-
ease specific phenotype (Mertens et al. 2015).
Direct reprogramming is a new method that
facilitates studying aging on stem cell models
with direct conversion of one specific cell type
to another without going through the pluripotent
state and thus; conserving aging characteristics
such as accumulation of age-related DNA
mutations, protein damage, mitochondrial nuclear
and protein damage and epigenetic markers of
aging (Chow and Herrup 2015; Mertens et al.
2015; Huh et al. 2016). Different methods have
been experienced to induce direct reprogramming
such as specific transcription factors and micro
RNAs to convert the cells into any specific cell
type (Yoo et al. 2011; Li et al. 2015; Mertens
et al. 2018).The biggest obstacle in using stem
cell direct reprogramming to model aging
associated diseases is the high cost of this method
(Mertens et al. 2018). Direct reprogramming of
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fibroblast cells into cardiac cells have led to
the discovery of many small molecules for
direct cardiac reprogramming, including micro-
RNAs that induce cardiac reprogramming both
in-vivo and in-vitro. In this approach
microRNA1, 133, 208 and 199 can induce direct
reprogramming to cardiomyocytes in fibroblasts
in-vitro. The significance of this method is
that administration of microRNAs into
ischemic cardiomyocytes leads to direct cardiac
reprogramming in-vivo in mouse models
(Jayawardena et al. 2012). Neurons derived
from human fibroblasts with Alzheimer’s show
increased levels of Aβ 42, 38 and Tau levels,
indicating that direct reprogramming can be
used to generate mutation-specific neural cells
for different diseases and use them to study
disease mechanisms and drug discovery
(Mitchell et al. 2015). Direct reprogramming has
also been used to convert astrocytes and
polydendrocytes into functional neurons in-vivo
for brain injury with the help of retrovirus
encoding Neuro-D1, a pro-neural transcription
factor (Guo et al. 2014). These results elucidate
the potential stem cell modeling has for modeling
age-related diseases in-vitro to study their under-
lying mechanisms, explore reprogramming
techniques and drug discovery. Afterwards,
these information, techniques, specific transcrip-
tion factor and small molecules can be used to
treat diseases in-vivo (Traxler et al. 2019).

6 Conclusion

Aging is characterized by functional and regener-
ative potential decline tissue that could be partly
due to stem cell aging. This phenomenon can be
the underlying cause of many aging-related and
degenerative disorders such as Alzheimer’s.
Aging and stem cell dysfunction are codependent,
aging impairs stem cell’s function and impaired
stem cell function contributes to aging. Therefore,
using stem cells to model and study aging-related
disorders like Alzheimer’s, can pave the way for
discovering etiologies and develop more effective
therapies for each etiology. Stem cells can also be
used to generate cerebral organoids that mimic

the brain structure and study all aspects of
Alzheimer’s (Machairaki 2020). Concerning
cell-extrinsic and intrinsic pathways of aging,
many molecular factors and genes have been
identified. In addition to different animal models
of aging, stem cells can be used as a helpful
model per se, for instance using induced pluripo-
tent stem cells (iPSCs) for neurodegenerative
disorders due to their replicative and therapeutic
capacities and stimulating aging to study the
mechanisms, have led to understanding many
important features of aging and the related
diseases (Oh et al. 2014; Ahmed et al. 2017;
Brunauer et al. 2017; Mertens et al. 2018; Ziff
and Patani 2019). Using stem cells to model aging
will solve many obstacles in animal models of
aging, especially the debate of whether or not
these results can be generalized to humans; how-
ever, the biggest problem in developing stem cell
models of aging is the cost. Besides, a new
method called direct reprogramming is
introduced for modeling aging in stem cells, in
which cells can be converted into another cell
type without passing through the pluripotent
stage while the age-related characteristics are
maintained (Yoo et al. 2011; Li et al. 2015;
Mertens et al. 2015). Although these techniques
have some disadvantages, they are considered
beneficial for answering the questions of aging
mechanisms and can contribute to developing
rejuvenation strategies both in-vivo and in-vitro
(Mertens et al. 2018). Moreover, there are several
proposed approaches in order to reverse the
aging process or to treat the aging of stem cells
including alteration of the tissue environment,
telomere lengthening, different pharmacological
interventions, cellular reprogramming and an
emerging of age reprogramming (partial
reprogramming) which is rejuvenating the old
cells without de-differentiation (Ahmed et al.
2017; Shetty et al. 2018; Singh and Newman
2018; Wang et al. 2019). In this review, several
kinds of pathophysiology and mechanisms of
stem cell aging, their potential for studying
aging and the anti-aging approaches along with
the difference between aging of stem cells in
different tissues and some examples of targeting
aging n novel therapies were discussed. Based on
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the studies reviewed in this paper, it seems that
using stem cells in modeling aging and aging-
related disease and developing mutation-based
therapies holds a lot of promise for discovering
new treatment strategies. Using partial
reprogramming technique as a novel strategy to
rejuvenate stem cells can pave the way for new
aging therapies.
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Abstract

Colorectal cancer is the third most common
form of cancer worldwide leading to escalating
mortality rates and mainly includes hereditary,
sporadic and colitis-associated cancer develop-
ment. The escalated mortality rates is due to the
limited treatment options as this form of cancer
is usually not easy to diagnose in its early stages
and are highly invasive leading to rapid metas-
tasis of the malignant cells to the neighbouring
tissue. In order to combat this limitation several
chemotherapeutic regimens are now being
combined with targeted therapies after the
knowledge acquired on the inevitable effects
of the tumor microenvironment on the colon
cancer growth and progress. The colon tumor
niche mainly consists of a large mass of tumor
cells along with various immune cells, inflam-
matory cells, tumor macrophages and
fibroblasts that infiltrate the tumor as it is a
site of predominant inflammation. Among

cells of the microenvironment, mesenchymal
stem cells (MSCs) exhibiting ability to evolve
into cancer associated fibroblasts (CAFs) have
recently generated a major interest in the field.
The physiological state of the tumor microenvi-
ronment is closely connected to discrete steps
of tumorigenesis. The colon cancer cells elicit
various factors with their direct interaction with
MSCs or via paracrine fashion, which modulate
these cells to promote cancer instead of
performing their innate function of abating can-
cer progression. This review intends to high-
light the necessity to exploit the cellular
landscape of tumor microenvironment of
colon cancer and a detailed understanding of
the interactions between tumor epithelial cells
and their stromal/inflammatory elements will
aid in future perspectives for designing thera-
peutic regimens targeting tumor microenviron-
ment to improve the clinical outcome of colon
cancer.
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Abbreviations
CAFs Cancer Associated, Fibroblasts
CC Colon Cancer
CRC Colo Rectal Carcinoma
ECM Extracellular Matrix
EGF Epidermal Growth Factor
EMT Epithelial to Mesenchymal

Transition
FAP Fibroblast Activating Protein
HGF Hepatocyte Growth Factor
MDSC Myeloid Derived Suppressor Cells
MIF Migration Inhibitory Factor.
MMP Matrix Metalo Proteinases
MSCs Mesenchymal Stem Cells
RANTES Regulated on activation, Normal

T-cell Expressed and Secreted
SCF Stem Cell Factor
TAMs Tumour Associated Macrophages
TME Tumour Microenvironment
TNF Tumour Necrosis Factor
VEGF Vascular Endothelial Growth Factor

1 Introduction

Colon cancer (CC) initiates as a benign or a
metastatic mass of cells at any given point in the
lining of the colon or rectum which mainly
includes hereditary, sporadic and colitis-
associated cancer development.
Adenocarcinomas accounting for 95% of the
colorectal tumors usually begin as benign polyps
also known as adenomas that have the potential to
develop into cancerous outgrowths as a result of
accumulated mutations having a profound impact
on the signalling pathways involved in mainte-
nance of cell proliferation and tumor suppression
(Colangelo et al. 2017). It is the third most com-
mon form of cancer worldwide leading to
escalating mortality rates. The aberrated cell

signalling pathways controlling the cell prolifera-
tion, stem cell maintenance and tumor suppres-
sion ultimately lead to the invasive forms of CC
that metastasizes to distant organs wherein the
tumor cells detach from the primary tumors,
intravasate the vascular networks and reach the
neighbouring tissues leading to rapid deaths. The
late diagnosis of this form of cancer often leads to
reduced treatment options as the tumor cells tend
to metastasize at faster rates. The predominant
cause for the progression of CC is the develop-
ment of therapy refractory metastatic disease.
Complex surgical resections of the tumors mostly
do not completely cure the patient of cancer as
there usually occurs a relapse of CC in a more
invasive metastatic form as most of the tumor
cells tend to metastasize even prior to the surgical
removal of the tumor. Prolonged chemotherapy
has also been observed to have evident effects on
the patients however it did not prove to be of great
use in the metastatic disease and rather lead to
predominant drug resistance and tumor develop-
ment (Tauriello and Batlle 2016). Several upcom-
ing treatment options involve chemotherapy in
combination with targeted therapy that targets
not only the tumor cells but also its unique
tumor niche that can lead to a more effective
treatment of the metastatic forms of
CC. Multifold studies have now highlighted that
the escalation and recurrence of tumors are
governed by the genetic alterations in the tumor
microenvironment factors as well apart from the
aberrated cancer cells (Quail and Joyce 2013).
Tumor microenvironment (TME) plays a domi-
nant role in influencing the tumor cells for their
development and progression of CC. A coordi-
nated network of interface cell types mainly
include pericytes, adipocytes, immune cells,
endothelial cells, fibroblasts, and mesenchymal
stem cells through the extracellular matrix and
soluble factors such as cytokines, chemokines,
growth factors and various metabolites enhancing
the tumorigenesis. Tumor assorted macrophage
and myeloid suppressive cells characterize
tumor-promoting immune cells enclave with
their derived cytokines such as interleukin (IL-6,
IL-1β, IL-23) and tumor necrosis factor (TNF- α).
VEGF stimulates vascular endothelial cells for
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the formation of blood capillaries and is enhanced
in the perivascular environment of tumor blood
vessels exhibiting an abnormal physiology, due to
deviant pericytes and permeable endothelial
layers leads to the development of hypoxia and
metastasis. It has been reported that the existence
of MSCs can enhance the metastatic ability of
various cancer including colon cancer.

Cancer-associated fibroblasts (CAFs) in the
TME from the produce an excess of growth
factors, cytokines, chemokines, structural protein
components, and metabolites which are resultant
of diverse precursors like mesenchymal stem cells
(MSC) or endothelial cells so as to further
endorse oncogenesis. An abnormal tumor-
associated MSC can gain distinct functions such
as secretion of TGF-ß to be a factor of epithelial-
to-mesenchymal transition (EMT) and immune-
suppressive activities following their interactions
with tumor cells. Further, deviant MSC are
known to secrete CXCL12 (SDF-1) and also lib-
erate VEGF to sustain tumor cell growth and
survival. MSC have the potential to either impede
or elevate tumor progression within the TME by
their distinctive kind of cellular interactions.
MSCs can be recognized as RANTES (Regulated
on Activation, Normal T cell Expressed and
Secreted) which are expelled by the
CC-chemokines ligand 5 (CCL-5) and further
act together with suitable cytokine receptors like
CCR1, CCR3 and CCR5. The adaptation of
tumor growth and propagation is influenced by
the extracellular matrix (ECM).

The precise contribution of the TME in promot-
ing cancer in highlighted when only a confined
success rate in met when the cancer cells are only
targeted. The tumor microenvironment has there-
fore been considered to play an additional critical
role in cancer progression as targeting only the
cancer cells has led limited success rates in most
of the CC patients (Ribatti et al. 2006). This review
will briefly summarize the current understanding of
the role of various cellular compartments of the
tumor microenvironment in which CCs proliferate
and metastasize and thereafter focus the discussion
on the therapeutic aspect of targeting the major
paracrine factors that govern the fate of colon
cancer progression and metastasis.

2 Tumor Microenvironment
(TME)

The escalating significance towards ecological
therapy for various forms of cancer has given rise
to extensive analysis of the cellular and
non-cellular compartments of tumors which are
commonly referred to as the tumor microenviron-
ment (Wang et al. 2017). These solid tumors are
predominantly a mass of several cell types
providing a tumor specific niche having a profound
effect on the immune status, neovascularization
and establishment of an ECM that promotes the
interactions among the various cells present in the
TME. Tumor niche has been found to play a cru-
cial role in the tumor growth and metastasis that
was well explained by the “seed and soil” hypoth-
esis put forward by Stephen Paget years back in
1889 (Ribatti et al. 2006). According to him the
cancer cells that are represented by the “seed” can
be maintained well only in its specific environment
that was represented by the “soil” thereby,
highlighting the importance of the TME in the
maintenance and progression of cancer (O’Malley
et al. 2016). The tumor microenvironment or niche
is mainly composed of the tumor associated cells,
extracellular matrix, inflammatory cytokines and
matrix associated molecules that play a crucial
role in the tumor cells maintenance, progression
and metastasis. The tumor associated cells mainly
include, immune cells such as T-cells, tumor
associated macrophages, monocytes, neutrophils,
natural killer cells, dendritic cells along with endo-
thelial cells, platelets, cancer-associated fibroblasts
and mesenchymal stromal cells (Peddareddigari
et al. 2010). Due to excessive infiltration of the
TME by the immune cells a chronic inflammatory
response is elicited that plays a critical role in the
neoplastic process. The essential role of inflamma-
tion in cancer progression was first described by
Rudolf Virchow in 1863 (David 1988). The neo-
plastic process has several signaling pathways sim-
ilar to those observed during an inflammatory
response such as apoptosis, angiogenesis and
escalated proliferation rates. The inflammatory
process involved in normal tissue repair is resolved
post tissue regeneration and pathogen elimination
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and homeostasis is maintained. However, chronic
inflammation of the tissues in some cases has been
observed to give rise to malignant transformation
of the normal stromal cells and inhibit the restora-
tion of normal homeostasis thereby leading to car-
cinogenesis (Landskron et al. 2014). The TME
enables the malignant cells to evade clearance by
the immune system and promote vascularization of
the tumor by the release of various cytokines and
matrix molecules which ablate the efficacy of sev-
eral therapeutic regimens (O’Malley et al. 2016).
The chronic inflammation and release of
chemokines by the tumor cells as well as the stro-
mal cells of TME are the key factors governing the
tumor niche (Melzer et al. 2016). The complex
mechanisms of tumor development and progres-
sion can therefore be analysed clearly by observing
the interactions between the several factors and
cells residing in the tumor specific niche (Melzer
et al. 2016) (Fig. 1).

2.1 Structural Scaffold for the Tumor
Stroma

Fibrous protein in the tumor stroma includes elas-
tin, collagen, fibronectin, proteoglycans like
chondroitin sulphate and hyaluronic acid which
are subsisted in the ECM and is also mainly
enriched with collagen. Soluble factors such as
growth factors, angiogenic factors, cytokines and
chemokines are abundantly present in tumor
stroma. Collagen involves the deposition and
tight organization of matrix proteins like elastin,
laminins and also the altering enzymes such as
lysyl oxidase, leads to a more inflexible pheno-
type of complete tumor. Fibronectin is associated
in tumor invasion and metastasis (Chen and
Huang 2014).

2.2 Cellular Components of the TME
in Colon Cancer

Tumor niche consists of a class of non-malignant
cell types such as immune cells, endothelial cells,
fibroblast and MSC which expand the tumor-
assisted functions along with the soluble factors

and ECM components interconnects with the can-
cer cells to disseminate tumorigenesis. The tumor
microenvironment in CC is comprised of multiple
components such as vasculature, tumor-
infiltrating cells, extracellular matrix (ECM),
and other matrix-associated molecules. A detailed
characterisation of the cellular landscape and their
role in cancer progression has been explained in
the below sections.

2.2.1 Immune Cells
Immune cells play a prominent role as gate-
keepers and protectors of the body from various
infections and cancers. Cancer immune-
surveillance involves the role of both the innate
and the adaptive immune system to eradicate the
tumor from the body. However, the immune-
surveillance tends to be affected due to the
interactions of the immune cells with other cellu-
lar components, cytokines and ECM molecules
present in the TME. Due to varied response of the
immune system during cancer progression the
concept of immune-editing has been introduced
which includes three stages namely, elimination,
equilibrium and escape. These cancer cells are
either eliminated by the immune cells else they
acquire adaptations making them resistant to the
immune clearance and thereby maintain their
pool resulting in cancer progression (Colangelo
et al. 2017). The first stage mainly involves the
complete clearance of the tumor cells effectively
by the immune cells and various other critical
signaling molecules involved in the immune
clearance process. Post tumor clearance these
immune cells and active molecules result in
immune-editing wherein the immune cells in the
equilibrium state are unable to completely elimi-
nate the tumor from the body as the cancer cells
have adapted to the immune-surveillance by
establishing phenotypic alterations such as epi-
thelial to mesenchymal transition. However, at
this stage even though the immune cells are
unable to completely eliminate the tumor cells
they are capable to limit the tumor growth to a
certain extent. Therefore, the immune microenvi-
ronment have been found to play a role in the
retaining a pool of dominant cancer cells that can
repopulate the tumor and maintain tumor growth.
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In the escape stage, the immune cells assist the
tumor cells in effectively escaping from the
body’s immune clearance and promote cancer
invasion by releasing anti-cancer proteins and
cytokines. Therefore targeting these interactions
of the cellular components of the tumor niche will
be proving to be a more potent cancer therapeutic
regimen (David 1988).

2.2.2 Tumor Associated Macrophages
(TAM’s)

Macrophage plasticity has been observed to mas-
sively impact the tumor growth and invasion
potential. TAM’s play a critical role in the regu-
lation of the tumor niche in colon cancer.
Macrophages have always been recognized as
critical effector cells for the clearance of the
tumors. However, recent studies have highlighted
the role of macrophages as TAM’s in assisting the

cancer cells in altering their phenotypes as well as
promoting tumor invasion. TAM’s have been
observed to crowd at the tumor edges and induce
apoptosis of the cancer cells however; those
populated near the tumor invasion sites have
been found to possess reduced potential in tumor
ablation (Wang et al. 2017). TAM’s are main
contributors in promoting tumor angiogenesis
(Balkwill et al. 2012). This dual role of the
macrophages can be explained by their ability to
alter their phenotypes and their potent plasticity
that can be attained by altering their polarization
according to the current conditions. Macrophages
are mainly classified into two distinct types based
on their polarization states such as M1 and M2
macrophages. The M1 macrophages are the
normally activated macrophages that release type
I pro-inflammatory cytokines and elicit an anti-
tumorigenic response. However, the M2
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macrophages that are alternatively activated
release type II cytokines that elicit an anti-
inflammatory response and thereby promote
tumor growth and invasion. These TAM’s have
been observed to enhance tumor invasiveness by
intricate paracrine interactions between the cancer
and the macrophages mainly including factors
such as tumor-derived CSF-1 and macrophage-
derived EGF. Targeting this switch of macro-
phage toward tumor enhancing phenotype and
characteristics can be useful to block tumor
increase (Quail and Joyce 2013).

2.2.3 Mesenchymal Stem Cells (MSCs)
MSCs are distinctive multipotent cells which pos-
sess distinct characteristics such as self-renewal,
anchorage- dependent and their differentiation
potential that exist in perivascular environment
of the human tissues and organs such as bone
marrow, adipose tissue and fetal tissues compris-
ing of placenta, amniotic membranes and umbili-
cal cord. MSCs have an excellent potential to drift
to the site of inflammation and to sustain tissue
repair, angiogenesis, stem cell homeostasis,
immune inflection and thus elevate tumor pro-
gression by liberating various endocrine and para-
crine signals. Exosomes are extracellular vesicles
which aid in the intercellular contact with the
neighbouring tumor cells and mesenchymal
stroma cells. Movement of MSCs to the site of
inflammation or tumor microenvironment is
facilitated by the exosomes to secrete chemokines
such as CXCL1, CCL2, IL-6 and growth factors
like TGF-β1,VEGF and PDGF-BB (Rhee et al.
2015). Thus, the focal point of the extracellular
vesicles to the tumor cells helps in their migration
and paves the way to tumor malignancy.
Exosomes arising from MSCs receive their stim-
ulation from matrix metalloproteinase-
2 (MMP-2) and ecto-50-nucleotidase activity
along with miRNA facilitates cancer progression.

Migration of MSC’s to the TME and Their

Potential Interface

The MSCs can be attracted and recruited into
damaged tissues by releasing enormous amounts
of inflammatory cytokines and chemokines. The
malignant tissues are well known for the release

of several chemokines during the tumor develop-
ment. The chemokines such as CCL2, CCL15,
CCL20, CCL25, CXCL1 and CXCL8 have been
identified to greatly impact the homing of the
MSC’s to the tumor niche. The possible paracrine
interactions between MSCs and CC cells in the
TME during CC progression have been
summarized in Fig. 2. These active factors can
be secreted to implement profound effects on the
cells via paracrine signaling or by releasing
exosomes that are extracellular vesicles
containing substantial amounts of the secreted
factors. The recruitment of MSC’s therefore
activates these stem cells and results in spontane-
ous release of a set of other inflammatory
cytokines that promote tumor development and
maintenance of tumor niche (Ali et al. 2015a).
These MSC’s upon activation in the TME trans-
form into malignant cells commonly known as
the cancer associated fibroblasts (CAFs). These
CAF’s promote tumor progression and metasta-
sis. These CAF’s are mainly characterized by
expression of α-smooth muscle actin, PDGF
receptor-β. These malignant fibroblast have also
been observed to induce epithelial to mesenchy-
mal transitions in the cancer cells by the expres-
sion of proteins such as MMP, TWIST, WnT5A
and TGF-β type-I receptors that in turn give rise
to aggressive forms of tumors (Peddareddigari
et al. 2010). Based on recent research for the
underlying mechanism of interaction between
MSCs and CC cells in tumor niche, some signifi-
cant factors has emerged which upon targeting
might lead to suppression of cancer progression
(Fig. 3).

2.2.4 Cancer Associated Fibroblasts
(CAF’s)

The stroma is the most essential component that
maintains the tissue architecture that provides a
base for the residing cells. Fibroblasts are the
most common cells present in almost all the
tissues of the body. These spindle-shaped cells
predominantly found the colon in the normal
colonic mucosa are situated adjacent to the
colon mucosal epithelium. They are known to
play a role in the synthesis, deposition and turn-
over of the basement membrane components. The
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crosstalk between these fibroblasts and the epi-
thelium via paracrine signaling results in the
maintenance of tissue integrity (Wang et al.
2017). Therefore these fibroblasts are also found
to infiltrate the tumors and play a major role in
maintaining the tumor growth and TME. These
fibroblasts get activated in the TME and give rise
to cancer associated fibroblasts (CAF). The
CAF’s have been found to promote cancer cell
proliferation and metastatic potential. These cells
are mainly characterized by the altered expression
of α-SMA, vimentin, fibroblast activating protein
(FAP), platelet-derived growth factor receptors α
and β, fibroblast specific protein-1 (FSP1), the
chondroitin sulphate proteoglycan neuron-glial
antigen-2 (NG2), and prolyl-4-hydroxylase
(Colangelo et al. 2017). These cells secrete con-
siderable amounts of stromal-cell derived factor
1 that specifically binds to the CXCR-4 expressed
by the tumor cells thereby promoting tumor inva-
sion and angiogenesis (Chen and Huang 2014).
The CAF’s formed from the modified fibroblasts
present in the tumor niche have been observed to
secret multiple factors which influences the inva-
sive potential of the tumor, its angiogenesis as
well as tumor progression. These factors mainly
include miRNAs 200b and 155, angiogenesis fac-
tor VEGF, chemokines such as SDF1 also known
as CXCL-12, hepatocyte growth factor (HGF),
epidermal growth factor (EGF), macrophage
migration inhibitory factor (MIF), and various
other interleukins as well (Wang et al. 2017;
Bahrami et al. 2018). TGF-β released by the
fibroblasts has been known to induce epithelial
to mesenchymal transition of the cancer cells
thereby contributing to the immune-suppressive
tumor niche. Studies have indicated that elimina-
tion of these FAP- positive cells resulted in spon-
taneous tumor necrosis mediated by the factors
IFN-γ and TNF-α (Quail and Joyce 2013).

2.2.5 Vascular Endothelial Cells
and Pericytes

Tumor cells are well known to promote the infil-
tration of endothelial cells into the tumor compart-
ment in order to promote neovascularization.
Several soluble factors such as VEGF, FGF,
PDGF and various other chemokines play

important roles in promoting tumor growth by
promoting tumor vasculature.When a blood vessel
ruptures in the tumor vicinity the angiogenic
signals are released from the malignant cells
stimulating formation of new blood vessels. The
formation of these new aberrant and uneven blood
vessels results in the leakiness which is one of the
major reasons of excessive metastasis of the malig-
nant cells (Chen and Huang 2014). Pericytes are
cells of mesenchymal origin that form a support
system for blood vessel formation and function.
These mainly provide structural support and there-
fore depletion in their pool results in the formation
of excessive aberrant and leaky blood vessels
which results in a higher rate of tumor metastasis
(Wang et al. 2017).

2.2.6 Myeloid Derived Suppressor Cells
(MDSC)

MDSC or immature myeloid precursor cells are of
immense interest as they are implicated in cancer
immune suppression as well as immune suppres-
sive states of colon cancer. These cells are broadly
characterized as CD11b+, CD33+ and LIN�,
HLA-DR�, cells in humans. MDSC consists of a
heterogeneous set of precursor myeloid cells capa-
ble of suppressing the adaptive immune response.
MDSCs proliferation is influenced by
pro-myelopoetic factors produced by colon cancer
cells which include M-CSF, IL-6, PGs, GM-CSF,
VEGF and stem cell factor (SCF). As the MDSC
proliferate, they induce a negative feedback inhibi-
tion on the T cell and NK cells activity thereby
arresting the immune response against the colon
cancer progression (Wang et al. 2017).

3 Non-cellular Components
of the TME of Colon Cancer

The colon cancer TME is not only composed of
several cell populations but also includes multi-
fold active molecules and ECM components that
equally contribute in maintaining the malignant
microenvironment as well as promote the tumor
growth and metastasis.
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3.1 miRNA in Colon TME

These small non-coding RNA’s have been known
to play a crucial role in several physiological
processes and also have conspicuous role in vari-
ous pathological conditions including cancers.
Interestingly this microRNA’s have been
observed to not only regulate the cancer cells
but also have an impact on the tumor stroma
which in turn gives rise to drastic progression of
the cancer (Jiang et al. 2017). The alteration in the
function and the stages of different tumors has
been found to be associated with altered miRNA
expression. The miRNA expression in colorectal
cancer has been well elucidated. The miRNA’s
with escalated expression levels during CRC
include miR-21, miR17, miR-155, miR-146,
miR-221, miR-31, miR-25 and miR-196
(Strubberg and Madison 2017). Around
35 microRNAs have been observed to be either
escalated or abated in CC. A detailed chart of the
highly up and down regulated miRNAs, their
target genes and possible signaling pathways
involved are depicted in Table 1 (Inoue et al.
2012; Sansom et al. 2010; Ibrahim et al. 2011;
Wang et al. 2015; Zhang et al. 2010, 2018; Xu
et al. 2014; Schee et al. 2010; Mohammadi et al.
2016). These variations in the miRNA expression
are found to be result of repeated chromosomal
aberrations. Both normal as well as malignant
cells have been found to release miRNA’s into
the peripheral blood that are protected from
RNase degradation by protective vesicles known
as exosomes. The crosstalk between the other
cells of the tumor niche and the cancer cells via
autocrine or paracrine signalling is crucial for the
progression of cancer. These interactions are
brought about by these exosomal miRNA that
are released by the cancer cells in order to pro-
mote the neighbouring cells to maintain the
required tumor niche for enhanced cancer pro-
gression and metastasis. The released exosomal
miRNA’s have also been observed to provide a
premetastatic environment that enhances perme-
ability and vascularization of the tumor that in
turn promotes the metastasis of the malignant
cells to the neighbouring organs (Strubberg and

Madison 2017). This exosomal microRNA’s can
be easily detected in the plasma levels thereby
coming forward as an effective target for diagno-
sis as well as CC treatment. The microRNA’s
miR-17-3p and miR-92a have been observed to
be drastically abated in CC patient’s post-surgery
thereby indicating their excessive expression dur-
ing cancer progression. MiRNA-29a has been
observed to help differentiate between advanced
stages of CC from other bowel disorders. Colon
cancer progression can be effectively regulated by
directly targeting these miRNA expressions by
directly blocking/inhibiting these miRNA’s or
by downregulating the expression of these
miRNA’s by antisense oligonucleotides or pro-
moter methylation (Inoue et al. 2012). Multifold
tumor suppressor miRNA’s have also contributed
widely to the regulation of CC progression. These
beneficial miRNA’s are mostly transferred by
viral vectors that release these RNA’s at the
tumor site to achieve maximal tumor abatement.
Several tumor suppressive miRNA’s are now
being delivered not only to the malignant cells
but also the tumor stromal cells present in the
immediate tumor microenvironment. The deliv-
ery of these miRNA’s have been found to modu-
late the tumor associated dendritic cells from an
immunosuppressive to an immune-stimulatory
state resulting in enhanced reduction of the
tumor as they are subjected to the body’s immune
system.

3.2 miRNA from TAMs in Colon
Cancer TME

Recent studies have highlighted the role of the
immune cells to also play a vital role in the
initiation, progression and metastasis of various
cancers. The macrophages in the tumor niche
have been observed to be polarized from an
anti-tumorigenic (M1) to a pro-tumorigenic
(M2) state by alterations in their metabolic
pathways. This has been analysed due to the
predominant dysregulation of the miRNA
expression profiles of the normal macrophages
after the onset of cancer. Therefore, several
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Table 1 A detailed table of the highly up and down regulated miRNAs, their target genes and possible signaling
pathways involved in colon cancer

S.
No Name Target genes Role in colon cancer

Signalling
pathway

Regulation
up/down References

1 miR- 107 HIF-1β, VEGF Inhibit angiogenesis HIF-1β
Hypoxic
signalling

# Inoue et al.
(2012)

2 miR 802 AG-II,HATIR Mediate angiogenesis Angiotensin II,
ERK pathway

" Sansom
et al.
(2010)

3 miR 145 HIF-1,VEGF Inhibit angiogenesis IRS I # Ibrahim
et al.
(2011)

4 miR 194 THBS1, Promote angiogenesis MAP4K4/c-
Jun/MDM2

" Wang
et al.
(2015)

5 miR 27a GT-094 Promote angiogenesis PINK1
regulation in
mitophagy

# Zhang
et al.
(2010)

6 miR-7 XRCC2, PAX6, YY1 Tumor suppressor CDK6
signalling

" Xu et al.
(2014)

7 miR-21 PTEN, PDCD4,SPRY2 Tumor progression Akt signalling
pathway

" Schee
et al.
(2010)8 miR-22 HIF-1α Tumor suppressor HIF-1α

Hypoxic
signalling

#

9 miR-31 SATB2 Oncogenesis Autophagy "
10 miR-92a KLF4 Proliferation and

migration
MMP2 and
E-Cadherin

"

11 miR-101 COX2 Tumor suppressor Oxidative stress
pathway

#

12 miR-155 MSH2, MSH6 AND MLH1 Tumor supressor Cell cycle #
13 let-7c AURORA KINASE A AND

B
Tumor supressor Cell cycle arrest #

14 miR-126 CXCR4 Tumor suppressor NF -κB
pathway

#

15 miR-
130b

INTEGRIN Β1 Tumor suppressor Not reported "

16 miR-132 ZEB2 Tumor suppressor EMT #
17 miR-139-

3p
INSULIN-LIKE GROWTH
FACTOR -1 RECEPTOR

Tumor suppressor Not reported #

18 miR-15 BCL Tumor suppressor NF-κB #
19 miR-16 KRAS Tumor suppressor p53 #
20 miR- 81b PDCD4 Tumor progression STAT3 "
21 miR-183 ABCA1 Tumor progression Cholesterol

pathway
"

22 miR-195 BCOX1, BCL-2, AND
CARMA3

Suppress tumor cell
proliferation and
metastasis

RAS #

23 miR-196a HOXD8 Tumor suppressor PI3K-AKT-
mTor

"

24 miR-
196b

GATA6 Tumor suppressor Wnt/β-catenin "

25 miR-203 CDK6 Tumor progression Not reported "
(continued)
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approaches have been made to target these
dysregulated miRNA profiles to revere the polar-
ization of the TAM’s to normal macrophages and
bring about effective anti-tumorigenic effects.
The miR-511-3p that encodes for the
macrophage-mannose receptor has been found
to possess altered expression in the MRC1+

TAM’s by escalating the expression of this
miRNA in the TAM’s resulted in enhanced sup-
pression of the pro-tumoral genes thereby
inhibiting tumor growth and alterations in the
blood supply to the tumors. The escalated release
of cytokines from this TAM’s resulted in aber-
rated cancer progression. Excessive expression of
miRNA-155 has been found to attenuate the
release of multifold cytokines such as IL-6,
IL-10 and TNF-alpha that play a vital role in
promoting malignancies. The escalated expres-
sion of miRNA-155 resulted in evident reversal
of the TAM’s to normal anti-tumorigenic
macrophages (Sansom et al. 2010).

3.3 Extracellular Matrix (ECM)

Almost all the mammalian cells remain in close
contact with their surrounding stromal matrix
whose components and composition varies in
different organs, cell types and medical

conditions such as cancer. The extra cellular
matrix is mainly composed of 5 essential
components namely collagens, laminins,
fibronectins, proteoglycans and hyaluronans.
These ECM components bind to the integrins
present on the cell surface and provide the
required mechanical and physicochemical sup-
port to the cells. The ECM is also critically
involved in the cell migration and bears several
growth factors that play a major role in
maintaining the cell pool. The stromal cells and
epithelial cells in contact with each other coordi-
nate and produce the basement membrane (BM)
that has a significant role in cancer progression.
The loss of the BM components or their inappro-
priate synthesis alters the cell physiology thereby
being a key player in the onset of the disease. For
instance the loss of the ECM component laminin-
5 is major contributor in colon cancer progres-
sion. An altered ECM composition has been
found to give rise to a switch in the role of the
integrin α6β4 that is also known as the tumor
antigen. Enhanced expression of this integrin
has been found to give rise to escalated
aggressiveness and poor prognosis of the devel-
oping tumors. In colon carcinoma this integrin
promotes cell migration on laminins-1 thereby
contributing to the metastatic potential of the
malignant cells. The metabolism of the ECM

Table 1 (continued)

S.
No Name Target genes Role in colon cancer

Signalling
pathway

Regulation
up/down References

26 miR-215 THYMIDYLATE
SYNTHASE (TS)

Tumor suppressor Not reported "

27 miR-224 KRAS, Tumor suppressor ERK, Akt
pathway

"

28 miR-340 PKM Tumor suppressor Glycolysis #
29 miR-35p NOTCH-1 Tumor suppressor Notch

signalling
#

30 miR-320e SOX4 Tumor suppressor Wnt/β-catenin "
31 miR-17-

5p
E2F1 Tumor progession Not reported "

32 miR-106a RUNX3, PRB Tumor suppressor pRB pathway #
33 miR-144 NRF2 Tumor suppressor mTor #
34 miR-145 KRAS, C-MYC Tumor suppressor Not reported #
35 miR-494 APC Tumor progression Wnt/β-catenin

signalling
" Zhang

et al.
(2018)
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molecules is an essential aspect involved during
tissue homeostasis and the response of cells
towards acute and chronic stresses. Several
types of proteinases participate in ECM turnover,
however matrix metalloproteinases (MMPs) are
known to be the major ECM degrading enzymes
along with urokinase-type plasminogen activator
(Rhee et al. 2015). The ECM degradation being a
common phenomenon during cancer develop-
ment, these enzymes involve the interactions of
the stromal and the cancer cells upon ECM loss
thereby inducing a profound effect on the stromal
cells via direct contact or paracrine signaling.
These interactions therefore promote the metasta-
sis of the malignant cells (Ali et al. 2015a).

3.4 Matrix Metalloproteinases

The MMP’s are a group of zinc-dependant
endopeptidases that play a crucial role in the
hematogenous metastasis process by carrying
out the degradation of the ECM. Many matrix
metalloproteinases have been linked to the colon
cancer progression and metastasis (Ibrahim et al.
2011) MMP-9 is a common 92-kDa proenzyme
which has the potential to degrade type IV colla-
gen post activation. MMP-2 another important
matrix metalloproteinase plays a crucial role in
CC progression and invasion. Elevated expres-
sion of MMP-2 has been observed in bladder
cancer, lung carcinoma, colorectal cancer gastric
and breast cancer. Studies working on the silenc-
ing of MMP-2 in colon cancer cell lines have
indicated significant ablation of the cell prolifera-
tion, invasion and colony forming capacity
(Wang et al. 2015; Zhang et al. 2010). Particu-
larly, MMP-7 overexpression has been observed
to occur during the intiation of the carcinogenic
cascade post transformation of the normal
mucosa into carcinogenic adenomas. Data
obtained from in vitro studies have shown that
MMP-7 expression is related to the invasiveness
of the primary tumor cells (Xu et al. 2014) in
colon cancer and overexpression of MMP-7 has
also been reported in pancreatic (Schee et al.
2010) and breast (Zhang et al. 2018) carcinomas,
respectively. Recent studies reported that MMP-7

appears to be an early event in the adenoma-to-
carcinoma pathway (Mohammadi et al. 2016),
hence multiple experiments are being carried out
by utilizing MMP inhibitors for the prevention or
treatment of colorectal cancer.

3.5 Cytokines

The colon cancer onset is mainly observed in
patients initially afflicted by inflammatory bowel
disease that occurs due to a noticeable loss of
balance between the pro-inflammatory and regu-
latory cytokines. The malignant cells possess the
ability to modulate the stroma and the immediate
microenvironment by secreting multifold factors
that recruit inflammatory cells and activate stroma
cells in the TME. These cells in turn release several
factors such as cytokines, chemokines, growth
factors and proteases that promote tumor progres-
sion and metastasis. Along with these factors these
cells also release several relative oxygen and nitro-
gen species which induce genetic alterations
thereby promoting cancer. Chemokines can be
directly secreted into to the extracellular space or
via vesicles. Multifold cytokines such as TNFα,
IL-8, IL-6 and VEGF, have been noticed to be
elevated in colorectal carcinoma (CRC) patients
(Kuninty et al. 2016). Escalated levels of TNF-α
and IL-6 have been observed to result in the activa-
tion of NF-κB and STAT3 pathways. Interleukin
1β a potent pro-inflammatory cytokine secreted in
voluminous amounts by the macrophages in the
tumor niche is known to promote the secretion of
other inflammatory cytokines and chemokines such
as TNFα, IL-6, IL8, IL-17, COX-2 and PGE2 that
promote the colon cancer cell growth and progres-
sion. The colon cancer cells stimulate the
macrophages present in the TME to secrete multi-
fold amounts of IL-6 that is known to activate
STAT3 in the malignant cells. This cytokine plays
a crucial role in maintaining the growth of the
tumor cells as the inhibition of this chemokine
resulted in evident decrease in the growth potential
of the malignant cells. This cytokine is also
secreted in substantial quantities by various other
stimulated cells residing in the tumor vicinity
mainly including fibroblasts, monocytes,
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endothelial cells and immune cells namely the B
and T-lymphocytes. Another critical cytokine in the
TME is IL-10, this cytokine has predominant inhib-
itory effects on the pro-inflammatory cytokines
such as IL-1β, TNFα and IL-6and is mainly
secreted by Th2 cells, B cells, tumor cells and
macrophages. Abated levels of this cytokine result
in drastic progression of the tumors. Several
chemokines released by the cancer cells such as
CC15, CCL-2, CCL-20, CXCL-8 that promote the
attraction of the MSC’s towards them. The tropism
of the MSC’s is also affected by the release of
certain active factors such as VEGF, HGF and
TGFβ. The MSC’s upon activation by the colon
cancer cells secrete detectable amounts of CXCL-1,
CXCL-2, CXCL-12 and IL-6 (Zucker and Vacirca
2004). These pro-inflammatory cytokines and its
associated pathways have emerged as potential
targets for effective and alternative cancer therapy.

4 Future Perspectives
and Therapy

4.1 Effective Molecular Interaction
of MSCs with Tumor Cells

Cellular and molecular mechanisms involved
when mesenchymal stem cells are co-cultured
along with distinctive cancer cell types such as
colon cancer, lung cancer, breast cancer, ovarian
cancer cell lines exemplify an intercellular con-
tact with tumor microenvironment evolving the
expression of MSC surface markers such as
CD90, CD105, and CD73 on the cell surface
both in vitro by appropriate differentiating
conditions (Melzer et al. 2016). For instance,
when co-culturing adipose derived MSCs with
colon cancer cell lines such as HCT116 cells,
LoVo cells, SW480, LS174T, and CCD-18 Co,
it has been recognized to explicit epithelial- mes-
enchymal transition (EMT) correlated genes like
ZEB1, ZEB2, Slug, Snail, Twist and also
stemness genes such as Oct4, Sox2, Nanog,
Bmi1 which are known to be intensified in
co-cultured system along with other associated
cancer genes namely MMP1, IL10, TGF-(α, β),
COL1A1, IFN-γ, VEGFA etc. (Dong et al. 2011).

Thus, it is proven that the MSCs enhance the
tumor propagation and malignancies in conjunc-
tion with knocking down or up-regulating certain
genes along with other growth factors and signal-
ing pathways in their tumor niche (Melzer et al.
2016). In tumor malignancy, it has been identified
as tumor cells along with MSCs imply certain
gene transcripts and other growth factors trigger
various signaling pathways. They are instigated
that according to their diverse cancer cell types in
the tumor niche, it is comprised of notch, Hedge-
hog, Wnt, PI3K, NF-κB, and STAT pathways
which are specifically activated or inhibited
depending on the paracrine signals in their
tumor stroma. Therefore, paracrine signals are
proven to enhance the MSCs residing in the
tumor niche of colon cancer more precisely
(Illemann et al. 2006; Gout and Huot 2008). In
contrast to the tumor-enhancing ability of MSCs,
different studies have shown that MSCs inhibit
tumor progression and metastasis by inhibiting
angiogenesis, suppressing immune responses,
suppressing Wnt and Akt signaling, and inducing
apoptosis or cell cycle arrest in the G0-G1 phase
of the cancer (Lazennec and Lam 2016). Due to
their tropism to the tumor niche, mesenchymal
stem cells are considered to be a promising vector
for the delivery of antitumor agents.

4.2 Targeting of TME by miRNAs

A number of malignancies have been associated
with characteristic miRNA signatures (Chen et al.
2015; Lu et al. 2005; Bullock et al. 2013). Com-
pared to normal tissues, miRNAs have been
found to be dysregulated in cancers. Recent stud-
ies have highlighted the inevitable role of
miRNAs in the progression of CRC. The
miRNAs of the cancer cells via the non-cell
autonomous mechanism have been found to elicit
an impact on the TME by altering the miRNA
profiles of the non aberrated neighbouring cells
and resulting into their conversion into cells
possessing cancer promotive effects. Many stud-
ies have highlighted the role of CAF in the initia-
tion and progression of cancer. Changing of
phenotype to CAFs is responsible for trans-
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differentiation properties as well as CAF
associated tumorigenic actions of stromal cells
in TME (Sansom et al. 2010). One of the most
common miRNAs that has been reported to be
predominantly present in the tumor cells as well
as the CAFs of pancreatic and colorectal tumors is
miRNA-21 (Lu et al. 2005; Bullock et al. 2013;
Ali et al. 2015b). Hence studies that utilized
antagomiR for the inhibition of miR-21 resulted
in decreased migration/invasion potential of the
CAFs (Chen et al. 2015; Lu et al. 2005). The CAF
phenotype can be induced by both altered
escalated as well as abated expression of certain
miRNAs (Bullock et al. 2013; Ali et al. 2015b).
Abrupt expansion of the roles of miRNAs in
tumor microenvironments has come forward.
For the use of miRNAs in therapeutics, it is vital
to deliver miRNA mimics cells or antagomiRs
directly into the target cells. However, the
polyanionic nature, hydrophilicity, and high
molecular weight of naked miRNAs make it
impossible of them to pass through cell
membranes. Rapid removal by urine has been
observed when the chemically modified anti-
miR oligonucleotides are administered in the
absence of a carrier as they exhibit limited tissue
distribution. Viral and non-viral encapsulation
strategies and nanoencapsulation of miRNAs to
protect miRNAs from degradation by nucleases,
along with improved circulating half-life had
been reported earlier (Sansom et al. 2010).

5 Concluding Remarks

The progression and metastatic potential of the
colon cancer cells is predominantly supported by
the immediate tumor microenvironment that con-
sist of several cellular and non-cellular
components that promote the sustenance and
spread of these malignant cells to other organs of
the afflicted patient. The TME mainly comprising
of the immune cells such as T-cells, B-cells,
Tumor associated Macrophages, fibroblasts,
CAF’s, and acellular components mainly compris-
ing of the ECM, cytokines and chemokines that
have predominant effects on the signalling
pathways involved in colon cancer progression

and metastasis. Therapeutic agents that can alter
the colon cancer ecosystem may be effective in
preventing or treating the metastatic diseases.
Colon cancer cells rely on stromal factors to pro-
liferate and migrate (Rhee et al. 2015; Heslin et al.
2001). Therapeutic targeting of stromal cellular
components, including inflammatory cells such as
CAFs, TAMs, immune cells, endothelial cells and
the vasculature, ECM, and matrix-associated
molecules, must therefore be considered eventu-
ally. Therapies targeting the tumor niche mainly
the small molecule inhibitors, antibodies blocking
the interactions between the tumor cells and the
other cells of the TME will give rise to a more
effective alternative therapy as the cancer progres-
sion is blocked at the molecular level by targeting
the cytokines and the exosomal interactions and
thereby abating the activation of signalling
pathways involved in the progression and metasta-
sis of colon cancer cells. In order to develop multi-
fold strategies for the in-vivo delivery of miRNA
the mechanisms of miRNAs have been extensively
analysed. However, there are a few setbacks that
are being worked on. One of the major issues is the
poor cancer tissue permeability in miRNA based
therapy. Heterogeneous tumor perfusion and inter-
stitial fibrosis has resulted in the inefficiency of the
penetrating miRNA-containing delivery vesicles
with or without targeting moieties in the tumor
microenvironment. In order to promote alternative
and more effective cancer therapies the compli-
cated nature of the cancer cell–host cell
interactions and cell–ECM interactions in the
tumor are to be understood.
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