
Rule-Based Top-Down Parsing for Acyclic
Contextual Hyperedge Replacement

Grammars

Frank Drewes1 , Berthold Hoffmann2(B) , and Mark Minas3

1 Umeå Universitet, Umeå, Sweden
drewes@cs.umu.se

2 Universität Bremen, Bremen, Germany
hof@uni-bremen.de

3 Universität der Bundeswehr München, Neubiberg, Germany
mark.minas@unibw.de

Abstract. Contextual hyperedge replacement (CHR) strengthens the
generative power of hyperedge replacement (HR) significantly, thus
increasing its usefulness for practical modeling. We define top-down pars-
ing for CHR grammars by graph transformation, and prove that it is
correct as long as the generation and use of context nodes in produc-
tions does not create cyclic dependencies. An efficient predictive version
of this algorithm can be obtained as in the case of HR grammars.

Keywords: Graph transformation · Hyperedge replacement ·
Contextual hyperedge replacement · Parsing · Correctness

1 Introduction

Contextual hyperedge replacement (CHR, [4,5]) strengthens the generative
power of hyperedge replacement (HR, [13]) significantly, by productions with
context nodes that refer to nodes which are not connected to the edge being
replaced. Unfortunately, both HR and CHR grammars can generate NP-
complete graph languages [16]. The authors have therefore devised efficient
parsers for subclasses of HR and CHR grammars, implementing so-called pre-
dictive top-down (PTD) parsing. Although the concepts and implementation
of these parsers have been described at depth in [6], their correctness has only
recently been formally confirmed, based on the specification of parsers by means
of graph transformation rules, and only for HR grammars [8]. Here we extend
the parsers and their correctness proof to CHR grammars. It turns out that a
CHR grammar Γ can be turned into a HR grammar generating graphs where
the nodes that were context nodes in Γ are borrowed, i.e., generated like ordinary
nodes. From this graph, the one generated by Γ can be obtained by contraction,
i.e., merging borrowed nodes with other nodes. We show that this is correct
provided that the generation and use of context nodes in CHR productions does
c© Springer Nature Switzerland AG 2021
F. Gadducci and T. Kehrer (Eds.): ICGT 2021, LNCS 12741, pp. 164–184, 2021.
https://doi.org/10.1007/978-3-030-78946-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78946-6_9&domain=pdf
http://orcid.org/0000-0001-7349-7693
http://orcid.org/0000-0002-5608-996X
http://orcid.org/0000-0002-8968-9013
https://doi.org/10.1007/978-3-030-78946-6_9

Rule-Based Top-Down Parsing for Acyclic CHR Grammars 165

not lead to cyclic dependencies. In this paper, we concentrate on describing a
non-deterministic parser, and sketch only briefly how this parser can be made
predictive (and efficient), since the latter is completely analoguous to the HR
case [8].

The remainder of this paper is structured as follows. After recalling some
basic concepts of graph transformation (Sect. 2), we define CHR grammars and
their corresponding borrowing HR grammars, and we discuss the requirement of
acyclicity (Sect. 3). In Sect. 4, we define a top-down parser for acyclic CHR gram-
mars that processes edges in a linear order (corresponding to leftmost derivations
in string grammars), and prove it correct. In the conclusions (Sect. 5), we discuss
related and future work.

2 Preliminaries

The set of non-negative integers is denoted by N, and [n] denotes {1, . . . , n} for
all n ∈ N. A∗ denotes the set of all finite sequences over a set A; the empty
sequence is denoted by ε, and the length of a sequence α by |α|. As usual, →+

and →∗ denote the transitive and the transitive reflexive closure of a binary
relation →. For a function f : A → B, its extension f∗ : A∗ → B∗ to sequences
is defined by f∗(a1 · · · an) = f(a1) · · · f(an), for all n ∈ N and a1, . . . , an ∈ A.

2.1 Graphs

The graphs considered in this paper have labeled nodes and edges that may have
parallel edges carrying the same label. We also generalize edges to hyperedges,
which may connect any number of nodes, not just two.

Throughout the paper, let L be a global set of labels which is partitioned
into two infinite subsets L̇ and L̄, and let arity : L̄ → N be a function that
associates an arity with every label in L̄. Elements of L̇ and L̄ will be used to
label nodes and hyperedges, respectively. A finite set Σ ⊆ L is an alphabet, and
we let Σ̇ = Σ ∩ L̇ and Σ̄ = Σ ∩ L̄.

Definition 1 (Hypergraph). A hypergraph over an alphabet Σ is a tuple G =
(Ġ, Ḡ, att, lab), where Ġ and Ḡ are disjoint finite sets of nodes and hyperedges,
respectively, the function att : Ḡ → Ġ∗ attaches hyperedges to sequences of
nodes, and the function lab : Ġ ∪ Ḡ → Σ maps Ġ to Σ̇ and Ḡ to Σ̄ in such a
way that |att(e)| = arity(lab(e)) for every edge e ∈ Ḡ.

For brevity, we omit the prefix “hyper” in the sequel. A node is isolated if no
edge is attached to it. An edge carrying a label σ ∈ Σ is a σ-edge, and the
Σ′-edges of a graph are those labeled with symbols from Σ′ ⊆ Σ̄. G◦ denotes
the discrete subgraph of a graph G, which is obtained by removing all edges. We
sometimes write X(G) to denote the set Ġ of nodes of G, and instead of “x ∈ Ġ
or x ∈ Ḡ”, we may write “x ∈ G”. We denote the third and fourth component
of a graph G by attG and labG. GΣ denotes the class of graphs over Σ; a graph

166 F. Drewes et al.

G ∈ GΣ is called a handle (over Σ) if G has a single edge e and each node of G
is attached to e. We denote the set of all handles over Σ by HΣ .

Graphs with unlabeled nodes or edges are a special case obtained by letting
Σ̇ contain the “invisible” label ␣, or letting Σ̄ contain an invisible label ␣i per
arity i. We call a graph unlabeled if both nodes and edges are unlabeled. In this
case, we omit the labeling in the definition and drawing of the graph.

A set of edges E ⊆ Ḡ induces the subgraph consisting of these edges and
their attached nodes. Given graphs G1, G2 ∈ GΣ with disjoint edge sets, a graph
G = G1 ∪ G2 is called the union of G1 and G2 if G1 and G2 are subgraphs of
G, Ġ = Ġ1 ∪ Ġ2, and Ḡ = Ḡ1 ∪ Ḡ2. Note that G1 ∪ G2 exists only if common
nodes are consistently labeled, i.e., labG1(v) = labG2(v) for v ∈ Ġ1 ∩ Ġ2.

Definition 2 (Graph morphism). Given graphs G and H, a morphism
m : G → H is a pair m = (ṁ, m̄) of functions ṁ : Ġ → Ḣ and m̄ : Ḡ → H̄ that
preserve attachments and labels, i.e., attH(m̄(v)) = ṁ∗(attG(v)), labH(ṁ(v)) =
labG(v), and labH(m̄(e)) = labG(e) for all v ∈ Ġ and e ∈ Ḡ.

The morphism is injective or surjective if both ṁ and m̄ are, and a subgraph
inclusion of G in H if m(x) = x for every x ∈ G; then we write G ⊆ H. If m
is surjective and injective, it is called an isomorphism, and G and H are called
isomorphic, written as G ∼= H.

2.2 Graph Transformation

For transforming graphs, we use the classical double-pushout approach of [9],
with injective occurrences of rules in graphs.

Definition 3 (Rule). A graph transformation rule r = (P ⊇ I ⊆ R) consists
of a pattern graph P , a replacement graph R, and an interface graph I included
in both P and R. We briefly call r a rule, denote it as r : P ◦→ R, and refer to
its graphs by Pr, Rr, and Ir if they are not explicitly named.

An injective morphism m : P → G into a graph G defines an occurrence with
respect to r if it satisfies the following dangling condition: if the occurrence m(v)
of a node v ∈ P \ I is attached to some edge e ∈ G, then e is also in m(P).

A rule r transforms a graph G at an occurrence m to a graph H by (1)
removing m(x) from G for every x ∈ P \ I, to obtain a graph K, and (2)
constructing H from the disjoint union of K and R by merging m(x) with every
x ∈ I. Then we write G ⇒m

r H, but may omit m if it is irrelevant, and write
G ⇒R H if R is a set of rules such that G ⇒r H for some r ∈ R.

Since the interface of a rule is included in its replacement graph, a transformation
step can be constructed in such a way that K is included in H.

2.3 Application Conditions

Sometimes it is necessary to restrict the applicability of a rule by requiring the
existence or non-existence of certain subgraphs in the context of its occurrence.
Our definition of application conditions is based on [14], but omits nesting as it
will not be needed here.

Rule-Based Top-Down Parsing for Acyclic CHR Grammars 167

Definition 4 (Conditional rule). For a graph P , the set of conditions over P
is defined inductively as follows: (i) an inclusion P ⊆ C defines a basic condition
over P , denoted by ∃C. (ii) if c and c′ are conditions over P , then ¬c, (c ∧ c′),
and (c ∨ c′) are conditions over P .

An injective morphism m : P → G satisfies a basic condition ∃C if there is
an injective morphism m′ : C → G whose restriction to P coincides with m. The
semantics of Boolean combinations of application conditions is defined in the
obvious way; m � c expresses that m satisfies condition c.

A conditional rule r′ consists of a rule r = P ◦→ R and a condition c
over P , and is denoted as r′ : c P ◦→ R. We let G ⇒m

r′ H or simply G ⇒r′ H
if m � c and G ⇒m

r H. Note that rules without conditions can also be seen as
conditional rules with the neutral condition c = ∃P . For a set C of conditional
rules, ⇒C =

⋃
r∈C ⇒r.

Examples of graphs and rules, with and without conditions, will be shown in the
following sections.

3 Contextual Hyperedge Replacement

We recall graph grammars based on contextual hyperedge replacement [4,5],
which include hyperedge replacement grammars [13] as a special case.

Definition 5 (Contextual hyperedge replacement). Let Σ be an alphabet
and N ⊆ Σ̄ a set of nonterminal edge labels (nonterminals, for short). The
terminal edge labels (terminals) are those in T = Σ̄ \N . Accordingly, edges with
labels in N and T are nonterminal and terminal edges, respectively.

A rule p : P ◦→ R is a hyperedge replacement production over Σ (production,
for short) if the pattern P contains a single edge, which is labeled with a non-
terminal, and the interface graph Ip is the discrete subgraph P ◦ consisting of
all nodes of P . Isolated nodes in the pattern of p are called context nodes; p is
called contextual if such context nodes exist, and context-free otherwise.

A contextual hyperedge replacement grammar Γ = 〈Σ, N , P, Z〉 (CHR gram-
mar for short) consists of alphabets Σ and N ⊆ Σ̄ as above, a finite set P of
productions over Σ, and a start graph Z ∈ GΣ . Γ is a (context-free) hyperedge
replacement grammar (HR grammar) if all productions in P are context-free.

The language generated by Γ is given as L(Γ) = {G ∈ GΣ\N | Z ⇒∗
P G}.

We use a simple but non-context-free running example because illustrations
of parsers would otherwise become too big and complex.

Example 1 (Linked trees). Figure 1 shows our running example, and introduces
our conventions for drawing graphs and productions. Nodes are circles, non-
terminal edges are rectangular boxes containing the corresponding labels, and
terminal edges are shapes like �, �, �. (In this example, all nodes are unlabeled.)
Edges are connected to their attached nodes by lines, called tentacles, which are
ordered counter-clockwise around the edge, starting at noon. For productions

168 F. Drewes et al.

Fig. 1. Productions for linked trees

Fig. 2. A derivation of a linked tree T

(and in other rules), we just draw their pattern P and their replacement graph
R, and specify the inclusion of the interface nodes by ascribing the same identifier
to them in P and R, like x and y in Fig. 1.

Figure 1 defines the productions π1, π2, π3, and π4 of the CHR grammar Δ.
S is the nullary symbol labeling the start graph, and T is a unary nonterminal.
A unary �-edge is attached to the root of a tree, binary �-edges connect nodes to
their children, and binary �-edges (drawn with curly tentacles) represent links
between nodes. Δ generates trees where every node may have a link to any other
node, see Fig. 2.

Assumption 1 (CHR grammar). In the sequel, we assume that CHR gram-
mars Γ = 〈Σ, N , P, Z〉 satisfy the following conditions:

1. The node sequences attached to nonterminal edges are free of repetitions.
2. The start graph Z consists of a single nonterminal edge of arity 0. This

nonterminal symbol does not occur in right-hand sides of productions.
3. Γ is reduced, i.e., every production occurs in a derivation of a graph in L(Γ).
4. L(Γ) does not contain graphs with isolated nodes.

These assumptions are made without loss of generality: in [13, Sect. I 4], it is
described how HR grammars can be transformed to satisfy Assumptions 1.1–1.2;
these results can directly be lifted to CHR grammars. How to attain Assump-
tion 1.3 for CHR grammars is shown in [4, Sect. 3.4]. Assumption 1.4 is made
to simplify the technicalities of parsing. To ensure it, unary virtual edges can be
attached to isolated nodes in the productions and in the graphs generated by
the grammar. In Example 1, e.g., the �-edge avoids that the grammar generates
a single isolated node.

We now recall the well-known notion of derivation trees, which reflect the
context-freeness of HR grammars [3, Definition 3.3]. Here we use a slightly mod-
ified version that represents derivations of concrete graphs:

Definition 6 (Derivation tree). Let Γ = 〈Σ, N , P, Z〉 be a HR grammar.
The set TΓ of derivation trees over Γ and the mappings root : TΓ → HΣ as well
as result : TΓ → GΣ are inductively defined as follows:

Rule-Based Top-Down Parsing for Acyclic CHR Grammars 169

– Each handle G is in TΓ , and root(G) = result(G) = G.
– A triple t = 〈G, p, c〉 consisting of a nonterminal handle G, a production

p ∈ P, and a sequence c = t1t2 · · · tn ∈ T
∗
Γ is in TΓ if the union graphs

G′ = G◦ ∪
⋃n

i=1 root(ti) and G′′ = G◦ ∪
⋃n

i=1 result(ti) exist, G ⇒p G′, and
X(result(ti)) ∩ X(result(tj)) = X(root(ti)) ∩ X(root(tj)) for all distinct i, j ∈
[n]. Furthermore, we let root(t) = G and result(t) = G′′.

An example of a derivation and its derivation tree is shown in Fig. 5.
The ordering of derivation trees in c = t1t2 · · · tn within a derivation tree t =

〈G, p, c〉 will become relevant when edges in right-hand sides of rules are ordered,
which will be the case in Sect. 4. Then we require that root(t1) root(t2) · · · root(tn)
corresponds to the edge ordering in production p.

Let t, t′ be any derivation trees. We call t′ a child tree of t, written t′ ≺ t, if
t = 〈G, p, t1t2 · · · tn〉 and t′ = ti for some i, and we call t′ a subtree of t if t′ = t
or t = 〈G, p, t1t2 · · · tn〉 and t′ is a subtree of ti for some i. A derivation tree t
introduces a node u (at its root) if t = 〈G, p, t1t2 · · · tn〉 and u ∈ X(root(ti)) \ Ġ
for some i. The set of all these nodes is denoted by intro(t). We define the pre-
order traversal pre(t) ∈ T

∗
Γ of a derivation tree t recursively by pre(t) = t if

t ∈ HΣ and pre(t) = t pre(t1) pre(t2) · · · pre(tn) if t = 〈G, p, t1t2 · · · tn〉.
The following theorem is equivalent to Theorem 3.4 in [3]:

Theorem 1. Let Γ = 〈Σ, N , P, Z〉 be a HR grammar, H ∈ HΣ a handle and
G ∈ GΣ a graph. There is a derivation tree t ∈ TΓ with root(t) = H and
result(t) = G iff H ⇒∗

P G.

Note that derivation trees are defined only for HR grammars as in the con-
textual case, any properly labeled node can be used as a context node as long
as it has been created earlier in a derivation. This fact produces dependencies
between derivation steps which do not exist in HR derivations. It will turn out in
the following that there is a close relationship between a CHR grammar Γ and
its so-called borrowing HR grammar Γ̂ : every graph H ∈ L(Γ) is a “contraction”
of a graph G ∈ L(Γ̂). Moreover, the converse is also true as long as Γ is acyclic,
a notion to be defined later.

In the following, we assume that T contains two auxiliary edge labels that are
not used elsewhere in Γ : edges carrying the unary label � will mark borrowed
nodes, and binary edges labeled �= will connect borrowed nodes to all nodes that
should be kept separate to them, i.e., not be contracted later on.

Definition 7 (Borrowing grammar). Let Γ = 〈Σ, N , P, Z〉 be a CHR gram-
mar. For (p : P ◦→ R) ∈ P, its borrowing production p̂ : P̂ → R̂ is obtained by
(a) removing every context node from P̂ and Ip̂ and (b) constructing R̂ from R
as follows: for every context node v of p, attach a new �-edge to v, and add �=-
edges from v to every other node with the label labP (v). The borrowing grammar
Γ̂ = 〈Σ, N , P̂ , Z〉 of Γ is given by P̂ = {p̂ | p ∈ P}.

Note that p̂ = p if p is context-free.

170 F. Drewes et al.

Fig. 3. Borrowing link production Fig. 4. Alinkedtreewithadetachedlink

Fig. 5. A derivation of T̂ (cf. Fig. 4) and its derivation tree

Definition 8 (Contraction). For a graph G let

Ġ� = {v ∈ Ġ | v = attG(e) for a �-edge e ∈ Ḡ} and
�=G = {(u, v) ∈ Ġ × Ġ | uv = attG(e) for a �=-edge e ∈ Ḡ}.

A morphism μ : G → H is called a joining morphism for G if Ḣ = Ġ \ Ġ�,
H̄ = Ḡ, μ̄ and the restriction of μ̇ to Ġ \ Ġ� are inclusions, and (v, μ̇(v)) /∈ �=G

for every v ∈ Ġ�. The graph core(H) obtained from H by removing all edges
with labels � and �= is called the μ-contraction of G or just a contraction of G.

Example 2 (Trees with detached links). Figure 3 shows the borrowing link pro-
duction π̂4, and Fig. 4 shows a tree with a detached link that can be generated
by a borrowing grammar Δ̂ with productions {π1, π2, π3, π̂4}. (Here, �-edges are
depicted by drawing the attached node accordingly.) Obviously, the linked tree
T̂ in Fig. 4 can be generated by the derivation in Fig. 5, and contracted to the
linked tree T generated in Fig. 2. Figure 5 also shows the derivation tree of T̂ .
Only the root handles of trees and subtrees are shown, and ε is used to indi-
cate an empty sequence of child trees, thus distinguishing this case from the one
where a subtree is a single handle. The numbers on top of the handles illustrate
the ordering of the corresponding subtrees in a pre-order traversal of the entire
tree.

Rule-Based Top-Down Parsing for Acyclic CHR Grammars 171

Definition 9 (Borrowing version of a derivation). Let Γ = 〈Σ, N , P, Z〉
be a CHR grammar and Γ̂ its borrowing HR grammar. A derivation

Z ⇒m̂1
p̂1

H1 ⇒m̂2
p̂2

H2 ⇒m̂3
p̂3

· · · ⇒m̂n

p̂n
Hn

in Γ̂ is a borrowing version of a derivation

Z ⇒m1
p1 G1 ⇒m2

p2 G2 ⇒m3
p3 · · · ⇒mn

pn
Gn

in Γ if the following hold, for i = 1, 2, . . . , n and pi : P ◦→ R:

1. p̂i is the borrowing production of pi,
2. if P̄ = {e} then m̂i(e) = mi(e), and
3. for every x ∈ R̄ ∪ (Ṙ \ Ṗ), the images of x in Gi and Hi are the same.

By a straightforward induction, it follows that every derivation in Γ has a
borrowing version in Γ̂ , and Gi is the μi-contraction of Hi for i ∈ [n], where the
joining morphism μi is uniquely determined by μ̄i(e) = e for all e ∈ H̄i.

Theorem 2 will show that the converse is also true, i.e., that every contraction
of a graph in L(Γ̂) can also be derived in Γ , provided that Γ is acyclic (Defi-
nition 10). Informally, Γ is cyclic if there is a derivation of a graph G in Γ̂ and
a contraction H of G so that there is a cyclic dependency between derivation
steps that create nodes and derivation steps that use them as context nodes.
These cyclic dependencies then result in derivations of graphs G in Γ̂ having a
contraction H that cannot be derived in Γ because there is no reordering of the
derivation steps that yields a valid derivation in Γ .

Cyclic dependencies caused by a joining morphism μ for a derivation tree
t ∈ TΓ̂ are formalized using the relation �μ on subtrees of t. Informally, t′ �μ t′′

means that t′ describes a derivation step (the topmost one that transforms the
root handle of t′), which creates a node used as a context node in the correspond-
ing topmost contextual derivation step described by t′′. This, together with the
definition of acyclic CHR grammars, is defined next.

Definition 10 (Acyclic CHR grammar). Let Γ be a CHR grammar.
For any two subtrees t′, t′′ of a derivation tree t ∈ TΓ̂ , we let t′ �μ t′′ iff there

is a node u ∈ intro(t′′) so that μ̇(u) �= u and μ̇(u) ∈ intro(t′).
Γ is acyclic if (� ∪ �μ)+ is irreflexive for all derivation trees t ∈ TΓ̂ over Γ̂

and all joining morphisms μ for result(t). Otherwise, Γ is cyclic.

Theorem 2. Let Γ be a CHR grammar and Γ̂ its borrowing HR grammar. For
every graph H ∈ L(Γ), there is a graph G ∈ L(Γ̂) so that H is a contraction
of G. Moreover, every contraction of a graph in L(Γ̂) is in L(Γ) if Γ is acyclic.

Proof. Let Γ be a CHR grammar and Γ̂ its borrowing HR grammar. The first
part of the theorem is a direct consequence of the observation made after Def-
inition 9. To prove the second part of the theorem, let Γ be acyclic and H the
μ-contraction of a graph G ∈ L(Γ̂), i.e., G = result(t) for some derivation tree

172 F. Drewes et al.

Fig. 6. Grammar graph of Δ

t over Γ̂ . Since (� ∪ �μ)+ is irreflexive, one can order the subtrees of t topo-
logically according to � ∪ �μ, obtaining a sequence t1, . . . , tn of derivation trees
so that 1 ≤ i < j ≤ n implies that neither ti ≺ tj nor tj �μ ti. This sequence
(when considering just those subtrees that are of the form 〈G, p, c〉) determines
a derivation of G in Γ̂ , and every node u with μ̇(u) �= u is created in a later
derivation step than μ̇(u). The derivation is therefore a borrowing version of a
derivation of H in Γ . In particular, no node is used as a context node before it
has been created. ��

Definition 10 does not provide effective means to check whether a CHR gram-
mar is acyclic. However, we can make use of the fact that joining morphisms may
only map a borrowed node to a node with the same label. A CHR grammar can-
not be cyclic if we can make sure that no nodes with any label can ever be
part of a cyclic dependency. The grammar graph of a CHR grammar allows for
such reasoning. It describes which rules can create nodes with which labels or
use them as context nodes, and it relates nonterminal labels with productions
in the sense that productions are applied to nonterminal edges, producing new
nonterminal edges. (The creation of terminal edges is irrelevant here.)

Definition 11 (Grammar graph). The grammar graph of a CHR grammar
Γ = 〈Σ, N , P, Z〉 is the unlabeled graph GΓ such that ĠΓ = P ∪ N ∪ Σ̇ and for
each rule p : P ◦→ R, say with P̄ = {l}, Ḡ contains binary edges from the node
lab(l) to p and from p to each node in {lab(x) | x ∈ R} \ T , as well as an edge
from lab(u) to p for every context node u of p.

Example 3 (Acyclicity of the linked tree grammar). Figure 6 shows the grammar
graph for Δ. (Recall that “␣” is the otherwise omitted invisible node label.)
Lemma 1 will reveal that Δ has only harmless dependencies since the cycle
T → π3 → T in its grammar graph does not contain ␣.

The next lemma provides a sufficient criterion to check whether a CHR grammar
is acyclic, and therefore, whether Theorem 2 can be exploited:

Lemma 1. The grammar graph of every cyclic CHR grammar has a cycle that
contains a node in Σ̇.

Proof. Let Γ = 〈Σ, N , P, Z〉 be a cyclic CHR grammar, Γ̂ its borrowing HR
grammar, GΓ the grammar graph of Γ , t ∈ TΓ̂ a derivation tree over Γ̂ , and μ

Rule-Based Top-Down Parsing for Acyclic CHR Grammars 173

Fig. 7. Productions for generating dags, with borrowing production δ̂3

Fig. 8. A derivation with Λ̂

Fig. 9. The four contractions of the graph derived in Fig. 8

a joining morphism for result(t) so that there is a sequence t1, . . . , tn of n > 2
subtrees of t so that t1 = tn and ti (� ∪ �μ) ti+1 for 1 ≤ i < n. By the definition
of � and �μ, ti is of the form 〈Gi, pi, ci〉 for every i. If ti � ti+1 and Ḡi+1 = {e},
GΓ contains edges from pi to lab(e) and from lab(e) to pi+1. If ti �μ ti+1, there
is a node u ∈ intro(ti+1) so that μ̇(u) �= u and μ̇(u) ∈ intro(ti), which means
that u is the image of a context node of pi+1 and the image of a created node
of pi, i.e., GΓ contains edges from pi to lab(u) and from lab(u) to pi+1. Hence,
GΓ contains a cycle. Moreover, there must be at least one i so that ti �μ ti+1
because � is irreflexive, proving that the cycle contains a node in Σ̇. ��

The following example demonstrates that directed acyclic graphs (dags) can
be generated by a CHR grammar. However, this gramnmar is cyclic and thus
has a grammar graph with a cycle that contains a node in Σ̇.

Example 4 (CHR grammar for dags). Consider nonterminals S (of arity 0), A (of
arity 1), and terminals • (of arity 1) and � (of arity 2). Figure 7 shows productions
δ0 to δ3 over these symbols, where nodes attached to a •-edge are just drawn as
•. (These edges are introduced to meet Assumption 1.4 that generated graphs do
not contain isolated nodes.) The CHR grammar Λ with these productions and
with an S-edge as a start graph generates all unlabeled dags with at least one
node. In its borrowing HR grammar Λ̂, the contextual production δ3 is replaced
by the context-free production δ̂3 shown on the right of Fig. 7.

A derivation with Λ̂ is shown in Fig. 8; the resulting terminal graph can be
contracted in four possible ways, to the graphs C1, . . . , C4 shown in Fig. 9. The
contraction C4 is cyclic, and is the only one that cannot be generated with the
productions of the CHR grammar Λ.

174 F. Drewes et al.

Fig. 10. Grammar graph (left) and derivation tree (right) of grammar Λ̂

Figure 10 shows the cyclic grammar graph for Λ on the left, and the derivation
graph of the derivation in Fig. 8. Here the illegal contraction leading to the cyclic
graph C4 is indicated by the thick bent arrow between nodes 8 and 10.

The fact that the contextual production δ3 can be applied only after its
context node has been generated with production δ0 or δ2 makes sure that no
cyclic graphs can be generated. This indicates that cyclic CHR grammars are
strictly more powerful than acyclic ones.

While the absence of a cycle containing a node in Σ̇ in the grammar graph
implies that a CHR grammar is acyclic, the converse is unfortunately not true:
there are acyclic grammars whose grammar graphs have such cycles. A criterion
to characterize acyclic CHR grammars needs to be determined in future work.

4 Top-Down Parsing for Acyclic CHR Grammars

We define top-down parsers for acyclic CHR grammars by parsing the corre-
sponding borrowing HR grammars with stack automata that take the necessary
merging of borrowed nodes with other nodes into account. The stack automata
perform transitions of states that are called configurations. Configurations are
represented as graphs, and transitions are described by graph transformation
rules. This definition is more precise than the original definition of top-down
parsing in [6], but avoids technical complications occurring in [7], where graphs
are represented textually as sequences of literals transformed by parser actions.
In particular, no explicit substitution and renaming operations on node identi-
fiers are required. Further, this approach simplifies handling the borrowing and
merging required for CHR parsing.

Rule-Based Top-Down Parsing for Acyclic CHR Grammars 175

For ease of presentation, we consider an arbitrary but fixed CHR gram-
mar Γ = 〈Σ, N , P, Z〉 throughout the rest of this paper, and let Γ̂ =
〈Σ, N , P̂ , Z〉 be its borrowing HR grammar according to Definition 7.

Top-down parsers attempt to construct a derivation of a graph that matches
a given input graph. Our top-down parser processes the edges of an input graph
G in a nondeterministically chosen linear order when it attempts to construct
a derivation for G. Technically, this order is represented by equipping derived
edges with two additional tentacles by which they are connected to nodes labeled
with a fresh symbol • to form a linear thread.

The definition of the top-down parser for borrowing HR grammars differs
from that of HR grammars as follows: in [8], the binding of stack to input nodes
and edges was represented by identifying them; here we connect matched nodes
with binding edges, and remove matched edges. This results in a more elegant
construction, yields more intuitive parses, and simplifies the correctness proof.

Definition 12 (Threaded graph). The threaded alphabet Σ• of Σ is given by
Σ̇• = Σ̇ ∪ {•} and Σ̄• = T ∪

{
�• | � ∈ Σ̄ \ {�, �=}

}
with arity(�•) = arity(�) + 2;

N • = {�• | � ∈ N } denotes the set of threaded nonterminals.
Let G ∈ GΣ• . A node v ∈ Ġ is a thread node if labG(v) = •, and a kernel node

otherwise. �Ġ� and Ġ• denote the sets of all kernel nodes and thread nodes of
G, respectively. An edge is threaded if its label is of the form �•, and unthreaded
otherwise.

A graph G ∈ GΣ• is threaded if all of its edges except the �- and �=-edges are
threaded and the following additional conditions hold:

1. For every threaded edge e ∈ Ḡ with attG(e) = u1 . . . ukuk+1uk+2, the nodes
u1, . . . , uk are kernel nodes of G and uk+1, uk+2 are thread nodes of G.

2. Ġ• can be ordered as Ġ• = {v0, . . . , vn} for some n ∈ N such that, for every
i ∈ [n], Ḡ contains exactly one threaded edge e so that attG(e) ends in vi−1vi,
and there are no further threaded edges than these.

We call v0 the first and vn the last thread node of G.
The kernel graph of G is the graph �G� ∈ GΣ obtained by replacing every

edge label �• by �, and removing the thread nodes and their attached tentacles.
In this case, G is a threading of �G�. Note that a threading of a graph in GΣ is
uniquely determined by an ordering of its non-{�, �=}-edges and vice versa.

We use a set Σaux = {⊗, bind} of auxiliary edge labels, disjoint with Σ, where
⊗ is unary and labels edges that mark unmatched nodes in a configuration,
whereas bind is binary, and represents the binding of a stack node to a node in
the input.

Definition 13 (Configuration). A graph C over Σ• ∪ T ∪ Σaux is a configu-
ration if

– only Σ•-edges are attached to thread nodes and
– the subgraph stack(C) of C induced by its Σ•-edges and thread nodes is a

threaded graph.

176 F. Drewes et al.

The edge attached to the first thread node is said to be topmost on the stack.
The input of C is the subgraph input(C) induced by the (unthreaded) T -edges.
C is called

– initial if stack(C) is a handle of Z•, ⊗-edges are attached to all other nodes
of C, and there are no bind-edges in C;

– accepting if stack(C) is an isolated node, all further nodes are attached to
bind-edges, and all other edges in C are labeled with � or �=.

Definition 14 (Top-down parser). Let R be a set of conditional rules. A
derivation C ⇒∗

R C ′ is a parse if C is an initial configuration. A parse C ⇒∗
R C ′

is successful if C ′ is an accepting configuration. R is a top-down parser for Γ
if, for each initial configuration C, input(C) ∈ L(Γ) if and only if there is a
successful parse C ⇒∗

R C ′.

We define two kinds of top-down parsing rules operating on the topmost
edge e on the stack:

– If e is nonterminal, expand pops e from the stack, and pushes the right-hand
side of a production for e onto the stack;

– If e is terminal, e is matched with a corresponding unthreaded edge e′ in the
input; then e is popped from the stack, and e′ is removed.

For a match rule to match e to e′, we must have lab(e) = lab(e′)•, and
each pair u, v of corresponding attached nodes must either already be bound to
each other by a bind-edge, or there must be ⊗-edges attached to both, which
indicates that they are still unprocessed, or u must have both a ⊗-edge and a
�-edge attached to it. The latter covers the case where u is a still unprocessed
borrowed node which can thus be bound to a node already bound earlier. To
make sure that the borrowed node is not bound to a node of the same right-hand
side, an application condition checking for the absence of a �=-edge is needed.
Also, the condition forbids that borrowed nodes are treated as ordinary ones.

Definition 15 (Expand and match rules). For every borrowing production
(p : P ◦→ R) ∈ P̂, the expand rule tp : P ′ ◦→ R′ is given as follows:

– P ′ and R′ are threadings of P and R, respectively, where every node intro-
duced by p has a ⊗-edge attached in R′ (and no others have).

– The interface Itp
is Ip plus the last thread node of P ′.

A conditional rule t : c P ◦→ R with configurations P and R is a match rule for
a terminal symbol a ∈ T \ {�, �=} if the following holds:

– stack(P) is a handle of a•, say with attached nodes u1 · · · ukuk+1uk+2.
– input(P) is a handle of a, say with attached nodes v1 · · · vk.
– For every pair (ui, vi), i ∈ [k], precisely one of the following conditions holds:

• P contains a bind-edge with attachment uivi,
• a ⊗-edge is attached to both ui and vi, or
• both a ⊗-edge and a �-edge is attached to ui.

Rule-Based Top-Down Parsing for Acyclic CHR Grammars 177

Fig. 11. Expand rules of the top-down parser for linked trees

Fig. 12. Match rules for the top-down parser for linked trees

– It is P without the a-edge, the a•-edge, and the first thread node.
– R consists of the nodes u1, . . . , uk+2, v1, . . . , vk, the last thread node of

stack(P), and a bind-edge from ui to vi for every i ∈ [k].
– For every i ∈ [k], the application condition c requires the following: Let

m : P → G be the occurrence. If ui ∈ Ṗ�, then there is no z ∈ Ġ with
(m(ui), z) ∈ �=G such that z has a bind-edge to m(vi). If ui /∈ Ṗ�, then c
requires that m(ui) /∈ Ġ�.

We let RΓ • denote the set of all expand and match rules of Γ •.

Example 5 (Top-down parser for linked trees). For the expand rules of the top-
down parser for linked trees with detached links (Fig. 11) we have threaded the
right-hand sides so that terminal edges come first, and nonterminals attached to
the source node of a terminal edge next. Nodes attached to a ⊗-edge or a �-edge
are drawn as ⊗ and � respectively, rather than drawing the edge separately. A
node attached to both a ⊗-edge and a �-edge, is drawn as × . We draw bind-
edges as dotted lines (in downward direction), and �=-edges as double lines with
a vertical bar.

In general, the terminal symbols of Δ lead to four match rules for �, and nine
rules for � and � each. However, inspection of Δ reveals that just three match
rules are needed by the parser, which are shown in Fig. 12: A �-edge is matched
when its attached node is unbound, and �-edges and �-edges are matched when
their first attached node is already bound. The application conditions for the
match rules t1 and t2 are actually not needed; analysis of Δ reveals that the
unbound nodes of these edges will never be attached to �-edges.

Figure 13 shows a successful parse of the linked tree T derived in Fig. 2 with
these rules. We have left shades of the matched edges in the configurations
to illustrate how the parse constructs the derivation with the borrowing HR
grammar Γ̂ in Fig. 5, which corresponds to the derivation with Γ in Fig. 2.

Note that match rules consume the thread and the matched edges. Expand
rules do not modify the input, but just replace the first nonterminal on the
thread by the replacement graph of a threaded production for this nonterminal.

178 F. Drewes et al.

Fig. 13. A parse of the linked tree T generated in Fig. 2

In the following, we prove formally that RΓ • is indeed a top-down parser for
Γ , provided that Γ is acyclic.

Fact 1 (Invariants of configurations)

1. The bind-edges define an irreflexive partial function

�→ = {(x, y) | e ∈ C̄, labC(e) = bind, attC(e) = xy},

between non-thread nodes, called binding, such that x �→ y implies that (1) x
is not in input(C), and (2) y is not in stack(C).

2. No node is attached to several ⊗-edges.
3. A kernel node of a threaded edge in stack(C) is attached to a ⊗-edge if and

only if it is not the source of a bind-edge.
4. Every node of input(C) that is not the target of a bind-edge is attached to a

⊗-edge. (The converse is not true because a ⊗-edge may be attached to the
target of a bind-edge if the source of that bind-edge is in Ċ�; see Fig. 13.)

We now consider the first direction of the correctness of the parser.

Lemma 2. Every graph G ∈ L(Γ) has a successful parse C ⇒∗
RΓ • C ′, where C

is the initial configuration with input(C) = G.

The proof relies on the following construction to obtain a successful parse.

Construction 1. Let Z ⇒p1 G1 ⇒p2 · · · ⇒pn
Gn with pi ∈ P for i ∈ [n] be a

derivation for G = Gn. Consider a borrowing version Z ⇒p̂1 H1 ⇒p̂2 · · · ⇒p̂n
Hn

of the derivation, where G is the μ-contraction of G′ = Hn. Let t ∈ TΓ̂ be
the derivation tree of Z ⇒p̂1 H1 ⇒p̂2 · · · ⇒p̂n

Hn, where the ordering of subtrees
corresponds to the edge ordering in rules of Γ .1 Let t1t2 · · · tn be the sequence
1 Note that, while t is a derivation tree over the borrowing HR grammar Γ̂ , the

ordering of right-hand sides of productions in Γ̂ ignores edges that are labeled with
�= and �, so that it is the same as in Γ and provides the required edge ordering.

Rule-Based Top-Down Parsing for Acyclic CHR Grammars 179

of subtrees obtained from the pre-order traversal pre(t) of t by keeping only the
trees with terminal and nonterminal root handles.

For k ∈ {0, . . . , n}, construct the sequence Tk ∈ H∗
Σ from t1t2 · · · tk by keep-

ing only the trees that are terminal handles. Let Nk be the set of nodes occurring
in Tk. By definition, Nk ⊆ Ġ′. As the edges of terminal handles in Tk are exactly
those in G′, and Ḡ = Ḡ′, each handle in Tk identifies a unique edge in G.

Let Sk ∈ H∗
Σ be the sequence obtained from tk+1tk+2 · · · tn by removing

each tree ti that is a subtree of a tree tj where k < j < i, and replacing each
remaining tree ti by its root handle root(ti). Moreover, let Lk be the subset of
those handles in {root(t′) | t′ ≺ ti for some i < k} whose edges are labeled with
�= or �.

The configuration Ck is then obtained by the following steps:

1. Define CT
k as the threaded graph whose thread contains the (threaded ver-

sions) of edges in Sk in this order. Additionally, all nodes that occur in Tk

but not in Sk, and all edges in Lk are in CT
k .

2. Replace each kernel node u of CT
k by a fresh copy copy(u). Add a ⊗-edge in

CT
k to copy(u) if u /∈ Nk.

3. Obtain CU
k from G by removing all edges occurring in handles in Tk. Add a

⊗-edge in CU
k to u if u /∈ Nk.

4. Let Ck = CU
k ∪ CT

k .
5. For each node u ∈ Nk, add a bind-edge from copy(u) to μ̇(u) in Ck. ��

The following example illustrates this construction:

Example 6. Consider Example 2 again, and the illustration of the derivation tree
tT̂ in Fig. 5, which results in the graph T̂ of Fig. 4. The pre-order traversal of
tT̂ is pre(tT̂) = τ1 · · · τ12 where τi is the subtree of tT̂ whose root handle carries
i as a small number in Fig. 5. Note that τ7 and τ8 are handles whose edges
are labeled with �= or �. Construction 1 thus ignores them and considers the
following sequence t1 · · · t10 of the remaining ten subtrees (again, only the root
handles are depicted):

S

τ1

a

τ2

a
A

τ3

a b
�

τ4

a
A

τ5

a c′�
τ6

b
A

τ9

b c
�

τ10

b
A

τ11

c
A

τ12

Construction 1 creates the configurations in the parse C0 ⇒∗
RΓ • C10 shown

in Fig. 13 from this sequence. Figure 14 displays the sequences Tk and Sk and
the set Lk of handles used for creating each Ck for k ∈ {0, . . . , 10}.

We are now ready to sketch a proof of Lemma 2:

Proof Sketch. We build graphs C0, C1, . . . , Cn following Construction 1. C0 and
Cn are clearly an initial and an accepting configuration, respectively, with
input(C0) = G. To see that C0 ⇒RΓ • C1 ⇒RΓ • · · · ⇒RΓ • Cn, consider Ck−1 and
Ck for some k ∈ [n]. We can distinguish two cases for H = root(tk):

180 F. Drewes et al.

Fig. 14. Steps of Construction 1 for creating the parse in Fig. 13

Case 1: H is terminal.
This implies Tk = Tk−1H, Sk−1 = HSk, and Nk = Nk−1 ∪ Ḣ. The reader can
confirm by following the steps in Construction 1 that Ck−1 ⇒RΓ • Ck using the
match rule for the edge label in H.

Rule-Based Top-Down Parsing for Acyclic CHR Grammars 181

Case 2: H is nonterminal.
Then tk−1 = 〈H, p, t′

1t′
2 · · · t′

l〉 for derivation trees t′
1t′

2 · · · t′
l, and we have Tk =

Tk−1, Nk = Nk−1, Sk−1 = tk−1R, and Sk = root(t′
1) root(t′

2) · · · root(t′
l) R with

R ∈ T
∗
Γ . By Definition 6, H ⇒p H◦ ∪

⋃l
i=1 root(t′

i). Construction 1 makes sure
that Ck−1 ⇒RΓ • Ck using the expand rule for p. ��

The next lemma covers the other direction of the correctness of the parser.
Lemma 3. If Γ is acyclic, then the existence of a successful parse C ⇒∗

RΓ • C ′

implies input(C) ∈ L(Γ).
Proof. Let C0 ⇒t1 C1 ⇒t2 · · · ⇒tn

Cn be any successful parse with t1, . . . , tn ∈
RΓ • . Let G = input(C0). For i = 0, . . . , n, consider the following subgraphs
Topi and Boti of Ci: Topi is the subgraph induced by Ċi \ Ġ, and Boti the
subgraph obtained from Ci by deleting all edges in T̄opi and all thread nodes.
Note that Ci = Topi ∪ Boti and, since C0 is initial, Top0 = Z• and Bot0 = G.

Boti may contain bind-edges, which define the binding relation �→ of Fact 1.
For every graph H containing Boti as a subgraph (for any i), we obtain merge(H)
as the homomorphic image of H without its bind-edges by mapping node x to
node y for each (x, y) ∈ �→.

Let us now consider a parse step Ci−1 ⇒ti
Ci for i ∈ [n]. There are two cases:

Case 1: ti is a match rule.
Then Ci is obtained by deleting a terminal edge as well as its threaded version
from Ci−1, and by adding some bind-edges. As a consequence, there is a handle
Deli of a terminal edge with Ḋeli ⊆ X(�Topi−1�) so that

�Topi−1� = �Topi� ∪ Deli and merge(Boti−1) = merge(Boti ∪ Deli).

Case 2: ti is an expand rule for a rule pi ∈ P̂.
By the definition of the expand rule we have

�Topi−1� ⇒
pi

�Topi� and Boti−1 = Boti.

Let Del =
⋃n

j=1 Delj where Delj is the empty graph if tj is an expand rule.
Making use of the fact that G = merge(Bot0) and �Top0� = Z, a straightforward
induction yields

(1) Z
∗⇒̂
P

�Topn� ∪ Del and (2) G = merge(Botn ∪ Del).

Let F = �Topn� ∪ Del. Note that for every node x ∈ Ḟ� (see Definition 8),
there is a unique node y ∈ Ḟ \Ḟ� so that G has a node u with x �→ u and y �→ u in
Botn. Now consider the morphism μ : F → F ′ where μ̄ and the restriction of μ̇ to
Ḟ \ Ḟ� are inclusions, and μ̇ maps each node x ∈ Ḟ� to the corresponding node
y ∈ Ḟ \ Ḟ� as described above. The application conditions of match rules make
sure that (v, μ̇(v)) /∈ �=F for every v ∈ Ḟ�. Hence, μ is a joining morphism, and
core(F ′) ∈ L(Γ) because of (1) and the assumption that Γ is acyclic. However,
core(F ′) is isomorphic to merge(Botn ∪ Del), and (2) implies G ∈ L(Γ). ��
Corollary 1. If Γ is acyclic, then RΓ • is a top-down parser for Γ .

182 F. Drewes et al.

5 Conclusions

In this paper, we have shown that our rule-based definition of top-down parsing
for CHR grammars is correct if the dependencies arising from the use of context
nodes in these grammars are acyclic. This extends our correctness proof for HR
grammars in [8, Theorem 2]. Our result can be specialized for predictive top-
down parsing by equipping expand rules with application conditions that allow
to predict the only promising production for a nonterminal; cf. Theorem 4 of
that paper.

The language of all graphs over Σ, unrestricted flowcharts of imperative
programs, statecharts [5, Ex. 1, 2 & Sect. 3], and graphs representing object-
oriented programs [4] cannot be generated with HR grammars; however, they
can be generated with CHR grammars. This indicates that the extension is
practically relevant. Moreover, the mentioned CHR grammars are acyclic and
PTD-parsable. This suggests that these restrictions will not be too strong in
practice.2 The cyclic grammar Λ for dags in Example 4 is not PTD-parsable.
(We conjecture that there is no acyclic CHR grammar for dags at all.)

Much of the related work on parsing for HR grammars follows the well-
known Cocke-Younger-Kasami algorithm. An implementation for unrestricted
HR grammars (plus edge-embedding rules) in DiaGen [18] works for practical
input with hundreds of nodes and edges, although their worst-case complexity
is exponential. D. Chiang et al. [1] have implemented a polynomial algorithm
for a subclass of HR grammars (based on the work of C. Lautemann [17]).
S. Gilroy, A. Lopez, and S. Maneth [12] have proposed a linear parsing algorithm
for Courcelle’s “regular” graph grammars [2]. Both algorithms apply to graphs
as they occur in computational linguistics.

To our knowledge, early approaches to parsing for context-free node replace-
ment grammars [10] like [15,19] are no longer pursued.

Like many scientific efforts, this paper raises more questions than it answers:
(i) Is there a decidable sufficient and necessary condition for acyclicity? (ii) Can
parsing for CHR grammars be extended to cyclic CHR grammars? (iii) Can
PSR parsing [7] be defined by graph transformation in a similar way? (iv) Is
PSR parsing more powerful than PTD parsing? All this remains for future work.

Acknowledgments. We thank Annegret Habel, Verone Stillger, and the anonymous
reviewers for their advice.

2 The mentioned CHR grammars can be downloaded at www.unibw.de/inf2/grappa.
The graph parser distiller grappa developed by Mark Minas, generates PTD parsers
that run in quadratic time, and often even in linear time [6]. The website also contains
specifications of the PTD parser for linked trees with the AGG system [11] along
the lines of Example 5.

www.unibw.de/inf2/grappa

Rule-Based Top-Down Parsing for Acyclic CHR Grammars 183

References

1. Chiang, D., Andreas, J., Bauer, D., Hermann, K.M., Jones, B., Knight, K.: Parsing
graphs with hyperedge replacement grammars. In: Proceedings of 51st Annual
Meeting of the Association for Computational Linguistics (vol. 1: Long Papers),
Sofia, Bulgaria, pp. 924–932. Association for Computational Linguistics, August
2013

2. Courcelle, B.: The monadic second-order logic of graphs V: on closing the gap
between definability and recognizability. Theoret. Comput. Sci. 80, 153–202 (1991)

3. Drewes, F., Habel, A., Kreowski, H.J.: Hyperedge replacement graph grammars.
In: Rozenberg [20], chapter. 2, pp. 95–162

4. Drewes, F., Hoffmann, B.: Contextual hyperedge replacement. Acta Informatica
52(6), 497–524 (2015). https://doi.org/10.1007/s00236-015-0223-4

5. Drewes, F., Hoffmann, B., Minas, M.: Contextual hyperedge replacement. In:
Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 182–
197. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34176-2_16

6. Drewes, F., Hoffmann, B., Minas, M.: Predictive top-down parsing for hyperedge
replacement grammars. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015.
LNCS, vol. 9151, pp. 19–34. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21145-9_2

7. Drewes, F., Hoffmann, B., Minas, M.: Formalization and correctness of predictive
shift-reduce parsers for graph grammars based on hyperedge replacement. J. Log.
Algebraic Methods Program. (JLAMP) 104, 303–341 (2019). https://doi.org/10.
1016/j.jlamp.2018.12.006

8. Drewes, F., Hoffmann, B., Minas, M.: Graph parsing as graph transformation.
In: Gadducci, F., Kehrer, T. (eds.) ICGT 2020. LNCS, vol. 12150, pp. 221–238.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51372-6_13

9. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. MTCSAES, Springer, Heidelberg (2006). https://doi.org/
10.1007/3-540-31188-2

10. Engelfriet, J., Rozenberg, G.: Node replacement graph grammars. In: Rozenberg
[20], chapter. 1, pp. 1–94

11. Ermel, C., Rudolf, M., Gabriele, T.: The AGG approach: language and environ-
ment. In: Engels, G., Ehrig, H., Kreowski, H.J., Rozenberg, G. (eds.) Handbook of
Graph Grammars and Computing by Graph Transformation, Vol. II: Applications,
Languages, and Tools, pp. 551–603. World Scientific, Singapore (1999)

12. Gilroy, S., Lopez, A., Maneth, S.: Parsing graphs with regular graph grammars. In:
Proceedings of the 6th Joint Conference on Lexical and Computational Semantics
(*SEM 2017), Vancouver, Canada, pp. 199–208. Association for Computational
Linguistics, August 2017. https://doi.org/10.18653/v1/S17-1024

13. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0013875

14. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009)

15. Kaul, M.: Practical applications of precedence graph grammars. In: Ehrig, H., Nagl,
M., Rozenberg, G., Rosenfeld, A. (eds.) Graph Grammars 1986. LNCS, vol. 291,
pp. 326–342. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-18771-
5_62

16. Lange, K.J., Welzl, E.: String grammars with disconnecting or a basic root of the
difficulty in graph grammar parsing. Discret. Appl. Math. 16, 17–30 (1987)

https://doi.org/10.1007/s00236-015-0223-4
https://doi.org/10.1007/978-3-642-34176-2_16
https://doi.org/10.1007/978-3-319-21145-9_2
https://doi.org/10.1007/978-3-319-21145-9_2
https://doi.org/10.1016/j.jlamp.2018.12.006
https://doi.org/10.1016/j.jlamp.2018.12.006
https://doi.org/10.1007/978-3-030-51372-6_13
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.18653/v1/S17-1024
https://doi.org/10.1007/BFb0013875
https://doi.org/10.1007/3-540-18771-5_62
https://doi.org/10.1007/3-540-18771-5_62

184 F. Drewes et al.

17. Lautemann, C.: The complexity of graph languages generated by hyperedge
replacement. Acta Informatica 27, 399–421 (1990)

18. Minas, M.: Diagram editing with hypergraph parser support. In: Proceedings of
1997 IEEE Symposium on Visual Languages (VL 1997), Capri, Italy, pp. 226–233.
IEEE Computer Society Press (1997)

19. Pavlidis, T.: Linear and context-free graph grammars. J. ACM 19(1), 11–22 (1972).
https://doi.org/10.1145/321679.321682

20. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. I: Foundations. World Scientific, Singapore (1997)

https://doi.org/10.1145/321679.321682

	Rule-Based Top-Down Parsing for Acyclic Contextual Hyperedge Replacement Grammars
	1 Introduction
	2 Preliminaries
	2.1 Graphs
	2.2 Graph Transformation
	2.3 Application Conditions

	3 Contextual Hyperedge Replacement
	4 Top-Down Parsing for Acyclic CHR Grammars
	5 Conclusions
	References

