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Preface

This volume contains the proceedings of ICGT 2021, the 14th International Conference
on Graph Transformation held during June 24–25, 2021. Due to the pandemic situation
leading to COVID-19 countermeasures and travel restrictions, for the second time in a
row the conference was held online. ICGT 2021 was affiliated with STAF (Software
Technologies: Applications and Foundations), a federation of leading conferences on
software technologies, and it took place under the auspices of the European Association
of Theoretical Computer Science (EATCS), the European Association of Software
Science and Technology (EASST), and the IFIP Working Group 1.3 on Foundations of
Systems Specification.

The ICGT series aims at fostering exchange and the collaboration of researchers
from different backgrounds working with graphs and graph transformation, either by
contributing to their theoretical foundations or by highlighting their relevance in dif-
ferent application domains. Indeed, the use of graphs and graph-like structures as a
formalism for specification and modeling is widespread in all areas of computer science
as well as in many fields of computational research and engineering. Relevant exam-
ples include software architectures, pointer structures, state space graphs, control/data
flow graphs, UML and other domain-specific models, network layouts, topologies of
cyber-physical environments, and molecular structures. Often, these graphs undergo
dynamic change, ranging from reconfiguration and evolution to various kinds of
behavior, which can be captured by rule-based graph manipulation. Thus, graphs and
graph transformation form a fundamental universal modeling paradigm that serves as a
means for formal reasoning and analysis, ranging from the verification of certain
properties of interest to the discovery of new computational insights.

ICGT 2021 continued the series of conferences previously held in Barcelona (Spain)
in 2002, Rome (Italy) in 2004, Natal (Brazil) in 2006, Leicester (UK) in 2008,
Enschede (the Netherlands) in 2010, Bremen (Germany) in 2012, York (UK) in 2014,
L’Aquila (Italy) in 2015, Vienna (Austria) in 2016, Marburg (Germany) in 2017,
Toulouse (France) in 2018, Eindhoven (the Netherlands) in 2019 and online in 2020,
following a series of six International Workshops on Graph Grammars and Their
Application to Computer Science from 1978 to 1998 in Europe and in the USA.

This year, the conference solicited research papers describing original contributions
in the theory and applications of graph transformation as well as tool presentation
papers that demonstrate new features and functionalities of graph-based tools. The
Program Committee selected 16 out of 26 submissions for inclusion in the conference
program. All submissions went through a thorough peer-review process and were
discussed online. There was no preset number of papers to accept, and each paper was
evaluated and assessed based on its own strengths and weaknesses. The topics of
the accepted papers cover a wide spectrum, from theoretical approaches to graph
transformation to their application in specific domains.



The papers presented new results on the DPO/SPO dichotomy and their rule
application conditions, and introduced novel rewriting formalisms. Furthermore, model
checking issues were explored along with the use of graph transformation in appli-
cation domains such as chemical reaction modeling or AI-supported computer games.
In addition to the submitted papers and tool presentations, the conference program
included an invited talk, given by Joost-Pieter Katoen (RWTH Aachen University,
Germany), on the reliability and criticality analysis of dynamic reliability models,
including various fault tree dialects. In particular, Katoen discussed how to simplify
such fault trees prior to their expensive analysis by using graph transformation.

We would like to thank all the people who contributed to the success of ICGT 2021,
the invited speaker Joost-Pieter Katoen, the authors of the submitted papers, the
members of the Program Committee, and all the reviewers for their valuable contri-
butions to the selection process. We are grateful to Reiko Heckel, the chair of the
Steering Committee of ICGT, for his fruitful suggestions, and to Adrian Rutle, the
STAF 2021 general chair, for the organisation and the close collaboration during the
difficult pandemic situation.

May 2021 Fabio Gadducci
Timo Kehrer
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Verification Conquers Reliability Engineering
(Abstract of Invited Talk)

Joost-Pieter Katoen1,2

1 RWTH Aachen University, Germany
2 University of Twente, the Netherlands

Reliability engineering is “a sub-discipline of systems engineering that emphasizes the
ability of equipment to function without failure”1. Prominent objectives in reliability
engineering include assessing the likely reliability of complex system designs—relia-
bility analysis—and identifying critical system components that are major causes of
system failures—so-called criticality analysis. These analyses have a enormous broad
spectrum of applications. This includes automotive, aerospace engineering, avionics,
electricity networks, nuclear power plants, and so forth.

Fault trees (in fact: directed acyclic graphs) are pivotal in reliability engineering.
They have been introduced in 1962 by Watson and are still widely used. They model
the different component failures that can occur in a system and prescribe how such
failures can propagate through the system. Fault trees are widely applied at industrial
scale, and have been subject to international standards in many application areas.
Dedicated state-of-the-art techniques for classical static fault trees include e.g., sym-
bolic analysis with binary decision diagrams.

Static fault trees have however restricted expressive power. Modern fault-tree
dialects can model redundancies, functional dependencies, repairs, spare elements,
activation mechanisms, failure restrictions, and so forth. This includes dynamic fault
trees, state-event fault trees, component fault trees, and Boolean-driven Markov pro-
cesses. For recent surveys see [6, 9]. The reliability and criticality analysis of these
dynamic reliability models is a serious bottleneck: state-of-the-art analysis techniques
either do not scale, or only provide statistical guarantees, or require manual effort.

We will show that various formal methods can effectively be used to:

a) give a formal semantics to fault-tree dialects using Petri nets [5, 7]
b) simplify fault trees prior to their expensive analysis using graph rewriting [4]
c) prove such rewriting correct with theorem proving [2]
d) analyse the simplified fault trees by probabilistic model checking [10], and
e) treat gigantic models by an iterative “generate partial state-space and verify”

paradigm that provides sound bounds [8, 10].

We will treat the key algorithmic principles and showcase their usage on some
industrial cases: the safety for autonomous vehicle guidance [3], the criticality of
components in railway station areas [11], and the power supply of a nuclear power
plant [1].

1 https://en.wikipedia.org/wiki/Reliability_engineering.

https://en.wikipedia.org/wiki/Reliability_engineering
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Concurrency Theorems for Non-linear
Rewriting Theories

Nicolas Behr1(B) , Russ Harmer2 , and Jean Krivine1

1 Université de Paris, CNRS, IRIF, 8 Place Aurélie Nemours,
75205 Paris Cedex 13, France

{nicolas.behr,jean.krivine}@irif.fr
2 Université de Lyon, ENS de Lyon, UCBL, CNRS, LIP,

46 allée d’Italie, 69364 Lyon Cedex 07, France
russell.harmer@ens-lyon.fr

Abstract. Sesqui-pushout (SqPO) rewriting along non-linear rules and
for monic matches is well-known to permit the modeling of fusing and
cloning of vertices and edges, yet to date, no construction of a suit-
able concurrency theorem was available. The lack of such a theorem, in
turn, rendered compositional reasoning for such rewriting systems largely
infeasible. We develop in this paper a suitable concurrency theorem for
non-linear SqPO-rewriting in categories that are quasi-topoi (subsuming
the example of adhesive categories) and with matches required to be reg-
ular monomorphisms of the given category. Our construction reveals an
interesting “backpropagation effect” in computing rule compositions. We
derive in addition a concurrency theorem for non-linear double pushout
(DPO) rewriting in rm-adhesive categories. Our results open non-linear
SqPO and DPO semantics to the rich static analysis techniques available
from concurrency, rule algebra and tracelet theory.

1 Introduction

Sesqui-pushout (SqPO) graph transformation was introduced [17] as an exten-
sion of single-pushout rewriting that accommodates the possibility of non-input-
linear1 rules. The result of such a rewrite is specified abstractly by the notion of
final pullback complement (FPC) [21], a categorical generalization of the notion
of set difference: the FPC of two composable arrows, f : A → B and g : B → D is
the largest, i.e. least general, C together with arrows g′ : A → C and f ′ : C → D
for which the resulting square is a pullback (PB). The extension of graph trans-
formation to input-non-linear rules allows for the expression of the natural oper-
ation of the cloning of a node, or an edge (when the latter is meaningful), as
1 In this paper, we follow the conventions of compositional rewriting theory [9], i.e.,

we speak of “input”/“output” motifs of rules, as opposed to “left”/“right” motifs in
the traditional literature [22].

An extended version of this paper containing additional technical appendices is avail-
able online [7].

c© Springer Nature Switzerland AG 2021
F. Gadducci and T. Kehrer (Eds.): ICGT 2021, LNCS 12741, pp. 3–21, 2021.
https://doi.org/10.1007/978-3-030-78946-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78946-6_1&domain=pdf
http://orcid.org/0000-0002-8738-5040
http://orcid.org/0000-0002-0817-1029
http://orcid.org/0000-0001-7261-7462
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explained in [14,17,18]. More recently, such rules have also been used to express
operations such as concept refinement in schemata for graph databases [11] and,
more generally, in graph-based knowledge representation [29]. In combination
with output-non-linear rules, as for (non-linear) double- or single-pushout rewrit-
ing, SqPO thus allows the expression of all the natural primitive operations on
graphs: addition and deletion of nodes and edges; and cloning and merging of
nodes and edges.

In this paper, we study the categorical structure required in order to support
SqPO rewriting and establish that quasi-topoi [1,15,16,27,33] naturally possess
all the necessary structure to express the effect of SqPO rewriting and to prove
the concurrency theorem for fully general non-linear rules. This significantly gen-
eralizes previous results on concurrency theorems for linear SqPO-rewriting over
adhesive categories [2] and for linear SqPO-rewriting for linear rules with condi-
tions in M-adhesive categories [8,9]. In terms of SqPO-rewriting for generic rules,
previous results were rather sparse and include work on polymorphic SqPO-
rewriting [36] and on reversible SqPO rewriting [19,30], where [30] in particular
introduced a synthesis (but not an analysis) construction for reversible non-linear
SqPO rules without application conditions which motivated the present paper.

An interesting technical aspect of basing our constructions on quasi-topoi
concerns the rewriting of simple directed graphs, which constitutes one of the
running examples in this paper: unlike the category of directed multigraphs
(which constitutes one of the prototypical examples of an adhesive category [34]),
the category of simple graphs is neither adhesive nor quasi-adhesive [33], but it
is in fact only a quasi-topos [1,33], and as such also an example of an rm-quasi-
adhesive [27] and of an M-adhesive category [23–25,31].

Our proof of the concurrency theorem relies on the existence of certain struc-
tures in quasi-topoi that, to the best of our knowledge, have not been previously
noted in the literature (cf. Sect. 2.2): restricted notions of multi-sum and multi-
pushout complement (mPOC), along the lines of the general theory of multi-(co-)
limits due to Diers [20], and a notion of FPC-pushout-augmentation (FPA). The
notion of multi-sum provides a generalization of the property of effective unions
(in adhesive categories) that guarantees that all necessary monos are regular.
The notions of mPOC and FPA handle the “backward non-determinism” intro-
duced by non-linear rules: given a rule and a matching from its output motif, we
cannot—unlike with linear or reversible non-linear rules—uniquely determine a
matching from the input motif of the rule.

Related Work. Conditions under which FPCs are guaranteed to exist have been
studied in [21], and more concretely and of particular relevance to our approach
in [18], which provides a direct construction assuming the existence of appropri-
ate partial map classifiers [16,31]. We make additional use of these partial map
classifiers in order to construct mPOCs in a quasi-topos (Sect. 2.2). Our con-
struction is a mild, but necessary for our purposes, generalization of the notion
of minimal pushout complement defined in [14] that requires the universal prop-
erty with respect to a larger class of encompassing pushouts (POs)—precisely
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analogous to the definition of FPC. However, there is the additional complexity
that, for our purposes, PO complements are not uniquely determined, and we
must therefore specify a family of solutions that collectively satisfy this universal
property (à la Diers [20]). We also exploit the epi-regular mono factorization [1]
in quasi-topoi in order to construct multi-sums—with respect to co-spans of
regular monos—and FPAs. Our overall approach relates closely to the work of
Garner and Lack on rm-quasi-adhesive categories [27], which provide an abstract
setting for graph transformation that accommodates the technical particulari-
ties of simple graphs—notably the fact that the ‘exactness’ direction of the van
Kampen condition fails in general for cubes where the vertical arrows, between
the two PO faces, are not regular.

2 Quasi-topoi

In this section, we will demonstrate that quasi-topoi form a natural setting
within which non-linear sesqui-pushout (SqPO) rewriting is well-posed. Quasi-
topoi have been considered in the context of rewriting theories as a natural
generalization of adhesive categories in [35]. While several adhesive categories
of interest to rewriting are topoi, including in particular the category Graph
of directed multigraphs (cf. Definition 4), it is not difficult to find examples of
categories equally relevant to rewriting theory that fail to be topoi. A notable
such example is the category SGraph of directed simple graphs (cf. Definition 5).

We will demonstrate that quasi-topoi combine all technical properties nec-
essary such as to admit the construction of non-linear sesqui-pushout semantics
over them. We will first list these abstract properties, and illustrate them via
the two aforementioned paradigmatic examples of topoi and quasi-topoi.

Let us first recall a number of results from the work of Cockett and
Lack [15,16] on restriction categories. We will only need a very small fragment of
their theory, namely the definition and existence guarantees for M-partial map
classifiers, so we will follow mostly [18]. We will in particular not be concerned
with the notion of M-partial maps itself.

Definition 1 ([15], Sec. 3.1). For a category C, a stable system of monics M
is a class of monomorphisms of C that (i) includes all isomorphisms, (ii) is
stable under composition, and (iii) is stable under pullbacks (i.e., if (f ′,m′) is
a pullback of (m, f) with m ∈ M, then m′ ∈ M). Throughout this paper, we will
reserve the notation � for monics in M, and ↪→ for generic monics.

Definition 2 ([18], Sec. 2.1; compare [16], Sec. 2.1). For a stable system
of monics M in a category C, an M-partial map classifier (T, η) is a functor
T : C → C and a natural transformation η : IDC

.−→ T such that

1. for all X ∈ obj(C), ηX : X → T (X) is in M
2. for each span (A m←− X

f−→ B) with m ∈ M, there exists a unique morphism

A
ϕ(m,f)−−−−→ T (B) such that (m, f) is a pullback of (ϕ(m, f), ηB).
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Proposition 1 ([18], Prop. 6). For every M-partial map classifier (T, η), T

preserves pullbacks, and η is Cartesian, i.e., for each X
f−→ Y , (ηx, f) is a

pullback of (T (f), ηY ).

Definition 3 ([33], Def. 9). A category C is a quasi-topos iff

1. it has finite limits and colimits
2. it is locally Cartesian closed
3. it has a regular-subobject-classifier.

Based upon a variety of different results from the rich literature on quasi-
topoi, we will now exhibit that quasi-topoi indeed possess all technical properties
required in order for non-linear SqPO-rewriting to be well-posed:

Corollary 1. Every quasi-topos C enjoys the following properties:

– It has (by definition) a stable system of monics M = rm(C) (the class of
regular monos), which coincides with the class of extremal monomorphisms [1,
Cor. 28.6], i.e., if m = f ◦ e for m ∈ rm(C) and e ∈ epi(C), then e ∈ iso(C).

– It has (by definition) a M-partial map classifier (T, η).
– It is rm-quasi-adhesive, i.e., it has pushouts along regular monomorphisms,

these are stable under pullbacks, and pushouts along regular monos are pull-
backs [27].

– It is M-adhesive [31, Lem. 13].

– For all pairs of composable morphisms A
f−→ B and B

m−→ C with m ∈ M,
there exists a final pullback-complement (FPC) A

n−→ F
g−→ C, and with n ∈ M

([18, Thm. 1]; cf. Theorem 2).

– It possesses an epi-M-factorization [1, Prob. 28.10]: each morphism A
f−→ B

factors as f = m ◦ e, with morphisms A
e−→ B̄ in epi(C) and B̄

m−→ A in M
(uniquely up to isomorphism in B̄).

– It possesses a strict initial object ∅ ∈ obj(C) [32, A1.4], i.e., for every object
X ∈ obj(C), there exists a morphism iX : ∅ → X, and if there exists a
morphism X → ∅, then X ∼= ∅.

If in addition the strict initial object ∅ is M-initial, i.e., if for all objects
X ∈ obj(C) the unique morphism iX : ∅ → X is in M, then C has disjoint
coproducts, i.e., for all X,Y ∈ obj(C), the pushout of the M-span X � ∅ � Y
is X � X + Y � Y (cf. [37, Thm. 3.2], which also states that this condition is
equivalent to requiring C to be a solid quasi-topos), and the coproduct injections
are M-morphisms as well. Finally, if pushouts along regular monos of C are
van Kampen, C is a rm-adhesive category [27, Def. 1.1].

2.1 The Categories of Directed Multi- and Simple Graphs

Throughout this paper, we will illustrate our constructions with two prototypical
examples of (quasi-)topoi, namely categories of two types of directed graphs.
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Definition 4. The category Graph of directed multigraphs is defined as the
presheaf category Graph := (Gop → Set), where G := (· ⇒ �) is a category with
two objects and two morphisms [34]. Objects G = (VG, EG, sG, tG) of Graph are
given by a set of vertices VG, a set of directed edges EG and the source and target
functions sG, tG : EG → VG. Morphisms of Graph between G,H ∈ obj(Graph)
are of the form ϕ = (ϕV , ϕE), with ϕV : VG → VH and ϕE : EG → EH such
that ϕV ◦ sG = sH ◦ ϕE and ϕV ◦ tG = tH ◦ ϕE.

Definition 5. The category SGraph of directed simple graphs2 is defined as
the category of binary relations BRel ∼= Set // Δ [33]. Here, Δ : Set → Set is
the pullback-preserving diagonal functor defined via ΔX := X ×X, and Set//Δ
denotes the full subcategory of the slice category Set/Δ defined via restriction
to objects m : X → ΔX that are monomorphisms. More explicitly, an object of
Set // Δ is given by S = (V,E, ι), where V is a set of vertices, E is a set of
directed edges, and where ι : E → V × V is an injective function. A morphism
f = (fV , fE) between objects S and S′ is a pair of functions fV : V → V ′ and
fE : E → E′ such that ι′ ◦ fE = (fV × fV ) ◦ ι (see (2)).

These two categories satisfy the following well-known properties:

Theorem 1. The category Graph is an adhesive category and (by definition)
a presheaf topos [34] (and thus in particular a quasi-topos), with strict-initial
object ∅ = (∅, ∅, ∅ → ∅, ∅ → ∅) the empty graph, and with the following additional
properties:

– Morphisms are in the classes mono(Graph)/epi(Graph)/iso(Graph) if they
are component-wise injective/surjective/bijective functions, respectively. All
monos in Graph are regular, and Graph therefore possesses an epi-mono-
factorization.

– For each G ∈ obj(Graph) [18, Sec. 2.1], ηG : G → T (G) is defined as the
embedding of G into T (G), where T (G) is defined as the graph with vertex set
V ′

G := VG � {�} and edge set EG � E′
G. Here, E′

G contains one directed edge
en,p : vn → vp for each pair of vertices (vn, vp) ∈ V ′

G × V ′
G.

The category SGraph is not adhesive, but it is a quasi-topos [33], and with the
following additional properties:

– In SGraph [33] (compare [14, Prop. 9]), morphisms f = (fV , fE) are monic
(epic) if fV is monic (epic), while isomorphisms satisfy that both fV and fE

are bijective. Regular monomorphisms in SGraph are those for which (ι, fE)
is a pullback of (Δ(fV ), ι′) [33, Lem. 14(ii)], i.e., a monomorphism is regular
iff it is edge-reflecting. As is the case for any quasi-topos, SGraph possesses
an epi-regular mono-factorization.

2 Some authors prefer to not consider directly the category BRel, but rather define
SGraph as some category equivalent to BRel, where simple graphs are of the form
〈V, E〉 with E ⊆ V × V . This is evidently equivalent to directly considering BRel,
whence we chose to not make this distinction in this paper.
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– The regular mono-partial map classifier (T, η) of SGraph is defined as fol-
lows [1, Ex. 28.2(3)]: for every object S = (V,E, ι) ∈ obj(SGraph),

T (S) := (V� = V � {�}, E� = E � (V × {�}) � ({�} × V ) � {(�, �)}, ι�) , (1)

where ι� is the evident inclusion map, and moreover ηS : S � T (S) is the
(by definition edge-reflecting) inclusion of S into T (S).

– SGraph possesses a regular mono-initial object ∅ = (∅, ∅, ∅ → ∅).

Proof. While most of these results are standard, we briefly demonstrate that the
epi-regular mono-factorization of SGraph [33] is “inherited” from the epi-mono-
factorization of the adhesive category Set. To this end, given an arbitrary mor-
phism f = (fV , fE) in SGraph as on the left of (2), the epi-mono-factorization
fV = mV ◦ eV lifts via application of the diagonal functor Δ to a decomposition
of the morphism fV × fV . Pulling back (Δ(mv), ι′) results in a span (ι̃, f ′′

E) and
(by the universal property of pullbacks) an induced morphism f ′

E that makes
the diagram commute. By stability of monomorphisms under pullbacks, ι̃ is a
monomorphism, thus the square marked (∗) precisely constitutes the data of a
regular monomorphism in SGraph, while the square marked (†) is an epimor-
phism in SGraph (since eV ∈ epi(Set)).

E E′ E Ẽ E′

V × V V ′ × V ′ V × V im(fV )× im(fV ) V ′ × V ′

V V ′ V im(fV ) V ′eV mV

Δ Δ Δ

ι

eV ×eV mV ×mV

∃! f ′
E f ′′

E

ι′ι̃

fE

fV

fV ×fV

fV

Δ Δ

fE

ι ι′ PB
(∗)

(†)

(2)

2.2 FPCs, M-Multi-POCs, M-Multi-sums and FPAs

Compared to compositional SqPO-type rewriting for M-linear rules [2], in the
generic SqPO-type setting we require both a generalization of the concept of
pushout complements that forgoes uniqueness, as well as a certain form of FPC-
augmentation. To this end, it will prove useful to recall from [18] the following
constructive result:

Theorem 2 ([18], Thm. 1). For a category C with M-partial map classifier
(T, η), the final pullback complement (FPC) of a composable sequence of arrows

A
f−→ B and B

m−→ C with m ∈ M is guaranteed to exist, and is constructed via
the following algorithm:

1. Let m̄ := ϕ(m, idB) (i.e., the morphism that exists by the universal property
of (T, η), cf. square (1) below).
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2. Construct T (A) n̄←− F
g−→ C as the pullback of T (A)

T (f)−−−→ T (B) m̄←− C (cf.
square (2) below); by the universal property of pullbacks, this in addition
entails the existence of a morphism A

n−→ F .

Then (n, g) is the FPC of (f,m), and n is in M.

A B

A B

F C B

C

T (A) T (B) B

f

m

f

m∃!n

g

n̄

T (f)

m̄

ηA

ηb

m

(1)(2)
PB PB

(3)

This guarantee for the existence of FPCs will prove quintessential for con-
structing M-multi-pushout complements, which are defined as follows:

Definition 6. For a category C with an M-partial map classifier, the M-multi-
pushout complement (M-multi-POC) P(f, b) of a composable sequence of mor-

phisms A
f−→ B and B

b−→ D with b ∈ M is defined as

P(f, b) := {(A a−→ P, P
d−→ D) ∈ mor(C)2 | a ∈ M ∧ (d, b) = PO(a, f)} . (4)

Proposition 2. In a quasi-topos C and for M = rm(C) the class of regular
monomorphisms, let P(f, b) be an M-multi-POC.

– Universal property of P(f, b): for every diagram such as in (5)(i) where
(1) + (2) is a pushout along an M-morphism n, and where m = m′ ◦ b
for some m′, b ∈ M, there exists an element (a, d) of P(f, b) and an M-
morphism p ∈ M such that the diagram commutes and (2) is a pushout.
Moreover, for any p′ ∈ M and for any other element (a′, d′)of P(f, b) with
the same property, there exists an isomorphism δ ∈ iso(C) such that δ ◦ a = a′

and d′ ◦ δ = d.
– Algorithm to compute P(f, b):

1. Construct (n, g) in diagram (5)(ii) by taking the FPC of (f, b).
2. For every pair of morphisms (a, p) such that a ∈ M and a ◦ p = n, take

the pushout (1), which by universal property of pushouts induces an arrow
D

e−→ C; if e ∈ iso(C), (a, d) is a contribution to the M-multi-POC of
(f, b).

A B A B

P D P D

Q E F C

(i) (ii)

f

n

a PO

d

p

b

e

m

g

f

b∃! a

∃! d

m′

q

n m

∃! p

(1)

(2)

(1)

(2) (5)



10 N. Behr et al.

Proof. The universal property of P(f, b) follows from pushout-pullback decom-
position: pushouts along M-morphisms are pullbacks, so (1) + (2) is a pull-
back; taking the pullback (p, d) of (q,m′) yields by the universal property of
pullbacks a morphism a (which is unique up to isomorphism), and thus by
pullback-pullback decomposition that (1) and (2) are pullbacks. By stability of
M-morphisms under pullbacks, both a and p are in M, and finally by pushout-
pullback decomposition, both (1) and (2) are pushouts. This proves that (a, d)
is in P(f, b).

To prove that the algorithm provided indeed computes P(f, b), note first that
by the universal property of FPCs, whenever in a diagram as in (5)(ii) we have
that D ∼= C and b ∈ M, since pushouts along M-morphisms are pullbacks,
square (1) is a pullback, which entails by the universal property of FPCs that
there exists a morphism p such that p◦a = n. By stability of M-morphisms under
pullbacks, we find that a must be in M, so indeed every possible contribution
to P(f, b) must give rise to a diagram as in (5)(ii), which proves the claim.

An example of an M-multi-POC construction both in SGraph and in
Graph is given in the diagram below. Note that in Graph, the M-multi-POC
does not contain the FPC contribution (since in Graph the pushout of the
relevant span would yield to a graph with a multi-edge).

f

g

m

ηB

BA

�

ηB

m

m̄

ηA

�

n̄

T (f)

n

PBPB

FPC

POC

POC

C

(1)(2)

f

g

m

ηB

BA

�

ηB

m

m̄

ηA

�

n̄

T (f)

n

PBPB

FPC

POC

POC

C

(1)(2)

POC
(6)

Definition 7 (M-FPC-augmentations). In a quasi-topos3 C with M =
rm(C), consider a pushout square along an M-morphism such as square (1)
in the diagram below (where α, ᾱ ∈ M):

A B

C D

F E

α

a

ā

ᾱ

e

e◦ᾱ

n

f

n◦α

(2)

PO

(1)

(7)

3 As demonstrated in [26, Fact 3.4], every finitary M-adhesive category C possesses
an (extremal E , M)-factorization, so if C is known to possess FPCs as required
by the construction, this might allow to generalize the M-FPC-PO-augmentation
construction to this setting.
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We define an M-FPC augmentation (FPA) of the pushout square (1) as a dia-
gram formed from an epimorphism e ∈ epi(C) and that satisfies the following
properties:

– The morphism e ◦ ᾱ is an M-morphism.
– (ᾱ, idB) is a pullback of (e, e ◦ ᾱ).
– Square (1) + (2) is an FPC, and the induced morphism n that exists4 by the

universal property of FPCs, here w.r.t. the FPC (n ◦ α, f) of (a, e ◦ ᾱ), is an
M-morphism.

For a pushout as in (1), we denote by FPA(α, a) its class of FPAs:

FPA(α, a) := {(n, f, e) | e ∈ epi(C) ∧ e ◦ ᾱ, n ∈ M ∧ (f, n ◦ α) = FPC(a, e ◦ ᾱ)} (8)

As induced by the properties of pushouts and of FPCs, FPAs are defined up to
universal isomorphisms (in D, E and F ), and for a given pushout square there
will in general exist multiple non-isomorphic such augmentations.

The final technical ingredient for our rewriting theoretic constructions is a
notion of multi-sum adapted to the setting of quasi-topoi, a variation on the
general theory of multi-(co-)limits due to Diers [20].

Definition 8. In a quasi-topos C, the multi-sum
∑

M(A,B) of two objects
A,B ∈ obj(C) is defined as a family of cospans of regular monomorphisms

A
f−→ Y

g←− B with the following universal property: for every cospan A
a−→ Z

b←− B

with a, b ∈ rm(C), there exists an element A
f−→ Y

g←− B in
∑

M(A,B) and a
regular monomorphism Y

y−→ Z such that a = y ◦ f and b = y ◦ g, and moreover
(f, g) as well as y are unique up to universal isomorphisms.

X

∅

A B A B

A + B A + B

Y Y P

Q

Z Z

(i) (ii)

inA inB

a b

e

m

yA yB

[a,b]
a

yA

m

e

b

pA
pB

inA inB

yB

ιA ιB

xA
xB

ιX

eP

q

mQ

qB

qA

∃! z

(9)

4 Note that square (1) pasted with the pullback square formed by the morphisms
α, idB , e, e ◦ ᾱ yields a pullback square that is indeed of the right form to warrant
the existence of a morphism n into the FPC square (1) + (2).
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Lemma 1. If C is a quasi-topos, the multi-sum
∑

M(A,B) arises from the epi-
M-factorization of C (for M = rm(C); compare [29]).

– Existence: Let A
inA−−→ A + B

inB←−− B be the disjoint union of A and B.
Then for any cospan A

a−→ Z
b←− B with a, b ∈ M, the epi-M-factorization of

the induced arrow A + B
[a,b]−−−→ Z into an epimorphism A + B

e−→ Y and an
M-morphism Y

m−→ Z yields a cospan (yA = e ◦ inA, yB = e ◦ inB), which
by the decomposition property of M-morphisms is a cospan of M-morphisms
(cf. (9)(i)).

– Construction: For objects A,B ∈ obj(C), every element A
qA−−→ Q

qB←−− B in
∑

M(A,B) is obtained from a pushout of some span A
xA←−− X

xB−−→ B with
xA, xB ∈ M and a morphism P

q−→ Q in mono(C) ∩ epi(C) (cf. (9)(ii)).

Proof. See [7, Appendix B].

G H

S0

S1 S2

S3

S4

I

Since in an adhesive category all monos are regular [34],
in this case the multi-sum construction simplifies to the
statement that every monic cospan can be uniquely factor-
ized as a cospan obtained as the pushout of a monic span
composed with a monomorphism. It is however worthwhile
emphasizing that for generic quasi-topoi C one may have
M �= mono(C), as is the case in particular for the quasi-
topos SGraph of simple graphs. We illustrate this phe-
nomenon in the diagram on the right via presenting the
multi-sum construction for A = B = •. Note in particular
the monic-epis that extend the two-vertex graph S0 into
the graphs S1, S2 and S3, all of which have the same vertices as S0 (recalling
that a morphism in SGraph is monic/epic if it is so on vertices), yet additional
edges, so that in particular none of the morphisms S0 → Sj for j = 1, 2, 3 is
edge-reflecting.

3 Non-linear Sesqui- and Double-Pushout Rewriting

In much of the traditional work on graph- and categorical rewriting theories [22],
while it was appreciated early in its development that in particular SqPO-
rewriting permits the cloning of subgraphs [17], and that both SqPO- and DPO-
semantics permit the fusion of subgraphs (i.e. via input-linear, but output-non-
linear rules), the non-uniqueness of pushout complements along non-monic mor-
phisms for the DPO- and the lack of a concurrency theorem in the SqPO-case
in general has prohibited a detailed development of non-linear rewriting theo-
ries to date. Interestingly, the SqPO-type concurrency theorem for linear rules
as developed in [2] exhibits the same obstacle for the generalization to non-
linear rewriting as the DPO-type concurrency theorem, i.e., the non-uniqueness
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of certain pushout complements. Our proof for non-linear rules identifies in addi-
tion a new and highly non-trivial “backpropagation effect”, which will be high-
lighted in Sect. 4. It may be worthwhile emphasizing that there exists previ-
ous work that aimed at circumventing some of the technical obstacles of non-
linear rewriting either via specializing the semantics e.g. from double pushout
to a version based upon so-called minimal pushout complements [14], or from
sesqui-pushout to reversible SqPO-semantics [19,30] or other variants such as
AGREE-rewriting [18]. In contrast, we will in the following introduce the “true”
extensions of both SqPO- and DPO-rewriting to the non-linear setting, with our
constructions based upon multi-sums, multi-POCs and FPAs.

Definition 9. General SqPO-rewriting semantics over a quasi-topos C:

– The set of SqPO-admissible matches of a rule rule r = (O ← K → I) ∈
span(C) into an object X ∈ obj(C) is defined as

MSqPO
r (X) := {I

m−→ X | m ∈ rm(C)} . (10)

A SqPO-type direct derivation5 of X ∈ obj(C) with rule r along m ∈
MSqPO

r (X) is defined as a diagram in (11), where (1) is formed as an FPC,
while (2) is formed as a pushout.

O K I

rm(X) X̄ X

m∗

o

m̄

ō ī

i

m(2) (1) (11)

– The set of SqPO-type admissible matches of rules r2, r1 ∈ span(C) (also
referred to in the literature as dependency relations) is defined as

MSqPO
r2

(r1) := {(j2, j1, j̄1, ō1, ¯̄j1, ¯̄i1, ι21) |
(j2, j1) ∈

∑

M (I2, O1) ∧ (j̄1, ō1) ∈ P(o1, j1)

∧ (¯̄j1, ¯̄i1, ι21) ∈ FPA(j̄1, i1)}�∼ ,

(12)

where equivalence is defined up to the compatible universal isomorphisms of
multi-sums, multi-POCs and FPAs (see below).

– An SqPO-type rule composition of two general rules r1, r2 ∈ span(C) along
an admissible match μ ∈ MSqPO

r2
(r1) is defined via a diagram as in (13)

below, where (going column-wise from the left) squares (22), (6), and (4) are
pushouts, (11) is the multi-POC element specified as part of the data of the
match, (21) and (3) form an FPA-diagram as per the data of the match, and
finally (12) and (5) are FPCs:

5 Note that this part of the definition of general SqPO-semantics coincides precisely
with the original definition of [17].
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O2 K2 I2 O1 K1 I1

O21 K2 J21 K1 I21

O21 K2 J̄21 K1 I21

i1o1i2o2

j2 j1

j21

j̄2

ī2

j∗
2

ō2

ι∗
21

¯̄j2

¯̄i2¯̄o2

ō1

j̄1

ī1

j∗
1

¯̄o1 ¯̄i1

¯̄j1 ι21

ι1

(12)(22) (11) (21)

(3)(4)(5)(6)

(13)

We then define the composite rule via span composition:

r2
μ
� r1 := (O21 ← K2 → J21) ◦ (J21 ← K1 → I21) (14)

Definition 10. General DPO-rewriting semantics over an rm-adhesive category
C:

– The set of DPO-admissible matches of a rule rule r = (O ← K → I) ∈
span(C) into an object X ∈ obj(C) is defined as

MDPO
r (X) := {(m, m̄, ī) | m ∈ rm(C) ∧ (m̄, ī) ∈ P(i,m)} . (15)

A DPO-type direct derivation of X ∈ obj(C) with rule r along m ∈ MDPO
r (X)

is defined as a diagram in (11), where (1) is the multi-POC element chosen
as part of the data of the match, while (2) is formed as a pushout.

– The set of DPO-type admissible matches of rules r2, r1 ∈ span(C) (also
referred to as dependency relations) is defined as

MDPO
r2

(r1) := {(j2, j1, j̄2, ī2, j̄1, ō1) |
(j2, j1) ∈

∑

M (I2, O1)

∧ (j̄2, ī2) ∈ P(i2, j2) ∧ (j̄1, ō1) ∈ P(o1, j1)}�∼ ,

(16)

where equivalence is defined up to the compatible universal isomorphisms of
multi-sums and multi-POCs (see below).

– A DPO-type rule composition of two general rules r1, r2 ∈ span(C) along an
admissible match μ ∈ MDPO

r2
(r1) is defined via a diagram as in (17) below,

where (12) and (11) are the multi-POC elements chosen as part of the data
of the match, while (22) and (21) are pushouts:

O2 K2 I2 O1 K1 I1

O21 K2 J21 K1 I21

i1o1i2o2

j2 j1j̄2

ī2

j∗
2

ō2 ō1

j̄1

ī1

j∗
1(12)(22) (11) (21) (17)

We then define the composite rule via span composition:

r2
μ
� r1 := (O21 ← K2 → J21) ◦ (J21 ← K1 → I21) (18)

The precise reasons for the definitions of SqPO- and DPO-semantics for generic
rules and regular monos as matches will only become evident via the concurrency
theorems that will be developed in the following sections.
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Let us illustrate the notion of SqPO-type rule composition, as given in Def-
inition 9, with the following example in the setting of directed multi-graphs.
Note that, since this is an adhesive category, all monos are automatically reg-
ular and we therefore have no need to restrict matches to being edge-reflecting
monomorphisms.

(19)

In this example, we have two rules. The first clones a node6, but not its
incident edge, then adds a new edge between the original node and its clone and
merges the blue node with the original node. The second rule deletes a node
and then merges two nodes. The given applications to the graphs X0 and X1

illustrate some of the idiosyncrasies of SqPO-rewriting:

– Since the node of X0 that is being cloned possesses a self-loop, the result of
cloning is two nodes, each with a self-loop, with one edge going each way
between them.

– In the application of the second rule to X1, we see the side-effect whereby all
edges incident to the deleted node are themselves deleted (as also occurs in
SPO-, but not in DPO-rewriting).

The overall effect of the two rewrites can be seen in X2; as usual, this depends
on the overlap between the images of O1 and I2 in X1. This overlap is precisely
the multi-sum element J21. Since our example is set in an adhesive category,
this can be most easily computed by taking the PB of m∗

1 and m2 and then the

6 Note that we have drawn the rule from right to left so that the input, sometimes
called the left-hand side, of the rule is the topmost rightmost graph. Note also that
the structure of the homomorphisms may be inferred from the node positions, with
the exception of the vertex clonings that are explicitly mentioned in the text.



16 N. Behr et al.

PO of the resulting span. The PO that defines the rewrite from X0 to X1 can
now be factorized by computing the PB of j21 and the arrow from X0 to X1;
this determines K1 and its universal arrow from K1 with consequence that (11)
and (21) are both POs. Let us note that K1 is the appropriate member of the
multi-POC, as determined by the particular structure of X0.

The PO (31) induces a universal arrow from I21 to X0; but an immediate
inspection reveals that this homomorphism is not a mono (nor an epi in this
case). As such, we cannot hope to use I21 as the input/left hand side of the
composite rule. Furthermore, we find that the square (41) is neither a PB nor a
PO. However, the FPA I21 resolves these problems by enabling a factorization
of this square, giving rise to a monomorphism m21 into X0, where (4′′

1) and
(31) + (4′

1) are PBs and indeed FPCs. This factorization, as determined by e21,
can now be back-propagated to factorize (21) into POs (2′

1) and (2′′
1) which gives

rise to an augmented version J21 of the multi-sum object in the middle. Note
moreover that the effect of back-propagation concerns also the contribution of
the second rule in the composition: the final output motif contains an extra self-
loop (compared to the motif O21 defined by the PO (32)), which is induced by
the extra self-loop of J21 that appears due to back-propagation.

We may then compute the composite rule via taking a pullback to obtain
K21, yielding in summary the rule O21 ← K21 → I21. Performing the remaining
steps of the “synthesis” construction of the concurrency theorem (compare [7,
Appendix C.1]) then amounts to constructing the commutative cube in the mid-
dle of the diagram, yielding the FPC (71) and the PO (72), and thus finally the
one-step SqPO-type direct derivation from X0 to X2 along the composite rule
O21 ← K21 → I21.

Let us finally note, as a general remark, that if the first rule in an SqPO-
type rule composition is output- (or right-) linear then the POC is uniquely
determined; and if it is input- (or left-) linear then the PO (31) is also an FPC
and (41) is a PB, by Lemma 2(h) of [2]. In this case, the FPA is trivial, and
consequently so is the back-propagation process. Our rule composition can thus
be seen as a conservative extension of that defined for linear rules in [2].

4 Concurrency Theorem for Non-linear SqPO Rewriting

Part of the reason that a concurrency theorem for generic SqPO-rewriting had
remained elusive in previous work concerns the intricate nature of the inter-
play between multi-sums, multi-POCs and FPAs as seen from the definition of
rule compositions according to Definition 9, which is justified via the following
theorem, constituting the first main result of the present paper:

Theorem 3. Let C be a quasi-topos, let X0 ∈ obj(C) be an object, and let
r2, r1 ∈ span(C) be two (generic) rewriting rules.

1. Synthesis: For every pair of admissible matches m1 ∈ MSqPO
r1

(X0) and
m2 ∈ MSqPO

r2
(r1m1

(X0)), there exist an admissible match μ ∈ MSqPO
r2

(r1)
and an admissible match m21 ∈ MSqPO

r21
(X0) (for r21 the composite of r2 with

r1 along μ) such that r21m21
(X0) ∼= r2m2

(r1m1
(X0)).
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2. Analysis: For every pair of admissible matches μ ∈ MSqPO
r2

(r1) and m21 ∈
MSqPO

r21
(X0) (for r21 the composite of r2 with r1 along μ), there exists a pair

of admissible matches m1 ∈ MSqPO
r1

(X0) and m2 ∈ MSqPO
r2

(r1m1
(X0)) such

that r2m2
(r1m1

(X0)) ∼= r21m21
(X0).

3. Compatibility: If in addition C is finitary [26, Def. 2.8], i.e., if for every
object of C there exist only finitely many regular subobjects up to isomor-
phisms, the sets of pairs of matches (m1,m2) and (μ,m21) are isomorphic
if they are suitably quotiented by universal isomorphisms, i.e., by univer-
sal isomorphisms of X1 = r1m1

(X0) and X2 = r2m2
(X1) for the set of pairs

(m1,m2), and by the universal isomorphisms of multi-sums, multi-POCs and
FPAs for the set of pairs (μ,m21), respectively.

Proof. See [7, Appendix C].

5 Concurrency Theorem for Non-linear DPO-Rewriting

The well-known and by now traditional results on concurrency in DPO-type
semantics by Ehrig et al. were formulated for M-linear rules in M-adhesive
categories (albeit possibly for non-monic matches; cf. [22, Sec. 5] for the pre-
cise details), and notably the non-uniqueness of pushout complements along
non-linear morphisms posed the main obstacle for extending this line of results
to non-linear DPO rewriting. As we will demonstrate in this section, taking
advantage of multi-sums and multi-POCs, and if the underlying category C is
an rm-adhesive category [27, Def. 1.1], one may lift this restriction and obtain a
fully well-posed semantics for DPO-rewriting along generic rules, and for regular
monic matches:

Theorem 4. Let C be an rm-adhesive category, let X0 ∈ obj(C) be an object,
and let r2, r1 ∈ span(C) be (generic) spans in C.

– Synthesis: For every pair of admissible matches m1 ∈ MDPO
r1

(X0) and m2 ∈
MDPO

r2
(r1m1

(X0)), there exist an admissible match μ ∈ MDPO
r2

(r1) and an
admissible match m21 ∈ MDPO

r21
(X0) (for r21 the composite of r2 with r1

along μ) such that r21m21
(X0) ∼= r2m2

(r1m1
(X0)).

– Analysis: For every pair of admissible matches μ ∈ MDPO
r2

(r1) and m21 ∈
MDPO

r21
(X0) (for r21 the composite of r2 with r1 along μ), there exists a pair

of admissible matches m1 ∈ MDPO
r1

(X0) and m2 ∈ MSqPO
r2

(r1m1
(X0)) such

that r2m2
(r1m1

(X0)) ∼= r21m21
(X0).

– Compatibility: If in addition C is finitary, the sets of pairs of matches
(m1,m2) and (μ,m21) are isomorphic if they are suitably quotiented by uni-
versal isomorphisms, i.e., by universal isomorphisms of X1 = r1m1

(X0) and
X2 = r2m2

(X1) for the set of pairs of matches (m1,m2), and by the universal
isomorphisms of multi-sums and multi-POCs for the set of pairs of matches
(μ,m21), respectively.

Proof. See [7, Appendix D].
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It is worthwhile noting that for an adhesive category C (in which every
monomorphism is regular) and if we consider linear rules (i.e., spans of monomor-
phisms), the characterization of multi-sums according to Lemma 1 permits to
verify that DPO-type rule compositions as in Theorem 4 specialize in this setting
precisely to the notion of DPO-type D-concurrent compositions [35, Sec. 7.2].
This is because, in this case, each multi-sum element is precisely characterized
as the pushout of a monic span (referred to as a D-dependency relation between
rules in [35]), so one finds indeed that Theorem 4 conservatively generalizes
the traditional DPO-type concurrency theorem to the non-linear setting. Unlike
for the generic SqPO-type setting however, quasi-topoi are not sufficient for
generic DPO-rewriting, since in the “analysis” part of the proof of the DPO-
type concurrency theorem the van Kampen property of pushouts along regular
monomorphisms is explicitly required (cf. [7, Appendix D]).

6 Conclusion and Outlook

We have defined an abstract setting for SqPO graph transformation in quasi-
topoi that captures the important concrete cases of (directed) multi-graphs and
simple graphs. In particular, we have established the existence of appropriate
notions of M-multi-sums, M-multi-POCs and M-FPC-PO-augmentations in
this setting that permit a proof of the concurrency theorem for general non-
linear rules.

Our immediate next goal is to prove associativity of our notion of rule com-
position in order to enable the use of rule algebra constructions [5,8,10] and
tracelets [3] for static analysis [4,6] of systems generated by non-linear SqPO
or DPO transformations. Intuitively, associativity is necessary in order to guar-
antee that one may consistently analyze and classify derivation traces based
upon nested applications of the concurrency theorem, in the sense that recursive
rule composition operations should yield a “catalogue” of all possible ways in
which rules can interact in derivation sequences. The latter is formalized as the
so-called tracelet characterization theorem in [3], whereby any derivation trace
is characterized as an underlying tracelet and a match of the tracelet into the
initial state of the trace. As illustrated in the worked example presented in (19),
which highlighted the intriguing effect that comparatively complicated interme-
diate state in derivation traces involving cloning and fusing of graph structures
are consistently abstracted away via performing rule compositions, one might
hope that this type of effect persists also in n-step derivation traces for arbitrary
n, for which however associativity is a prerequisite. Concretely, without the asso-
ciativity property, the tentative “summaries” of the overall effects of derivation
traces via their underlying tracelets would not be mathematically consistent, as
they would only encode the causality of the nesting order in which they were
calculated via pairwise rule composition operations. Preliminary results indicate
however that indeed our generalized SqPO- and DPO-type semantics both sat-
isfy the requisite associativity property, which will be presented in future work.
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Beyond known applications to rule-based descriptions of complex systems,
such as in Kappa [13] and related formalisms, we hope to exploit this frame-
work in graph combinatorics and structural graph theory [12]—which frequently
employ operations such as edge contraction, which requires input-linear but
output-non-linear rules, and node expansion, which further requires input-non-
linear rules—to provide stronger tools for reasoning about graph reconfigurations
as used, for example, in the study of coloring problems. We moreover expect
this framework to be useful in strengthening existing approaches to graph-based
knowledge representation [28], particularly for the extraction and manipulation
of audit trails [30] that provide a semantic notion of version control in these
settings.
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34. Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FoSSaCS
2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24727-2 20
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Abstract. Double-pushout rewriting is an established categorical app-
roach to the rule-based transformation of graphs and graph-like objects.
One of its standard results is the construction of concurrent rules and
the Concurrency Theorem pertaining to it: The sequential application of
two rules can equivalently be replaced by the application of a concurrent
rule and vice versa. We extend and generalize this result by introduc-
ing generalized concurrent rules (GCRs). Their distinguishing property
is that they allow identifying and preserving elements that are deleted
by their first underlying rule and created by the second one. We position
this new kind of composition of rules among the existing ones and obtain
a Generalized Concurrency Theorem for it. We conduct our work in the
same generic framework in which the Concurrency Theorem has been
presented, namely double-pushout rewriting in M-adhesive categories
via rules equipped with application conditions.

Keywords: Graph transformation · Double-pushout rewriting ·
M-adhesive categories · Concurrency Theorem · Model editing

1 Introduction

The composition of transformation rules has long been a topic of interest for
(theoretical) research in graph transformation. Classical kinds of rule compo-
sition are the ones of parallel and concurrent [11] as well as of amalgamated
rules [4]. Considering the double-pushout approach to graph transformation,
these rule constructions have been lifted from ordinary graphs to the general
framework of M-adhesive categories and from plain rules to such with appli-
cation conditions [5,7,9,17]. These central forms of rule composition have also
been developed for other variants of transformation, like single- or sesqui-pushout
rewriting [1,22,23].

In this work, we are concerned with simultaneously generalizing two variants
of sequential rule composition in the context of double-pushout rewriting. We
develop generalized concurrent rules (GCRs), which comprise concurrent as well
as so-called short-cut rules [14]. The concurrent rule construction, on the one
hand, is optimized concerning transient model elements: An element that is
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created by the first rule and deleted by the second does not occur in a concurrent
rule. A model element that is deleted by the first rule, however, cannot be reused
in the second one. A short-cut rule, on the other hand, takes a rule that only
deletes elements and a monotonic rule (i.e., a rule that only creates elements) and
combines them into a single rule, where elements that are deleted and recreated
may be preserved throughout the process. GCRs fuse both effects, the omission
of transient elements and the reuse of elements, into a single construction.

The reuse of elements that is enabled by short-cut rules has two distinct
advantages. First, information can be preserved. In addition, a rule that reuses
model elements instead of deleting and recreating them is often applicable more
frequently since necessary context does not get lost: Considering the double-
pushout approach to graph transformation, a rule with higher reuse satisfies
the dangling edge condition more often in general. These properties allowed
us to employ short-cut rules to improve model synchronization processes [13,
15,16]. Our construction of GCRs provides the possibility of reusing elements
when sequentially composing arbitrary rules. Hence, it generalizes the restricted
setting in which we defined short-cut rules. Thereby, we envision new possibilities
for application, for example, the automated construction of complex (language-
preserving) editing operations from simpler ones (which are not monotonic in
general). This work, however, is confined to developing the formal basis. We
present our new theory in the general and abstract framework of double-pushout
rewriting in M-adhesive categories [5,21]. We restrict ourselves to the case of
M-matching of rules, though. While results similar to the ones we present here
also hold in the general setting, their presentation and proof are much more
technical.

In Sect. 2, we introduce our running example and motivate the construction
of GCRs by contrasting it to the one of concurrent rules. Section 3 recalls prelim-
inaries. In Sect. 4, we develop the construction of GCRs. We characterize under
which conditions the GCR construction results in a rule and prove that it gen-
eralizes indeed both, the concurrent as well as the short-cut rule constructions.
Section 5 contains our main result: The Generalized Concurrency Theorem states
that subsequent rule applications can be synthesized into the application of a
GCR. It also characterizes the conditions under which the application of a GCR
can be equivalently split up into the subsequent application of its two underlying
rules. Finally, we consider related work in Sect. 6 and conclude in Sect. 7. A long
version of this paper contains additional preliminaries and all proofs [20].

2 Running Example

In this section, we provide a short practical motivation for our new rule con-
struction. It is situated in the context of model editing, more precisely class
refactoring [12]. Refactoring is a technique to improve the design of a software
system without changing its behavior. Transformation rules can be used to spec-
ify suitable refactorings of class models. For the sake of simplicity, we focus on
the class structure here, where classes are just blobs. Two kinds of class relations
are specified using typed edges, namely class references and generalizations; they
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Fig. 1. Two refactoring rules for class diagrams (first line) and sequentially composed
rules derived from them (second line). (Color figure online)

are typed with ref and gen, respectively. All rules are depicted in an integrated
fashion, i.e., as a single graph where annotations determine the roles of the ele-
ments. Black elements (without further annotations) need to exist to match a
rule and are not changed by its application. Elements in red (additionally anno-
tated with −−) need to exist and are deleted upon application; green elements
(annotated with ++) get newly created.

The refactoring rules for our example are depicted in the first line of Fig. 1.
The rule removeMiddleMan removes a Class that merely delegates the work to
the real Class and directs the reference immediately to this, instead. The rule
extractSubclass creates a new Class that is generalized by an already existing
one; to not introduce unnecessary abstraction, the rule also redirects an existing
reference to the newly introduced subclass.

Sequentially combining these two refactorings results in further ones. For
example, this allows us to replace the second reference of a chain of two ref-
erences with a generalization. The according concurrent rule is depicted as
Ref2Gen CR in Fig. 1. It arises with removeMiddleMan as its first underlying
rule and extractSubclass as its second, where Classes 1 and 5 and 3 and 4 are
identified, respectively. The new reference-edge created by removeMiddleMan is
deleted by extractSubclass and, thus, becomes transient. But the Class 2 that
originally delegated the reference is deleted and cannot be reused. Instead, Class
6 has to be newly created to put Classes 1 and 3 into this new context.

In many situations, however, it would be preferable to just reuse Class 2 and
only replace the reference with a generalization. In this way, information (such
as references, values of possible attributes, and layout information) is preserved.
And, maybe even more importantly, when adopting the double-pushout app-
roach, such a rule is typically more often applicable, namely also when Class 2
has adjacent edges. In our construction of generalized concurrent rules, we may
identify elements deleted by the first rule and recreated by the second and decide
to preserve them. In this example, our new construction allows one to also con-
struct Ref2Gen GCR (Fig. 1) from removeMiddleMan and extractSubclass. In
contrast to Ref2Gen CR, it identifies Class 2 deleted by removeMiddleMan and
Class 6 created by extractSubclass and the respective incoming references and
preserves them. This rule specifies a suitable variant of the refactoring Remove
Middle Man, where the middle man is turned into a subclass of the real class.
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3 Preliminaries

In this section, we recall the main preliminaries for our work. We introduce
M-adhesive categories, double-pushout rewriting, initial pushouts, M-effective
unions, and concurrent rules.

Adhesive categories can be understood as categories where pushouts along
monomorphisms behave like pushouts along injective functions in Set. They
have been introduced by Lack and Sobociński [21] and offer a unifying formal
framework for double-pushout rewriting. Later, more general variants, which
cover practically relevant examples that are not adhesive, have been suggested
[5,7]. In this work, we address the framework of M-adhesive categories.

Definition 1 (M-adhesive category). A category C is M-adhesive with
respect to a class of monomorphisms M if

– M contains all isomorphisms and is closed under composition and decompo-
sition, i.e., f : A ↪→ B, g : B ↪→ C ∈ M implies g ◦ f ∈ M and g ◦ f, g ∈ M
implies f ∈ M.

– C has pushouts and pullbacks along M-morphisms and M-morphisms are
closed under pushouts and pullbacks such that if Fig. 2 depicts a pushout
square with m ∈ M, then also n ∈ M, and analogously, if it depicts a pullback
square with n ∈ M, then also m ∈ M.

– Pushouts in C along M-morphisms are vertical weak van Kampen squares:
For any commutative cube as depicted in Fig. 3 where the bottom square is a
pushout along an M-morphism, b, c, d ∈ M, and the backfaces are pullbacks,
then the top square is a pushout if and only if both front faces are pullbacks.

Fig. 2. A pushout square. Fig. 3. Commutative cube over pushout square.

We write that (C,M) is an M-adhesive category to express that a category
C is M-adhesive with respect to the class of monomorphisms M and denote
morphisms belonging to M via a hooked arrow. Typical examples of M-adhesive
categories are Set and Graph (for M being the class of all injective functions
or homomorphisms, respectively).

Rules are used to declaratively describe the transformation of objects. We
use application conditions without introducing nested conditions as their formal
basis; they are presented in [18,20]. Moreover, we restrict ourselves to the case
of M-matching.
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Definition 2 (Rules and transformations). A rule ρ = (p, ac) consists of a
plain rule p and an application condition ac. The plain rule is a span of M-

morphisms p = (L
l←−↩ K

r
↪−→ R); the objects are called left-hand side (LHS),

interface, and right-hand side (RHS), respectively. The application condition
ac is a nested condition over L. A monotonic rule is a rule, where l is an
isomorphism; it is just denoted as ρ = (r : L ↪→ R, ac). Given a rule ρ =

(L
l←−↩ K

r
↪−→ R, ac) and a morphism m : L ↪→ G ∈ M, a (direct) transformation

G ⇒ρ,m H from G to H is given by the diagram in Fig. 4 where both squares are
pushouts and m � ac. If such a transformation exists, the morphism m is called
a match and rule ρ is applicable at match m.

Fig. 4. Definition of a direct transformation via two pushouts.

For some of the following results to hold, we will need M-adhesive categories
with further properties. Initial pushouts are a way to generalize the set-theoretic
complement operator categorically.

Definition 3 (Boundary and initial pushout). Given a morphism m : L →
G in an M-adhesive category (C,M), an initial pushout over m is a pushout
(1) over m (as depicted in Fig. 5) such that bm ∈ M and this pushout factors
uniquely through every pushout (3) over m where b′

m ∈ M. I.e., for every pushout
(3) over m with b′

m ∈ M, there exist unique morphisms b∗
m, c∗

m with bm = b′
m◦b∗

m

and cm = c′
m ◦ c∗

m. If (1) is an initial pushout, bm is called boundary over m,
Bm the boundary object, and Cm the context object with respect to m.

In an M-adhesive category, the square (2) in Fig. 5 is a pushout and b∗
m, c∗

m ∈
M. In Graph, if m is injective, Cm is the minimal completion of G\m(L)
(the componentwise set-theoretic difference on nodes and edges) to a subgraph
of G, and Bm contains the boundary nodes that have to be added for this
completion [5, Example 6.2].

The existence of M-effective unions ensures that the M-subobjects of a given
object constitute a lattice.

Definition 4 (M-effective unions). An M-adhesive category (C,M) has M-
effective unions if, for each pushout of a pullback of a pair of M-morphisms, the
induced mediating morphism belongs to M as well.
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Fig. 5. Initial pushout (1) over the morphism m and its factorization property.

Finally, we recall E-concurrent rules, which combine the actions of two rules
into a single one. Their definition assumes a given class E ′ of pairs of morphisms
with the same codomain. For the computation of the application condition of a
concurrent rule, we refer to [7,20].

Definition 5 (E-concurrent rule). Given two rules ρi = (Li
li←−↩ Ki

ri
↪−→

Ri, aci), where i = 1, 2, an object E with morphisms e1 : R1 → E and
e2 : L2 → E is an E-dependency relation for ρ1 and ρ2 if (e1, e2) ∈ E ′ and
the pushout complements (1a) and (1b) for e1 ◦ r1 and e2 ◦ l2 (as depicted in
Fig. 6) exist.

Fig. 6. E-dependency relation and E-concurrent rule.

Given an E-dependency relation E = (e1, e2) ∈ E ′ for rules ρ1, ρ2, their E-

concurrent rule is defined as ρ1 ∗E ρ2 := (L
l←−↩ K

r
↪−→ R, ac), where l := l′1 ◦ k1,

r := r′
2 ◦k2, (1a), (1b), (2a), and (2b) are pushouts, (3) is a pullback (also shown

in Fig. 6), and ac is computed in a way that suitably combines the semantics of
ac1 and ac2.

A transformation sequence G ⇒ρ1,m2 H ⇒ρ2,m2 G′ is called E-related for
the E-dependency relation (e1, e2) ∈ E ′ if there exists h : E → H with h◦e1 = n1

and h◦ e2 = m2 and morphisms di : Ci → Di, where i = 1, 2, such that (4a) and
(4b) commute and (5a) and (5b) are pushouts (see Fig. 7).
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Fig. 7. E-related transformation.

The Concurrency Theorem [5, Theorem 5.23] states that two E-related rule
applications may be synthesized into the application of their E-concurrent rule
and that an application of an E-concurrent rule may be analyzed into a sequence
of two E-related rule applications.

4 Constructing Generalized Concurrent Rules

In this section, we develop our construction of generalized concurrent rules
(GCRs) in the context of an M-adhesive category (C,M). We first define GCRs
and relate them to the construction of concurrent and short-cut rules. Subse-
quently, we elaborate the conditions under which our construction results in a
rule and characterize the kinds of rules that are derivable with our construction.

4.1 Construction

Our construction of generalized concurrent rules combines the constructions of
concurrent and short-cut rules [14] into a single one. It is based on the choice
of an E-dependency relation as well as of a common kernel. Intuitively, the E-
dependency relation captures how both rules are intended to overlap (potentially
producing transient elements) whereas the common kernel identifies elements
that are deleted by the first rule and recreated by the second one. As both
concepts identify parts of the interfaces of the involved rules, the construction
of a GCR assumes an E-dependency relation and a common kernel that are
compatible.

Definition 6 ((Compatible) Common kernel). Given two rules ρi =

(Li
li←−↩ Ki

ri
↪−→ Ri, aci), where i = 1, 2, a common kernel for them is an M-

morphism k : K∩ ↪→ V with M-morphisms ui : K∩ ↪→ Ki, v1 : V ↪→ L1, v2 :
V ↪→ R2 such that both induced squares (1a) and (1b) in Fig. 8 are pullbacks.

Given additionally an E-dependency relation E = (e1 : R1 ↪→ E, e2 : L2 ↪→
E) ∈ E ′ for ρ1 and ρ2, E and k are compatible if square (2) is a pullback.

In the following, we will often suppress the morphisms ui, vi from our notation
and just speak of a common kernel k : K∩ ↪→ V . As an M-morphism k might
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Fig. 8. Compatibility of common kernel with E-dependency relation.

constitute a common kernel for a pair of rules in different ways, we implicitly
assume the embedding to be given.

Example 1. Figure 9 shows an E-dependency relation and a common kernel com-
patible with it for rules removeMiddleMan and extractSubclass (Fig. 1). The
names of the nodes also indicate how the morphisms are defined. The concur-
rent rule for this E-dependency relation is the rule Ref2Gen CR in Fig. 1.

Fig. 9. Common kernel for rules removeMiddleMan and extractSubclass.

The following lemma is the basis for the construction of generalized concur-
rent rules; it directly follows from the definition of the interface K of a concurrent
rule as pullback.

Lemma 1. Given two rules ρ1, ρ2, an E-dependency relation E, and a common
kernel k for ρ1, ρ2 that is compatible with E, there exists a unique M-morphism
p : K∩ ↪→ K, where K is the interface of the concurrent rule ρ1 ∗E ρ2, such that
ki ◦ p = e′′

i ◦ ui for i = 1, 2 (compare the diagrams in Definitions 5 and 6).

A GCR extends a concurrent rule by enhancing its interface K with the
additional elements in V of a given common kernel. Formally, this means to
compute a pushout along the just introduced morphism p.

Construction 1. Given two plain rules ρi = (Li
li←−↩ Ki

ri
↪−→ Ri), where i = 1, 2,

an E-dependency relation E = (e1 : R1 ↪→ E, e2 : L2 ↪→ E) ∈ E ′, and a common
kernel k : K∩ ↪→ V of ρ1 and ρ2 that is compatible with E, we construct the

span L
l′←− K ′ r′

−→ R as follows (compare Fig. 10):
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(1) Compute the concurrent rule ρ1 ∗E ρ2 = (L
l←−↩ K

r
↪−→ R).

(2) Compute K ′ as pushout of k along p, where p : K∩ ↪→ K is the unique
morphism existing according to Lemma 1 (depicted twice in Fig. 10).

(3) The morphism l′ : K ′ → L is the unique morphism with l′ ◦ p′ = e′
1 ◦ v1

and l′ ◦k′ = l′1 ◦k1 that is induced by the universal property of the pushout
computing K ′. The morphism r′ is defined analogously.

Fig. 10. Construction of a generalized concurrent rule.

Definition 7 (Generalized concurrent rule. Enhancement morphism).
Given two rules ρ1, ρ2, an E-dependency relation E, and a common kernel k of

ρ1 and ρ2 that are compatible such that the span L
l′←− K ′ r′

−→ R obtained from
Construction 1 consists of M-morphisms, the generalized concurrent rule of ρ1

and ρ2, given E and k, is defined as ρ1 ∗E,k ρ2 := (L
l′←−↩ K ′ r′

↪−→ R, ac) with ac being

the application condition of the concurrent rule ρ1 ∗E ρ2 = (L
l←−↩ K

r
↪−→ R, ac).

The unique M-morphism k′ : K ↪→ K ′ with l = l′1 ◦ k1 = l′ ◦ k′ and
r = r′

2 ◦ k2 = r′ ◦ k′, which is obtained directly from the construction, is called
enhancement morphism. We also say that ρ1∗E,kρ2 is a GCR enhancing ρ1∗Eρ2.

Example 2. Ref2Gen GCR is a GCR that enhances Ref2Gen CR (Fig. 1); it is
constructed using the common kernel presented in Example 1. Figure 11 illus-
trates the computation of its interface K ′ and left-hand morphism l′. The
pushout of k and p extends the interface of Ref2Gen CR by the Class 2,6 and
its incoming reference.

Note 1 (Assumptions and notation). For the rest of the paper, we fix the follow-
ing assumptions: We work in an M-adhesive category (C,M) with a given class
E ′ of pairs of morphisms with the same codomain such that C possesses an
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Fig. 11. Computing the interface and the left-hand morphism of Ref2Gen GCR.

E ′-M pair factorization.1 Further categorical assumptions are mentioned as
needed. Furthermore, we always assume two rules ρ1, ρ2, an E-dependency rela-
tion E, and a common kernel k for them to be given such that E and k are
compatible. We consistently use the notations and names of morphisms as intro-
duced above (and in Fig. 10).

4.2 Relating Generalized Concurrent Rules to Other Kinds of Rules

In this section, we relate generalized concurrent rules to other variants of rule
composition.

Concurrent Rules are the established technique of sequential rule composition
in double-pushout rewriting. By definition, the left- and right-hand sides of a
GCR coincide with the ones of the concurrent rule it enhances. One also directly
obtains that a GCR coincides with its underlying concurrent rule if and only if
its common kernel k is chosen to be an isomorphism.

Proposition 1 (A concurrent rule is a GCR). Given a concurrent rule
ρ1∗Eρ2 and a GCR ρ1∗E,kρ2 enhancing it, the enhancement morphism k′ : K ↪→
K ′ is an isomorphism if and only if k is one. In particular, ρ1 ∗E ρ2 coincides
with ρ1 ∗E,k ρ2 (up to isomorphism) for k = idK∩ , where K∩ is obtained by
pulling back (e1 ◦ r1, e2 ◦ l2).
1 This means, every pair of morphisms with the same codomain can be factored as a

pair of morphisms belonging to E ′ followed by an M-morphism. We do not directly
need this property in any of our proofs but it is assumed for the computation of
application conditions of concurrent and, hence, also generalized concurrent rules.
Moreover, it guarantees the existence of E-related transformations [6, Fact 5.29].

Since we restrict ourselves to the case of M-matching, decomposition of M-
morphisms then ensures that all occurring pairs (e1, e2) ∈ E ′ are in fact even pairs
of M-morphisms. This in turn (by closedness of M under pullbacks) implies that in
any common kernel k compatible to a given E-dependency relation, the embedding
morphisms u1, u2 are necessarily M-morphisms.
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Short-cut rules [14] are a further, very specific kind of sequentially composed
rules (for the definition of which we refer to [14,20]). In an adhesive category, given
a rule that only deletes and a rule that only creates, a short-cut rule combines their
sequential effects into a single rule that allows to identify elements that are deleted
by the first rule as recreated by the second and to preserve them instead. The con-
struction of GCRs we present here now fuses our construction of short-cut rules
with the concurrent rule construction. This means, we lift that construction from
its very specific setting (adhesive categories and monotonic, plain rules) to a far
more general one (M-adhesive categories and general rules with application con-
ditions). This is of practical relevance as, in application-oriented work on incre-
mental model synchronization, we are already employing short-cut rules in more
general settings (namely, we compute short-cut rules from monotonic rules with
application conditions rewriting typed attributed triple graphs, which constitute
an adhesive HLR category that is not adhesive) [13,15,16].

Proposition 2 (A short-cut rule is a GCR). Let C be an adhesive category
and the class E ′ be such that it contains all pairs of jointly epic M-morphisms. Let
ri = (ri : Li ↪→ Ri), where i = 1, 2, be two monotonic rules and k : K∩ ↪→ V
a common kernel for them. Then the short-cut rule r−1

1 �k r2 coincides with the
generalized concurrent rule r−1

1 ∗E,k r2, where E = (e1, e2) is given via pushout of
(u1, u2).

Parallel and amalgamated rules are further kinds of rules arising by composi-
tion. Whereas concurrent rules combine the sequential application of two rules,
an amalgamated rule combines the application of two (or more) rules to the
same object into the application of a single rule [4,17]. In categories with coprod-
ucts, the parallel rule is just the sum of two rules; for plain rules (i.e., without
application conditions) it is a special case of the concurrent as well as of the
amalgamated rule construction. A thorough presentation of all three forms of
rule composition in the context of M-adhesive categories, rules with application
conditions, and general matching can be found in [7]. When introducing short-
cut rules [14], we showed that their effect cannot be achieved by concurrent or
amalgamated rules. Thus, by the above proposition, the same holds for GCRs;
they indeed constitute a new form of rule composition. The relations between
the different kinds of rule composition are summarized in Fig. 12. The lines from
parallel rule are dashed as the indicated relations only hold in the absence of
application conditions and, for short-cut rules, in the specific setting only in
which these are defined.

4.3 Characterizing Derivable Generalized Concurrent Rules

Next, we characterize the GCRs derivable from a given pair of rules. We do so
in two different ways, namely (i) characterizing possible choices for the mor-
phisms v1, v2 in a common kernel and (ii) characterizing the possible choices for
enhancement morphisms k′.

Proposition 3 (Embedding characterization of GCRs). Let (C,M) be an
M-adhesive category with M-effective unions.
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Fig. 12. Relations between the different kinds of rule composition.

(1) The application of Construction 1 results in a GCR ρ1 ∗E,k ρ2 if and only
if v1, v2 ∈ M.

(2) The assumption that M-effective unions exist is necessary for this result to
hold.

Next, we consider enhancement morphisms in more detail and answer the
following question: Given a concurrent rule ρ1 ∗E ρ2 = L ←↩ K ↪→ R, which
common M-subobjects K ′ of L and R that enhance K constitute the interface
of a GCR? The following example shows that not all of them do.

Example 3. In the category Graph (or Set), if p1 is the trivial rule ∅ ←↩ ∅ ↪→ ∅
and p2 = ( ←↩ ∅ ↪→ ), it is straightforward to verify that p2 can be derived as
concurrent rule again (for the E-dependency object E = ). However, ←↩ ↪→
cannot be derived as GCR from these two rules since p1 does not delete a node.

It turns out that only elements that are deleted by the first rule and created
by the second can be identified and incorporated into K ′. The next proposition
clarifies this connection using the language of initial pushouts.

Definition 8 (Appropriately enhancing). In a category C with initial push-

outs, let ρ1∗E ρ2 = L
l←−↩ K

r
↪−→ R be an E-concurrent rule and k′ : K ↪→ K ′ be an

M-morphism such that there exist M-morphisms l′ : K ′ ↪→ L and r′ : K ′ ↪→ R
with l′ ◦ k′ = l and r′ ◦ k′ = r. Then k′ is called appropriately enhancing if
the following holds (compare Fig. 13): The boundary and context objects Bk′ and
Ck′ of the initial pushout over k′ factorize via M-morphisms sL, sR : Bk′ ↪→
Bl1 , Br2 and tL, tR : Ck′ ↪→ Cl1 , Cr2 as pullback through the initial pushouts over
l1 : K1 ↪→ L1 and r2 : K2 ↪→ R2 in such a way that k1 ◦ bk′ = e′′

1 ◦ bl1 ◦ sL and
k2 ◦ bk′ = e′′

2 ◦ br2 ◦ sR.

On the level of graph elements (in fact: arbitrary categories of presheaves
over Set), this means the following: When considering K ′ as a subobject of L
via l′, the elements of K ′\K have to be mapped to elements of L1\K1. When
considering K ′ as a subobject of R via r′, the elements of K ′\K have to be
mapped to elements of R2\K2.
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Fig. 13. Definition of appropriate enhancement.

Example 4. Figure 14 illustrates the notion of appropriate enhancement using
our running example. The two inner squares constitute pullbacks, which means
that the additional elements of K ′, namely Class 2,6 and its incoming reference,
are mapped to elements deleted by removeMiddleMan via tL and to elements
created by extractSubclass via tR. Moreover, for both C1 and C2 the two possible
ways to map Class 1,5 from Bk′ to it coincide.

Fig. 14. Illustrating the property of appropriate enhancement.

Proposition 4 (Enhancement characterization of GCRs). Let (C,M) be
an M-adhesive category with initial pushouts. Given an E-concurrent rule ρ1 ∗E

ρ2 = L
l←−↩ K

r
↪−→ R and an M-morphism k′ : K ↪→ K ′ such that there exist

M-morphisms l′ : K ′ ↪→ L and r′ : K ′ ↪→ R with l′ ◦ k′ = l and r′ ◦ k′ = r,

the span L
l′←−↩ K ′ r′

↪−→ R is derivable as a GCR ρ1 ∗E,k ρ2 if and only if k′ is
appropriately enhancing.

In Graph, the result above characterizes a GCR as a rule whose interface K ′

enhances the interface K of the enhanced concurrent rule by identifying elements
of L1\K1 and R2\K2 with each other and including them in K ′.

Corollary 1 (Enhancement characterization in the category Graph).
In the category of (typed/attributed) graphs, given an E-dependency relation E
for two rules, every GCR ρ1∗E,kρ2 enhancing ρ1∗Eρ2 is obtained in the following
way: K ′ arises by adding new graph elements to K and l′ and r′ extend the
morphisms l and r in such a way that they (i) remain injective graph morphisms
and (ii) under l′ the image of every newly added element is in L1\K1 and in
R2\K2 under r′.
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Assuming finite graphs only, the number of GCRs enhancing a concurrent
rule ρ1 ∗E ρ2 may grow factorially in min(|L1\K1|, |R2\K2|).

5 A Generalized Concurrency Theorem

In this section, we present our Generalized Concurrency Theorem that clarifies
how sequential applications of two rules relate to an application of a GCR derived
from them. As a prerequisite, we present a proposition that relates applications of
concurrent rules with those of enhancing GCRs. It states that an application of a
GCR leads to the same result as one of the enhanced concurrent rule; however,
by its application, more elements are preserved (instead of being deleted and
recreated).

Proposition 5 (Preservation property of GCRs). Let G0 ⇒ρ1∗Eρ2,m G2

be a transformation via concurrent rule ρ1 ∗E ρ2, given by the span G0
g0←−↩

D
g2

↪−→ G2. For any GCR ρ1 ∗E,k ρ2 enhancing ρ1 ∗E ρ2, there is a transformation

G0 ⇒ρ1∗E,kρ2,m G2, given by a span G0

g′
0←−↩ D′ g′

2
↪−→ G2, and a unique M-

morphism k′′ : D ↪→ D′ such that g′
i ◦ k′′ = gi for i = 0, 2. Moreover, k′′ is an

isomorphism if and only if the enhancement morphism k′ is one.

Example 5. Every match for the concurrent rule Ref2Gen CR is also one for the
GCR Ref2Gen GCR. Moreover, the two results of the according applications will
be isomorphic. The above proposition, however, formally captures that the appli-
cation of Ref2Gen CR will delete more elements than the one of Ref2Gen GCR.
The graph intermediately arising during the application of the former (not con-
taining the class to which Class 2 had been matched) properly embeds into the
one arising during the application of the latter.

The classical Concurrency Theorem states that a sequence of two rule appli-
cations can be replaced by an application of a concurrent rule (synthesis) and,
vice versa (analysis). The synthesis is still possible in the case of GCRs. The
analysis, however, holds under certain conditions only. Next, we illustrate how
the analysis might fail. Subsequently, we state the Generalized Concurrency
Theorem.

Example 6. When Ref2Gen GCR is applied at a match that maps Class 2,6
to a node with incoming or outgoing references or generalizations beyond the
two references required by the match, the dangling edge condition prevents the
applicability of the underlying first rule removeMiddleMan at the induced match.
The deletion of Class 2 would not be possible because of these additional adjacent
edges. Hence, the analysis of the application of Ref2Gen GCR into sequential
applications of removeMiddleMan and extractSubclass fails in that situation.

Theorem 1 (Generalized Concurrency Theorem). Let (C,M) be an M-
adhesive category with M-effective unions.
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Synthesis. For each E-related transformation sequence G0 ⇒ρ1,m1 G1 ⇒ρ2,m2

G2 there exists a direct transformation G0 ⇒ρ1∗E,kρ2,m G2.

Analysis. Given a direct transformation G0 ⇒ρ1∗E,kρ2,m G2, there exists an
E-related transformation sequence G0 ⇒ρ1,m1 G1 ⇒ρ2,m2 G2 with m1 = m ◦ e′

1

if and only if G0 ⇒ρ1,m1 G1 exists, i.e., if and only if ρ1 is applicable at m1.

Remark 1. At least for the case of M-matching and in the presence of M-
effective unions, the Concurrency Theorem indeed becomes a corollary to our
Generalized Concurrency Theorem. This is due to the observation that a GCR
is a concurrent rule if and only if k is an isomorphism (Proposition 1). Similarly,
the Generalized Concurrency Theorem subsumes the Short-cut Theorem [14,
Theorem 7].

In the case of graphs, the Generalized Concurrency Theorem ensures that the
situation illustrated in Example 6 is the only situation in which the analysis of
the application of a GCR fails: When restricting to injective matching, a violation
of the dangling edge condition is known to be the only possible obstacle to an
application of a graph transformation rule [5, Fact 3.11].

6 Related Work

In this paper, we present a construction for generalized concurrent rules (GCRs)
based on the double-pushout approach to rewriting. We compare it with existing
constructions of concurrent rules that use some categorical setting.

Concerning double-pushout rewriting, after presentingConcurrencyTheorems
in specific categories (such as [11] for the case of graphs), such a theorem in a rather
general categorical setting was obtained by Ehrig et al. [8]. In that work, spans
R1 ← D → L2 are used to encode the information about rule dependency. After
(variants of) adhesive categories had been established as an axiomatic basis for
double-pushout rewriting [21], the construction of concurrent rules and an accord-
ing Concurrency Theorem was lifted to that setting: directly in [21] with the depen-
dency information still encoded as span and by Ehrig et al. [5] with the dependency
information now encoded as a co-span R1 → E ← L2. Finally, the last construc-
tion, addressing plain rules, has been extended to the case of rules with general
application conditions [9]. It is this construction that we present in Definition 5. A
generalization of this construction to enable the reuse of graph elements (or object
parts in general) as we present it in this paper is new.

Sequential composition of rules has also been presented for other categorical
approaches to rewriting, for example, for single-pushout rewriting [22], sesqui-
pushout rewriting [1,23], or for double-pushout rewriting in context (at least
for special cases) [24]. The theory is most mature in the sesqui-pushout case,
where Behr [1] has established a construction of concurrent rules in the setting
of M-adhesive categories for rules with general application conditions. It seems
that our construction of GCRs would be similarly applicable to sesqui-pushout
rewriting; however, applied as is, it would have a restricted expressivity in that
context: In the category Graph, for instance, a rule application according to the
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sesqui-pushout semantics implies to (implicitly) delete all edges that are incident
to a deleted node. Our construction would have to be extended for being able
to identify such implicitly deleted items such that they can be preserved.

In the cospan DPO approach, rules are cospans (instead of spans) and the
order of computation is switched compared to classical DPO rewriting, i.e., cre-
ation precedes deletion of elements [10]. This approach has been used, for exam-
ple, to simultaneously rewrite a model and its meta-model [25] or to formalize
the rewriting of graphs that are typed over a chain of type graphs [26] (here
actually as cospan sesqui-pushout rewriting). As creation precedes deletion, the
cospan DPO approach intrinsically offers support for certain kinds of informa-
tion preservation. For example, attribute values of nodes that are to be deleted
can be passed to newly created nodes first. However, in the category of graphs,
cospan DPO rewriting is subject to virtually the same dangling edge condition
as classical DPO rewriting (see [10]). This means, employing the cospan DPO
approach instead of classical DPO rewriting does not address the problem of the
applicability of rules. Moreover, modeling the kind of information preservation
we are interested in (regarding elements deleted by one rule as recreated by a
second) would require a specific form of rule composition also in the cospan app-
roach. We do not expect this to be essentially simpler than the construction we
provide for the classical DPO approach in this paper.

Behr and Sobociński [3] proved that, in the case of M-matching, the con-
current rule construction is associative (in a certain technical sense; the same
holds true for the sesqui-pushout case [1]). Based on that result, they presented
the construction of a rule algebra that captures interesting properties of a given
grammar. This has served, for example, as a starting point for a static analysis
of stochastic rewrite systems [2]. Considering our GCR construction, it is future
work to determine whether it is associative as well.

Kehrer et al. [19] addressed the automated generation of edit rules for mod-
els based on a given meta-model. Besides basic rules that create or delete model
elements, they also generated move and change rules. It turns out that these
can be built as GCRs from their basic rules but not as mere concurrent rules.
Additionally, we introduced short-cut rules for more effective model synchroniza-
tion [13,15,16] and showed here that short-cut rules are special GCRs. Hence,
these works suggest that GCRs can capture typical properties of model edit
operators. A systematic study of which edit operators can be captured as GCRs
(and which GCRs capture typical model edit operators) remains future work.

7 Conclusion

In this paper, we present generalized concurrent rules (GCRs) as a construction
that generalizes the constructions of concurrent and short-cut rules. We develop
our theory of GCRs in the setting of double-pushout rewriting in M-adhesive
categories using rules with application conditions applied at M-matches only.
In contrast to concurrent rules, GCRs allow reusing elements that are deleted
in the first rule and created in the second. As a central result (Theorem 1), we
generalize the classical Concurrency Theorem.
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From a theoretical point of view, it would be interesting to develop simi-
lar kinds of rule composition in the context of other categorical approaches to
rewriting like the single- or the sesqui-pushout approach. Considering practical
application scenarios, we are most interested in classifying the derivable GCRs
of a given pair of rules according to their use and computing those that are
relevant for certain applications in an efficient way.
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Abstract. A categorical approach to reaction systems is a generaliza-
tion and unification of the intensely studied set-based and graph-based
reaction systems such that a wider spectrum of data structures becomes
available on which reaction systems can be based. Many types of graphs,
hypergraphs, and graph-like structures are covered. As a class of suitable
categories, eiu-categories have been introduced, which are closely related
to well-known adhesive categories. In this paper, transformations of reac-
tion systems over eiu-categories by means of epi-mono factorization and
functors are investigated.

1 Introduction

A particular research strand of natural computing is the investigation of infor-
mation processing taking place in nature [1]. One research topic is the computa-
tional nature of biochemical reactions. In 2007, the seminal concept of set-based
reaction systems was introduced by Ehrenfeucht and Rozenberg in [2] to provide
a formal framework for the modeling of biochemical processes (taking place in
the living cell). The underlying idea is that interactions as well as the function-
ing of reactions are based on the mechanisms of facilitation and inhibition. Since
then the framework has been intensely studied (see, e.g., [3–10]) and reaction
systems turned out to be a novel paradigm of interactive and massively paral-
lel computation suitable for modeling information processing in various fields
beyond biochemistry.

A set-based reaction system consists of a finite background set B and a set of
reactions A each of which is a triple of subsets of B called reactant, inhibitor and
product respectively. A reaction is enabled on a state (being a subset of B) if the
reactant is inside the state and the inhibitor outside. All enabled reactions of A
are applied to some state in parallel yielding the union of all their products as
results. Starting from initial states, the iterated applications of enabled reactions
of A define the dynamic semantics of a reaction system where, before each step,
a context set can be added to the current state making the processes interactive
in this way.
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In [11,12] Kreowski and Rozenberg introduced graph surfing in graph-based
reaction systems as a novel kind of graph transformation. They consider simple
edge-labeled directed graphs.

But there are many further structures on which reaction systems can be
based in a meaningful way. When the same kind of constructs and constructions
can be considered for a spectrum of underlying structures, it may be worthwhile
to come up with a categorical framework. In this way, the notions of interest can
be defined once and for all and then used whenever certain structures form a
category fitting into the framework. Recently, Kreowski and the author proposed
such a categorical approach to reaction systems (cf. [13]) as a generalization and
unification of the two approaches. In this framework, a wider spectrum of data
structures becomes available on which reaction systems can be based. Many
types of graphs, hypergraphs, and graph-like structures are covered. As a class
of suitable categories, eiu-categories have been introduced, which are slightly
more general than the well-known adhesive categories (cf. [14]).

Whenever one has a class of entities, one may try to use them as objects of a
category by choosing suitable morphisms. Therefore, one may ask how reaction
systems over a category may be provided with a meaningful notion of morphisms.
In [15] it is shown that monomorphisms between backgrounds provide morphisms
between reaction systems. In this paper, we generalize this idea by proposing a
transformation based on epi-mono factorization. Hence, arbitrary morphisms
between backgrounds give morphisms between reaction systems provided that
the eiu-category has an epi-mono factorization. Furthermore, we introduce the
notion of eiu-preserving functors and analyze the behavior of mapped reaction
systems and interactive processes by eiu-preserving embedding functors.

The paper is organized as follows. Section 2 provides the notion of an eiu-
category. In Sect. 3, we recall the notion of reaction systems over eiu-categories.
In Sect. 4 and 5, we present the transformations of reaction systems over eiu-
categories based on epi-mono factorization and functors, respectively. Section 6
concludes the paper.

2 The Categorical Prerequisites

In this section, the categorical prerequisites are provided that allow us to define
reaction systems over an eiu-category in the next section. For the well-known
categorical notions including subobjects, finite objects, initial objects, pullbacks,
and special colimits cf., e.g., [13,15–18].

A category C is an eiu-category if C has an initial object INIT , and for
every finite object B, pullbacks of pairs of subobjects of B, as well as colimits
of the sets of all pairwise pullbacks of sets of subobjects of every finite object B
subject to the following conditions: (1) INIT has only itself as subobject and the
initial morphism into B is a monomorphism and (2) the universal morphism from
COLIMIT (PB(S)) into B for every set S of subobjects of B is a monomorphism,
where PB(S) is the set of all pairwise pullbacks and COLIMIT (PB(S)) the
colimit object of the colimit of PB(S).
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We use the following notions and notations for eiu-categories and every of
its finite objects B.

1. The subobject represented by the initial morphism into B is called empty
subobject of B and denoted by emptyB : INIT → B.

2. As pullbacks are stable under monomorphisms, the pullback morphisms
p′
i : PB(p1, p2) → Pi of two subobjects pi : Pi → B for i = 1, 2 are monomor-

phisms. Further, because monomorphisms are closed under composition,
p′
1 ◦ p1 = p′

2 ◦ p2 represents a subobject of B called intersection of p1 and p2
which is denoted by p1 ∩ p2 : P1 ∩ P2 → B.

3. Given a set S of subobjects of B, the universal morphism from
COLIMIT (PB(S)) into B represents a subobject of B called union of S
which is denoted by union(S) : UNION (S) → B. We may write p1 ∪ p2 for
the binary (effective) union({p1, p2}).

The initials e, i, and u of the three concepts are used to name the category.
Intersection is a standard notion. With the terminology empty subobject and
union we emphasize that we consider special initial morphisms and colimits.

Well-known and often used categories as well as certain diagram categories
are eiu-categories, provided that the underlying category is an eiu-category. The
following categories are examples for eiu-categories.

1. The category Sets of sets.
2. The category Σ-Sets of Σ-labeled sets for some alphabet Σ.
3. The category Pos of partially ordered sets.
4. The category Graphs of directed (unlabeled) graphs.
5. The category Σ-Graphs of Σ-graphs for some alphabet Σ.
6. The category (ΣV , ΣE)-Graphs of directed vertex- and edge-labeled graphs.
7. The category BipartiteGraphs of bipartite directed graphs.
8. The category Σ-Hypergraphs of Σ-hypergraphs for some alphabet Σ.
9. The category Graphs•→TG of TG-typed graphs for some type graph TG .

With the exception of Pos these categories are adhesive. In fact, every adhe-
sive category with empty subobjects and pushouts being binary union is an
eiu-category.

3 Reaction Systems Over eiu-Categories

In this section, we recall the notion of reaction systems over an eiu-category.
This can be done in a straightforward way by replacing every occurrence of
“(sub)set/(sub)graph” in the definition of set/graph-based reaction systems by
“(sub)object” with one exception: the enabledness with respect to the inhibitor.
The graph-based inhibitor (consisting of sets of vertices and edges) has not a
direct counterpart as categorical objects do not provide explicit internal infor-
mation like vertices and edges of graphs. Therefore, we replace it by a subobject
i : I → B of the background like reactant and product accompanied by a sub-
object i0 : I0 → I. This allows to require that the intersection of i and a current
state is included in i0 so that the “complement” of i and i0 is forbidden.
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3.1 Reaction Systems Over C

Let C be an eiu-category. Then we can define reaction systems over C in a way
analogous to set-based and graph-based reaction systems.

Definition 1. 1. Let B be a finite object in C. A reaction over B is a triple
a = (r : R → B, (i : I → B, i0 : I0 → I), p : P → B) where r and p are non-
empty subobjects of B, i is a subobject of B and i0 is a subobject of I. The
subobject r is called reactant, the pair (i, i0) is called inhibitor, and p is called
product.

2. A state t : T → B is a subobject of B.
3. A reaction a = (r, (i, i0), p) is enabled on a state t, denoted by ena(t), if r ⊆ t

and t ∩ i ⊆ i ◦ i0, i.e., there is a monomorphism s : R → T with r = t ◦ s
and, for the intersection (T ∩ I, i′, t′) of t and i, there is a monomorphism
s′ : T ∩I → I0 with t∩i = i◦i0◦s′. The situation is illustrated in the following
diagram.

T ∩ I I0

R T I

B

s′

i′t′

t∩i

=
=

i0

=

r
=

s

t
i

If a reaction is disabled, then this is denoted by ena(t)
4. The result of a reaction a on a state t is resa(t) = pa for ena(t) and resa(t) =

emptyB otherwise.
5. The result of a set of reactions A on a state t is resA(t) = union({resa(t) |

a ∈ A}).
6. A reaction system over C is a pair A = (B,A) consisting of some finite object

B in C, called background, and a finite set A of reactions over B. We may
write (B,A)C to indicate the underlying category.

7. The result of A on a state t is the result of A on t. It is denoted by resA(t).

Remark 1. Some basic properties of enabledness and results which are known
for set- and graph-based reaction systems carry over to reaction systems over a
category.

1. A current state vanishes completely. But it or some subobject of it may be
reproduced by the products of enabled reactions.

2. resA(t) is uniquely defined for every state t so that resA(t) is a function on
the set of states of B.

3. All reactions contribute to resA(t) in a maximally parallel and cumulative
way. There is never any conflict.

4. As the addition of the empty subobject to a union of subobjects does not
change the union, resA(t) = res{a∈A|ena(t)}(t) holds for all states t.
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5. As the intersection of a subobject and the empty subobject is empty, a reac-
tion a = (r, (emptyB , 1INIT ), p) is enabled on a state t if r ⊆ t. The empty
inhibitor, denoted by −, has no effect. Therefore, the reaction is called unin-
hibited.

6. Let a = (r, (i, i0), p) be a reaction. If r ∩ i �⊆ i ◦ i0, then a is never enabled.

Example 1. Consider the reaction system A> = (B>, A>) over Pos, where
B> = (V,E) for some finite set V and a parital order E ⊆ V × V (reflex-
ive, antisymmetric and transitive) and A> consists of two types of uninhibited
reactions:

1. (({x, y, z}, 〈(x, y), (y, z)〉),−, ({y, z}, 〈(y, z)〉)) for x, y, z ∈ V, x �= y, x �=
z, y �= z

2. (({y, z}, 〈(y, z)〉),−, ({z}, {(z, z)})) for y, z ∈ V, y �= z

where 〈S〉 denotes the partial order generated by the closure of the relation
S ⊆ E. The first type sustains the greater and the respective reflexive relation;
the second sustains only the reflexive relation wrt the second element. We will
discuss this example further in the next subsection.

3.2 Interactive Processes

The definition of reaction systems over a category is chosen in such a way that
the semantic notion of interactive processes can be carried over directly from
the set-based and graph-based cases. Starting from initial states, the iterated
applications of enabled reactions of A define the dynamic semantics of a reaction
system where, before each step, a context can be added to the current state
making the processes interactive.

Definition 2. 1. An interactive process π = (γ, δ) on A = (B,A)C consists of
two sequences of subobjects of B γ = c0, . . . , cn and δ = d0, . . . , dn for some
n ≥ 1 such that di = resA(ci−1 ∪ di−1) for i = 1, . . . , n. The sequence γ is
called context sequence, the sequence δ is called result sequence where d0 is
called start, and the sequence τ = t0, . . . , tn with ti = ci ∪ di for i = 0, . . . , n
is called state sequence.

2. π is called context-independent if ci ⊆ di for i = 0, . . . , n.
3. τ is repetition-free if ti �= tj for all i, j with 0 ≤ i < j ≤ n.

Example 2. Reconsider the reaction system A> presented in Example 1. Let d0
be an arbitrary subposet of B and let ci = (∅, ∅) for each i ∈ N. Then every
state ti in the state sequence τ> = t0, . . . , tn is just the result of applying all
enabled reactions to the previous state, i.e., ti+1 = resA>(ti). These successive
applications of all the reactions produce maximal elements.

There are many situations where posets arise. For example B may be seen as
a finite set of natural numbers equipped with the relation of divisibility or a finite
vertex set of a directed acyclic graph ordered by reachability. When considering
the latter, this interactive process produces finally reached vertices.
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4 Transformation of Reaction Systems by Means
of Epi-Mono Factorization

In this section, we show that, given a reaction system A = (B,A) over C,
where C has epi-mono factorization, a morphism f : B → B′ induces a reaction
system f(A) by composing all the components of reactions with f , constructing
the epi-mono factorization of each composed morphism and using the resulting
monomorphisms of the factorization as components in the new reactions.

In Subsect. 4.1, we recall the notion of an epi-mono factorization. In
Subsect. 4.2, we show that in eiu-categories with epi-mono factorization the
factorization behaves well with respect to subobject inclusion, intersection and
union. Afterwards, in Subsect. 4.3, we apply the transformation to reaction sys-
tems over eiu-categories with epi-mono factorization. In Subsect. 4.4, we present
a result for the semantic notion of transformed interactive processes. Finally, in
Subsect. 4.5, we define the category of reaction systems over eiu-categories with
epi-mono factorization. This generalizes Theorem 2 in [15], where f : B → B′

was restricted to be a monomorphism.

4.1 Epi-Mono Factorization

In general, a factorization of a morphism decomposes it into morphisms with
special properties. In an epi-mono factorization, these morphisms are an epi-
morphism and a monomorphism.

Definition 3. 1. Let f : A → B, e : A → C, and m : C → B with f = m ◦ e.
If e is an epimorphism and m is a monomorphism, then e and m are called
epi-mono factorization of f .

2. Let C be a category. If for every morphism in MorC such an epi-mono fac-
torization exists and this decomposition is unique up to isomorphism, then
C is said to have an epi-mono factorization.

As a naming convention, we denote the epimorphism by ef , the monomor-
phism by mf and the intermediate object by EM f .

It is well-known that, the categories Sets, Σ-Graphs, and TypedGraphs
have epi-mono factorizations. But factorization system exists on any (elemen-
tary) topos, i.e., any category which has finite limits, is Cartesian closed, and
has a subobject classifier. This definition is quite close to the definition of an
eiu-category. Indeed, factorization system exists on any pretopos.

4.2 Epi-Mono Factorization of Composed Morphisms

In particular, we are interested in the epi-mono factorization of composed mor-
phisms f ◦ p where p is a monomorphism. The situation is illustrated in the
following diagram.

P EM f◦p

B B′

ef◦p

p
f◦p

mf◦p

f
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The epi-mono factorizations of such composed morphisms have useful prop-
erties with respect to subobject inclusion, intersection and union.

Lemma 1. Let f : B → B′ be a morphism.

1. Let p1 : P1 → B, p2 : P2 → B be two subobjects of B. Then
(a) p1 ⊆ p2 implies mf◦p1 ⊆ mf◦p2 . More specifically, p1 = p2 ◦ s implies

mf◦pi
∼= mf◦p2 ◦ mef◦p2◦s.

(b) mf◦(p1∩p2) ⊆ mf◦p1 ∩ mf◦p2 .
2. Let S be a set of subobjects of B, let f(S) = {f ◦ p | p ∈ S} and mf (S) =

{mx | x ∈ f(S)}. Then union(mf (S))}) ∼= mf◦union(S).

Proof. 1a. Let Pi

ef◦pi−−−→ EM f◦pi

mf◦pi−−−−→ B′ for i = 1, 2 be the epi-mono fac-
torizations of the composed morphisms. Then the epi-mono factorization of
ef◦p2 ◦ s, the equations f ◦ p1 = mf◦p1 ◦ ef◦p1 = mf◦p2 ◦ mef◦p2◦s ◦ eef◦p2◦s
and the uniqueness of epi-mono factorizations up to isomorphism gives us an
isomorphism z : EM ef◦p2◦s → EM f◦p1 such that ef◦p1 ◦ z−1 = eef◦p2◦s and
mf◦p1 ◦ z = mf◦p2 ◦ mef◦p2◦s. Consequently, mf◦p2 ⊆ mf◦p1 . The situation is
illustrated in the following diagram.

EM ef◦p2◦s

P1 EM f◦p1

P2 EM f◦p2

B B′

mef◦p2
◦sz

ef◦p2◦s

ef◦p1

eef◦p2
◦s

s

p1

mf◦p1

z−1

ef◦p2

p2
mf◦p2

f

1b follows from 1a, the universal property of pullbacks (yielding the mor-
phism u : EM f◦(p1∩p2) → EM f◦p1 ∩ EM f◦p2) and the fact that mef◦pi

◦p′
i

being
a monomorphism implies that u is a monomorphism. The situation is illustrated
in the following diagram.

P1 ∩ P2 EM f◦(p1∩p2)

EM f◦p1

∩
EM f◦p2

Pi EM f◦pi

B B′

ef◦(p1∩p2)

p′
i

p1∩p2

mf◦(p1∩p2)

mef◦pi
◦p′

i

u

m′
f◦pi

mf◦p1∩mf◦p2

ef◦pi

pi mf◦pi

e

The proof of Point 2 is more complicated but uses similar arguments.
For union(S), for each p ∈ S and for each pullback (PB(pi, pj), p′

i, p
′
j) ∈

PB(S), we construct the epi-mono factorizations of the composed morphisms.
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Point 1 gives respective subobject inclusions for the monomorphisms of the epi-
mono factorizations. Then we construct union(mf (S)) with injections m′′

f◦p for
each mf◦p ∈ mf (S) and pairwise pullbacks (PB(mf◦pi

,mf◦pj
),m′

f◦pi
,m′

f◦pj
) ∈

PB(mf (S)).
By definition mf◦pi

∩ mf◦pj
= mf◦pi

◦ m′
f◦pi

and for pj analogously. Let
xi

∼= mef◦union(S)◦p′′
i

and xj analogously. Then mf◦pi
= mf◦union(S) ◦ xi. There-

fore, mf◦union(S)◦xi◦m′
f◦pi

= mf◦union(S)◦xj◦m′
f◦pj

, and because mf◦union(S) is
a monomorphism, xi◦m′

f◦pi
= xj◦m′

f◦pj
. The universal property of union, there-

fore, gives us a unique morphism y : UNION (mf (S)) → EM f◦union(S), which
is a monomorphism because union(mf (S)) is. This proves union(mf◦S}) ⊆
mf◦union(S).

Altogether the situation is illustrated in the following diagram.

Pi ∩ Pj EM f◦(pi∩pj)

EM f◦pi

∩
EM f◦pj

Pj

Pi

EM f◦pj

EM f◦pi

UNION (S) EM f◦union(S) UNION (mf (S))

B B′

ef◦(pi∩pj)

p′
j

p′
i

pi∩pj

mf◦(pi∩pj)

mef◦pj
◦p′

j
mef◦pi

◦p′
i

u

m′
f◦pi

m′
f◦pj

mf◦pi

∩
mf◦pj

ef◦pj

ef◦pi

p′′
i p′′

j
pj

pi

mf◦pj
mf◦pi

xi xj

m′′
f◦pj

m′′
f◦pi

ef◦union(S)

union(S)
mf◦union(S)

y

union(mf (S))f

Let p̂i = m′′
f◦pi

◦ ef◦pi
and p̂j = m′′

f◦pj
◦ ef◦pj

. Then f ◦ (pi ∩ pj) =
union(mf (S)) ◦ p̂i ◦ p′

i = union(mf (S)) ◦ p̂j ◦ p′
j . Further, union(mf (S)) being

a monomorphism implies p̂i ◦ p′
i = p̂j ◦ p′

j . Consequently, the universal property
of the colimit gives a morphism z : UNION (S) → UNION(mf (S)).

Let UNION (S) ez−→ EM z
mz−−→ UNION (mf (S)) be the epi-mono factorization

of z. Then union(mf (S)) ◦ mz ◦ ez = mf◦union(S) ◦ ef◦union(S). Further, because
epi-mono factorizations are unique up to isomorphisms, there is an isomorphism
x : EM f◦union(S) → EM z. The composition mz ◦x is a monomorphism, meaning
mf◦union(S) ⊆ union(mf (S)). Together with union(mf (S)) ⊆ mf◦union(S) this
implies union(mf (S)) ∼= mf◦union(S).

Remark 2. For the epi-mono factorization of the composition f ◦ emptyB (=
initB′ by definition) we assume the following two properties: initB′ = emptyB ′

and einitB′ is an isomorphism. In many categories a morphism, which is both a
monomorphism and an epimorphism, is an isomorphism. In these categories the
first statement implies the second.

The factorization also behaves well with respect to the composition of epi-
mono factorizations as the following lemma shows.
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Lemma 2. 1. Epi-mono factorizations are closed under composition.
2. Let P

p−→ B
f−→ B′ g−→ B′′ be a composition of morphisms, where p is a

monomorphism. Then mg◦f◦p ∼= mg◦mf◦p
. The situation is illustrated in the

following diagram.

P EM f◦p EM g◦mf◦p
EM g◦f◦p

B B′ B′′

ef◦p

p

eg◦f◦p

mf◦p

eg◦mf◦p

mg◦mf◦p

∼=

mg◦f◦p
f g

Proof. 1. Let C be a category with epi-mono factorization. Let f : B → B′ and
g : B′ → B′′ be morphisms in C. Then there exist two epi-mono factorizations
B

ef−→ EM f
mf−−→ B′ and B′ eg−→ EM g

mg−−→ B′′. Let eg ◦ mf = h. Then, because
C has an epi-mono factorization, there exist also an epi-mono factorization for
h. Because the composition of two epimorphisms (monomorphisms) yields again
an epimorphism (monomorphism, respectively), and epi-mono factorizations are
unique up to isomorphism, we have mg◦f ∼= mg ◦ mh and mg◦f ∼= eh ◦ ef .
2. Let P

ef◦p−−−→ EM f◦p
mf◦p−−−→ B′ and B′ eg−→ EM g

mg−−→ B′′ be the epi-mono
factorizations of f ◦ p and g, respectively, and let eg ◦ mf◦p = h = mh ◦ eh.
Then g ◦ mf◦p = mg ◦ h = mg ◦ (mh ◦ eh) = (mg ◦ mh) ◦ eh = mg◦f◦p ◦ eh =
mg◦f◦p ◦ eeg◦mf◦p

. Hence, mg◦mf◦p
∼= mg◦f◦p and eg◦mf◦p

∼= eeg◦mf◦p
.

4.3 The Image of a Reaction System Wrt the Epi-Mono
Factorization

Given a reaction system (B,A) over C and a morphism with domain B. Then
the componentwise composition and epi-mono factorization of all components of
reactions in A gives us a new reaction system.

Definition 4. Let A = (B,A)C be a reaction system and let f : B → B′ be
morphism satisfying f ◦ emptyB = emptyB ′ .

1. Let a = (r, (i, i0), p) ∈ A. Then mf (a) = (mf◦r, (mf◦i,mef◦i◦i0),mf◦p) is the
image of the reaction wrt the epi-mono factorization.

2. mf (a) is called consistent if mf◦r ∩ mf◦i ⊆ mf◦i◦i0 .
3. Let mf (A) = {mf (a) | a ∈ A}. Then mf (A) = (B′,mf (A)) is the image of

the reaction system wrt the epi-mono factorization.
4. Let m̃f (A) = {mf (a) | mf◦r ∩ mf◦i ⊆ mf◦i◦i0} ⊆ mf (A). Then m̃f (A) =

(B′, m̃f (A)) is the consistent image of the reaction system wrt the epi-mono
factorization.

Example 3. Reconsider the reaction system A> presented in Example 1. Let
f : (V,E) → (V ′, E′) be a poset morphism induced by an underlying non-
injective morphism f : V → V ′ satisfying (f(x), f(y)) ∈ E′ for all (a, b) ∈ E.
Then the image of A> wrt the epi-mono factorization is as follows: mf (A>) =
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((f(V ), f(E)),mf (A>)), where f(V ) = {f(V ) | v ∈ V }, f(E) = {(f(x), f(y)) |
(x, y) ∈ E} and for the images of reactions in mf (A>) several cases occur. Let
f(Vxyz) = {f(x), f(y), f(z)} and f(Vxy) = {f(x), f(y)} for a, b, c ∈ V . Then for
reactions of the first type we have four new types:

– ((f(Vxyz), 〈(f(x), f(y)), (f(y), f(z))〉),−, (f(Vyz), 〈(f(y), f(z))〉))
for x, y, z ∈ V with f(x) �= f(y), f(x) �= f(z), f(y) �= f(z)

– ((f(Vyz), 〈(f(y), f(z))〉),−, (f(Vyz), 〈(f(y), f(z))〉))
for x, y, z ∈ V with f(x) = f(y) �= f(z).

– ((f(Vxy), 〈(f(x), f(y))〉),−, ({f(y)}, 〈(f(y), f(y))〉))
for x, y, z ∈ V with f(x) �= f(y) = f(z).

– (({f(x)}), 〈(f(x), f(x))〉),−, ({f(x)}, 〈(f(x), f(x))〉))
for x, y, z ∈ V with f(x) = f(y) = f(z).

The first is like before; the second sustains the image of the second element in
the sequence (x, y), (y, z) if f(x) = f(y); the third acts like the reaction of the
second type in the original reaction sytem; and the fouth sustains reflexivity.

For reactions of the second type we have two new types:

– ((f(Vyz), 〈(f(y), f(z))〉),−, (f(Vyz), 〈(f(z), f(z))〉))
for y, z ∈ V with f(y) �= f(z)

– (({f(z)}, 〈(f(z), f(z))〉),−, ({f(z)}, 〈(f(z), f(z))〉))
for y, z ∈ V with f(y) = f(z).

The first is like before and the second only sustains reflexitivy.
The behaviour of the reaction system is hence very different to the original

one, e.g. when considered as vertices and edges of a directed acyclic graph, then
outgoing and incoming edges of vertices which are merged by f are sustained.

Note that, because every reaction is uninhibited, the image of this reaction
system is consistent.

In general, mf (A) and m̃f (A) have the following properties.

Lemma 3. Let t : T → B be a state of A and mf◦t : EM f◦t → B′ the corre-
sponding state in mf (A). Then the following holds.

1. If mf (a) ∈ mf (A) \ m̃f (A), then mf (a) is never enabled,
2. If mf (a) ∈ m̃f (A), then ena(t) implies enmf (a)(mf◦t),
3. mf◦resa(t) ⊆ resmf (a)(mf◦t) for mf (a) ∈ m̃f (A).

Proof. 1. Let mf ((r, (i, i0), p)) ∈ mf (A) \ m̃f (A). Then mf◦r ∩ mf◦i �⊆ mf◦i◦i0 .
Consequently, mf◦i◦i0 ⊆ mf◦t ∩ mf◦i for any state mf◦t satisfying mf◦r ⊆
mf◦t. This means the reaction is disabled because of the inhibitor. For any
state mf◦t satisfying mf◦t ⊆ mf◦r the reaction is disabled because of the
reactant.

2. Given a reaction a = (r, (i, i0), p) and a state t in A, ena(t) means r ⊆ t and
t ∩ i ⊆ i ◦ i0. By Lemma 1 Point 1a, we have that r ⊆ t implies mf◦r ⊆ mf◦t,
t ∩ i ⊆ i ◦ i0 implies mf◦(t∩i) ⊆ mf◦(i◦i0), and mf◦(i◦i0) ∼= mf◦i ◦ mef◦i◦i0 .
Lemma 1 Point 1b gives us mf◦t ∩ mf◦i ⊆ mf◦(t∩i). Hence, mf◦t ∩ mf◦i ⊆
mf◦i ◦ mef◦i◦i0 . Moreover, by assuming mf (a) ∈ mf (A), mf◦r ∩ mf◦i ⊆
mf◦i◦i0 . Therefore, enmf (a)(mf◦t).
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3. Let mf (a) ∈ m̃f (A). There are two cases to consider using the defini-
tion of results: mf◦resa(t) = mf◦p if ena(t) and mf◦resa(t) = mf◦emptyB

=
emptyB ′ otherwise. However, resmf (a)(mf◦t) = mf◦p if enmf (a)(f ◦ t) and
resmf (a)(mf◦t) = emptyB ′ otherwise. Whenever, ena(t) implies enmf (a)(f ◦t),
the subobjects are equal. If enmf (a)(f ◦ t) but ena(t), then resmf (a)(mf◦t) =
mf◦p and mf◦resa(t) = emptyB ′ .

Corollary 1. mf◦resa(t) = resmf (a)(mf◦t) if enabledness is reflected.

If enabledness is reflected, then precise conclusions can be drawn for the
transformed system. However, in general we get the following result.

Theorem 1. mf◦resA(t) ⊆ resm̃f (A)(mf◦t) = resmf (A)(mf◦t).

Proof. Using the definition of results of reaction systems and sets of reactions
as well as Point 2 of Lemma 1, one gets as stated: mf◦resA(t) = mf◦resA(t) =
mf◦union({resa(t)|a∈A}) ∼= union({mf◦resa(t) | a ∈ A}) ⊆ union({resmf (a)(mf◦t) |
mf (a) ∈ m̃f (A)}) = resm̃f (A)(mf◦t) = resmf (A)(mf◦t) = resmf (A)(mf◦t).

Definition 5. If mf◦resA(t)
∼= resm̃f (A)(mf◦t) = resmf (A)(mf◦t), then f is

called strong.

A strong non-injective morphism can be seen as minimizing a reaction system.
In this way the research presented here generalizes concepts presented in [4]
where the notion of minimal reaction systems over Sets (i.e., reaction systems
with reactions using the minimal number of reactants, or the minimal number
of inhibitors, or both) have been introduced. Furthermore, it relates to enabling
equivalence of sets of reactions discussed in [5].

Example 4. Kreowski and Rozenberg demonstrated in [11] that graph-based
reaction systems can simulate deterministic finite state automata (DFA) in such
a way that recognition of strings is modeled by certain interactive processes that
run on the corresponding state graphs of the automata.

Let F = (Q,Σ, φ, s0, F ) be a DFA with the set of states Q, the set of input
symbols Σ, the state transition function φ : Q×Σ → Q, the initial state s0 ∈ Q,
and the set of final states F ⊆ Q. Let Γ = Σ∪{run,fin}. Then the corresponding
reaction system A(F) = (B(F), A(F)) over Γ -Graph is constructed as follows
(simplified variant of the construction given in [11], edges are triples consisting
of the source vertex, the target vertex and the label).

The background graph extends the state graph of F by a run-loop at each
vertex and an extra vertex with a loop for each input symbol. Formally, let
Q = Q ∪ {in}, E1 = {(s, φ(s, x), x) | s ∈ Q,x ∈ Σ}, E2 = {(s0, s0, run)},
E3 = {(s′′, s′′,fin) | s′′ ∈ F}, E4 = {(s, s, run) | s ∈ Q}, and E5 = {(in, in, x) |
x ∈ Σ}. Then B(F) = (Q,Γ,E1 ∪ E3 ∪ E4 ∪ E5) is the background graph,
gr(F) = (Q,Γ,E1∪E2∪E3) is the state graph of F and gr(F)− = (Q,Γ,E1∪E3).

The vertex in with its loops represents the input alphabet. The run-loops
are used in the interactive processes. The set of reactions A(F) consists of the
following uninhibited reactions, where the symbol “−” is a shortcut for the
inhibitor (emptyB(F), 1∅), where ∅ denotes the empty graph.
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1. sustain the state graph gr(F)− with the reaction (gr(F)−,−, gr(F)−).
2. moving along transition edges due to input symbol:

( inx s s′xrun ,−, s′run )
for s ∈ Q,x ∈ Σ with s �= s′ = φ(s, x),

3. moving along transition loops due to input symbol:
( inx srun x ,−, srun )
for s ∈ Q,x ∈ Σ with s = φ(s, x).

Now let f : B(F) → B′(F) be a non-injective Γ -graphmorphism which
merges only states of the state graph and afterwards parallel edges with the
same label. Then f ◦ emptyB(F) = emptyB ′(F). Moreover, B′(F) is a back-
ground graph of a DFA F ′. Furthermore, because every reaction is uninhibited,
mf (A) = m̃f (A) holds. Clearly, enabledness is not reflected. Consider some state
graph with at least three states, where two have outgoing edges labed x to the
third state and one of the two states carries a run-loop. Assume that these two
states and the two edges are merged. If the in state carries an x-loop, then the
reaction corresponding to the merged state and the label x is enabled. However,
in the original state graph only one of two reactions is enabled due to the lack
of a second run-loop.

We will discuss this example further in the next subsection.

4.4 Transformation of Interactive Processes

The componentwise composition and epi-mono factorization of the subobjects
specifying an interactive process give us again an interactive process.

Definition 6. Let C be an eiu-category with epi-mono factorization. Let π =
(γ, δ) be an interactive process on some reaction system A = (B,A)C given by
γ = c0, . . . , cn and d0 and let f : B → B′ be a morphism satisfying f ◦ emptyB =
emptyB ′ . Then mf (π) given by mf (γ) = (mf◦c0 , . . . ,mf◦cn) and mf◦d0 is the
image of the interactive process π wrt the epi-mono factorization.

Example 5. Meaningful interactive processes for the reaction system discussed
in Example 4 are context sequences of the form cs(x1 · · · xn) = inx1 , . . . ,

inxn , ∅ for n ∈ N
+ and xi ∈ Σ for i = 1, . . . , n. These context sequences

are in one-to-one correspondence to words over Σ. Let π(x1 · · · xn) denote the
interactive process that has cs(x1 · · · xn), for n ∈ N

+ and xi ∈ Σ for i = 1, . . . , n,
as its context sequence and D0, . . . , Dn+1 with D0 = gr(F ) as its result sequence.
In all reaction steps, gr(F )− is a subgraph of Di for i = 1, . . . , n+1. In each reac-
tion step i for i = 1, . . . , n, the result graph Di+1 has a single run-loop at some
vertex si and is accompanied by the context graph inxi so that exactly
one of the run-reactions is enabled moving the run-loop at vertex φ(si, xi). In
this way, recognition processes in F correspond one-to-one to specific processes
in A(F).
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Reconsidering the two non-equivalent DFA F = (Q,Σ, φ, s0, F ) and F ′ =
(Q′, Σ, φ′, s′

0, F
′) over the same alphabet related by the morphism f : B(F) →

B(F ′) as described in Example 4, we can observe the following. Because f acts
as identity wrt the vertex in and its attached loops, the context sequences of the
two interactive processes are the same.

If the corresponding interactive processes behave the same in the sense that
the semantic of F is preserved and reflected by f , then f is a transformation in
the usual sense of DFA minimization, i.e., the task of transforming a given DFA
into an equivalent DFA that has a smaller/minimum number of states, where
two DFAs are called equivalent if they recognize the same regular language.

As a direct consequence of Lemma 1 and Theorem 1 we get the following
result for interactive processes.

Corollary 2. 1. mf◦di
= mf◦resA(ci−1∪di−1)

∼= resmf (A)(mf◦ci−1 ∪mf◦di−1) for
i = 1, . . . , n if f is strong; and mf◦resA(ci−1∪di−1) ⊆ resmf (A)(mf◦ci−1 ∪
mf◦di−1) for i = 1, . . . , n otherwise.

2. If π is context independent, then mf (π) is context independent.
3. Let τ = t1, . . . , tn be the state sequence of π and mf (τ) = (mf◦t1 , . . . ,mf◦tn)

the image of the state sequence. Then τ being repetition-free, does not imply
mf (τ) being repetition-free (proof by simple a counter example where f maps
everything to INIT and 1INIT ).

4.5 The Category of Reaction Systems Over an eiu-Category
with Epi-Mono Factorization

Now we can define the category of reaction systems over an eiu-category with
epi-mono factorization. This category is a generalization of the category RS(C)
introduced in [15] provided that C has an epi-mono factorization.

A direct consequence of Theorem 1 is the following result.

Corollary 3. Let C be an eiu-category with epi-mono factorization. Let A =
(B,A) and A′ = (B′, A′) be two reaction systems over C and let f : B →
B′ be a morphism satisfying f ◦ emptyB = emptyB ′ . If m̃f (A) ⊆ A′, then
resm̃f (A)(mf◦t) ⊆ resA′(mf◦t) for all states t : T → B.

Remark 3. This gives us a morphism between reaction systems over C. The
restriction to the smaller set of consistent reactions m̃f (A) is meaningful because
resmf (A)(mf◦t) = resm̃f (A)(mf◦t).

Definition 7. Let C be an eiu-category with epi-mono factorization. The cat-
egory RS(C)em is defined as follows. Its objects are reactions systems over C.
Given two reaction systems A = (B,A) and A′ = (B′, A′) over C, a morphisms
f : A → A′ is given by a morphism f : B → B′ satisfying f ◦ emptyB = emptyB ′

provided that m̃f (A) ⊆ A′ such that f(A) = m̃f (A). Compositions and identi-
ties are given by the underlying morphisms.
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The definition of composition and identities is meaningful as, for reaction
systems A = (B,A), A′ = (B′, A′) and A′′ = (B′′, A′′) and for morphisms
f : A → A′ and g : A′ → A′′, (g ◦ f)(A) = g(f(A)) ⊆ g(A′) ⊆ A′′ (applying
Lemma 2) and 1B(A) = A.

5 Transformation of Reaction Systems by Means
of Functors

In this section, we discuss which functors preserve reaction systems. A functor
relates two categories by mapping the objects and morphisms of one category
to the objects and morphisms of the other category respectively in such a way
that compositions and identities are preserved.

Definition 8. A functor F : C → C′ is a pair of maps F = (FOb, FMor) with
FOb : ObC → ObC′ and FMor(A,B) : MorC(A,B) → MorC′(FOb(A), FOb(B))
for each pair of objects A,B ∈ ObC such that F (g ◦ f) = F (g) ◦ F (f) for each
pair of morphisms (f : A → B) and (g : B → C) ∈ MorC, and F (1A) = 1F (A)

for each A ∈ ObC.

For instance, the usual embedding of Σ-graphs into Σ-hypergraphs induces
such a functor. The other way round, the usual transformation of a hypergraph
into a graph can be extended to morphisms. The question is which properties
of a functor F : C → C′ are sufficient such that a reaction system A over C is
translated into a reaction system F (A) over C′. Whenever this works, one can
compare reaction systems over different categories.

Subsection 5.1 introduces the notion of eiu-preserving functors. In Sub-
sect. 5.2 we start the investigation of functors and reaction systems for the
case of eiu-preserving embedding functors. In Subsect. 5.3 the mapping of inter-
active processes are discussed. Finally, in Subsect. 5.4 we show that certain eiu-
preserving embedding functors induce functors in the category of reaction sys-
tems such that properties of the reaction systems and the morphisms between
them are preserved.

5.1 eiu-Preserving Functors

From the definition of eiu-categories we can deduce a notion of functors preserv-
ing the needed concepts.

Definition 9. A functor F : C → C′ is eiu-preserving if it preserves monomor-
phisms, pullbacks along monomorphisms, colimits and finiteness of objects.

For two eiu-categories C and C′ and an eiu-preserving functor F : C → C′

the following holds.

Properties 1. 1. Let p1 : P1 → B, p2 : P2 → B be two subobjects of B in MorC.
Then
(a) p1 ⊆ p2 implies F (p1) ⊆ F (p2);
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(b) F (p1 ∩ p2) = F (p1) ∩ F (p2).
2. Let S be a set of subobjects of B in MorC and let F (S) = {F (p) | p ∈ S}.

Then union(F (S)) = F (union(S)).
3. F (emptyB ) = emptyF(B)

Points 1 and 2 hold by definition. Point 3 uses the fact that every colimit-
preserving functor maps initial objects to initial objects, i.e., F (INIT ) = INIT ,
where INIT and INIT are the initial objects in C,C′, respectively. Then,
because C′ is an eiu-category and initial morphisms are unique, this implies
F (emptyB ) = emptyF(B).

Example 6. Because of the componentwise constructions of morphisms, pull-
backs and colimits in both categories, the following functors are eiu-preserving.

– The relabeling functor F : Σ1-Graphs → Σ2-Graphs which is defined by
FOb = (1V , 1E , 1E→V , 1E→V ,m : Σ1 → Σ2) and FMor = (1fV , 1fE ).

– The forgetful functor F : Σ-Graphs → Set which maps only the vertex set.
– The embedding functor F : Σ-Graphs → Σ-Hypergraphs which is defined

by FOb((V,E, s, t, l)) = (V,E, att, l), where att(e) = s(e)t(e) for each e ∈ E,
and FMor = (1fV , 1fE ).

– The embedding functor F : Hypergraphs → BipartiteGraphs which is
defined by FOb((V,E, att)) = (V,E,Att(E), ∅, sAtt(E), ∅, tAtt(E), ∅), where
Att(E) = {(e, i) | e ∈ E, i ∈ [k(e)]}, k(e) is the type of e, sAtt(E)((e, i)) = e,
tAtt(E)((e, i)) = ai(e), where att(e) = a1(e) · · · ak(e)(e), and FMor ((fV , fE) =
(fV , fE , (fE , fV ), ∅) because for f = (fV , fE) : H1 → H2, Hi = (Vi, Ei, atti),

E1 E2

V ∗
1 V ∗

2

att1

fE

= att2

f∗
V

implies

Att(EH1)

Att(EH2) VH1 EH1

VH2 EH2

(fE ,fV )
pr1ai

= =

pr1ai

fV
fE

5.2 Reaction Systems over the Image of a Category

In order to define reaction systems over the image of a category, we need the
following result for the image of an eiu-preserving functor.

Let C and C′ be two eiu-categories and let F : C → C′ be an eiu-preserving
functor. If the image of F , denoted F (C), is a category, then it is a subcategory
of C′. In particular, F (C) is then an eiu-category, because F is eiu-preserving.

The image of a full functor always yields a category. For arbitrary functors
this is not always the case. The composition of arrows in the image of the functor
must also have a preimage. However, requiring a full functor is usually too strong.

Because a reaction system over C is a background object together with a col-
lection of monomorphisms in C and eiu-preserving functors preserve monomor-
phisms, the mapping yields again a reaction system. In other words, F gives us
a mapping for objects in the categories RS(C) and RS(C)em to objects in the
categories RS(F(C)) and RS(F(C))em, respectively.
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Definition 10. Let A = (B,A)C ∈ ObRS(C) and let F : C → C′ be an
eiu-preserving functor satisfying that F (C) be an eiu-category. For a =
(r, (i, i0), p) ∈ A, let F (a) = (F (r), (F (i), F (i0)), F (p)). Then the image of
A under F , denoted by F (A), is (F (B), F (A))C′ ∈ ObRS(C′), where F (A) =
{F (a) | a ∈ A}.

The properties of F (A) depend on further properties of the functor. We start
the investigation for the case of eiu-preserving embedding functors.

Lemma 4. Let F : C → C′ be eiu-preserving and an embedding. Then F (A)
has the following properties.

1. ena(t) implies enF (a)(F (t)) for every state t : T → B.
2. F (resa(t)) ⊆ resF (a)(F (t)).
3. F (resA(t)) ⊆ resF (A)(F (t)).

Proof. 1. r ⊆ t implies F (r) ⊆ F (t) and i ∩ t ⊆ i ◦ i0 implies F (i) ∩ F (t) =
F (i ∩ t) ⊆ F (i ◦ i0) = F (i) ◦ F (i0) by Properties 1 Point 1. Because F is an
embedding, it is injective on morphisms. Hence, enF (a)(F (t)).

2. F (resa(t)) = F (p) if ena(t) and F (emptyB ) = emptyF(B) otherwise. But
resF (a)(F (t))) = F (p) if enF (a)(F (t)) (even if ena(t)) and emptyF(B) otherwise.

3. F (resA(t)) = F (resA(t)) = F (union({resa(t) | a ∈ A})) =
union(F ({resa(t) | a ∈ A})) ⊆ union({F (resa(t)) | a ∈ A}) ⊆
union({resF (a)(F (t))) | F (a) ∈ F (A)} = F (resF (A)(F (t))) = F (resF (A)(F (t))).

Remark 4. If all monomorphisms in F (C) have as preimage a monomorphism,
then the implication in Point 1 becomes an equivalence, and Point 2 and 3
become equations.

5.3 The Image of an Interactive Process

The componentwise mapping of morphisms specifying an interactive process give
us again an interactive process.

Definition 11. Let C be an eiu-category and F : C → C′ an eiu-preserving
functor. Let π = (γ, δ) be an interactive process on some reaction system A =
(B,A)C ∈ ObRS(C) given by γ = c0, . . . , cn and d0. Then F (π) given by F (γ) =
(F (c0), . . . , F (cn)) and F (d0) is the image of the interactive process π under F .

As a direct consequence of Properties 1, Theorem 4 and Remark 4 we get
the following result for interactive processes.

Corollary 4. 1. Let F : C → C′ be an embedding and eiu-preserving functor.
Then F (di) = F (resA(ci−1 ∪ di−1)) ⊆ resF (A)(F (ci−1) ∪ F (di−1)).

2. If π is context-independent, then F (π) is context-independent.

Remark 5. If C′ is also an eiu-category, then interactive processes on F (A)
behave well outside F (C).
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Example 7. In [15] we modeled a vertex-coverability test by a family of reaction
systems over the category Σ-Hypergraphs. A set of vertices X is a vertex cover
of some hypergraph if each hyperedge has some attachment vertex in X.

Let H = (V,E, att, l) be a Σ-hypergraph with l(e) = ∗ for some label ∗ ∈ Σ
for all e ∈ E (this means that all hyperedges are equally labeled and, hence,
can be considered as unlabeled). Then X ⊆ V is a vertex cover of H if each
hyperedge has some attachment vertex in X. H is k-vertex-coverable for some
k ∈ N if there is a hyperedge vertex cover of H with k elements.

The k-vertex-coverability test employs the reaction system Am,n =

(Bm,n, Am,n) for some m,n ∈ N with m ≤ n defined as follows. Let
[

n
m

]

be

the set of all strings over [n] of lengths up to m. Then the complete hyper-

graph with twins is defined by CH
(2)
m,n = ([n],

[

n
m

]

× {∗,+}, attach, lab) with

attach(u, ∗) = attach(u,+) = u and lab(u, ∗) = ∗ and lab(u,+) = + for all

u ∈
[

n
m

]

. The two parallel hyperedges (u, ∗) and (u,+) for u ∈
[

n
m

]

are called

twins. The background hypergraph Bm,n is CH
(2)
m,n extended by a ∗-flag (type-1

hyperedge) at each vertex. The set of reactions Am,n contains the following ele-
ments, where, due to the one-to-one correspondence of categorial subobjects of
a Σ-hypergraph and sub-Σ-hypergraphs, the subobjects are represented by the
domain objects of the inclusion morphisms. The symbol “−” is a shortcut for
the inhibitor (emptyBm,n

, 1MPT ).

1. ( j ,−, j ) for all j ∈ [n].

2. (e•,−, e•) for all e ∈
[

n
m

]

×{∗,+} where e• is the sub-Σ-hypergraph of Bm,n

induced by e, i.e., e• = ({v1, . . . , vl}, {e}, attach|{e}, lab|{e}) with attach(e) =
v1 · · · vl, vj ∈ [n] for j = 1, . . . , l.

3. ( j ∗1
,−, j ∗1 ) for all j ∈ [n].

4. ((u, ∗)• ∪ v•,−, (u,+)•) for all u ∈
[

n
m

]

and v ∈ V occurring in u where v•

is the sub-Σ-hypergraph of Bm,n with the vertex v and a ∗-flag at v.

The first three types of reactions applied to a state make sure that the state is sus-
tained. The only changing reactions are of the fourth type. They add a +-labeled
twin hyperedge whenever some attachment vertex of a ∗-labeled hyperedge has
a ∗-flag. In the drawings, a circle represents a vertex and a box a flag. The label
is inside the box, and a line from a box to a circle represents the attachment.

Let H ⊆ CH
(2)
m,n be a sub-Σ-hypergraph with ∗-labeled hyperedges only. Let

i1, . . . , ik be a combination of k elements of [n] for some k ∈ N. Then one can con-
sider the interactive process π(H, i1 · · · ik) = (γ(H, i1 · · · ik), δ(H, i1 · · · ik)) with

γ(H, i1 · · · ik) = i1 ∗1
, . . . , ik ∗1

,MPT and H as start. Then {i1, . . . , ik}
is a k-vertex-cover of H if and only if each hyperedge of H has a twin in the



Transformations of Reaction Systems Over Categories 57

final result. Consequently, to test whether H is k-vertex-coverable, one may run
the interactive process π(H, i1 · · · ik) for all combinations of k elements of [n].

Using similar arguments as in Example 6, the embedding and eiu-preserving
functor F : Σ-Hypergraphs → Σ-BipartiteGraphs, where the labeling in the
latter is defined for the second vertex set, gives us a corresponding family of reac-
tion systems over the category Σ-BipartiteGraphs. The vertex-coverability
test performed by the interactive process in Σ-Hypergraphs translates directly
to an interactive process in Σ-BipartiteGraphs such that c1, . . . , cn is a vertex
cover for d0 if and only if F (c1), . . . , F (cn) is a vertex cover for F (d0) in the fol-
lowing sense. A subset of vertices X of the set of vertices with labels is a vertex
cover of some bipartite Σ-graph if and only if every vertex of the unlabeled set
has at least one target in X for its incident edges.

5.4 The Induced Functor Between Categories of Reaction Systems

Moreover, because a morphism (fRS : (B,A)C → (B′, A′)C) ∈ MorRS(C) is
defined in [15] by a monomorphisms f : B → B′ provided that f(A) = {f(a) |
a ∈ A} ⊆ A′, an eiu-preserving embedding functor with domain C where all
monomorphisms in F (C) have as preimage a monomorphism induces a well-
defined mapping for RS(C). The property f ◦ resA(t) ⊆ resA′(f ◦ t) for all
states t : T → B is preserved.

Theorem 2. F : C → C′ being an embedding and eiu-preserving satisfying
F (C) being an eiu-category where all monomorphisms in F (C) have as preimage
a monomorphism induces an embedding functor FRS : RS(C) → RS(F(C)). If
(fRS : A → A′) ∈ MorRS(C), then (F (fRS ) : F (A) → F (A′)) ∈ MorRS(F(C))

satisfies F (f) ◦ resF (A)(F (t)) ⊆ resF (A′)(F (f) ◦ F (t)) for all states t : T → B.

Proof. Let A = (B,A)C,A′ = (B′, A′)C ∈ ObRS(C). If (fRS : A → A′) ∈
MorRS(C) is a monomorphism. Then by definition f : B → B′ is a monomor-
phism and f(A) ⊆ A′. Because F preserves monomorphisms, it follows that
F (f) : F (B) → F (B′) as well as all morphisms in F (f(A)) and F (A′) are
monomorphisms. F (f(A)) ⊆ F (A′) because F is an embedding. Clearly,
f ◦ resA(t) ⊆ resA′(f ◦ t) for all states t : T → B implies F (f) ◦ resF (A)(F (t)) ⊆
resF (A′)(F (f) ◦ F (t)) because F (f ◦ resA(t)) = F (f) ◦ F (resA(t)) = F (f) ◦
resF (A(F (t)) and F (resA′(f ◦ t)) = resF (A′)(F (f ◦ t)) = resF (A′)(F (f) ◦ F (t))
for all states t : T → B.

6 Conclusion

In this paper, we have continued the research on reaction systems over eiu-
categories. In this framework a wide spectrum of data structures become avail-
able on which reaction systems can be based. In particular, we have pro-
posed two transformations of reaction systems over eiu-categories based on epi-
mono factorization and functors. The first transformation generalizes the mor-
phisms between reaction systems over eiu-categories (compared to [15] where



58 A. Lye

only monomorphisms have been considered) provided that the underlying cate-
gory has an epi-mono factorization. The second transformation is the first step
to related reaction systems over different categories properly in the categorial
framework. However, to shed more light on the significance of the framework,
the investigation should be continued including the following topics.

1. In some categories epi-mono factorization exists only for a class of epimor-
phisms E and a class of monomorphisms M. Some of such categories have
been analyzed in the area of graph transformation. It may be worth investi-
gating reaction systems over these categories.

2. The research in Sect. 5 may be continued by analyzing non-injective functors
or functors preserving epi-mono factorizations in order to transform reaction
system in the category RS(C)em.

3. How do evolutions of reaction systems over Sets presented in [5] and functors
relate?

4. It would be interesting to clarify the relationship between eiu-categories and
the well-studied adhesive categories that are successfully applied in the area
of graph transformation in various variants (cf., e.g., [14,16,18–20]).

5. We used one standard notion of finite objects, where an object is finite if its
set of subobjects is finite. However, it is worth considering a different notion
such as compact objects, finitely presentable objects or finite objects in topoi.

6. In [15] we have shown that diagram categories provide a reservoir of eiu-
categories. Another way to find appropriate categories is the restriction of
eiu-categories to subcategories. For example, if one restricts the category
Σ-Graphs to simple graphs, then this category is closed under empty sub-
objects, intersections and unions so that this category inherits all reaction
systems over Σ-Graphs if the background graph is simple. How do general
restriction principles look like that yield such subcategories?

7. Most of the example categories in this paper have graph-like structures as
objects. But also monoids and partially ordered sets fit into the framework.
Hence, one may like to know which kinds of algebraic structures form proper
categories and how interesting reaction systems over such algebraic structures
look like.
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Abstract. We extend the powerful Pullback-Pushout (PBPO) approach
for graph rewriting with strong matching. Our approach, called PBPO+,
exerts more control over the embedding of the pattern in the host graph,
which is important for a large class of graph rewrite systems. In addition,
we show that PBPO+ is well-suited for rewriting labeled graphs and
certain classes of attributed graphs. For this purpose, we employ a lattice
structure on the label set and use order-preserving graph morphisms.
We argue that our approach is simpler and more general than related
relabeling approaches in the literature.

1 Introduction

Injectively matching a graph pattern P into a host graph G induces a classifica-
tion of G into three parts: (i) a match graph M , the image of P ; (ii) a context
graph C, the largest subgraph disjoint from M ; and (iii) a patch J , the set of
edges that are in neither M nor C. For example, if P and G are respectively

b

aa and

b

aa

b

a

b
c

then M , C and J are indicated in green, black and red (and dotted), respectively.
We call this kind of classification a patch decomposition.

Guided by the notion of patch decomposition, we recently introduced the
expressive Patch Graph Rewriting (PGR) formalism [1]. Like most graph rewrit-
ing formalisms, PGR rules specify a replacement of a left-hand side (lhs) pattern
L by a right-hand side (rhs) R. Unlike most rewriting formalisms, however, PGR
rules allow one to (a) constrain the permitted shapes of patches around a match
for L, and (b) specify how the permitted patches should be transformed, where
transformations include rearrangement, deletion and duplication of patch edges.

Whereas PGR is defined set-theoretically, in this paper we propose a more
sophisticated categorical approach, inspired by the same ideas. Such an approach
is valuable for at least three reasons: (i) the classes of structures the method can
be applied to is vastly generalized, (ii) typical meta-properties of interest (such
as parallelism and concurrency) are more easily studied on the categorical level,
and (iii) it makes it easier to compare to existing categorical frameworks.
c© Springer Nature Switzerland AG 2021
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The two main contributions of this paper are as follows. First, we extend
the Pullback Pushout (PBPO) approach by Corradini et al. [2] by strengthening
the matching mechanism (Sect. 3). We call the resulting approach PBPO with
strong matching, or PBPO+ for short. We argue that PBPO+ is preferable over
PBPO in situations where matching is nondeterministic, such as when speci-
fying generative grammars or modeling execution. Moreover, we show that in
certain categories (including toposes), any PBPO rule can be modeled by a set
of PBPO+ rules (and even a single rule when matching is monic), while the
converse does not hold (Sect. 4).

Second, we show that PBPO+ easily lends itself for rewriting labeled graphs
and certain attributed graphs. To this end, we define a generalization of the
usual category of labeled graphs, Graph(L,≤), in which the set of labels forms
a complete lattice (L,≤) (Sect. 5). Not only does the combination of PBPO+

and Graph(L,≤) enable constraining and transforming the patch graph in flex-
ible ways, it also provides natural support for modeling notions of relabeling,
variables and sorts in rewrite rules. As we will clarify in the Discussion (Sect. 6),
such mechanisms have typically been studied in the context of Double Pushout
(DPO) rewriting [3], where the requirement to construct a pushout complement
leads to technical complications and restrictions.

2 Preliminaries

We assume familiarity with various basic categorical notions, notations and
results, including morphisms X → Y , pullbacks and pushouts, monomorphisms
(monos) X � Y , identities 1X : X � X and the pullback lemma [4,5].

Definition 1 (Graph Notions). A (labeled) graph G consists of a set of ver-
tices V , a set of edges E, source and target functions s, t : E → V , and label
functions �V : V → L and �E : E → L for some label set L.

A graph is unlabeled if L is a singleton.
A premorphism between graphs G and G′ is a pair of maps φ = (φV : VG →

VG′ , φE : EG → EG′) satisfying (sG′ , tG′) ◦ φE = φV ◦ (sG, tG).
A homomorphism is a label-preserving premorphism φ, i.e., a premorphism

satisfying �V
G′ ◦ φV = �V

G and �E
G′ ◦ φE = �E

G.

Definition 2 (Category Graph [6]). The category Graph has graphs as
objects, parameterized over some global (and usually implicit) label set L, and
homomorphisms as arrows.

Although we will point out similarities with PGR, an understanding of PGR
is not required for understanding this paper. However, the following PGR ter-
minology will prove useful (see also the opening paragraph of Sect. 1).

Definition 3 (Patch Decomposition). Given a premorphism x : X → G, we
call the image M = im(x) of x the match graph in G, G−M the context graph
C induced by x (i.e., C is the largest subgraph disjoint from M), and the set of
edges EG − EM − EC the set of patch edges (or simply, patch) induced by x.
We refer to this decomposition induced by x as a patch decomposition.
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3 PBPO+

We introduce PBPO+, which strengthens the matching mechanism of PBPO [2].
In the next section, we compare the two approaches and elaborate on the expres-
siveness of PBPO+.

Definition 4 (PBPO+ Rewrite Rule). A PBPO+ rewrite rule ρ is a collec-
tion of objects and morphisms, arranged as follows around a pullback square:

ρ =
L K

l

L′
tL

K ′
tK

l′

PB
R

r

L is the lhs pattern of the rule, L′ its type graph and tL the typing of L.
Similarly for the interface K. R is the rhs pattern or replacement for L.

Remark 5 (A Mental Model for Graph). In Graph, K ′ can be viewed as a
collection of components, where every component is a (possibly generalized)
subgraph of L′, as indicated by l′. By “generalized” we mean that the components
may unfold loops and duplicate elements. K is the restriction of K ′ to those
elements that are also in the image of tL.

We often depict the pushout K ′ r′
−→ R′ tR←− R for span K ′ tK←−− K

r−→ R,
because it shows the schematic effect of applying the rewrite rule. We reduce the
opacity of R′ to emphasize that it is not part of the rule definition.

Example 6 (Rewrite Rule in Graph). A simple example of a rule for unlabeled
graphs is the following:

In this and subsequent examples, a vertex is a non-empty set {x1, . . . , xn} rep-

resented by a box x1 · · · xn , and each morphism f = (φV , φE) : G → G′

is the unique morphism satisfying S ⊆ f(S) for all S ∈ VG. For instance, for
{x1}, {x2} ∈ VK , l({x1}) = l({x2}) = {x1, x2} ∈ VL. We will use examples
that ensure uniqueness of each f (in particular, we ensure that φE is uniquely
determined). Colors are purely supplementary.

Definition 7 (Strong Match). A match mor-
phism m and an adherence morphism α form
a strong match for a typing tL, denoted
strong(tL,m, α), if the square on the right is a
pullback square.

GLL
m

L

1L
PB

L′tL
α
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Remark 8 (Preimage Interpretation). In Set-like categories (such as Graph),
the match diagram states that the preimage of tL(L) under α : GL → L′ is L
itself. So each element of tL(L) is the α-image of exactly one element of GL.

In practice it is natural to first fix a match m, and to subsequently verify
whether it can be extended into a suitable adherence morphism α.

Definition 9 (PBPO+ Rewrite Step). A PBPO+ rewrite rule ρ (left) and
adherence morphism α : GL → L′ induce a rewrite step GL ⇒α

ρ GR on arbitrary
GL and GR if the properties indicated by the commuting diagram (right)

ρ =
L K

l

L′
tL

K ′
tK

l′

PB
R

r

GLL
m

L

1L
PB

L′
tL

α

GK

gL

K ′
u′

l′

PB

K

!u

R
r

GRgR

wPO

tK

hold, where u : K → GK is the unique (and necessarily monic) morphism satis-
fying tK = u′ ◦ u. We write GL ⇒ρ GR if GL ⇒α

ρ GR for some α.

It can be seen that the rewrite step diagram consists of a match square, a
pullback square for extracting (and possibly duplicating) parts of GL, and finally
a pushout square for gluing these parts along pattern R.

The following lemma establishes the existence of a monic u by constructing
a witness, and Lemma 11 establishes uniqueness.

Lemma 10 (Top-Left Pullback). In the rewrite step diagram of Definition 9,
there exists a morphism u : K → GK such that L

l←− K
u−→ GK is a pullback for

L
m−→ GL

gL←− GK , tK = u′ ◦ u, and u is monic. �1

Lemma 11 (Uniqueness of u). In the rewrite step diagram of Definition 9
(and in any category), there is a unique v : K → GK such that tK = u′ ◦ v. �

Lemma 12 (Bottom-Right Pushout). Let K ′ r′
−→ R′ tR←− R be a pushout

for cospan R
r←− K

tK−−→ K ′ of rule ρ in Definition 9. Then in the rewrite step
diagram, there exists a morphism w′ : GR → R′ such that tR = w′ ◦ w, and

K ′ r′
−→ R′ w′

←− GR is a pushout for K ′ u′
←− GK

gR−−→ GR. �
Lemmas 10 and 12 show that a PBPO+ step defines a commuting diagram

similar to the PBPO definition (Definition 16):

L K R
l r

GL GK GRgL gR

m !u w

L′ K ′ R′
l′ r′

α u′ w′tL tK tR

PB

PB

PO

PO
L

L

m

1L

tL

PB

We will omit the match diagram in depictions of steps.
1 We use � instead of �� when the proof is available in the Appendix.
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Example 13 (Rewrite Step). Applying the rule given in Example 6 to GL (as
depicted below) has the following effect:

This example illustrates (i) how permitted patches can be constrained (e.g.,
L′ forbids patch edges targeting y), (ii) how patch edge endpoints that lie in the
image of tL can be redefined, and (iii) how patch edges can be deleted.

In the examples of this section, we have restricted our attention to unlabeled
graphs. In Sect. 5, we show that the category Graph(L,≤) is more suitable than
Graph for rewriting labeled graphs using PBPO+.

4 Expressiveness of PBPO+

The set of PBPO+ rules is a strict subset of the set of PBPO rules, and for any
PBPO+ rule ρ, we have ⇒PBPO+

ρ ⊆ ⇒PBPO
ρ for the generated rewrite relations.

Nevertheless, we will show that under certain assumptions, any PBPO rule can
be modeled by a set of PBPO+ rules, but not vice versa. Thus, in many cate-
gories of interest (such as toposes), PBPO+ can define strictly more expressive
grammars than PBPO. This result may be likened to Habel et al.’s result that
restricting DPO to monic matching increases expressive power [7].

In Sect. 4.1, we recall and compare the PBPO definitions for rule, match and
step, clarifying why PBPO+ is shorthand for PBPO with strong matching. We
then argue why strong matching is usually desirable in Sect. 4.2. Finally, we prove
a number of novel results on PBPO in Sect. 4.3, relating to monic matching,
monic rules and strong matching. Our claim about PBPO+’s expressiveness
follows as a consequence.
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4.1 PBPO: Rule, Match and Step

Definition 14 (PBPO Rule [2]). A PBPO rule ρ
is a commutative diagram as shown on the right. The
bottom span can be regarded as a typing for the top
span. The rule is in canonical form if the left square
is a pullback and the right square is a pushout.

L K R

L′ K ′ R′
tL

l r

tK tR=

l′ r′

=

Every PBPO rule is equivalent to a rule in canonical form [2], and in PBPO+,
rules are limited to those in canonical form. The only important difference
between a canonical PBPO rule and a PBPO+ rule, then, is that a PBPO+

rule requires monicity of tL (and hence also of tK).

Definition 15 (PBPO Match [2]). A PBPO match for a typing tL : L → L′

is a pair of morphisms (m : L → G,α : G → L′) such that tL = α ◦ m.

The pullback construction used to establish a match in PBPO+ implies tL =
α ◦ m. Thus PBPO matches are more general than the strong match used in
PBPO+ (Definition 7). More specifically for Graph, PBPO allows mapping
elements of the host graph GL not in the image of m : L → GL onto the image
of tL, whereas PBPO+ forbids this. In the next subsection, we will argue why it
is often desirable to forbid such mappings.

Definition 16 (PBPO Rewrite Step [2]).
A PBPO rule ρ (as in Definition 14) induces
a PBPO step GL ⇒m,α

ρ GR shown on the
right, where (i) u : K → GK is uniquely
determined by the universal property of pull-
backs and makes the top-left square commut-
ing, (ii) w′ : GR → R′ is uniquely deter-
mined by the universal property of pushouts
and makes the bottom-right square commut-
ing, and tL = α ◦ m.

L K R
l r

GL GK GRgL gR

m u w

L′ K ′ R′
l′ r′

α u′ w′tL tK tR

=

PB

PO

=

We write GL ⇒ρ GR if GL ⇒m,α
ρ GR for some m and α.

The match square of PBPO+ allows simplifying the characterization of u,
as shown in the proof to Lemma 11. This simplification is not possible for
PBPO (see Remark 17). The bottom-right square is omitted in the definition of
a PBPO+ rewrite step, but can be reconstructed through a pushout (modulo
isomorphism). So this difference is not essential.

Remark 17. In a PBPO rewrite step, not every morphism u : K → GK satisfying
u′ ◦ u = tK corresponds to the arrow uniquely determined by the top-left pull-
back. Thus Lemma 11 does not hold for PBPO. This can be seen in the example
of a (canonical) PBPO rewrite rule and step depicted in Fig. 1. Because our pre-
vious notational convention breaks for this example, we indicate two morphisms
by dotted arrows. The others can be inferred.

Morphism u : K → GK (as determined by the top-left pullback) is indicated,
but it can be seen that three other morphisms v : K → GK satisfy u′ ◦ v = tK ,
because every x ∈ VK′ has two elements in its preimage in GK .
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Fig. 1. Failure of Lemma 11 for PBPO.

Remark 18 (PBPO+ and AGREE). AGREE [8] by Corradini et al. is a rewriting
approach closely related to PBPO. AGREE’s match square can be regarded as a
specialization of PBPO+’s match square, since AGREE fixes the type morphism
tL : L � L′ of a rule as the partial map classifier for L. Thus, PBPO+ can also
be regarded as combining PBPO’s rewriting mechanism with a generalization of
AGREE’s strong matching mechanism.

4.2 The Case for Strong Matching

The two following examples serve to illustrate why we find it necessary to
strengthen the matching criterion when matching is nondeterministic.

Example 19. In PBPO+, an application of the rule

in an unlabeled graph GL removes a loop from an isolated vertex that has a
single loop, and preserves everything else. In PBPO, a match is allowed to map
all of GL into the component determined by vertex {x}, so that the rule deletes
all of GL’s edges at once. (Before studying the next example, the reader is invited
to consider what the effect of the PBPO rule is if R and R′ are replaced by L
and L′, respectively.)

Example 20. Consider the following PBPO rule, and its application to host
graph GL (the morphisms are defined in the obvious way) shown in Fig. 2. Intu-
itively, host graph GL is spiralled over the pattern of L′. The pullback then
duplicates all elements mapped onto x ∈ VL′ and any incident edges directed at
a node mapped into y ∈ VL′ . The pushout, by contrast, affects only the image
of u : K → GK .

The two examples show how locality of transformations cannot be enforced
using PBPO. They also illustrate how it can be difficult to characterize the class
of host graphs GL and adherences α that establish a match, even for trivial
left-hand sides. Finally, Example 20 in particular highlights an asymmetry that
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Fig. 2. The effects of PBPO rules can be difficult to oversee.

we find unintuitive: if one duplicates and then merges/extends pattern elements
of L′, the duplication affects all elements in the α-preimage of tL(L) (which
could even consist of multiple components isomorphic to tL(L)), whereas the
pushout affects only u(K) ⊆ GK . In PBPO+, by contrast, transformations of
the pattern affect the pattern only, and the overall applicability of a rule is easy
to understand if the context graph is relatively simple (e.g., as in Example 13).

Remark 21 (Γ -preservation). A locality notion has been defined for PBPO called
Γ -preservation [2]. Γ is some subobject of L′, and a rewrite step GL ⇒m,α

ρ GR

is said to be Γ -preserving if the α : GL → L′ preimage of Γ ⊆ L′ is preserved
from GL to GR (roughly meaning that this preimage is neither modified nor
duplicated). Similarly, a rule is Γ -preserving if the rewrite steps it gives rise to
are Γ -preserving. If one chooses Γ to be the context graph (the right component)
of L′ in Example 19, then the rule, interpreted as a PBPO rule, is Γ -preserving.
However, the effect of the rule is not local in our understanding of the word,
since PPBO does not prevent mapping parts of the context graph of GL onto
the image of tL which usually is modified.

4.3 Modeling PBPO with PBPO+

We will now prove that in many categories of interest (including locally small
toposes), any PBPO rule can be modeled by a set of PBPO+ rules; and even by
a single rule if PBPO matches are restricted to monic matches. We do this by
proving a number of novel results about PBPO.

Since any PBPO rule is equivalent to a canonical PBPO rule [2], we restrict
attention to canonical rules in this section.

Definition 22. We define the restrictions

– ⇒�
ρ = {(G,G′) ∈ ⇒ρ | ∃m α. G ⇒m,α

ρ G′ ∧ m is monic}, and
– ⇒SM

ρ = {(G,G′) ∈ ⇒ρ | ∃m α. G ⇒m,α
ρ G′ ∧ strong(tL,m, α)}

for canonical PBPO rules ρ.
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Definition 23 (Monic PBPO Rule). A canonical PBPO rule ρ is called
monic if its typing tL is monic.

Note that monic (canonical) PBPO rules ρ define a PBPO+ rule by simply
forgetting the pushout information in the rule.

Proposition 24. If ρ is monic, then ⇒ρ = ⇒�
ρ and ⇒SM

ρ = ⇒PBPO+

ρ . ��
In the remainder of this section we establish two claims:

1. Monic matching suffices: for any canonical PBPO rule ρ and assuming certain
conditions, there exists a set of PBPO rules S that precisely models ρ when
restricting S to monic matching, i.e., ⇒ρ =

⋃{⇒�
σ | σ ∈ S} (Corollary 28);

2. Strong matching can be modeled through rule adaptation: for any canonical
PBPO rule σ and assuming certain conditions, there exists a monic rule τ
such that ⇒�

σ = ⇒SM
τ (Lemma 32).

Because PBPO+ rewriting boils down to using monic PBPO rules with a
strong matching policy, from these facts and conditions it follows that any PBPO
rule can be modeled by a set of PBPO+ rules (Theorem 33).

The following definition defines a rule σ for every factorization of a type
morphism tL of a rule τ .

Definition 25 (Compacted Rule). For any canonical PBPO rule ρ (on the
left) and factorization tL = tLc

◦ e where e is epic (note that tLc
is uniquely

determined since e is right-cancellative), the compacted rule ρe is defined as the
lower half of the commuting diagram on the right:

L K
l

L′

tL

K ′

tK

l′

PB
R

r

R′

tR

r′

PO

L K
l

Lc

e

Kc

PB
R

r

Rc

PO

L′
tLc

K ′
l′

PB
R′

r′

PO

tL
tK tR

Proposition 26. The properties implicitly asserted in Definition 25 hold. ��
Lemma 27. Let ρ be a canonical PBPO rule, GL an object, and m′◦e : L → GL

a match morphism for a mono m′ and epi e. We have:

GL ⇒(m′ ◦ e),α
ρ GR ⇐⇒ GL ⇒m′,α

ρe
GR .

�

Recall that a category is locally small if the collection of morphisms between
any two objects A and B (and so also all factorizations) forms a set.
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Corollary 28. In locally small categories in which any morphism can be fac-
torized into an epi followed by a mono, for every canonical PBPO rule ρ, there
exists a set of PBPO rules S such that ⇒ρ =

⋃{⇒�
σ | σ ∈ S}. ��

Definition 29 (Amendable Category). A category is amendable if for any

tL : L → L′, there exists a factorization L
t′
L� L′′ β→ L′ of tL such that for any

factorization L
m� GL

α→ L′ of tL, there exists an α′ making the diagram

L GL L′

L L′′

tL

m α
1L α′

t′L β

commute.
The category is strongly amendable if there exists a factorization of tL wit-

nessing amendability that moreover makes the left square a pullback square.

Strong amendability is intimately related to the concept of materializa-

tion [9]. Namely, if the factorization L
t′
L� L′′ β→ L′ of tL establishes the pullback

square and is final (the α′ morphisms not only exist, but they exist uniquely),
then β ◦ t′L is the materialization of tL. In general we do not need finality, and
for one statement (Lemma 32) we require weak amendability only.

We have the following sufficient condition for strong amendability.

Proposition 30. If all slice categories C/X of a category C have partial map
classifiers, then C is strongly amendable.

Proof. Immediate from the fact that in this case all arrows have materializa-
tions [9, Proposition 8].

Corollary 31. Any topos is strongly amendable.

Proof. Toposes have partial map classifiers, and any slice category of a topos is
a topos. ��
Lemma 32. In an amendable category C, for any PBPO rule ρ, there exists a
monic PBPO rule σ such that ⇒�

ρ = ⇒σ. If C is moreover strongly amendable,
then additionally ⇒�

ρ = ⇒SM
σ .

Proof. Given rule ρ on the left

L K
l

L′

tL

K ′

tK

l′

PB
R

r

R′

tR

r′

PO

L K
l

L′′
t′L

K ′′
t′K

l′′
PB

R
r

R′′
t′R

r′′

PO

L′ K ′ R′
l′ r′

β PB
PO

tL
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we can construct rule σ as the upper half of the diagram on the right, where

L
t′
L� L′′ β→ L′ is the factorization of tL witnessing strong amendability. Then

the first claim ⇒�
ρ = ⇒σ follows by considering the commuting diagram

L K
l

R
r

GL

m

GK

PB

GR

PO

L′′ K ′′l′′

PB
R′′

r′′

PO

L′
β

K ′
l′

PB

R′
r′

PO

tL α′

t′L

α

L

L

m

t′L
1L

†

and the second claim ⇒�
ρ = ⇒SM

σ for strongly amendable categories follows by
observing that the square marked by † is a pullback square. ��
Theorem 33. In locally small, strongly amendable categories in which every
morphism f can be factored into an epi e followed by a mono m, any PBPO rule
ρ can be modeled by a set of PBPO+ rules. �
Corollary 34. In any locally small topos, any PBPO rule ρ can be modeled by
a set of PBPO+ rules.

Proof. By Corollary 31 and the fact that toposes are epi-mono factorizable. ��

5 Category Graph(L,≤)

Unless one employs a meta-notation or restricts to unlabeled graphs, as we did
in Sect. 3, it is sometimes impractical to use PBPO+ in the category Graph.
The following example illustrates the problem.
Example 35. Suppose the set of labels is L = {0, 1}.
To be able to injectively match pattern L = 1−→ 0 in
any context, one must inject it into the type graph
L′ shown on the right in which every dotted loop
represents two edges (one for each label), and every
dotted non-loop represents four edges (one for each
label, in either direction). In general, to allow any
context, one needs to include |L| additional vertices
in L′, and |L| complete graphs over VL′ .

1 0

0 01

.

Beyond this example, and less easily alleviated with meta-notation, in Graph
it is impractical or impossible to express rules that involve (i) arbitrary labels (or
classes of labels) in the application condition; (ii) relabeling; or (iii) allowing and
capturing arbitrary subgraphs (or classes of subgraphs) around a match graph.
As we will discuss in Sect. 6, these features have been non-trivial to express in
general for algebraic graph rewriting approaches.

We define a category which allows flexibly addressing all of these issues.
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Definition 36 (Complete Lattice). A complete lattice (L,≤) is a poset such
that all subsets S of L have a supremum (join)

∨
S and an infimum (meet)

∧
S.

Definition 37 (Graph(L,≤)). For a complete lattice (L,≤), we define the cate-
gory Graph(L,≤), where objects are graphs labeled from L, and arrows are graph
premorphisms φ : G → G′ that satisfy �G(x) ≤ �G′(φ(x)) for all x ∈ VG ∪ EG.

In terms of graph structure, the pullbacks and pushouts in Graph(L,≤) are
the usual pullbacks and pushouts in Graph. The only difference is that the
labels that are identified by respectively the cospan and span are replaced by
their meet and join, respectively.

The sufficient condition of Proposition 30 does not hold in Graph(L,≤).
Nonetheless, we have the following result.

Lemma 38. Graph(L,≤) is strongly amendable. �

One very simple but extremely useful complete lattice is the following.

Definition 39 (Flat Lattice). Let L⊥,� = L � {⊥,�}. We define the flat
lattice induced by L as the smallest poset (L⊥,�,≤), which has ⊥ as a global
minimum and � as a global maximum (so in particular, the elements of L are
incomparable). In this context, we refer to L as the base label set.

One feature flat lattices provide is a kind of “wildcard element” �.

Example 40 (Wildcards). Using flat lattices,
L′ of Example 35 can be fully expressed
for any base label set L � 0, 1 as shown
on the right (node identities are omitted).
The visual syntax and naming shorthands
of PGR [1] (or variants thereof) could be
leveraged to simplify the notation further.

�

0 0

�

� �

1

�

�
�

�
�

�

As the following example illustrates, the expressive power of a flat lattice
stretches beyond wildcards: it also enables relabeling of graphs. (Henceforth, we
will depict a node x with label u as xu.)

Example 41 (Relabeling). As vertex labels we employ the flat lattice induced
by the set { a, b, c, . . . }, and assume edges are unlabeled for notational simplic-
ity. The following diagram displays a rule (L,L′,K,K ′, R) for overwriting an
arbitrary vertex’s label with c, in any context. We include an application to an
example graph in the middle row:
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The example demonstrates how (i) labels in L serve as lower bounds for match-
ing, (ii) labels in L′ serve as upper bounds for matching, (iii) labels in K ′ can
be used to decrease matched labels (so in particular, ⊥ “instructs” to “erase”
the label and overwrite it with ⊥, and � “instructs” to preserve labels), and
(iv) labels in R can be used to increase labels.

Complete lattices also support modeling sorts.

Example 42 (Sorts). Let p1, p2, . . . ∈ P be a set
of processes and d1, d2, . . . ∈ D a set of data
elements. Assume a complete lattice over labels
P ∪ D ∪ {P,D,�,@}, arranged as in the diagram
on the right.
Moreover, assume that the vertices x, y, . . . in the
graphs of interest are labeled with a pi or di, and
that edges are labeled with a � or @. In such a
graph,

∀i ∈ N :
�

P D � @

pi di

⊥

– an edge xdi
@−→ ypj encodes that process pj holds a local copy of datum di (x

will have no other connections); and
– a chain of edges xpi

�−→ ydk
�−→ zdl

�−→ · · · �−→ upj encodes a directed FIFO
channel from process pi to process pj �= pi, containing a sequence of elements
dk, dl, . . .. An empty channel is modeled as xpi

�−→ upj .

Receiving a datum through an incoming channel (and storing it locally) can be
modeled using the following rule:

The rule illustrates how sorts can improve readability and provide type safety.
For instance, the label D in L′ prevents empty channels from being matched.
More precisely, always the last element d of a non-empty channel is matched.
K ′ duplicates the node holding d: for duplicate x1, the label is forgotten but the
connection to the context retained, allowing it to be fused with y; and for x2,
the connection is forgotten but the label retained, allowing it to be connected
to y as an otherwise isolated node.

Finally, a very powerful feature provided by the coupling of PBPO+ and
Graph(L,≤) is the ability to model a general notion of variable. This is achieved
by using multiple context nodes in L′ (i.e., nodes not in the image of tL).

Example 43 (Variables). The rule f(g(x), y) → h(g(x), g(y), x) on ordered trees
can be precisely modeled in PBPO+ by the rule
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if one restricts the set of rewritten graphs to straightforward representations of
trees: nodes are labeled by symbols, and edges are labeled by n ∈ N, the position
of its target (argument of the symbol).

Remark 44 (On Adhesivity). A category is adhesive [10] if (i) it has all pull-
backs, (ii) it has all pushouts along monos, and (iii) pushouts along monos are
stable and are pullbacks [11, Theorem 3.2]. Adhesivity implies the uniqueness
of pushout complements (up to isomorphism) [10, Lemma 4.5], which in turn
ensures that DPO rewriting in adhesive categories is deterministic. Moreover,
certain meta-properties of interest (such as the Local Church-Rosser Theorem
and the Concurrency Theorem) hold for DPO rewriting in adhesive categories
(and many graphical structures are adhesive). For these reasons, DPO and adhe-
sivity are closely related in the literature.

We make two observations in connection to adhesivity. First, PBPO+ rewrit-
ing makes strictly weaker assumptions than DPO rewriting: it is enough to
assume conditions (i) and (ii) above. Second, Graph(L,≤) is non-adhesive for
any choice of complete lattice in which the maximum � and minimum ⊥ are
distinct: the square

⊥ �

X �
is a pushout along a mono for X ∈ {⊥,�}, and hence admits two pushout
complements. Thus, not only can PBPO+ be applied to non-adhesive cate-
gories, Graph(L,≤) is a graphical non-adhesive category with practical relevance.
To what extent meta-properties of interest carry over to PBPO+/Graph(L,≤)

rewriting from DPO rewriting on adhesive categories is left for future work.
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6 Discussion

We discuss our rewriting (Sect. 6.1) and relabeling (Sect. 6.2) contributions in
turn.

6.1 Rewriting

Unlike other algebraic approaches such as DPO [3], SPO [12], SqPO [13] and
AGREE [8], computing a rewrite step in PBPO and PBPO+ requires only a
basic understanding of constructing pullbacks and pushouts. Moreover, assuming
monic matching, and under some mild restrictions (DPO is left-linear, and SPO
uses conflict-free matches), Corradini et al. [2,13] have shown that

DPO < SPO < SqPO < AGREE < PBPO

where F < G means that any F rule ρ can be simulated by a G rule σ, and where
simulation means ⇒F

ρ ⊆ ⇒G
σ for the generated rewrite relations. This chain may

now be extended by inserting AGREE < PBPO+ < PBPO.
If instead of simulation one uses modeling as the expressiveness criterion,

i.e., ⊆ is strengthened to =, then the situation is different. Writing ≺ for this
expressiveness relation, we conjecture that in Graph and with monic matching
(which implies conflict-freeness of SPO matches)

PBPO+

SPO ≺ SqPO ≺ AGREE DPO
PBPO

≺ ≺≺

holds,2 and the other comparisons do not hold. PBPO ≺ PBPO+ follows from
Lemma 32 and the fact that Graph is strongly amendable, and PBPO does
not stand in any other modeling relation due to uncontrolled global effects (in
particular, a straightforward adaptation of Example 19 shows DPO �≺ PBPO).

Other graph rewriting approaches that bear certain similarities to PBPO+

(see also the discussion in [2]) include the double-pullout graph rewriting app-
roach by Kahl [14]; variants of the aforementioned formalisms, such as the cospan
SqPO approach by Mantz [15, Section 4.5]; and the recent drag rewriting frame-
work by Dershowitz and Jouannaud [16]. Double-pullout graph rewriting also
uses pullbacks and pushouts to delete and duplicate parts of the context (extend-
ing DPO), but the approach is defined in the context of collagories [17], and to
us it is not yet clear in what way the two approaches relate. Cospan SqPO can
be understood as being almost dual to SqPO: rules are cospans, and transfor-
mation steps consists of a pushout followed by a final pullback complement.
An interesting question is whether PBPO+ can also model cospan SqPO. Drag
rewriting is a non-categorical approach to generalizing term rewriting, and like
2 The modeling of DPO and SPO rules for category Graph in PBPO+ is similar to

the approach described in our paper on PGR [1].
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PBPO+, allows relatively fine control over the interface between pattern and con-
text, thereby avoiding issues related to dangling pointers and the construction
of pushout complements. Because drag rewriting is non-categorical and drags
have inherently more structure than graphs, it is difficult to relate PBPO+ and
drag rewriting precisely. These could all be topics for future investigation.

Finally, let us just note that the combination of PBPO+ and Graph(L,≤)

does not provide a strict generalization of Patch Graph Rewriting (PGR) [1], our
conceptual precursor to PBPO+ (Sect. 1). This is because patch edge endpoints
that lie in the context graph can be redefined in PGR (e.g., the direction of
edges between context and pattern can be inverted), but not in PBPO+. Beyond
that, PBPO+ is more general and expressive. Therefore, at this point we believe
that the most distinguishing and redeeming feature of PGR is its visual syntax,
which makes rewrite systems much easier to define and communicate. In order
to combine the best of both worlds, our aim is to define a similar syntax for (a
suitable restriction of) PBPO+ in the future.

6.2 Relabeling

The coupling of PBPO+ and Graph(L,≤) allows relabeling and modeling sorts
and variables with relative ease, and does not require a modification of the
rewriting framework. Most existing approaches study these topics in the context
of DPO, where the requirement to ensure the unique existence of a pushout
complement requires restricting the method and proving non-trivial properties:

– Parisi-Presicce et al. [18] limit DPO rules L ← K → R to ones where K → R
is monic (meaning merging is not possible), and where some set-theoretic con-
sistency condition is satisfied. Moreover, the characterization of the existence
of rewrite step has been shown to be incorrect [19], supporting our claim that
pushout complements are not easy to reason about.

– Habel and Plump [19] study relabeling using the category of partially labeled
graphs. They allow non-monic morphisms K → R, but they nonetheless
add two restrictions to the definition of a DPO rewrite rule. Among oth-
ers, these conditions do not allow hard overwriting arbitrary labels as in
Example 41. Moreover, the pushouts of the DPO rewrite step must be
restricted to pushouts that are also pullbacks. Finally, unlike the approach
suggested by Parisi-Presice et al., Habel and Plump’s approach does not sup-
port modeling notions of sorts and variables.
Our conjecture that PBPO+ can model DPO in Graph extends to this rela-
beling approach in the following sense: given a DPO rule over graphs partially
labeled from L that moreover satisfies the criteria of [19], we conjecture that
there exists a PBPO+ rule in Graph(L⊥,�,≤) that models the same rewrite
relation when restricting to graphs totally labeled over the base label set L.

Later publications largely appear to build on the approach [19] by Habel and
Plump. For example, Schneider [20] gives a non-trivial categorical formulation;
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Hoffman [21] proposes a two-layered (set-theoretic) approach to support vari-
ables; and Habel and Plump [22] generalize their approach to M,N -adhesive
systems (again restricting K → R to monic arrows).

The transformation of attributed structures has been explored in a very gen-
eral setting by Corradini et al. [2], which involves a comma category construction
and suitable restrictions of the PBPO notions of rewrite rule and rewrite step.
We leave relating their and our approach to future work.

Acknowledgments. We thank Andrea Corradini and anonymous reviewers for useful
discussions, suggestions and corrections. We would also like to thank Michael Shul-
man, who identified the sufficient conditions for amendability for us [23]. The authors
received funding from the Netherlands Organization for Scientific Research (NWO)
under the Innovational Research Incentives Scheme Vidi (project. No. VI.Vidi.192.004).

Appendix

A PBPO+

We will need both directions of the well known pullback lemma.

Lemma 45 (Pullback Lemma). Consider the
diagram on the right. Suppose the right square is
a pullback square and the left square commutes.
Then the outer square is a pullback square iff the
left square is a pullback square. ��

A B C

D E F
PB

Lemma 10 (Top-Left Pullback). In the rewrite step diagram of Definition 9,
there exists a morphism u : K → GK such that L

l←− K
u−→ GK is a pullback for

L
m−→ GL

gL←− GK , tK = u′ ◦ u, and u is monic.

Proof. In the following diagram, u satisfying tK = u′ ◦ u and m ◦ l = gL ◦ u is
inferred by using that GK is a pullback and commutation of the outer square.

L K

GL GK

L′ K ′

m

tL
tK

l

u

α PB

gL

u′

l′

By direction =⇒ of the pullback lemma (Lemma 45), the created square is
a pullback square, and so by stability of monos under pullbacks, u is monic. ��
Lemma 11 (Uniqueness of u). In the rewrite step diagram of Definition 9
(and in any category), there is a unique v : K → GK such that tK = u′ ◦ v.

Proof. In the following diagram, the top-right pullback is obtained using
Lemma 10, and the top-left pullback is a rotation of the match diagram:
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GL

L′

α

GK

gL

K ′
u′

l′

PB

K

u

L
l

m
PB

L′

L
1L

tL

α

PB

K

1L ◦ l

v

!x

By direction ⇐= of the pullback lemma, L
1L◦l←−−− K

u−→ GK is a pullback for the
topmost outer square.

Now suppose that for a morphism v : K → GK , tK = u′ ◦v. Then α◦gL ◦u =
l′ ◦u′ ◦u = l′ ◦ tK = l′ ◦u′ ◦v = α◦ gL ◦v. Hence both v and u make the topmost
outer square commute. Hence there exists a unique x such that (simplifying)
l ◦x = l and u◦x = v. From known equalities and monicity of tK we then derive

u ◦ x = v
u′ ◦ u ◦ x = u′ ◦ v

tK ◦ x = tK
tK ◦ x = tK ◦ 1K

x = 1K .

Hence u = v. ��

Lemma 12 (Bottom-Right Pushout). Let K ′ r′
−→ R′ tR←− R be a pushout

for cospan R
r←− K

tK−−→ K ′ of rule ρ in Definition 9. Then in the rewrite step
diagram, there exists a morphism w′ : GR → R′ such that tR = w′ ◦ w, and

K ′ r′
−→ R′ w′

←− GR is a pushout for K ′ u′
←− GK

gR−−→ GR.

Proof. The argument is similar to the proof of Lemma 10, but now uses the dual
statement of the pullback lemma. ��

B Expressiveness of PBPO+

Lemma 27 Let ρ be a canonical PBPO rule, GL an object, and m′ ◦e : L → GL

a match morphism for a mono m′ and epi e. We have:

GL ⇒(m′ ◦ e),α
ρ GR ⇐⇒ GL ⇒m′,α

ρe
GR .

Proof. By using the following commuting diagram:
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L K
l

Lc

e

Kc

PB
R

r

Rc

PO

GL GK GR

PB

PO

L′
α

K ′
l′

PB

R′
r′

PO

tL m′

tLc

��
Theorem 33. In locally small, strongly amendable categories in which every
morphism f can be factored into an epi e followed by a mono m, any PBPO rule
ρ can be modeled by a set of PBPO+ rules.

Proof. From Corollary 28 we obtain a set of PBPO rules S that collectively
model ρ using monic matching, and by Lemma 32 each σ ∈ S can be modeled
by a monic rule τσ with a strong matching rewrite policy. By Proposition 24,
the set {τσ | σ ∈ S} corresponds to a set of PBPO+ rules. ��

C Category Graph(L,≤)

Lemma 38. Graph(L,≤) is strongly amendable.

Proof. Let UGraph refer to the category of unlabeled graphs.
Given a tL : L → L′ in Graph(L,≤), momentarily forget about the labels

and consider the unlabeled version (overloading names) in UGraph. Because
UGraph is a topos, it is strongly amendable. Thus we can obtain a factorization

L
t′
L� L′′ β→ L′ on the level of UGraph that witnesses strong amendability, i.e.,

for any factorization of L
m� G

α→ L′ of tL in UGraph, there exists an α′ such
that

L G L′

L L′′

tL

m

1L

α

α′

t′
L

β

commutes and the left square is a pullback square.
The idea now is to lift the bottom unlabeled factorization into Graph(L,≤).

As far as graph structure is concerned, we know that it is a suitable factorization
candidate. Then all that needs to be verified are the order requirements ≤ on
the labels.
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For the lifting of L′′, choose the graph in which every element has the same
label as its image under β. Then clearly the lifting of β of UGraph into
Graph(L,≤) is well-defined, and so is the lifting of t′L (using that tL is well-
defined in Graph(L,≤)).

Now given any factorization L
m� G

α→ L′ in Graph(L,≤), lift the α′ that
is obtained by considering the factorization on the level of UGraph. Then the
lifting of α′ is well-defined by α = β ◦ α′ and well-definedness of α and β in
Graph(L,≤). All that remains to be checked is that the left square is a pullback
as far as the labels are concerned, i.e., whether for every x ∈ VL ∪ EL, �L(x) =
�L(1L(x)) ∧ �G(m(x)). This follows using �L(x) ≤ �G(m(x)) and the complete
lattice law ∀a b.a ≤ b =⇒ a ∧ b = a. ��
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Abstract. Program logics typically reason about an over-approximation
of program behaviour to prove the absence of bugs. Recently, program log-
ics have been proposed that instead prove the presence of bugs bymeans of
under-approximate reasoning, which has the promise of better scalability.
In this paper, we present an under-approximate program logic for a nonde-
terministic graph programming language, and show how it can be used to
reason deductively about program incorrectness, whether defined by the
presence of forbidden graph structure or by finitely failing executions. We
prove this ‘incorrectness logic’ to be sound and complete, and speculate on
some possible future applications of it.

Keywords: Program logics · Under-approximate reasoning · Bugs

1 Introduction

Many problems in computer science and software engineering can be modelled
in terms of rule-based graph transformations [13], motivating research into veri-
fying the correctness of grammars and programs based on this unit of computa-
tion. Various approaches towards this goal have been proposed, with techniques
including model checking [9], unfoldings [4,16], k-induction [29], weakest precon-
ditions [10,11], abstract interpretation [17], and program logics [5,24,25].

Verification approaches based on program logics and proofs typically reason
about over-approximations of program behaviours to prove the absence of bugs.
For instance, proving a partial correctness specification {pre}P{post} guarantees
that for states satisfying pre, every terminating execution of P ends in a state
satisfying post. Recently, authors have begun to investigate under-approximate
program logics that instead prove the presence of bugs, motivated by the promise
of better scalability that may result from reasoning only about the subset of paths
that matter. De Vries and Koutavas [30] proposed the first program logic of this
kind, using it to reason about state reachability for randomised nondeterministic
algorithms. O’Hearn [21] extended the idea to an incorrectness logic that tracked
both successful and erroneous executions. Under-approximate program logics
have also been explored for local reasoning [28] and proving insecurity [18].

An under-approximate specification [pres]P [res] specifies a reachability prop-
erty in the reverse direction: that every state satisfying res (‘result’) is reachable
by executing P on some state (not necessarily all) satisfying pres (‘presump-
tion’). In other words, res under-approximates the reachable states, allowing
c© Springer Nature Switzerland AG 2021
F. Gadducci and T. Kehrer (Eds.): ICGT 2021, LNCS 12741, pp. 81–101, 2021.
https://doi.org/10.1007/978-3-030-78946-6_5
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for sound reasoning about undesirable behaviours without any false positives,
i.e. a formal logical basis for bug catching. This is one of many dualities under-
approximate program logics have with Hoare logics [14]. Other important dual-
ities include the inverted rule of consequence in which postconditions can be
strenghtened (e.g. by dropping disjuncts/paths), as well as the completeness
proof which relies on weakest postconditions rather than weakest preconditions.

In this paper, we present an under-approximate program logic for reasoning
about the presence of bugs in nondeterministic attribute-manipulating graph
programs. Following O’Hearn [21], we design it as an incorrectness logic, and
show how it can be used to reason deductively about the presence of forbidden
graph structures or finitely failing executions (e.g. due to the failure of find-
ing a match for a rule). As our main technical result, we prove the soundness
and relative completeness of our incorrectness logic with respect to a relational
denotational semantics. The work in this paper is principally a theoretical expo-
sition, but is motivated by some possible future applications, such as the use of
incorrectness logic as a basis for sound reasoning in symbolic execution tools for
graph and model transformations (e.g. [1,3,20]).

The paper is organised as follows. In Sect. 2 we provide preliminary defi-
nitions of graphs and graph morphisms. In Sect. 3 we define graph programs
using a relational denotational semantics, as well as an assertion language (‘E-
conditions’) for specifying properties of program states. In Sect. 4, we present an
incorrectness logic for graph programs and demonstrate it on some examples. In
Sect. 5, we formally define the assertion transformations used in our incorrect-
ness logic, and present our main soundness and completeness results. Finally, we
review some related work in Sect. 6 before concluding in Sect. 7.

2 Preliminaries

We use a definition of graphs in which edges are directed, nodes (resp. edges)
are partially (resp. totally) labelled, and parallel edges are allowed to exist. All
graphs in this paper will be totally labelled except for the interface graphs in
rule applications (for technical reasons to support relabelling [12]).

A graph over a label alphabet C is a system G = 〈VG, EG, sG, tG, lG,mG〉
comprising a finite set VG of nodes, a finite set EG of edges, source and target
functions sG, tG : EG → VG, a partial node labelling function lG : VG → C, and
a total edge labelling function mG : EG → {�}. If VG = ∅, then G is the empty
graph, which we denote by ∅. Given a node v ∈ VG, we write lG(v) = ⊥ to express
that lG(v) is undefined. A graph G is totally labelled if lG is a total function.
Note that for simplicity of presentation, in this paper, we label all edges with a
‘blank’ label denoted by � and rendered as in diagrams. Note also that we
use an undirected edge to represent a pair of edges .

We write G(C⊥) (resp. G(C)) to denote the class of all (resp. all totally
labelled) graphs over label alphabet C. Let L denote the label alphabet Z

+,
i.e. all non-empty sequences of integers. In diagrams we will delimit the integers
of the sequence using colons, e.g. 5:6:7:8.
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A graph morphism g : G → H between graphs G,H in G(C⊥) consists of
two functions gV : VG → VH and gE : EG → EH that preserve sources, targets
and labels; that is, sH ◦ gE = gV ◦ sG, tH ◦ gE = gV ◦ tG, mH ◦ gE = mG, and
lH(gV (v)) = lG(v) for all nodes v for which lG(v) 	= ⊥. We call G,H respectively
the domain and codomain of g.

A morphism g is injective (surjective) if gV and gE are injective (surjective).
Injective morphisms are usually denoted by hooked arrows, ↪→. A morphism g
is an isomorphism if it is injective, surjective, and satisfies lH(gV (v)) = ⊥ for all
nodes v with lG(v) = ⊥. In this case G and H are isomorphic, which is denoted
by G ∼= H. Finally, a morphism g is an inclusion if g(x) = x for all nodes and
edges x.

3 Graph Programs and Assertions

We begin by introducing the graph programs that will be the target of our
incorrectness logic, as well as an assertion language (‘E-conditions’) that will be
used for specifying properties of the program states (which consist of graphs). To
allow for a self-contained presentation, our programs are a simplified ‘core’ of full-
fledged graph programming languages (e.g. GP 2 [23]) which have several more
features for practicality (e.g. additional types, negative application conditions).

First, we define the underlying unit of computation in graph programs: the
application of a graph transformation rule with relabelling.

Definition 1 (Rule). A (concrete) rule r : 〈L ←↩ K ↪→ R〉 comprises totally
labelled graphs L,R ∈ G(L), a partially labelled graph K ∈ G(L⊥), and inclu-
sions K ↪→ L, K ↪→ R. We call L,R the left- and right-hand graphs of r, and K
its interface. �


Intuitively, an application of a rule r to a graph G ∈ G(L) removes items
in L − K, preserves those in K, adds the items in R − K, and relabels the
unlabelled nodes in K. An injective morphism g : L ↪→ G is a match for r if
it satisfies the dangling condition, i.e. no node in g(L) − g(K) is incident to
an edge in G − g(L). In this case, G directly derives H ∈ G(L) with comatch
h : R ↪→ H, denoted G ⇒r,g,h H (or just G ⇒r H), by: (1): removing all nodes
and edges in g(L)− g(K); (2) disjointly adding all nodes and edges from R−K,
keeping their labels (for e ∈ ER − EK , sH(e) is sR(e) if sR(e) ∈ VR − VK ,
otherwise gV (sR(e)); targets analogous); (3) for every node in K, lH(gV (v))
becomes lR(v). Semantically, direct derivations are constructed as two ‘natural
pushouts’ (see [12] for the technical details).

In practical graph programming languages, we need a more powerful unit of
computation—the rule schema—which describes (potentially) infinitely many
concrete rules by labelling the graphs over expressions. We define a simple
abstract syntax ‘Exp’ (Fig. 1) which derives a label alphabet of (lists of) integer
expressions, including variables (‘Var’) of type integer.

A graph in G(L) can be obtained from a graph in G(Exp) by means of an
interpretation, which is a partial function I : Var → Z. We denote the domain of
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Fig. 1. Abstract syntax of rule schema labels

Fig. 2. Example rule schema application

I by dom(I), and the set of variables used in a graph G ∈ G(Exp) by vars(G).
If vars(G) ⊆ dom(I), then GI ∈ G(L) is the graph obtained by evaluating the
expressions in the standard way, with variables x substituted for I(x). Interpre-
tations may also be applied to morphisms, e.g. p : P ↪→ C becomes pI : P I ↪→ CI .

Definition 2 (Rule schema). A rule schema r : 〈L ⇒ R〉 with L,R ∈ G(Exp)
represents concrete rules rI : 〈LI ←↩ K ↪→ RI〉 where dom(I) = vars(L) and K
consists of the preserved nodes only (with all nodes unlabelled). Note that we
assume for any rule schema, vars(R) ⊆ vars(L). �


The application of a rule schema r = 〈L ⇒ R〉 to a graph G ∈ G(L) consists
of the following steps: (1) choose an interpretation I with dom(I) = vars(L);
(2) choose a match, i.e. a morphism g : LI ↪→ G that satisfies the dangling
condition with respect to rI : 〈LI ←↩ K ↪→ RI〉; (3) apply rI with match g.
If a graph H with comatch h : RI ↪→ H is derived from G via these steps,
we write G ⇒r,g,h (or just G ⇒r H). Moreover, if a graph H can be derived
from a graph G via some r in a set of rule schemata R, we write G ⇒R H
(i.e. nondeterministic choice of rule schema). If no rule schema in the set has a
match for G, we write G 	⇒R (i.e. finite failure).

Example 1 (Rule schema application). Figure 2 displays a rule schema r : 〈L ←↩
K ↪→ R〉 with its interface (top row), a possible instantiation rI where I(x) =
I(y) = 8 and I(i) = 0 (middle row). Finally, the bottom row depicts a direct
derivation from G (bottom left) to H (bottom right) via rI . �


Definition 3 (Graph programs). (Graph) programs are defined inductively.
Given a set of rule schemata R, R and R! are programs. If P,Q are pro-
grams and R a set of rule schemata, then P ;Q and if R then P else Q are
programs. �
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Fig. 3. A relational denotational semantics for graph programs

Fig. 4. Rules for the program init; colour! and two possible executions

Intuitively, R denotes a single nondeterministic application of a rule schemata
set. This results in failure if none of the rules are applicable to the current graph.
The program R! denotes as-long-as-possible iteration of R, in which the iteration
terminates the moment that R is no longer applicable to the current graph (the
program never fails). Finally, the program P ;Q denotes sequential composition,
and if R then P else Q denotes conditional branching, determined by testing
the applicability of R (note that R will not transform the current graph).

Each graph program is given a simple relational denotational semantics (in
the style of [21]). We associate each program P with two semantic functions,
�P �ok and �P �er, which respectively describe state (i.e. graph) transitions for
successful and finitely failing computations. Unlike operational semantics for
graph programs (e.g. [23]), we do not explicitly track a ‘fail’ state, but rather
return pairs (G,H) where H is the last graph derived from G before the failure.

Definition 4 (Semantics). The semantics of a graph program P is given by
a binary relation �P �ε ⊆ G(L) × G(L), defined according to Fig. 3. �


Note that divergence is treated in an implicit way: a program that always
diverges is associated with empty relations. For example, �〈∅ ⇒ ∅〉!�ok = ∅.

Example 2 (Buggy colouring). Figure 4 contains an example graph program P =
init; colour! that purportedly computes a graph colouring, i.e. an association
of integers (‘colours’) with nodes such that no two adjacent nodes are associated
with the same colour. The program nondeterministically assigns a colour of ‘0’
to a node, encoding it as the second element of the label’s sequence, before
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iteratively matching adjacent pairs of coloured/uncoloured nodes and assigning
a colour to the latter obtained by incrementing the colour of the former. Note
that the edges are undirected for simplicity.

Two possible executions are shown in Fig. 4, the first of which leads to a
correct colouring, and the second of which leads to an illegal one. Moreover, the
program can finitely fail on input graphs for which init has no match. (We shall
use incorrectness logic to logically prove the presence of such outcomes.)

Before we can define an incorrectness logic for graph programs, we require
an assertion language for expressing properties of the states, i.e. graphs in G(L).
For this purpose we shall use nested conditions with expressions (‘E-conditions’),
which allow for the specification of properties at the same level of abstraction,
i.e. by graph morphisms annotated with expressions. The concept of E-conditions
was introduced in prior work [24,25], but we shall present an alternative defini-
tion that more cleanly separates the quantification of graph structure and integer
variables (the latter was handled implicitly in previous work, which led to more
complicated assertion transformations).

Definition 5 (E-condition). Let P denote a graph in G(Exp). A nested con-
dition with expressions ( short. E-condition) over P is of the form true, γ, ∃x.c,
or ∃a.c′, where γ is an interpretation constraint (i.e. a Boolean expression over
‘Exp’), x is a variable in Var, c is an E-condition over P , a : P ↪→ C is an injective
graph morphism over G(Exp), and c′ is an E-condition over C. Moreover, ¬c1,
c1 ∧ c2, and c1 ∨ c2 are E-conditions over P if c1, c2 are E-conditions over P . �


The free variables of an E-condition c, denoted FV(c), are those variables
present in node labels and interpretation constraints that are not bound by any
variable quantifier (defined in the standard way). If c is defined over the empty
graph ∅ and FV(c) = ∅, we call c an E-constraint. Furthermore, a mapping of
free variables to expressions σ = (x1 �→ e1, · · · ) is called a substitution, and cσ

denotes the E-condition c but with all free variables x substituted for σ(x).

Definition 6 (Satisfaction of E-conditions). Let c denote an E-condition
over P , I an interpretation with dom(I) = FV(c), and p : P I ↪→ G an injective
morphism over G(L). The satisfaction relation p |=I c is defined inductively.

If c has the form true, then p |=I c always. If c is an interpretation constraint
γ, then p |=I c if γI = true (defined in the standard way). If c has the form ∃x.c′

where c′ is an E-condition over P , then p |=I c if p |=I[x �→v] c′ for some v ∈ Z. If
c has the form ∃a : P ↪→ C.c′ where c′ is an E-condition over C, then p |=I c if
there exists an injective morphism q : CI ↪→ G such that q ◦ aI = p and q |=I c′.

p q c

a
P C

Finally, the satisfaction of Boolean formulae over E-conditions is defined in
the standard way. �
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The satisfaction of E-constraints by graphs is defined as a special case of
the general definition. That is, a graph G ∈ G(L) satisfies an E-constraint c,
denoted G |= c, if iG : ∅ ↪→ G |=I∅ c, where I∅ is the empty interpretation,
i.e. with dom(I∅) = ∅.

For brevity, we write false for ¬true, c =⇒ d for ¬c∨d, ∀x.c for ¬∃x.¬c, ∀a.c
for ¬∃a.¬c, and ∃x1, · · · xn.c for ∃x1. · · · ∃xn.c (analogous for ∀). Furthermore, if
the domain of a morphism can unambiguously be inferred from the context, we
write only the codomain. For example, the E-constraint ∃∅ ↪→ C. ∃C ↪→ C ′. true
can be written as ∃C. ∃C ′.

Example 3 (E-constraint). The following E-constraint expresses that for every
pair of integer-labelled nodes, if the labels differ, then the nodes are adjacent:

Note that v, w are node identifiers to indicate which nodes are the same along
the chain of nested morphisms, as can be seen when denoting them in full:

These node identifiers may be omitted when the mappings are unambiguous.

4 Proving the Presence of Bugs

Before we define the proof rules of our incorrectness logic, it is important to
define what an incorrectness specification is and what it means for it to be valid.
In over-approximate program logics (e.g. [24,25]) a specification is given in the
form of a triple, {c}P{d}, which under partial correctness expresses that if a
graph satisfies precondition c, and program P successfully terminates on it, then
the resulting graph will always satisfy d. The postcondition d over-approximates
the graphs reachable upon termination of P from graphs satisfying c.

Incorrectness logic [21], however, is based on under-approximate reasoning,
for which a specification [c]P [d] has a rather different meaning (and thus a
different notation). Here, we call the pre-assertion c a presumption and the post-
assertion d a result. The triple specifies that if a graph satisfies d, then it can
be derived from some graph satisfying c by executing P on it. In other words,
d under-approximates the states reached as a result of executing P on graphs
satisfying c. It does not specify that every graph satisfying c derives a graph
satisfying d, and it does not preclude graphs satisfying ¬c from deriving such
graphs either.

The principal benefit of proving such triples is then proving the presence of
bugs, and can be thought of as providing a possible formal foundation for static
bug catchers, e.g. symbolic execution tools. In graph programs, this amounts to
formal proofs of the presence of illegal graph structure, but it can also facilitate
proofs of the presence of finite failure. To accommodate this, we adopt O’Hearn’s
approach [21] of tracking exit conditions ε in the result, [c]P [ε : d], using ok to
represent normal executions and er to track finite failures.
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Fig. 5. Incorrectness axioms and proof rules for graph programs

Definition 7 (Under-approximate validity). Let c, d denote E-constraints,
P a graph program, and ε an exit condition. A specification [c] P [ε : d] is valid,
denoted |= [c] P [ε : d], if for every graph H ∈ G(L) such that H |= d, there
exists a graph G ∈ G(L) such that G |= c and (G,H) ∈ �P �ε. �


Figure 5 presents the axioms and proof rules of our incorrectness logic for
graph programs, which are adapted from O’Hearn’s incorrectness logic for imper-
ative programs [21]. We say that a triple is provable, denoted � [c]P [ε : d], if it
can be instantiated from any axiom, or deduced as the consequent of any proof
rule with provable antecedents. We use the notation � [c]P [ok : d1][er : d2] as
shorthand for two separate triples, � [c]P [ok : d1] and � [c]P [er : d2].

Note that a number of axioms and proof rules rely on some transformations
that we have not yet defined: App(R), which expresses the existence of a match
for R, and WPost(R, c), which expresses the weakest postcondition that must
be satisfied to guarantee the existence of a pre-state satisfying c. These trans-
formations will be formally defined in Sect. 5.
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The axioms RuleSetSucc and RuleSetFail allow for reasoning about the
most fundamental unit of graph programs: rule schema application. The former
covers the successful case: if a graph satisfies the weakest postcondition for rule
schemata set R and E-constraint c, then it can be derived from some graph
satisfying the presumption c ∧ App(R). The latter of the axioms covers the
possibility that R cannot be applied: in this case, we have an exit condition of
er to track its finite failure.

Sequential composition is handled by SeqSucc as well as SeqFail (to cover
the possibility of the first program resulting in failure). The conditional construct
is covered by IfElse: note that failure can only result from failure in the two
branches, and not from the guard R, which is simply tested to choose the branch.

It is important to highlight the rule of consequence, Cons, as the implica-
tions in the side conditions are reversed from those of the corresponding Hoare
logic rule [2,14]. In incorrectness logic, we instead weaken the precondition and
strengthen the postcondition. Intuitively, this allows us to soundly drop dis-
juncts in the result and thus reason about fewer paths in the post-state, which
may support better scalability in tools [21].

For the iteration of rule schemata sets, we have a number of cases. The axiom
IterZero covers the case when a rule schemata set is no longer applicable (note
that this does not result in failure). The proof rule Iter unrolls a step of the
iteration. Traditional loop invariants are less important in these proof rules than
they are for Hoare logic, as we are reasoning about a subset of paths rather than
all of them. To see this, consider the triple |= [inv]R![ok : inv ∧ ¬App(R)] with
invariant inv. Under-approximate validity requires every graph H satisfying inv
and ¬App(R) to be derivable by applying R! to some graph G satisfying inv.
One can always find such a graph by taking G = H.

Finally, IterVar combines IterZero and Iter into one rule. It expresses
that a triple � [c0]R![ok : cn] can be proven if: (1) cn implies the termination of
the iteration (i.e. the non-applicability of R); and (2) if triples can be proven for
the n iterations of R. IterVar is a stricter version of the backwards variant rule
for while-loops in [21,30]: had we adopted the rule in full, we would be able to
prove triples such as � [c(0)]R![ok : ∃n.n ≥ 0.c(n)∧¬App(R)]. Here, c(i) denotes
a parameterised predicate, i.e. in our case, a function mapping expressions to E-
constraints. Unfortunately, these are not possible to express using E-constraints,
and including them would strictly increase their expressive power beyond first-
order graph properties and the current capabilities of ‘WPost’.

Example 4 (Colouring: finite failure). In our first example, we prove the incor-
rectness specification for the program
of Fig. 4. This triple specifies that if a graph does not contain any integer-labelled
nodes, then it can be derived from another graph satisfying the same condition
that the program finitely fails on. Since init would fail on any such graph, this
specification is valid: the graph in the post-state is exactly the graph in the
pre-state. Figure 6 proves this triple using incorrectness logic.
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Fig. 6. Proving the presence of failure (E-constraints in Fig. 8)

Fig. 7. Proving the presence of an illegal graph (E-constraints in Fig. 8)

Example 5 (Colouring: illegal graph). While proving the presence of failure for
the program of Fig. 4 is simple, there are some interesting subtleties involved in
proving the presence of illegal graph structure. Let us consider:

which specifies that if a graph has an illegal colouring, at least one node coloured
‘0’, and colouring is no longer applicable, then it can be derived by applying the
program to some graph containing an integer-labelled node (i.e. that init does
not fail on). This triple is provable (Fig. 7) and valid, but not because of any prob-
lem with colour. Consider, for example, the graph . This is trivially
reachable from graphs that already contain the illegal structure, e.g. ,
thus we are able to complete the proof using the IterZero rule.

Finally, we strengthen the condition on the result to try and prove the pres-
ence of an illegal colouring that is created by the program itself (see Fig. 8 for
the E-constraints):

� [c] init; colour! [ok : d ∧ ¬App(colour)]

The E-constraint c expresses that there exists at least one node and that no
node is coloured (instead of using conjunction, we express this more compactly
using nesting). The E-constraint d expresses that there are three coloured nodes
(with colours 0, 1, 1). Together, the triple specifies that every graph satisfying
d ∧ ¬App(colour) can be derived from at least one graph satisfying c. This
triple is valid and provable (Fig. 9) as the illegal colouring is a logical possibility
of some executions of colour!. Note that we cannot use an assertion such as

in place of d, as this is satisfied by the graph which is
impossible to derive from any graph satisfying c.

As E-constraints are equivalent to first-order logic on graphs [24], we are
precluded from proving a more general non-local condition, e.g. “there exists a
cycle with an illegal colouring”. However, there are more powerful logics equipped
with similar transformations that may be possible to use instead [19,27].
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Fig. 8. E-constraints used in the proofs of Figs. 6, 7, and 9

5 Transformations, Soundness, and Completeness

This section presents formal definitions and characterisations of the transforma-
tions that are used in some of our incorrectness axioms and proof rules. Following
this, we present our main technical result: the soundness and completeness of
our incorrectness logic with respect to the denotational semantics.

First, we consider ‘App’, which transforms a set of rule schemata into an E-
constraint that expresses the minimum requirements on a graph for at least one of
the rules to be applicable. Intuitively, the E-constraint expresses the presence of
a match for a left-hand side, i.e. a morphism that satisfies the dangling condition.
This transformation is adapted from similar transformations in [10,24].

Proposition 1 (Applicability). For every graph G ∈ G(L) and set of rule
schemata R,

G |= App(R) if and only if ∃H. G ⇒R H.

Construction. Define App(∅) = false and then App({r1, · · · rn}) = app(r1) ∨
· · · app(rn). Given a rule schema r = 〈L ←↩ K ↪→ R〉 over variables x1, · · · xm,
define app(r) = ∃x1, · · · xm. ∃∅ ↪→ L. Dang(r).

Finally, define Dang(r) =
∧

a∈A ¬∃xa.∃a where the index set A ranges over
all injective morphisms (equated up to isomorphic codomains) a : L ↪→ L⊕ such
that the pair 〈K ↪→ L, a〉 has no natural pushout complement and each L⊕ is a
graph that can be obtained from L by adding either: (1) a single loop with label
�; (2) a single edge with label � between distinct nodes; or (3) a single node
labelled with fresh variable xa and a non-looping edge incident to it with label
�. If the index set A is empty, then Dang(r) = true. �
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Next, we consider ‘WPost’, which transforms a set of rule schemata and a
presumption into a weakest postcondition, i.e. the weakest property a graph must
satisfy to guarantee the existence of a pre-state that satisfies the presumption.
WPost is defined via two intermediate transformations: ‘Shift’ and ‘Right’.

We begin by defining ‘Shift’, which can be used to transform an E-constraint c
into an E-condition over the left-hand side of a rule L by considering all the ways
that a ‘match’ can overlap with c. Our definition is adapted from the shifting
constructions of [10,24] to handle the explicit quantification of label variables.
Intuitively, this step is handled via a disjunction over all possible substitutions
of a variable in c for integer expressions or variables in L, i.e. to account for
interpretations in which they refer to the same values.

To facilitate this, we require that the labels in c are lists of variables that are
distinct from those in L. This is a mild assumption, as an arbitrary expression
can simply be replaced with a variable that is then equated with the original
expression in an interpretation constraint.

Lemma 1 (E-constraint to left E-condition). Let r denote a rule schema
and c an E-constraint labelled over lists of variables distinct from those in r. For
every graph G ∈ G(L) and morphism g : LI ↪→ G with dom(I) = vars(L),

g : LI ↪→ G |=I Shift(r, c) if and only if G |= c.

Construction. Let c denote an E-constraint and r a rule with left-hand side
L. We define Shift(r, c) = Shift′(∅ ↪→ L, c). We define Shift′ inductively for
morphisms p : P ↪→ P ′ and E-conditions over P . Let Shift′(p, true) = true and
Shift′(p, γ) = γ. Then:

Shift′(p,∃x. c) =
(∃x. Shift′(p, c)

) ∨

l∈ΣP ′

Shift′(p, c(x �→l))

Shift′(p,∃a : P ↪→ C. c) =
∨

e∈ε

∃b : P ′ ↪→ E. Shift′(s : C ↪→ E, c)

P

C

E

(1) a

p

q

se

b

In the third case, ΣP ′ is the set of all variables and inte-
ger expressions present in the labels of VP ′ . In the fourth
case, construct pushout (1) of p and a as depicted in the
diagram. The disjunction ranges over the set ε, which we
define to contain every surjective morphism e : C ′ ↪→ E
such that b = e ◦ a′ and s = e ◦ q are injective morphisms.
(We consider codomains of each e up to isomorphism, so
the disjunction is finite.)

Shift and Shift’ are defined for Boolean formulae over
E-conditions in the standard way. �

Example 6 (Shift). Consider the rule schema init (Fig. 4) and E-constraint c
(Fig. 8). After simplification, the transformation Shift(init, c) results in:
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The second intermediate transformation for ‘WPost’ is ‘Right’, which trans-
forms an E-condition over the left-hand side of a rule to an E-condition over the
right-hand side. This construction is based on transformation ‘L’ from [10,24]
but in the reverse direction.

Lemma 2 (Left to right E-condition). Let r = 〈L ←↩ K ↪→ R〉 denote a rule
schema and c an E-condition over L. Then for every direct derivation G ⇒r,g,h H
with g : LI ↪→ G and h : RI ↪→ H,

g : LI ↪→ G |=I c if and only if h : RI ↪→ H |=I Right(r, c).

L K R

X Z Y

(1) (2)a b

Construction. We define Right(r, true) = true, Right
(r, γ) = γ, and Right(r,∃x. c) = ∃x. Right(r, c). Let
Right(r,∃a. c) = ∃b. Right(r∗, c) if 〈K ↪→ L, a〉 has a nat-
ural pushout complement (1), where r∗ = 〈X ←↩ Z ↪→
Y 〉 denotes the rule ‘derived’ by also constructing nat-
ural pushout (2). If 〈K ↪→ L, a〉 has no natural pushout complement, then
Right(r,∃a. c) = false.

Right is defined for Boolean formulae over E-conditions as per usual. �

Example 7 (Right). Continuing from Example 6, applying the transformation
Right(init,Shift(init, c)) results in the E-condition:

Next, we can give ‘WPost’ a simple definition based on the two intermediate
transformations. Intuitively, it constructs a disjunction of E-constraints that
demand the existence of some co-match that would result from applying the
rule schema set to a graph satisfying the presumption.

Proposition 2 (Weakest postcondition). Let R denote a rule schemata set
and c an E-constraint. Then for every graph H ∈ G(L),

H |= WPost(R, c) if and only if ∃G. G |= c and G ⇒R H.

Construction. Define WPost(∅, c) = false and WPost(R, c) =
∨

r∈R wpost
(r, c). Let wpost(r, c) = ∃x1, · · · xn.∃∅ ↪→ R.Dang(r−1) ∧ Right(r,Shift(r, c))
where {x1, · · · , xn} = vars(R) and r−1 is the reversal of rule r. �

Example 8 (WPost). Continuing from Example 7, applying the transformation
WPost(init, c) results in the E-constraint given in Fig. 8.

Finally, using the characterisations of ‘App’ and ‘WPost’, we can present
the main technical results of our paper: the soundness and completeness of our
incorrectness logic for graph programs. Soundness means that any triple provable
in our logic is valid in the sense of Definition 7, i.e. that graphs satisfying the
result are reachable from some graph satisfying the presumption. The proof of
this theorem is by structural induction on triples.
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Theorem 1 (Soundness). For all E-constraints c, d, graph programs P , and
exit conditions ε,

� [c] P [ε : d] implies |= [c] P [ε : d].

�

Completeness is the other side of the coin: it means that any valid triple

can be proven using our logic. As is typical, we prove relative completeness [7]
in which completeness is relative to the existence of an oracle for deciding the
validity of assertions (as in Cons). The idea is to separate incompleteness due
to the incorrectness logic from incompleteness in deducing valid assertions, and
determine that no proof rules are missing. Our proof relies on some semantically
(or extensionally) defined assertions, WPOST[P, c], that characterise exactly the
weakest postcondition of an arbitrary program P relative to an E-constraint c.

Theorem 2 (Relative completeness). For all E-constraints c, d, graph pro-
grams P , and exit conditions ε,

|= [c] P [ε : d] implies � [c] P [ε : d].

�

It is important to remark that it is unknown whether E-constraints are

expressive enough to specify precisely the assertion WPOST[P, c] in general;
in fact, there is evidence to suggest they may not be [31]. This is, however, a
limitation of the logic and not the incorrectness proof rules, and expressiveness
may not be a problem faced by stronger assertion languages for graphs, such as
those supporting non-local properties [19,22,27].

6 Related Work

Over-approximate program logics for proving the absence of bugs have been stud-
ied extensively [2]. Our program logic differs by focusing on under-approximate
reasoning, i.e. proofs about the presence of bugs (in our case, forbidden graph
structure or finitely failing execution paths). The first under-approximate cal-
culus of this kind was introduced by De Vries and Koutavas [30], who proposed
the notion of under-approximate validity, and defined a ‘Reverse Hoare Logic’
for proving reachability specifications over the proper states of imperative ran-
domised programs. O’Hearn’s incorrectness logic [21] extended this program logic
to support under-approximate reasoning about executions that result in errors,
an idea we adopt to support reasoning about both successful computations (ok)
and finitely failing executions (er). Both of these program logics use variants to
reason about while-loop termination, but unlike standard Hoare logics, require
that the variant decreases in the backwards direction. Our IterVar rule is sim-
ilar, but requires the number of iterations to be known as E-conditions are not
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expressive enough to specify parameterised graph properties, for example, the
existence of a cycle of length n.

Raad et al. [28] combined separation logic with incorrectness logic to facili-
tate proofs about the presence of bugs using local reasoning, i.e. specifications
that focus only on the region of memory being accessed. They found that the
original model of separation logic, which does not distinguish dangling pointers
from pointers we have no knowledge about, to be incompatible with the under-
approximate frame rule. This was resolved by refining the model with negative
heap assertions that can specify that a location has been de-allocated.

Murray [18] proposed the first under-approximate relational logic, allowing
for reasoning about the behaviours of pairs of programs. As many important
security properties (e.g. noninterference, function sensitivity, refinement) can be
specified as relational properties, Murray’s program logic can be used to provably
demonstrate the presence of insecurity.

Bruni et al. [6] incorporate incorrectness logic in a proof system for abstract
interpretation that combines over- and under-approximation. Given an abstrac-
tion that is ‘locally complete’ (i.e. complete only for some specific inputs, rather
than all possible inputs), they show that it is possible to prove both the presence
as well as the absence of true alerts.

Incorrectness logics allow formal reasoning about reachability specifi-
cations—in our context, the presence of finite failure or forbidden graph struc-
ture. A complementary approach is to find counterexamples (i.e. instances of the
forbidden structure) using model checkers such as Groove [9]. Analysing graph
transformation systems can be challenging, however, as they often have infinite
state spaces, but this can be mitigated by using bounded model checking [15].

7 Conclusion and Future Work

We proposed an incorrectness logic for under-approximate reasoning about
graph programs, demonstrating that the deductive rules of Hoare logics can
be ‘reversed’ to prove the presence of graph transformation bugs, such as the
possibility of illegal graph substructures or finitely failing execution paths. In
particular, we presented a calculus of incorrectness axioms and rules, proved
them to be sound and relatively complete with respect to a denotational seman-
tics of graph programs, and demonstrated their use to prove the presence of
various bugs in a faulty node colouring program.

This paper was principally a theoretical exposition, but was motivated by
some potentially interesting applications. One idea (suggested by O’Hearn [21])
is to recast static bug catchers in terms of finding under-approximation proofs.
For instance, incorrectness logic might be able to provide soundness arguments
for approaches that symbolically execute graph or model transformations (e.g. [1,
3,20]). Another idea is to use it to complement over-approximate proofs: if one is
unable to prove a partial correctness specification or the absence of failure [26],
switch to under-approximate proofs instead and reason about the circumstances
that could cause some undesirable result to be reachable.



Incorrectness Logic for Graph Programs 97

Beyond exploring these potential applications, future work should also extend
our logic to a full-fledged graph programming language (e.g. GP 2 [23], or the
recipes of Groove [8,9]). It is also important to investigate how to make incor-
rectness reasoning for graph programs easier. This could be in the form of guide-
lines on how to come up with incorrectness specifications (reasoning over a whole
graph can be counter-intuitive, as Examples 4 and 5 demonstrate), or some
derived proof rules for simplifying reasoning about common patterns.

Acknowledgements. I am grateful to the ICGT’21 referees for their detailed reviews
and suggestions, which have helped to improve the quality of this paper.

Appendix

Proof (Proposition 1; Lemmata 1–2). By induction over the form of E-conditions,
following the proof structure for transformations ‘App’, ‘A’, and ‘L’ for the
similar assertion language in [24]. �

Proof (Proposition 2). =⇒. Assume that H |= WPost(R, c). There exists some
r ∈ R such that:

H |= wpost(r, c) = ∃x1, · · · xn.∃∅ ↪→ R.Dang(r−1) ∧ Right(r,Shift(r, c)).

There exists an h : RI ↪→ G such that h |=I Dang(r−1) ∧ Right(r,Shift(r, c)).
Using Proposition 1, there exists a direct derivation from some graph G to H
via r = 〈L ⇒ R〉, and by Lemma 2, there exists some g : LI ↪→ G such that
g |=I Shift(r, c). By Lemma 1, G |= c.

⇐=. Assume that there exists a graph G such that G |= c and G ⇒R H.
There exists some r = 〈L ⇒ R〉 ∈ R such that G ⇒r H. By the definition of |=,
Lemma 1, and Lemma 2, there exists some h : RI ↪→ G |=I Right(r,Shift(r, c)).
By the definition of direct derivations and Proposition 1, h |=I Dang(r−1),
and thus h |=I Dang(r−1) ∧ Right(r,Shift(r, c)). By the definition of |=, H |=
∃x1, · · · xn.∃R.Dang(r−1) ∧ Right(r,Shift(r, c)), that is, H |= wpost(r, c). Being
a disjunct of WPost(r, c), we derive the result H |= WPost(r, c). �

Proof (Theorem 1). Given � [c]P [ε : d], we need to show that |= [c]P [ε : d]. We
consider each axiom and proof rule in turn and proceed by induction on proofs.

RuleSetSucc, RuleSetFail. The validity of these axioms follows imme-
diately from the definitions of �R�ok, �R�er, Proposition 1, and Proposition 2.

SeqSucc. Suppose that � [c]P ;Q[ok : d]. By induction, we have |= [c]P [ok :
e] and |= [e]Q[ok : d]. By definition of |=, for all H.H |= d, there exists a
G′.G′ |= e with (G′, G) ∈ �Q�ok, and for all G′.G′ |= e, there exists a G.G |= c
with (G,G′) ∈ �P �ok. From the definition of |= and �P ;Q�ok, it then follows
that |= [c]P ;Q[ok : d]. Analogous for case � [c]P ;Q[er : d].

SeqFail. Suppose that � [c]P ;Q[er : d]. By induction, we have |= [c]P [er : d].
By definition of |=, for all H.H |= d, there exists a G.G |= c with (G,H) ∈ �P �er.
By the definition of �P ;Q�er and |=, it follows that |= [c]P ;Q[er : d].
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IfElse. Suppose that � [c]if R then P else Q[ε : d]. By induction,
|= [c ∧ App(R)]P [ε : d] and |= [c ∧ ¬App(R)]Q[ε : d]. From the definition
of |=, �if R then P else Q�ε, and Proposition 1, we obtain the result that
|= [c]if R then P else Q[ε : d].

Cons. Suppose that � [c]P [ε : d]. By induction, we have |= [c′]P [ε : d′],
|= d =⇒ d′, and |= c′ =⇒ c. It immediately follows that |= [c]P [ε : d].

IterZero. For every graph G.G |= c ∧ ¬App(R), by Proposition 1, G 	⇒R,
(G,G) ∈ �R�er, and thus (G,G) ∈ �R!�ok. It immediately follows that |= [c ∧
¬App(R)]R![ok : c ∧ ¬App(R)].

Iter. Suppose that � [c ∧ App(R)]R![ok : d ∧ ¬App(R)]. By induction,
|= [c ∧ App(R)]R;R![ok : d ∧ ¬App(R). By definition of |=, for all H.H |=
d ∧ ¬App(R), there exists some G.G |= c ∧ App(R) and (G,H) ∈ �R;R!�ok. By
the definition of �R!�ok and |=, we obtain |= [c ∧ App(R)]R![ok : d ∧ ¬App(R)].

IterVar. Suppose that � [c0]R![ok : cn]. By induction, |= [ci−1]R[ok : ci]
for every 0 < i ≤ n and |= cn =⇒ ¬App(R). By the definition of |= and �R�ok,
for every Gi.Gi |= ci, there exists some Gi−1.Gi−1 |= ci−1 and Gi−1 ⇒R Gi. It
follow that there is a sequence of derivations G0 ⇒R · · · ⇒R Gn with G0 |= c0
and Gn |= cn. By |= cn =⇒ ¬App(R) and Proposition 1, we have Gn 	⇒R,
i.e. (Gn, Gn) ∈ �R�er. Together with the definition of �R!�ok, it follows that
|= [c0]R![ok : cn]. �

Proof (Theorem 2). We prove relative completeness extensionally by showing
that for every program P , extensional assertion c, and exit condition ε ∈ {ok, er},
� [c]P [ε : WPOST[P, c]], where WPOST[P, c] is an extensional assertion express-
ing the weakest postcondition relative to P and c, i.e. if |= [c]P [ε : d] for any d,
then d =⇒ WPOST[P, c] is valid. Relative completeness is obtained by applying
the rule of consequence to � [c]P [ε : WPOST[P, c]].

Rule Application ( ε = ok). Immediate from RuleSetSucc and Cons.
Rule Application ( ε = er). Immediate from RuleSetFail, the definition of

�R�er, and Cons.
Sequential Application ( ε = ok). In this case,

H |= WPOST[P ;Q, c]
iff ∃G.G |= c and (G,H) ∈ �P ;Q�ok

iff ∃G,G′.G |= c, (G,G′) ∈ �P �ok, and (G′,H) ∈ �Q�ok

iff ∃G′.G′ |= WPOST[P, c] and (G′,H) ∈ �Q�ok

iff H |= WPOST[Q,WPOST[P, c]]

By induction we have � [WPOST[P, c]]Q[ok : WPOST[Q,WPOST[P, c]]] and
� [c]P [ok : WPOST[P, c]]. By SeqSucc we derive the triple � [c]P ;Q[ok :
WPOST[Q,WPOST[P, c]]], and by Cons � [c]P ;Q[ok : WPOST[P ;Q, c]].
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Sequential Application ( ε = er). If the program P ;Q fails and the error
occurs in Q, then the proof is analogous to the ok case. If the error occurs in P :

H |= WPOST[P ;Q, c]
iff ∃G.G |= c and (G,H) ∈ �P ;Q�er

iff ∃G.G |= c and (G,H) ∈ �P �er

iff H |= WPOST[P, c]

By induction we have � [c]P [er : WPOST[P, c]], and by SeqFail derive
� [c]P ;Q[er : WPOST[P, c]]. With Cons we get � [c]P ;Q[er : WPOST[P ;Q, c]].

If-then-else. The proof for this case follows a similar structure to sequential
composition but treating the two branches separately.

Iteration. Define ci as WPOST[R, ci−1] for every 0 < i ≤ n. We have:

Gn |= WPOST[R!, c0]
iff ∃G0.G0 |= c0 and (G0, Gn) ∈ �R!�ok
iff ∃G0, · · · Gn−1.(Gi−1, Gi) ∈ �R�ok for all 0 < i ≤ n, and (Gn, Gn) ∈ �R�er

iff ∃G1, · · · Gn−1.G1 |= WPOST[R, c0], (Gi−1, Gi) ∈ �R�ok for all 1 < i ≤ n

and (Gn, Gn) ∈ �R�er

iff Gn |= cn and cn =⇒ ¬App(R)

By induction, � [ci−1]R[ok : WPOST[R, ci−1]] and thus � [ci−1]R[ok : ci]. By
IterVar and Cons derive the result, � [c0]R![ok : WPOST[R!, c0]]. �
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Abstract. We consider two approaches to generating formal string lan-
guages: context-free grammars and Lambek grammars, which are based
on the Lambek calculus. They are equivalent in the sense that they
generate the same set of languages (disregarding the empty word). It
is well known that context-free grammars can be generalized to hyper-
edge replacement grammars (HRGs) preserving their main principles and
properties. In this paper, we study a generalization of the Lambek gram-
mars to hypergraphs and investigate the recognizing power of the new
formalism. We show how to define the hypergraph Lambek calculus (HL),
and then introduce hypergraph Lambek grammars based on HL. It turns
out that such grammars recognize all isolated-node bounded languages
generated by HRGs. However, they are more powerful than HRGs: they
recognize at least finite intersections of such languages. Thus the Pentus
theorem along with the pumping lemma and the Parikh theorem have no
place for hypergraph Lambek grammars. Besides, it can be shown that
hypergraph Lambek grammars are NP-complete, so they constitute an
attractive alternative to HRGs, which are also NP-complete.

1 Introduction

Formal grammars include two large classes opposed to each other: context-free
grammars and categorial grammars. The former generate languages by means
of productions: one starts with a single symbol and then applies productions
to it, hence generating a string. On contrary, categorial grammars work in a
“deductive way”: they start with a whole string, assign types to strings and then
check whether the resulting sequence of types is correct w.r.t. some uniform laws.
There are many options of choosing such uniform laws, which lead to different
formalisms. The laws are often provided by a logical calculus; in such cases,
grammars are called type-logical.
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One of important classes of type-logical grammars is Lambek grammars.
They are based on the Lambek calculus introduced in [4] (further we denote it
as L). This calculus deals with types and sequents. Types are built from primitive
types Pr = {p1, p2, . . . } (which we further denote by small Latin letters p, q, . . . )
using operations \, ·, /; for example, (p · q)/(p\q) is a type. A sequent is a
structure of the form A1, . . . , An → A where n > 0 and Ai, A are types. The
Lambek calculus in the Gentzen style we consider in this paper explains how to
derive sequents. There is one axiom and six inference rules of L:

A → A
(Ax)

Π → A Γ,B,Δ → C

Γ,Π,A\B,Δ → C
(\ →)

A,Π → B

Π → A\B
(→ \)

Γ,A,B,Δ → C

Γ,A · B,Δ → C
(· →)

Π → A Γ,B,Δ → C

Γ,B/A,Π,Δ → C
(/ →)

Π,A → B

Π → B/A
(→ /) Π → A Ψ → B

Π,Ψ → A · B
(→ ·)

Here capital Latin letters denote types, and capital Greek letters denote
sequences of types (besides, Π,Ψ are nonempty).

Example 1.1. Below an example of a derivation is presented:

s → s q → q

s/q, q → p
(/ →)

s → s

s/q, s, s\q → s
(\ →)

q → q

s/q, s/q, q, s\q → s
(/ →)

The Lambek calculus has algebraic and logical nature (e.g. it can be con-
sidered as a substructural logic of intuitionistic logic). Nicely, it can be used to
describe formal and natural languages, which can be done using so-called Lam-
bek grammars. A Lambek grammar consists of an alphabet Σ, of a finite binary
relation � between symbols of Σ and types of the Lambek calculus and of a dis-
tinguished type S. The grammar recognizes (synonym for generates regarding
categorial grammars) the language of all strings a1 . . . an, for which there exist
types T1, . . . , Tn such that ai � Ti, and T1, . . . , Tn → S is derivable in L.

Example 1.2. The Lambek grammar over the alphabet {a, b} such that S = s ∈
Pr and a � s/q, b � s\q, b � q generates the language {anbn | n > 0}. E.g., given
the string aabb, one transforms it into a sequent s/q, s/q, q, s\q → s and derives
it in L as is shown in Example 1.1.

From 1960-s until nowadays different extensions of L were proposed to cap-
ture linguistic phenomena of interest (e.g. parasitic gaps, wh-movements etc.; see
[5]). Many mathematical properties of L and of Lambek grammars have been
discovered. The one, which is of interest in this work, is the Pentus theorem
(see [7]). It states that Lambek grammars recognize exactly the class of context-
free languages (without the empty word). Therefore, in the string case Lambek
grammars and context-free grammars are equivalent.
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Moving away from categorial grammars, we consider another approach:
hyperedge replacement grammar (HRG in short). These grammars were devel-
oped in order to generalize context-free grammars to hypergraphs. Namely,
they generate hypergraphs by means of productions: a production allows one
to replace a hyperedge of a hypergraph with another hypergraph. Hyperedge
replacement grammars (HRGs) have a number of properties in common with
context-free grammars such as the pumping lemma, the Parikh theorem, the
Greibach normal form etc. An overview of HRGs can be found in [2]. In this
work, we follow definitions and notation from this handbook chapter as far as
possible.

Comparing two fields of research, we came up with a question: is it possible
to generalize type-logical formalisms to hypergraphs in a natural way? A desired
extension should satisfy two properties: there must be an embedding of string
type-logical grammars in it, and it should be connected to hyperedge replacement
grammars, as type-logical grammars are connected to context-free grammars.
Moreover, one expects that the Lambek calculus underlying Lambek grammars
can also be generalized to hypergraphs resulting in some kind of a graph logic.

Our first attempt was concerned with generalizing basic categorial gram-
mars to hypergraphs. The result called hypergraph basic categorial grammars
is introduced in [8]. The idea of such grammars is just inverting a derivation of
HRGs and remodeling it from bottom to top. This idea is not new; it is, e.g.
closely connected to the concept of abstract categorial grammars (see [3]). In
[8], such inverting is done straightforwardly: there are types, which are complex
terms made of hypergraphs; using them one labels hyperedges and then checks
whether a graph labeled by types can be reduced to a single-edge hypergraph
using a uniform reduction law.

In our preprint [9], we do the next step and introduce a generalization of the
Lambek calculus to hypergraphs called the hypergraph Lambek calculus (HL
in short). This calculus naturally generalizes L to hypergraphs, and, moreover,
contains its different variants as fragments. On the other hand, the inference
rules of this calculus are defined through hyperedge replacement, and thus HL
is related to HRGs. In this paper, we introduce the definition of HL in Sect. 3,
establish an embedding of L in HL, and then turn to defining and studying a
grammar formalism that can be built on the basis of HL. Such formalism is called
hypergraph Lambek grammar (HL-grammar for short); it is introduced in Sect. 4.
In Sect. 5 we establish three main results: HL-grammars are not weaker than
HRGs; the parsing problem for HL-grammars is NP-complete; HL-grammars can
recognize finite intersections of hypergraph context-free languages. These three
facts enable one to conclude that HL-grammar is an attractive alternative to
HRG: both formalisms are NP-complete while HL-grammars are more powerful.

2 Preliminaries

N includes 0. Σ∗ is the set of all strings over the alphabet Σ. Σ� is the set of
all strings consisting of distinct symbols. The length |w| of the word w is the
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number of symbols in w. The set of all symbols contained in a word w is denoted
by [w]. If f : Σ → Δ is a function from one set to another, then it is naturally
extended to a function f : Σ∗ → Δ∗ (f(σ1 . . . σk) = f(σ1) . . . f(σk)).

Let C be some fixed set of labels for whom the function type : C → N is
considered (C is called a ranked alphabet).

Definition 2.1. A hypergraph G over C is a tuple G = 〈V,E, att, lab, ext〉
where V is a set of nodes, E is a set of hyperedges, att : E → V � assigns a string
(i.e. an ordered set) of attachment nodes to each hyperedge, lab : E → C labels
each hyperedge by some element of C in such a way that type(lab(e)) = |att(e)|
whenever e ∈ E, and ext ∈ V � is a string of external nodes.

Components of a hypergraph G are denoted by VG, EG, attG, labG, extG resp.

In the remainder of the paper, hypergraphs are usually called just graphs,
and hyperedges are called edges. The set of all graphs with labels from C is
denoted by H(C). Graphs are usually named by letters G and H.

In drawings of graphs, black dots correspond to nodes, labeled squares cor-
respond to edges, att is represented by numbered lines, and external nodes are
depicted by numbers in brackets. If an edge has exactly two attachment nodes,
it can be depicted by an arrow (which goes from the first attachment node to
the second one).

Note that Definition 2.1 implies that attachment nodes of each hyperedge
are distinct, and so are external nodes. This restriction can be removed (i.e. we
can consider graphs with loops), and all further definitions will be preserved;
however, in this paper, we stick to the above definition.

Definition 2.2. The function typeG (or type, if G is clear) returns the number
of nodes attached to an edge in a graph G: typeG(e) := |attG(e)|. If G is a graph,
then type(G) := |extG|.

Definition 2.3. A sub-hypergraph (or just subgraph) H of a graph G is a hyper-
graph such that VH ⊆ VG, EH ⊆ EG, and for all e ∈ EH attH(e) = attG(e),
labH(e) = labG(e).

Definition 2.4. If H = 〈{vi}n
i=1, {e0}, att, lab, v1 . . . vn〉, att(e0) = v1 . . . vn and

lab(e0) = a, then H is called a handle. It is denoted by a•.

Definition 2.5. An isomorphism between graphs G and H is a pair of bijective
functions E : EG → EH , V : VG → VH such that attH ◦ E = V ◦ attG, labG =
labH◦E, V(extG) = extH . In this work, we do not distinguish between isomorphic
graphs.

Strings can be considered as graphs with the string structure. This is formal-
ized in

Definition 2.6. A string graph induced by a string w = a1 . . . an is a graph of
the form 〈{vi}n

i=0, {ei}n
i=1, att, lab, v0vn〉 where att(ei) = vi−1vi, lab(ei) = ai. In

this work, we denote it by SG(w).
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We additionally introduce the following definition (not from [2]):

Definition 2.7. Let H ∈ H(C) be a graph, and let f : EH → C be a function.
Then f(H) := 〈VH , EH , attH , labf(H), extH〉 where labf(H)(e) = f(e) for all e in
EH . It is required that type(labH(e)) = type(f(e)) for e ∈ EH .

If one wants to relabel only one edge e0 within H with a label a, then the result
is denoted by H[e0 := a].

2.1 Hyperedge Replacement Grammars

Hyperedge replacement grammars (HRGs in short) are based on the procedure
of hyperedge replacement. The replacement of an edge e0 in G with a graph H
can be done if type(e0) = type(H) as follows:

1. Remove e0;
2. Insert an isomorphic copy of H (H and G have to consist of disjoint sets of

nodes and edges);
3. For each i, fuse the i-th external node of H with the i-th attachement node

of e0.

The result is denoted by G[e0/H]. It is known that if several edges of a graph are
replaced by other graphs, then the result does not depend on the order of replace-
ments; moreover the result is not changed, if replacements are done simultane-
ously (see [2]). The following notation is in use: if e1, . . . , ek are distinct edges of
a graph H and they are simultaneously replaced by graphs H1, . . . , Hk resp. (this
requires type(Hi) = type(ei)), then the result is denoted H[e1/H1, . . . , ek/Hk].

A hyperedge replacement grammar (HRG) is a tuple HGr = 〈N,Σ,P, S〉,
where N and Σ are disjoint finite ranked alphabets (of nonterminal and terminal
symbols resp.), P is a set of productions, and S ∈ N . Each production is of the
form A → H where A ∈ N , H ∈ H(N ∪Σ) and type(A) = type(H). A grammar
generates the language of all terminal graphs (i.e. graphs with terminal labels
only) that can be obtained from S• by applying productions from P . Such a
language is called a hypergraph context-free language (HCFL in short). Two
grammars are said to be equivalent if they generate the same language.

3 Hypergraph Lambek Calculus

In this section, the hypergraph Lambek calculus (HL) is introduced. As in the
string case, we are going to define types, sequents, an axiom and rules of the
calculus; now, however, they are expected to be based on hypergraphs. The
intuition of the definitions we aim to introduce comes from the procedure of
convertion of a context-free grammar into an equivalent Lambek grammar in
the string case. This procedure can be illustrated by the following

Example 3.1. Consider a context-free grammar Gr = 〈{S,Q}, {a, b}, P, S〉 with
the set P including three productions: S → aQ, Q → Sb, Q → b. This grammar
generates the language {anbn | n > 0}. E.g. S ⇒ aQ ⇒ aSb ⇒ aaQb ⇒ aabb
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shows that aabb is generated by Gr. Note that Gr is lexicalized; that is, there
is exactly one terminal symbol in the right-hand side of each production. This
enables one to convert Gr into an equivalent Lambek grammar as follows:

S → aQ � a � s/q
Q → Sb � b � s\q
Q → b � b � q

This procedure is quite intuitive. For example, the production S → aQ can be
read as “a structure of the type S can be obtained, if one concatenates a symbol
a and a structure of the type Q (in such order)”. In comparison, a � s/q can be
understood as the statement “a is such a symbol that, whenever a structure of
the type q appears to its right, they together form a structure of the type s”.
Clearly, the above two statements are equivalent. In general, a correspondence
a�A/B in a Lambek grammar can be informally understood as follows: a is such
a symbol that it waits for a structure (a string) of the type B from the right in
order to form a string of the type A together with it. Similarly, one can describe
the meaning of a correspondence a�B\A with the only difference that a symbol
requires a structure of the type B from the left.

The lexicalized normal form (or the weak Greibach normal form) for context-
free grammars can be generalized to HRGs, which is studied in [10].

Definition 3.1. An HRG HGr is in the weak Greibach normal form if there
is exactly one terminal label in the right-hand side of each production.

Let A → H be a production in such a grammar; that is, H is a graph with
exactly one terminal label. In order to perform a convertion similar to the one
explained above for context-free grammars, one would like to “extract” the only
terminal label from H and to associate this label with a type, which would look
like A/H. In H, however, we should mark the place, from which we take the only
terminal label; let us do this using a special $ label (which would be allowed to
label edges of different types1). Besides, in order to distinguish between string
divisions and a new hypergraph division we shall write ÷ instead of / or \.

Example 3.2. Below we present a production of some HRG and the result of its
convertion (the result has no formal sense yet, it is just a game with symbols):

P → a
(1)

P
1 1 � a � p ÷

(
$

(1)

p1 1

)

Let us investigate how \ and / of the Lambek calculus correlate with ÷.
It is known that context-free grammars can be embedded in HRGs using string
graphs. For example, the grammar Gr from Example 3.1 can be transformed into
an HRG with the following productions: S → SG(aQ), Q → SG(Sb), Q → SG(b).
Now let us apply the above convertion to the first and the second productions:

1 To be consistent with the definition of a hypergraph one may assume that there are
different symbols $n, n ≥ 0 instead such that type($n) = n.
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S → (1) (2)
a Q � a � s ÷

(
(1) (2)

$ q
)

Q → (1) (2)
S b � b � q ÷

(
(1) (2)

s $
)

The resulting types in the right-hand side may be considered as graph counter-
parts of types s/q and s\q resp. Note that the difference between the left and
the right divisions is represented in these types by the position of the $ symbol.

For now, this convertion is only juggling symbols, and ÷ does not have a
functional definition yet. It will be presented later. Now, let us discuss the issue
of generalizing the multiplication operation. In the string case, A · B can be
informally understood as the set of all strings of the form uv where u is of the
type A, and v is of the type B; that is, A · B corresponds to the concatenation
operation. In the hypergraph case, one needs a “generalized concatenation”.
Implementing this idea we introduce a unary operation ×. If M is a hypergraph
labeled by types, then ×(M) represents all substitution instances of M , that
is, all hypergraphs that are obtained from M by replacing each edge labeled
by some type by a hypergraph of this type. The connection between × and · is
shown in Sect. 3.3.

3.1 Formal Definition of Types and Sequents

In this section, we give formal meanings to the operations introduced above. Let
us fix a countable set Pr of primitive types and a function type : Pr → N such
that for each n ∈ N there are infinitely many p ∈ Pr for which type(p) = n.
Types are constructed from primitive types using division ÷ and multiplica-
tion × operations. Simultaneously, the function type is defined on types: this is
obligatory since we are going to label edges by types.

Definition 3.2. The set Tp(HL) of types is defined inductively as follows:

1. Pr ⊆ Tp(HL).
2. Let N (“numerator”) be in Tp(HL). Let D (“denominator”) be a graph such

that exactly one of its edges (call it e0) is labeled by $, and the other edges
(possibly, there are none of them) are labeled by elements of Tp(HL); let
also type(N) = type(D). Then T = (N ÷ D) also belongs to Tp(HL), and
type(T ) := typeD(e0).

3. Let M be a graph such that all its edges are labeled by types from Tp(HL)
(possibly, there are no edges at all). Then T = ×(M) belongs to Tp(HL), and
type(T ) := type(M).

In types with division, D is usually drawn as a graph in brackets, so instead
of (N ÷D) (a formal notation) a graphical notation N ÷(D) is in use. Sometimes
brackets are omitted.

Example 3.3. The following structures are types:

– A1 = p ÷
(

$ (1) p1 1
)

;
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– A2 = ×
(

(1) A1 (2)
1

)
;

– A3 = ×
(

p 1

)
÷

(
$ p 1

)
.

Here type(p) = 1, type(A1) = 1, type(A2) = 2, type(A3) = 0.

Definition 3.3. A graph sequent is a structure of the form H → A where
A ∈ Tp(HL) is a type, H ∈ H(Tp(HL)) is a graph labeled by types and type(H) =
type(A). H is called the antecedent of the sequent, and A is called the succedent
of the sequent.

Let T be a subset of Tp(HL). We say that H → A is over T if G ∈ H(T )
and A ∈ T .

Example 3.4. The following structure is a graph sequent (where A2, A3 are from
Example 3.3):

A2 A2 → A3

3.2 Axiom and Rules

The hypergraph Lambek calculus (denoted HL) we introduce here is a logical
system that defines what graph sequents are derivable (=provable). HL includes
one axiom and four rules, which are introduced below. Each rule is illustrated
by an example exploiting string graphs.

The only axiom is the following: A• → A, A ∈ Tp(HL).
Rule (÷ →). Let N ÷ D be a type and let ED = {d0, d1, . . . , dk} where

lab(d0) = $. Let H → A be a graph sequent and let e ∈ EH be labeled by N .
Let finally H1, . . . ,Hk be graphs labeled by types. Then the rule (÷ →) is the
following:

H → A H1 → lab(d1) . . . Hk → lab(dk)
H[e/D][d0 := N ÷ D][d1/H1, . . . , dk/Hk] → A

(÷ →)

This rule explains how a type with division appears in an antecedent: we replace
an edge e by D, put a label N ÷D instead of $ and replace the remaining labels
of D by corresponding antecedents.

Example 3.5. Consider the following rule application with Ti being some types
and with T being equal to q ÷ SG(T2$T3):

SG(pq) → T1 SG(rs) → T2 SG(tu) → T3

SG(prs T tu) → T1
(÷ →)

Rule (→ ÷). Let F → N ÷D be a graph sequent; let e0 ∈ ED be labeled by
$. Then

D[e0/F ] → N

F → N ÷ D
(→ ÷)
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Formally speaking, this rule is improper since it is formulated from bottom to
top. It is understood, however, as follows: if there are such graphs D,F and such
a type N that in a sequent H → N the graph H equals D[F/e0], and H → N
is derivable, then F → N ÷ D is also derivable.

Example 3.6. Consider the following rule application where T is some type (here
we draw graphs instead of writing SG(w) to visualize the rule application):

(1) (2)
p q r → T

(1) (2)
p q → T ÷

(
(1) (2)

$ r
) (→ ÷)

Rule (× →). Let G → A be a graph sequent and let e ∈ EG be labeled by
×(F ). Then

G[e/F ] → A

G → A
(× →)

This rule again is formulated from bottom to top. Informally speaking, there is
a subgraph of an antecedent in the premise, and it is “compressed” into a single
×(F )-labeled edge.

Example 3.7. Consider the following rule application where U is some type:

(1) (2)
p q r s → U

(1) (2)
p ×(SG(qr)) s → U

(× →)

Rule (→ ×). Let ×(M) be a type and let EM = {m1, . . . ,ml}. Let H1, . . . ,
Hl be graphs over Tp(HL). Then

H1 → lab(m1) . . . Hl → lab(ml)
M [m1/H1, . . . ,ml/Hl] → ×(M)

(→ ×)

This rule is quite intuitive: several sequents can be combined into a single one
via some graph structure M .

Example 3.8. Consider the following rule application with Ti being some types:

SG(pq) → T1 SG(rs) → T2 SG(tu) → T3

SG(pqrstu) → ×(SG(T1T2T3))
(→ ×)

Definition 3.4. A graph sequent H → A is derivable in HL (HL 
 H → A) if
it can be obtained from axioms using rules of HL. A corresponding sequence of
rule applications is called a derivation and its representation as a tree is called
a derivation tree.
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Example 3.9. The sequent from Example 3.4 is derivable in HL. Here is its
derivation tree:

p• → p p• → p

(1) A1 p1 1 → p
(÷ →)

p• → p

(1) A1 A1 p1 1 1 → p
(÷ →)

A1 A1 p1 1 1 → ×
(

p 1

) (→ ×)

A1 A1
1 1 → A3

(→ ÷)

A1
1 A2 → A3

(× →)

A2 A2 → A3

(× →)

3.3 Embedding of the Lambek Calculus in HL

As expected, the Lambek calculus can be embedded in HL using string graphs.
Consider the following embedding function tr : Tp(L) → Tp(HL):

– tr(p) := p, p ∈ Pr, type(p) = 2;
– tr(A/B) := tr(A) ÷ SG($ tr(B));

– tr(B\A) := tr(A) ÷ SG(tr(B) $);
– tr(A · B) := ×(SG(tr(A) tr(B))).

Example 3.10. The type r\(p · q) is translated into the type

×
(

(1) (2)
p q

)
÷

(
(1) (2)

r $
)

A string sequent Γ → A is transformed into a graph sequent as follows:
tr(Γ → A) := SG(tr(Γ )) → tr(A). Let tr(Tp(L)) be the image of tr.

Theorem 3.1

1. If L 
 Γ → C, then HL 
 tr(Γ → C).
2. If HL 
 G → T is a derivable graph sequent over tr(Tp(L)), then for some

Γ and C we have G → T = tr(Γ → C) (in particular, G has to be a string
graph) and L 
 Γ → C.

The proof of this theorem is straightforward; it can be found in [9] along with
the further discussion of HL.

4 Hypergraph Lambek Grammars

Now, we are finally ready to introduce a grammar formalism based on the hyper-
graph Lambek calculus.
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Definition 4.1. A hypergraph Lambek grammar (HL-grammar) is a tuple
HGr = 〈Σ,S, �〉 where Σ is a finite ranked alphabet, S ∈ Tp(HL) is a dis-
tinguished type, and � ⊆ Σ × Tp(HL) is a finite binary relation such that a � T
implies type(a) = type(T ).

We call the set dict(HGr) = {T ∈ Tp(HL) : ∃a : a � T} a dictionary of HGr.

Definition 4.2. The language L(HGr) recognized by a hypergraph Lambek
grammar HGr = 〈Σ,S, �〉 is the set of all hypergraphs G ∈ H(Σ), for which a
function fG : EG → Tp(HL) exists such that:

1. labG(e) � fG(e) whenever e ∈ EG;
2. HL 
 fG(G) → S.

Example 4.1. Consider the HL-grammar EGr1 := 〈{a, b}, s, �1〉 where s, q ∈ Pr,
type(s) = type(q) = 2 and �1 is defined below:

– a �1 s ÷ SG($q); – b �1 q ÷ SG(s$); – b �1 q;

This grammar recognizes the language of string graphs {SG(anbn) | n > 0}.
E.g. given the string graph SG(aabb), one relabels its edges by corresponding
types and obtains the graph SG

[
(s÷SG($q)) (s÷SG($q)) q (q÷SG(s$))

]
. Now it

remains to derive the sequent SG
[
(s÷SG($q)) (s÷SG($q)) q (q÷SG(s$))

]
→ s:

SG(s) → s SG(q) → q

SG [(s ÷ SG($q)) q]• → s
(÷ →)

SG(s) → s

SG [(s ÷ SG($q)) s (q ÷ SG(s$))] → s
(÷ →)

SG(q) → q

SG
[
(s ÷ SG($q)) (s ÷ SG($q)) q (q ÷ SG(s$))

]
→ s

(÷ →)

It is not hard to notice that this derivation resembles that from Example 1.1.
The above derivation illustrates Theorem 3.1.

Example 4.2. Consider an HL-grammar EGr2 = 〈{a}, A3, �2〉 where a �2 A2

(A2, A3 are from Example 3.3). Then the graph a a belongs to
L(HGr). In order to show this, we need to relabel all edges of this graph by
types corresponding to current labels via �2 and then to check derivability of a
resulting sequent. In this example, we can only relabel a by A2. Now it suffices
to check derivability of a sequent

A2 A2 → A3

which is derivable according to Example 3.9.
Note that, if the graph in the antecedent contained not 2, but arbitrary

number (say, n) of A2-labeled edges outgoing from a single node, then the sequent
would be derivable as well: its derivation (from bottom to top) would consist of
n applications of (× →), of one application of (→ ÷) and of (→ ×), and finally
of n applications of (÷ →). It can be proved that no more graph sequents with
A2 in the antecedent and A3 in the succedent are derivable, so HGr recognizes
the language of stars.
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The definitions and principles of HL-grammars may look sophisticated; however,
their main idea is the same as for Lambek grammars: instead of generating
graphs by means of productions, an HL-grammar takes the whole graph at first,
then tries to relabel its edges via a correspondence � and to derive the resulting
sequent (with the succedent S) in HL.

Hypergraph Lambek grammars recognize hypergraph languages; thus they
represent an alternative tool to HRGs. As in the string case, the major problem
is describing the class of languages recognized by HL-grammars and comparing
it with the class of languages generated by HRGs. In the string case the following
theorem holds:

Theorem 4.1. The class of languages recognized by Lambek grammars coincides
with the class of context-free languages without the empty word.

This theorem has two directions. The first one (CFGs � LGs) was proved
by Gaifman in 1960 [1] while the other one (LGs � CFGs) was proved by
Pentus in 1993 [7]. The first part is more simple; its proof is based on the
Greibach normal form for context-free grammars (see Example 3.1). The second
part appeared to be a hard problem; Pentus proved it using delicate logical and
algebraic techniques including the free group interpretation and interpolants.

Summing up, in the string case context-free grammar and Lambek grammar
approaches are equivalent. Regarding the graph case our first expectation was
that similar things happen: HRGs and HL-grammars are equivalent disregarding,
possibly, some nonsubstantive cases. As in the string case, we can introduce the
analogue of the Greibach normal form for HRGs and study how to convert HRGs
in this normal form into HL-grammars. However, this was not clear at all whether
it is possible to perform the convertion of HL-grammars into equivalent HRGs:
the proof of Pentus exploits free group interpretation, which is hard to generalize
to graphs (we have no idea how to do this). Surprisingly, this convertion cannot
be done at all! We figured out that hypergraph Lambek grammars recognize a
wider class of languages than hypergraph context-free languages. Moreover, even
the pumping lemma and the Parikh theorem do not hold for HL-grammars.

4.1 Properties of HL-grammars

Let us formulate several formal properties of HL and of HL-grammars that will
help us later to prove the main theorem.

Theorem 4.2 (Cut Elimination). If graph sequents H → A and G → B are
derivable, and e0 ∈ EG is labeled by A, then G[e0/H] → B is also derivable.

The proof of this theorem can be found in [9]. This theorem directly implies

Proposition 4.1 (Reversibility of (× →) and (→ ÷))

1. If HL 
 H → C and e0 ∈ EH is labeled by ×(M), then HL 
 H[e0/M ] → C.
2. If HL 
 H → N ÷ D and e0 ∈ ED is labeled by $, then HL 
 D[e0/H] → N .
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Definition 4.3. A type A is called simple if one of the following holds:

– A is primitive;
– A = ×(M), EM = {m1, . . . ,ml} and lab(m1), . . . , lab(ml) are simple;
– A = N ÷ D, ED = {d0, . . . , dk}, lab(d0) = $, N is simple, and lab(d1), . . . ,

lab(dk) are primitive.

The next result is proved straightforwardly, but it is very useful in investigating
what can be recognized by an HL-grammar.

Theorem 4.3. Let HL 
 H → P where H is labeled by simple types and P is
either primitive or is of the form ×(K) where all edge labels in K are primitive.
Then there exists a simple derivation of H → P , i.e. such a derivation that

1. The rule (→ ×) either does not appear or is applied once to one of the leaves
of the derivation tree.

2. In each application of (÷ →) all the premises, except for, possibly, the first
one, are of the form q• → q, q ∈ Pr.

3. If a sequent H ′ → p within the derivation tree contains a type of the form
×(M) in the antecedent, then the rule, after which H ′ → p appears in the
derivation, must be (× →).

5 Power of Hypergraph Lambek Grammars

We start with showing that languages generated by HRGs can be generated
by HL-grammars as well, except for some nonsubstantive cases (related to the
empty word issue in the string case). In order to do this we use the weak Greibach
normal form for HRGs introduced in [10] (Definition 3.1). Let us denote the
number of isolated nodes in H by isize(H).

Definition 5.1. A hypergraph language L is isolated-node bounded if there is a
constant M > 0 such that for each H ∈ L isize(H) < M · |EH |.

Theorem 5.1. For each HRG generating an isolated-node bounded language
there is an equivalent HRG in the weak Greibach normal form.

This theorem is proved in [10]. Now, we can prove

Theorem 5.2. For each HRG generating an isolated-node bounded language
there is an equivalent hypergraph Lambek grammar.

Proof. Let an HRG be of the form HGr = 〈N,Σ,P, S〉. Applying Theorem 5.1
we can assume that HGr is in the weak Greibach normal form.

The proof is essentially similar to that in the string case. Consider elements
of N as elements of Pr with the same function type defined on them. Since HGr
is in the weak Greibach normal form, each production in P is of the form π =
X → G where G contains exactly one terminal edge e0 (say labG(e0) = a ∈ Σ).
We convert this production into a type Tπ := X ÷G[e0 := $]. Then we introduce
the HL-grammar HGr′ = 〈Σ,S, �〉 where � is defined as follows: a � Tπ. An
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illustration of this transformation is given in Example 3.2. If G = a•, then we
can simply write a � X instead.

The main objective is to prove that L(HGr) = L(HGr′). Firstly, we are
going to prove that T • k⇒ H for T ∈ N , H ∈ H(Σ) only if HL 
 f(H) → T
for some f : EH → Tp(HL) such that labH(e) � f(e) for all e ∈ EH (this would
imply L(HGr) ⊆ L(HGr′)). This is done by induction on k.

Basis. If k = 1, then π = T → H belongs to P and EH = {e0}. Then we can
derive HL 
 H[e0 := T ÷ H[e0 := $]] → T in one step using (÷ →).

Step. Let the first step of the derivation be of the form T ⇒ G (π = T → G ∈ P )
and let EG = {e0, . . . , en} where labG(e0) ∈ Σ and labG(ei) ∈ N otherwise. Let
Gi ∈ H(Σ) be a graph that is obtained from Ti = labG(ei) in the derivation
process (i = 1, . . . , n). Note that H = G[e1/G1, . . . , en/Gn]. By the induction
hypothesis, HL 
 fi(Gi) → Ti for such fi : EGi

→ Tp(HL) that labGi
(e) � fi(e).

Then fi can be combined into a single function f as follows: f(e) := fi(e)
whenever e ∈ Gi and f(e0) := Tπ. Then we construct the following derivation
(recall that Tπ = T ÷ G[e0 := $]):

T • → T f1(G1) → T1 . . . fn(Gn) → Tn

(G[e0 := $])[e0 := Tπ][e1/f1(G1), . . . , en/fn(Gn)] → T
(÷ →)

This completes the proof since G[e0 := Tπ][e1/f1(G1), . . . , en/fn(Gn)] = f(H).
Secondly, we explain why L(HGr′) ⊆ L(HGr). Note that types in the dic-

tionary of HGr′ are simple; thus for each derivable sequent of the form H → S
where H is over this dictionary we can apply Theorem 4.3 and obtain a deriva-
tion where each premise except for, possibly, the first one is an axiom. Now we
can transform a derivation tree in HL into a derivation of the HRG HGr: each
application of (÷ →) such that a type Tπ appears after it is transformed into an
application of π in HGr. Formally, we have to use induction again. �

This theorem also shows that hypergraph basic categorial grammars intro-
duced in [8] can be embedded in HL-grammars similarly. The rule (÷), which is
the main transformation in [8], is closely related to (÷ →).

Corollary 5.1. The membership problem for HL-grammars is NP-complete.

Proof. The problem is in NP since if a graph H belongs to L(HGr) given H and
HGr, then this can be justified by listing a function f from edges of H to types
from dict(HGr) and by a derivation tree of f(H) → S including descriptions
of all arising isomorphisms (here S is a distinguished type in HGr). Such a
certificate has polynomial size w.r.t. H.

The problem is NP-complete, because there is an NP-complete isolated-
node bounded language generated by an HRG (see [2]), and hence by some
HL-grammar too. �

5.1 Finite Intersections of HCFLs

It is known that multiplication in L (i.e. an operation A·B) may be considered as
some kind of conjunction of A and B such that we have both A and B combined
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in a single type. In the graph case, we can use multiplication (i.e. ×) in a more
general way than for strings: any graph structure can be put inside ×. What if
there is a way to imitate behaviour of a real conjunction using × and thus to
model intersections of languages? Below we investigate this idea.

Definition 5.2. An ersatz conjunction ∧E(T1, . . . , Tk) of types T1, . . . , Tk ∈
Tp(HL) (such that type(T1) = · · · = type(Tk) = m) is the type ×(H) where

1. VH = {v1, . . . , vm};
2. EH = {e1, . . . , ek};
3. attH(ei) = v1 . . . vm;
4. labH(ei) = Ti;
5. extH = v1 . . . vm.

Example 5.1. Let T1, T2, T3 be types with type equal to 2. Then their ersatz

conjunction equals ∧E(T1, T2, T3) = ×

⎛
⎜⎜⎝ (1) (2)

T1

T2

T3

⎞
⎟⎟⎠.

Using this construction we can prove the main result of this paper.

Theorem 5.3. If HGr′
1, . . . , HGr′

k are HRGs generating isolated-node bounded
languages, then there is an HL-grammar HGr such that L(HGr) = L(HGr′

1) ∩
· · · ∩ L(HGr′

k).

Proof. Following the proof of Theorem 5.2 we construct an HL-grammar HGri

for each i = 1 . . . , k such that L(HGr′
i) = L(HGri). We assume without loss

of generality that types involved in HGri and HGrj for i �= j do not have
common primitive subtypes (let us denote the set of primitive subtypes of types
in dict(HGri) as Pri). Let us denote HGri = 〈Σ, si, �i〉. Note that type(s1) =
· · · = type(sk) (otherwise L(HGr1)∩ · · · ∩L(HGrk) = ∅, and the theorem holds
due to trivial reasons). The main idea then is to do the following: given a�iTi, i =
1, . . . , k we join T1, . . . , Tk using ersatz conjunction. A distinguished type of the
new grammar will also be constructed from s1, . . . sk using ∧E . Then a derivation
is expected to split into k independent parts corresponding to derivations in
grammars HGr1, . . . , HGrk. However, there is a nuance that spoils simplicity
of this idea; it is related to the issue of isolated nodes. This nuance leads to a
technical trick, which we call “tying balloons”.

Let us fix (k − 1) new primitive types b1, . . . , bk−1 (“balloon” labels) such
that type(bi) = 1. For j < k we define a function ϕj : dict(HGrj) → Tp(HL) as
follows: ϕj(p) = p whenever p ∈ Pr; ϕj(p ÷ D) = ×(M) ÷ D′ where

1. D′ = 〈VD, ED, attD, labD, extDw〉 where [w] = VD \ [extD] (that is, w consists
of nodes that are not external in D).

2. Denote m = |w| = |VD| − |extD|, and t = type(p). Then M = 〈{v1, . . . , vt+m},
{e0, e1, . . . , em}, att, lab, v1 . . . vt+m〉 where att(e0) = v1 . . . vt, lab(e0) = p;
att(ei) = vt+i, lab(ei) = bj whenever i = 1, . . . ,m.
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Informally, we make all nodes in the denominator D external, while ×(M) “ties
a balloon” labeled bj to each node corresponding to a nonexternal one in D.
Presence of these “balloon edges” is compensated by modified types of the
grammar HGrk. Namely, we define a function ϕk : dict(HGrk) → Tp(HL)
as follows: ϕk(p) = p whenever p ∈ Pr; ϕk(p ÷ D) = p ÷ D′ where D′ =
〈VD, ED ∪ {e1, . . . , e(k−1)m}, att, lab, extD〉 such that:

1. m = |VD| − |extD|;
2. e1, . . . , e(k−1)m are new edges;
3. att|ED

= attD, lab|ED
= labD;

4. If v1, . . . , vm are all nonexternal nodes of D, then att(ei) = v�i/(k−1)� for
i = 1, . . . , (k − 1)m. In other words, we attach (k − 1) new edges to each
nonexternal node of D.

5. lab(ei) = bg(i), i = 1, . . . , (k − 1)m where g(i) = [i mod (k − 1)] if (k − 1) � i
and g(i) = k−1 otherwise. That is, for each bi, i = 1, . . . , (k−1) and for each
nonexternal node there is a bi-labeled edge attached to it.

Example 5.2. Let k = 3, and let T = p ÷
(

(1) (2)
$ q

)
. Then

– ϕ1(T ) = ×

⎛
⎜⎝

(1) (2)
(3) (4)

b1 b1
1 1p

⎞
⎟⎠ ÷

(
(1)

(3)
(2)

(4)$ q

)

– ϕ3(T ) = p ÷

⎛
⎜⎝ (1) (2)

b1 b2

1 1

b1 b2

1 1

$ q
⎞
⎟⎠

Now we are ready to introduce HGr: HGr = 〈Σ,S, �〉 where

– a � T ⇔ T = ∧E(ϕ1(T1), . . . , ϕk(Tk)) and ∀i = 1, . . . , k a �i Ti;
– S = ∧E(s1, . . . , sk).

The proof of L(HGr) = L(HGr1)∩ · · · ∩L(HGrk) is divided into two parts: the
⊆-inclusion proof and the ⊇-inclusion proof.

Proof of the ⊇-inclusion. A hypergraph H ∈ H(Σ) belongs to L(HGr1) ∩
· · · ∩ L(HGrk) if and only if there are relabeling functions fi : EH → Tp(HL)
such that labH(e) �i fi(e) for all e ∈ EH , and HL 
 fi(H) → si. Using these
relabelings we construct a relabeling f : EH → Tp(HL) as follows: if fi(e) = Ti,
then f(e) := ∧E(ϕ1(T1), . . . , ϕk(Tk)). It follows directly from the definition that
labH(e) � f(e). Now we construct a derivation of f(H) → ∧E(s1, . . . , sk) from
bottom to top:

1. We apply rules (× →) to all ersatz conjunctions in the antecedent. This
yields a graph without ×-labels, which has k “layers” belonging to grammars
HGr1, . . . , HGrk.
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2. We remodel a derivation of f1(H) → s1, which consists of (÷ →)-applications
only, using types of the form ϕ1(f1(e)), e ∈ EH that are present in f(H). The
only difference now is that nonexternal nodes do not “disappear” (recall that
a derivation is considered from bottom to top) but edges labeled by types with
× appear. Every time when × appears in the left-hand side we immediately
apply (× →), which results in adding one edge labeled by a primitive type
from Pr1 and in adding balloon edges to all nodes that would disappear in
the derivation of f1(H) → s1.
The result of this part of a derivation is that now all types corresponding
to HGr1 left the antecedent, except for the only s1-labeled edge attached
to the external nodes of the antecedent in the right order; besides, for each
nonexternal node in the antecedent there is now a balloon edge labeled by b1
attached to it.

3. We perform (k − 2) more steps similarly to Step 2. using types of the form
ϕi(fi(e)), 1 < i < k and thus remodeling a derivation of the sequent fi(H) →
si. Upon completion of all these steps the antecedent contains:

– Types of the form ϕk(fk(e)), e ∈ EH ;
– (k −1) edges labeled by s1, . . . , sk−1 resp. and attached to external nodes

of the antecedent;
– Balloon edges such that for each j ∈ {1, . . . , k − 1} and for each nonex-

ternal node there is a bj-labeled edge attached to it.
4. We remodel a derivation of fk(H) → sk using types of the form ϕk(fk(e)). A

situation differs from those at steps 2. and 3. because now nonexternal nodes
do disappear, and each time when this happens all balloon edges attached to
a nonexternal node disappear as well.
After this step, all balloon edges are removed, and we obtain a graph with
type(s1) nodes such that all of them are external, and with k edges labeled
by s1, . . . , sk such that their attachment nodes coincide with external nodes
of the graph. This ends the proof since ∧E(s1, . . . , sk) is exactly this graph
standing under ×.

Proof of the ⊆-inclusion. Let H be in L(HGr); then there is a function
Φ : EH → Tp(HL) such that Φ(e) = ∧E (ϕ1(T1(e)), , . . . , ϕk(Tk(e))) whenever
e ∈ EH , lab(e) �i Ti(e), and Φ(H) → S is derivable in HL. We aim to decompose
the derivation of this sequent into k ones in grammars HGr1, . . . , HGrk. In order
to do this we transform the derivation in stages:

Stage 1. Using Proposition 4.1 we replace each edge in Φ(H) labeled by a
type of the form ×(M) by M . A new sequent (denote it by H ′ → S) is derivable
as well.

Stage 2. The sequent H ′ → S fits in Theorem 4.3; hence there exists its
simple derivation. Let us fix some simple derivation of H ′ → S and call it Δ.

Furthermore we consider all derivations from bottom to top. In particular, if
we state “X is after Y” regarding some places X and Y in a derivation, then we
mean that X is above Y in the derivation tree (e.g. regarding Example 3.9 we
would say that (→ ×) is applied after (→ ÷)).

Stage 3. Design of types ϕi(T ) differs in the case i < k and i = k. Namely,
if ϕi(T ) for i < k participates in the rule (÷ →) in Δ, this affects only primitive
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types from Pri; on the contrary, participating of ϕk(T ) in (÷ →) affects types
from Prk but also balloon types b1, . . . , bk−1, which appear after rule applications
of (÷ →) and (× →) to types of the form ϕi(T ), i < k. This allows us to come
up with the following conclusion: if an application of the rule (÷ →) to a type
of the form ϕk(T ) preceeds a rule application of (÷ →) to a type of the form
ϕi(T ) for i < k, then we can change their order (note also that all nodes in the
denominator of ϕi(T ) are external). Thus Δ can be remade in such a way that
all rules affecting ϕk(T ) will occur upper than rules affecting ϕi(T ), i < k in a
derivation (and it will remain simple). Let us call a resulting derivation Δ′.

Stage 4. A denominator of a type ϕi(T ) for i < k contains edges labeled by
elements of Pri only. Since Δ′ is simple, applications of the rule (÷ →) to types
of the form ϕi(T ) and ϕj(T ′) for i �= j are independent, and their order can
be changed. This means that we can reorganize Δ′ in the following way (from
bottom to top):

1. Set i = 1.
2. Apply the rule (÷ →) to a type of the form ϕi(T ) and right away the rule

(× →) to its numerator.
3. If there still are types of the form ϕi(T ), repeat step 2;
4. If i = k − 1, go forward; otherwise, set i = i + 1 and go back to step 2.
5. Apply the rule (÷ →) to types of the form ϕk(T ).
6. Now, an antecedent of the major sequent (denote this sequent as G → S)

does not include types with ÷ or ×. S is of the form ×(MS), and Theorem
4.3 provides that the last rule applied has to be (→ ×); therefore, G = MS

and we reach the sequent MS → S. Consequently, G = MS consists of k edges
labeled by s1, . . . , sk resp.

Let us call this derivation Δ0. Observe that, after steps 1–4 in the above descrip-
tion, balloon edges with labels b1, . . . , bk−1 may occur in the antecedent of a
sequent (denote this sequent, which appears after step 4, as G′ → S). There is
only one way for them to disappear: they have to participate in the rule (÷ →)
with a type of the form ϕk(T ) (since only for such types it is the case that
their denominators may contain balloon edges). Note, however, that balloon
edges within the denominator of ϕk(T ) are attached only to nonexternal nodes.
Therefore, balloon edges in G′ can be attached only to nonexternal nodes as well.
Besides, if some balloon edge labeled by bi is attached to a node v ∈ VG′ \[extG′ ],
then the set of balloon edges attached to v has to consist of exactly k − 1 edges
labeled by b1, . . . , bk−1 (because in the denominator of ϕk(T ) exactly such edges
are attached to each nonexternal node). Finally, note that after step 5 all nonex-
ternal nodes disappear since MS contains exactly type(S) nodes, all of which are
external. This allows us to conclude that balloon edges have to be present on
all nonexternal nodes (otherwise, a nonexternal node cannot go away interacting
with a type of the form ϕk(T )). Informally, a balloon edge labeled by bi indicates
that a node was used by a type from the i-th grammar HGri, and ϕk(T ) verifies
that each nonexternal node is used by the i-th grammar exactly once.

Summarizing all the above observations, we conclude that, after steps 1–4,
there is exactly one balloon edge labeled by bi on each nonexternal node of G′
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for all i = 1, . . . , k −1 (and no balloon edge is attached to some external node of
G′). The only way for bi to appear attached to a node (recall that we consider
the derivation from bottom to top) is to participate in the rule (× →) after
the application of (÷ →) to a type of the form ϕi(T ). Now we are ready to
decompose Δ0 into k ones:

– For 1 ≤ i < k we consider step 2 of Δ0 with that only difference that we dis-
regard balloon edges and additional external nodes added in the construction
of HGr. Then the combination of rules (÷ →) and (× →) applied to a type
ϕi(T ) turns into an application of the rule (÷ →) to T in the HGri. Take
into account that the only type that is built of elements of Pri and remains
to step 6 is si attached to external nodes in the right order. Therefore, if we
remove from H ′ all edges not related to HGri and relabel each edge having
a label ϕi(T ) by T (call the resulting graph H ′

i), then H ′
i → si is derivable.

– For i = k everything works similarly; however, instead of step 2 we have to
look at step 5 and again not to consider balloon edges. Then an application
of (÷ →) to ϕk(T ) is transformed into a similar application of (÷ →) to T in
HGrk. After the whole process, only sk remains, so, if H ′

k is a graph obtained
from H ′ by removing edges not related to HGrk and changing each label of
the form ϕk(T ) by T , then H ′

k → sk is derivable.

Finally note that H ′
i = Φi(H) where Φi(e) = Ti(e). The requirement lab(e) �i

Ti(e) completes the proof, because thus H ∈ L(HGri) for all i = 1, . . . , k. �
The balloon trick is used in the proof to control that making all nodes in

denominators of ϕi(T ) external (i < k) does not lead to using, e.g., a nonexternal
isolated node in rules (÷ →) more than once.

Corollary 5.2. The language {SG(a2n2
), n > 0} can be generated by some HL-

grammar.

Proof. The string language L1 = ({anbn | n > 0})+ is context-free, and so is
L2 = {akbm1am1bm2am2 . . . bmk−1amk−1bl|k,mi, l > 0}. Consequently, languages
SG(L1) = {SG(w) | w ∈ L1} and SG(L2) are generated by some HRGs. The
language L3 = L1 ∩ L2 equals L3 = {(anbn)n | n > 0}, so SG(L3) is a finite
intersection of HCFLs and can be generated by some HL-grammar 〈{a, b}, S, �〉.
Finally, note that HGr := 〈{a}, S, �′〉 where a �′ T ⇔ a � T or b � T recognizes
the language L = {SG(a2n2

), n > 0}. �

Corollary 5.3. The pumping lemma and the Parikh theorem do not hold for
languages generated by HL-grammars.

Proof. The language {SG(a2n2
), n > 0} contradicts both theorems. �

6 Conclusion

In the string case, there is a disparity between context-free grammars and Lam-
bek grammars: while generating the same set of languages, the former can be
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parsed in polynomial time (the CYK algorithm) but the membership problem
for the latter is NP-complete (see [6]). Situation changes dramatically in the
hypergraph case: hypergraph Lambek grammars introduced in this paper have
the same algorithmic complexity as hyperedge replacement grammars but they
generate much more languages.

Of a particular note is that HL-grammars recognize more languages than
finite intersections of hypergraph context-free languages (due to article limits,
we shall not prove this here). Moreover, nontrivial upper bounds restricting the
power of HL-grammars (like the pumping lemma for HRGs) are unknown; it
is subject to be investigated further. In particular, it would be interesting to
answer the question whether languages generated by HL-grammars are closed
under intersection (Theorem 5.3 gives us a hope that this could be true). For
now there is no clear way for us how to prove this.

To conclude, HL-grammars represent a curious mechanism opposed to HRGs
in the underlying concepts. From the point of view of parsing, HL-grammar is
not a simple formalism; however, it is more powerful than HRGs and hence is
worth consideration. It is also important to notice that the hypergraph Lambek
calculus itself is an interesting logic, so we hope that in the future all these
formalisms will be studied deeper in their different aspects.

Acknowledgments. I thank my scientific advisor prof. Mati Pentus for fruitful dis-
cussions.
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Abstract. Graphs are used as a universal data structure in various
domains. Sets of graphs (and likewise graph morphisms) can be specified
using the graph logic GL of Graph Conditions (GCs). The evaluation of
a graph against a GC results in a satisfaction judgement on whether the
graph is specified by the GC. GL is as expressive as first-order logic on
graphs and infinitely many graphs may be evaluated against a given GC.
Therefore, a complete compact overview of how a given GC may be eval-
uated for varying graphs can support GC validation, testing, debugging,
and repair.

As a main contribution, we generate such an overview for a given GC
in the form of a complete finite set of diverse evaluations for varying asso-
ciated graphs formally given by so called Evaluation Trees (ETs). Each
of these ETs concretely describes how its associated graph is evaluated
against the given GC by presenting each evaluation step. The returned
ETs are complete since each possible ET subsumes one of the returned
ETs and diverse by not containing superfluous ETs subsuming smaller
ETs. We apply an implementation of our ET generation procedure in the
tool AutoGraph to a running example.

Keywords: Graph logic · Graph conditions · Logic coverage ·
Coverage criteria · Model generation · Validation · Debugging

1 Introduction

Graphs are used for the representation of e.g. UML-based system designs [18],
runtime models [9,11], and graph databases [17]. Languages such as OCL [19],
Nested Graph Conditions (GCs) [10], and query languages such as Cypher are
used to (a) specify sets of graphs stating e.g. consistency constraints, (b) specify
sets of graph morphisms stating e.g. application conditions in graph transfor-
mation systems, and (c) obtain, aggregate, and change information contained
in the graphs. We focus on GCs as a formal specification language with often
sufficient expressiveness yet few syntactical constructs, which are evaluated for
graphs (or graph morphisms) to determine satisfaction judgements.

By generating a complete compact overview of evaluations, we aim at improv-
ing support for the use cases of validation, testing, debugging, and repair of GCs
and their evaluation. GC validation refers to the process of ensuring that the
given GC specifies exactly the intended set of graphs (or graph morphisms).
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An implementation of GC satisfaction is correct when it evaluates a given GC
against a graph (or a graph morphism) returning the correct satisfaction judge-
ment (which is more difficult to achieve when employing optimizations). Test-
ing attempts to demonstrate non-validity (by providing graphs incorrectly (not)
specified by the GC) or in-correctness (by providing pairs of GCs and graphs
for which incorrect satisfaction judgements are returned). The goal of debugging
is to determine faults resulting in such counterexamples, which are then to be
resolved during repair.

We propose a novel generation procedure for concrete detailed representations
of how a GC is evaluated against a graph in the form of Evaluation Trees (ETs).
This generation procedure takes the syntactical representation of the GC at
all of its nesting levels into account. The returned ETs can e.g. be inspected
during validation or debugging, used as test cases, modified during repair, or
communicated to other tools such as theorem provers for further verification
steps. For example, inspecting the returned ETs allows (since the syntactical
representation of the GC is reflected in the ET) to locate faults in the GC by
determining those sub-GCs that are evaluated in the ET in an unintended way.
Moreover, our ET generation procedure supports the construction of use-case
oriented sets of ETs varying in the generated ETs by using different Evaluation
Strategys (ESs) such as the short circuit left to right ES.

Our ET generation procedure constructs for a GC a complete finite set of
diverse ETs where each ET concretely describes an evaluation for the GC for
some corresponding small graph constructed alongside. Completeness of the
returned ETs means that they also symbolically describe all ETs obtained for
arbitrary graphs. Diversity of the returned ETs means that any two such ETs
describe evaluations performing different evaluation steps. The completeness and
diversity of the generated ETs are important for the considered use cases to
ensure that a full yet minimal overview of possible evaluations is provided. The
ET generation procedure has been implemented in AutoGraph [21,23,24].

In Sect. 2, we recall the graph logic GL, in Sect. 3, we define ETs, in Sect. 4,
we define ESs capturing how ETs are constructed, in Sect. 5, we present our ET
generation procedure, in Sect. 6, we compare with related work, and, in Sect. 7,
we conclude and point out future work.

2 Graphs and Graph Logic

We consider finite typed directed graphs (short graphs) following their formal-
ization in [7].1 For our running example, we use the type graph TG in Fig. 1a.
In visualizations of graphs typed over TG (see Fig. 1b for an example), names
of nodes indicate their typing (e.g. the node a1 is of type :A) and edges are
only numbered (the type graph TG does not allow for confusion here since any

1 Type graphs and typed graphs can be understood as formalizations of UML class
diagrams and UML object diagrams.
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Fig. 1. Type graph, typed graph, GC, and ET for running example

two distinct edges in the type graph differ in source or target). We only employ
monomorphisms (short monos) between graphs, which map all nodes and edges
injectively.

We now recall the graph logic GL as introduced in [10], which allows for the
specification of sets of graphs and monos using the GCs of GL. Intuitively, for a
given host graph G, a GC over some subgraph H of G identified by some mono
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m : H G states the presence (or absence) of certain graph elements. For this
purpose, monos of the form f : H H ′ are used to describe how the mono m
should (or should not) be extended to a mono m′ : H ′ G of a larger subgraph
H ′. The combination of propositional operators, existential quantification, and
nesting results in an expressiveness equivalent to first-order logic on graphs [5].
Note that we use the abbreviation [[[m1,m2]]] = {i ∈ N | m1 ≤ i ≤ m2} in the
remainder for the set of all natural numbers from m1 to m2.

Definition 1 (Graph Conditions (GCs)). If H is a graph, then φ is a graph
condition (GC) over H, written φ ∈ GC(H), if one of the following items applies.

• φ = ¬φ′ and φ′ ∈ GC(H).
• φ = ∨(φ1 , . . . , φn) and ∀i ∈ [[[1, n]]]. φi ∈ GC(H).
• φ = ∃(f : H H ′, φ′) and φ′ ∈ GC(H ′).

Note that empty disjunction is defined using [[[1, 0]]] = ∅ as the base case and that
further GC operators such as �, ⊥, ∧, and ∀ can be derived but are omitted to
ease presentation. Moreover, in all subsequent definitions, we implicitly assume
analogous definitions for such derived operators as well.

We now define the two satisfaction relations of GL capturing (a) when a
mono m : H G into a host graph G satisfies a GC over H and (b) when a
graph G satisfies a GC over the empty graph ∅.

Firstly, a mono satisfies negations and disjunctions as expected. Moreover,
a GC of the form ∃(f : H H ′, φ′) is satisfied by m : H G when m can
be extended to a match m′ : H ′ G that is consistent with f by letting the
triangle m′ ◦ f = m commute such that the extended mono m′ then satisfies the
sub-GC φ′. In the remainder, we use the abbreviation T (f,m) = {m′ : H ′ G |
m′ ◦ f = m} for the set of all such monos m′ that may need to be checked for
satisfaction of φ′.

Secondly, a graph G satisfies a GC over the empty graph ∅ when the initial
morphism i(G) : ∅ G satisfies the given GC.

Definition 2 (Satisfaction of GCs). A mono m : H G satisfies a GC φ
over H, written m |= φ or m ∈ �φ�, if one of the following items applies.

• φ = ¬φ′ and ¬(m |= φ′).
• φ = ∨(φ1 , . . . , φn) and ∃i ∈ [[[1, n]]]. m |= φi .
• φ = ∃(f : H H ′, φ′) and ∃m′ ∈ T (f,m). m′ |= φ′.

A graph G satisfies a GC φ over the empty graph ∅, written G |= φ, if the initial
morphism i(G) : ∅ G satisfies φ.

For example, the GC from Fig. 1c is not satisfied by the graph from Fig. 1b
because (Reason 1) the :A node a1 has no exiting edge to some :B node. Another
explanation is that (Reason 2) the :A node a2 has the self-loop 1 or that it has
the self-loop 2. While our subsequently presented approach also covers the case
of satisfaction of a GC by some mono, we focus on the satisfaction of a GC by
some graph to ease our presentation.
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Later on, we employ the operation divGraphs introduced in [23,24] and imple-
mented in the tool AutoGraph, which generates a complete finite set of diverse
graphs satisfying a given GC defined over the empty graph.2

Fact 1 (Operation divGraphs [23,24]). If φ is a GC over the empty graph ∅,
then divGraphs(φ) = S is a set of graphs satisfying the following items.

• Soundness: every graph G in S satisfies φ.
• Completeness: every graph G satisfying φ has a subgraph G′ in S.
• Diversity: every graph G in S has no strict subgraph G′ in S.

The operation divGraphs may not always terminate returning a finite set S but
it (a) terminates when the GC is not satisfiable and (b) gradually computes the
set S allowing to obtain a partial result even when being aborted prematurely.

For example, divGraphs returns for the GC ∃(a b1 ,�) ∧ ∃(a 1 ,�) the two
graphs and where the two a nodes are (are not) over-
lapped.3 However, divGraphs returns for the GC from Fig. 1c only the empty graph,
which is contained in all graphs satisfying the considered GC. In general, this result
is obtained for all GCs of the form ¬∃(f : ∅ H,φ′) when H �= ∅ for any sub-GC
φ′. Hence, witnesses as generated by divGraphs do not always provide insights into
the entire GC as required for the use cases of validation, testing, debugging, and
repair discussed in the introduction.

3 Evaluation Trees

We now introduce Evaluation Trees (ETs) to systematically capture all viable
proofs for the (non-)satisfaction of some GC by some graph. From a tool-based
perspective, implementations of the satisfaction relation of GL from Definition 2
return for a graph and a GC a boolean result indicating whether the graph
satisfies the GC. However, such boolean results do not explain why (or why not)
the graph satisfies the GC.

ETs record the steps performed in an evaluation of a GC for some graph. In
particular, all monos considered during the evaluation are stored with the ETs
constructed for them recursively. We now define ETs as a simple data structure

2 The operation divGraphs used here is a simplification of the operation presented in
[23,24], which returned symbolic models representing all graphs satisfying a given
GC. Technically, we apply the operation from [23,24], remove additional information
with which the returned graphs are equipped and remove all graphs from that set
for which the set contains a subgraph already.

3 Note that the runtime of divGraphs is usually insignificant when it is applied offline
(i.e., at design time) to small hand-written GCs only (despite the need to solve the
NP-hard subgraph isomorphism problem when computing the possibly exponential
number of graph overlappings). If one or both of these assumptions are not satisfied in
an application context, further evaluations are required to ensure a practical runtime
in that setting and the property (b) from Fact 1 on partial results may become relevant.



Evaluation Diversity for Graph Conditions 127

only, to be able to consider various so called evaluation strategies later on, which
result in different ETs for a pair of a GC and a graph.

The structure of an ET for some GC corresponds to the structure of this
GC, which means that ETs are also constructed using the same three operators
for negation, disjunction, and existential quantification. Moreover, to denote
that a sub-GC has not been considered during an evaluation, we use the addi-
tional operator unevaluated (written U). Besides the propositional operators,
for the case of existential quantification, the ET for a GC ∃(f, φ′) is of the form
∃(f, φ′,mT,mF) where mT and mF are partial maps. These maps record a con-
sidered mono m′ : H ′ G from T (f,m) by mapping it to an ET constructed for
m′ and the sub-GC φ′. We use support(mT) and support(mF) to denote the sets
of monos mapped by mT and mF. The map mT maps those considered monos
that satisfy the GC and mF maps those considered monos that do not satisfy
the GC. While GCs are defined over their context graph H, ETs are defined over
the monos m : H G of these context graphs into the host graph, which are
also used in the satisfaction relation of GCs for monos.

Definition 3 (Evaluation Trees (ETs)). If m : H G is a mono, and φ
is a GC over H, then γ is an evaluation tree (ET) over m and φ, written γ ∈
ET(m,φ) , if one of the following items applies.

• φ = ¬φ′, γ = ¬γ′ and γ′ ∈ ET(m,φ′).
• φ = ∨(φ1 , . . . , φn), γ = ∨(γ1 , . . . , γn), and ∀i ∈ [[[1, n]]]. γi ∈ ET(m,φi).
• φ = ∃(f : H H ′, φ′), γ = ∃(f : H H ′, φ′,mT,mF), mT and mF are finite

partial maps of monos m′ ∈ T (f,m) to ETs γ′ ∈ ET(m′, φ′), support(mT) ⊆
�φ�, and support(mF) ⊆ �¬φ�,

• γ = U(φ).

Moreover, γ is an ET over a graph G and a GC φ over the empty graph ∅, if γ
is an ET over the initial morphism i(G) : ∅ G and φ.
Lastly, γ is compact4, written compact(γ), if the union of all support sets of the
mT and mF components of all sub-ETs ∃(f, φ′,mT,mF) of γ is jointly epimor-
phic.

ETs are similar to satisfaction trees from [22] but support the additional uneval-
uated operator U to identify sub-GCs that have not been evaluated.

For our running example, consider the compact ET from Fig. 1d, in which
the nesting of the ET and the mappings of mT and mF components are depicted
using nodes and arrows. The same ET is given in Fig. 1e as γ1 in its formal
syntax where all mF components are empty. The depicted ET records the two
matches a1 and a2 of the a node and records for a2 two matches of the loop
on the a node and two matches for edges exiting the a node to the b nodes b1
and b2.

4 Intuitively, compactness means that all graph elements of the host graph G have
been matched by some considered mono during the evaluation.
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Subsequently, we use the standard three-valued propositional Kleene logic
using the base set T = {F,U,T} where, in addition to the rules of two-valued
logic, the rules ¬U = U, U ∨ F = U, U ∨ U = U, and U ∨ T = T are used.5

To be able to define correct evaluation strategies constructing ETs in the
next section, we now define the satisfaction judgement given by an ET.6 In fact,
this satisfaction judgement is obtained by interpreting the ET as a three-valued
logic formula where (a) each top-level sub-ET of the form ∃(f, φ′,mT,mF) is
an atomic proposition that is satisfied iff7 mT contains at least one mapping of
a mono m′ to some ET representing a proof for the sub-GC φ′ and (b) each
top-level sub-ET of the form U(φ′) is an atomic proposition with value U.

Definition 4 (Operation sat). If γ is an ET, then τ ∈ T is the satisfaction
judgement of γ, written sat(γ) = τ , if one of the following items applies.

• γ = ¬γ′ and τ = ¬sat(γ′).
• γ = ∨(γ1 , . . . , γn) and τ = ∨{sat(γi) | i ∈ [[[1, n]]]}.
• γ = ∃(f, φ,mT,mF) and τ = (mT �= ∅).
• γ = U(φ) and τ = U.

In visualizations of ETs as in Fig. 1d, we depict the satisfaction judgement for
each sub-ET by using a green solid border, a red dashed border, and an orange
dotted border (used in ETs in later figures) for the cases of T (satisfaction), F
(non-satisfaction), and U (unknown satisfaction).

To be able to define diversity later on for a set of ETs, we define that an
ET γ1 is contained in an ET γ2 with the same satisfaction judgement, when
(a) all evaluation steps showing satisfaction at some level in γ1 have been per-
formed correspondingly when deriving γ2 and (b) all evaluation steps showing
non-satisfaction at some level in γ2 have been performed correspondingly when
deriving γ1 . The two ETs may be constructed for different host graphs G1 and
G2 but are constructed for the same GC φ.

Definition 5 (Containment of ETs). If φ is a GC over H, γ1 is an ET over
m1 : H G1 and φ, γ2 is an ET over m2 : H G2 and φ, and sat(γ1 ) =
sat(γ2 ), then γ1 is contained in γ2 , written (m1, γ1 ) ≤ (m2, γ2 ) or simply γ1 ≤
γ2 , if one of the following items applies.

• ∀i ∈ {1, 2}. γi = ¬γ′
i and (m1, γ

′
1 ) ≤ (m2, γ

′
2 ).

• ∀i ∈ {1, 2}. γi = ∨(γi
1 , . . . , γi

n) and ∀j ∈ [[[1, n]]]. (m1, γ
1
j ) ≤ (m2, γ

2
j ).

• ∀i ∈ {1, 2}. γi = ∃(f, φ′,mi
T,mi

F), there is an injective function FT :
m1

T m2
T such that ∀(m, γ) ∈ m1

T. (m, γ) ≤ FT(m, γ), and there is an injec-
tive function FF : m2

F m1
F such that ∀(m, γ) ∈ m2

F. FF(m, γ) ≤ (m, γ).
5 Intuitively, the operations of this three-valued logic can be computed based on

numerical values using the bijective homomorphism 〈·〉, which maps the elements
of the base set T as follows: 〈F〉= − 1, 〈U〉=0, and 〈T〉=1. Then, negation is trans-
lated into the multiplication with −1 and disjunction is translated into taking the
maximum of its arguments. E.g. ¬(U ∨ T) = F because −1 × max(0, 1) = −1.

6 The operation sat is an adaptation of the predicate |=ST from [22] accommodating
for the additional unevaluated operator U.

7 The returned satisfaction judgement for ∃(f, φ, mT, mF) is either T or F.
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• γ1 = γ2 = U(φ′).

Also, γ1 < γ2 if γ1 ≤ γ2 but not γ2 ≤ γ1 .

For our running example, the ET from Fig. 1d contains for example an ET where
the match of a2 has not been recorded since already the match of a1 was sufficient
to proof satisfaction of the existential quantification ∃(a , ·).

We may want to construct for some ET some minimal contained ET (with the
same satisfaction judgement) as a minimal representation. However, firstly, such
a minimal representation would not be unique due to e.g. different monos mapped
by mT components of sub-ETs. Secondly, allowing empty mF components of sub-
ETs allows for ETs with little value since (for H �= ∅) ¬∃(f : ∅ H,φ, ∅, ∅) could
be a minimal such ET for any mono m : ∅ G. Both of these points are discussed
in more detail when we define evaluation strategies and our synthesis problem.

4 Evaluation Strategies

We now define Evaluation Stratigies (ESs) as operations that generate (for a
given graph and GC) a single ET (possibly) nondeterministically or, as formal-
ized below, a possibly non-singleton set of ETs. ESs ensure (for soundness) that
the correct satisfaction judgement can be obtained from each generated ET using
the operation sat and (for completeness) that non-satisfaction is demonstrated
by considering all possible matches. As these requirements are stated for all
inputs, they are enforced for all nesting levels of resulting ETs.

Definition 6 (Evaluation Strategy (ES)). An evaluation strategy (ES) es
determines for a mono m : H G and a GC φ over H a non-empty set T
of ETs γ over m and φ. Formally, es is a function containing elements from
{(m,φ) �→ T | m : H G,φ ∈ GC(H), T �= ∅, T ⊆ ET(m,φ)}. Moreover, each
ES es must satisfy the following two properties.

• Soundness: Returned ETs must provide the correct satisfaction judgement
using sat w.r.t. GC satisfaction. Formally, γ ∈ es(m,φ) implies (m |= φ iff8

sat(γ)).
• Completeness: For a non-satisfied ∃(f, φ) all possible monos must be

checked. Formally, ∃(f, φ, ∅,mF) ∈ es(m,∃(f, φ)) implies support(mF) =
T (f,m).

Lastly, an ES es is deterministic, if es(m,φ) = T is a singleton for each input
(m,φ).

We now introduce three different ESs, which are relevant for different reasons.
These three ESs differ in their handling of disjunction and in the extent to which
matches are recorded for existential quantification.

The all circuit ES9 evaluates (a) a GC ∨(φ1 , . . . , φn) by constructing an
ET for each of the sub-GCs φi and (b) a GC ∃(f, φ) for some match m by
8 Since m |= φ is either T or F, this also has to hold for sat(γ).
9 This ES is given by the operation cst in [22].
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constructing an ET γ for each match m′ ∈ T (f,m) recording each pair (m′, γ)
in mT or mF depending on sat(γ). For example, this ES returns the ET from
Fig. 1d. Also, this ES was used for graph repair in [22] where the obtained ET
represents how (or how not) a graph G satisfies a consistency constraint. Lastly,
e.g. for early debugging steps, this ES can be more appropriate by returning a
single ET for a given graph in contrast to the subsequent non-deterministic ESs.

The short circuit left to right ES is relevant as it corresponds to implemen-
tations of the GC satisfaction relation in tools such as AutoGraph avoiding
unnecessary evaluation steps. It evaluates (a) a GC ∨(φ1 , . . . , φn) by construct-
ing an ET for the sub-GCs in the order of their appearance from left to right
and stopping when for some GC φi an ET γ with sat(γ) = T is constructed
using the ET U(φj ) for each subsequent sub-GC φj and (b) a GC ∃(f, φ) for a
match m by constructing an ET γ for the matches m′ ∈ T (f,m) recording each
pair (m′, γ) in mT or mF depending on sat(γ) until either all matches have been
considered or some pair has been added to mT.

Lastly, the shortest circuit ES generates no superfluous evaluation steps for
disjunctions or superfluous pairs (m′, γ) in mT or mF components. It evaluates
(a) a GC ∨(φ1 , . . . , φn) by constructing an ET for each sub-GC when these
are all not satisfied or only constructs an ET for one of the satisfied sub-GCs
using the ET U(φj ) for all other sub-GCs and (b) a GC ∃(f, φ) for a match
m by constructing an ET γ for all matches m′ ∈ T (f,m) when the GC is not
satisfied and constructing a single ET for a single match from T (f,m) when the
GC is satisfied. This ES is of particular relevance since the resulting ETs can be
understood as minimal proofs for (non-)satisfaction, which are therefore suitable
for manual inspection in the context of e.g. validation.

The described behavior of these three ESs is specified by means of Evalua-
tion Modes (EMs) given by regular expressions over T = {F,U,T}. A word w
generated by such an EM then specifies that the ith ET constructed for some
disjunction or existential quantification must have the satisfaction judgement
given by the ith element of w.

Definition 7 (Evaluation Mode (EM)). An evaluation mode (EM) em is a
regular expression over T = {F,U,T}. Moreover, we define the EMs AC, SCLR,
and SC.

• The all circuit evaluation mode AC = (T + F)∗ requires the execution of all
checks.

• The short circuit left to right evaluation mode SCLR = F∗ + F∗TU∗ requires
that checks are executed from left to right stopping when the first T result is
obtained not executing subsequent checks.

• The shortest circuit evaluation mode SC = F∗+U∗TU∗ requires that all checks
are executed to show non-satisfaction or to execute a single check to show
satisfaction.

Finally, S(em, n) = {(w, τ) | w ∈ em ∧ length(w) = n ∧ τ = (∃i. wi = T)} is the
set of words from em of length n equipped with their satisfaction judgement τ .
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We now define the three ESs for the three EMs using the operation eval.1011

Definition 8 (Operation eval). If em ∈ {AC,SCLR,SC} is an evaluation
mode, m : H G is a mono, φ is a GC over H, τ �= U, and φ em,τ,m γ via the
rules from Fig. 2, then γ is an ET for em, m, and φ, written γ ∈ eval(em)(m,φ).

We derive the following basic properties as a characterization for eval(AC),
eval(SCLR), and eval(SC).

Theorem 1 (Characterization). eval(AC), eval(SCLR), and eval(SC) are ESs
and return only ETs with boolean satisfaction judgement. Of these three ESs,
only eval(AC) is deterministic.

Proof.

• We show that eval(AC), eval(SCLR), and eval(SC) are ESs (essentially non-
emptiness of the resulting set of ETs) by induction on the structure of the
given GC showing that there is always at least one ET constructed. Moreover,
soundness is also shown by induction along the same lines and completeness
follows directly from the definitions of each of the ESs.

• We show that eval(AC) is deterministic also by induction on the structure of
the given GC showing that there is always a unique ET constructed.

• We show that eval(SCLR) and eval(SC) are not deterministic since they gen-
erate more than one ET for ∃(a,�) and a1 a2 .

• We show that every ET obtained using eval(AC), eval(SCLR), and eval(SC)
has a boolean satisfaction judgement by induction on the structure of the
given GC showing that U can only be obtained for a direct sub-GC of a dis-
junction but that the disjunction then results again in a boolean satisfaction
judgement.

While we focus on the three described ESs, there are further ESs. For example,
disjunctions may be evaluated in random order or from right to left, existential
quantification is evaluated bottom up in e.g. [3], and matches are determined
based on the given graph and profiling information in e.g. [2].

5 Evaluation Generation

As explained before, we want to construct a set of ETs for a given GC. We now
introduce the notion of evaluation diversity to capture sets of ETs containing no
superfluous elements that are covered by other ETs of that set.

Definition 9 (Evaluation Diversity). A set of ETs S is diverse, written
diverse(S), if there are no distinct ETs γ1 and γ2 in S satisfying γ1 ≤ γ2 .
10 To simplify our presentation, we also employ the regular expression based specifica-

tion via (w, τ) ∈ S(em, n) for existential quantification. We thereby restrict ourselves
to finite sets of monos T (f, m), which is guaranteed e.g. for finite host graphs. How-
ever, the used rules can easily be relaxed to handle also infinite match sets T (f, m).

11 Steps in Fig. 2 are i.a. labeled with the satisfaction judgement τ for the derived ET.
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Fig. 2. Rules for operation eval from Definition 8 generating an ET for a match. The
rules are given in structural operational semantics (SOS) notation. The name, the
optional side-conditions, the optional premises (statements on the defined relation),
and the conclusion (a statement on the defined relation) are given left, right, above,
and below the horizontal line.

Fig. 3. Rules for operation gc2ep from Definition 12 generating an Evaluation Pattern
(EP) for a GC

Fig. 4. Rules for operation ep2et from Definition 14 generating an ET for an EP
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Note that the ESs eval(SCLR) and eval(SC) do not always return diverse sets
of ETs already (e.g. ∃(a,�) leads to a non-diverse set of two ETs for ).
Moreover, in the use cases discussed in the introduction, no concrete graph G is
given as required for a construction of ETs using one of these ESs.

We now state our main synthesis problem to be solved subsequently. In par-
ticular, we rely on diversity to rule out superfluous ETs, compactness to rule
out unnecessarily large underlying graphs, and completeness to ensure that all
possible evaluations are covered (thereby covering evaluations demonstrating
satisfaction as well as non-satisfaction).

Definition 10 (Synthesis Problem). Given an ES es and a GC φ, construct
for φ some set S of ETs (for possibly varying graphs) such that S is finite, S is
diverse, S contains only compact ETs, and S is complete in the sense that each
ET derivable using es contains some ET from S.

Note that any solution S to this problem is unique.

Lemma 1 (Uniqueness of Solutions). Any solution S to the synthesis prob-
lem from Definition 10 is unique up to isomorphism of the underlying graphs.

Proof. Let S′ be another solution and let w.l.o.g. γ1 be an ET from S for which
no ET γ2 ∈ S has an isomorphic underlying graph. By correctness of S′ there is
some γ3 ∈ S′ with γ3 ≤ γ1 . Then either γ1 ≤ γ3 or γ3 < γ1 . If γ1 ≤ γ3 , then
both underlying graphs are isomorphic since γ1 and γ3 are compact implying
a contradiction. If γ3 < γ1 , then there is some γ4 ∈ S with γ4 ≤ γ3 implying
γ4 ≤ γ1 , which contradicts diversity of S.

We now present our approach to solve the presented synthesis problem.
As a first step, we define EPs, which describe abstractly evaluations for a

given GC. For disjunctions, it contains for each sub-GC an EP, which is U(φ)
for the case of an unevaluated sub-GC φ. For existential quantifications, it may
state that during evaluation for some match m (a) no match m′ ∈ T (f,m) can
be found using the ∃0 operator, (b) that the GC is satisfied since some match
m′ ∈ T (f,m) can be found satisfying the sub-GC along the lines of the sub-EP
using the ∃T operator, or (c) that the GC is not satisfied and that some match
m′ ∈ T (f,m) can be found not-satisfying the sub-GC along the lines of the
sub-EP using the ∃F operator.12

Definition 11 (Evaluation Patterns (EPs)). If H is a graph, then ξ is an
evaluation pattern (EP) over H, written ξ ∈ EP(H), if one of the following items
applies.

• ξ = ¬ξ′ and ξ′ ∈ EP(H).
• ξ = ∨(ξ1 , . . . , ξn) and ∀i ∈ [[[1, n]]]. ξi ∈ EP(H) ∪ {U(φ) | φ ∈ GC(H)}.
• ξ = ∃0(f : H H ′, φ) and φ ∈ GC(H ′).

12 Note that for (c), there may be in general multiple ways as to why a sub-GC is not
satisfied and fixing one particular reason for all matches would not allow for a set of
ETs that is complete in the sense of Definition 10.
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• ξ = ∃T(f : H H ′, φ, ξ′), φ ∈ GC(H ′), and ξ′ ∈ EP(H ′).
• ξ = ∃F(f : H H ′, φ, ξ′), φ ∈ GC(H ′), and ξ′ ∈ EP(H ′).

We now define the operation gc2ep for constructing a set of EPs for a given
EM and GC. The parameter τ captures the satisfaction judgement that would
result in evaluations following the generated EP and is required for the rules
ExistsF and ExistsT to construct suitable sub-EPs. Note that this operation
also depends on the given EM for the case of disjunction.

Definition 12 (Operation gc2ep). If em ∈ {AC,SCLR,SC} is an evaluation
mode, φ is a GC over H, ξ is an EP over H, τ �= U, and φ em,τ ξ via the
rules from Fig. 3, then ξ is an evaluation pattern for em and φ, written ξ ∈
gc2ep(em, φ).

For our running example, gc2ep returns the EPs given in Table 1a for the GC
from Fig. 1c where, for improved readability, sub-GCs are replaced by the symbol
−. For instance, (a) the EP ξ4 states that a satisfying match for a must be found
such that matches for a 1 and a b1 can be found and (b) the EP ξ7 states
that only non-satisfying matches for a are found where at least one of them
cannot be extended to a match of a 1 but to a match of a b1 .

As a next step, we determine using the operation induced a GC for a given EP.
For each nesting level of existential quantification, we basically obtain a valuation
for the next-level existential quantifications as to whether a match can be found
for them. Such a valuation is given as a conjunction of positive/negative literals
of the form ∃(f, φ)/¬∃(f, φ). Also, EPs of the form U(φ′) inside a disjunction do
not contribute to the valuation (technically, they are replaced by � disappearing
in the resulting conjunction).

Definition 13 (Operation induced). If ξ is an EP over a graph H, then φ is
the GC over H induced by ξ, written induced(ξ) = φ, if one of the following
items applies.

• ξ = ¬ξ′ and φ = induced(ξ′).
• ξ = ∨(ξ1 , . . . , ξn), φ = ∧(φ1 , . . . , φn), and ∀i ∈ [[[1, n]]]. φi = induced(ξi).
• ξ = ∃0(f, φ′) and φ = ¬∃(f,�).
• ξ = ∃T(f, φ′, ξ′) and φ = ∃(f, induced(ξ′)).
• ξ = ∃F(f, φ′, ξ′) and φ = ∃(f, induced(ξ′)).
• ξ = U(φ′) and φ = �.

For our running example, induced returns the GCs given in Table 1b for the
EPs from Table 1a where φ′

i is obtained from ξi . While induced does not depend
on an EM, it is applied later on only for the EPs constructed for the EM at
hand.

As a next step, we resolve the induced GCs representing nested valuations by
applying divGraphs to obtain for each induced GC a sound, complete, and diverse
set of graphs according to Fact 1. Note that EPs may not be realizable in the
sense that their induced GC is not satisfiable e.g. the GC ∃(a ,�)∧∃(a ,�) results
in the EP ∃T(a ,�,�) ∧ ∃0(a ,�), which induces the GC ∃(a ,�) ∧ ¬∃(a ,�)
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Table 1. Intermediate and final results for running example
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for which divGraphs returns the empty set. For our running example, divGraphs
returns only singleton sets (because only for φ′

4 two graphs are overlapped even
resulting in this case in a single overlapping) of graphs given in Table 1c (left
column) where Gi is the single graph obtained for φ′

i .
As a last construction step, we derive ETs γ using the operation ep2et for an

EP ξ and one of the graphs G obtained for it. This operation is similar to an
ES since it constructs an ET for a mono (the initial morphism i(G)) and a GC
(implicitly contained in ξ). However, it is no ES since it depends on the given EP
restricting the ETs to be constructed and does not depend on an EM for that
purpose. Also note that the constructed ETs do not satisfy the completeness
property of ESs since for a sub-GC that is not satisfied as specified using an EP
∃F(f, φ′, ξ′) only a single mono is recorded in the mF component.

Definition 14 (Operation ep2et). If m : H G is a mono, ξ is an EP over
H, τ �= U, and ξ τ,m γ via the rules from Fig. 4, then γ is an ET for m and ξ,
written γ ∈ ep2et(m, ξ).

For our running example, ep2et returns the ETs given in Table 1c (right column)
where γi is obtained from ξi and Gi. Below of Definition 2, Reason 1 for non-
satisfaction covered the ETs γ6 and Reason 2 for non-satisfaction covered the ETs
γ3 . Finally, note that all seven ETs are not mutually contained in each other
and that the ETs γ4 and γ5 are contained in the ET from Fig. 1d (matching i.a.
a to a2 and a1, respectively).

The operation divGraphs does not explain why a certain graph is returned in
terms of connecting the graph elements in such a returned graph with the graph
elements occurring in graphs from the given GC. As a consequence, there may
be an ambiguity when constructing an ET for such a returned graph using ep2et
resulting in sets of ETs that are not diverse. For example, the GC ∃(a1 a2 ,�)
results in the EP ∃T(a1 a2 ,�,�), which induces the GC ∃(a1 a2 ,�) for which
divGraphs only returns the graph a1 a2. For this graph, ep2et then constructs two
ETs γ1 and γ2 in which a1 and a2 are mapped to a1 and a2 in γ1 and to a2
and a1 in γ2 . Hence, due to this simple swapping, these two ETs are mutually
contained in each other via ≤. To solve this problem, we incrementally remove
ETs violating diversity once the ETs have been constructed.

Definition 15 (Generation of ETs). If em ∈ {AC,SCLR,SC} is an EM, and
φ is a GC over ∅, then genEvaluations(em)(φ) is some largest diverse set of
ETs contained in {γ | ξ ∈ gc2ep(em, φ), φ′ = induced(ξ), G ∈ divGraphs(φ′),
γ ∈ ep2et(i(G), ξ)}.

Note that genEvaluations(em)(φ) in fact defines a unique result due to Lemma 1.
To summarize for our running example, genEvaluations constructs the ETs

from Table 1c (right column) as follows: AC leads to {γ1 , γ2 , γ4 , γ5 , γ7}, SCLR
leads to {γ1 , γ3 , γ5 , γ7}, and SC leads to {γ1 , γ3 , γ6 , γ7}.

Finally, we state that the presented operation genEvaluations(em) correctly
constructs the desired set of diverse ETs.
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Theorem 2 (Solution to Synthesis Problem). If em ∈ {AC,SCLR,SC} is
an EM, then genEvaluations(em) solves the synthesis problem from Definition 10
for eval(em).

Proof.

• genEvaluations(em)(φ) is a set of ETs by construction.
• Finiteness of genEvaluations(em)(φ): each of the computation steps pro-

duces at most a finite number of results.
• Diversity of genEvaluations(em)(φ): due to the last step of constructing the

maximal diverse subset.
• Compactness of ETs in genEvaluations(em)(φ): fix some ET γ over some

m : H G. Each graph element in the host graph G is created to find a
certain mono during the construction of γ. If the mono actually constructed
later on using ep2et matches a different subgraph, then the host graph G
would not have been minimal contradicting diversity of the result of divGraphs.

• Completeness of genEvaluations(em)(φ): fix em ∈ {AC,SCLR,SC}. Fix
γ ∈ eval(em) over some m : ∅ G. Construct the EP ξ from γ by replac-
ing ∃(f, φ,mT,mF) by (a) ∃0(f, φ) when mT = mF = ∅, (b) ∃T(f, φ, ξ′) when
(m, γ′) ∈ mT and ξ′ is obtained by γ′, and (c) ∃F(f, φ, ξ′) when mT = ∅
and (m, γ′) ∈ mF and ξ′ is obtained by γ′. Note that there may be differ-
ent EPs here, which is to be expected since multiple generated ETs may be
contained in some given ET obtained using eval(em). The constructed EP ξ
would be constructed as well using gc2ep(em, φ). The resulting induced GC
φ′ = induced(ξ) for which divGraphs(φ′) returns the graph G′ containing all
elements matched by γ. Then, ep2et(m, ξ) constructs an ET γ′ that matches
elements in G′ as γ matches elements in G. Obviously, γ′ is compact since G′

was constructed to contain only the matched elements. Lastly, even if some
other ET γ′′ would be contained in γ′ resulting in its removal, γ′′ could be
used as the witness to be determined instead of γ′.

However, divGraphs may not terminate when applying genEvaluations, which only
allows to generate ETs gradually as graphs are gradually generated by divGraphs
in this case. Also, a set of two ETs constructed for different EPs is always diverse.
Hence, even when divGraphs does not terminate for all induced GCs, the ETs con-
structed for induced GCs where divGraphs terminates are all ETs to be actually
returned by genEvaluations.

6 Related Work

We are unaware of other approaches attempting to derive complete sets of diverse
evaluations. However, there is a plethora of existing graph generation approaches
such as [16,26,28]. In these approaches, quantitative diversity measures [8,25,27]
(capturing diversity of a set of graphs using a numerical value) are employed as
a proxy of quality but the best measure to be used is difficult to determine
in advance. In [16], the user must provide graph transformation rules, which
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are then used to generate graphs. Similarly, in [26] the user provides a graph
in which possible graph transformations are encoded by annotating elements
suitably. In [28], graphs representing graph database instances are generated
by using distributions describing the likelihood of nodes and edges of certain
types. Moreover, in [13,14], models are generated using logic-based (for relational
models) and algebraic techniques (for specific graphs). Similarly, the Alloy
tool [12] generates models of a relational specification using a bounded model
size assumption, which can be understood as graphs. A common challenge for
these approaches is to minimize the number of computations not leading to
outputs. For example (a) when the set of model candidates is much larger than
the set of actual models satisfying all constraints in concrete settings or (b) when
a diverse subset is to obtained by generating a large number of graphs and then
selecting a subset of it that is optimal w.r.t. diversity. In contrast, our own model
generation procedure from [23] generates a complete finite set of diverse graphs
for a given GC. On the one hand, the graphs generated by this procedure are
not as detailed as the ETs computed here and the graph generation procedure
focuses only on the GC semantics returning the same graphs for equivalent GCs
and does not always take the entire GC into account possibly returning the same
graphs when sub-GCs are replaced. On the other hand, as for the generated ETs
in our present approach, the GC itself characterizes qualitative diversity as a
proxy.

In white-box software testing, code coverage is considered. In particular,
propositional logic-based coverage criteria such as MCDC/ACC [1,4] are used
e.g. in avionics and automotive to describe specific sets of evaluations of propo-
sitional logic formulas. That is, they describe tests that are to be constructed for
such a formula in the form of valuations of its atomic propositions. For example,
predicate coverage requires a satisfying and a non-satisfying valuation, combi-
natorial coverage requires all combinations of valuations of atomic propositions,
while MCDC/ACC criteria require that each atomic proposition affects the out-
come once. In our approach, we extend ACC to the case of nesting in GCs
but restrict valuations (given by induced GCs) of atomic propositions (given by
existential quantifications) to those actually evaluated, covering therefore also
short or shortest circuit evaluations. Similar to propositional logic coverage, tool
support for generating tests covering nested control flow graphs have been dis-
cussed in [6] but are limited due to the expressiveness of considered programming
languages.

7 Conclusion and Future Work

We have introduced a generation procedure, as implemented in the tool Auto-
Graph, taking a Graph Condition (GC) as input and generating a complete
finite set of diverse evaluations given by Evaluation Trees (ETs). The returned
ETs provide a suitable finite overview of the semantics of the GC capturing
the evaluation steps of e.g. manual proofs or of standard implementations using
different Evaluation Strategies (ESs). The generated ETs are complete by sym-
bolically capturing all possible evaluations of the given GC against any possible
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graph while also providing concrete evaluations for small graphs constructed
along with them. Moreover, the returned ETs are diverse by describing suffi-
ciently different evaluations. Our ET generation procedure hence improves sup-
port for the use cases of validation, testing, debugging, and repair of GCs and
their evaluation.

Besides applying our proposed approach to continue our work on model based
testing of graph databases from [15] and on graph repair w.r.t. consistency con-
straints from [22], we are working on techniques (a) to determine whether an ES
is able to execute a particular ET, (b) to generate even more fine-grained evalu-
ations incorporating the process of pattern matching when required, and (c) to
systematically generate larger ETs for a given GC. Moreover, we want to extend
our approach for the use cases of validation, testing, debugging, and repair of
graph transformation rules [7] and their application. Lastly, our approach may
be integrated with e.g. OCL using existing translations [20] between OCL and
graph conditions.
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Abstract. Efficient querying of large graph structures is a problem at
the heart of several application domains such as social networks and
model driven engineering. In particular in the context of model driven
engineering, where the same query is executed frequently over an evolv-
ing graph structure, incremental techniques based on discrimination net-
works such as RETE nets are a popular solution. However, the construc-
tion of adequate RETE nets for a specific problem instance is a challenge
in and of itself. In this paper, we propose an approach to RETE net con-
struction for queries in the form of simple graph patterns that considers
not only the structure of the query, but also the structure of the graph the
query is being executed over in order to improve the net’s performance
with respect to execution time and memory consumption. Furthermore,
we suggest a technique for adapting the net structure to changing char-
acteristics of the underlying graph. We evaluate the presented concepts
empirically based on queries and data from two independent benchmarks.

1 Introduction

Efficient querying of large graph structures is a challenge at the heart of several
application domains such as social networks and model driven engineering [3].
As it relates to the subgraph homomorphism problem, which is NP-complete
for arbitrary inputs [14], this problem is mostly tackled by heuristic approaches
such as local search based on heuristically computed search plans [5,11,22]. In
the context of model driven engineering, model-sensitive techniques for search
plan generation have been shown to outperform approaches that do not consider
information about the queried model for typical application scenarios [22].

However, model driven engineering often deals with evolving models over
which the same query needs to be executed frequently [3]. Local-search-based
approaches are not suitable for handling such situations, since they have to
recompute query results from scratch every time the model is queried, even
though the (potentially large) model undergoes only minor, incremental changes
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in between queries. Generalized Discrimination Networks [13] and in particular
RETE nets [10], which maintain data structures that store intermediate results
and can be updated incrementally, present a more appropriate solution to this
problem. Similar to search plans employed for local search, the topology of the
employed RETE nets has a significant performance impact.

During its evolution, a queried model’s characteristics may change signifi-
cantly, leading to deteriorating performance of a previously adequate discrimi-
nation network. This is particularly pronounced in the case where the evolution
starts with an empty model, which does not yet expose any meaningful struc-
tural information that could be used for computing a suitable network structure.
In contrast to techniques based on local search, current approaches for incremen-
tal graph querying therefore construct the employed discrimination network at
design time of the query [20,21]. Hence, the construction process does not incor-
porate information about the queried model.

In this paper, we introduce a heuristic, model-sensitive technique for RETE
net construction for graph queries in the form of simple graph patterns. Our
technique is based on a cost function, which takes information about the queried
model into account. We then propose an approach for dynamically adapting
the employed net’s topology as the model evolves, which allows tailoring the
RETE net’s structure to potentially changing model characteristics. We evaluate
our approach using queries and generated data from the LDBC Social Network
Benchmark [8] and the Train Benchmark [18].

The remainder of the paper is structured as follows: We first reiterate the
notion of graphs, graph queries and RETE nets in Sect. 2. We then introduce our
technique for constructing model-sensitive RETE nets in Sect. 3 and discuss an
approach for reacting to host graph evolution in Sect. 4. In Sect. 5, we evaluate
the effectiveness of our technique and compare our implementation to a state-
of-the-art tool for incremental graph pattern matching. An overview of related
work is given in Sect. 6. Finally, we present our conclusion and planned future
work in Sect. 7.

2 Prerequisites

Graphs and Graph Queries. A graph G is a tuple G = (V G, EG, sG, tG),
where V G is the set of vertices, EG is the set of edges and sG : EG → V G

and tG : EG → V G are functions assigning each edge its source vertex and
target vertex, respectively [7]. A graph morphism f : G → H from G into
another graph H = (V H , EH , sH , tH) is a pair of mappings fV : V G → V H and
fE : EG → EH such that fV ◦ sG = sH ◦ fE and fV ◦ tG = tH ◦ fE . We call fV

the vertex morphism and fE the edge morphism.
The graph G can be typed over a type graph TG = (V TG, ETG, sTG, tTG) by

means of a graph morphism typeG, which assigns a type from TG to each element
in G, resulting in the typed graph GT = (G, typeG). A typed graph morphism fT :
GT → HT between GT and another typed graph HT = (H, typeH) comprises a
graph morphism f : G → H such that typeH ◦ f = typeG.
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A simple graph query as considered in this paper is characterized by a typed
query graph Q and can be executed over a host graph H typed over the same
type graph. The execution yields a set of typed graph morphisms from Q into H
called matches and is called graph pattern matching. Note that in this paper, we
focus on the basic case without advanced features such as attribute constraints.

An example graph query from a social network domain and the corresponding
type graph are displayed in Fig. 1 in object and class diagram notation, respec-
tively. The query searches for Persons that are interested in a Tag attached to
a Post created by a friend of a friend of that person.

Typed graphs are often encoded as object graphs [1], where vertices are rep-
resented by objects, whereas edges are represented by references. Moreover, since
given a valid vertex morphism, the edge mappings only need to be enumerated,
many approaches to graph pattern matching only compute explicit mappings
for vertices and map edges implicitly [2,5,20]. This means that they only com-
pute vertex morphisms such that there exists at least one corresponding edge
morphism, which is the approach we adopt in this paper.

Graph pattern matching corresponds to the subgraph homomorphism prob-
lem, which is known to be NP-complete [14]. Nonetheless, several techniques exist
that achieve acceptable performance in practice. Most of these solutions fall into
one of two categories: local search or incremental approaches based on discrim-
ination networks. Techniques based on local search iteratively map the vertices
in the query graph to vertices in the host graph. The order in which vertices
are being mapped has a substantial impact on the performance of the approach
and is determined by a search plan [11,22]. Local-search-based techniques do
not store any information about the graph query’s execution and repeated exe-
cution hence requires a computation of the query’s matches from scratch. They
are therefore unsuitable in situations where the query is executed frequently over
the same host graph with only minor changes between executions.

Fig. 1. Example type graph (left) and associated graph query (right)

RETE Nets. These scenarios are tackled more effectively by techniques that
decompose the original query into a set of simpler subqueries, which are orga-
nized in a directed graph called discrimination network. In the following, we only
consider the case where this graph is also acyclic, which is sufficient for graph
pattern matching as presented in this section. In a discrimination network, each
node is responsible for maintaining the set of matches for one of the subqueries.
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Therefore, nodes can make use of the results computed by other nodes of the net-
work, composing their matches into increasingly complex intermediate results,
with these dependencies represented as edges in the discrimination network. The
intermediate results can be retained after the query’s initial execution and thus
enable a more efficient search in subsequent executions, where the existing data
structures only have to be updated according to the changes to the host graph.
While these data structures allow for better query performance with respect to
execution time, the storage of intermediate results also results in an overhead in
memory consumption compared to querying techniques such as local search.

RETE nets [10] are a special kind of discrimination network, where the query
is ultimately decomposed into primitive building blocks, that is, single vertices
and edges, and each node in the network has at most two dependencies to other
nodes. Common types of nodes used in RETE nets include input nodes, filter
nodes, and join nodes. The task of graph pattern matching as presented in Sect. 2
only requires input and join nodes, which is why we focus on these two kinds of
nodes in the remainder of the paper.

Input nodes correspond to primitive query subgraphs consisting of a single
vertex or edge and are responsible for extracting elements with corresponding
type from the host graph. Join nodes combine matches computed by two other
nodes representing smaller query subgraphs into matches for a bigger subgraph.

Dependencies between nodes are realized by indexers, which store matches
produced by the required node in the form of tuples of host graph vertices and
provide an index that facilitates efficient access by the dependent node. Another
indexer stores the query’s result, that is, all matches computed by the node
corresponding to the complete query graph. In the following, we will refer to the
number of tuples in an indexer as the size of that indexer. The size of a RETE
net is given by the number of tuples in all indexers of the net.

Using matches stored in indexers corresponding to incoming dependency rela-
tions, the execution of a node populates indexers corresponding to outgoing
dependencies with matches. Execution of a RETE net to compute matches of a
query graph in a specific host graph is hence performed by executing the net’s
nodes in an order corresponding to a topological ordering of the net.

RETE nets enable an efficient updating of the query result in reaction to host
graph changes, that is, the addition or deletion of a vertex or an edge. Therefore,
the affected input nodes update the match sets stored in their indexers. The
changes to these indexers are then propagated through the net.

Similar to search plans for graph pattern matching based on local search,
numerous different RETE net structures exist for the same query graph. Like
the search plan in the case of local search, the chosen structure has a significant
impact on the RETE net’s performance, making it desirable to find an adequate
structure for the problem instance at hand.

An example RETE net for the example query in Fig. 1 is displayed in
Fig. 2. The net effectively computes all paths (p1, p2, p3,m, t) via successive joins
(labelled ��) of inputs (labelled u → v) and finally checks the presence of an edge
between p1 and t via another join.
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Fig. 2. Example RETE net for the query in Fig. 1

3 Host-Graph-Sensitive RETE Nets

In this section, we introduce our approach to constructing host-graph-sensitive
RETE nets. Our technique is based on a heuristic partitioning algorithm, which
decomposes a query graph into a RETE net using a cost function based on
statistical data extracted from the host graph the query is being executed over.

3.1 Host-Graph-Sensitive Cost Estimation for RETE Nets

The computational effort required for graph pattern matching using a RETE net
is mostly constituted of the effort required for propagating intermediate results
through the net. This effort heavily depends on the number of such intermediate
results, and thus on the number of tuples stored in the net’s indexers, which also
determines the memory consumption of the RETE net. Hence, the structure of
the RETE net should be chosen such that the number of such tuples, which is
heavily influenced by the host graph the net is executed over, is minimized.

However, the total number of indexer entries in a RETE net depends on the
exact structure of the host graph and hence cannot be determined in advance
without effectively executing the net. We therefore employ a cost-estimation
function, which takes statistical information about the host graph into account,
to estimate the number of tuples stored in an indexer. Because each tuple in an
indexer represents a match of the corresponding subgraph of the graph query, the
size of an indexer is given by the number of matches of the associated subgraph.

The set of matches MQ1
H of a subgraph Q1 = ((V Q1 , EQ1 , sQ1 , tQ1), typeQ1)

in a host graph H = ((V H , EH , sH , tH), typeH) is a subset of the possible vertex
morphisms, which corresponds to a cartesian product of (correctly typed) host
graph vertices. dom(Q1,H) =

∏
v∈V Q1 domV (v,H) hence is an upper bound for

|MQ1
H |, where domV (v,H) = |{w|w ∈ V H ∧ typeQ1(v) = typeH(w)}|.
Each edge e ∈ EQ1 with source and target s, t ∈ V Q1 effectively acts as a filter

for vertex morphisms, excluding vertex morphisms from MQ1
H for which no edge

corresponding to e is present in the host graph. The portion of vertex morphisms
with a corresponding edge in H is given by fltE(e,H) = domE(e,H)

domV (s,H)·domV (t,H)
,

where we define domE analogously to domV .
We compute an estimate for the combined filtering effect of edges in EQ1 by

flt(Q1,H) =
∏

e∈EQ1 fltE(e,H), which allows us to estimate |MQ1
H | by

cost(Q1,H) := dom(Q1,H) · flt(Q1,H). (1)
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The above function enables the computation of a cost estimate for a single
indexer in a RETE net via the associated subgraph of the query graph. The
cost of the entire RETE net can be estimated by the sum of the cost estimates
of all indexers in the net. Note that, while the cost function is model-sensitive
in the sense that it takes information about a specific host graph into account,
the estimate does not consider the host graph’s exact structure and hence has
varying accuracy for different host graphs. In particular, it does not provide any
formal guarantees regarding the size of |MQ1

H |. However, it is similar to heuristics
employed for local search [11,22], which have proven useful in practice.

For a host graph conforming to the type graph in Fig. 1 with characteristics
displayed on the left in Fig. 3, the number of possible vertex morphisms for the
query in Fig. 1 is 2 000 000. The filtering rates of knows, hasCreated, hasTag,
and hasInterest edges are computed as 0.5, 0.1, 0.1, and 0.25, respectively. The
function in Eq. 1 thus estimates the number of matches by 1250.

Fig. 3. Sample host graph characteristics for the type graph and example partitioning
of the query from Fig. 1

3.2 Heuristic Construction of Host-Graph-Sensitive RETE Nets

All non-trivial intermediate results in a RETE net, that is, all intermediate
results other than single edges or vertices, are created by joining two smaller
intermediate results. The structure of the RETE net is hence determined by the
selection and ordering of joins. The join ordering problem is well known from
the domain of relational databases and has been proven to be NP-hard [15].
Computing an optimal structure with respect to the cost function from Sect. 3.1
therefore quickly becomes unfeasible with increasing size of the query graph.

Since all intermediate results, including trivial ones, correspond to matches
for a subgraph of the query graph, each join in the RETE net essentially com-
poses two subgraphs of the query graph, with the top-most join producing
matches for the entire query graph. Thus, the net corresponds to a recursive,
binary partitioning of the query graph. Algorithm 1 outlines a simple partitioning
algorithm, which takes a query graph (or subgraph thereof) Q and host graph H
as inputs and recursively divides Q into smaller partitions. The returned binary
partitioning corresponds to one possible RETE net structure for Q.
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In each step of the recursion, Q is partitioned into two proper subgraphs,
where each edge is only contained in one of the subgraphs but partitions may
share vertices. We employ a greedy strategy based on the cost function from
Sect. 3.1, which tries to minimize the combined cost of the two subgraphs in
each step.

The algorithm first initializes the two partitions P1 and P2, where P1 = Q
and P2 is the empty graph, and divides Q into weakly connected components. If
Q only consists of a single component, it is checked whether Q is already trivial,
that is, it only consists of a single edge or vertex. In this case, Q represents a
trivial intermediate result and does not require further partitioning.

Otherwise, the procedure BalanceEdges shown in Algorithm 2 is called,
which tries to improve the partitioning by moving edges from P1 to P2. First,
the current combined cost of P1 and P2 is stored as costold. For each edge e in
P1, the procedure then computes the resulting combined cost estimate if e was
moved to P2 using the cost function from Sect. 3.1. Note that moving e may
include (i) removing its source or target from P1 if they do not have any other
adjacent edge in P1 and (ii) adding its source or target to P2 if they are not yet
contained in P2. The edge whose movement would result in the lowest cost and
the associated cost estimate are stored as emin and costmin, respectively. Then,
if costmin < costold, emin is moved to P2 and the process is repeated if at least
two edges are left in P1, ensuring that P1 is never empty.

The execution of BalanceEdges may result in no edges being moved if for
none of the edges initially in P1, a movement improves the current cost estimate.
In this case, to ensure P1 being a proper subgraph of Q, one edge from P1 is
moved using ForceEdgeMove. Therefore, we compute a pair of vertices with
the largest distance in P1 and move an edge adjacent to one of these vertices.
The intuition behind this heuristic is that the creation of matches for subgraphs
containing both these vertices would involve a multitude of joins and is therefore
likely to lead to a large number of intermediate results. Moving an edge adjacent
to one such vertex facilitates the distribution of the two vertices into different
partitions in subsequent steps. Thereby, such subgraphs are avoided as early
intermediate results in a derived RETE net. After the call to ForceEdgeMove,
the partitioning is refined by another call to BalanceEdges.

If Q consists of multiple components, the partitioning is instead performed by
BalanceComponents, which works in a similar way to BalanceEdges but moves
components instead of edges. ForceComponentMove simply moves the individual
component with the highest cost. Finally, the resulting subgraphs P1 and P2 are
further partitioned by recursive calls to Partition.

The presented algorithm always terminates, since P1 and P2 are always
proper subgraphs of Q and hence their size decreases strictly monotonously
in each recursive step. The resulting recursion tree, where each node represents
the input graph Q of the associated recursive call, corresponds to a correct join
structure for Q in the sense that (i) the graph corresponding to an inner node
of the tree is always the union of its child nodes’ graphs (ii) the topmost node of
the tree corresponds to the complete query graph and (iii) each leaf corresponds
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Procedure Partition(Q,H)
Input : Q: The query graph

H: The host graph
Output : A recursive, binary partitioning of Q

1 P1 ← Q;
2 P2 ← ∅;
3 C ← GetComponents(Q);
4 if |C| = 1 then
5 if |EQ| ≤ 1 then
6 return Q;
7 else
8 BalanceEdges(P1, P2, H);
9 if P2 = ∅ then

10 ForceEdgeMove(P1, P2, H);
11 BalanceEdges(P1, P2, H);

12 end

13 else
14 BalanceComponents(P1, P2, H);
15 if P2 = ∅ then
16 ForceComponentMove(P1, P2, H);
17 BalanceComponents(P1, P2, H);

18 end
19 return (Partition(P1, H), Partition(P2, H));

Algorithm 1: Host-graph-sensitive partitioning algorithm for graph queries

Procedure BalanceEdges(P1, P2, H)

Input : P1, P2: The initial partitions
H: The host graph

1 do
2 costold ← cost(P1, H) + cost(P2, H);
3 emin ← null;
4 costmin ← ∞;

5 foreach e ∈ EP1 do
6 coste ← cost(P1 − e,H) + cost(P2 + e,H);
7 if coste < costmin then
8 emin ← e;
9 costmin ← coste;

10 end
11 if costmin < costold then
12 P1 ← P1 − emin;
13 P2 ← P2 + emin;

14 while costmin < costold ∧ |EP1 | > 1;

Algorithm 2: Algorithm for partitioning a single weakly connected compo-
nent using the cost function from Sect. 3.1
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to a unique edge or vertex in Q. The algorithm foregoes an optimal solution with
respect to the cost function, but achieves polynomial runtime complexity.

Theorem 1. For query graph Q = ((V Q, EQ, sQ, tQ), typeQ) and host graph
H = ((V H , EH , sH , tH), typeH), the runtime complexity of Algorithm 1 is in
O(|V H | + |EH | + (|V Q| + |EQ|) · (|V Q|3 + |EQ|2)).
Proof (Idea). The cost function from Sect. 3.1 for individual query graph ele-
ments can be computed by a single scan of H. Weakly connected components
in the query can be computed in O(|V Q| + |EQ|) and the runtime complex-
ity of BalanceEdges and BalanceComponents are in O(|EQ|2) and O(|V Q|2 +
|EQ|), respectively. Using the Floyd-Warshall algorithm [9], ForceEdgeMove and
ForceComponentMove can be performed in O(|V Q|3+ |EQ|) and O(|V Q|+ |EQ|),
respectively. Because the recursion tree is a full binary tree, it consists of at most
|V Q| + |EQ| − 1 recursive calls. This yields the stated complexity. ��
As the example query from Fig. 1 consists of a single weakly connected com-
ponent, its partitioning via Algorithm 1 is effectively performed by calling
BalanceEdges. The first call to BalanceEdges does not move any elements, as
the movement of no individual edge improves the total estimated cost. Assum-
ing that the subsequent execution of ForceEdgeMove moves the hasCreated edge,
since (p1,m) is a pair of vertices with maximum distance in the query graph, the
second call moves the hasTag and then the hasInterest edge before the greedy
strategy achieves no further improvement. Thus, the partitions displayed on the
right in Fig. 3 are created and further decomposed recursively.

4 Reacting to Host Graph Evolution

The evolution of a host graph may significantly alter the graph’s characteristics,
especially when starting with an empty graph, which does not yet exhibit any
of the graph’s later characteristics. An initially constructed host-graph-sensitive
RETE net can hence become inapproriate. Instead of employing the same RETE
net structure for the graph’s entire lifetime, it therefore makes sense to consider
switching to a structure better suited for handling the current graph. However,
this requires the computation of a new RETE net structure. Moreover, the new,
initially empty RETE net has to be populated with correct intermediate results.

Recomputation and repopulation cause an overhead in execution time, but
may improve the net’s quality with respect to memory consumption and future
runtime. Thus, a strategy for deciding when to trigger recomputation is required.
While a fixed periodic strategy is an option, any such approach runs the risk
of an inadequate frequency either causing a substantial computational overhead
or too long reaction times. The decision can instead be made based on the
processing of changes in the RETE net, which is a suitable approach if the
overhead should be limited to a constant factor. This can be achieved by tracking
the number of tuples added to and removed from the RETE net’s indexers since
the last recomputation n and the size of the RETE net at that point d, and only
triggering recomputation and repopulation when n > d.
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For a fixed query and given incremental maintenance of the required host
graph statistics, recomputation of the RETE net by Algorithm 1 only takes a
constant amount of time. Also, the number of nodes in the computed net has a
constant upper bound, the length of tuples in the net’s indexers has a constant
upper bound, and the net consists of only join and input nodes. Thus, given
appropriate data structures, the effort for populating the newly computed net
is linear in the net’s size. If recomputation is only triggered when n > d and
repopulation is aborted as soon as the new net’s size exceeds the size of the old
net, which is at most d + n ≤ 2 · n, only a linear overhead in n is incurred on
the processing of changes between two recomputations of the RETE net.

Aborting repopulation as described also ensures that recomputation and
repopulation never immediately increases the net’s size. But although a currently
smaller net serves as an indicator, there is no guarantee that recomputation will
improve the RETE net long-term. There is hence no guarantee regarding the
overall time required for processing a sequence of changes while adapting the
net structure compared to the time required using a static net. However, the
overhead of recomputation and repopulation is limited to a constant factor.

Still, repopulation in particular remains an expensive operation, as in con-
trast to recomputation, its execution time depends on the size of the RETE net
and thus the host graph. To avoid unnecessary repopulation, we employ the cost
function from Sect. 3.1 to assess the quality of the new RETE net before decid-
ing whether to trigger repopulation. Therefore, we compare the total estimated
cost of all indexers in the new net to the cost estimate for the old net. If the
new RETE net is not estimated to represent an improvement, this suggests that
switching the RETE net comes at no benefit and should hence be avoided. While
the exact size of the old net is available and could be used for comparison, this
comparison would be unfair due to the inaccuracy of the cost function.

We potentially reduce the effort for repopulation further by reusing indexers
from the old RETE net, if some portion of the net remains unchanged after
recomputation. This is indicated by indexers in the old and new net correspond-
ing to isomorphic query subgraphs. To be reuseable, the tuples stored in the
indexers have to be indexed by the same key in both RETE nets. If this is the
case, we insert the old indexer into the appropriate position in the new RETE
net so that it does not have to be populated again. Furthermore, if it is the
only indexer succeeding some input or join node, that node does not have to
be executed during repopulation. Note that these conditions are always true
for the overall query result. Thus, the topmost indexer storing matches for the
entire query is never repopulated and the topmost node is never executed during
repopulation.

Algorithm 3 outlines the described approach for controlling RETE net recom-
putation and repopulation. It processes a sequence of incoming host graph
changes in two nested loops and maintains a RETE net that internally tracks
the number of changes to its indexers in a dedicated counter variable changes.

At the start of the outer loop, the current size of the employed RETE net
is stored and the RETE net’s change counter is reset. Then, the inner loop
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processes changes by calls to ProcessChange until the number of changes to the
RETE net’s indexers exceeds the stored initial size, at which point the loop is
left and a new RETE net structure is computed by RecomputeNetStructure.

If the estimated cost of the newly computed structure is lower than the cost of
the old structure, the old RETE net is examined for indexers that can be reused
in the new net. Afterwards, the new RETE net’s indexers are populated via
a call to RepopulateToMaxSize, reusing old indexers where possible. However,
this process is aborted as soon as the new RETE net’s size exceeds the size of
the old net. The call to RepopulateToMaxSize returns false if population was
aborted and true otherwise. If population was successful, the old RETE net is
replaced by the new net. Finally, the next iteration of the outer loop is started.

Procedure ProcessChanges(C,R)
Input : C: Changes to process

R: Current RETE net
1 while true do
2 d ← R.size;
3 R.changes ← 0;
4 while R.changes ≤ d do
5 ProcessChange(R, GetNextChange(C));

6 end
7 R′ ← RecomputeNetStructure();
8 if cost(R′) < cost(R) then
9 I ← FindReusableIndexers(R, R’);

10 valid ← RepopulateToMaxSize(R′, I, R.size);
11 if valid then
12 R ← R′;
13 end

14 end

15 end
Algorithm 3: Size-based algorithm for controlling RETE net recomputation

5 Evaluation

We attempt to address the following research questions: (RQ1) Can considering
information about the host graph during RETE net construction lead to better
performing nets? (RQ2) Is the overhead incurred by adapting the net to chang-
ing host graph characteristics acceptable? (RQ3) Can RETE net recomputation
improve performance if host graph characteristics change significantly?
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Therefore, we experiment1 with datasets and queries provided by two inde-
pendent benchmarks, the LDBC Social Network Benchmark (Interactive Work-
load) [8] and the Train Benchmark [18]. We compare the following strategies:

– VIATRA: (host-graph-insensitive) RETE net constructed by VIATRA [20].
– EMULATE: RETE net with the same structure as VIATRA.
– STATIC: RETE net constructed using the approach described in Sect. 3 over

the final host graph
– DYNAMIC: RETE net constructed using the approach from Sect. 3 over

the initial host graph, with dynamic adaptation as described in Sect. 4

To execute the RETE nets, we employ the VIATRA tool in case of the VIATRA
strategy, and our own EMF-based [1] implementation for the other strategies.

5.1 LDBC Social Network Benchmark

We adapt the complex reading queries provided as part of the so-called Interac-
tive workload of the LDBC Social Network Benchmark to match the definition
of simple graph pattern matching in Sect. 2 as follows: We remove attribute
constraints as well as negative application conditions and ignore two of the 14
queries that contain paths of arbitrary length. We generate a social network con-
taining 1000 persons (and about 300 000 vertices and 1 200 000 edges in total)
using the benchmark’s data generator, which we transform into a sequence of
element creations according to the generated associated timestamps.

Construction Scenario. We replay the obtained creation sequence and mea-
sure the time required to process subsequences of 1000 changes for each query.

Figure 4 shows the execution times for queries where the time required by the
worst performing strategy was higher than that of the best performing strategy
by at least factor 1.25 (queries 1, 5, 10, and 12). For all these queries, STATIC and
DYNAMIC perform better than EMULATE. While VIATRA appears to perform
better than EMULATE for some queries, its execution times are still higher
than those of the host-graph-sensitive strategies. This indicates that fitting the
structure of the RETE net to the host graph can lead to better performing nets
(RQ1). Figure 4 also displays the execution times for the two queries where
DYNAMIC performed worst compared to VIATRA and EMULATE (queries 7
and 8). However, the execution time of DYNAMIC was never higher than the
execution time of VIATRA or EMULATE by more than factor 1.11.

Even though STATIC represents an idealized variant of our approach that is
only applicable if the relevant host graph characteristics are known upfront,
DYNAMIC never performs worse than STATIC by more than factor 1.2.
Dynamic adaptation as described in Sect. 4 can thus yield adequate RETE nets,

1 All experiments were executed on a Linux SMP Debian 4.19.67-2 machine with
Intel Xeon E5-2630 CPU (2.3 GHz clock rate) and 386 GB system memory running
OpenJDK version 1.8.0 242.
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Fig. 4. Runtime measurements for the construction scenario (linear axes)

Fig. 5. Memory measurements for the construction scenario (linear axes)

with an acceptable overhead for recomputation and repopulation in our examples
(RQ2). This is also a result of the host graph exhibiting relevant characteris-
tics early, thus mostly avoiding repopulation of large nets. DYNAMIC performed
between 18 and 27 recomputes and between 0 and 16 repopulates for each query.
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VIATRA has a better baseline performance with respect to memory con-
sumption, outperforming our implementation by up to factor 2.7 for nine queries.
However, as displayed in Fig. 5, VIATRA still performs worse for three queries
compared to STATIC and DYNAMIC. Thus, the conceptual observations also
apply for memory consumption. Note, however, that during repopulation, the
memory consumption of DYNAMIC may temporarily increase as the old net is
kept in memory for a potential rollback.

We executed analogous experiments using a larger dataset containing about
10 000 persons. Over the larger social network, all strategies ran out of memory
for four to six queries, indicating a limited scalability of RETE nets for simple
graph pattern matching in general. Since with VIATRA, we employed a state-
of-the-art tool as one of the evaluated strategies, these results also suggest that
the dataset with 1000 persons already represents a reasonably large input for
simple graph pattern matching. However, the observations for the smaller dataset
generally still apply to the larger dataset, as either relative execution times were
similar or the host-graph-insensitive techniques ran out of memory earlier.

Evolution Scenario. To conceptually evaluate our solution with respect to
RQ3, we also execute the query INTERACTIVE 10, which is displayed in Fig. 1,
in a hypothetical scenario where, after replaying 25% of the creation sequence,
we drastically change the graph’s structure. First, we mimic a policy change,
where from now on, Posts with a length of less than 225 characters are viewed as
Comments, effectively removing all but 0.5% of Posts from the network. Second,
we emulate the introduction of friend recommendations by increasing the average
number of a Person’s friends from about 20 to 100.

The performance of STATIC and DYNAMIC for this scenario with respect
to execution time and memory consumption is displayed in Fig. 6, with dashed
vertical lines delimiting the restructuring process. The results demonstrate that
recomputing the RETE net to accommodate changes to host graph characteris-
tics may lead to better performance compared to a static net structure (RQ3).

Fig. 6. Performance of STATIC and DYNAMIC for the evolution scenario (linear axes)
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5.2 Train Benchmark

The Train Benchmark is specifically tailored to the evaluation of incremental
querying techniques. The benchmark consists of a collection of queries that are
incrementally executed over a synthetic railway topology. Therefore, execution
alternates between checking phases, where query results are retrieved, and trans-
formation phases, where the evolution of the topology is simulated by rule-based
transformations using results from the checking phases. The benchmark includes
several scenarios, which contain different sets of queries and can be parametrized
to either perform a constant number of changes or an amount of changes pro-
portional to the number of query results in each transformation phase.

In order to evaluate our approach using the Train Benchmark, we adapt the
benchmark’s queries analogously to the adaptations of the LDBC queries. We
then execute a benchmark scenario including all of the benchmark’s queries,
where after an initial query execution, a number of changes equal to 5% of the
number of results of special queries is performed repeatedly.

Figure 7 shows the overall execution times of the initial query execution (Read
and Check) and the incremental processing of changes (Transformation and
Recheck) for a sequence of topologies of increasing size. The results show that
the host-graph sensitive techniques require a similar amount of time as the other
strategies for the initial execution, but perform slightly better when processing
the incremental updates for large models (RQ1). Similarly to the experiments
with the LDBC Social Network Benchmark, RETE net recomputation does not
incur an observable overhead on the execution time of DYNAMIC compared to
STATIC (RQ2), as the host graph’s characteristics do not change significantly
after the initial query execution. These results indicate that in typical situations
where our technique does not provide a significant benefit, it does not have a
serious drawback, either.

5.3 Threats to Validity

Threats to internal validity include unexpected JVM behavior. To minimize this
effect, we executed multiple runs of all experiments. Furthermore, we profiled
the JVM’s garbage collection times and subtracted them from the measured
execution times. To mitigate the impact of the implementation, we used the same
code to execute RETE nets of all construction strategies and also compared our
implementation to an independent tool.

To address threats to external validity, we used queries and data provided
as part of independent benchmarks [8,18]. We adapted the queries to fit our
definition of graph pattern matching and otherwise used the provided methods of
parametrization. The evolution scenario in Sect. 5.1 was not part of the original
benchmark. We hence do not make claims regarding the relevance of such a
scenario in practice, but demonstrate the potential conceptual benefit.

We further remark that our results are not necessarily generalizable to other
application domains and make no quantitative claims regarding performance.
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Fig. 7. Runtime measurements for the Train Benchmark and different topologies (log-
arithmic axes)

6 Related Work

Techniques based on local search form one family of approaches to graph pattern
matching. Since the chosen search plan has a substantial performance impact,
several techniques for generating an efficient search plan for graph queries exist
[5,11,12,22], most of which are host-graph-sensitive. However, most techniques
maintain limited information in between query executions, if any, and conse-
quently perform poorly in incremental scenarios. Moreover, while the problem
of generating search plans for local search is related to RETE net construction, in
most cases the generated search plans only represent a specific subset of the pos-
sible RETE net structures, where the RETE net consists of a sequence of nodes
that join a primitive pattern element to a growing main result [11,22]. Some
approaches consider precomputing and storing tree-like intermediate results,
thus representing a hybrid approach between local search and discrimination
networks [5,12]. Still, in some cases lifting the imposed restrictions on the RETE
net’s structure enables the construction of nets with better performance.

RETE nets have been introduced by Forgy in the context of pattern matching
for production systems [10], where the proposed construction approach creates
nets that correspond to search plans employed for local search. VIATRA [20] is
a mature tool for incremental graph pattern matching based on RETE nets. It
supports various advanced features, such as attribute constraints and negative
application conditions, and thus transcends the notion of graph pattern matching
from Sect. 2. However, to the best of our knowledge VIATRA currently does not
take host graph characteristics into account for constructing RETE nets.
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Varró et al. propose an algorithm for RETE net construction that heuristi-
cally optimizes the RETE net with respect to a cost function [21]. While this
allows for host-graph-sensitive construction of RETE nets via a cost function like
the one introduced in Sect. 3.1, the cost function proposed in [21] is not host-
graph-sensitive and tries to minimize the number of required indexers (rather
than the number of indexer entries). Consequently, updating the RETE net as
the host graph evolves is not considered. In [19], an evaluation of optimization
strategies for RETE nets is presented, stating the number of indexer entries
as a possible optimization goal and listing cost-based approaches and heuris-
tic reordering of operations as optimization techniques. However, no concrete
approach for cost-based optimization is presented.

The task of RETE net construction corresponds to the join ordering problem
in relational databases, which has been subject to extensive research [16]. Among
others, solutions include greedy heuristics similar to the approach presented in
Sect. 3. These techniques often employ cost functions based on so-called join
selectivity, which are closely related to the cost function from Sect. 3.1. Join
ordering techniques could also be employed in the context of graph pattern
matching, but require a translation of the encodings of query and data.

Tree decomposition [17], which constructs a tree representation of a graph
where each node in the tree corresponds to a set of the graph’s nodes called
piece, also relates to RETE net construction. The number of graph nodes in the
largest piece is also called tree-width. Due to certain coherence conditions over
the decomposition, a tree decomposition of a given query graph could be used
as a basis for the construction of discrimination networks and thus RETE nets.
While algorithms exist that construct decompositions with low tree-width for
certain graphs [6], which would contribute to minimizing the size of a related
RETE net, this decomposition does not consider the structure of the host graph.

A more general form of discrimination networks than RETE nets, called
Gator network, is presented by Hanson et al. [13]. In contrast to RETE nets,
Gator networks may contain nodes with arbitrarily many dependencies, allow-
ing a selection of which intermediate results are to be stored in memory. Gator
networks therefore enable improving performance with respect to memory con-
sumption at the cost of execution time. In [13], recomputation to accomodate
changing data is not considered. Gator networks have also been employed for
incremental graph pattern matching by Beyhl [4], where the employed discrimi-
nation network structure is defined manually by a user.

7 Conclusion

In this paper, we presented a host-graph-sensitive approach to RETE net con-
struction for graph pattern matching. Our technique is based on a cost function
for estimating the number of entries in the RETE net’s indexers based on statisti-
cal information about the host graph. The cost function is employed to compute
a RETE net structure that is appropriate for the given host graph, using a
greedy partitioning algorithm for graph queries. We proposed an approach for
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adapting the net structure to changing host graph characteristics, which aims
to limit the overhead required for recomputation. The presented concepts were
evaluated empirically based on two independent benchmarks, demonstrating the
feasibility of the approach in realistic application scenarios.

As future work, we plan to generalize our technique to accomodate advanced
features for query specification such as attribute constraints and negative appli-
cation conditions. Furthermore, we want to explore how to apply the developed
concepts in the context of more general discrimination networks and extend our
evaluation to different application domains.
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14. Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Comb. Theory. Ser. B
48(1), 92–110 (1990)

15. Ibaraki, T., Kameda, T.: On the optimal nesting order for computing n-relational
joins. ACM Trans. Database Syst. (TODS) 9(3), 482–502 (1984)

16. Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., Neumann, T.: How
good are query optimizers, really? Proc. VLDB Endow. 9(3), 204–215 (2015)

17. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory. Ser. B 36(1), 49–64 (1984)
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Abstract. Contextual hyperedge replacement (CHR) strengthens the
generative power of hyperedge replacement (HR) significantly, thus
increasing its usefulness for practical modeling. We define top-down pars-
ing for CHR grammars by graph transformation, and prove that it is
correct as long as the generation and use of context nodes in produc-
tions does not create cyclic dependencies. An efficient predictive version
of this algorithm can be obtained as in the case of HR grammars.
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1 Introduction

Contextual hyperedge replacement (CHR, [4,5]) strengthens the generative
power of hyperedge replacement (HR, [13]) significantly, by productions with
context nodes that refer to nodes which are not connected to the edge being
replaced. Unfortunately, both HR and CHR grammars can generate NP-
complete graph languages [16]. The authors have therefore devised efficient
parsers for subclasses of HR and CHR grammars, implementing so-called pre-
dictive top-down (PTD) parsing. Although the concepts and implementation
of these parsers have been described at depth in [6], their correctness has only
recently been formally confirmed, based on the specification of parsers by means
of graph transformation rules, and only for HR grammars [8]. Here we extend
the parsers and their correctness proof to CHR grammars. It turns out that a
CHR grammar Γ can be turned into a HR grammar generating graphs where
the nodes that were context nodes in Γ are borrowed, i.e., generated like ordinary
nodes. From this graph, the one generated by Γ can be obtained by contraction,
i.e., merging borrowed nodes with other nodes. We show that this is correct
provided that the generation and use of context nodes in CHR productions does
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not lead to cyclic dependencies. In this paper, we concentrate on describing a
non-deterministic parser, and sketch only briefly how this parser can be made
predictive (and efficient), since the latter is completely analoguous to the HR
case [8].

The remainder of this paper is structured as follows. After recalling some
basic concepts of graph transformation (Sect. 2), we define CHR grammars and
their corresponding borrowing HR grammars, and we discuss the requirement of
acyclicity (Sect. 3). In Sect. 4, we define a top-down parser for acyclic CHR gram-
mars that processes edges in a linear order (corresponding to leftmost derivations
in string grammars), and prove it correct. In the conclusions (Sect. 5), we discuss
related and future work.

2 Preliminaries

The set of non-negative integers is denoted by N, and [n] denotes {1, . . . , n} for
all n ∈ N. A∗ denotes the set of all finite sequences over a set A; the empty
sequence is denoted by ε, and the length of a sequence α by |α|. As usual, →+

and →∗ denote the transitive and the transitive reflexive closure of a binary
relation →. For a function f : A → B, its extension f∗ : A∗ → B∗ to sequences
is defined by f∗(a1 · · · an) = f(a1) · · · f(an), for all n ∈ N and a1, . . . , an ∈ A.

2.1 Graphs

The graphs considered in this paper have labeled nodes and edges that may have
parallel edges carrying the same label. We also generalize edges to hyperedges,
which may connect any number of nodes, not just two.

Throughout the paper, let L be a global set of labels which is partitioned
into two infinite subsets L̇ and L̄, and let arity : L̄ → N be a function that
associates an arity with every label in L̄. Elements of L̇ and L̄ will be used to
label nodes and hyperedges, respectively. A finite set Σ ⊆ L is an alphabet, and
we let Σ̇ = Σ ∩ L̇ and Σ̄ = Σ ∩ L̄.

Definition 1 (Hypergraph). A hypergraph over an alphabet Σ is a tuple G =
(Ġ, Ḡ, att, lab), where Ġ and Ḡ are disjoint finite sets of nodes and hyperedges,
respectively, the function att : Ḡ → Ġ∗ attaches hyperedges to sequences of
nodes, and the function lab : Ġ ∪ Ḡ → Σ maps Ġ to Σ̇ and Ḡ to Σ̄ in such a
way that |att(e)| = arity(lab(e)) for every edge e ∈ Ḡ.

For brevity, we omit the prefix “hyper” in the sequel. A node is isolated if no
edge is attached to it. An edge carrying a label σ ∈ Σ is a σ-edge, and the
Σ′-edges of a graph are those labeled with symbols from Σ′ ⊆ Σ̄. G◦ denotes
the discrete subgraph of a graph G, which is obtained by removing all edges. We
sometimes write X(G) to denote the set Ġ of nodes of G, and instead of “x ∈ Ġ
or x ∈ Ḡ”, we may write “x ∈ G”. We denote the third and fourth component
of a graph G by attG and labG. GΣ denotes the class of graphs over Σ; a graph
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G ∈ GΣ is called a handle (over Σ) if G has a single edge e and each node of G
is attached to e. We denote the set of all handles over Σ by HΣ .

Graphs with unlabeled nodes or edges are a special case obtained by letting
Σ̇ contain the “invisible” label ␣, or letting Σ̄ contain an invisible label ␣i per
arity i. We call a graph unlabeled if both nodes and edges are unlabeled. In this
case, we omit the labeling in the definition and drawing of the graph.

A set of edges E ⊆ Ḡ induces the subgraph consisting of these edges and
their attached nodes. Given graphs G1, G2 ∈ GΣ with disjoint edge sets, a graph
G = G1 ∪ G2 is called the union of G1 and G2 if G1 and G2 are subgraphs of
G, Ġ = Ġ1 ∪ Ġ2, and Ḡ = Ḡ1 ∪ Ḡ2. Note that G1 ∪ G2 exists only if common
nodes are consistently labeled, i.e., labG1(v) = labG2(v) for v ∈ Ġ1 ∩ Ġ2.

Definition 2 (Graph morphism). Given graphs G and H, a morphism
m : G → H is a pair m = (ṁ, m̄) of functions ṁ : Ġ → Ḣ and m̄ : Ḡ → H̄ that
preserve attachments and labels, i.e., attH(m̄(v)) = ṁ∗(attG(v)), labH(ṁ(v)) =
labG(v), and labH(m̄(e)) = labG(e) for all v ∈ Ġ and e ∈ Ḡ.

The morphism is injective or surjective if both ṁ and m̄ are, and a subgraph
inclusion of G in H if m(x) = x for every x ∈ G; then we write G ⊆ H. If m
is surjective and injective, it is called an isomorphism, and G and H are called
isomorphic, written as G ∼= H.

2.2 Graph Transformation

For transforming graphs, we use the classical double-pushout approach of [9],
with injective occurrences of rules in graphs.

Definition 3 (Rule). A graph transformation rule r = (P ⊇ I ⊆ R) consists
of a pattern graph P , a replacement graph R, and an interface graph I included
in both P and R. We briefly call r a rule, denote it as r : P ◦→ R, and refer to
its graphs by Pr, Rr, and Ir if they are not explicitly named.

An injective morphism m : P → G into a graph G defines an occurrence with
respect to r if it satisfies the following dangling condition: if the occurrence m(v)
of a node v ∈ P \ I is attached to some edge e ∈ G, then e is also in m(P ).

A rule r transforms a graph G at an occurrence m to a graph H by (1)
removing m(x) from G for every x ∈ P \ I, to obtain a graph K, and (2)
constructing H from the disjoint union of K and R by merging m(x) with every
x ∈ I. Then we write G ⇒m

r H, but may omit m if it is irrelevant, and write
G ⇒R H if R is a set of rules such that G ⇒r H for some r ∈ R.

Since the interface of a rule is included in its replacement graph, a transformation
step can be constructed in such a way that K is included in H.

2.3 Application Conditions

Sometimes it is necessary to restrict the applicability of a rule by requiring the
existence or non-existence of certain subgraphs in the context of its occurrence.
Our definition of application conditions is based on [14], but omits nesting as it
will not be needed here.
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Definition 4 (Conditional rule). For a graph P , the set of conditions over P
is defined inductively as follows: (i) an inclusion P ⊆ C defines a basic condition
over P , denoted by ∃C. (ii) if c and c′ are conditions over P , then ¬c, (c ∧ c′),
and (c ∨ c′) are conditions over P .

An injective morphism m : P → G satisfies a basic condition ∃C if there is
an injective morphism m′ : C → G whose restriction to P coincides with m. The
semantics of Boolean combinations of application conditions is defined in the
obvious way; m � c expresses that m satisfies condition c.

A conditional rule r′ consists of a rule r = P ◦→ R and a condition c
over P , and is denoted as r′ : c P ◦→ R. We let G ⇒m

r′ H or simply G ⇒r′ H
if m � c and G ⇒m

r H. Note that rules without conditions can also be seen as
conditional rules with the neutral condition c = ∃P . For a set C of conditional
rules, ⇒C =

⋃
r∈C ⇒r.

Examples of graphs and rules, with and without conditions, will be shown in the
following sections.

3 Contextual Hyperedge Replacement

We recall graph grammars based on contextual hyperedge replacement [4,5],
which include hyperedge replacement grammars [13] as a special case.

Definition 5 (Contextual hyperedge replacement). Let Σ be an alphabet
and N ⊆ Σ̄ a set of nonterminal edge labels (nonterminals, for short). The
terminal edge labels (terminals) are those in T = Σ̄ \N . Accordingly, edges with
labels in N and T are nonterminal and terminal edges, respectively.

A rule p : P ◦→ R is a hyperedge replacement production over Σ (production,
for short) if the pattern P contains a single edge, which is labeled with a non-
terminal, and the interface graph Ip is the discrete subgraph P ◦ consisting of
all nodes of P . Isolated nodes in the pattern of p are called context nodes; p is
called contextual if such context nodes exist, and context-free otherwise.

A contextual hyperedge replacement grammar Γ = 〈Σ, N , P, Z〉 (CHR gram-
mar for short) consists of alphabets Σ and N ⊆ Σ̄ as above, a finite set P of
productions over Σ, and a start graph Z ∈ GΣ . Γ is a (context-free) hyperedge
replacement grammar (HR grammar) if all productions in P are context-free.

The language generated by Γ is given as L(Γ ) = {G ∈ GΣ\N | Z ⇒∗
P G}.

We use a simple but non-context-free running example because illustrations
of parsers would otherwise become too big and complex.

Example 1 (Linked trees). Figure 1 shows our running example, and introduces
our conventions for drawing graphs and productions. Nodes are circles, non-
terminal edges are rectangular boxes containing the corresponding labels, and
terminal edges are shapes like �, �, �. (In this example, all nodes are unlabeled.)
Edges are connected to their attached nodes by lines, called tentacles, which are
ordered counter-clockwise around the edge, starting at noon. For productions



168 F. Drewes et al.

Fig. 1. Productions for linked trees

Fig. 2. A derivation of a linked tree T

(and in other rules), we just draw their pattern P and their replacement graph
R, and specify the inclusion of the interface nodes by ascribing the same identifier
to them in P and R, like x and y in Fig. 1.

Figure 1 defines the productions π1, π2, π3, and π4 of the CHR grammar Δ.
S is the nullary symbol labeling the start graph, and T is a unary nonterminal.
A unary �-edge is attached to the root of a tree, binary �-edges connect nodes to
their children, and binary �-edges (drawn with curly tentacles) represent links
between nodes. Δ generates trees where every node may have a link to any other
node, see Fig. 2.

Assumption 1 (CHR grammar). In the sequel, we assume that CHR gram-
mars Γ = 〈Σ, N , P, Z〉 satisfy the following conditions:

1. The node sequences attached to nonterminal edges are free of repetitions.
2. The start graph Z consists of a single nonterminal edge of arity 0. This

nonterminal symbol does not occur in right-hand sides of productions.
3. Γ is reduced, i.e., every production occurs in a derivation of a graph in L(Γ ).
4. L(Γ ) does not contain graphs with isolated nodes.

These assumptions are made without loss of generality: in [13, Sect. I 4], it is
described how HR grammars can be transformed to satisfy Assumptions 1.1–1.2;
these results can directly be lifted to CHR grammars. How to attain Assump-
tion 1.3 for CHR grammars is shown in [4, Sect. 3.4]. Assumption 1.4 is made
to simplify the technicalities of parsing. To ensure it, unary virtual edges can be
attached to isolated nodes in the productions and in the graphs generated by
the grammar. In Example 1, e.g., the �-edge avoids that the grammar generates
a single isolated node.

We now recall the well-known notion of derivation trees, which reflect the
context-freeness of HR grammars [3, Definition 3.3]. Here we use a slightly mod-
ified version that represents derivations of concrete graphs:

Definition 6 (Derivation tree). Let Γ = 〈Σ, N , P, Z〉 be a HR grammar.
The set TΓ of derivation trees over Γ and the mappings root : TΓ → HΣ as well
as result : TΓ → GΣ are inductively defined as follows:



Rule-Based Top-Down Parsing for Acyclic CHR Grammars 169

– Each handle G is in TΓ , and root(G) = result(G) = G.
– A triple t = 〈G, p, c〉 consisting of a nonterminal handle G, a production

p ∈ P, and a sequence c = t1t2 · · · tn ∈ T
∗
Γ is in TΓ if the union graphs

G′ = G◦ ∪
⋃n

i=1 root(ti) and G′′ = G◦ ∪
⋃n

i=1 result(ti) exist, G ⇒p G′, and
X(result(ti)) ∩ X(result(tj)) = X(root(ti)) ∩ X(root(tj)) for all distinct i, j ∈
[n]. Furthermore, we let root(t) = G and result(t) = G′′.

An example of a derivation and its derivation tree is shown in Fig. 5.
The ordering of derivation trees in c = t1t2 · · · tn within a derivation tree t =

〈G, p, c〉 will become relevant when edges in right-hand sides of rules are ordered,
which will be the case in Sect. 4. Then we require that root(t1) root(t2) · · · root(tn)
corresponds to the edge ordering in production p.

Let t, t′ be any derivation trees. We call t′ a child tree of t, written t′ ≺ t, if
t = 〈G, p, t1t2 · · · tn〉 and t′ = ti for some i, and we call t′ a subtree of t if t′ = t
or t = 〈G, p, t1t2 · · · tn〉 and t′ is a subtree of ti for some i. A derivation tree t
introduces a node u (at its root) if t = 〈G, p, t1t2 · · · tn〉 and u ∈ X(root(ti)) \ Ġ
for some i. The set of all these nodes is denoted by intro(t). We define the pre-
order traversal pre(t) ∈ T

∗
Γ of a derivation tree t recursively by pre(t) = t if

t ∈ HΣ and pre(t) = t pre(t1) pre(t2) · · · pre(tn) if t = 〈G, p, t1t2 · · · tn〉.
The following theorem is equivalent to Theorem 3.4 in [3]:

Theorem 1. Let Γ = 〈Σ, N , P, Z〉 be a HR grammar, H ∈ HΣ a handle and
G ∈ GΣ a graph. There is a derivation tree t ∈ TΓ with root(t) = H and
result(t) = G iff H ⇒∗

P G.

Note that derivation trees are defined only for HR grammars as in the con-
textual case, any properly labeled node can be used as a context node as long
as it has been created earlier in a derivation. This fact produces dependencies
between derivation steps which do not exist in HR derivations. It will turn out in
the following that there is a close relationship between a CHR grammar Γ and
its so-called borrowing HR grammar Γ̂ : every graph H ∈ L(Γ ) is a “contraction”
of a graph G ∈ L(Γ̂ ). Moreover, the converse is also true as long as Γ is acyclic,
a notion to be defined later.

In the following, we assume that T contains two auxiliary edge labels that are
not used elsewhere in Γ : edges carrying the unary label � will mark borrowed
nodes, and binary edges labeled �= will connect borrowed nodes to all nodes that
should be kept separate to them, i.e., not be contracted later on.

Definition 7 (Borrowing grammar). Let Γ = 〈Σ, N , P, Z〉 be a CHR gram-
mar. For (p : P ◦→ R) ∈ P, its borrowing production p̂ : P̂ → R̂ is obtained by
(a) removing every context node from P̂ and Ip̂ and (b) constructing R̂ from R
as follows: for every context node v of p, attach a new �-edge to v, and add �=-
edges from v to every other node with the label labP (v). The borrowing grammar
Γ̂ = 〈Σ, N , P̂ , Z〉 of Γ is given by P̂ = {p̂ | p ∈ P}.

Note that p̂ = p if p is context-free.
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Fig. 3. Borrowing link production Fig. 4. Alinkedtreewithadetachedlink

Fig. 5. A derivation of T̂ (cf. Fig. 4) and its derivation tree

Definition 8 (Contraction). For a graph G let

Ġ� = {v ∈ Ġ | v = attG(e) for a �-edge e ∈ Ḡ} and
�=G = {(u, v) ∈ Ġ × Ġ | uv = attG(e) for a �=-edge e ∈ Ḡ}.

A morphism μ : G → H is called a joining morphism for G if Ḣ = Ġ \ Ġ�,
H̄ = Ḡ, μ̄ and the restriction of μ̇ to Ġ \ Ġ� are inclusions, and (v, μ̇(v)) /∈ �=G

for every v ∈ Ġ�. The graph core(H) obtained from H by removing all edges
with labels � and �= is called the μ-contraction of G or just a contraction of G.

Example 2 (Trees with detached links). Figure 3 shows the borrowing link pro-
duction π̂4, and Fig. 4 shows a tree with a detached link that can be generated
by a borrowing grammar Δ̂ with productions {π1, π2, π3, π̂4}. (Here, �-edges are
depicted by drawing the attached node accordingly.) Obviously, the linked tree
T̂ in Fig. 4 can be generated by the derivation in Fig. 5, and contracted to the
linked tree T generated in Fig. 2. Figure 5 also shows the derivation tree of T̂ .
Only the root handles of trees and subtrees are shown, and ε is used to indi-
cate an empty sequence of child trees, thus distinguishing this case from the one
where a subtree is a single handle. The numbers on top of the handles illustrate
the ordering of the corresponding subtrees in a pre-order traversal of the entire
tree.
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Definition 9 (Borrowing version of a derivation). Let Γ = 〈Σ, N , P, Z〉
be a CHR grammar and Γ̂ its borrowing HR grammar. A derivation

Z ⇒m̂1
p̂1

H1 ⇒m̂2
p̂2

H2 ⇒m̂3
p̂3

· · · ⇒m̂n

p̂n
Hn

in Γ̂ is a borrowing version of a derivation

Z ⇒m1
p1 G1 ⇒m2

p2 G2 ⇒m3
p3 · · · ⇒mn

pn
Gn

in Γ if the following hold, for i = 1, 2, . . . , n and pi : P ◦→ R:

1. p̂i is the borrowing production of pi,
2. if P̄ = {e} then m̂i(e) = mi(e), and
3. for every x ∈ R̄ ∪ (Ṙ \ Ṗ ), the images of x in Gi and Hi are the same.

By a straightforward induction, it follows that every derivation in Γ has a
borrowing version in Γ̂ , and Gi is the μi-contraction of Hi for i ∈ [n], where the
joining morphism μi is uniquely determined by μ̄i(e) = e for all e ∈ H̄i.

Theorem 2 will show that the converse is also true, i.e., that every contraction
of a graph in L(Γ̂ ) can also be derived in Γ , provided that Γ is acyclic (Defi-
nition 10). Informally, Γ is cyclic if there is a derivation of a graph G in Γ̂ and
a contraction H of G so that there is a cyclic dependency between derivation
steps that create nodes and derivation steps that use them as context nodes.
These cyclic dependencies then result in derivations of graphs G in Γ̂ having a
contraction H that cannot be derived in Γ because there is no reordering of the
derivation steps that yields a valid derivation in Γ .

Cyclic dependencies caused by a joining morphism μ for a derivation tree
t ∈ TΓ̂ are formalized using the relation �μ on subtrees of t. Informally, t′ �μ t′′

means that t′ describes a derivation step (the topmost one that transforms the
root handle of t′), which creates a node used as a context node in the correspond-
ing topmost contextual derivation step described by t′′. This, together with the
definition of acyclic CHR grammars, is defined next.

Definition 10 (Acyclic CHR grammar). Let Γ be a CHR grammar.
For any two subtrees t′, t′′ of a derivation tree t ∈ TΓ̂ , we let t′ �μ t′′ iff there

is a node u ∈ intro(t′′) so that μ̇(u) �= u and μ̇(u) ∈ intro(t′).
Γ is acyclic if (� ∪ �μ)+ is irreflexive for all derivation trees t ∈ TΓ̂ over Γ̂

and all joining morphisms μ for result(t). Otherwise, Γ is cyclic.

Theorem 2. Let Γ be a CHR grammar and Γ̂ its borrowing HR grammar. For
every graph H ∈ L(Γ ), there is a graph G ∈ L(Γ̂ ) so that H is a contraction
of G. Moreover, every contraction of a graph in L(Γ̂ ) is in L(Γ ) if Γ is acyclic.

Proof. Let Γ be a CHR grammar and Γ̂ its borrowing HR grammar. The first
part of the theorem is a direct consequence of the observation made after Def-
inition 9. To prove the second part of the theorem, let Γ be acyclic and H the
μ-contraction of a graph G ∈ L(Γ̂ ), i.e., G = result(t) for some derivation tree
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Fig. 6. Grammar graph of Δ

t over Γ̂ . Since (� ∪ �μ)+ is irreflexive, one can order the subtrees of t topo-
logically according to � ∪ �μ, obtaining a sequence t1, . . . , tn of derivation trees
so that 1 ≤ i < j ≤ n implies that neither ti ≺ tj nor tj �μ ti. This sequence
(when considering just those subtrees that are of the form 〈G, p, c〉) determines
a derivation of G in Γ̂ , and every node u with μ̇(u) �= u is created in a later
derivation step than μ̇(u). The derivation is therefore a borrowing version of a
derivation of H in Γ . In particular, no node is used as a context node before it
has been created. ��

Definition 10 does not provide effective means to check whether a CHR gram-
mar is acyclic. However, we can make use of the fact that joining morphisms may
only map a borrowed node to a node with the same label. A CHR grammar can-
not be cyclic if we can make sure that no nodes with any label can ever be
part of a cyclic dependency. The grammar graph of a CHR grammar allows for
such reasoning. It describes which rules can create nodes with which labels or
use them as context nodes, and it relates nonterminal labels with productions
in the sense that productions are applied to nonterminal edges, producing new
nonterminal edges. (The creation of terminal edges is irrelevant here.)

Definition 11 (Grammar graph). The grammar graph of a CHR grammar
Γ = 〈Σ, N , P, Z〉 is the unlabeled graph GΓ such that ĠΓ = P ∪ N ∪ Σ̇ and for
each rule p : P ◦→ R, say with P̄ = {l}, Ḡ contains binary edges from the node
lab(l) to p and from p to each node in {lab(x) | x ∈ R} \ T , as well as an edge
from lab(u) to p for every context node u of p.

Example 3 (Acyclicity of the linked tree grammar). Figure 6 shows the grammar
graph for Δ. (Recall that “␣” is the otherwise omitted invisible node label.)
Lemma 1 will reveal that Δ has only harmless dependencies since the cycle
T → π3 → T in its grammar graph does not contain ␣.

The next lemma provides a sufficient criterion to check whether a CHR grammar
is acyclic, and therefore, whether Theorem 2 can be exploited:

Lemma 1. The grammar graph of every cyclic CHR grammar has a cycle that
contains a node in Σ̇.

Proof. Let Γ = 〈Σ, N , P, Z〉 be a cyclic CHR grammar, Γ̂ its borrowing HR
grammar, GΓ the grammar graph of Γ , t ∈ TΓ̂ a derivation tree over Γ̂ , and μ
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Fig. 7. Productions for generating dags, with borrowing production δ̂3

Fig. 8. A derivation with Λ̂

Fig. 9. The four contractions of the graph derived in Fig. 8

a joining morphism for result(t) so that there is a sequence t1, . . . , tn of n > 2
subtrees of t so that t1 = tn and ti (� ∪ �μ) ti+1 for 1 ≤ i < n. By the definition
of � and �μ, ti is of the form 〈Gi, pi, ci〉 for every i. If ti � ti+1 and Ḡi+1 = {e},
GΓ contains edges from pi to lab(e) and from lab(e) to pi+1. If ti �μ ti+1, there
is a node u ∈ intro(ti+1) so that μ̇(u) �= u and μ̇(u) ∈ intro(ti), which means
that u is the image of a context node of pi+1 and the image of a created node
of pi, i.e., GΓ contains edges from pi to lab(u) and from lab(u) to pi+1. Hence,
GΓ contains a cycle. Moreover, there must be at least one i so that ti �μ ti+1
because � is irreflexive, proving that the cycle contains a node in Σ̇. ��

The following example demonstrates that directed acyclic graphs (dags) can
be generated by a CHR grammar. However, this gramnmar is cyclic and thus
has a grammar graph with a cycle that contains a node in Σ̇.

Example 4 (CHR grammar for dags). Consider nonterminals S (of arity 0), A (of
arity 1), and terminals • (of arity 1) and � (of arity 2). Figure 7 shows productions
δ0 to δ3 over these symbols, where nodes attached to a •-edge are just drawn as
•. (These edges are introduced to meet Assumption 1.4 that generated graphs do
not contain isolated nodes.) The CHR grammar Λ with these productions and
with an S-edge as a start graph generates all unlabeled dags with at least one
node. In its borrowing HR grammar Λ̂, the contextual production δ3 is replaced
by the context-free production δ̂3 shown on the right of Fig. 7.

A derivation with Λ̂ is shown in Fig. 8; the resulting terminal graph can be
contracted in four possible ways, to the graphs C1, . . . , C4 shown in Fig. 9. The
contraction C4 is cyclic, and is the only one that cannot be generated with the
productions of the CHR grammar Λ.



174 F. Drewes et al.

Fig. 10. Grammar graph (left) and derivation tree (right) of grammar Λ̂

Figure 10 shows the cyclic grammar graph for Λ on the left, and the derivation
graph of the derivation in Fig. 8. Here the illegal contraction leading to the cyclic
graph C4 is indicated by the thick bent arrow between nodes 8 and 10.

The fact that the contextual production δ3 can be applied only after its
context node has been generated with production δ0 or δ2 makes sure that no
cyclic graphs can be generated. This indicates that cyclic CHR grammars are
strictly more powerful than acyclic ones.

While the absence of a cycle containing a node in Σ̇ in the grammar graph
implies that a CHR grammar is acyclic, the converse is unfortunately not true:
there are acyclic grammars whose grammar graphs have such cycles. A criterion
to characterize acyclic CHR grammars needs to be determined in future work.

4 Top-Down Parsing for Acyclic CHR Grammars

We define top-down parsers for acyclic CHR grammars by parsing the corre-
sponding borrowing HR grammars with stack automata that take the necessary
merging of borrowed nodes with other nodes into account. The stack automata
perform transitions of states that are called configurations. Configurations are
represented as graphs, and transitions are described by graph transformation
rules. This definition is more precise than the original definition of top-down
parsing in [6], but avoids technical complications occurring in [7], where graphs
are represented textually as sequences of literals transformed by parser actions.
In particular, no explicit substitution and renaming operations on node identi-
fiers are required. Further, this approach simplifies handling the borrowing and
merging required for CHR parsing.
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For ease of presentation, we consider an arbitrary but fixed CHR gram-
mar Γ = 〈Σ, N , P, Z〉 throughout the rest of this paper, and let Γ̂ =
〈Σ, N , P̂ , Z〉 be its borrowing HR grammar according to Definition 7.

Top-down parsers attempt to construct a derivation of a graph that matches
a given input graph. Our top-down parser processes the edges of an input graph
G in a nondeterministically chosen linear order when it attempts to construct
a derivation for G. Technically, this order is represented by equipping derived
edges with two additional tentacles by which they are connected to nodes labeled
with a fresh symbol • to form a linear thread.

The definition of the top-down parser for borrowing HR grammars differs
from that of HR grammars as follows: in [8], the binding of stack to input nodes
and edges was represented by identifying them; here we connect matched nodes
with binding edges, and remove matched edges. This results in a more elegant
construction, yields more intuitive parses, and simplifies the correctness proof.

Definition 12 (Threaded graph). The threaded alphabet Σ• of Σ is given by
Σ̇• = Σ̇ ∪ {•} and Σ̄• = T ∪

{
�• | � ∈ Σ̄ \ {�, �=}

}
with arity(�•) = arity(�) + 2;

N • = {�• | � ∈ N } denotes the set of threaded nonterminals.
Let G ∈ GΣ• . A node v ∈ Ġ is a thread node if labG(v) = •, and a kernel node

otherwise. �Ġ� and Ġ• denote the sets of all kernel nodes and thread nodes of
G, respectively. An edge is threaded if its label is of the form �•, and unthreaded
otherwise.

A graph G ∈ GΣ• is threaded if all of its edges except the �- and �=-edges are
threaded and the following additional conditions hold:

1. For every threaded edge e ∈ Ḡ with attG(e) = u1 . . . ukuk+1uk+2, the nodes
u1, . . . , uk are kernel nodes of G and uk+1, uk+2 are thread nodes of G.

2. Ġ• can be ordered as Ġ• = {v0, . . . , vn} for some n ∈ N such that, for every
i ∈ [n], Ḡ contains exactly one threaded edge e so that attG(e) ends in vi−1vi,
and there are no further threaded edges than these.

We call v0 the first and vn the last thread node of G.
The kernel graph of G is the graph �G� ∈ GΣ obtained by replacing every

edge label �• by �, and removing the thread nodes and their attached tentacles.
In this case, G is a threading of �G�. Note that a threading of a graph in GΣ is
uniquely determined by an ordering of its non-{�, �=}-edges and vice versa.

We use a set Σaux = {⊗, bind} of auxiliary edge labels, disjoint with Σ, where
⊗ is unary and labels edges that mark unmatched nodes in a configuration,
whereas bind is binary, and represents the binding of a stack node to a node in
the input.

Definition 13 (Configuration). A graph C over Σ• ∪ T ∪ Σaux is a configu-
ration if

– only Σ•-edges are attached to thread nodes and
– the subgraph stack(C) of C induced by its Σ•-edges and thread nodes is a

threaded graph.
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The edge attached to the first thread node is said to be topmost on the stack.
The input of C is the subgraph input(C) induced by the (unthreaded) T -edges.
C is called

– initial if stack(C) is a handle of Z•, ⊗-edges are attached to all other nodes
of C, and there are no bind-edges in C;

– accepting if stack(C) is an isolated node, all further nodes are attached to
bind-edges, and all other edges in C are labeled with � or �=.

Definition 14 (Top-down parser). Let R be a set of conditional rules. A
derivation C ⇒∗

R C ′ is a parse if C is an initial configuration. A parse C ⇒∗
R C ′

is successful if C ′ is an accepting configuration. R is a top-down parser for Γ
if, for each initial configuration C, input(C) ∈ L(Γ ) if and only if there is a
successful parse C ⇒∗

R C ′.

We define two kinds of top-down parsing rules operating on the topmost
edge e on the stack:

– If e is nonterminal, expand pops e from the stack, and pushes the right-hand
side of a production for e onto the stack;

– If e is terminal, e is matched with a corresponding unthreaded edge e′ in the
input; then e is popped from the stack, and e′ is removed.

For a match rule to match e to e′, we must have lab(e) = lab(e′)•, and
each pair u, v of corresponding attached nodes must either already be bound to
each other by a bind-edge, or there must be ⊗-edges attached to both, which
indicates that they are still unprocessed, or u must have both a ⊗-edge and a
�-edge attached to it. The latter covers the case where u is a still unprocessed
borrowed node which can thus be bound to a node already bound earlier. To
make sure that the borrowed node is not bound to a node of the same right-hand
side, an application condition checking for the absence of a �=-edge is needed.
Also, the condition forbids that borrowed nodes are treated as ordinary ones.

Definition 15 (Expand and match rules). For every borrowing production
(p : P ◦→ R) ∈ P̂, the expand rule tp : P ′ ◦→ R′ is given as follows:

– P ′ and R′ are threadings of P and R, respectively, where every node intro-
duced by p has a ⊗-edge attached in R′ (and no others have).

– The interface Itp
is Ip plus the last thread node of P ′.

A conditional rule t : c P ◦→ R with configurations P and R is a match rule for
a terminal symbol a ∈ T \ {�, �=} if the following holds:

– stack(P ) is a handle of a•, say with attached nodes u1 · · · ukuk+1uk+2.
– input(P ) is a handle of a, say with attached nodes v1 · · · vk.
– For every pair (ui, vi), i ∈ [k], precisely one of the following conditions holds:

• P contains a bind-edge with attachment uivi,
• a ⊗-edge is attached to both ui and vi, or
• both a ⊗-edge and a �-edge is attached to ui.
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Fig. 11. Expand rules of the top-down parser for linked trees

Fig. 12. Match rules for the top-down parser for linked trees

– It is P without the a-edge, the a•-edge, and the first thread node.
– R consists of the nodes u1, . . . , uk+2, v1, . . . , vk, the last thread node of

stack(P ), and a bind-edge from ui to vi for every i ∈ [k].
– For every i ∈ [k], the application condition c requires the following: Let

m : P → G be the occurrence. If ui ∈ Ṗ�, then there is no z ∈ Ġ with
(m(ui), z) ∈ �=G such that z has a bind-edge to m(vi). If ui /∈ Ṗ�, then c
requires that m(ui) /∈ Ġ�.

We let RΓ • denote the set of all expand and match rules of Γ •.

Example 5 (Top-down parser for linked trees). For the expand rules of the top-
down parser for linked trees with detached links (Fig. 11) we have threaded the
right-hand sides so that terminal edges come first, and nonterminals attached to
the source node of a terminal edge next. Nodes attached to a ⊗-edge or a �-edge
are drawn as ⊗ and � respectively, rather than drawing the edge separately. A
node attached to both a ⊗-edge and a �-edge, is drawn as × . We draw bind-
edges as dotted lines (in downward direction), and �=-edges as double lines with
a vertical bar.

In general, the terminal symbols of Δ lead to four match rules for �, and nine
rules for � and � each. However, inspection of Δ reveals that just three match
rules are needed by the parser, which are shown in Fig. 12: A �-edge is matched
when its attached node is unbound, and �-edges and �-edges are matched when
their first attached node is already bound. The application conditions for the
match rules t1 and t2 are actually not needed; analysis of Δ reveals that the
unbound nodes of these edges will never be attached to �-edges.

Figure 13 shows a successful parse of the linked tree T derived in Fig. 2 with
these rules. We have left shades of the matched edges in the configurations
to illustrate how the parse constructs the derivation with the borrowing HR
grammar Γ̂ in Fig. 5, which corresponds to the derivation with Γ in Fig. 2.

Note that match rules consume the thread and the matched edges. Expand
rules do not modify the input, but just replace the first nonterminal on the
thread by the replacement graph of a threaded production for this nonterminal.
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Fig. 13. A parse of the linked tree T generated in Fig. 2

In the following, we prove formally that RΓ • is indeed a top-down parser for
Γ , provided that Γ is acyclic.

Fact 1 (Invariants of configurations)

1. The bind-edges define an irreflexive partial function

�→ = {(x, y) | e ∈ C̄, labC(e) = bind, attC(e) = xy},

between non-thread nodes, called binding, such that x �→ y implies that (1) x
is not in input(C), and (2) y is not in stack(C).

2. No node is attached to several ⊗-edges.
3. A kernel node of a threaded edge in stack(C) is attached to a ⊗-edge if and

only if it is not the source of a bind-edge.
4. Every node of input(C) that is not the target of a bind-edge is attached to a

⊗-edge. (The converse is not true because a ⊗-edge may be attached to the
target of a bind-edge if the source of that bind-edge is in Ċ�; see Fig. 13.)

We now consider the first direction of the correctness of the parser.

Lemma 2. Every graph G ∈ L(Γ ) has a successful parse C ⇒∗
RΓ • C ′, where C

is the initial configuration with input(C) = G.

The proof relies on the following construction to obtain a successful parse.

Construction 1. Let Z ⇒p1 G1 ⇒p2 · · · ⇒pn
Gn with pi ∈ P for i ∈ [n] be a

derivation for G = Gn. Consider a borrowing version Z ⇒p̂1 H1 ⇒p̂2 · · · ⇒p̂n
Hn

of the derivation, where G is the μ-contraction of G′ = Hn. Let t ∈ TΓ̂ be
the derivation tree of Z ⇒p̂1 H1 ⇒p̂2 · · · ⇒p̂n

Hn, where the ordering of subtrees
corresponds to the edge ordering in rules of Γ .1 Let t1t2 · · · tn be the sequence
1 Note that, while t is a derivation tree over the borrowing HR grammar Γ̂ , the

ordering of right-hand sides of productions in Γ̂ ignores edges that are labeled with
�= and �, so that it is the same as in Γ and provides the required edge ordering.
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of subtrees obtained from the pre-order traversal pre(t) of t by keeping only the
trees with terminal and nonterminal root handles.

For k ∈ {0, . . . , n}, construct the sequence Tk ∈ H∗
Σ from t1t2 · · · tk by keep-

ing only the trees that are terminal handles. Let Nk be the set of nodes occurring
in Tk. By definition, Nk ⊆ Ġ′. As the edges of terminal handles in Tk are exactly
those in G′, and Ḡ = Ḡ′, each handle in Tk identifies a unique edge in G.

Let Sk ∈ H∗
Σ be the sequence obtained from tk+1tk+2 · · · tn by removing

each tree ti that is a subtree of a tree tj where k < j < i, and replacing each
remaining tree ti by its root handle root(ti). Moreover, let Lk be the subset of
those handles in {root(t′) | t′ ≺ ti for some i < k} whose edges are labeled with
�= or �.

The configuration Ck is then obtained by the following steps:

1. Define CT
k as the threaded graph whose thread contains the (threaded ver-

sions) of edges in Sk in this order. Additionally, all nodes that occur in Tk

but not in Sk, and all edges in Lk are in CT
k .

2. Replace each kernel node u of CT
k by a fresh copy copy(u). Add a ⊗-edge in

CT
k to copy(u) if u /∈ Nk.

3. Obtain CU
k from G by removing all edges occurring in handles in Tk. Add a

⊗-edge in CU
k to u if u /∈ Nk.

4. Let Ck = CU
k ∪ CT

k .
5. For each node u ∈ Nk, add a bind-edge from copy(u) to μ̇(u) in Ck. ��

The following example illustrates this construction:

Example 6. Consider Example 2 again, and the illustration of the derivation tree
tT̂ in Fig. 5, which results in the graph T̂ of Fig. 4. The pre-order traversal of
tT̂ is pre(tT̂ ) = τ1 · · · τ12 where τi is the subtree of tT̂ whose root handle carries
i as a small number in Fig. 5. Note that τ7 and τ8 are handles whose edges
are labeled with �= or �. Construction 1 thus ignores them and considers the
following sequence t1 · · · t10 of the remaining ten subtrees (again, only the root
handles are depicted):

S

τ1

a

τ2

a
A

τ3

a b
�

τ4

a
A

τ5

a c′�
τ6

b
A

τ9

b c
�

τ10

b
A

τ11

c
A

τ12

Construction 1 creates the configurations in the parse C0 ⇒∗
RΓ • C10 shown

in Fig. 13 from this sequence. Figure 14 displays the sequences Tk and Sk and
the set Lk of handles used for creating each Ck for k ∈ {0, . . . , 10}.

We are now ready to sketch a proof of Lemma 2:

Proof Sketch. We build graphs C0, C1, . . . , Cn following Construction 1. C0 and
Cn are clearly an initial and an accepting configuration, respectively, with
input(C0) = G. To see that C0 ⇒RΓ • C1 ⇒RΓ • · · · ⇒RΓ • Cn, consider Ck−1 and
Ck for some k ∈ [n]. We can distinguish two cases for H = root(tk):
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Fig. 14. Steps of Construction 1 for creating the parse in Fig. 13

Case 1: H is terminal.
This implies Tk = Tk−1H, Sk−1 = HSk, and Nk = Nk−1 ∪ Ḣ. The reader can
confirm by following the steps in Construction 1 that Ck−1 ⇒RΓ • Ck using the
match rule for the edge label in H.
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Case 2: H is nonterminal.
Then tk−1 = 〈H, p, t′

1t′
2 · · · t′

l〉 for derivation trees t′
1t′

2 · · · t′
l, and we have Tk =

Tk−1, Nk = Nk−1, Sk−1 = tk−1R, and Sk = root(t′
1) root(t′

2) · · · root(t′
l) R with

R ∈ T
∗
Γ . By Definition 6, H ⇒p H◦ ∪

⋃l
i=1 root(t′

i). Construction 1 makes sure
that Ck−1 ⇒RΓ • Ck using the expand rule for p. ��

The next lemma covers the other direction of the correctness of the parser.
Lemma 3. If Γ is acyclic, then the existence of a successful parse C ⇒∗

RΓ • C ′

implies input(C) ∈ L(Γ ).
Proof. Let C0 ⇒t1 C1 ⇒t2 · · · ⇒tn

Cn be any successful parse with t1, . . . , tn ∈
RΓ • . Let G = input(C0). For i = 0, . . . , n, consider the following subgraphs
Topi and Boti of Ci: Topi is the subgraph induced by Ċi \ Ġ, and Boti the
subgraph obtained from Ci by deleting all edges in T̄opi and all thread nodes.
Note that Ci = Topi ∪ Boti and, since C0 is initial, Top0 = Z• and Bot0 = G.

Boti may contain bind-edges, which define the binding relation �→ of Fact 1.
For every graph H containing Boti as a subgraph (for any i), we obtain merge(H)
as the homomorphic image of H without its bind-edges by mapping node x to
node y for each (x, y) ∈ �→.

Let us now consider a parse step Ci−1 ⇒ti
Ci for i ∈ [n]. There are two cases:

Case 1: ti is a match rule.
Then Ci is obtained by deleting a terminal edge as well as its threaded version
from Ci−1, and by adding some bind-edges. As a consequence, there is a handle
Deli of a terminal edge with Ḋeli ⊆ X(�Topi−1�) so that

�Topi−1� = �Topi� ∪ Deli and merge(Boti−1) = merge(Boti ∪ Deli).

Case 2: ti is an expand rule for a rule pi ∈ P̂.
By the definition of the expand rule we have

�Topi−1� ⇒
pi

�Topi� and Boti−1 = Boti.

Let Del =
⋃n

j=1 Delj where Delj is the empty graph if tj is an expand rule.
Making use of the fact that G = merge(Bot0) and �Top0� = Z, a straightforward
induction yields

(1) Z
∗⇒̂
P

�Topn� ∪ Del and (2) G = merge(Botn ∪ Del).

Let F = �Topn� ∪ Del. Note that for every node x ∈ Ḟ� (see Definition 8),
there is a unique node y ∈ Ḟ \Ḟ� so that G has a node u with x �→ u and y �→ u in
Botn. Now consider the morphism μ : F → F ′ where μ̄ and the restriction of μ̇ to
Ḟ \ Ḟ� are inclusions, and μ̇ maps each node x ∈ Ḟ� to the corresponding node
y ∈ Ḟ \ Ḟ� as described above. The application conditions of match rules make
sure that (v, μ̇(v)) /∈ �=F for every v ∈ Ḟ�. Hence, μ is a joining morphism, and
core(F ′) ∈ L(Γ ) because of (1) and the assumption that Γ is acyclic. However,
core(F ′) is isomorphic to merge(Botn ∪ Del), and (2) implies G ∈ L(Γ ). ��
Corollary 1. If Γ is acyclic, then RΓ • is a top-down parser for Γ .
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5 Conclusions

In this paper, we have shown that our rule-based definition of top-down parsing
for CHR grammars is correct if the dependencies arising from the use of context
nodes in these grammars are acyclic. This extends our correctness proof for HR
grammars in [8, Theorem 2]. Our result can be specialized for predictive top-
down parsing by equipping expand rules with application conditions that allow
to predict the only promising production for a nonterminal; cf. Theorem 4 of
that paper.

The language of all graphs over Σ, unrestricted flowcharts of imperative
programs, statecharts [5, Ex. 1, 2 & Sect. 3], and graphs representing object-
oriented programs [4] cannot be generated with HR grammars; however, they
can be generated with CHR grammars. This indicates that the extension is
practically relevant. Moreover, the mentioned CHR grammars are acyclic and
PTD-parsable. This suggests that these restrictions will not be too strong in
practice.2 The cyclic grammar Λ for dags in Example 4 is not PTD-parsable.
(We conjecture that there is no acyclic CHR grammar for dags at all.)

Much of the related work on parsing for HR grammars follows the well-
known Cocke-Younger-Kasami algorithm. An implementation for unrestricted
HR grammars (plus edge-embedding rules) in DiaGen [18] works for practical
input with hundreds of nodes and edges, although their worst-case complexity
is exponential. D. Chiang et al. [1] have implemented a polynomial algorithm
for a subclass of HR grammars (based on the work of C. Lautemann [17]).
S. Gilroy, A. Lopez, and S. Maneth [12] have proposed a linear parsing algorithm
for Courcelle’s “regular” graph grammars [2]. Both algorithms apply to graphs
as they occur in computational linguistics.

To our knowledge, early approaches to parsing for context-free node replace-
ment grammars [10] like [15,19] are no longer pursued.

Like many scientific efforts, this paper raises more questions than it answers:
(i) Is there a decidable sufficient and necessary condition for acyclicity? (ii) Can
parsing for CHR grammars be extended to cyclic CHR grammars? (iii) Can
PSR parsing [7] be defined by graph transformation in a similar way? (iv) Is
PSR parsing more powerful than PTD parsing? All this remains for future work.

Acknowledgments. We thank Annegret Habel, Verone Stillger, and the anonymous
reviewers for their advice.

2 The mentioned CHR grammars can be downloaded at www.unibw.de/inf2/grappa.
The graph parser distiller grappa developed by Mark Minas, generates PTD parsers
that run in quadratic time, and often even in linear time [6]. The website also contains
specifications of the PTD parser for linked trees with the AGG system [11] along
the lines of Example 5.

www.unibw.de/inf2/grappa
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Abstract. We use categorical methods to define a new flavor of Petri
nets where transitions can only fire a limited number of times, specified
by a quantity that we call mana. We do so with chemistry in mind, look-
ing at ways of modelling the behavior of chemical reactions that depend
on enzymes to work. We prove that such nets can be either obtained as a
result of a comonadic construction, or by enriching them with extra infor-
mation encoded into a functor. We then use a well-established categorical
result to prove that the two constructions are equivalent, and generalize
them to the case where the firing of some transitions can “regenerate”
the mana of others. This allows us to represent the action of catalysts
and also of biochemical processes where the byproducts of some chemical
reaction are exactly the enzymes that another reaction needs to work.

1 Introduction

Albeit they have found great use outside their original domain, Petri nets were
invented to describe chemical reactions [21]. The interpretation is as simple
as it can get: places of the net represent types of compounds (be it atoms or
molecules); tokens represent the amount of each combination we have available;
transitions represent reactions transforming compounds.

ATP

H2O

ADP

Pi

ATP

H2O

ADP

Pi

Still, things are not so easy in real-world chemistry: reactions often need
“context” to happen, be it a given temperature, energy, presence of enzymes
and catalysts. This is particularly true in biochemical processes, where enzymes
of all sorts mediate rather complicated reactions. Importantly, these enzymes
tend to degrade over time, resulting in reactions that do not keep happening
forever [14]. This is one of the (many) reasons why organisms wither and die,
but it is not captured by the picture above, where the transition can fire every
time it is enabled.
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Borrowing the terminology from the popular Turing machine Magic: The
gathering [7,24] we propose a possible solution to this problem by endowing
transitions in a net with mana [23], representing the “viability” of reactions:
once a reaction is out of mana, it cannot fire anymore.

compound A

compound B

compound C

mana

Now, we could just represent mana by adding another place for each transition
in a net. Indeed, this is the idea we will start with. Still, being accustomed to the
yoga of type-theoretic reasoning, we are also aware that throwing everything in
the same bucket is rarely a good idea: albeit mana can be a chemical compound,
it is more realistic to consider it as conceptually separated from the reactions it
catalyzes.

Resorting to categorical methods, we show how we can axiomatize the idea
of mana in a better way. We do so by relaxing the definitions in the categorical
approach to coloured nets already developed in [13], defining a functorial seman-
tics representing the equipment of a net with mana. Then, we will prove how
categorical techniques allow us to internalize such a semantics, exactly obtaining
what we represented in the picture above.

Finally, we will show how the categorical semantics naturally leads to a fur-
ther generalization, where transitions not only need mana to function but also
provide byproducts that can be used as mana for other transitions. This allows us
to represent catalysts1 (i.e. cards ‘adding ∞ to the mana pool’, or more precisely
mana that does not deteriorate over time) and in general nets apt to describe
two-layered chemical processes, the first layer being the usual one represented
by Petri nets and the second layer being the one of enzymes and catalysts being
consumed and exchanged by different reactions.

2 Nets and Their Executions

Before presenting the construction itself, it is worth recapping the main points
about categorical semantics for Petri nets. The definition of net commonly used
in the categorical line of work is the following:

Notation 1. Let S be a set; denote with S⊕ the set of finite multisets over S.
Multiset sum will be denoted with ⊕, multiplication with � and difference (only
partially defined) with �. S⊕ with ⊕ and the empty multiset is isomorphic to
the free commutative monoid on S.

1 An unrelated categorical approach to nets with catalysts can be found in [2].
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Definition 1 (Petri net). We define a Petri net as a couple functions T
s,t−→

S⊕ for some sets T and S, called the set of places and transitions of the net,
respectively.

A morphism of nets is a couple of functions f : T → T ′ and g : S → S′ such
that the following square commutes, with g⊕ : S⊕ → S′⊕ the obvious lifting of
g to multisets:

Petri nets and their morphisms form a category, denoted Petri. The reader can
find additional details in [18].

Definition 2 (Markings and firings). A marking for a net T
s,t−→ S⊕ is an

element of S⊕, representing a distribution of tokens in the net places. A transition
u is enabled in a marking M if M � s(u) is defined. An enabled transition can
fire, moving tokens in the net. Firing is considered an atomic event, and the
marking resulting from firing u in M is M � s(u) ⊕ t(u).

Category theory provides a slick definition to represent all the possible
executions of a net – all the ways one can fire transitions starting from a
given marking – as morphisms in a category. There are various ways to do
this [3,11,12,17,18,22], depending if we want to consider tokens as indistin-
guishable (common-token philosophy) or not (individual-token philosophy). In
this work, we focus on chemical reactions. Since we consider atoms and molecules
of the same kind to be physically indistinguishable, we will adopt the common-
token perspective. In this case, the category of executions of a net is a com-
mutative monoidal category – a monoidal category whose monoid of objects is
commutative.

p1 t p2

v

up3 p4

p1 t p2

v

up3 p4

p1 t p2

v

up3 p4

p1 t p2

v

up3 p4

t v

u

p1

p2

p3

p3

p2
p3

p4

p2

p4

p3
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Definition 3 (Category of executions – common-token philosophy). Let
N : T

s,t−→ S⊕ be a Petri net. We can generate a free commutative strict monoidal
category (FCSMC), C(N), as follows:

– The monoid of objects is S⊕. Monoidal product of objects A,B, denoted with
A ⊕ B, is given by the multiset sum;

– Morphisms are generated by T : each u ∈ T corresponds to a morphism gen-
erator (u, su, tu), pictorially represented as an arrow su

u−→ tu; morphisms are
obtained by considering all the formal (monoidal) compositions of generators
and identities.

The readers can find a detailed description of this construction in [17].

As shown in the picture above, objects in C(N) represent markings of a net:
A ⊕ A ⊕ B means “two tokens in A and one token in B”. Morphisms represent
executions of a net, mapping markings to markings. A marking is reachable from
another one if and only if there is a morphism between them.

The correspondence between Petri nets and their executions is categorically
well-behaved, defining an adjunction between the category Petri and the cate-
gory CSMC of commutative strict monoidal categories, with Definition 3 build-
ing the left-adjoint Petri → CSMC. The readers can find additional details
in [17].

3 The Internal Mana Construction

The idea presented in the introduction can näıvely be formalised by just attach-
ing an extra input place to any transition in a net, representing the mana a given
transition can consume. We call the following construction internal because it
builds a category directly, in contrast with an external equivalent construction
given in Definition 7.

Definition 4 (Internal mana construction). Let N : T
s,t−→ S⊕ be a Petri

net, and consider C(N), its corresponding FCSMC. The internal mana construc-
tion of N is given by the FCSMC CM(N) generated as follows:

– The generating objects of CM(N) are the coproduct of the generating objects
of C(N) and T ;

– For each generating morphism

A1 ⊕ · · · ⊕ An
u−→ B1 ⊕ · · · ⊕ Bm

in C(N), we introduce a morphism generator in CM(N):

A1 ⊕ · · · ⊕ An ⊕ u
u−→ B1 ⊕ · · · ⊕ Bm

Notice that the writing above makes sense because u is an element of T .
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Because of the adjunction between Petri and CSMC, we can think every
FCSMC as being presented by a Petri net. The category of Definition 4 is pre-
sented precisely by the net obtained from N as we did in Sect. 1: the additional
generating objects of CM(N) represent the places containing the mana associated
with each transition.

Example 1. Performing the construction in Definition 4 on the category of exe-
cutions of the net on the left gives the category of executions of the net on the
right, as we expect:

compound A

compound B

compound C

compound A

compound B

compound C

mana

Proposition 1. The assignment C(N) �→ CM(N) defines a comonad2 in the
category of FCMSCs and strict monoidal functors between them, FCSMC.

Proof. First of all, we have to prove that the procedure is functorial. For any
strict monoidal functor F : C(N) → C(M) we define the action on morphisms
CM(F ) : CM(N) → CM(M) as the following monoidal functor:

– CM(F ) agrees with F on generating objects coming from C(N). If u is a
generating morphism of C(N) and it is Fu = f , then CM(F ) u = fN, with
fN being the multiset3 counting how many times each generating morphism
of C(M) is used in f .

– CM(F ) agrees with F on generating morphisms.

Identities and compositions are clearly respected, making CM( ) an endofunctor
in FCSMC. As a counit, on each component N we define the strict monoidal
functor εN : CM(N) → C(N) sending:

– Generating objects coming from C(N) to themselves, and every other gener-
ating object to the monoidal unit.

– Generating morphisms to themselves.

The procedure is natural in the choice of N , making ε into a natural transfor-
mation CM( ) → idFCSMC.

As for the comultiplication, on each component N we define the strict
monoidal functor δN : CM(N) → CM(CM(N)) sending:
2 Given a category C, a comonad on C is an endofunctor S endowed with two natural
transformations δ : S ⇒ S◦S and ε : S ⇒ 1C such that δ is coassociative and has ε as
a counit. More succinctly, a comonad is a comonoid in the monoidal category [C,C]
of endofunctors of C. We give a precise definition in our Appendix, see Definition 9.
See also [20, §5.3] for the definition and a variety of examples.

3 This makes sense since C(M) is free, hence decomposition of morphisms in terms of
(monoidal) compositions of generators and identities is unique modulo the axioms
of monoidal categories, which do not introduce nor remove generating objects.
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– Generating objects coming from C(N) to themselves, every other generating
object u is sent to u ⊕ u.

– Generating morphisms are again sent to themselves.

The naturality of δ and the comonadicity conditions are a straightforward check.
	


4 The External Mana Construction

As we stressed in Sect. 1, the construction as in Definition 4 has the disadvantage
of throwing everything in the same bucket: in performing it, we do not keep any
more a clear distinction between the different layers of our chemical reaction
networks, given by mana and compounds.

In the spirit of [13], we now recast the mana construction externally, as Petri
nets with a semantics attached to them. A semantics for a Petri net is a functor
from its category of executions to some other monoidal category S.

A huge conceptual difference is that in [13] this functor was required to be
strict monoidal. This point of view backed up the interpretation that a semantics
“attaches extra information to tokens”, to be used by the transitions somehow.
In here, we require this functor to be lax-monoidal :4 lax-monoidality amounts to
saying that we can attach non-local information to tokens: tokens may “know”
something about the overall state of the net and the laxator represents the
process of “tokens joining knowledge”.

In terms of mana construction, we want to endow each token with a local
“knowledge” of how much mana each transition has available. Laxating amounts
to consider ensembles of tokens together – as entangled, if you wish – where their
knowledge is merged.

Example 2.

u

vmana u: 3
mana v: 0

mana u: 1
mana v: 8

u

v
mana u: 4
mana v: 8

Laxator

If token a knows that transition u has 3 mana left, and token b knows that
transitions u and v have 1 and 8 mana left, respectively, then tokens a and b,
considered together, know that transitions u and v have 3+1 = 4 and 0+8 = 8
mana left, respectively.

Definition 5 (Non-local semantics – common-token philosophy). Let N
be a Petri net and let S be a monoidal category. A Petri net with a non-local
4 A lax monoidal functor between two monoidal categories (C, �J), (D, ⊗, I) is a func-
tor F : C → D endowed with maps m : FA ⊗ FB → F (A � B) and u : I → FJ
satisfying suitable coherence conditions; see [16, Def. 3.1]. If m, u are isomorphisms
in D, F is called strong monoidal. If just u is an isomorphism, F is called normal
monoidal.
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commutative semantics is a couple
(
N,N �

)
, with N � a lax-monoidal functor

C(N) → S. A morphism
(
N,N �

) → (
M,M �

)
of Petri nets with commutative

semantics is a strict monoidal functor C(N) F−→ C(M).
We denote the category of Petri nets with non-local commutative semantics

with PetriS.

We now provide an external version of the mana construction.

Notation 2. We denote with Span the bicategory of sets, spans and span mor-
phisms between them.5 Recall that a morphism A → B in Span consists of a set
S and a pair of functions A ← S → B. When we need to notationally extract
this information from f , we write A

f1←− Sf
f2−→ B. We sometimes consider a

span as a morphism f : Sf → A×B, thus we may write f(s) = (a, b) for s ∈ Sf

with f1(s) = a and f2(s) = b. Recall moreover that a 2-cell in Span f ⇒ g is a
function θ : Sf → Sg such that f = g ◦ θ.

Observe that there is nothing in the previous definition of Span that requires
the objects to be mere sets; in particular, we will later employ the following
variation on Notation 2:

Definition 6 (Spans of pointed sets). Define a bicategory Span• of spans
of pointed sets objects the pointed sets, (A, a) where a ∈ A is a distinguished
element; composition of spans is as expected

Remark 1. This is in turn just a particular case of a more general construction:
let C be a category with pullbacks; then, there is a bicategory SpanC having
1-cells the spans A ← X → B of morphisms of C, and where a pullback of their
adjacent legs defines the composition of 1-cells. Evidently, Span = Span(Set)
and Span• = Span(Set•), where Set• is the category of pointed sets (A, a) and
maps that preserve the distinguished elements of the domain and codomain. See
[9, §2] and [8] for a way more general perspective on bicategories of the form
SpanC and the universal property of the Span construction.

Definition 7 (External mana construction). Given a Petri net N : T
s,t−→

S⊕, define the following functor N � : C(N) → Span:

– Each object A of C(N) is mapped to the set T⊕, the set of multisets over the
transitions of N ;

– Each morphism A
f−→ B is sent to the span N �f defined as:

T⊕ −⊕fN

←−−−− T⊕ = T⊕

With fN being the multiset counting how many times each generating mor-
phism of C(M) is used in f .

5 See [6, Def. 1.1] for the definition of bicategory; intuitively, in a bicategory, one has
objects (0-cells), 1-cells and 2-cells, and composition of 1-cells is associative and
unital up to some specified invertible 2-cells F (GH) ∼= (FG)H and F1 ∼= F ∼= 1F .
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Proposition 2. The functor of Definition 7 is lax monoidal. Functors as in Def-
inition 7 form a subcategory of PetriSpan, which we call PetriM.

Proof. Functor laws are obvious: idN

A is the empty multiset for each object A,
hence N �idA = idT ⊕ . This correspondence preserves composition since

The laxator is the morphism S⊕ × S⊕ ⊕−→ S⊕ that evaluates two multisets to
their sum, embedded in a span. The naturality condition for the laxator reads:

And the two morphisms from T⊕ × T⊕ → T⊕ are:

which evidently coincide. Interaction with the associators, unitors and symme-
tries of the monoidal structure is guaranteed by the fact that they are all iden-
tities in C(N). 	


The external mana construction has the advantage of keeping the reaction
layer and the mana layer separated completely. In this setting, we say that a
marking of the net is a couple (X,u), with X an object of C(N) and u ∈ T⊕

representing the initial distribution of mana for our transitions. A transition
X

f−→ Y is again a generating morphism of C(N), and we say that it is enabled if
N �f1 hits u, or, more explicitly, if u � fN is defined. Since fN for f a morphism
generator is defined to be 0 everywhere and 1 on f , this amounts to say that f
is enabled when u(f)−1 ≥ 0. In that case, the resulting marking after the firing
is (Y, u(f)− 1): Each firing just decreases the mana of the firing transition by 1.
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Example 3. Consider the net

compound A

compound B

compound C

In the marking (A ⊕ B, 2), the transition is enabled. The resulting marking will
be (C, 1). The transition is not enabled in the marking (A ⊕ B, 0) or (A, 4).

4.1 Internalization

Having given two different definitions of endowing a net with mana, it seems
fitting to say how the two are connected. As we already stressed, we abide by
the praxis already established in [13] and prove that the external and internal
mana constructions describe the same thing from different points of view:

Theorem 1. Let
(
N,N �

)
be an object of PetriM. The category CM(N) of Def-

inition 4 is isomorphic to the category of elements
∫

N �.6 Explicitly:

– Objects of
∫

N � are couples (X,x) where X is a object of CM(N) and x ∈
N �X.

– Morphisms (X,x) → (Y, y) of
∫

N � are morphisms (f, s) with f : X → Y of
CM(N) and s such that N �fs = (x, y).

Proof. First of all, we need to define a commutative strict monoidal structure on∫
N �. Given the particular shape of N �, the objects of its category of elements

are pairs where the first component is a multiset on the places of N and the
second one is a multiset on its transition. Hence we can define:

(C, x) � (D, y) := (C ⊕ D,x ⊕ y)

(Note that in order to obtain an element in N �(C ⊕ D), we have implicitly
applied the laxator ⊕ : N �C × N �D → N �(C ⊕ D) to the elements in the
second coordinate.) Commutativity of � follows from the commutativity of ⊕.

On morphisms, if we have (A1, x1)
(f1,s1)−−−−→ (B1, y1) and (A2, x2)

(f2,s2)−−−−→ (B2, y2)
then it is N �f1s1 = (x1, y1) and N �f2s2 = (x2, y2), and hence by naturality
of the laxator N �(f1 ⊕ f2)(s1, s2) = ((x1 ⊕ x2), (y1 ⊕ y2)), allowing us to set
f1 � f2 = f1 ⊕ f2. Associators and unitors are defined as in C(N).

Now we prove freeness: by definition, objects are a free monoid generated by
couples (p, I) and (I, u) with p a generating object of C(N) (a place of N), u a
6 The category of elements of a functor F : C → Set is defined having objects the pairs
(C, x), where x ∈ FC, and morphisms (C, x) → (C′, x′) the morphisms u : C → C′

such that Fu sends x into x′. See [4, §12.2], where this is called the Grothendieck
construction performed on F . Here we need to tweak this construction in order for it
to make sense for lax functors valued in Span, using essentially the same technique
in [19].
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generating morphism of CM(N) (a transition of N), and I the tensor unit. These
generators are in bijection with the coproduct of places and transitions of N . As
such, the monoid of objects of

∫
N � is isomorphic to the one of CB (N).

On morphisms, notice that every morphism in
∫

N � can be written uni-
vocally – modulo the axioms of a commutative strict monoidal category – as
a composition of monoidal products of identities and morphisms of the form

(A, u)
(f,u)−−−→ (B, u′), with f a morphism generator in C(N) and u = u′ ⊕ fN.

The isomorphism between
∫

N � and CB (N) follows by observing that the
following mappings between objects and morphism generators are bijections:

(A, u) �→ A ⊕ u

(A, u)
(f,u)−−−→ (B, u′) �→ A ⊕ u

f−→ B ⊕ u′

	

Example 4. The internalization of the net in Example 3 gives exactly the net
of Example 1.

5 Extending the Mana Construction

Focusing more on the external mana construction of Definition 7, we realize
that it is somehow restrictive: it makes sense to map each generating object
of an FCSMC CM(N) to the set of multisets over the transitions of N . This
construction captures the idea of endowing each transition with an extra place
representing its mana. On the other hand, the only requirement we would expect
on morphisms is that, to fire, a transition must consume mana only from its mana
pool. In Definition 7 we do much more than this, hardcoding that “one firing =
one mana” in the structure of the functor.

The act of replacing the mapping on morphisms in Definition 7 with the
following span provides a reasonable generalization of the previous perspective:

T⊕ −⊕(α�fN)←−−−−−−− T⊕ −⊕(βf )−−−−−→ T⊕

with α and βf arbitrary multisets. In doing so, the only thing we are disallowing
in our new definition is for transitions to consume mana of other transitions:
each transition may use only the mana in its pool. Still, it is now possible for
transitions to:

– Fire without consuming mana;
– Consume more than 1 unit of mana to fire;
– Produce mana – also for other transitions – upon firing.

These are all good conditions in practical applications. The first models chemical
reactions that do not need any additional compound to work; the second aims
to model reactions that need more than one molecule of a given compound to
work; the third models both catalysts – which completely regenerate their mana
at the end of the reactions they aid – and reactions that produce, as byproducts,
enzymes needed by other reactions.
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Example 5. It is worth giving an explicit description of how the internalized
version of a net, as in our attempted generalized definition, looks like. In the
picture below, each transition has its mana, but now this mana does not have
to be necessarily used, as for transition u1, or can be used more than once,
as for transition u2. Furthermore, transitions such as u3 regenerate their mana
after firing (catalysts), while transitions such as u2 and u4 produce mana for
each other in a closed loop. u4 also produces more than one kind of mana as a
byproduct of its firing. It is worth noticing that this formalism allows to model
nets that never run out of mana, and that we think of as “self-sustaining” [14].

u1

u2

u3

u4

When looking at technicalities, unfortunately, things are not so easy. Defining
α and the family βf so that functorial laws are respected is tricky. Luckily
enough, we do not need to do so explicitly. Indeed, we can generalize the internal
mana-net construction of Definition 4 to the following one, that subsumes nets
as in Example 5:

Definition 8 (Generalized internal mana construction). Let N : T
s,t−→

S⊕ be a Petri net, and consider C(N), its corresponding FCSMC. A generalized
internal mana construction for N is any FCSMC CM(N) such that:

– The generating objects of CM(N) are the coproduct of the generating objects
of C(N) and T ;

– Generating morphisms

A1 ⊕ · · · ⊕ An
u−→ B1 ⊕ · · · ⊕ Bm

in C(N) are in bijection with generating morphisms in CM(N):

A1 ⊕ · · · ⊕ An ⊕ U1
u−→ U2 ⊕ B1 ⊕ · · · ⊕ Bm

With U1 a multiset over T being 0 on any u′ �= u, and U2 being an arbitrary
multiset over T .

Notice moreover that, for each generalized mana-net CM(N), we obtain a
strict monoidal functor F : CM(N) → C(N) as in Proposition 1: we send gen-
erating objects of C(N) to themselves, all the other generating objects to the
monoidal unit and generating morphisms to themselves. We keep calling F the
counit of CM(N), even if it won’t be in general true that we still get a comonad.

Counits can be turned into functors C(N) → Span using a piece of categor-
ical artillery called the Grothendieck construction (or the category of elements
construction).
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Theorem 2 (Grothendieck construction, [19]). Let C be a category. Then,
there is an equivalence Cat/C � Catl[C,Span], with Catl[C,Span] being the
category of lax functors C → Span. A functor F : D → C defines a functor
ΓF : C → Span as follows:

– On objects, C is mapped to the set {D ∈ D | FD = C};
– On morphisms, C

f−→ C ′ is mapped to the span

{D ∈ C | FD = C} s←− {g ∈ D | Ff = g} t−→ {D ∈ C | FD = C ′}

The other way around, regarding C as a locally discrete bicategory and letting
F : C → Span be a lax functor, F maps to the functor ΣF , from the pullback
(in Cat) below:

where Span• is the bicategory of spans between pointed sets, and U is the for-
getful functor.

More concretely,
∫

F is defined as the category (all 2-cells are identities, due
to the 2-discreteness of C) having

– 0-cells of
∫

F are couples (X,x) where X is a 0-cell of C and x ∈ FX;
– 1-cells (X,x) → (Y, y) of

∫
F are couples (f, s) where f : X → Y is a 1-cell

of C and s ∈ SFf with Ff(s) = (x, y). Representing a span as a function
(S, s) → (X × Y, (x, y)) between (pointed) sets, a morphism is a pair (f, s)
such that Ff : s �→ (x, y).

Finally, the categories
∫

F and D are isomorphic.

This result is a particular case of a more general correspondence between slice
categories and lax normal functors to the category of profunctors [15], which is
well-known in category theory and dates back to Bénabou [5,6]. It gives an
entirely abstract way to switch from/to and define internal/external semantics
for mana-nets. Indeed, with a proof partly similar to the one carried out in our
Theorem 1, we can show that:

Proposition 3. Monoidality of CM(N) F−→ C(N) implies ΓF is lax-monoidal.

We can thus define the external semantics of a generalized mana-net by
applying Γ to F . A generalization of Theorem 1 then holds by definition.

Summing up, we showed that the mana-net construction can be generalized
to more practical applications and the correspondence between a “näıve” internal
semantics and a “type-aware” external one is still preserved. The evident price
we have to pay for our generalization is that our external semantics is now not
just lax-monoidal but lax-monoidal-lax.
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6 Conclusion and Future Work

In this work, we introduced a new notion of Petri net where transitions come
endowed with “mana”, a quality representing how many times a transition will be
able to fire before losing its effectiveness. We believe this may be especially useful
in modelling chemical processes mediated by enzymes that degrade over time.

Importantly, we showed how a categorical point of view on the matter allows
to give two different definitions: A näıve, “hands-on” one, that we called internal,
and a type-aware, functorial one, that we called external, which we proved to be
two sides of the same coin.

Indeed, the equivalence between internal and external semantics is the con-
sequence of a much more profound result in category theory, connecting slice
categories and categories of lax monoidal functors. We were able to rely on this
result to generalize our mana-nets further, while keeping the equivalence between
the internal and external points of view.

We believe that further generalizations of the external semantics presented
here may prove valuable to produce categorical semantics for nets with inhibitor
arcs [1]. An inhibitor arc is an input arc to a transition that is enabled only
when there are no tokens in their place. This concept is powerful enough to turn
Petri nets into a Turing-complete model of computation [25,26].

Indeed, we notice that by relaxing Definition 7 to allow any span T⊕ →
T⊕, we can model situations where a transition can fire just if it has no mana
(e.g., we can map transition f to a span that is only defined when its source
multiset has value 0 on f). The similarities in behaviour with inhibitor arcs are
evident and constitute a direction of future work that we will surely pursue. The
various technicalities involved are nevertheless tricky and necessitate a careful
investigation.

Another direction of future work is about implementing the ideas at this
moment presented using already available category theory libraries, such as [10].
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2017FTXR7S “IT-MaTTerS” and by the Independent Ethvestigator Program.

The second author was supported by the ESF funded Estonian IT Academy
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A video presentation of this paper can be found on Youtube at 9sxVBJs1okE.

A Category Theory

Here we collect the category-theoretic definitions on which this work relies.

Definition 9 (Monad, comonad). Let C be a category; a monad on C consists
of an endofunctor T : C → C endowed with two natural transformations

– μ : T ◦ T ⇒ T , the multiplication of the monad, and
– η : idC ⇒ T , the unit of the monad,

such that the following axioms are satisfied:

https://gitcoin.co/grants/1086/independent-ethvestigator-program
https://www.youtube.com/watch?v=9sxVBJs1okE
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– the multiplication is associative, i.e. the diagram

is commutative, i.e. the equality of natural transformations μ ◦ (μ ∗ T ) =
μ ◦ (T ∗ μ) holds;

– the multiplication has the transformation η as unit, i.e. the diagram

is commutative, i.e. the equality of natural transformations μ ◦ (η ∗ T ) =
μ ◦ (T ∗ η) = idT holds.

Dually, let C be a category; a comonad on C consists of an endofunctor T : C → C

endowed with two natural transformations

– σ : T ⇒ T ◦ T , the comultiplication of the comonad, and
– ε : T ⇒ idC, the counit of the comonad,

such that the following axioms are satisfied:

– the comultiplication is coassociative, i.e. the diagram

is commutative.
– the comultiplication has the transformation ε as counit, i.e. the diagram

is commutative.
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Definition 10 (Bicategory). A (locally small) bicategory B consists of the
following data.

1. A class Bo of objects, denoted with Latin letters like A,B, . . . .
2. A collection of (small) categories B(A,B), one for each A,B ∈ Bo, whose

objects are called 1-cells or arrows with domain A and codomain B, and
whose morphisms α : f ⇒ g are called 2-cells or transformations with domain
f and codomain g; the composition law ◦ in B(A,B) is called vertical com-
position of 2-cells.

3. A horizontal composition of 2-cells

�B,ABC : B(B,C) × B(A,B) → B(A,C) : (g, f) �→ g � f

defined for any triple of objects A,B,C. This is a family of functors between
hom-categories.

4. For every object A ∈ Bo there is an arrow idA ∈ B(A,A).

To this basic structure we add

1. a family of invertible maps αfgh : (f � g) � h ∼= f � (g � h) natural in all its
arguments f, g, h, which taken together form the associator isomorphisms;

2. a family of invertible maps λf : idB � f ∼= f and �f : f � idA
∼= f natural

in its component f : A → B, which taken together form the left unitor and
right unitor isomorphisms.

Finally, these data are subject to the following axioms.

1. For every quadruple of 1-cells f, g, h, k we have that the diagram

commutes.
2. For every pair of composable 1-cells f, g,

commutes.

Definition 11 (Pseudofunctor, (co)lax functor). Let B,C be two bicate-
gories; a pseudofunctor consists of

1. a function Fo : Bo → Co,
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2. a family of functors FAB : B(A,B) → C(FA,FB),

3. an invertible 2-cell μfg : Ff ◦ Fg ⇒ F (fg) for each A
g−→ B

f−→ C, natural
in f (with respect to vertical composition) and an invertible 2-cell η : ηf :
idFA ⇒ F (idA), also natural in f .

These data are subject to the following commutativity conditions for every 1-cell
A → B:

(we denote invariably α, λ, � the associator and unitor of B,C).
A lax functor is defined by the same data, but both the 2-cells μ : Ff ◦

Fg ⇒ F (fg) and η : idFA ⇒ F (idA) can be non-invertible; the same coherence
diagrams in Definition 11 hold. A colax functor reverses the direction of the cells
μ, η, and the commutativity of the diagrams in Definition 11 changes accordingly.

Example 6. Here we collect a few examples of bicategories and 2-categories;

1. Let I be the terminal category, having only one object and identity morphism,
and let C be a 2-category; a lax functor T : I l−→ C is a correspondence that
sends

– the unique object ∗ into a 0-cell X of C;
– the unique 1-cell id∗ into a endo-1-cell X

T−→ X;
the laxity cells of T are two 2-cells μ : T ◦ T ⇒ T and η : idX ⇒ T , and
the axioms of a lax functor in Definition 11 correspond exactly to the monad
axioms in Definition 9.

2. The class of (small) categories, functors and natural transformations is a strict
2-category: the 2-cells αfgh, λf , ρf are all identities. The same is true for
the class of (small) V-categories, V-functors, and V-natural transformations,
enriched over a monoidal category V.
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Abstract. In this paper, we start a case study on the use and useful-
ness of graph transformation in modeling and analyzing games and puz-
zles beginning with logic puzzles. More explicitly, we consider Sudoku,
Hashiwokakero, Arukone, and Maze aka Labyrinth. In these cases, the
underlying data structures can be represented by graphs and the puz-
zles have start configurations and goals besides the solving rules. Some-
times it is meaningful to regulate the rule application by some con-
trol conditions. These are the ingredients of graph transformation units
which are therefore applied as modeling framework. Based on the graph-
transformational models, one can show that Labyrinth can be solved in
polynomial time and solvability of the other three is NP-complete.

1 Introduction

Playing games and solving puzzles are typical activities of human beings. One
encounters a wealth of games and puzzles all over the world. As many games
and all puzzles challenge human intelligence, they are obvious candidates to be
investigated in the area of Artificial Intelligence. Indeed, the development of pro-
grams for Chess, Go, Poker, and many other games have been very successful in
the last decades. Several games are played on boards and many puzzles have cer-
tain diagrammatic or geometric patterns as underlying structures. Such boards
and patterns can be nicely represented by graphs so that the rules of a game
and the instructions to solve a puzzle become graph transformation rules. In the
literature of graph transformation, one encounters some singular examples in
this direction concerning the modeling of Pacman, Ludo and a few other games
(see [1–6]). In this paper, we start a more systematic case study on the use and
usefulness of graph transformation in modeling and analyzing games and puzzles
beginning with logic puzzles as they are made popular by the Japanese company
and publisher Nicoli since 1980 and as they appear in puzzle corners of various
tabloids and magazines since then. More explicitly, we consider Sudoku, Hashi-
wokakero, Arukone, and Maze aka Labyrinth in Sects. 3, 4, 5 and 6, respectively.
In these cases, each puzzle has a start configuration and a goal besides the solv-
ing rules. Sometimes it is meaningful to regulate the rule application by some
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control conditions. Provided that the underlying structures are graphs, these
are exactly the ingredients of graph transformation units as they are introduced
in [7] (see [8] for a comprehensive overview). We recall the notion of graph trans-
formation units in Sect. 2. Based on the graph-transformational models, one can
show that Labyrinth can be solved in polynomial time (cf. Sect. 7) and solvability
of the other three is NP-complete.

From the point of view of puzzle solving, random solving steps are not rec-
ommendable. Much more interesting and expedient is to invent heuristics that
improve the chances to find a solution fast although the search space is expo-
nential. In Sect. 8, this topic is considered with respect to Sudoku. Section 9
concludes the paper by discussing the lessons learned.

2 Graph Transformation Units

In this section, the basic notions and notations of graph transformation units
are recalled. The concept is approach-independent meaning that one can choose
a class of graphs and class of rules, a fixed type of rule application, the types
of graph class expressions to specify particular initial and terminal graphs, and
types of control conditions to regulate the derivation process. For the purposes
of this paper, we use edge-labeled directed graphs and spans of inclusions as
rules, an explicit construction of rule application, which is needed for correctness
proofs, and a variety of graph class expressions and control conditions.

2.1 Directed Edge-Labeled Graphs

Let Σ be a set of labels with ∗ ∈ Σ. A (directed edge-labeled) graph over Σ is
a system G = (V,E, s, t, l) where V is a finite set of vertices, E is a finite set
of edges, s, t : E → V are mappings assigning a source s(e) and a target t(e) to
every edge e ∈ E, and l : E → Σ is a mapping assigning a label to every edge
e ∈ E.

An edge e with s(e) = t(e) is called a loop. An edge with label ∗ is also
called an unlabeled edge. Undirected edges are pairs of edges between the same
vertices in opposite directions. In drawings of graphs, the label ∗ is omitted.
The components V , E, s, t, and l of G are also denoted by VG, EG, sG, tG,
and lG, respectively. The empty graph is denoted by ∅. The class of all directed
edge-labeled graphs is denoted by GΣ .

For graphs G,H ∈ GΣ , a graph morphism g : G → H is a pair of map-
pings gV : VG → VH and gE : EG → EH that are structure-preserving, i.e.,
gV (sG(e)) = sH(gE(e)), gV (tG(e)) = tH(gE(e)), and lG(e) = lH(gE(e)) for all
e ∈ EG.

If the mappings gV and gE are bijective, then G and H are isomorphic,
denoted by G ∼= H. If they are inclusions, then G is called a subgraph of H,
denoted by G ⊆ H. For a graph morphism g : G → H, the image of G in H is
called a match of G in H, i.e., the match of G with respect to the morphism g
is the subgraph g(G) ⊆ H. If the mappings gV and gE are injective, the match
g(G) is also called injective. In this case, G and g(G) are isomorphic.
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Let G = (V,E, s, t, l) ∈ GΣ . A sequence p = e1 . . . ek of edges for some k ∈ N

is a path of length k from v to v′ for v, v′ ∈ V if v = s(e1), t(ei) = s(ei+1) for
i = 1, . . . , k − 1, and v′ = t(ek). It is a cycle if v = v′ and k > 0. The set
of visited vertices v and t(ei) for i = 1, . . . , k is denoted by VISITG(p). Given
v0 ∈ V , the set of vertices that can be reached by paths from v0 is denoted
by REACHG(v0). Let E = {e | e ∈ E} be a disjoint copy of E. Then the
symmetric closure of G is the graph S(G) = (V,E + E, s, t, l) with G ⊆ S(G)
and s(e) = t(e), t(e) = s(e), and l(e) = l(e) for e ∈ E. G is connected if each
two vertices v and v′ are connected by a path in S(G).

2.2 Rules and Rule Application

A rule r = (L ⊇ K ⊆ R) consists of three graphs L,K,R ∈ GΣ such that K is
a subgraph of L and R. The components L, K, and R are called left-hand side,
gluing graph, and right-hand side, respectively.

The application of r = (L ⊇ K ⊆ R) to a graph G = (V,E, s, t, l) consists of
the following three steps.

1. Choose a match g(L) of L in G.
2. Remove the vertices of gV (VL) − gV (VK) and the edges of gE(EL) − gE(EK)

yielding Z, i.e., Z = G − (g(L) − g(K)).
3. Add the right-hand side R to Z by gluing Z with R in g(K) yielding H.

The construction is subject to the dangling condition that Z becomes a subgraph
of G so that H becomes a graph automatically. Moreover, we allow that g is non-
injective, but only inside K (identification condition).

The application of r to G w.r.t. the graph morphism g is denoted by G =⇒
r

H.
It is called a direct derivation from G to H. A derivation from G to H is a
sequence of direct derivations G0 =⇒

r1
G1 =⇒

r2
· · · =⇒

rn

Gn with G0 = G, Gn
∼= H

and n ≥ 0. If r1, . . . , rn ∈ P , then the derivation is also denoted by G
n=⇒
P

H. If

n does not matter, we write G
∗=⇒
P

H and if the underlying rule set is clear from

the context, the subscript P may be omitted.
Using #S for the cardinality of a finite set S, it is worth noting that the

application of a given (fixed) rule to a graph G with #VG vertices and #EG

edges can be performed in polynomial time provided that the equality of labels
can be checked in polynomial time. This is due to the fact that any left-hand
side of size k has at most (#VG + #EG)k matches in G. Moreover, the further
steps of the rule application can be done in linear time.

It may also be noted that the chosen notion of rule applications fits into the
DPO framework as introduced in [9] (see, e.g., [10] for a comprehensive survey).

2.3 Graph Class Expressions and Control Conditions

Sometimes it is desirable to restrict the class GΣ of graphs to some subclass.
For example, one may want to start derivations only from specific initial graphs
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or filter out a subclass of all derived graphs as output. To this aim graph class
expressions restrict the class GΣ to subclasses, i.e., each graph class expression e
specifies a set SEM (e) ⊆ GΣ . The class of all graph class expressions is denoted
by E .

Control conditions can reduce the nondeterminism given by several matches
of a rule and the possible applicability of several rules to the current graph. The
class of all control conditions is denoted by C. Every control condition C ∈ C
specifies a binary relation SEM (C) ⊆ GΣ × GΣ .

The particular graph class expressions and control conditions used in this
paper are introduced and explained where needed.

2.4 Graph Transformation Units

Graph transformation units were introduced in [7] (see [8] for a comprehensive
overview).

By definition, a rule r provides a binary relation on graphs =⇒
r

⊆ GΣ × GΣ

so that a set of rules P induces two further relations =⇒
P

and ∗=⇒
P

where the

first one is the union of the relations of the single rules in P and the second one
is the reflexive and transitive closure of =⇒

P
, called derivation relation. A graph

transformation unit provides rules, a control condition to restrict the derivation
relation, and two graph class expressions to specify initial and terminal graphs.

A graph transformation unit is a system gtu = (I, P, C, T ) where I ∈ E is
the initial graph class expression, P is a finite set of rules, C ∈ C is a control
condition over P and T ∈ E is the terminal graph class expression. The semantics
of gtu is the binary relation SEM (gtu) = (SEM (I)×SEM (T ))∩ ∗=⇒

P
∩SEM (C).

In examples, a graph transformation unit is presented schematically where
the components I, P , C, and T are listed after respective keywords initial, rules,
cond, and terminal. We omit the control condition if it does not impose any
restriction on the order of rule applications. We omit the specification of terminal
graphs if all graphs are accepted as terminal.

It is worth noting that each graph transformation unit gtu may serve as
a graph class expression with generated language L(gtu) = pr2(SEM (gtu)) as
semantics where pr2 denotes the projection to the second component.

Moreover, each graph transformation unit gtu specifies a decidability problem
SOLV (gtu) : GΣ → {TRUE ,FALSE} defined by SOLV (gtu)(G) = TRUE if
(G;H) ∈ SEM (gtu) for some H and FALSE otherwise.

3 Sudoku

Sudoku is one of the most popular of the Nicoli puzzles. A start pattern is a 9×9
grid which is subdivided in 9 3× 3 subgrids. Some of the 81 fields are prescribed
by digits between 1 and 9. The goal is to enter digits into all the empty fields in
such a way that each two fields in a horizontal line and in a vertical line as well
as in a subgrid have different entries. Figure 1 shows a typical example.
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Fig. 1. A sample Sudoku puzzle (left) and its solution (right)

In our graph-transformational generalization, the grid is represented by an
unlabeled undirected graph where the vertices represent the fields and the edges
the horizontal, vertical and subgrid relation. An entry of a field becomes a loop
labeled with the entry where we allow numbers between 1 and k for some k ∈ N.
Initially, some vertices have such loops. For technical reasons, all other vertices
get 0-loops. Then the goal is to replace the 0-loops by loops with labels from
[k] = {1, . . . , k} such that no two direct neighbors have loops with the same
label.

γ-sudoku(k)-configs
initial: ∅
rules: ∅ ⊇ ∅ ⊆ i

for i ∈ [k] or i = 0
⊇ ⊆

γ-sudoku(k)
initial: γ-sudoku(k)-configs

rules:
0

⊇ ⊆
i

for i ∈ [k]

terminal: forbidden(
0

,
i i

| i ∈ [k])

The units use the terminal graph class expression all on one hand and for-
bidden structures on the other hand. The constant all does not impose any
restriction, i.e., SEM (all) = GΣ . This graph class condition is considered as
default (and hence omitted in the left-hand side unit). Given some graph F ,
forbidden(F ) specifies the class of all graphs that do not have any subgraph
isomorphic to F . Given a set F of graphs, forbidden(F) specifies the class of all
graphs that do not have any subgraph isomorphic to some F ∈ F . The elements
of F are enumerated in special cases as above.

To formulate and prove correctness and complexity of γ-sudoku(k), an unla-
beled and undirected graph with an extra i-loop for some i ∈ {0, . . . , k} at each
vertex is called Sudoku-graph. Given two such graphs G and H, G ≤ H denotes
U(G) = U(H) and G− ⊆ H, where U removes all labeled loops from the argu-
ment graph and G− is G without 0-loops. If G ≤ H and H is a terminal graph
of γ-sudoku(k), then H is called solution of G.

It can be shown that γ-sudoku(k)-configs generates the class of Sudoku-
graphs and that γ-sudoku(k) computes all solutions of Sudoku-graphs. Moreover,
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the solvability problem of γ-sudoku(k) turns out to be NP-complete. To prove
this, k-colorability is reduced to γ-sudoku(k).

Theorem 1 (Correctness and complexity)

1. L(γ-sudoku(k)-configs) is the class of all Sudoku-graphs.
2. (G,H) ∈ SEM (γ-sudoku(k)) if and only if H is a solution of G.
3. SOLV (γ-sudoku(k)) is NP-complete.

Proof. 1. Let ∅ n=⇒ G be a derivation in γ-sudoku(k)-configs . By a simple induc-
tion on n, one can show that G is a Sudoku-graph as rule applications preserves
this property.

Conversely, a Sudoku-graph G is either ∅ or one can apply one of the inverse
rules. Therefore, by induction on the size of G, one can show that G is derivable
from ∅.

2. Let G be initial and G
n=⇒ H be a derivation in γ-sudoku(k). By a simple

induction on n, one can show that H is a Sudoku-graph and G ≤ H. If addition-
ally, (G,H) ∈ SEM (γ-sudoku(k)), then H is terminal and, therefore, a solution
of G.

Conversely, let H be a solution of G and m = #(G(0) be the number of 0-
loops of G. Then H is terminal by definition and G is initial as a Sudoku-graph.
Moreover, one can prove by induction on m that there is a derivation G

m=⇒ H
so that (G,H) ∈ SEM (γ-sudoku(k)).

Induction base: #G(0) = 0 implies G = H and H
0=⇒ H.

Induction step for #G(0) = m + 1: Let v0 ∈ VG that has an 0-loop in G and
an i-loop in H which exists as G ≤ H. Then the rule for i can be applied to G
yielding G =⇒ G′. Obviously, one gets G′ ≤ H and #G′(0) = m by induction
hypothesis, and a composition derivation G =⇒ G′ ∗=⇒ H as desired.

3. Let G
n=⇒ H be a derivation in γ-sudoku(k). Then n ≤ #G(0) as

each rule application consumes a 0-loop. Together with Point 2, this proves
SOLV (γ-sudoku(k)) ∈ NP. Consider, particularly, G without i-loops for i ∈ [k],
i.e., #G(0) = #VG. G is k-colorable if there is a mapping col : VG → [k] with
col(v) 
= col(v′) for each two neighbors in G. If one replaces the 0-loops by a
col(v)-loop for each v ∈ VG, then the resulting graph H is a solution of G such
that (G,H) ∈ SEM (γ-sudoku(k)) and SOLV (γ-sudoku(k))(G) = TRUE .

Conversely, SOLV (γ-sudoku(k))(G) = TRUE , by definition, yields (G,H) ∈
SEM (γ-sudoku(k)) for some H. As G ≤ H, one can assume VG = VH . Consider
the mapping col : VG → [k] with col(v) = i if v has an i-loop in H. Because H
is terminal, there are no two neighbors with i-loops so that col is a k-coloring
of G. Summarizing, this proves that k-colorability can be seen as a special case
of solvability of γ-sudoku(k) so that SOLV (γ-sudoku(k)) turns out to be NP-
complete.

Related Work. As a computational problem, the general problem of solv-
ing Sudoku puzzles on n2 × n2 grids of n × n blocks is known to be NP-
complete (cf. [11]). As the graph representations of such grids are Sudoku-graphs,
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this implies the NP-completeness of SOLV (γ-sudoku(k)). Our reduction of k-
colorability emphasises the intuition that Sudoku is a coloring problem. It does
not apply to the special case of square grids.

4 Hashiwokakero

The underlying patterns of Hashiwokakero (which has also been published in
English under the name Bridges, Chopsticks and Hashi) are rectangular grids
where some fields are circles with inscribed numbers and all other fields are
empty such that there is at least one empty field between each two horizontal
and vertical circles. The left part of Fig. 2 displays a typical instance. The task is
to add one or two straight lines between horizontal and vertical neighbor circles
such that the number of lines incident to each circle equals the inscribed number,
crossing lines are forbidden, and each two circles are connected by sequences of
lines. The right part of Fig. 2 shows a solution of the puzzle given by the left
pattern.

Fig. 2. A sample Hashi puzzle (left) and its solution (right)

To model Hashi by means of graph transformation, the circles are rep-
resented by vertices, the inscribed numbers by the same number of unla-
beled loops, and the neighborhood of circles by ?-edges. The choice of lines
is defined by three rules the application of which replaces a ?-edge by one
unlabeled edge or two unlabeled edges or removes a ?-edge, respectively. The
geometric property of forbidden crossings is expressed by adding extra ver-
tices incident with four edges which are labeled with 1, 2, 3, 4, respectively.
These structures, called crossing bans, allow to forbid unlabeled edges between
1 and 2 as well as 3 and 4. To guarantee the connectedness of the results
(if there are some), the initial patterns are (by construction) connected, and
a ?-edge is only removed if the removal does not break the connectedness.
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γ-hashi -configs
initial:

rules: ⊇ ⊆ ?

⊇ ⊆ ?

⊇ ⊆
?

?

⊇
?

?

⊆
?

?

1 2

3 4

cond: forbidden(
?

?
)

γ-hashi
initial: γ-hashi -configs

rules: (zero) ? ⊇ ⊆
(one) ? ⊇ ⊆
(two) ? ⊇ ⊆

cond: zero is only applied if the matched
?-edge lies on a cycle

terminal: forbidden( , 1 2

3 4
)

The control condition of γ-hashi -configs forbids parallel ?-edges. The control
condition of γ-hashi guarantees that a ?-edge is only removed if this does not
break connectedness. A graph is terminal if it has no loops and if, for each cross-
ing structure incident to the vertices v1, v2, v3, v4 (in the order of the numbered
edges), there are no unlabeled edges between v1 and v2 as well as v3 and v4.

To formulate correctness of γ-hashi , a connected graph is called Hashi-graph
if all loops are unlabeled and each two vertices are either unconnected or con-
nected by one ?-edge or connected by one unlabeled edge or by two unlabeled
edges. Moreover, it can have an arbitrary number of crossing bans. Given a
Hashi -graph G and v ∈ VG, the Hashi -degree hdG(v) is the number of loops at
v and the number of unlabeled edges incident with v. G is initial if all unlabeled
edges are loops. Hashi -graphs can be ordered: G ≤ H for Hashi -graphs G and
H if

1. VG = VH , and G and H have the same crossing bans,
2. hdG(v) = hdH(v) for all v ∈ VG,
3. if there is a ?-edge connecting v and v′ in H, then this edge is in G, too,
4. if there is one unlabeled edge connecting v and v′ in H, then there is this

one edge in G, too, or there is a ?-edge instead, and
5. the same for two unlabeled edges.

H is a solution of an initial G if G ≤ H and H is terminal.
Using these notions, one can show that γ-hashi -configs generates initial

Hashi -graphs and that γ-hashi computes all solutions of initial Hashi -graphs
and that the solvability of γ-hashi is NP-complete.

Theorem 2 (Correctness and complexity)

1. L(γ-hashi-configs) is the set of initial Hashi-graphs.
2. (G,H) ∈ SEM (γ-hashi) if and only if H is a solution of G.
3. SOLV (γ-hashi) is NP-complete.
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Proof (sketch). Points 1 and 2 can be proved analogously to the corresponding
proofs of Theorem 1. Concerning Point 3, SOLV (γ-hashi) ∈ NP because each
derivation is linearly bounded by the number of ?-edges in the initial graph.
Moreover, let G be a connected loop-free unlabeled undirected graph. This is
turned into an initial Hashi -graph G by labeling all edges with ? and adding two
unlabeled loops at each vertex. Then, obviously, G has a solution if and only if
G has a Hamiltonian cycle, i.e., a cycle of length #VG that visits all vertices.

Related Work. The solvability of Hashiwokakero puzzles is shown to be NP-
complete in [12].

5 Arukone

A typical sample of Arukone is given by a 9×9 grid where 14 fields are inscribed
by the numbers from 1 to 7 such that each number occurs twice. The other fields
are initially empty. The task is to connect equal numbers by lines composed of
horizontal and vertical sections through empty fields such that all fields are
visited but none twice. Figure 3 shows an Arukone start pattern (left) and the
solution (right).

Fig. 3. An Arukone start pattern (left) and the solution (right)

In the graph-transformational model of Arukone, the underlying patterns
are chosen as simple undirected graphs where, for some k ≥ 1, 2k vertices get
an e-loop, an r-loop and an i-loop for i ∈ [k] each such that every i ∈ [k] occurs
twice. The label i correspond to the number of a field. The role of the labels e
and r is explained later. The other vertices get an unlabeled loop each. The
ordinary edges are unlabeled, too. These graphs are generated by the unit
γ-arukone(k)-configs . Based on the Arukone configurations, one can model the
puzzle by the unit γ-arukone(k).
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γ-arukone(k)-configs
initial: ∅
rules: ∅ ⊇ ∅ ⊆

⊇ ⊆

⊇ ⊆
i

r

e

i
r

efor i ∈ [k]
cond: second rule with injective

match only & third rule is
applied once for each i ∈ [k]

terminal: forbidden( )

γ-arukone(k)
initial: γ-arukone(k)-configs

rules:
i

r ⊇
i

⊆
i
i

i
r

i
r

i
r ⊇

i i

⊆
i
i

i

terminal: forbidden( ,
r

)

In γ-arukone(k)-configs , the first rule allows creating arbitrarily many iso-
lated vertices with an unlabeled loop. The second rule allows connecting two
vertices by an unlabeled edge. The first part of the control condition prevents
that further loops are generated. And the third rule replaces the unlabeled loops
of two vertices by an i-loop, an r-loop and an e-loop each, where i ∈ [k], and r, e
stands for run and end, respectively. The second part of the control condition
guarantees that there are exactly two vertices with i-loops for each i ∈ [k]. The
terminal graphs are simple as parallel edges are forbidden.

Correctness and complexity of γ-arukone(k) can be shown analogously to
Sudoku and Hashi. A solution of γ-arukone(1) is a Hamiltonian path with fixed
ends so that NP-completeness follows.

Related Work. Arukone is a stricter variation of Numberlink, which allows fields
to remain unvisited. As a computational problem, finding a solution to a given
Numberlink puzzle is NP-complete (cf. [13]). NP-completeness is maintained
even if longer paths are allowed. Informally, this means paths may have unnec-
essary bends in them (see [14] for a more technical explanation).

6 Labyrinths

Labyrinths are popular puzzles with a long history. A famous Greek myth fea-
tures the Labyrinth of Crete. It was inhabited by the men-eating Minotaur. The
monster was slaughtered by Theseus who could safely leave the labyrinth by
means of the Ariadne thread. The usual geometric structure of labyrinths with
corridors and walls can be represented by undirected graphs where exits are
marked by ε-loops. The walking in a labyrinth is properly modeled by traveling
along edges. The current position of the walker is marked by a θ-loop (θ for
Theseus). The unit γ-labyrinth-configs generates these graphs. The walking is
modeled by the unit γ-labyrinth with the goal that the walker reaches an exit.
This is specified by using the graph class expression requested(U) for some graph
U the semantics of which is the class of all graphs with a subgraph isomorphic
to U .
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γ-labyrinth-configs
initial: θ

rules: ⊇ ⊆
⊇ ⊆
⊇ ⊆ ε

γ-labyrinth
initial: γ-labyrinth-configs
rules:

1
θ

2
⊇

1 2
⊆

1 2
θ

terminal: requested( θ ε )

Obviously, the unit γ-labyrinth-configs generates all non-empty unlabeled
undirected graphs extended by a single θ-loop and arbitrarily many ε-loops. It
is not difficult to show that the unit γ-labyrinth can find an exit if an exit is
reachable.

Theorem 3 (Correctness). Let G ∈ L(γ-labyrinth-configs) and v0 be the ver-
tex with the θ-loop. Then there is a terminal graph G′ with G

∗=⇒ G′ if and only
if there is a path in G from v0 to a vertex with an ε-loop.

Proof. Let G
n=⇒ G′ be a derivation in γ-labyrinth. Then a simple induction on

n reveals that the sequence of matched edges applying the rule one after the
other forms a path starting from v0 so that a vertex with ε-loop is reached if
G′ is terminal. Conversely, let e1 · · · em be a path in G from v0 to a vertex with
an ε-loop. Then a simple induction on m shows that the rule can be applied to
e1, . . . , em successively yielding a derivation from G to a terminal graph.

Note that the unit describes random walks so that there are derivations of
infinite length provided that there is at least one edge. Therefore, the labyrinth
puzzle is not safely solved by γ-labyrinth. But one can do much better as the
next section proves.

7 Ariadne Thread

Considering γ-labyrinth, the search for an exit means to find some path which
is equivalent to find the shortest path. In other words, the polynomial shortest-
path algorithms by Dijkstra, Floyd and Warshall and others are applicable.
See, e.g., [15] for graph-transformational models of shortest-path algorithms.
But to adapt these algorithms to a single walker would mean some extra work
because they employ often best-first and breadth-first strategies. It happens that
a next step starts from a position which is not the current one. In contrast to
those, a backtracking or depth-first strategy is well-suited for a single walker in a
labyrinth as the following unit shows that mimics the use of an Ariadne thread.

γ-labyrinth-with-Ariadne-thread

initial: γ-labyrinth-configs +
1

rules: (forward)
1

θ
2 3

i

⊇
1 2 3

⊆
1 2

i
θ

3

i + 1

for i ∈ N

(backward)
1 2

i
θ ⊇

1 2
⊆

1
θ

2
for i ∈ N

cond: forward∗ | (forward !; backward(max); forward∗)∗

terminal: requested( θ ε )
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The initial graphs are disjoint unions of the initial graphs of γ-labyrinth and
an extra vertex with an 1-loop. The latter is an initial counter. In each application
of a forward rule, the matched edge is replaced by a backward edge labeled
with the counter value and this is increased by 1. A backward rule application
matches such a backward edge and moves the θ-loop along the edge removing it
at the same time. Although the set of rules is infinite formally, for each initial
graph, the number of applied rules is never larger than twice the number of its
edges. The control condition is a regular expression extended by the as-long-as-
possible operator !. It accepts a derivation of arbitrarily many applications of
forward rules or of applications of forward rules as long as possible follows by
an application of a backward rule followed by arbitrarily many applications of
forward rules. In this context, backward(max) means that the backward rule
out of all applicable backward rules with the maximal label is applied. A graph
is terminal if there is a vertex with a θ-loop and an ε-loop.

The unit γ-labyrinth-with-Ariadne-thread specifies the following algorithm.

exitsearch
input: G ∈ L(γ-labyrinth-configs),
procedure: add the initial counter disjointly; iterate rule applications
according to the control condition as long as possible,
output: all vertices with ε-loops that get a θ-loop intermediately.

It turns out that exitsearch finds all reachable exits and runs in quadratic
time with respect to the number of edges of the input.

Theorem 4 (Correctness and complexity). Let G ∈ L(γ-labyrinth-configs)
be an input of exitsearch and exitsearch(G) a corresponding output. Let v0 ∈ VG

be the vertex with the θ-loop and m = #EG. Then the following holds.

1. exitsearch(G) = REACHG(v0) ∩ SEM (requested( θ ε )).
2. exitsearch ∈ O(m2).

Proof. 1. Let G
∗=⇒ H be a derivation generated by exitsearch and seq be the

sequence of edges matched one after the other. If one replaces each backward edge
by its original, then one get a path p in G so that exitsearch(G) = VISITG(p) ∩
SEM (requested( θ ε )). According to the following lemma, VISITG(p) =
REACHG(v0) proving the statement.

2. The length of p is ≤ 2 · #EG as each forward rule application replaces
an edge by a backward edge and each backward rule application consumes a
backward edge. In particular, there are never more than #EG edges present
during the derivation so that #EG is a bound for the time needed to find a
match. Both together prove exitsearch ∈ O(m2).

It may be noted that exitsearch is in O(m) if the input graphs are restricted
to those with a bounded degree and if it is possible to find a match by checking
the incident edges of the vertex with the θ-loop only.
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Lemma 1. Let G ∈ L(γ-labyrinth-configs) and G +
1 ∗=⇒ H be the longest

derivation in γ-labyrinth-with-Ariadne-thread. Let p be the corresponding path
in G consisting of the matched edges in the order of the derivation where each
backward edge is replaced by its original and let v0 ∈ VG be the vertex with the
θ-loop. Then VISITG(p) = REACHG(v0).

Proof. The lemma is proved by induction on m = #EG.
Induction base for m = 0: Then p has length 0 and is the only path starting

in v0 meaning that VISITG(p) = {v0} = REACHG(v0).
Induction step for m + 1: In the simple case, there is no unlabeled edge

incident with v0. Then the same arguments apply as in the induction base.
Otherwise, the derivation decomposes into G

∗=⇒ G and G
∗=⇒ H where the last

step of the former is a forward step G′ =⇒ G and the first step of the latter is
a backward step G =⇒ H ′ and all remaining steps are backward rule applica-
tions. Let p = e1 · · · en and e1 · · · ek the initial section corresponding to G

∗=⇒ G.
Then ek = ek+1 according to the control condition. Consider G− obtained by
removing ek from G and p− obtained by removing ekek+1 from p. Moreover,
H ′ and G′ can be seen as equal up to ek in G′ and the counter values. The
counter can be ignored as no forward step follows after G′. And as all back-
ward edges of H ′ are in G′, one gets a derivation G

∗=⇒ G′ ∗=⇒ H. As none of
its rule applications matches ek, one can restrict this derivation to G− yield-
ing G− ∗=⇒H− with p− as corresponding path (now in G−). Obviously, this
derivation is the longest possible one meeting the control condition. By con-
struction, #EG− = #EG − 1 = m so that the induction hypothesis applies
to G− yielding VISITG−(p) = {v0} = REACHG−(v0). The two rule appli-
cations matching ek and ek+1 respectively move the θ-loop from some vertex
vk−1 to some vertex vk and back. As p− and p coincide up to ekek+1 one get
VISITG(p) = VISITG−(p−) ∪ {vk} = REACHG−(v0) ∪ {vk} ⊆ REACHG(v0).
The latter inclusion holds because G− ⊆ G and e1 · · · ek reaches vk. It remains
to prove the converse inclusion. Let v ∈ REACHG(v0) such that there is a path
p = e1 · · · el from v0 to v. Then (1) v = vk or (2) p in G− or (3) p passes ek

to enter or to leave vk. Without loss of generality, one can assume that p is
simple, i.e., p does not contain cycles. In the latter leaving case, p decomposes
into e1 · · · ei from v0 to vk and ei+1 = ek from vk to vk−1 and ei+2 · · · el from
vk+1 to v. As ek appears in p only once, ei+2 · · · el is a path in G−. Moreover,
vk−1 ∈ REACHG−(p−) so that there is a path p′ in G− from v0 to vk−1. The
composition p′ei+2 · · · el provides a path in G− from v0 to v. In the entering case,
p decomposes into e1 · · · ei−1 from v0 to vk−1 and ei = ek from vk−1 to vk and
ei+1 · · · el from vk to v. The latter lies also in G−. In p, ek is the last entrance
into vk. If there is an earlier one, the p has an initial section p̂ from v0 to vk

which is also in G− as it avoids ek. Consequently, the composition p̂ei+1 · · · el

is a path in G− from v0 to v. If there is no earlier entrance into vk, then ek is
the last and the first entering of vk so that it is the only edge incident with vk

according to the control condition. This means that ei+1 does not exits and p is
a path from v0 to v = vk. As one gets in all cases, v = vk or v ∈ REACHG−(v0),
the lemma is proved.
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8 Sudoku with a Bit of Cleverness

The unit γ-sudoku(k) models the puzzle with the goal to complete a given partial
k-coloring by rules that allow to choose a color for an uncolored vertex in each
step. Whether the goal is reachable or not, is only checked at the very end. Such
random way of solving the puzzle is not at all recommendable. The challenge
(and fun) is to find best or at least good solving steps among all possible ones
in each situation. Two possibilities are pointed out.

8.1 Restricted Choice

Obviously, it is totally meaningless to choose a color for a vertex that appears
already in the neighborhood. Therefore, the second forbidden structure in ter-
minal graphs should be checked before at each step.

More interesting restrictions are to find patterns that force a certain choice of
a color. For instance, if an uncolored vertex has k − 1 neighbors with k − 1 colors,
then only one color is left. Another situation is that an uncolored vertex belongs
to a k-clique (i.e., each two of k vertices are neighbors) where some neighbors
have already colors and the other neighbors have neighbors all colored with a
further color. The further color is the only possible one left for the considered
vertex. Both restrictions can be expressed by positive context conditions given
in Fig. 4.

Fig. 4. Two positive context conditions for γ-sudoku(k)

In both cases, the central vertex must be colored by i because otherwise a
forbidden structure appears immediately or somewhen later. It may be noted
that the Sudoku in Fig. 1 can be solved by applying the restricted rules only. It
is advisable to apply the restricted rules whenever possible because they provide
unique solving steps that are always right and do not interfere with other steps.
Clearly, none of the rules is applicable in many situations. Hence, an interesting
question is under which conditions the two restricted rules (and may be some
further rules like them) are enough to solve a Sudoku instance. In puzzle corners,
Sudoku instances are often characterized as “easy”, “middle”, “difficult”, and
“very difficult”. We guess that the two restricted rules cover most easy Sudoku
instances.

8.2 Bookkeeping

The choice of colors can be supported if one stores for each uncolored vertex the
colors that are available without resulting in a forbidden structure. This idea
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is modeled by the following unit. The uncolored vertices get additional loops
labeled from 1?, . . . , k? initially. The coloring process is modeled by three types
of rules: clean1 removes i? for i ∈ [k] if a neighbor has color i, clean2 removes
j? from a vertex with color i for i, j ∈ [k], i 
= j, and choose colors a vertex with
i if it has a loop labeled with i?.

γ-sudoku2 (k)-configs
initial: ∅

rules: ∅ ⊇ ∅ ⊆
i

for i ∈ [k] or i = 0

∅ ⊇ ∅ ⊆ 0

1?

k?

. . .

⊇ ⊆
terminal: forbidden( , )

γ-sudoku2 (k)
initial: γ-sudoku2 (k)-configs

rules: (choose) 0

i?

⊇ ⊆
i

for i ∈ [k]

(clean1 )
i? i

⊇
i

⊆
i

for i ∈ [k]

(clean2 )
i

j? ⊇
i

⊆
i

for i, j ∈ [k], i 
= j
control: ((clean1 | clean2 )!; choose)∗

terminal: forbidden(
0

,
i i

| i ∈ [k])

The control condition requires that the cleaning rules are applied as long as
possible before a color for a vertex is chosen; repeating this arbitrary often.

Correctness and complexity of γ-sudoku2 (k) can be shown in quite the similar
way as of γ-sudoku(k).

9 Lessons Learned

In this paper, we have started a systematic study of graph-transformational
modeling and analysis of games and puzzles considering four logic puzzles exem-
plarily. Labyrinths can be seen as shortest-path problems so that always a poly-
nomial solution strategy works. In contrast to that, the solvability of the graph-
transformational generalizations of Sudoku, Hashi and Arukone have turned out
to be NP-complete. In all cases, the puzzle instances are generated by graph
transformation units, and the puzzles with their allowed solving steps and goals
are modeled by graph transformation units supporting the proofs of correctness
and complexity. Which lessons are learned? As this is our very first attempt on
the matter, the answers must be preliminary. But a few points can be addressed.

1. The considered logic puzzles (and many like them) are defined on some plane
patterns often in form of grids, their solving requires to make some entries,
to select from some alternatives or to move in some way sometimes under
certain conditions, and the goals are to reach certain configurations. All this
fits very well to graph transformation and graph transformation units, in
particular.
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2. In our examples, the puzzle instances to be solved are given by generative
graph transformation units. They may be seen as syntax-directed editors
to provide particular instances. The classes of initial graphs could also be
specified by monadic 2nd order formulas – but less constructive.

3. We have tried to design the graph-transformational puzzle-solving rules as
close as possible to the original ones while we have been quite general with
respect to the initial graph configurations. On one hand, this allows to solve
unexpected but nevertheless challenging instances of puzzles. On the other
hand, one may argue that we are too generous allowing meaningless inputs
like Sudoku instances where two neighbors carry the same color from the
very beginning. If one wants to work with more meaningful initial graphs,
then one can replace the units that generate initial configurations by more
restrictive ones by refining rules, restricting the terminal graphs or adding
control conditions.

4. In many graph-transformational generalizations of logic puzzles, the lengths
of derivations are linearly bounded so that the corresponding solvability prob-
lems belong to the class NP.

5. Looking at our examples and at the examples discussed in the literature (see,
e.g., [11–14,16]), it seems to be typical that the solvability problems are even
NP-complete. Our complexity results are not new, but we demonstrate that
they can be proved systematically within the framework of graph transfor-
mation. In contrast to that, the proofs in the literature are rather based on
ad hoc formalizations. Moreover, we back the trustworthiness of our puzzle
models up by correctness proofs while the formalizations in the literature are
mainly based on plausibility considerations.

6. Our correctness proofs follow a basic schema. By an induction on the lengths
of derivations, an invariant property is shown such that derived terminal
graphs turn out to be solutions of the initial graphs. Conversely, by induction
on the size of solutions of initial graphs, it is shown that they are derivable.
We wonder how much of such proofs can be automatically deduced or at least
supported by proof tools.

7. All the graph class expressions and control conditions used in this paper can
be expressed in monadic 2nd order logic. This observation may help to come
up with tool support for the analysis of graph transformation systems as
considered.

8. From the point of view of puzzle solving, random solving steps are not rec-
ommendable (and boring). Much more interesting is to invent heuristics that
improve the chances to find a solution fast although the search space is expo-
nential as we sketch in Sect. 8 with respect to Sudoku. An interesting question
in this context is whether the graph-transformational modeling supports the
inference (“learning”) of such heuristics.

9. As the Points 2 to 8 indicate, the graph-transformational modeling of logical
puzzles seems to follow certain principles. But it may be too early to come
up with guidelines based on these observations.

10. In [6], Zambon and Rensink have modeled the N -queens problem by speci-
fying initial and terminal graphs, a set of rules and some control conditions.
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This can be seen as an example of a graph transformation unit because the
concept is approach-independent. Like the labyrinth model, the N -queens
model is polynomial. One very important aspect of this model is that it is
analyzed and evaluated using the GROOVE tool. It is a desirable future task
to employ GROOVE or other graph transformation tools for experiments on
logic puzzles like the ones run on the N -queens model.

11. If one encounters logic puzzles in puzzle corners of magazines or newspapers,
then they are solvable in general while the initial configurations in all our
examples include unsolvable instances, too. This is not an essential difference
as one may replace the units generating initial instances by units that gener-
ate solvable instances only. In the case of γ-labyrinth-configs, one may start
from a simple path leading from a θ-looped vertex to an ε-looped vertex. Or
in the case of γ-sudoku, one may first generate k-colored graphs where each
vertex carries a loop labeled with the respective color and then recolor some
loops by 0.

12. In many applications of rule-based modeling, determinism, confluence and
functionality are desirable properties so that quite a lot of research is done in
this respect. In contrast to that, games and puzzles are of particular interest
as they are essentially nondeterministic and rule applications may be not
only in conflict with each other, but also good or bad. These features may
deserve more attention.

We plan to continue the graph-transformational case study on games and
puzzles by shedding more light on the fascinating issues of correctness, com-
plexity and heuristics and by extending considerations to multi-player games.
Interested readers are welcome to join us in this adventure.

Acknowledgment. We are very grateful to the anonymous reviewers for their helpful
comments that led to various improvements.
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Abstract. For complex distributed embedded probabilistic real-time
systems, ensuring correctness of their software components is of great
importance. The rule-based formalism of Probabilistic Timed Graph
Transformation Systems (PTGTSs) allows for modeling and analysis of
such systems where states can be represented by graphs and where timed
and probabilistic behavior is important. In PTGTSs, probabilistic behav-
ior is specified by assigning precise probabilities to rules. However, for
embedded systems, only lower and upper probability bounds may be esti-
mated because unknown physical effects may influence the probabilities
possibly changing them over time.

In this paper, we (a) introduce the formalism of Interval Probabilis-
tic Timed Graph Transformation Systems (IPTGTSs) in which rules
are equipped with probability intervals rather than precise probabilities
and (b) extend the preexisting model checking approach for PTGTSs
to IPTGTSs w.r.t. worst-case/best-case probabilistic timed reachabil-
ity properties using an encoding of probability intervals. Moreover, we
ensure that this adapted model checking approach is applicable to IPT-
GTSs for which the finiteness of the state space may only be a consequence
of the timing constraints. Finally, in our evaluation, we apply an imple-
mentation of our model checking approach in AutoGraph to a running
example.

Keywords: Cyber-physical systems · Graph transformation systems ·
Interval probabilistic timed systems · Qualitative analysis ·
Quantitative analysis · Model checking

1 Introduction

Software correctness plays an important role in the ever growing area of complex
distributed embedded probabilistic real-time systems. In this context, modeling
formalisms allowing for formal analysis while capturing relevant system aspects
are required for designing, understanding, and improving the behavior of such
systems.
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Many probabilistic real-time systems with complex coordination behavior
or spatial movements of components can be modeled using the formalism of
PTGTSs [8] when the states of the system can be represented by graphs. The for-
malism of PTGTSs allows for structure dynamics by means of rule-based graph
transformation (cf. [3]), timed behavior (employing clocks as in Timed Automata
(TA) [1]), andprobabilistic choices (as inProbabilisticAutomata (PA) [13]) among
alternative outcomes of graph transformation steps. As usual, nondeterminis-
tic models such as PTGTSs, where the passage of time competes with possibly
multiple rule applications, implicitly cover real-time systems by the resolution
of their nondeterminism. However, assigning precise probabilities to the alter-
native outcomes of graph transformation steps in PTGTSs is insufficient when
unknown physical effects may affect the actual probabilities (possibly even over
time). Hence, PTGTSs may only be employed as a suitable modeling formalism
when (at least) pseudo-random variables are used to decide probabilistic choices.

The subformalisms of Timed Graph Transformation Systems (TGTSs) [2,10]
and Probabilistic Graph Transformation Systems (PGTSs) [5,6] including tool
support for their formal analysis have been introduced before. Essentially, tool-
based analysis support is obtained by translating a PTGTS, TGTS, or PGTS
into the corresponding Probabilistic Timed Automaton (PTA) [7], TA, or PA,
respectively, and by then reusing the existing model checking support for the
resulting automata. In particular, the tools Prism [6] and Uppaal [14] support
the model checking of PTA and TA, respectively, with varying feature sets.

As for PTGTSs, the precise probabilities required in PTA may not be appro-
priate for the system at hand. To relax this precision, Interval Probabilistic Timed
Automata (IPTA) [4,15] have been defined as an extension of PTA where prob-
ability intervals are used instead of precise probabilities. These probability inter-
vals are then resolved to precise probabilities nondeterministically at use-time to
derive steps.

In this paper, we introduce the formalism of IPTGTSs as an extension of
PTGTSs by integrating the handling of probability intervals from IPTA to allow
for the modeling of systems where only lower and upper probability bounds can
be estimated for some probabilistic steps. Following our work on PTGTSs and
IPTA [4], we present a formal translation of IPTGTSs into PTA via IPTA (for
the case of finite state spaces) to support the modeling of structure dynamics,
timed behavior, and interval probabilistic behavior using IPTGTSs and their
analysis w.r.t. best-case/worst-case probabilistic reachability properties using
Prism. Hereby, we improve upon our earlier work in [8] by constructing the
state space of the TGTS underlying the given IPTGTS while using Uppaal to
ensure that all obtained states are reachable for the given IPTGTS. Hence, we
enable the analysis of an IPTGTS with a finite state space even when the state
space of its underlying Graph Transformation System (GTS) is infinite.

As a running example, we consider a gossiping protocol where all agents in a
directed wireless network have a local Boolean value. The Boolean value true repre-
sents the information that must be propagated to all agents. At run-time, agents
with Boolean value true attempt to send this value along the directed physical
channels given by edges. Each sending operation is subject to probabilistic choice
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where the message is transported successfully through the channel with a proba-
bility between 0.7 and 0.8 possibly being affected by e.g. the available energy of the
sender or the spatial distance between agents. Moreover, due to limited energy and
imperfect local clocks, each agent may send a message at most every 2 to 5 time
units. Lastly, we evaluate the described system in terms of e.g. the best-case/worst-
case probability that each agent adopts the Boolean value true within a given time
bound but also in terms of the number of sending errors processed by an observer
that counts and deletes them.

This paper is structured as follows. In Sect. 2, we introduce preliminaries for
our approach including graph transformation and IPTA. In Sect. 3, we introduce
the novel formalism of IPTGTSs as an extension of PTGTSs widening proba-
bilistic choices from precise probabilities to probability intervals. In Sect. 4, we
present the steps of our translation-based model checking approach for IPT-
GTSs. In Sect. 5, we evaluate our approach by applying its implementation in
the tool AutoGraph to our running example. Finally, in Sect. 6, the paper is
closed with a conclusion and an outlook on future work.

2 Preliminaries

In this section, we introduce graphs, graph transformation, IPTA, and proba-
bilistic timed reachability problems to be solved for IPTA as preliminaries for
the subsequent presentation of IPTGTSs and our model checking approach.

Employing the variation of symbolic graphs [11] from [12], we consider typed
attributed graphs (such as the graph G0 in Fig. 1d), which are typed over a type
graph TG (such as the one in Fig. 1a). The values of the variables connected
to attributes are specified using Attribute Conditions (ACs) over a many sorted
first-order attribute logic. The AC ⊥ (false) in TG means thereby that the type
graph does not restrict attribute values. Graph Transformation (GT) is then
executed by applying a GT rule ρ = (� : K L, r : K R, γ) for a match
m : L G on the graph to be transformed (see [12] for technical details). A
GT rule specifies (a) that the graph elements in L − �(K) are to be deleted and
the graph elements in R − r(K) are to be added using the monomorphisms �
and r, respectively, according to a Double Pushout (DPO) diagram and (b) that
the values of variables in the resulting graph are derived from those of G using
the AC γ (e.g. x′ = x + 2) in which the variables from L and R are used
in unprimed and primed form, respectively. Nested application conditions are
straightforwardly supported by our approach but, to improve readability, they
are not used in the running example and omitted subsequently.

We now recall IPTA [4,15], which subsume TA [1] where clocks are used to
capture real-time phenomena and PTA [7] where probabilistic choices are used
additionally to approximate/describe the likelihood of outcomes of certain steps.
First, we provide required notions on clocks and (intervals of) probabilities.

For a set of clock variables X, clock constraints ψ ∈ CC(X) are finite conjunc-
tions of clock comparisons of the form c1 ∼ n and c1 − c2 ∼ n where c1, c2 ∈ X,
∼ ∈ {<,>,≤,≥}, and n ∈ N ∪ {∞}. A clock valuation v ∈ CV(X) of type
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Fig. 1. Elements of the IPTGTS for the running example.

v : X R0 satisfies a clock constraint ψ, written v |= ψ, as expected. The
initial clock valuation ICV(X) maps all clocks to 0. For a clock valuation v and
a set of clocks X ′, v[X ′ := 0] is the clock valuation mapping the clocks from X ′

to 0 and all other clocks according to v. For a clock valuation v and a duration
δ ∈ R0 , v + δ is the clock valuation mapping each clock x to v(x) + δ.

For a countable set A, a Discrete Interval Probability Distribution (DIPD)
characterizes a non-empty set of (discrete) Probability Mass Functions (PMFs)
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Fig. 2. IPTA A1 (left) and PTA A2 induced by it (right).

μ : A [0, 1] by assigning to each a ∈ A an interval [xa, ya] such that it is pos-
sible to choose one element from each interval to obtain a sum of 1. Formally,
a pair (μ1 : A [0, 1], μ2 : A [0, 1]) is a DIPD, written (μ1, μ2) ∈ DIPD(A),
if the following two properties hold: (i) μ1(a) ≤ μ2(a) for each a ∈ A and (ii)∑ {|μ1(a) | a ∈ A|} ≤ 1 ≤ ∑ {|μ2(a) | a ∈ A|} using summation over multi-
sets. These two properties ensure non-emptiness of intervals and non-emptiness
of characterized PMFs, respectively. μ : A [0, 1] is then such a characterized
PMF in the semantics of (μ1, μ2), written μ ∈ 〈(μ1, μ2)〉, if μ1(a) ≤ μ(a) ≤ μ2(a)
for each a ∈ A. Note that (μ, μ) is also a DIPD over A. Lastly, the sup-
port of (μ1, μ2), written supp((μ1, μ2)), contains all a ∈ A for which the right
interval border μ2(a) is non-zero. For example, the semantics of the DIPD
(μ1 = {(�0, 0.2), (�1, 0.7)}, μ2 = {(�0, 0.3), (�1, 0.8)}) contains, among others, the
two PMFs μ = {(�0, 0.3), (�1, 0.7)} and μ′ = {(�0, 0.2), (�1, 0.8)}.

An IPTA (such as A1 from Fig. 2) consists of (a) a set of locations with a
distinguished initial location (such as �0), (b) a set of clocks (such as c) which are
initially set to 0, (c) an assignment of a set of Atomic Propositions (APs) (such as
{done}) to each location (for subsequent analysis of e.g. reachability properties),
(d) an assignment of constraints over clocks to each location as invariants (such
as c ≤ 5), and (e) a set of interval probabilistic timed edges. Each interval
probabilistic timed edge consists thereby of (i) a single source location, (ii) at
least one target location, (iii) an action (such as a), (iv) a clock constraint (such
as c ≥ 2) specifying as a guard when the edge is enabled based on the current
values of the clocks, and (v) a DIPD assigning an interval probability (such as
[0.2, 0.3]) to each pair consisting of a set of clocks to be reset (such as {c}) and
a target location to be reached.

Definition 1 (Interval Probabilistic Timed Automaton (IPTA)). An
interval probabilistic timed automaton (IPTA) A is a tuple with the following
components.

• locs(A) is a finite set of locations,
• iloc(A) is the unique initial location from locs(A),
• acts(A) is a finite set of actions disjoint from R0,
• clocks(A) is a finite set of clocks,
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• invs(A) : locs(A) CC(clocks(A)) maps each location to an invariant for
that location such that the initial clock valuation satisfies the invariant of the
initial location (i.e., ICV(clocks(A)) |= invs(A)(iloc(A))),

• edges(A) ⊆ locs(A) × acts(A) ×CC(clocks(A)) ×DIPD(2clocks(A) × locs(A)) is
a finite set of IPTA edges of the form (�1, a, ψ, (μ1, μ2)) where �1 is the source
location, a is an action, ψ is a guard, and (μ1, μ2) is a DIPD mapping pairs
(Res , �2) of clocks to be reset and target locations to probability intervals,

• aps(A) is a finite set of APs, and
• lab(A) : locs(A) 2aps(A) maps each location to a set of APs.

Moreover, we define PTA and TA as IPTA restrictions as follows.

• A is a PTA if for all (�, a, ψ, (μ1, μ2)) ∈ edges(A): 〈(μ1, μ2)〉 is a singleton.
• A is a TA if for all (�, a, ψ, (μ1, μ2)) ∈ edges(A): supp((μ1, μ2)) is a singleton.

The semantics of an IPTA is given in terms of the induced Probabilistic Timed
System (PTS), which defines timed probabilistic paths as expected. The states of
the induced PTS are pairs of locations and clock valuations. The steps between
such states then either (a) nondeterministically advance time or (b) nondeter-
ministically select an enabled IPTA edge, nondeterministically determine a PMF
from the given DIPD, and probabilistically determine a reset set and target loca-
tion based on that PMF.

Definition 2 (PTS Induced by IPTA). Every IPTA A induces a unique
probabilistic timed system (PTS) IPTAtoPTS(A) = P consisting of the following
components.

• states(P) = {(�, v) ∈ locs(A) × CV(clocks(A)) | v |= invs(A)(�)} contains
as PTS states pairs of locations and clock valuations satisfying the location’s
invariant,

• istate(P) = (iloc(A), ICV(clocks(A))) is the unique initial state from states(P),
• acts(P) = acts(A) is the same set of actions,
• steps(P) ⊆ states(P)×(acts(P)∪R0)×DIPD(states(P)) is the set of PTS steps

where ((�, v), a, (μ, μ)) ∈ steps(P), if one of the two following cases applies.
◦ Timed step:

� a ∈ R0 is a duration,
� (�, v + t′) ∈ states(P) for all t′ ∈ [0, a], i.e., the invariant of � is also

satisfied for all intermediate time points t′, and
� μ(�, v + a) = 1 identifies the unique PTS target state (�, v + a).

◦ Discrete step:
� a ∈ acts(A) is an action of the IPTA,
� (�, a, ψ, (μ′

1, μ
′
2)) ∈ edges(A) is an edge of the IPTA,

� v |= ψ, i.e., the guard ψ of the edge is satisfied by the valuation v,
� μi(�′, v′) =

∑ {|μ′
i(X, �′) | X ⊆ clocks(A), v′ = v[X := 0]|} for i ∈

{1, 2} is the DIPD on the PTS target states (�′, v′), and
� μ ∈ 〈(μ1, μ2)〉 is a PMF from the semantics of the DIPD (μ1, μ2).

• aps(P) = aps(A) is the same set of APs, and
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• lab(P)(�, v) = lab(A)(�) labels states in P according to the location labeling of
the IPTA.

For the special case of PTA, we will use in Sect. 5 the Prism model checker [6] to
solve the following analysis problems defined for the induced PTSs. Intuitively,
these analysis problems ask for the probability with which states labeled with
a given AP can be reached (possibly within a given time bound). However, the
probability to be computed depends on how the nondeterminism in the PTS is
resolved. Technically, this nondeterminism is resolved using an adversary, which
selects for the finite path constructed so far the next timed/discrete step where
the target state of a discrete step is subject to an additional probabilistic choice.
The probability values obtained for all such adversaries result in a unique lower
and a unique upper bound. These unique lower and upper bounds intuitively
correspond to the worst-case or the best-case probabilities depending on whether
reaching a state labeled with the given AP is desirable. The worst-case and the
best-case probabilities can then be computed using Prism.

Definition 3 (Min/Max Probabilistic Timed Reachability Problems).
Evaluate Pop=?(F∼c ap) for a PTS P with op ∈ {min,max}, ∼ ∈ {≤, <}, c ∈
N∪{∞}, and ap ∈ aps(P) to obtain the infimal/supremal probability (depending
on op) over all adversaries to reach some state in P labeled with ap within t ∼ c
time units.

For example, for the PTS P = IPTAtoPTS(A1) induced by the IPTA A1 from
Fig. 2, (a) Pmax=?(F≤5 done) is evaluated to probability 0.96 = 0.8 + 0.2 × 0.8
since the probability maximizing adversary would enable two discrete steps e.g.
at time points 2 and 4 with the maximal probability of 0.8 to reach �1 in each case
and (b) Pmin=?(F≤5 done) is evaluated to probability 0.7 since the probability
minimizing adversary would enable only one discrete step (e.g. at time point 5)
where the minimal probability to reach �1 would be 0.7.

3 Interval Probabilistic Timed GTSs

In this section, we introduce the new formalism of IPTGTSs, which allows for the
modeling and analysis of systems exhibiting structure dynamics, timed behav-
ior, and interval probabilistic behavior. IPTGTSs extend PTGTSs, which are a
combination of PGTSs and TGTSs, by allowing interval probabilities as in IPTA
instead of precise probabilities as in PTA.

As usual, we assume that all graphs in IPTGTSs are typed over some fixed
type graph TG . Moreover, we denote the set of all variables of sort real that
represent clocks of a given graph G by C(G) (for the graph G0 from Fig. 1d,
C(G0) = {c1, c2, c3, c4, c}). Note that, in this paper, we employ variables of the
symbolic graphs to represent clocks rather than clock nodes as in [8] to simplify
the technical presentation.

For our running example, introduced in Sect. 1, the type graph TG is given
in Fig. 1a and the initial graph G0 is given in Fig. 1d. In the following, we use



228 M. Maximova et al.

the abbreviation of the form G(v1, v2, v3, v4, n, e) for all reachable graphs where
v1, v2, v3, v4, and n correspond to the values of variables and e is the number of
Error nodes connected to the Observer node. Using this abbreviation, we denote
the initial graph G0 by G(
,⊥,⊥,⊥, 0, 0).

An IPTGT rule σ contains a set of GT rules rules(σ) with a common left-
hand side graph lhs(σ), which is matched into the graph under transformation.
A clock constraint over the clocks from lhs(σ) is used as a guard and is evaluated
w.r.t. a considered match. A DIPD assigns a non-empty probability interval to
each GT rule ρ. Each GT rule ρ is equipped with a set of clocks to be reset
ranging over the clocks from the right-hand side graph rhs(ρ) of ρ.

Definition 4 (IPTGT Rule). An interval probabilistic timed graph transfor-
mation rule (IPTGT rule) σ is a tuple with the following components.

• lhs(σ) is a common left-hand side graph,
• rules(σ) is a finite set of GT rules ρ with lhs(ρ) = lhs(σ) where lhs(ρ) is the

left-hand side graph of the GT rule ρ,
• guard(σ) ∈ CC(C(lhs(σ))) is a guard defined as a clock constraint over the

clocks from the left-hand side graph lhs(σ),
• dipd(σ) ∈ DIPD(rules(σ)) is a DIPD on rules(σ) with supp(dipd(σ)) =
rules(σ),

• reset(σ)(ρ) ⊆ C(rhs(ρ)) identifies the clocks to be reset for each ρ ∈ rules(σ),
and

• prio(σ) ∈ N is the priority assigned to σ.

For our running example, consider the two IPTGT rules σsend:I1,I2
1 and σprocess

in Fig. 1g and Fig. 1h, respectively. The two GT rules ρsend:success and ρsend:failure
of σsend:I1,I2 and the single GT rule ρprocess:done of σprocess are given in integrated
notation where graph elements to be added/removed are marked with ⊕/�. To
limit rule application, each IPTGT rule has an attribute guard on the current
attribute values, a clock guard on the current clock values, and a priority. Also,
each of the underlying GT rules has an AC describing an attribute modification
(called attribute effect), a reset set of clocks to be reset after rule application, and
a probability interval. Intuitively, the IPTGT rule σsend:I1,I2 is used to attempt
the sending of the Boolean value true (
) from one agent to another agent with
Boolean value ⊥ when the clock value of the sending agent is at least 2. If
sending succeeds, the receiving agent adopts the Boolean value 
 and may then
send that value as well. If sending fails, an error is created and connected to the
observer. The IPTGT rule σprocess (which has a higher priority than σsend:I1,I2)
is used to allow the observer to process (and delete) pending errors counting
processed errors up to a maximal number of 2.

An IPTGT invariant φ is a nested graph condition over the empty graph
∅. IPTGT invariants are used to rule out invalid potential IPTGT configura-
tions. Potential IPTGT configurations (G, v) are given by a finite graph G and

1 In our evaluation in Sect. 5, we consider different instantiations of the two probability
intervals I1 and I2.
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a clock valuation v ∈ CV(C(G)) on its clocks. For our running example, the
IPTGT invariant φinv in Fig. 1b states that (a) a sending agent must send its
Boolean value 
 after waiting not longer than 5 time units and (b) an observer
with a pending error must process that error urgently. Note that the clocks of
the agents and the observer are reset to 0 whenever they become eligible to
send their Boolean value or to process an error in the two IPTGT rules. An
IPTGT invariant φ is satisfied by a potential IPTGT configuration (G, v), writ-
ten (G, v) |= φ, if v |= ∃V. ac(G)∧γ where V is the set of all non-clock variables
of G, ac(G) is the AC of G, and γ is an attribute constraint on the variables of G
obtained by evaluating φ for G. For our running example, the potential IPTGT
configuration (G(
,⊥,⊥,⊥, 0, 0), v) where v = ICV({c1, c2, c3, c4}) satisfies the
PTGT invariant φinv since v satisfies the derived AC equivalent to c1 ≤ 5 where
V contains all id and val variables, ac(G) is the AC given in Fig. 1d, and γ states
for each of the four clocks c1-c4 that their value must be less equal 5 when the
corresponding val attribute equals 
.

Similarly, an IPTGT Atomic Proposition (IPTGT AP) φ is a nested graph
condition over the empty graph ∅ labeling a (potential) IPTGT configuration
(G, v) if G satisfies φ, written G |= φ. Note that IPTGT APs may not depend
on the clock valuation v as for the labeling in IPTA. For our running example,
we employ the IPTGT APs φfin, φcon, and φ2err from Fig. 1. φfin (given using
the previously introduced abbreviation) checks whether the value 
 has been
successfully adopted by all agents, precisely one error was processed by the
observer, and no errors are pending. φcon checks whether all errors are connected
to some observers and φ2err checks whether no two errors are present.

We now define IPTGTSs based on the notions introduced above for a fixed
type graph. For our running example, the components of the considered IPTGTS
are given in Fig. 1.

Definition 5 (IPTGTS). An interval probabilistic timed graph transforma-
tion system (IPTGTS) S is a tuple with the following components.

• iG(S) is a finite initial graph,
• rules(S) is a finite set of IPTGT rules,
• invs(S) is a finite set of IPTGT invariants, which are all satisfied for the

initial graph and the initial clock valuation (iG(S), ICV(C(iG(S)))), and
• aps(S) is a finite set of IPTGT APs.

Moreover, we define the following notions.

• A potential IPTGT configuration (G, v) given by a finite graph G and a clock
valuation v ∈ CV(C(G)) is an IPTGT configuration of S, written (G, v) ∈
Confs(S), if (G, v) satisfies all IPTGT invariants of S, i.e., (G, v) |= φ for
each φ ∈ invs(S).

• Two given IPTGT configurations (G1, v1) and (G2, v2) are equivalent, written
(G1, v1) ≡ (G2, v2), if there is some isomorphism m : G1 G2 such that
v2 ◦ m = v1. The equivalence relation ≡ also induces equivalence classes
denoted by [(G1, v1)]≡.
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The semantics of IPTGTSs is defined below in terms of an induced PTS, for
which we first define a step relation. As for IPTA, IPTGTSs can execute, on
the one hand, timed steps advancing all clocks while respecting the invariants
and, on the other hand, discrete steps by applying some IPTGT rule where
the IPTGT rule, the match, and the Probability Mass Function (PMF) of the
DIPD are chosen nondeterministically and the GT rule to be used is chosen
probabilistically. Moreover, for the discrete steps, we ensure that (a) the guard
of the IPTGT rule is satisfied by the current clock valuation and match, (b)
no discrete step using an IPTGT rule with higher priority can be applied, and
(c) all GT rules of the IPTGT rule are applicable using the same match. Then,
considering a GT rule ρ of the IPTGT rule σ, we define a discrete step based
on the corresponding GT step and ensure that the clock valuation is adapted as
expected also enforcing the clock resets specified in the IPTGT rule.

Definition 6 (IPTGT Step). An IPTGTS S defines the following two kinds
of steps.

• Timed step: (G, v) δ (G, v + δ), if
◦ δ ∈ R0 is a duration and
◦ (G, v + δ′) ∈ Confs(S) for each δ′ ∈ [0, δ], i.e., the IPTGT invariants are

also satisfied for all intermediate time points.
• Discrete step: (G1, v1)

σ,ρ,m (G2, v2), if
◦ σ ∈ rules(S) is an IPTGT rule,
◦ m : lhs(σ) G1 is a match,
◦ v1 |= guard(σ), i.e., the guard of the IPTGT rule σ is satisfied by the

given valuation v1,
◦ ρ ∈ rules(σ) is a GT rule of σ,
◦ no IPTGT rule σ′ with higher priority is applicable, i.e., there are no

G′
2, v′

2, σ′, ρ′, and m′ such that (G1, v1)
σ′,ρ′,m′

(G′
2, v

′
2) and prio(σ′) >

prio(σ),
◦ the GT rule ρ is applicable and results in the IPTGT configuration

(G2, v2), i.e., (G1, v1)
σ,ρ,m (G2, v2),

◦ every GT rule of σ is applicable for the match m, i.e., for all ρ′ ∈ rules(σ)
there are G′

2 and v′
2 such that (G1, v) σ,ρ′,m (G′

2, v
′
2),

where (G1, v1)
σ,ρ,m (G2, v2), if

◦ (G1, v1), (G2, v2) ∈ Confs(S),
◦ ρ = (� : K L, r : K R, γ) is a GT rule2,
◦ G1

ρ,m
G2 is the DPO GT step from Fig. 3a,

◦ v2 is obtained from v1 by preserving values of preserved clocks unless they
are reset to 0, i.e., for each X ∈ C(G1) and each Y ∈ C(D) satisfy-
ing �′(c) = c′ it holds that v2(r′(c)) = v1[m(reset(σ)(ρ)) := 0](c′) (see
Fig. 3b), and

◦ the clock value 0 is assigned to all clocks created by the GT step, i.e., for
each c ∈ C(G2) − r′(C(D)) it holds that v2(c) = 0.
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Fig. 3. Visualizations for Definition 6

We now define the semantics of IPGTSs in terms of an induced PTS as before
for IPTA. Note that, for the following definition, IPTGT steps as well as the
notions of IPTGT satisfaction for APs, guards, and invariants are preserved by
equivalence of IPTGT configurations. Hence, the choice of a representant from
an equivalence class is not important.

Definition 7 (PTS Induced by IPTGTS). Every IPTGTS S induces a
unique PTS IPTGTStoPTS(S) = P consisting of the following components.

• states(P) is given by the smallest set of equivalence classes [(G, v)]≡ where
(G, v) ∈ Confs(S) such that steps(P) below is well-defined and istate(P) (see
the next item) is in states(P),

• istate(P) = [(iG(S), ICV(C(iG(S))))]≡ is the unique initial state from states(P)
given by the equivalence class containing the initial configuration of S,

• acts(P) is the smallest set of tuples (σ,m) where σ ∈ rules(S) and m is a
match such that steps(P) below is well-defined,

• ([(G, v)]≡, a, (μ, μ)) ∈ steps(P), if one of the two following cases applies.
◦ Timed step:

� a ∈ R0 is a duration,
� (G, v) a (G, v + a) is a timed step of S, and
� μ([G, v + a]≡) = 1 identifies the unique target state [(G, v + a)]≡.

◦ Discrete step:
� a = (σ,m) ∈ acts(P) is a partial step label,
� (G, v) σ,ρ,m (G′, v′) for some ρ ∈ rules(σ) is a discrete step of S,
� dipd(σ) = (μ′

1, μ
′
2) is the DIPD of σ,

2 We omit here the handling of attribute modifications given by γ for brevity.
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� μi([(Ḡ, v̄)]≡) =
∑ {|μ′

i(ρ
′) | ρ′ ∈ rules(σ), (G, v) σ,ρ′,m ≡ (Ḡ, v̄)|} for

all [(Ḡ, v̄)]≡ ∈ states(P) and i ∈ {1, 2} is the DIPD on the target
states, and

� μ ∈ 〈(μ1, μ2)〉 is a PMF from the semantics of the DIPD (μ1, μ2).
• aps(P) = aps(S) is the same set of APs, and
• lab(P)([(G, v)]≡) = {φ ∈ aps(P) | G |= φ} labels states in P.

By defining the induced PTS of an IPTGTS, we can now consider the PTS
analysis problems from Definition 3 also for IPTGTSs.

4 Model Checking Approach

The definition of the induced PTS of an IPTGTS from the previous section does
not lead to an implementable analysis algorithm because the set of states of
that PTS is (due to the valuations of real-valued clocks) not even countable. To
obtain analysis support for the min/max probabilistic timed reachability prop-
erties from Definition 3, we now follow the path taken for PTGTSs in [8] and
translate a given IPTGTS into its underlying automata-based model preserv-
ing its semantics in terms of the induced PTS (see Fig. 4). As a first step, in
Subsect. 4.1, we introduce the operation IPTGTStoIPTA translating an IPTGTS
into an IPTA. As a second step, in Subsect. 4.2, we translate the obtained IPTA
into a PTA using the operation IPTAtoPTA. This operation is defined based
on the translation procedure from [4], which is shown to preserve the seman-
tics in terms of the analysis problems from Definition 3. For the resulting PTA,
the analysis problems from Definition 3 can then be analyzed using the Prism
model checker. To accommodate for IPTGTSs with infinite underlying GT state
spaces but finite underlying timed GT state spaces, we present in Subsect. 4.3
an online filtering technique using the Uppaal model checker. Lastly, we briefly
discuss the analysis of non-probabilistic properties for IPTGTSs in Subsect. 4.4
before revisiting the min/max probabilistic timed reachability properties from
Definition 3 in our evaluation in Sect. 5. For more details on our model checking
approach see [9].

Fig. 4. Overview of the model checking approach.
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4.1 Translation of IPTGTS into IPTA

We now present how IPTGTSs can be translated into IPTA using the operation
IPTGTStoIPTA. This translation is an adaptation of the translation of PTGTSs
into PTA presented in [8].

For a given IPTGTS S, the following four steps describe the basic idea of its
translation into the corresponding IPTA. In step 1, the underlying GTS S′ of
the IPTGTS with the rule set ∪{rules(σ) | σ ∈ rules(S)} and the initial graph
iG(S) is determined where no priorities or timing constraints of the IPTGT
rules are integrated into the GT rules. In step 2, the GT state space (Q,E)
of S′ is constructed where Q is the set of all reachable graphs and E contains
the corresponding GT steps between these graphs. In step 3, a smallest set of
so-called global clocks Y from the GT state space (Q,E) is derived where the
underlying GT spans from E are used to track such global clocks. Finally, in
step 4, the resulting IPTA is obtained from the IPTGTS S and the GT state
space (Q,E) where the set Y of global clocks is employed to convert and annotate
GT steps from E.

Note the following for the steps 2–4 of the translation. In step 2, the GT
state space (Q,E) will often contain additional steps (and also states) that are
not permitted in the IPTGTS due to (a) priorities and (b) timing constraints
(i.e., guards or invariants). Cases where the GT state space (Q,E) is not finite
are discussed in Subsect. 4.3. Moreover, to ensure in step 3 that Y contains a
finite number of clocks, the initial graph should contain all clocks to be used at
some point and IPTGT rules should not add further clocks. Also, to prevent that
clocks are swapped by isomorphisms during the GT state space construction, we
use id attributes such as those in Agent nodes in our running example. For step
4, relying on the set of global clocks Y , (a) invariants are obtained for each graph
in the GT state space and checked for satisfiability, (b) GT steps with common
source location and match belonging to one IPTGT rule are grouped into one
IPTA edge, and (c) the guard of an IPTA edge is obtained by ensuring that
the IPTA edge is not disabled by invariants of its target locations and by also
requiring the negation of the guards of IPTA edges starting in the same location
but resulting from IPTGT rules with higher priorities.

Definition 8 (IPTA Induced by IPTGTS). Every IPTGTS S induces a
unique IPTA IPTGTStoIPTA(S) = A consisting of the following components
where (Q,E) is the GT state space of the underlying GTS of S and Y is its set
of global clocks.

• locs(A) = Q contains all graphs of the GT state space,
• iloc(A) = iG(S) is the unique initial location,
• acts(A) is the smallest set of tuples (σ,m) where σ ∈ rules(S) and m is a

match such that edges(A) below is well-defined,
• clocks(A) = Y is the set of global clocks,
• invs(A)(G) = ψ such that (G, v) ∈ Confs(S) iff v |= ψ,
• (G, (σ,m), ψ, (μ1, μ2)) ∈ edges(A), if
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◦ the guard ψ is a clause of the disjunctive normal form3 of the constraint
m(guard(σ))∧ψinv ∧¬ψhigher where (a) ψinv is the conjunction of invari-
ants invs(A)(G)[R := 0] of the target locations adapted to the source loca-
tion for all (R,G) ∈ supp((μ1, μ2)) and (b) ψhigher is the conjunction of
the guards ψ′′ of all IPTA edges (G, (σ′′,m′′), ψ′′, (μ′′

1 , μ′′
2)) ∈ edges(A)

satisfying prio(σ′′) > prio(σ)4 and
◦ μi(Y ′, G′) =

∑ {|μ′
i(ρ) | ρ ∈ rules(σ) ∧ Y ′ = reset(σ)(ρ) ∧ (G, ρ,m,G′) ∈

E ∧dipd(σ) = (μ′
1, μ

′
2)|} for i ∈ {1, 2} is the DIPD on the target locations,

• aps(A) = aps(S) is the same set of APs, and
• lab(A)(G) = {φ ∈ aps(A) | G |= φ} labels locations in A.

The operation IPTGTStoIPTA preserves the semantics in terms of the induced
PTSs, i.e., the IPTGTS and the resulting IPTA induce the same PTS.

4.2 Translation of IPTA into PTA

In [4], we have implemented the IPTA model checking algorithm from [15]
in Prism. This algorithm takes an IPTA A and an analysis problem of the
form Pop=?(F≤∞ ap) from Definition 3 and computes the resulting probabil-
ity value.5 The algorithm operates on a zone-based state space where states
of the form (�, ψ) ∈ locs(A) × CC(clocks(A)) represent all states (�, v) of the
PTS induced by A satisfying v |= ψ. The fixed-point computation performed
by the algorithm modifies a probability vector pi mapping states (�, ψ) to
probabilities. Initially, p0 maps all target states (�, ψ) containing locations �
that are labeled by the AP ap of the considered property to 1 and all other
states to 0. In the fixed-point, pi maps each state (�, ψ) to the probability with
which one of the target states is reached. To obtain pi+1(�, ψ) in an iteration
(a) each IPTA edge used in a step from (�, ψ) with DIPD (μ1, μ2) is consid-
ered, (b) a PMF μ ∈ 〈(μ1, μ2)〉 is obtained such that the probability given by∑ {|μ(s) × pi(s) | s ∈ locs(A) × CC(clocks(A))|} for reaching a target state from
the state (�, ψ) using a path where the considered IPTA edge is taken in the first
step is maximal/minimal, and (c) pi+1(�, ψ) is set to the maximal/minimal value
across all IPTA edges considered for (�, ψ). For the IPTA A1 from Fig. 2 and the
property Pmax=?(F≤∞ done), we obtain p0 = {((�0, c ≤ 5), 0), ((�1,
), 1)} and
pi+1 = {((�0, c ≤ 5), 0.8 × pi(�1,
) + 0.2 × pi(�0, c ≤ 5)), ((�1,
), 1)} for i ∈ N
resulting in pi(�0, c ≤ 5) = 1 in the limit i → ∞.

Unfortunately, the described algorithm has not been integrated in the official
Prism branch. As an alternative approach to obtain model checking support for
IPTA, we translate the given IPTA into a PTA (as exemplified in Fig. 2 where the
IPTA A1 is translated into the PTA A2) and then apply Prism to the resulting
PTA. Intuitively, the PTA is obtained by replacing each IPTA edge e1 of the
3 Note that negation and disjunction are not allowed in guards.
4 The dependency between the guards ψ and each ψ′′ requires that IPTA edges of A

are constructed in descending order of the priorities of the involved IPTGT rules.
5 As usual, time bounds ∼ c (as in Definition 3) are encoded using an additional clock

to force a step to a sink location as soon as the time bound is violated.
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IPTA by a set of PTA edges. Thereby, a replacement edge e2 is obtained from e1
by replacing its DIPD (μ1, μ2) by the DIPD (μ, μ) where μ ∈ 〈(μ1, μ2)〉 is a PMF
that may be obtained for some pi using the described algorithm. In fact, instead
of considering all such possible pi, it suffices to consider all permutations of the
target locations of e1. The intervals from the DIPD (μ1, μ2) are then resolved
in the order of the permutation by choosing the maximal6 probability from the
ith interval such that the sum of the first i chosen probabilities plus the sum of
the minimal probabilities of the remaining intervals does not exceed 1. For the
translation in Fig. 2, the permutation (�0, �1) (the permutation (�1, �0)) results
in the upper (the lower) PTA edge where the interval [0.2, 0.3] (the interval
[0.7, 0.8]) for the first location is resolved by choosing the maximal value 0.3
(0.8) and by then choosing 0.7 (0.2) analogously for the second location. The
described translation, defined by the operation IPTAtoPTA, is correct since the
same probabilities are computed for the input IPTA and the output PTA for
the analysis problems from Definition 3.

Constructing a PMF for all permutations of intervals for an IPTA edge may
result in an exponentially larger PTA. This means that IPTA are exponentially
more concise compared to PTA w.r.t. the considered analysis problems (which
correspondingly holds for IPTGTSs and PTGTSs). However, when (a) IPTGT
rules contain only few GT rules implying a small set of permutations, (b) the
permutations result in a small set of PMFs (since different permutations may
result in the same PMF), or (c) the model checking efficiency of the PTA or
IPTA at hand is dominated by the number of clocks but not by the number of
PTA edges, employing the translation via the operation IPTAtoPTA can be as
efficient as the IPTA model checking algorithm from [4,15].

4.3 Analysis of Timed Reachability

As a plug-in procedure, we now discuss our on-the-fly adaptation of the operation
IPTGTStoIPTA presented in Subsect. 4.1. The goal of this adaptation is to allow
for the generation of (finite) IPTA when the intermediate GT state space is
infinite while the timed GT state space is finite. To achieve this goal, we employ
Uppaal to check whether steps constructed in the GT state space are enabled
when considering the timed behavior specified by guards, invariants, and resets in
the timed GT state space. For this purpose, we construct a sequence of fragments
of the priority-free GT state space where all GT steps are timed reachable (i.e.,
each GT step of the fragment occurs in some timed path when considering all
timing constraints of the IPTGTS). We start the procedure with the GT state
space fragment only containing the initial graph of the IPTGTS and then, as a
first step, we construct either at most n further GT steps overall or at most n
further GT steps from each unfinished state. As a second step, if GT steps have
been added, we construct using the operation IPTGTStoTA7 a TA for the current

6 As all permutations are considered, we can also choose the minimal probability here.
7 The operation IPTGTStoTA is defined similarly to the operation IPTGTStoIPTA and

deviates primarily by not aggregating GT steps belonging to a common IPTGT rule.
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GT state space fragment. As a third step, we determine those most recently
added GT steps that are not timed reachable using Uppaal on the constructed
TA removing them from the current GT state space fragment before repeating
the described three steps.

Note that a GT step is not guaranteed to be timed reachable due to e.g. the
guard that is created for it in the corresponding TA edge even when its source
and target graphs are timed reachable. Hence, in the operation IPTGTStoTA, we
split each most recently added GT step G1

ρ,m
G2 into two edges in the resulting

TA. The first edge implements the GT step but has a fresh target state G′ from
which the second edge is taken urgently (using an additional single fresh clock
employed globally in that translation) leading to G2.

For our running example, this improvement is essential as the priority-free
GT state space for the IPTGTS would be infinite since an unbounded number
of errors could be created by an unbounded number of applications of the GT
rule ρsend:failure without ever applying the GT rule ρprocess:done. The described
procedure solves this problem since the priorities of the IPTGT rules are encoded
in the constructed TA similarly as in operation IPTGTStoIPTA ruling out further
applications of the GT rule ρsend:failure.

4.4 Analysis of Timed and Structural Properties

The presented analysis approach is also applicable to simpler analysis problems
compared to those in Definition 3, which often provide valuable insights when
e.g. unexpected results are obtained for more complex properties.

On the one hand, properties not referring to probabilities but time can be
analyzed based on the TA constructed in Subsect. 4.3. For our running example,
Uppaal can be used to verify the satisfaction of e.g. the timed CTL property
EF≤6 φfin (where E and F are the exists and eventually operators, respectively),
stating that the AP φfin can be satisfied within 6 time units.

On the other hand, properties referring to neither probabilities nor time can
be analyzed based on the GT state space (Q,E) constructed in Subsect. 4.1.
For our running example, the CTL property AG φcon (where A and G are the
always and globally operators, respectively), stating that all errors are always
connected to an observer, can be verified based on the GT state space (Q,E)
since each graph in Q would be labeled by the AP φcon. Moreover, when using
the procedure from Subsect. 4.3 where GT step generation is interleaved with
the timed reachability analysis, we can also verify the CTL property AG φ2err

stating that there can never be two unprocessed errors. This property is satisfied
since in the timed GT state space each graph would be labeled by the AP φ2err

due to the higher priority of the IPTGT rule σprocess.

5 Evaluation

To exemplify our model checking approach for IPTGTSs and to strengthen the
importance of using IPTGTSs with probability intervals instead of PTGTSs
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Table 1. Model checking results for the running example.

Instantiation Pmax=?(F≤6 φfin) Pmax=?(F≤15 φfin) Pmin=?(F≤15 φfin)

S[0.7,0.8],[0.2,0.3] 0.4056 0.4056 0.2366

S[0.3,0.8],[0.2,0.7] 0.5952 0.5952 0.0387

S[0.8,0.8],[0.2,0.2] 0.3072 0.3072 0.3072

S[0.7,0.7],[0.3,0.3] 0.3087 0.3087 0.3087

S[0.3,0.3],[0.7,0.7] 0.0567 0.0567 0.0567

with precise probabilities, we now consider the IPTGTS of our running example
for which the components have been discussed in Sect. 3 and visualized in Fig. 1.
Note that the IPTGT rule σsend:I1,I2 contains two underlying GT rules with the
assigned probability intervals I1 and I2. In our evaluation, we apply our imple-
mentation of the presented model checking approach in the tool AutoGraph for
multiple instantiations of σsend:I1,I2 by considering concrete probability intervals
and different analysis problems relying on the AP φfin.

See Table 1 for an overview of the obtained results. The first column shows
the five considered IPTGTSs instantiations where the chosen singleton probabil-
ity intervals result in PTGTSs in the last three lines. The other columns show the
results for computing the minimal/maximal probability to reach a graph labeled
with φfin within 6 or 15 time units in the instantiated IPTGTS. The property
Pmin=?(F≤6 φfin) is omitted in the table because its model checking results in
the probability of 0 for each of the IPTGTSs instantiations as some adversary
can delay sending for up to 5 time units preventing that any state labeled with
φfin can be reached within 6 time units. Note that the probability values in the
first two columns are identical since 6 time units used in the first column are
already sufficient to reach a state labeled with φfin with maximal probability.
Moreover, the results obtained for the PTGTSs differ in each case from the
results obtained for the IPTGTSs, because, on every path to a graph labeled
with φfin in the IPTGTS, the adversary chooses two different PMFs from the
DIPD of the IPTGT rule σsend:I1,I2 . For example, for the IPTGTS instantiation
S[0.7,0.8],[0.2,0.3], the adversary defines three paths such that the resulting proba-
bility of 0.4056 = 0.3×0.8×0.8×0.8+0.7×0.3×0.8×0.8+0.7×0.7×0.3×0.8
is obtained in the first line of the first two columns. This resulting probability is
the sum of the probabilities of the three paths each containing three successful
sending steps with probabilities 0.7 or 0.8 and one unsuccessful sending step
with probability 0.3 occurring as the first, second, or third step. From the dif-
ferent resulting probabilities, we conclude that both of the considered IPTGTSs
cannot be approximated by any such PTGTSs instantiations appropriately in
the sense of obtaining the same probabilities since using singleton intervals pre-
cludes adversaries that would choose different interval borders in some of their
generated paths.



238 M. Maximova et al.

6 Conclusion and Future Work

We introduced the formalism of IPTGTSs as a high-level description language
for the modeling and analysis of complex distributed embedded probabilistic
real-time systems. IPTGTSs support, in addition to a nondeterministic passage
of time (specified using clocks), a nondeterministic description of the probabilis-
tic rule-based behavior (specified using probability intervals in rules). Moreover,
we presented a model checking approach for IPTGTSs w.r.t. worst-case/best-
case probabilistic timed reachability properties. This model checking approach
is implemented in our tool AutoGraph and is based on a translation of IPT-
GTSs into PTA via IPTA. The PTA resulting from this translation can then be
analyzed using the Prism model checker.

As future work, we will extend Metric Temporal Graph Logic (MTGL) to
IPTGTSs to be able to specify more complex properties on the structure dynam-
ics, timed behavior, and probabilistic behavior of the given IPTGTSs. Such an
extension is then to be included into the mapping of IPTGTSs to PTA to allow
for the automated verification using Prism.
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Abstract. To verify graph programs in the language GP 2, we present a
monadic second-order logic with counting and a Hoare-style proof calcu-
lus. The logic has quantifiers for GP 2’s attributes and for sets of nodes
or edges. This allows to specify non-local graph properties such as con-
nectedness, k-colourability, etc. We show how to construct a strongest
liberal postcondition for a given graph transformation rule and a precon-
dition. The proof rules establish the total correctness of graph programs
and are shown to be sound. They allow to verify more programs than
is possible with previous approaches. In particular, many programs with
nested loops are covered by the calculus.

1 Introduction

GP2 is a programming language based on graph transformation rules which
aims to facilitate formal reasoning. Graphs and rules in GP 2 can be attributed
with heterogeneous lists of integers and character strings. The language has a
simple formal semantics and is computationally complete [15].

The verification of graph programs with various Hoare-style calculi is stud-
ied in [16–19] based on so-called E-conditions or M-conditions as assertions.
E-conditions are an extension of nested graph conditions [7,13] with attributes
(list expressions). They can express first-order properties of GP2 graphs, while
M-condition can express monadic second-order properties (without counting) of
non-attributed GP 2 graphs. In both cases, verification is restricted to the class
of graph programs whose loop bodies and branching guards are rule-set calls.

In this paper, we introduce a monadic second-order logic (with counting)
for GP2. We define the formulas based on a standard logic for graphs enriched
with GP 2 features such as list attributes, indegree and outdegree functions for
nodes, etc. We prefer to use standard logic because we believe it is easier to
comprehend by programmers that are not familiar with graph morphisms and
commuting diagrams. Another advantage of a standard logic is the potential for
using theorem proving environments such as Isabelle [10,11], Coq [12], or Z3 [1].
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In [21] we show how to prove programs partially correct by using closed first-
order formulas as assertions. The class of graph programs that can be verified
with the calculi of [21] consists of the so-called control programs. These programs
may contain certain nested loops and branching commands with arbitrary loop-
free programs as guards. Hence, the class of programs that can be handled is
considerably larger than the class of programs verifiable with [16].

Here, we continue that work and show how to prove total correctness of
control programs in the sense that programs are both partially correct and ter-
minating. Also, to generalise the program properties that can be verified, we
use closed monadic second-order formulas as assertions. This allows to prove
non-local properties such as connectedness or k-colourability. Our main techni-
cal result is the construction of a strongest liberal postcondition from a given
precondition and a GP2 transformation rule. This operation serves as the axiom
in the proof calculus of Sect. 5.

2 The Graph Programming Language GP2

GP2 programs transform input graphs into output graphs, where graphs are
directed and may contain parallel edges and loops. Formally, a graph G is a sys-
tem 〈VG, EG, sG, tG, lG,mG, pG〉 comprising two finite sets of vertices and edges,
source and target functions, a partial node labelling function, an edge labelling
function, and a partial root function. Nodes v for which lG(v) or pG(v) is unde-
fined may only exist in the interface of GP2 rules, but not in host graphs. Nodes
and edges are labelled with lists consisting of integers and character strings.
This includes the special case of items labelled with the empty list which may
be considered as “unlabelled”.

Fig. 1. Graph program transitive-closure [14]

The principal programming construct in GP 2 are conditional graph transfor-
mation rules labelled with expressions. For example, the rule link in Fig. 1 has
five formal parameters of type list, a left-hand graph and a right-hand graph
which are specified graphically, and a textual condition starting with the key-
word where. Node identifiers are written below the nodes, and all other text in
the graphs consists of labels. Parameters are typed as list, atom, int, string,
or char, where atom stands for the union of integers and strings, and lists are
arbitrary sequences of atoms.
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Besides carrying expressions, nodes and edges can be marked red, green or
blue. Also, nodes can be marked grey and edges can be dashed. An example with
red and grey nodes and a dashed edge can be seen in Fig. 5 of Sect. 6.

Rules are applied to host graphs in a two-stage process. First a rule is instan-
tiated by replacing all variables with values of the same type, evaluating all
expressions in the right-hand side of the rule, and checking the application con-
dition. This yields a standard rule in the so-called double-pushout approach
with relabelling [8]. Next, the instantiated rule is applied to the host graph by
constructing two suitable natural pushouts [2].

A program consists of declarations of conditional rules and (non-recursive)
procedures, including a distinct procedure named Main. Next we briefly describe
GP2’s major control constructs.

A rule-set call {r1, . . . , rn} non-deterministically applies one of the applicable
rules to the host graph. The call fails if none of the rules is applicable to the
host graph.

The sequential composition of programs P and Q is written P ;Q.
The command if C then P else Q is executed on a host graph G by first

executing C on a copy of G. If this results in a graph, P is executed on the
original graph G; otherwise, if C fails, Q is executed on G. The command try
C then P else Q has a similar effect, except that P is executed on the result
of C’s execution.

The loop command P ! executes the body P repeatedly until it fails. When
this is the case, P ! terminates with the graph on which the body was entered
for the last time. The break command inside a loop terminates that loop and
transfers control to the command following the loop.

In general, the execution of a program P on a host graph G may result
in different graphs, fail, or diverge. This is formally defined by the operational
semantics of GP2 which assigns to P and G the set �P �G of all possible execution
outcomes. See, for example, [15].

3 Monadic Second-Order Formulas for Graph Programs

We define MSO formulas which specify classes of GP2 host graphs. The abstract
syntax of formulas is shown in Fig. 2, where type names, arithmetic operators,
and special operators such as edge, root, indeg, outdeg, etc. are inherited from
the GP2 syntax. The category Char is the set of all printable ASCII characters
except ‘”’, and Digit is the set {0, . . . , 9}. All variables are typed, with associated
domains as in Table 1.

Table 1. Variable types and their domain over a graph G

Type Node Edge SetNode SetEdge List Atom Int String Char

Domain VG EG 2VG 2EG (Z ∪ Char∗)∗
Z ∪ Char∗ Z Char∗ Char
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The types for labels form a subtype hierarchy, given by list ⊃ atom ⊃
int, string and string ⊃ char, where atoms are considered as lists of length
one and characters are considered as strings of length one. Hence list variables
may have integer, string, or character values. Such restrictions can be enforced
by subtype predicates. For example, the list variable x can be constrained to
hold an integer value by the predicate int(x).

Fig. 2. Abstract syntax of monadic second-order formulas

For brevity, we write c ⇒ d for ¬c ∨ d, c ⇔ d for (c ⇒ d) ∧ (d ⇒ c),
∀Vx(c) for ¬∃vx(¬c), and similarly with ∀ex(c),∀lx(c),∀VX(c), and ∀EX(c). We
also sometimes write ∃vx1, . . . , xn(c) for ∃vx1(∃vx2(...∃vxn(c) . . .)) (also for other
quantifiers). Terms in MSO formulas are defined as usual and may contain func-
tion symbols, constants and variables.
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Example 1 (Monadic second-order formulas).
1) ∃VX(∀vx(x ∈ X ⇒ mV(x) = none) ∧ card(X) ≥ 2) expresses “there exists at
least two unmarked nodes”.
2) ∃VX(∀Vx(mV(x) = grey ⇔ x ∈ X) ∧ ∃ln(card(X) = 2 ∗ n)) expresses “the num-
ber of grey nodes is even”.

Note that the first-order formula ∃vx, y(mV(x) = none ∧ mV(y) = none ∧ x
�= y) is equivalent to the first formula. But it is unlikely that the second for-
mula can be expressed in the first-order fragment of our MSO logic because
pure first-order logic on graphs (without built-in functions and relations) cannot
specify that the number of nodes is even [6].

The truth value of an MSO formula over a graph is defined via assignments,
which are functions mapping free variables to their domains.

Definition 1 (Assignment). Consider an MSO formula c. Let A,B,C,D,E be
the set of free node, edge, list, node-set, and edge-set variables in c, respectively.
Given a free variable x, we write dom(x) for the domain of x as defined by
Table 1. A formula assignment for c over a host graph G is a pair α = 〈αG, αL〉
where αG = 〈αV : A → VG, αE : B → EG, α2V : D → 2VG , α2E : E → 2EG)〉 and
αL : C → L, such that for each free variable x, α(x) ∈ dom(x). We denote by cα

the (first-order) formula resulting from c after replacing each term y with yα,
where yα is defined inductively as follows:

1. If y is a free variable, yα = α(y);
2. If y is a constant, yα = y;
3. If y = length(x) for some list variable x, yα equals to the number of characters

in xα if x is a string variable, 1 if x is an integer variable, or the number of
atoms in xα if x is a list variable;

4. If y = card(X) for some node-set or edge-set variable X, yα is the number of
elements in Xα;

5. If y is the functions s(x), t(x), lE(x),mE(x), lV(x),mV(x), indeg(x), or outdeg(x),
yα is sG(xα), tG(xα), lE

G (xα), mE
G(xα), lV

G (xα), mV
G (xα), indegree of xα in G ,

or outdegree of xα in G, respectively;
6. If y = x1 ⊕ x2 for ⊕ ∈ {+,−, ∗, /} and integers x1

α, x2
α, yα = x1 ⊕Z x2;

7. If y = x1.x2 for some terms x1
α, x2

α, yα is string concatenation x1 and x2;
8. If y = x1 : x2 for some lists x1

α, x2
α, yα is list concatenation x1 and x2 ��

A graph G satisfies a formula c, denoted by G |= c, if there exists an assign-
ment α for c over G such that cα is true. Table 2 shows how the truth value of
cα is determined.
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Table 2. Truth value of cα in graph G

cα true iff

true true

false false

int(x) x ∈ Z

char(x) x ∈ Char

string(x) x ∈ Char∗

atom(x) x ∈ Z ∪ Char∗

root(x) pG(x) = 1

t1 ⊗ t2 t1 ⊗Z t2
X � Y X �Z Y

x ∈ X x ∈Z X

cα true iff

edge(x, y, l,m) sG(e) = x and tG(e) = y for some e ∈ EG

where lEG(e) = l and mE
G(e) = m

path(x, y,E) for some e1, . . . , en ∈ EG − E,

sG(e1) = a, sG(en) = b,tG(ei) = sG(ei+1)

for every i = 1, . . . , n − 1

t1 � t2 if t1 (or t2) is any:

t2 (or t1) �Bblue, red, green, gray, or dashed;

otherwise:

t1 �B t2

cα true iff

¬b b is false in G

b1 ∨ b2 b1 is true in G or b2 is true in G

b1 ∧ b2 both b1 and b2 are true in G

∃vx(b) b[x�→v] is true in G for some v ∈ VG

∃ex(b) b[x�→e] is true in G for some e ∈ EG

∃lx(b) b[x�→l] is true in G for some l ∈ L

∃VX(b) b[X�→V] is true in G for some V ∈ 2VG

∃EX(b) b[X�→E] is true in G for some E ∈ 2EG

In the table, ⊗ ∈ {>,>=, <,<=}, � ∈ {=, �=}, � ∈ {=, �=,⊂,⊆}, ⊗Z is the
integer operation represented by ⊗, and �B (or �B) is the Boolean operation
represented by � (or �). Also, given a Boolean expression b, a (set) variable x,
and a constant i, we denote by b[x�→i] the expression obtained from b by changing
every occurrence of x to i.

4 Constructing a Strongest Liberal Postcondition

In this section, we present a construction that can be used to obtain a strongest
liberal postcondition from a given precondition and a rule schema. Here, we limit
the precondition to closed MSO formulas.

Definition 2 (Strongest liberal postcondition over a conditional rule
schema). An assertion d is a liberal postcondition w.r.t. a conditional rule
schema r and a precondition c, if for all host graphs G and H, G � c and G ⇒r

H implies H � d. A strongest liberal postcondition w.r.t. c and r, denoted by
SLP(c, r), is a liberal postcondition w.r.t. c and r that implies every liberal
postcondition w.r.t. c and r. ��
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In [21], we show how to construct a strongest liberal postcondition over FO
formulas. Here, we use the same approach in the construction, that is, by obtain-
ing a left-application condition, which then be used to obtain a right-application
condition, so that finally we can obtain a strongest liberal postcondition.

Fig. 3. GP 2 conditional rule schema copy

As a running example, let us consider the rule schema copy of Fig. 3 and the
MSO formula e expressing “the number of grey nodes is even”:

e ≡ ∃VX(¬∃vx((mV(x) = grey ∧ x /∈ X) ∨ (mV(x) �= grey ∧ x ∈ X)) ∧ ∃ln(card(X) = 2 ∗ n)).

Note that the interface of the rule copy is the empty graph. We intentionally
do not preserve the node 1 and have two new nodes instead to see the effect
of both removal and addition of an element in the construction of a strongest
liberal postcondition.

Remark 1. In the following subsections we explain the transformations involved
in the construction of a strongest liberal postcondition. For this purpose, we con-
sider a generalised form of MSO formulas called conditions, which may contain
node and edge constants. Also, we consider a generalised form of rule schemata
which have both a left and a right application condition, where the conditions
can be more expressive than the application conditions of GP2 rule schemata.

4.1 From Precondition to Left-Application Condition

We start with the transformation of a precondition to a left-application condition
with respect to a conditional rule schema r = 〈L ← K → R,Γ 〉. Intuitively, the
transformation is done by:

1. Expressing the dangling condition as a condition over L, denoted by Dang(r).
2. Finding all possibilities of variables in c representing nodes/edges in a match

of L and of forming a disjunction from all possibilities, denoted by Split(c, r).
3. Evaluating terms and Boolean expression we can evaluate in Split(c, r),

Dang(r), and Γ with respect to the left-hand graph of the given rule, then
form a conjunction from the result of evaluation, and simplify the conjunction.



Verifying Graph Programs with Monadic Second-Order Logic 247

4.1.1 Condition Dang
The dangling condition must be satisfied by an injective morphism g if G ⇒r,g H
for some rule schema r = 〈L ← K → R〉 and host graphs G,H. A graph G with
an injective morphism g : L → G satisfies the dangling condition if every node
v ∈ g(L−K) is not incident to any edge outside g(L). That is, all edges incident
to a deleted node must be in g(L). This means that the indegree and outdegree
of each deleted node g−1(v) ∈ L−K are the same as the indegree and outdegree
of v in G.

Definition 3 (Condition Dang). Consider a rule schema r = 〈L ← K → R〉
where {v1, · · · , vn} is the set of nodes in L − K. Let indegL(v) and outdegL(v)
denote the indegree and outdegree of a node v in L. The condition Dang(r) is
defined as follows:

1. if VL − VK = ∅ then Dang(r) = true
2. if VL − VK �= ∅ then

Dang(r) =
∧n

i=1 indeg(vi) = indegL(vi) ∧ outdeg(vi) = outdegL(vi) ��
Example 2.
For the rule r = copy (see Fig. 3): Dang(r)= indeg(1) = 0 ∧ outdeg(1) = 0

4.1.2 Transformation Split
A node (or edge) variable x in c can represent any node (or edge) in an input
graph, in the sense that we can substitute any node (or edge) in G to check
the truth value of c in G (see point 5 and 6 of Definition 5). Also, a node (or
edge) set variable X in c can represent any set of nodes (or edges) in the input
graph, where each node (or edge) in the image of a match may or may not be
an element of the set (see point 8 and 9 of Definition 5).

To express that a set of nodes/edges in L is a subset of a set of nodes/edges
represented by a set variable, we define subset formulas.

Definition 4 (Subset Formula). Given a set of nodes N = {v1, . . . , vn}, a
subset formula for N with respect to a node set variable X has the form c1 ∧
c2 ∧ . . . ∧ cn where for i = 1, . . . , n, ci = vi ∈ X or vi /∈ X. The formula true is
the only subset formula for the empty set with respect to any set variable. ��
Definition 5 (Transformation Split). Let us consider a rule schema r =
〈L ← K → R,Γ 〉, where VL = {v1, . . . , vn} and EL = {e1, . . . , em}. Let
{V1, . . . , V2n} be the power set of VL, and d1, . . . , d2n be subset formulas of
VL w.r.t. X where for every i = 1, . . . , 2n, di represents Vi. Similarly, let
{E1, . . . , E2m} be the power set of EL, and a1, . . . , a2m be subset formulas of
EL w.r.t. X where for every i = 1, . . . , 2m, ai represents Ei.

Let c be a condition over L sharing no variables with r (note that it is always
possible to replace the label variables in c with new variables that are distinct
from variables in r). We define the condition Split(c, r) over L inductively as
follows, where c1, c2 are conditions over L:
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1) If c is either true, false, a predicate int(t), char(t), string(t), atom(t), root(t) for
some term t, in the form t1 � t2 for � ∈ {= . �= . <,≤, >,≥} and some
terms t1, t2, or in the form x ∈ X or x /∈ X,

Split(c, r) = c

2) Split(c1 ∨ c2, r) = Split(c1, r) ∨ Split(c2, r),
3) Split(c1 ∧ c2, r) = Split(c1, r) ∧ Split(c2, r),
4) Split(¬c1, r) = ¬Split(c1, r),
5) Split(∃vx(c1), r) = (

∨n
i=1Split(c[x�→vi]

1 , r)) ∨ ∃Vx(
∧n

i=1 x�=vi ∧ Split(c1, r),
6) Split(∃ex(c1), r) = (

∨m
i=1Split(c[x�→ei]

1 , r)) ∨ ∃ex(
∧m

i=1 x�=ei ∧ inc(c1, r, x)),
where

inc(c1, r, x) =
∨n

i=1
(
∨n

j=1
s(x) = vi ∧ t(x) = vj ∧Split(c[s(x) �→vi,t(x) �→vj]

1 , r))

∨ (s(x) = vi ∧
∧n

j=1
t(x) �= vj ∧Split(c[s(x) �→vi]

1 , r))

∨ (
∧n

j=1
s(x) �= vj ∧ t(x) = vi ∧Split(c[t(x) �→vi]

1 , r))

∨ (
∧n

i=1
s(x) �= vi ∧

∧n

j=1
t(x) �= vj ∧Split(c1, r))

7) Split(∃lx(c1), r) = ∃lx(Split(c1, r))
8) Split(∃VX(c1), r) = ∃VX(

∧2n

i=1 di ⇒ Split(c1, r))
9) Split(∃EX(c1), r) = ∃EX(

∧2m

i=1 ai ⇒ Split(c1, r))

where c[a�→b] for a variable or function a and constant b represents the condition
c after the replacement of all occurrence of a with b. ��

Intuitively, we only need to consider substituting nodes in L for each term
in c representing a node (a node variable or a source or target function), and
similarly, edges in L for all edge variables in c. In addition, we need to consider
all possible ways in which nodes/edges in L are elements of a set in c.

Example 3.
Consider again the precondition e from our running example:

∃VX(¬∃vx((mV(x) = grey ∧ x /∈ X) ∨ (mV(x) �= grey ∧ x ∈ X)) ∧ ∃ln(card(X) = 2 ∗ n))

has the form of ∃VX(c1). From point 8 and 3 of Definition 5, for
d = ∃vx((mV(x) = grey ∧ x /∈ X) ∨ (mV(x) �= grey ∧ x ∈ X)), we have

Split(e, r) =∃VX((1 ∈ X ⇒ Split(¬d, r) ∧ Split(∃ln(card(X) = 2 ∗ n), r))

∧ (1 /∈ X ⇒ Split(¬d, r) ∧ Split(∃ln(card(X) = 2 ∗ n), r))).
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We know that Split(∃ln(card(X) = 2 ∗ n), r) is equal to ∃ln(card(X) = 2 ∗ n) (see
point 7 of Definition 5), while Split(¬d, r) = ¬Split(d, r) (see point 4 of Definition
5). Then from point 5 of Definition 5, we have
Split(d, r) = (mV(1) = grey ∧ 1 /∈ X) ∨ (mV(1) �= grey ∧ 1 ∈ X)

∨ ∃vx(x �= 1 ∧ ((mV(x) = grey ∧ x /∈ X) ∨ (mV(x) �= grey ∧ x ∈ X))
so that

Split(e, r) =∃VX((1 ∈ X ⇒ ¬Split(d, r) ∧ ∃ln(card(X) = 2∗n))
∧ (1 /∈ X ⇒ ¬Split(d, r) ∧ ∃ln(card(X) = 2∗n)))

4.1.3 Transformation Val
The condition resulting from transformation Split, the condition Dang, and the
rule schema condition Γ may contain node/edge identifiers of the given left-hand
graph. To simplify the conditions, we can check if there is a disjuntion with a true
disjunc or a conjunction with a false conjunct so that we can ruled out because
of its value in the left-hand graph. For a simple example, a conjunct condition
mV(1) = grey can be replaced with false if node 1 in the given left-hand graph is
not grey.

Let us consider a rule schema r = 〈L ← K → R,Γ 〉, a condition c over L, a
host graph G, and a premorphism g : L → G. Let c share no variables with L.
To simplify c w.r.t. L, we apply the transformation Val(c, r) as follows:

1. Obtain c′ from c by replacing terms involving s, t, lV, lE,mV,mE, indeg and
outdeg, that do not have node/edge variables as arguments, with their values
in L. In addition, we also replace integer, string, and list operations with their
values if their arguments are only constants.
Note that the values of indeg and outdeg depend on the host graph, while here
we evaluate them in the left-hand graph. Hence, we use the terms incon(v)
and outcon(v) as constants representing the indegree resp. outdegree of g(v)
minus indegree resp. outdegree of v in L.

2. Obtain c′′ from c′ by evaluating Boolean operations =, �=,≤,≥, root, if their
arguments only consists of constants, to their values in L.

3. Consider any implication of the form a ⇒ d for some subset formula a and
condition d to a ⇒ dT . dT is obtained from d by changing every subcondition
of the form i ∈ X for i ∈ VL, i ∈ EL and set variable X to true if i ∈ X is
implied by a or false otherwise.

4. Simplify c′′′ by simplifying conjunct disjunct involving true or false. Also,
change the subconditions of the forms ¬ true,¬(¬ a), ¬(a ∨ b), ¬(a ∧ b), and
a ⇒ false for some conditions a, b to false, a,¬a ∧ ¬b,¬a ∨ ¬b,¬a resp. ��
The formal definition of Val(c, r) is rather long [22] because the expressions

we have in a condition may be nested. Hence, we do not present it in this paper.

Example 4. Let f = Split(e, r) from Example 3. That is,

f =∃VX((1 ∈ X ⇒ ¬Split(d, r) ∧ ∃ln(card(X) = 2∗n))
∧ (1 /∈ X ⇒ ¬Split(d, r) ∧ ∃ln(card(X) = 2∗n)))
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where Split(d, r) = (mV(1) = grey ∧ 1 /∈ X) ∨ (mV(1) �= grey ∧ 1 ∈ X)

∨ ∃vx(x �= 1 ∧ ((mV(x) = grey ∧ x /∈ X) ∨ (mV(x) �= grey ∧ x ∈ X))

Since node 1 in the left-hand graph of r is unmarked, then we can replace
mV(1) = grey with false, and mV(1) �= grey with true.
We also replace 1 ∈ X and 1 /∈ X with true or false, based on the premise in the
conjunct of f . That is, replace 1 ∈ X and 1 /∈ X with true and false (resp.) for
the first conjunct of f , and with false and true (resp.) for the second conjunct.
Hence, we obtain the following condition

∃VX((1 ∈ X ⇒ ¬((false ∧ false) ∨ (true ∧ true) ∨ b) ∧ ∃ln(card(X) = 2∗n))
∧(1 /∈ X ⇒ ¬((false ∧ true) ∨ (true ∧ false) ∨ b) ∧ ∃ln(card(X) = 2∗n)))

where b = ∃vx(x �= 1 ∧ ((mV(x) = grey ∧ x /∈ X) ∨ (mV(x) �= grey ∧ x ∈ X))).
Finally, we simplify ¬((false ∧ false) ∨ (true ∧ true) ∨ b) ∧ ∃ln(card(X) = 2∗n) to
false. Also, ¬((false ∧ true) ∨ (true ∧ false) ∨ b) to ¬b. Hence, we finally obtain
Val(f, r)= ∃VX(1 /∈ X ⇒ ¬b ∧ ∃ln(card(X) = 2∗n))

4.1.4 Transformation Lift
Finally, we define the transformation Lift, which takes a precondition and a rule
schema as an input and gives a left-application condition as an output.

Definition 6 (Transformation Lift). Let r = 〈L ← K →, Γ 〉 be a rule
schema, c be a precondition, and Lift(c, r) is a left application condition w.r.t. c
and r. Then, Lift(c, r) = Val(Split(c ∧ Γ, r) ∧ Dang(r), r).

Example 5.
For the rule schema r = copy, Γ = true and Dang(r)= indeg(1) = 0 ∧ outdeg
(1) = 0 such that Val(Dang(r), r) = true and Split(e ∧ Γ, r) = Split(e, r). Hence,
Lift(e, r∨) = Val(Split(e, r), r).

In [22], we show that by using the described construction, we can obtain a
left-application condition that is satisfied by every possible match of the given
rule schema.

Let us consider the transformation Split. From point 8 and 9 of Definition 5,
we know that Split may gives us conjunction of implications in specific form (i.e.
implications with subset formula as premise), and such form will still be exist
in the resulting condition of the transformation Lift. From now on, we say that
the obtained application condition (from Lift) is in ‘lifted form’.

4.2 From Left- to Right-Application Condition

To obtain a right-application condition from a left-application condition, we need
to consider what properties could be different in the initial and the result graphs.
Recall that in constructing a left-application condition, we evaluate all functions
with a node/edge constant argument and change them with constant.
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4.2.1 Transformation Adj
Due to the deletion of nodes/edges by a rule schema, properties that hold in
the initial graph may not hold anymore in the output graph. Hence, we need to
adjust the obtained left application condition so that we can have a condition
that can be satisfied by a comatch.

For example, the Boolean value for x = i for any node/edge variable x and
node/edge constant i that gets deleted must be false in the resulting graph.
Analogously, x �= i is always true. Also, all variables in the left-application con-
dition should not represent any new nodes and edges in the right-hand side. In
addition, we also need to consider the case where we have set variables.

In a lifted form, we may have subformulas of the form ∃VX(
∧2n

i=1 di ⇒
Split(c1, r)) (or similar for edges), where each di represent the condition where
a subset of VL is a subset of the set represented by X. A node in VL may or
may not exist in the output graph. Hence, we need to do adjustment by use a
property in standard logic.

Definition 7 (Transformation Adj). Given a rule schema r = 〈L ← K →
R,Γ 〉 where VL = {v1, . . . , vn}, EL = {e1, . . . , em}, VK = {u1, . . . , uk}, VR =
{w1, . . . , wp}, and ER = {z1, . . . , zq}, where vi �= wj (or ei �= zj) for all vi and wj

(or ei and xj) not in K. Let {V1, . . . , V2n} be the power set of VL, and d1, . . . , d2n
be subset formulas of VL w.r.t. X where for every i = 1, . . . , 2n, di represents
Vi. Similarly, let {U1, . . . , U2k} be the power set of VK , and b1, . . . , b2k be subset
formulas of VK w.r.t. X where for every i = 1, . . . , 2k, bi represents Ui. Also, let
{E1, . . . , E2m} be the power set of EL, and a1, . . . , a2m be subset formulas of EL

w.r.t. X where for every i = 1, . . . , 2m, ai represents Ei.
For a condition c over L in lifted form, the adjusted condition of c w.r.t. r is

defined inductively as below, where c1, . . . , cs are conditions over L, for s ≥ 2m

and s ≥ 2n:

1. If c is the formulas true or false,
Adj(c, r) = c

2. If c is predicate int(x), char(x), string(x), or atom(x) for some list variable x,
Adj(c, r) = c

3. If c is a Boolean operation f1 = f2 or f1 �= f1 where each f1 and f2 are
terms representing a list and neither contains free node/edge variable,
Adj(c, r) = c

4. If c is a Boolean operation f1 = f2 or f1 �= f1 where each f1 and f2 are terms
representing a node (or edge) and neither contains free node/edge variable
or node/edge constant,
Adj(c, r) = c

5. If c is a Boolean operation f1 � f2 for � ∈ {=, �=, <,≤, >,≥} and some terms
f1 and f2 representing integers and neither contains free node/edge variable
or any set variables,

Adj(c, r) =

⎧
⎪⎨

⎪⎩

false, if 
 ∈ {=} and x1 ∈ VL − VK ∪ EL or x2 ∈ VL − VK ∪ EL,

true, if 
 ∈ {�=} and x1 ∈ VL − VK ∪ EL or x2 ∈ VL − VK ∪ EL,

c′, otherwise
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6. If c is a Boolean operation x ∈ X for a bounded set variable X and bounded
edge variable x, or a bounded set variable X and a bounded node variable
x, x = s(y) or x = t(y) for some bounded edge variable y,
Adj(c, r) = c

7. If c = ∃lx(c1 for some condition c1 over L in lifted form,
Adj(c, r) = ∃lx(Adj(c1, r))

8. If c = ∃vx
(∧n

i=1, x �= vi ∧ c1
)

for some condition c1 over L in lifted form,
Adj(c, r) = ∃vx(

∧p
i=1, x �= wi ∧ Adj(c1, r))

9. If c = ∃ex
(∧m

i=1, x �= ei ∧ c1
)

for some condition c1 over L in lifted form,
Adj(c, r) = ∃ex(

∧q
i=1, x �= zi ∧ Adj(c1, r))

10. If c = ∃VX(
∧2n

i=1 di ⇒ ci) where each ci is a condition over L in lifted form
or contains card(X)
Adj(c, r) = ∃VX(

∧
v∈VR−VK

v /∈ X
∧2k

i=1(bi ⇒ ∨
j∈Wi

c′
j))

where c′
j = Adj(cj , r)[card(X) �→card(X)+|(VL−VK)∩Vj|] and for i = 1, . . . , 2k, Wi is

a subset of {1, . . . , 2n} such that for all j ∈ {1, . . . , 2n}, j ∈ Wi iff dj implies
bi

11. If c = ∃EX(
∧2m

i=1 ai ⇒ ci) where each ci is a condition over L in lifted form,
construction of Adj(c, r) is analogous to point 10

12. If c = c1 ∨ c2 for some conditions c1, c2 over L in lifted form,
Adj(c, r) = Adj(c1, r) ∨ Adj(c2, r)

13. If c = c1 ∧ c2 for some conditions c1, c2 over L in lifted form,
Adj(c, r) = Adj(c1, r) ∧ Adj(c2, r)

14. If c = ¬c1 for some condition c1 over L in lifted form,
Adj(c, r) = ¬Adj(c1, r)

Example 6. Let us consider Lift(e, r), r) from Example 5. That is, the condition
∃VX(1 /∈ X ⇒ ¬b ∧ ∃ln(card(X) = 2∗n)) where b = ∃vx(x �= 1 ∧ ((mV(x) = grey
∧x /∈ X) ∨ (mV(x) �= grey ∧ x ∈ X))). From point 10 of Definition 7, we get
Adj(Lift(e, r)) is ∃VX(2 /∈ X ∧ 3 /∈ X ∧ (true ⇒ ¬Adj(b, r) ∧ ∃ln(card(X) = 2∗n)))
where Adj(b, r) is ∃vx(x �= 2x �= 3 ∧ ((mV(x) = grey ∧ x /∈ X) ∨ (mV(x) �= grey
∧x ∈ X))) (see point 5 and 8 of Definition 7. Hence,

Adj(b, r) =∃VX(2 /∈ X ∧ 3 /∈ X ∧ ∃ln(card(X) = 2∗n)
∧¬∃vx(x �= 2x �= 3 ∧ ((mV(x) = grey ∧ x /∈ X) ∨ (mV(x) �= grey ∧ x ∈ X))))

4.2.2 Condition Spec and Transformation Shift
To have a right application condition that yield to strongest liberal postcondi-
tion, we need to have a condition that express properties of right-hand graph, in
addition to the condition that derived from the given precondition. Hence, we
need a condition that explicitly express the structure, labels, marks of the right-
hand graph. Also, the right-application condition should express the dangling
condition for any co-match.
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To express the structure and properties of R, we use the condition Spec(R),
which specify the right-hand graph uniquely up to the node/edge IDs and name
of variables. Spec(R) is defined as the condition
∧k

i=1Type(xi) ∧ ∧n
i=1 lV(vi) = lV

R (vi) ∧ mV(vi) =mV
R (vi) ∧ RootR(vi)

∧ ∧m
i=1 s(ei) =sR(ei) ∧ t(ei) =tR(ei) ∧ lE(ei) = lE

R (ei) ∧ mE(ei) =mE
R (ei)

where Type(x) for x ∈ X is int(x), char(x), string(x), atom(x), or true if x is an
integer, char, string, atom, or list variable respectively, and RootL(v) for v ∈ VL

is a function such that RootL(v) = root(v) if pL(v) = 1, and RootL(v) = ¬root(v)
otherwise.

Definition 8 (Shifting). Consider a rule schema r = 〈L ← K → R,Γ 〉, and
a precondition c. The right-application condition w.r.t. c and r, denoted by
Shift(c, r), is defined as:

Shift(c, r) = Adj(Lift(c, r), r) ∧ Spec(R) ∧ Dang(r−1) ��
Example 7.
Adj(Lift(c, r), r) has been obtained from Example 6, where Spec(R) is the con-
dition mV(2) = grey ∧ mV(3) = grey ∧ lV(2) = a ∧ lV(3) = a.
Also, Dang(r−1)=indeg(2) = 0 ∧ indeg(3) = 0 ∧ outdeg(2) = 0 ∧ outdeg(3) = 0
(see Definition 3). Hence, Shift(e, r) is
∃VX(∃ln(card(X) = 2∗n) ∧ 2 /∈ X ∧ 3 /∈ X

∧ ¬∃vx(x �= 2 ∧ x �= 3 ∧ ((x /∈ X ∧ mV(x) = grey) ∨ (mV(x) �= grey ∧ x ∈ X))))
∧mV(2) = grey ∧ mV(3) = grey ∧ lV(2) = a ∧ lV(3) = a
∧ indeg(2) = 0 ∧ indeg(3) = 0 ∧ outdeg(2) = 0 ∧ outdeg(3) = 0

4.3 From Right-Application Condition to Postcondition

The right-application condition we obtain from transformation Shift is strong
enough to express properties of the result graph, w.r.t the comatch. To turn the
condition c obtained from Shift to a postcondition, we only need to generalised
the condition by the transformation Var(c), which is obtained from c by sub-
stituting fresh variables to node/edge identifiers and adding a constraint that
different fresh variables represent different nodes/edges that there is no two new
variables express the same node/edge. Finally, we need to bind all free variables
to obtain a closed MSO formula.

Definition 9 (Slp). Given a rule r = 〈r, Γ 〉 for a rule schema r = 〈L ← K →
R〉 and a precondition c. A postcondition w.r.t. c and r, denoted by Slp(c, r),
is the MSO formula ∃vx1, . . . , xn(∃ey1, . . . , ym(∃lz1, . . . , zk(Var(Shift(c, r))))),
where {x1, . . . , xn}, {y1, . . . , ym}, and {z1, · · · , zk} denote the set of free node,
edge, and label (resp.) variables in Var(Shift(c, r)).

Example 8. First, we need to obtain Var(Shift(e, r)) by substituting fresh
variables to node/edge identifiers in Shift(e, r) of Example 7. The condition
Shift(e, r) has two node variables, that are 2 and 3. We can then to y and z



254 G. S. Wulandari and D. Plump

respectively because we do not both variables in Shift(e, r). In addition, we also
need to add a constraint that y �= z. Hence, we have

V ar(Shift(e, r)) =y �= z

∧∃VX(∃ln(card(X) = 2∗n) ∧ y /∈ X ∧ z /∈ X

∧ ¬∃vx(x �= y ∧ x �= z ∧ ((x /∈ X ∧ mV(x) = grey)

‘ ∨ (mV(x) �= grey ∧ x ∈ X))))

∧mV(y) = grey ∧ mV(z) = grey ∧ lV(y) = a ∧ lV(z) = a

∧ indeg(y) = 0 ∧ indeg(z) = 0 ∧ outdeg(y) = 0 ∧ outdeg(z) = 0

so that
Slp(e, r)=∃vy, z(∃la(Var(Shift(e,r))))

Theorem 1 (Strongest liberal postconditions). Given a precondition c and
a conditional rule schema r = 〈〈L ← K → R〉, Γ 〉. Then, Slp(c, r) is a strongest
liberal postcondition w.r.t. c and r.

In [22], we prove Theorem 1 by showing that Lift(c, r) and Shift(c, r) must
be satisfied by every match and comatch (resp.).

5 Proof Calculus

In this section, we define a syntactic proof calculus in the sense of total correct-
ness, called SYN.

5.1 The Calculus

Our calculus is a total correctness calculus, which means that a Hoare triple
{c} P {d} is totally correct if the execution of P on G satisfying c either yields
a proper graph or fails (divergence is excluded).

Definition 10 (Partial and total correctness [17]). Consider a precondition
c and a postcondition d. A graph program P is partially correct with respect
to c and d, denoted by �par {c} P {d}, if for every host graph G and every
graph H in �P �G, G |= c implies H |= d. The triple {c} P {d} is totally correct,
denoted by �tot {c} P {d}, if it is partially correct and if for every host graph
G satisfying c, P does not diverge or get stuck.

A program can get stuck if it contains a command if/try C then P else Q
where C can diverge from a graph G, or it contains a loop B! whose body B can
diverge from a graph G. Hence, getting stuck is always a signal of divergence.
To prove that a program does not diverge, we use a termination function #
which assigns a natural number to every host graph. The proof rule for loops
will require that loop bodies decrease the #-value of graphs satisfying the loop
invariant. This concept was introduced in [18], but only for loop bodies that are
rule set calls.
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Definition 11 (Termination function; #-decreasing). A termination func-
tion is a mapping #: G(L) → N from host graphs to natural numbers. Given an
assertion c and a graph program P , we say that P is #-decreasing (under c) if
for all graphs G,H ∈ G(L) such that G � c,

〈P,G〉 →∗ H implies #G > #H.

To define a proof calculus, we need assertions that can express preconditions
of failing or successful executions. For this, we also use the assertion Success and
Fail as defined in [21] which can be defined if we consider the classes loop-free
programs and iteration commands. A loop-free program simply is a program
that has no loop, while an iteration command is inductively defined as: 1) every
loop-free program and non-failing command is an iteration command, and 2) a
command in the form C;P is an iteration command if C is a loop-free program
and P is an iteration command.

Theorem 2. For any loop-free program P and precondition c, there exists MSO
formula Success(P ) and Slp(c, P ) such that a graph G � Success(P ) if and
only if there exists a host graph H ∈ �P �G and G � Slp(c, P ) if and only
if G is a strongest liberal postcondition w.r.t c and P . Also, for any iteration
command S, there exists MSO formula Fail(P ) such that G � Fail(S) if and
only if fail ∈ �P �G.

Intuitively, MSO formulas Success(P ) and Fail(P ) are preconditions that
assert the existence of successful and failing (resp.) execution of P . In addi-
tion, we consider the predicate Break(c, P, d) for graph command P and asser-
tions c, d as a predicate that is true if and only if for all derivations 〈P,G〉 →∗

〈break,H〉, G � c implies H � d.
From [21], we know that we have constructions for Slp, Success, and Fail

as mentioned in Theorem 2 if we have the construction of a strongest liberal
postcondition over a rule schema. Since we have it, we can can define the con-
structions of Slp(c, P ), Success(P ), and Fail(P ) to prove the theorem. As an
example, for Slp(c, P ), we can define it inductively as: (i) if P is a rule set call R =
{r1, . . . , rn} then Slp(c, P )=Slp(c, S) = Slp(c, r1) ∨ . . . ∨ Post(c, rn), (ii) if P =
Q or S for some programs Q,S then Slp(c, P )=Slp(c,Q) ∨ Slp(c, S), (iii) if P =
Q;S then Slp(c, p)=Slp(Slp(c,Q), S), (iv) if P = ifC then Q elseS for some
program C then Slp(c, P )=Slp(c ∧ Success(C), Q)∨Slp(c ∧ Fail(C), S), and (v)
if P = tryC thenQ elseS then Slp(c, P )=Slp(c ∧ Success(C) , C;Q)∨Slp(c ∧
Fail(C), S). The construction for Success and Fail can be seen in Appendix.

Definition 12 (Proof rules). The total correctness proof rules is defined in
Fig. 4, where c, d, and d′ are any conditions, r is any conditional rule schema, R
is any set of rule schemata, C is any loop-free program, P and Q are any control
commands, and S is any iteration command.
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Fig. 4. Total correctness proof rules of calculus SYN

The proof rules are used to construct proof trees.

Definition 13 (Provability; proof tree[16]).A triple {c} P {d} is provable
in the calculus, denoted by � {c} P {d}, if one can construct a proof tree from
the axioms and inference rules of the calculus with that triple as the root. If
{c} P {d} is an instance of an axiom X then (X {c} P {d} ) is a proof tree, and

� {c} P {d}. If {c} P {d} can be instantiated from the conclusion of an inference
rule Y , and there are proof trees T1, . . . , Tn with conclusions that are instances

of the n premises of Y , then (Y
T1 . . . Tn

{c} P {d} ) is a proof tree, and � {c} P {d}.

5.2 Soundness

In [21], we show that our partial correctness calculus is sound. Now, we extend it
to total correctness calculus, which is also proven to be sound in [23]. We prove
the soundness by considering the induction on proof trees.

Theorem 3 (Soundness of the calculus). Given graph program P and MSO
formulas c, d. Then, � {c} P {d} implies �tot {c} P {d}.

In the calculus, we use [ruleapp]slp as an axiom. Alternatively, we can change
the axiom to [ruleapp]wlp {¬Slp(¬d, r−1)} r {d} and we still have a sound proof

calculus [23].
However, relative completeness of the calculus is still an open problem. If we

consider FO Hoare-triples, there is a strong evidence that we may have a correct
FO Hoare-triple but we can not prove it by our FO proof calculus (see [21]) while
we can prove it if by MSO proof calculus, which shows that the expressiveness
of assertions play important role in relative completeness.
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Courcelle [4,5] has proven that the following properties are not expressible in
MSO logic without counting (either with set of node or set of edges quantifier):

1. The graph has even number of nodes
2. The number of nodes in a graph is a prime number
3. The graph has the same number of red nodes and grey nodes

However, we can express the three properties by the following MSO formulas,
respectively:

1. ∃VX(∀vx(x ∈ X) ∧ ∃ln(card(x) = 2 ∗ n))
2. ∃VX(∀vx(x ∈ X) ∧ ¬∃ln,m(n �= 1 ∧ m �= 1 ∧ card(x) = n ∗ m))
3. ∃VX,Y(∀vx(mV(x) = red ⇔ x ∈ X) ∧ ∀vx(mV(x) = grey ⇔ x ∈ Y) ∧ card(X) =

card(Y))

With the existence of function card, our formula can express more properties
if we compare it with counting MSO logic in [5] because we can compare car-
dinality between two sets with ours. However, what kind of properties can not
be expressed by our formulas is still an open problem in this paper. Hence, the
relative completeness of our MSO Hoare-triple is still unknown.

6 Case Study

In this section, we present the graph programs is-connected [3] and we verify
the graph program with respect to the given specifications. Due to page limita-
tion, we do not show the proof of implications in this paper. The proof can be
found in [22] and other examples can be found in [22].

Fig. 5. Graph program is-connected (Color figure online)

Here we consider the graph program is-connected as seen in Fig. 5. The
program is executed by checking the existence of an unrooted node with no
marks and change it to a red rooted node. The program then execute depth
first-search procedure by finding unrooted node that is adjacent with the red
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rooted node and change the node to red, swap the rootedness, and mark the
edge between them by dashed and repeat it as long as possible. The procedure
continue by searching a red node that adjacent to red unrooted node by dashed
edge and change the mark of the rooted node to grey while unmarking it, and
move the root to the other node, then reply the procedure. Finally, the program
checks if there still exists an unmarked node. If so, then the program yields fail.

For the specification, here we consider the case where the input graph is
connected. For the case with disconnected graph, please see [22].

Precondition:
All nodes and edges are unmarked, and all nodes are unrooted. Also, the graph is
connected, that is, for every nodes x, y, there exists an undirect path from x to y)

Postcondition:
Either the graph is empty, or there is a node that is marked with red and is rooted
while other nodes are grey and unrooted. All edges are unmarked, and the graph is
connected.

Now let us consider loops we have in the program is-connected. There are
two loops: forward! and DFS!. For the former, we can consider #-function that
count the number of unmarked nodes. By the application of the rule schema
forward, the number of unmarked nodes obviously decreasing. Hence forward
is #-decreasing. For DFS!, we can consider a #-function that count unmarked
nodes and red nodes. From the initial graph, the application of forward! will
not change the value of #, while try either will decrease the value of # by 1 or
make us reach break. Hence, DFS is #-decreasing as well.

The total correctness proof for this case study is given by the proof tree
of Fig. 6. We refer to [22] for the assertions in the proof tree, which we omit
here because of the lack of space. For the same reason, we omit #-decreasing
requirement in the premise of proof rule [alap].

From the proof tree we know the triple {pre} init {c} and {c} DFS! {post}
are totally correct so that by the proof rule [comp] we can conclude that
{pre} init; DFS! {post} is totally correct as well. Implication post ⇒
¬Fail(match) must be true because the postcondition assert that there is no
unmarked node. Hence, we can conclude that the execution of the program on a
graph satisfying Precondition cannot fail and must resulting a graph satisfying
Postcondition.
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7 Conclusion

Poskitt and Plump [17] have defined a calculus to verify graph programs by using
a so-called E-conditions [16] and M-conditions [19] as assertions. E-conditions are
only able to express FO properties of GP 2 graph, while M-conditions can express
properties of MSO properties of non-attributed graph (not all GP2 graphs).
However, there are only limited graph programs that can be verified by the
calculus (e.g. programs with no nested loop).

E-condition is an extension of nested graph conditions [7]. Pennemann [13]
shows how to obtain a weakest liberal precondition (wlp) w.r.t a graph condition
and a program and introduced a theorem prover to prove implication between a
precondition and the obtained wlp. However, graph conditions also only able to
express FO properties of a non-attributed graph. Habel and Radke [9] then intro-
duced HR∗ conditions, which extend the graph conditions by introducing graph
variables that represent graphs generated by hyperedge-replacement systems.
Radke [20] showed that HR∗ conditions is somewhere between node-counting
MSO graph formulas and SO graph formulas and showed how to construct a
wlp w.r.t the conditions. However, theorem prover for this condition is not avail-
able yet, and we believe that having a wlp alone is not enough for program
verifications.

In this paper, we have defined MSO formulas that can express local properties
of GP 2 graphs, even properties that can not be expressed in counting MSO graph
formulas [6]. By using the MSO formulas as assertions, we show that we can
construct a strongest liberal postcondition (Slp) over a rule schema. Moreover, we
also can use the construction to obtain Slp over a loop-free program, precondition
Success(P ) (or Fail(P )) that asserts the existence of a proper graph (or path to
failure) in the execution of loop-free program P (or iteration command S). With
this result, we can define a proof calculus to verify total correctness of graph
programs with nested loops in certain forms.

As usual for Hoare calculi, our calculus does not cover implications between
assertions. Currently, we have started to experiment of the use of SMT solver
Z3 [1] to prove the implication.
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Abstract. To develop future cyber-physical systems, like networks of
autonomous vehicles, the modeling and simulation of huge networks
of collaborating systems acting together on large-scale topologies is
required. Probabilistic Timed Graph Transformation Systems (PTGTSs)
have been introduced as a means of modeling a high-level view of these
systems of systems. In our previous work, we proposed a simulation
scheme based on local search incremental graph matching that can han-
dle large-scale real-world topologies. However, the prohibitive complexity
of the graph matching problem underlying the simulation of any GTS
variant makes this setup potentially problematic.

In this paper, we present an improved simulation algorithm and iden-
tify restrictions that hold for PTGTS high-level models of cyber-physical
systems and real-world topologies, for which we can establish favorable
worst-case complexity bounds. We show that the worst-case amortized
complexity per simulation step is only logarithmic in the number of active
collaborating systems (like vehicles) and constant concerning the size of
the topology. The theoretical results are confirmed by experiments.

Keywords: Graph Transformation Systems · Probabilistic behavior ·
Timed behavior · Simulator · Complexity · Algorithm

1 Introduction

One of the dominant trends in current technological development are auto-
nomous systems, such as autonomous vehicles. These autonomous systems are
on the one hand expected to locally interact with their environment and with
each other in a safe and reliable way, while on the other hand being part of
a large-scale system of systems that must function globally as a whole. With
the number of interconnected cyber-physical systems being expected to dramat-
ically increase in the future, developing these systems with the global system of
systems perspective in mind becomes increasingly complex.
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A modeling technique for any kind of cyber-physical system of systems must
include timed behavior, to reflect the real-time nature of the individual sys-
tem, probabilistic behavior, to capture probabilistic phenomena like failures, and
structure dynamics, to allow changing interconnections between the autonomous
subsystems at runtime. Given the potential criticality of cyber-physical systems
for human lives and safety, verification and simulation are important use-cases
for any modeling technique. Therefore, the increasing size of cyber-physical sys-
tems of systems additionally requires a high scalability for simulation.

In [13], we introduced Probabilistic Timed Graph Transformation Systems
(PTGTSs) as a modeling technique for a high-level view of these systems of
systems based on the formal foundations of graph transformations. We further
presented a simulator for PTGTS models [21] that can import and efficiently
simulate complex large-scale real-world topologies and automatically detect vio-
lations of state properties in them. We argued and empirically demonstrated this
by simulating the movement of vehicles on representations of the actual tram
track network of several Germany cities, the largest of which was modeled with
a graph of more than 10.000 nodes.

However, no theoretical bounds on the complexity of simulating PTGTS
models have been established. The expected growth in the scale of future cyber-
physical systems of systems makes it worthwhile to study the complexity of the
simulation problem for PTGTS models in light of typical restrictions on the
rules and topologies. Note that in addition to the graph matching problem, the
question of how the time is efficiently advanced globally is also relevant here.

Therefore, in this paper, we present improvements to our simulation algo-
rithm that address the remaining potential scalability bottlenecks. Furthermore,
we identify restrictions that hold for the PTGTS rules of high-level models of
typical cyber-physical systems of systems and for the real-world topologies on
which these systems of systems operate. We formally show that given the typ-
ical restrictions and using our improved algorithm, PTGTS can be simulated
efficiently with an amortized runtime effort per simulation step that is, in the
worst-case, logarithmically dependent on the number of (actively) collaborating
systems and independent from the size of the topology after a certain number
of simulation steps. Finally, we support the findings of our analysis by a series
of experiments where we also compare our improved and former algorithm.

Employing graph transformation systems (GTSs) and incremental graph pat-
tern matching techniques for the simulation of complex systems has been pro-
posed in [17]. A link between GTSs and discrete event simulation has been
considered in [18]. Also, an extension of GTSs with stochastic behavior has been
considered in [1] and related simulators like GraSS [20] and SimSG [4] have been
developed. Finally, PTGTS [13] supporting timed and probabilistic behavior and
related support for scalable simulation [21] have been presented. However, so far
only empirical studies but no theoretical complexity analysis as approached in
this paper have been done.

This paper is structured as follows: As preliminaries, the PTGTS formalism
is introduced in Sect. 2. The simulator implementations, the simulation algo-
rithm, and in particular the novel improvements are described in Sect. 3. The
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restrictions and the amortized complexity of the simulation algorithm are then
formally analyzed in Sect. 4 and empirically evaluated in Sect. 5. The paper is
closed with a conclusion and an outlook on future work.

2 Preliminaries

In this section, we briefly recall typed graphs, graph transformation, and the
formalism of PTGTSs [13]. Moreover, we introduce our running example, where
we model autonomous shuttles driving on a large track topology as a PTGTS.

In PTGTSs, we employ typed graphs [5] to capture the states of a system. A
graph G = (GN , GE , sG, tG) is given by a set GN of nodes, a set GE of edges, and
source and target functions sG, tG : GE→GN . For graphs G = (GN , GE , sG, tG)
and H = (HN ,HE , sH , tH), a graph morphism f : G→H is defined as a pair
of mappings fN : GN→HN , fE : GE→HE that are compatible with the source
and target functions, i.e., fN ◦ sG = sH ◦ fE and fN ◦ tG = tH ◦ fE .

For a distinguished graph TG , called a type graph, a typed graph (G, type)
consists of a graph G and a graph morphism type : G→TG . For two given
typed graphs G′

1 = (G1, type1) and G′
2 = (G2, type2), a typed graph morphism

f : G′
1→G′

2 is a graph morphism f : G1→G2 that is compatible with the typing
functions, i.e., type2 ◦ f = type1.

In PTGTSs, we also use attributes but, for brevity, we omit a technical intro-
duction of the attribution concept for graphs here, which can be straightfor-
wardly added to the presented formalization of typed graphs.

As a running example, we model a scenario inspired by the RailCab project
[16] where autonomous shuttles drive on a fixed large topology given by inter-
connected tracks. The type graph for this scenario is given in Fig. 1. It contains
Track nodes connected by next edges that form a topology and Shuttle nodes
representing shuttles that are located at Track nodes, can move across next edges
from one track to another, can stop or brake to avoid collisions, and can establish
connections with other nearby shuttles (represented by Connection nodes).

For PTGTSs, we require that the type graph contains a distinguished type
node Clock. Furthermore, for every graph G, we use the function CN (G) = {n |
n ∈ GN ∧ typeN (n) = Clock} to identify in every graph G the nodes of type
Clock, which are used for time measurement only. In the following, we call these

Fig. 1. Type graph of shuttle scenario with the generated extensions (gray, see Sect. 3).
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nodes in CN (G) simply clocks. For our running example, each Track node is
equipped with a single attached clock (cf. Fig. 1). For brevity, we omit these
clocks in our later visualizations and refer to a clock c of an element e as e.c.

For PTGTSs, we use graph transformation according to the Double Pushout
Approach [5] to perform rule-based modifications of graphs. A graph transfor-
mation rule (short rule) ρ = L

l←− K
r−→ R is a span of injective graph morphisms

where the graphs L and R are the left-hand side (LHS) and the right-hand side
(RHS) of the rule, respectively. A match m from L into the graph G under trans-
formation identifies the substructure m(L) in G where the rule is to be applied.
Transformation of the graph G is then realized by applying a rule ρ for a match
m on G. Intuitively, the rule ρ specifies the removal of all elements in L − �(K)
and the addition of all elements in R − r(K) (see [5] for more technical details).

PTGTSs have been introduced in [13], as a combination of Probabilistic
Graph Transformation Systems (PGTSs) [12] and Timed Graph Transformation
Systems (TGTSs) [2,7,14]. Similarly to PGTSs, probabilistic timed graph trans-
formation (PTGT) rules have multiple right-hand sides, each equipped with a
probability. While the choice for a match of a PTGT rule remains nondeter-
ministic, the effect of rule application is probabilistic. Similarly to TGTSs, each
PTGT rule is annotated with a guard over the clocks contained in its left-hand
side graph L. The usage of guards restricts the applicability of PTGT rules
w.r.t. the current clock values. Moreover, each PTGT rule is equipped with the
information about clocks to be reset when that PTGT rule is applied.

Definition 1 (Probabilistic Timed Graph Transformation Rule [13]).
A probabilistic timed graph transformation (PTGT) rule R is a tuple
(L,P, μ, φ, rC) where L is a common left-hand side graph, P is a finite set of
rules with the common left-hand side graph L, μ ∈ Dist(P ) is a probability dis-
tribution on the rules from P , φ ∈ Φ(CN (L)) is a guard over clocks contained
in L, and rC ⊆ CN (L) is the set of clocks from L to be reset.

In PTGT rules, we also employ negative application conditions (NACs) [9] over
the common left-hand side graph L. They increase the descriptive expressiveness
of rules specifying that the match used for PTGT rule application cannot be
extended to match further graph elements forbidden by the NAC. The use of
NACs can be added straightforwardly to the presented formalization of rules.

We model the behavior of our running example using 14 PTGT rules in HEN-
SHIN [10], which describe the driving, stopping, and braking of shuttles as well
as their attempts for connection and disconnection. With connection attempts
potentially failing, the PTGT rules for establishing a connection between two
shuttles are probabilistic. In the following, we discuss only one exemplary PTGT
rule (for more details see [15,21]). The PTGT rule drive (see Fig. 2a) allows a
shuttle to move forward if there are no shuttles located too close in front of it,
which is ensured using the NACs #1 to #5.

We also make use of priorities, which allow to state urgency of PTGT rule
applications by disabling all PTGT rules with lower priority if a rule with higher
priority is applicable. Note that all rules with higher priority are not allowed to
state constraints on clocks to ensure that they can always be applied first.
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Fig. 2. PTGT rule drive (a), atomic proposition collision (b), and invariant shut-
tleDriveInvariant (c) of the shuttle scenario PTGTS in HENSHIN notation.

To reflect real-time behavior of driving shuttles, we require that each shuttle
spends 3 to 4 time units for moving on a single track. This temporal constraint is
specified in the PTGT rules for driving using the corresponding guards and invari-
ants formulated over the track clocks. For the PTGT rule drive from Fig. 2a, the
lower bound of 3 time units is encoded using the guard t1.c ≥ 3. To measure the
time spent on a track, we reset the clock of the track to which a shuttle is moving,
which is annotated for the PTGT rule drive in Fig. 2a by t2.c′ = 0.

Invariants and atomic propositions of PTGTSs are state properties defined
as non-changing PTGT rules. Invariants are used to express upper bounds on
clocks. In our shuttle scenario, the invariant shuttleDriveInvariant from Fig. 2c
is used to state that a driving shuttle cannot stay on a track longer than 4 time
units annotated by t.c ≤ 4. Atomic propositions are used to identify graphs
satisfying certain structural conditions. Note that atomic propositions are not
allowed to state constraints on clocks and have the highest priority to ensure that
they are evaluated for all graphs. For our shuttle scenario, the atomic proposition
collision from Fig. 2b identifies graphs where two shuttles collide by being on the
same track without being connected (ensured using the NAC #1).

We now define PTGTSs1 comprising the notions discussed above.

Definition 2 (Probabilistic Timed Graph Transformation System [13]).
A probabilistic timed graph transformation system (PTGTS) S is a tuple (TG ,
G0, v0,Π, I,AP , prio) where TG is a finite type graph with the node type Clock,

1 Note that the additional restrictions in the following definition, compared to [13],
do not restrict the expressiveness of PTGTSs as (a) lower bounds for invariants can
be replaced by additional conditions with clock constraints for all PTGT rules and
(b) higher priority PTGT rules with constraints for the clocks can be emulated by
additional pre-conditions for all lower-priority PTGT rules.
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Fig. 3. Architecture of the PTGTS simulator. Active component are marked in gray.

G0 is a finite initial graph typed over TG, v0 : CN (G0)→R is the initial clock
valuation assigning the value 0 to every clock of G0, Π is a finite set of PTGT
rules, I is a finite set of invariants, AP is a finite set of atomic propositions,
and prio : Π→N is a priority function assigning a priority to each PTGT rule.

The semantics of a PTGTS is given in terms of its induced state space where
(a) states are given by pairs (G, v) of graphs G and valuations v assigning the
clocks of G to real-valued time points and (b) steps between such states are
either timed steps advancing all clocks by a common duration or discrete steps
adapting the graph and valuation of a state according to one of the PTGT rules.
For further technical details on the semantics of PTGTSs see [13].

3 Simulation Algorithm

In this section, we present the fundamental concepts behind our approach for
simulating PTGTS models [15,21]. The idea is that, after an initial matching
step, graph transformations are only applied locally so that the runtime impact
of these possibly costly operations is kept independent from the model size. At
the same time, the local clocks and relative time constraints are translated to a
global simulation time. Thus, for each simulation step, the global considerations
are limited to comparing lower and upper bound time values against a global
simulation time, which are efficient numeric operations.

3.1 PTGTS Simulator Architecture

Our simulator consists of three active components highlighted in Fig. 3.
The first two components prepare suitable inputs for the simulation. The

graph importer constructs input graphs and supports both real-world public
transport network topologies and synthetically generated examples. The rule
generator creates an extended GT type graph (see Fig. 1) and GT rules from a
PTGTS. The generation process is described with specific examples in [21].

In order to enable incremental, local updates, these GT rules mark all pat-
tern occurrences with marker nodes. Theses marker nodes, whose types are also
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specified in the extended type graph, are connected to each node of the respec-
tive graph pattern by an edge. For bookkeeping purposes, markers may also
be referenced outside of the graph. We also employ a marking mechanism for
recursively transforming potentially complex NACs in the PTGTS into sim-
ple NACs consisting of only a single marker node and related edges, which are
created by designated NAC rules [3]. This effectively introduces a dependency
relation between generated rules, as some rules consider the marker nodes cre-
ated by others. However, because rule dependencies mirror the nesting structure
of PTGT rules, there are no cyclic dependencies among rules of the same kind
(FIND, UPDATE, and CHECK). For representing the timed behavior, the local
clocks of the original PTGTS are translated to clock nodes with a last reset time
attribute, while guards and invariants are translated to lower and upper bound
attributes in the marker nodes.

Finally, based on the extended GT type graph with additional marker node
types and a last reset attribute for the clock nodes, the rule generator creates
the following GT rules for each PTGT rule, invariant and atomic proposition:

1. FIND rules detect the original rule’s and the NAC’s left-hand side patterns.
They add a marker node to mark pattern occurrences and calculate upper
and lower bound attributes based on adjacent clocks’ last reset times.

2. APPLY rules that require a marker on the left-hand side and that apply
the PTGT rule’s right-hand sides and perform clock resets. Multiple APPLY
rules represent the multiple right-hand sides of a PTGT rule.

3. CHECK rules that use a negative application condition to delete a marker
if the pattern associated with it is not complete anymore.

4. UPDATE rules that recompute lower and upper bounds of markers after
adjacent clock nodes’ last reset attributes have been altered.

Note that the rule generator creates rules with Single Pushout semantics. In
order to retain the Double Pushout behavior and avoid the accidental deletion
of dangling edges, for each LHS node we create a NAC corresponding to each
edge type that in the type graph is connected to the node’s type.

The final component from Fig. 3 is the simulation engine, which selects
and applies the generated GT rules, following the algorithm described in
Subsect. 3.2. The engine is implemented in Java. It uses the Eclipse Model-
ing Framework (EMF) [6] and an interpreter for Story Diagrams [8] that allows
graph pattern matching starting with a fixed partial match.

3.2 Algorithm

The simulation engine’s three-step algorithm is sketched in Fig. 4.

1. Step 1: Add Initial Markers. Patterns occurring in the input graph are
marked by generated FIND rules. The employed rule ordering respects depen-
dencies so that created markers can be used in dependent rules [3]. This step
requires graph pattern matching on the complete graph, but only once.
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Fig. 4. PTGTS simulation algorithm based on marking pattern matches.

2. Step 2: Apply a Rule and Advance Time. Out of the created markers,
the engine randomly selects one that (a) represents an enabled rule applica-
tion, (b) has the highest available rule priority, (c) fulfills the invariants and
its time bounds if present regarding the global simulation time. If a suitable
rule marker is found, the engine computes a new global time so that no invari-
ants are violated and uses the APPLY rule to apply the actual PTGT rule
at the marked pattern as well as to reset the clocks.

3. Step 3: Update Affected Subgraph. After a rule application, the sub-
graph affected by the application (incl. all markers) is determined and FIND
and CHECK rules are used to locally add or remove markers in places where
the graph has changed. UPDATE rules are used to update marker time
bounds. As in step 1, the rule ordering respects the dependencies.

The simulation stops when no applicable rule is found in step 2 (due to a
lack of markers or due to violated invariants or time constraints) or when an
atomic proposition (e.g. collision from Fig. 2b) is matched in step 1 or 3.

3.3 Optimized Data Structures

Due to the idea of global time management, in each simulation step, all invariant
and rule markers must be considered to select a suitable rule. Since the contents
of the input graph govern the potential number of markers, the runtime of this
part of the algorithm’s step 2 scales with the input graph size. In order to ensure
scalability, data structures outside the graph are used to keep track of all relevant
rule and invariant markers.

Invariants. As introduced in Sect. 2, invariants only have upper bounds. Since
in each simulation step, all invariants must be fulfilled with respect to the global
simulation time, it suffices to only find the lowest invariant upper bound tmin inv.
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An efficient identification of tmin inv can be implemented using a balanced
binary tree that maintains an ordering of all invariant markers by upper bounds
and has logarithmic insertion, deletion and selection runtime.

Rules. After evaluating the invariants, we know that the next simulation step
must be executed inside the interval between the current simulation time t and
tmin inv, and that a rule marker must be selected whose interval between lower
and upper bound overlaps with the former interval. Either interval may have
infinite endpoints (if there is no invariant with an upper bound or if a rule has
no lower or upper bound).

For a balanced nondeterministic selection of an applicable rule r, all rule
markers where r.lower bound ≤ tmin inv and r.upper bound ≥ t must be col-
lected. Also, the rules with the highest priority must be applied first, but since
high-priority rules have no time bounds, they can simply be stored in a separate
data structure per priority that is checked before proceeding to the primary,
timed data structure. Since any one-dimensional indexing structure can only be
sorted either by the lower or by the upper bound, finding all applicable rules effi-
ciently would require maintaining two structures and merging the results from
both.

To resolve this, we propose that rules are selected from a balanced binary
tree where markers are sorted only by the lower bounds, which are compared
only against tmin inv. While the selection can now be done in logarithmic time,
it requires that when t advances, all rules where the upper bound is smaller
than the new t are removed from the data structure. We use a second balanced
binary tree to sort all rule markers by their upper bounds and to identify any
markers that might be disabled by the advancing t. For higher-priority rules, a
single balanced binary tree suffices to allow insertions and random retrieval in
logarithmic time.

Removing a single marker from a balanced binary tree is possible in logarith-
mic time. However, in the worst case all markers are disabled in the same step.
Since each removal incurs logarithmic cost, the complete maintenance operation
would require O(n·log(n)) runtime. We analyze how the impact of this wost-case
runtime can be amortized in Subsect. 4.3.

Implementation. For our simulator, the balanced binary tree data structures
were implemented using AVL trees.

4 Efficiency

4.1 Input Restrictions

Host Graph. We assume an input graph G, typed over a type graph TG, with
n nodes in total, represented as bidirectional adjacency lists. We define the target
cardinality of an edge type eTG ∈ TGE in G as cT (eTG, G) = maxv∈GN

|{e ∈
GE | type(eG) = eTG∧sG(e) = v}|. We define source cardinality analogously. We
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assume that the number of edge types has a constant upper bound T and that
the source and target cardinalities of all edge types have a common constant
upper bound C, which is typical for real-world physical topologies. Thus, the
number of edges in G is linear in the number of nodes.

Since our use case are cyber-physical systems that interact inside a topology,
a sizable part of n usually represents the static topology, while a number of active
nodes nactive of certain types represents interacting subsystems, with nactive 

n. In our example, the set of active nodes is the set of Shuttle nodes.

Rule Properties. We assume the satisfaction of the following assumptions
regarding the PTGTS and thus generated GT rules:

– The number of nodes in each PTGT rule’s LHS and RHS has a constant
upper bound. Therefore, the number of nodes in the LHS and RHS of each
generated GT rule has a constant upper bound Q.

– The number of edges, attribute constraints, attribute assignments, and NACs
of each PTGT rule and thus in each GT rule have a constant upper bound.

– Checking of attribute constraints and computation of attribute assignments
takes O(1) computational steps.

– The LHS of each PTGT rule as well as each NAC, and thus the LHS of each
GT rule, are weakly connected.

– The LHS of all PTGT rules and NACs, and thus the LHS of all generated
GT rule, contain at least one node of a type representing an active node.

– Successive application of PTGT and thus APPLY rules never increases an
edge type’s source or target cardinality beyond C and never increases nactive.

– The number of NACs of a PTGT rule and the nesting depth of such NACs
both have a constant upper bound. Therefore, the number of dependencies of
each rule has a constant upper bound B and the length of the longest path
in the rule dependency graph has a constant upper bound D.

– The number of PTGT rules has a constant upper bound. Therefore, consider-
ing the upper bounds regarding nesting in the PTGTS, the number of FIND,
UPDATE, and CHECK rules has a constant upper bound N .

All introduced assumptions are satisfied for our running example.

4.2 Pattern Matching Efficiency

We now analyze the worst-case runtime complexity of the graph transformation
tasks involved in the simulation algorithm based on assumptions in Sect. 4.1.

Step 1: Add Initial Markers. Because the LHS L of any FIND rule contains at
most Q nodes and (when considering all edges to be undirected) has a spanning
tree where both source and target cardinality of each involved edge type have a
constant upper bound C, the number of matches in a host graph G involving a
fixed mapping for any one node in L is at most CQ−1. By construction, the creation
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of redundant marking nodes is avoided by appropriate NACs, each type of marking
node is only created by a single FIND rule, and each node in G can take the role
of a fixed mapping for at most Q nodes in L. Therefore, each node in G can be
associated with at most CQ−1 marking nodes via marking edges of a certain type
and with at most Q · CQ−1 marking nodes of each type overall.

Given a fixed mapping for one node in L, we enumerate a complete set of
match candidates containing at most CQ−1 elements in O(Q · CQ−1) using an
efficient algorithm [11]. The time required to check a candidate is dominated by
the time required for checking NACs, which is in O(T · Q + B · Q · CQ−1).

Considering the upper bounds induced by our assumptions, finding all matches
for L with a fixed mapping for one node takes O(1) computational steps. Since the
application of the rule creates only a single marking node and marking edges to Q
nodes for each match, the effort for search and application remains in O(1).

Since the dependency relation among FIND rules is acyclic, we can create
the initial set of marking nodes in an initial host graph G by executing all FIND
rules in a topological order. To execute an individual FIND rule, we select one
node with a type representing an active node in its LHS as a starting point for
the search. We then successively fix the mapping for the starting point to each
node with a matching type in G, find all corresponding matches and apply the
transformation part of the rule. Note that consequently, the total number of
created marking nodes is in O(nactive). Overall the effort for executing a single
FIND rule is thus in O(nactive), which is also the runtime complexity of executing
all FIND rules since the number of such rules has a constant upper bound N .

Step 2: Apply a Rule. Since the application of an APPLY rule to G in a
simulation step starts with a fixed mapping for the associated marking node, all
marking edges have a target cardinality of 1, and apply rules do not perform
any checks, finding a match for the LHS takes only O(Q) computational steps.
By deleting nodes of the match, the application to G may require the deletion
of at most Q ·CQ−1 dangling marking edges of each marking edge type. Because
of the introduced NACs, deletion of dangling original edges is not allowed. Due
to the assumptions on cardinality, explicit deletion of original edges removes at
most T · Q · C edges. Because the upper bound on original edge cardinality has
to remain unchanged, at most 2 · T · Q · C edges are created.

By our assumptions, all attribute assignments performed as part of the rule
application take O(1) computational steps. The execution time for modifying the
adjacency lists is in O(1) per created edge. Considering the effort for deleting
elements from adjacency lists with up to C elements in the case of original edge
types and CQ−1 elements in the case of marking edge types, the effort for search
and application combined is thus in O(T ·Q ·C2 +N ·Q2 ·C2·(Q−1)) = O(1). The
application modifies at most Q + N · Q2 · CQ−1 nodes in G, that is, it creates or
deletes the node itself or an adjacent edge or modifies an attribute of the node.

Step 3: Update Affected Subgraph. The incremental update of the marking
after the application of an apply rule a consists of executing all FIND, UPDATE,
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and CHECK rules r in the context of changed elements in an order r1, r2, ..., rm
that respects the dependencies. The search for each rule ri is executed with fixed
input mappings, which are derived based on the relevant nodes modified by a
and all rules rj with j < i. A modified node is relevant to a rule if its type
matches the type of a node in the rule’s LHS and it was (i) created or deleted,
(ii) an adjacent edge with a type that appears in the rule’s LHS or its NACs was
created or deleted, or (iii) a considered attribute was modified.

In the case of FIND rules, relevant nodes are directly used as fixed input
mappings for each node with a matching type in the LHS. Thus, at most Q·S such
local searches are executed, where S is the number of relevant modified nodes.
Analogously to the initial execution, each individual local search takes O(1)
computational steps and finds at most CQ−1 matches. The execution of a FIND
rule may therefore create up to CQ−1 marking nodes and associated edges for the
matches found in a single local search, thus overall modifying at most S ·Q·CQ−1

additional elements in G and causing effort in O(S ·Q ·CQ−1) = O(S). However,
since no redundant markings are created, this cannot increase the number of
marking nodes of each type connected to an original node in G beyond CQ−1.

In the case of UPDATE and CHECK rules, all marking nodes of the cor-
responding type that are associated with a relevant node are used as starting
points for the search. Since the LHS of each rule only contains one marking node
and each node in the host graph can only be associated with at most Q · CQ−1

marking nodes of each type, the number of starting points is at most S ·Q·CQ−1.
Since all elements in the LHS of the rule are connected to the marking node via
a marking edge of an edge type with target cardinality 1 and, analogously to
FIND rules, all required checks require O(1) computational steps, the effort for a
single local search is in O(1) for both UPDATE and CHECK rules. Note that at
most one match for UPDATE and CHECK rules can be found by a local search
starting with a fixed mapping for the marking node.

The application of an UPDATE rule only updates an attribute of a single
marking node per match, thus taking O(1) computational steps. Therefore, at
most S · Q · CQ−1 additional elements are modified and the combined overall
effort for search and application is in O(S · Q · CQ−1) = O(S).

The application of a CHECK rule deletes a single marking node and all adja-
cent marking edges. Since marking nodes cannot have any additional adjacent
edges, no dangling edges have to be considered. Thus, at most Q elements are
modified for each match, with a computational effort for deleting the correspond-
ing entries from the adjacency lists in O(Q · CQ−1). The combined overall effort
for search and application is thus in O(S · Q2 · C2·(Q−1) = O(S) and at most
S · Q2 · CQ−1 nodes are modified in total.

All nodes modified by a simulation step’s apply rule may be relevant to
each FIND, UPDATE, and CHECK rule. However, FIND, UPDATE, and
CHECK rules only create and delete marking nodes and marking edges of cer-
tain types that are only considered by dependent rules. Thus, the number of
relevant modified elements for a rule ri in the sequence is upper bounded by
s(ri) ≤ S0 +

∑
rd∈dep(ri)

s(rd) · X, where dep(ri) is the set of dependencies of ri,
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S0 = Q + N · Q2 · CQ−1 and X = Q2 · CQ−1. Unraveling the recursion yields an
upper bound s(ri) ≤ ∑D

j=0 S0·(B·X)j ≤ (D+1)·S0·(B·X)D = Si. Consequently,
the overall complexity of the execution of any rule ri is in O(Q2 · C2·(Q−1) · Si).
The execution of the entire rule sequence associated with a simulation step
a, r1, r2, ..., rm thus takes O(Y + N · Q2 · C2·(Q−1) · Si) computational steps,
where Y = T · Q · C2 + N · Q2 · C2·(Q−1) is the complexity of applying the initial
apply rule. Finally, because of the constant upper bound induced on P and Si

by our assumptions, this complexity is still in O(1).

Considerations. While the established upper bounds involving CQ−1 imply
a potentially very large constant factor in the runtime complexity of the tasks
related to pattern matching and rule application, we note that these bounds are
highly pessimistic, as they essentially assume that matches for the LHS of any
rule are only constrained by the spanning tree of the LHS.

In our example, most of the involved constants are also rather small: Q = 15,
N = 158, B = 6, and D = 1. Regarding the upper bound on edge cardinality C,
the only edge type with source or target cardinality greater than 1 is the next
edge type. A Track can have up to two incoming or outgoing next edges if it
functions as a switch, thus C = 2. However, our example topologies are restricted
to never contain successive switches, so that the worst case scenario for pattern
matching with CQ−1 = 214 candidate matches for a fixed starting point never
occurs. Moreover, as realistic topologies only have few switches, it is unlikely
that multiple switch nodes have to be considered during a single search with a
fixed starting point, which reduces the average-case effort for pattern matching.

The assumption regarding nactive not growing through rule application may
seem rather restrictive. However, in most application scenarios, unbounded
growth of the simulated system has to be avoided anyway. In such scenarios,
instead of performing actual node creation, the introduction of new active nodes
can be modeled by picking and enabling a node from a preallocated, limited pool
of currently disabled nodes. Since the size of this pool then determines nactive,
the assumption is satisfied for any system that does not exhibit unbounded
growth given appropriate modeling decisions.

4.3 Marker Data Structures Efficiency

The locality that is exploited for the graph pattern matching efficiency comes
at the price of handling simulation time globally, so that for each simulation
step, the balanced binary trees for invariant upper bound, rule lower bound and
rule upper bounds as introduced in Subsect. 3.3 must be considered. Following
the arguments in the previous subsection, we know that the amount of invariant
and rule markers created by the graph transformations and stored in the data
structures is always in O(nactive).

Step 1: Add Initial Markers. When executing the FIND rules, rule and
invariant markers must be inserted into the data structures. Since the number
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of markers to be inserted is in O(nactive) and each insert is logarithmic to the
maximum number of inserted elements, the total data-structure-related runtime
for this step is O(nactive · log(nactive)).

Step 2: Apply a Rule and Advance Time. As mentioned in Subsect. 3.3, we
must first traverse the invariant marker tree to reach the invariant marker with
the smallest upper bound, which takes O(log(nactive)) time. Next, an enabled
rule marker must be nondeterministically selected. For the markers with normal
priority and with time bounds, the random traversal of the binary tree that
sorts the markers by lower bound and the random selection of one that is below
the threshold of tmin inv is possible in O(log(nactive)). If there is a marker with
elevated priority (and without time bounds) in the respective lists, they can also
be selected randomly in O(log(nactive)).

Executing the apply rule includes deleting the original rule marker, which
needs O(log(nactive)). Now, when the simulation time is advanced, the rule data
structures must be purged of the markers that are disabled by the new time. The
respective markers with an upper bound smaller than the simulation time can be
identified using the second binary tree that is sorted by rule upper bounds. The
resulting k rule markers then must be removed from both binary trees, costing
O(log(nactive)) per marker. In the worst case, k is in O(nactive).

In order to determine if this cost can be amortized during a simulation run
of s steps, we have to consider the amortized runtime cost during each step.
Amortized analysis [19] is a technique to determine a runtime upper bound r for
a sequence of s steps, despite some individual steps potentially having a higher
cost than r

s . It uses the argument that these higher costs are amortized by the
cheaper costs of the remaining steps.

In our case, we start with the fact that in each simulation step we might add
a number of markers in O(1), and that the insertion requires O(log(nactive)) run-
time per marker. When we double this cost, we stay in the same complexity class
but we have an additional time budget that already amortizes the future cost
of the markers’ removal. However, the data structure also contains O(nactive)
marker that were added during step 1 of the algorithm that must be removed over
time. For their successive removal, we can add an average O(nactive·log(nactive))

s
runtime cost to each of the s steps. Now, if s ≥ nactive, we achieve a total
amortized runtime in O(log(nactive)) per simulation step for s steps.

Step 3: Update Affected Subgraph. Finally, FIND, UPDATE and CHECK
rules are executed. As argued previously, the number of applied graph transfor-
mation rules as well as the number of markers that are potentially added by one
rule in this step are both in O(1). This leads to a number of delete and insert
operations in O(1) and thus to a runtime of O(log(nactive)) for this step.

4.4 Overall Worst-Case Complexity

Following the arguments of this section, we can summarize the computational
complexity of the individual steps as follows:
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Algorithm Pattern matching Data structures Overall

Initialization Step 1 O(nactive) O(nactive · log(nactive)) O(nactive · log(nactive))

Simulation loop Step 2 O(1) O(log(nactive))
∗ O(log(nactive))

∗
Step 3 O(1) O(log(nactive))

∗ Amortized runtime for at least nactive steps.

Note that all complexities depend on nactive rather than n, making them
independent from the topology size. For a simulation of s steps and simulation
time t, with s larger than nactive, we get a total amortized runtime in O((nactive+
s) · log(nactive)). For a typical simulation, s is in O(t ·nactive) with t > 1, so that
the overall simulation runs in O(t · nactive · log(nactive)).

5 Evaluation

Runtime in Real-World Examples. We already showed in [21] that for
example graphs generated from real-world tram networks, the average runtime
for a simulation step is a) stationary (i.e. the average value does not change
according to a trend after some time) after an initial non-stationary interval and
b) seemingly independent of the model size. However, with nactive = 918, even
the largest of these examples was comparatively small, so that the linear growth
imposed by the list data structures in the old algorithm was not noticeable
besides the cost for executing the graph transformations. In order to analyze
the data structure access cost in particular, we re-ran these experiments2 and
explicitly measured the average cost of the respective individual operations. For
each topology, we conducted three different experiments with different random
initial shuttle placements, which among other things led to different numbers
of simulation steps until an invariant violation was reached. Each experiment
was run three times for up to 10,000 steps each, with one step representing one
PTGT rule application and being executed through several hundred applications
of various of the generated rules. In the following table we show the highest and
lowest average data structure access times observed in the different experiments
with the same nactive. While the linearly growing cost of accessing the list data
structure is obvious, the binary tree operations are far more efficient, but have
a high variance and thus no observable growth.

Experiment List operations Tree operations
Modify Access Modify Access

Potsdam City (nactive = 9) 0.5–0.5 ns 16.0–17.0 ns 3.3–3.5 ns 2.4–2.7 ns
Potsdam (nactive = 142) 0.7–1.3 ns 99.2–112.5 ns 5.5–7.7 ns 4.5–6.3 ns
Frankfurt (nactive = 316) 0.5–1.4 ns 155.9–167.7 ns 5.7–8.0 ns 4.8–7.0 ns
Leipzig (nactive = 593) 0.7–0.9 ns 275.5–291.5 ns 5.8–6.6 ns 4.8–5.9 ns
Berlin (nactive = 918) 0.6–0.8 ns 437.2–455.7 ns 5.1–5.2 ns 4.1–4.3 ns

2 The experiments were run on a server with 256GB RAM and two Intel Xeon E5-
2643 CPUs (4 cores/3.4GHz). Our single-threaded implementation runs using Java
1.8.
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Fig. 5. Runtimes for the simulation (10,000 steps) of large-scale synthetic examples.
Note that both axes are scaled logarithmically.

Runtime Scalability for Very Large Host Graphs. In order to demonstrate
the scalability of our approach, we constructed artificial input graphs for several
thousand shuttles driving around in a circle, assuming a density of one shuttle per
10 tracks. We ran each of these experiments five times for 10,000 simulation steps.
As can be seen in Fig. 5, the empirical results seem to confirm our arguments in
Sect. 4: The cost of accessing the list data structures grows linearly by several
orders of magnitude and for very large examples even outgrows the (significant)
cost for graph transformations, while the cost for accessing the binary tree data
structure is much smaller in the first place and only grows logarithmically. At
the same time, the cost for graph transformations during the initial find step
grows linearly with nactive, while the cost for graph transformations during the
simulation steps hardly grows at all.

Note however, that there is a very slight increase in graph transformation
time for the simulation steps that is related to model size. With a runtime
growth by a factor of less than 1.4 for a model that grew by a factor of 512
at the same time, this effect is comparatively very small. Also, more than 80%
of the growth can be linked to initialization tasks of the graph transformation
tool rather than to the iterative pattern matching process itself. While we were
not completely able to isolate the effect, we assume that imperfect, hash-based
indexing structures used by the graph transformation tool are responsible.

Threats to Validity. We remark that we only considered one example scenario
and our empirical results thus are not necessarily generalizable to other PTGTSs.
Furthermore, our experiments on very large graphs were only conducted on
synthetic example graphs, which do not necessarily have all characteristics of
realistic scenarios and thus might behave differently.

Finally, it must be considered that the main contribution of this paper is the
identification of a worst-case time complexity. Repeated experiments on realistic
examples, however, naturally tend to have average-case runtimes, which could
have disproved our worst-case assumptions, but cannot actually support them.
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6 Conclusion and Future Work

In this paper, we present improvements to our PTGTS simulation algorithm
such that for identified restrictions for the rules and topologies we can formally
establish an amortized complexity per simulation step that is independent from
the size of the topology and, in the worst-case, logarithmically dependent on the
number of (actively) collaborating systems (O(log(nactive))). The overall effort
for simulating the time t > 1 then is in O(t · nactive · log(nactive)), when t is
simulated in O(t ·nactive) steps. The theoretical results are confirmed by a series
of experiments, which also compare our improved and former algorithm.

As future work, we plan to improve the efficiency of our tool so that the
remaining weaknesses compared to the theoretical results are further reduced,
to support checking for more than simple state properties and to extend the com-
plexity analysis accordingly, so that complexity bounds can also be established
for checking more complex properties.
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Abstract. We present a tool that checks for a given context-free graph
grammar whether the corresponding graph reduction system in which
all rules are applied backward, is confluent—a question that arises when
using graph grammars to guide state space abstractions for analyzing
heap-manipulating programs; confluence of the graph reduction system
then guarantees the abstraction’s uniqueness. If a graph reduction sys-
tem is not confluent, our tool provides symbolic representations of coun-
terexamples to confluence, i.e., non-joinable critical pairs, for manual
inspection. Furthermore, it features a heuristics-based completion proce-
dure that attempts to turn a graph reduction system into a confluent one
without invalidating the properties mandated by the abstraction frame-
work. We evaluate our implementation on various graph grammars for
verifying data structure traversal algorithms from the literature.

Keywords: Graph grammars · Confluence · Critical pairs ·
Completion

1 Introduction

Confluence is a central property of many rewriting formalisms, including term
rewriting and graph transformation systems: Confluent systems require no back-
tracking since all terminating sequences of rule applications produce the same
result. In this paper, we present a tool that checks confluence for certain graph
reduction systems—more precisely: hyperedge replacement grammars (HRG) [9]
in which all rules are reversed—based on the algorithm in [14].

Our work is motivated by the usage of HRGs as an abstraction mechanism
for verifying pointer programs. This approach is at the core of Attestor1—
a graph-based model-checking tool for analyzing Java programs operating on
1 https://github.com/moves-rwth/attestor.
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dynamic data structures [2,12]. To cope with large or even unbounded state
spaces arising in this context, Attestor performs a symbolic shape analysis
based on a user-supplied HRG that characterizes the data structures handled by
the program. Here, a suitable HRG generates graphs modeling concrete heaps
where hyperedges labeled with nonterminal symbols act as placeholders for the
(partial) data structures under consideration, e.g., doubly-linked lists or binary
trees with a fixed root. Abstracting of a concrete heap then corresponds to
applying HRG rules backward until a normal form is reached. While termination
of this procedure is guaranteed for the HRGs admitted in our setting, confluence,
i.e., uniqueness of normal forms, is not. Confluence is vital for the performance of
verification tools, such as Attestor, because—rather than abstracting a heap
in all possible ways—it suffices to apply abstraction rules exhaustively and in
arbitrary order. Furthermore, confluence can be exploited to decide whether an
abstract state is subsumed by an already computed one—a particular instance
of the graph language inclusion problem that is crucial for ensuring termination
of the overall analysis in the presence of loops or recursive procedures (cf. [21]).

Apart from checking whether the graph reduction system induced by an
HRG is confluent, our tool supports a heuristics-based completion procedure to
transform it into a confluent one. In particular, the heuristics can be chosen
such that properties of the HRG required by Attestor, e.g., those ensuring
termination of the abstraction, are preserved during completion. We evaluate
our implementation on various heap abstractions that have been proposed in
the literature (as HRGs or equivalent inductive predicates in separation logic).

Related Tools. While algorithms for deciding confluence have been extensively
studied in the context of graph transformations (cf. [6,11,14,20,23,24]), there
are, to the best of our knowledge, only few tools that support computing critical
pairs—a key component for confluence checking.

However, we are not aware that any of the tools below support proving
backward confluence for HRGs, which additionally requires checking whether the
computed critical pairs are joinable. Moreover, they do not support completion.

AGG2 is a development environment for attributed graph transformation
systems supporting an algebraic approach to graph transformation [25,27]. For
analyzing critical pairs, it implements the algorithm developed in [11].

VeriGraph [7] is a tool for simulation and analysis of transformation systems
given by graph grammars, which appears not to be developed further anymore. It
implements the critical-pair analysis described in [19]. A performance comparison
with AGG is given in [4], analyzing both critical pairs and sequences to capture
conflicts and dependencies between rules. The evaluation shows that Verigraph
outperforms AGG in realistic test cases, which indicates that AGG is more
sensitive to the size of the graphs contained in rewriting rules.

Henshin [1] is a model transformation environment that is based on the
Eclipse Modeling Framework. It first integrated a critical-pair analysis as pre-
sented in [5], which has later been superseded by a more efficient and flexible
conflict and dependency analysis [18].

2 https://www.user.tu-berlin.de/o.runge/agg/.

https://www.user.tu-berlin.de/o.runge/agg/
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SyGraV [8] is a graph analysis tool that supports checking local confluence of
attributed graph transformation systems. It was the first to fill the gap between
theoretical results and practical usability of symbolic graph analysis.

2 The Tool

We implemented a confluence checking and a completion component within the
software model checker Attestor; our confluence checker can also be used as
a standalone tool. The tool, its source code, and our benchmarks are available
online.3 In this article, we do not distinguish between Attestor and its con-
fluence checker. This section briefly outlines our tool’s input, its main steps for
proving confluence, the feedback it provides, and the extent to which it supports
automatic completion of graph grammars. A detailed discussion of the under-
lying algorithm (which is based on [14]), its implementation, and the heuristics
applied for guiding completion is found in [26].

2.1 Input

Our confluence checker targets a subset of HRGs suitable for modeling dynamic
data structures (cf. [2,12] for details). While HRGs are context-free graph
grammars—and thus always confluent—Attestor checks whether the corre-
sponding graph reduction system (GRS) [13] in which all rules are applied in
reverse direction, is confluent as well. In our setting, graph rewriting through
reverse rule applications always terminates because we require all HRG rules to
be increasing, i.e., every hyperedge connected to n ≥ 0 nodes is mapped to a
hypergraph consisting of at least n + 1 nodes and edges. HRGs are specified as
a set of (forward) rules in a JSON-style format. Both nodes and hyperedges are
equipped with attributes indicating the type of nodes and edges; these types can
be consulted to differentiate elements when checking for graph isomorphism.

2.2 Proving Confluence

Attestor implements the confluence checking algorithm in [14] for the set
of GRSs from above. That is, it systematically computes all critical pairs—
overlappings of two hypergraphs appearing on the left-hand side of graph trans-
formation rules—and, for each critical pair, checks whether it is strongly joinable,
i.e., exhaustive rewriting after applying either of the two possible rules leads to
isomorphic normal forms. Here, “strongly” refers to an additional requirement
while searching for graph isomorphisms: we distinguish between nodes in the
original overlapping that are not deleted by rule applications. The above con-
dition is necessary because a GSR is confluent iff all critical pairs are strongly
joinable. Attestor reports if a critical pair is joinable but not strongly joinable
since this case seems to be a frequent error when manually designing supposedly
confluent grammars for heap abstraction (see evaluation).
3 https://github.com/moves-rwth/attestor-confluence.

https://github.com/moves-rwth/attestor-confluence
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Fig. 1. Rules of an HRG modelling doubly-linked list segments; the graphical repre-
sentation was automatically generated by Attestor. In our graphical notation, circles
indicate nodes; double circles capture the sequence of external nodes (ordered by their
label). Hyperedges are drawn as rectangles; the numbered connections indicate the
sequence of nodes attached to a hyperedge, i.e., all hyperedges labeled with DLL are
attached to four (not necessarily different) nodes. For simplicity, hyperedges connected
to exactly two nodes are drawn as (labeled) arrows. In all hypergraphs, nodes and
edges are additionally equipped with an integer, e.g., 4 for the single hyperedge on the
LHS of rules), to identify them across rule applications.
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Fig. 2. Example of the feedback generated for a critical pair. It displays a non-joinable
pair at the bottom, a trivial derivation to the graphs in the middle and a derivation
using the second and third rule from Fig. 1 to obtain the context graph of the critical
pair at the top.



288 I. Fesefeldt et al.

2.3 Graphical Feedback

Apart from answering whether a given GRS is confluent, Attestor generates
a report (in LATEX, using the TikZ library) that visualizes for each critical pair:
(a) the context graph, i.e., the overlapping of two left-hand sides of rules, (b) the
two rules that are applied, (c) the graphs obtained after one rule application, and
(d) at most two normal forms obtained after further exhaustive rule applications
up to isomorphism. If a GRS is not confluent, the report lists counterexamples
consisting of non-isomorphic normal forms for the same critical pair.

Figure 2 depicts an excerpt of Attestor’s output for a single critical pair.
The underlying HRG generates non-empty doubly-linked list segments as shown
in Fig. 1. Each edge labeled with DLL represents a doubly-linked list segment
that is connected with the predecessor of the previous node (0), the previous
node (1), the next node (2) and the successor of the next node (3). The first
rule generates a doubly-linked list of length 2 (the smallest this grammar can
generate assuming the first and last node are both the “null” node). The second
and third rule represent graphs obtained from traversing the list in forward
and backward direction, respectively. The fourth rule was introduced to achieve
backward confluence: intuitively, it states that two correctly connected doubly-
linked lists segments again represent a doubly-linked list segment.

However, as our analysis shows, the fourth rule is not sufficient to guarantee
confluence. In Fig. 2, the context graph is at the top and the graphs resulting
from the first two rule applications (2.8 and 3.3)4 are directly below; the numbers
assigned to each node and hyperedge serve to identify them throughout rule
applications. The critical pair in question is not strongly joinable because there is
no isomorphism between the two graphs at the bottom, which are obtained after
exhaustive rule application. In particular, the hyperedges 6 and 0 are attached
to different sequences of nodes.

2.4 Automated Completion

Attestor also supports a simple completion procedure to turn. a given GRS
into a confluent one. In contrast to existing completion algorithms, such as
Knuth-Bendix [17], we are not interested in any extension that ensures con-
fluence. Instead, reversing all GRS rules should still lead to an HRG that meets
Attestor’s requirements for heap abstractions.

We thus opted for implementing a greedy procedure that applies various
heuristics which preserve the aforementioned HRG properties. By choosing suit-
able heuristics, our greedy approach enables rapid prototyping of handcrafted
strategies for devising appropriate heap abstractions. For example, one heuristic
attempts to add rules that group connected hyperedges with identical labels into
a single one of the same label.

4 That is, rules 2 and 3 were applied. To improve performance, Attestor generates
specialized rules in which two or more external nodes are identical; the number after
the dot indicates which case of a rule has been applied.
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Table 1. The experimental results for our confluence checker; confluent grammars are
marked with ✓. All runtimes are in milliseconds.

Grammar Critical pairs Runtime

Not Weak Strong Total Node Edge Validity Total

✗ InTree 22 1 18 41 9.6 19.6 32.8 63.5

✓ InTreeLinked 0 0 83 83 11.1 7.0 32.8 51.7

✗ LinkedTree1 5 0 10 15 6.0 9.3 4.0 19.7

✗ LinkedTree2 217 4 20 241 61.1 111.5 95.7 270.1

✓ BT 0 0 33 33 2.1 4.8 4.9 12.2

✓ SLList 0 0 15 15 0.3 0.4 0.8 1.6

✗ SimpleDLL 1 0 2 3 0.1 0.4 0.2 0.7

✗ DLList 63 12 137 212 89.8 22.5 78.7 192.6

3 Evaluation

We evaluated our implementation on both confluent and non-confluent graph
grammars proposed for modeling dynamic data structures. For the non-confluent
grammars, we also experimented with feeding our greedy completion procedure
with various heuristics to turn them into confluent ones.

Setup. All experiments were performed on a Thinkpad X1 Carbon 2019 with an
Intel Core i7-8565U, 1.8 GHz and 16 GB Ram, which runs Ubuntu 20.04.1.

Confluence Checking. Table 1 shows our experimental results for checking
whether a given graph reduction system induced by an HRG is confluent. As
noted in the previous section, Attestor checks for each critical pair whether
it is strongly-joinable, weakly joinable or not joinable at all. To conclude that a
graph grammar is confluent (and thus mark it with ✓), all critical pairs must
be strongly joinable. Furthermore, we measured the time for computing over-
lappings of nodes, overlappings of edges, a validity check for possibly spurious
pairs (we discard graphs that do not model heaps and thus cannot appear in
our setting) as well as the total runtime. Starting the java virtual machine and
parsing the grammar took 0.9 s CPU time and was thus dominant for small
examples.

The HRGs InTree [15] and InTreeLinked generate “in-trees”, i.e., binary
trees in which the direction of edges is inverted such that child nodes point
to their parent. InTreeLinked additionally connects all leaves of the in-tree
from left to right via a singly-linked list. It is noteworthy that—despite having
more than twice as many rules—Attestor managed to prove confluence for
InTreeLinked faster than determining all critical pairs that are not strongly
joinable for InTree. One possibe explanation is that the different edge labels (for
the left and right child as well as the successor in the list) used by InTreeLinked
reduce the number of edge overlappings that need to be computed.
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Table 2. Completion results (✓ if successful, ✗ if unsuccessful) for different combi-
nations of completion heuristics. All runtimes are in seconds.

InTree LinkedTree1 LinkedTree2 SimpleDLL DLList

CA ✗, 0.003 ✗, 0.003 ✗, 0.337 ✗, <0.001 ✗, 0.127

RNN ✗, 1.538 ✗, 0.048 ✗, 55762.111 ✗, 0.002 ✗, 533.773

JGN ✗, 2.415 ✗, 0.051 ✗, 53327.031 ✗, 0.003 ✗, 540.818

SNR ✗, 1.576 ✗, 0.048 ✗, 55341.839 ✓, 0.006 ✗, 526.315

OR ✗, 1.640 ✗, 0.046 ✗, 55018.761 ✓, 0.004 ✗, 527.410

ORL ✗, 0.847 ✗, 0.213 ✗, 31075.274 ✗, 0.004 ✗, 362.976

A1 ✗, 1.570 ✓, 0.049 ✓, 55042.314 ✓, 0.004 ✗, 392.728

A1L ✗, 1.175 ✓, 0.203 ✗, 27297.678 ✗, 0.004 ✗, 258.643

A2 ✓, 0.333 ✓, 0.024 ✓, 12.405 ✓, 0.004 ✗, 26.421

A2L ✗, 0.838 ✓, 0.038 ✗, 27053.035 ✗, 0.004 ✗, 261.090

The HRGs LinkedTree1 and LinkedTree2 generate binary trees with a given
root, where each node has a back pointer to its parent and all leaves are connected
from left to right. While LinkedTree2, which is taken from [22], consists of only
two rules with up to 7 nodes and 7 hyperedges (of rank at most 4), it turned
out to be quite complex, leading to a large number of possible non-joinable
critical pairs. LinkedTree1 is an early attempt to turn a simplified version of
LinkedTree2 into an HRG that induces a confluent GRS.

The HRG BT [3] generates binary trees with a given root that has been
handcrafted for verifying tree traversal algorithms. Ensuring confluence required
two different nonterminal symbols and fourteen rules in total. Similarly, SLList
is a handcrafted grammar modeling singly-linked lists.

SimpleDLL and DLL generate doubly-linked lists. The former version only
admits list traversals from left to right whereas the latter version admits traver-
sals in both directions. Both HRGs do not induce confluent GRSs. This surprised
us as DLL has been successfully applied for analyzing pointer programs [2]. While
confluence is not required for the soundness of such program analyses, non-
confluence typically leads to performance penalties. Upon closer inspection, we
discovered that the list-manipulating programs analyzed in [2] with these gram-
mars did not lead to states containing a non-joinable critical pair.

Completion. We applied our confluence completion procedure to the non-
confluent grammars shown in Table 1, i.e., InTree, LinkedTree1, LinkedTree2,
SimpleDLL and DLList. The results of our tests are given in Table 2.

CA adds application conditions to rule out some non-joinable critical pairs;
RNN introduces new nonterminals to join critical pairs. Moreover, JGN and SNR
extend RNN by joining or using existing nonterminals. The remaining heuristics
combine subsets of the above heuristics in different order (details are found in [10,
26]). We require that heuristics ending with ’L’ preserve local concretizability—a
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property ensuring that those parts of the heap that can be manipulated by one
program instruction are obtainable using a single rule application (cf. [16]).

We observe that combining heuristics increases the chance to successfully
complete a grammar, as is the case for InTree, LinkedTree1 and LinkedTree2.
Moreover, enforcing local concretizability can both increase runtime (see A2
vs. A2L), but also affect the completion result (see InTree, LinkedTree2, and
SimpleDLL). For complex grammars, such LinkedTree2, completion is expen-
sive, which prohibits its usage with every invocation of Attestor. In such
cases, it is preferable to perform completion as a preprocessing step and store
the completed grammar for re-use.

4 Conclusion

We presented a tool for checking backward confluence of (certain) attributed
hyperedge replacement grammars. The tool is implemented as a component of
the graph-based software model checker Attestor but can also be used stand-
alone. Within Attestor, checking for backward confluence of user-supplied
grammars did not lead to substantial performance penalties. However, it did
improve the overall verification pipeline in at least two aspects: First, incom-
pleteness issues, i.e., failed verification attempts of correct programs; our tool
enables detecting such issues before running an expensive state space genera-
tion. Second, rather than manually inspecting thousands of graphs in a gener-
ated state space, our tool creates a counterexample to backward confluence that
allows fixing the supplied grammar.

Furthermore, we implemented a heuristics-driven algorithm that attempts
to turn a given HRG into a backward confluent one. Although this algorithm
is expensive, it can be run independently of the actual verification pipeline; if
completion succeeds, the resulting grammar can be exported for future use.

A possible future improvement of our tool’s performance is to detect and
omit critical pairs that are not relevant for Attestor’s state space generation.
Such an approach would amount to proving confluence up to garbage [6].
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Abstract. Computational notebooks (CNs) have gained popularity in
data science, artificial intelligence, and engineering. CNs are used to
document experiments and make them repeatable by incorporating exe-
cutable segments and renderings of computational results. Graphs and
computations by graph transformations have applications in many prob-
lem domains but they are not supported by current CNs. Existing graph
transformation tools require a steep learning curve and are not integrated
with CNs. In order to close this gap, we have developed GrapePress a
CN that incorporates graphs and computations by graph transforma-
tions. We present the fundamental concepts for GrapePress and describe
its use in documenting executable experiments involving graph transfor-
mations to approach real world problems in science and engineering.

Keywords: Graph transformations · Computational notebook · Tools

1 Introduction

Computational notebooks (CN) like Colab1, Jupyter2, and nteract3 blend techni-
cal writing with interactive computation and visualization [17]. CNs have gained
particular popularity in data science and artificial intelligence, as they facili-
tate collaborative exploration, experimentation and repeatable documentation
of complex analyses [21,26]. While graphs are sometimes used for visualizing the
results of computation, abstract graph-manipulations, e.g. graph rewriting by
means of graph transformation (GT) rules, are not supported by current CNs.
This is unfortunate, since the level of abstraction afforded by the definition of
computations with GTs has shown to facilitate the analysis and solution of many
complex problems in engineering and computer science [18,22,23].

There is indeed a sizable set of tools that have been developed in support of
computing with GTs. These tools range from tightly integrated, visual environ-
ments (e.g., [15,16,19,24]) over extensions of integrated software development
environments (IDEs) with interoperable meta models (e.g., [2,9,10]) to domain-
specific languages (DSLs) that are embedded in general purpose programming
1 https://colab.research.google.com/.
2 https://jupyter.org/.
3 https://nteract.io.
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languages (e.g., [12,27,28]). However, none of these tools combine technical writ-
ing and graph computation in a notebook paradigm [17].

This paper introduces GrapePress, a tool that seeks to close this gap. Grape-
Press utilizes and extends the Graph Replacement And Persistence Engine
(Grape) [27] and combines it with Gorilla, a notebook-style REPL for Clo-
jure.4 Following the CN paradigm [17], GrapePress allows users to document
experimental applications of graph transformation, while treating the notebook
pages as executable artifacts, that can be used to repeat or modify experiments.
Since its release into open source, GrapePress has been used in multiple projects
in industry and academia. The rest of this paper is structured as follows: We
discuss related work in the following section. Section 3 provides an overview of
GrapePress and its fundamental concepts. Section 4 offers concluding remarks.

2 Related Work

Oakes et al. define the concept of computational notebooks (CN) as tools that
blend the traditional concept of laboratory notebooks as a means to record
designs, experiments and results with capabilities to (re-)produce computational
workflows [17]. Today, CNs have particularly become popular in AI and data
science [26]. They often combine textual notes with other media types like inter-
active charts, graphs, images and audio.

The development of CNs was inspired by earlier ideas of literate program-
ming as pioneered by Knuth [13,14]. A major difference to early notions of
literate programming lies with the incremental interactivity afforded by modern
CNs, which allow authors to execute computational code snippets and display
results “on the fly”. This type of functionality is commonly enabled by a Read-
eval-print-loop (REPL), a mechanism provided by many modern programming
language environments. A REPL allows programmers to run code fragments and
display results of their computation [5]. The integration of REPLs in modern
integrated development environments (IDEs) has made programming an inter-
active and exploratory activity. Indeed, the previously recommended IDE for
Grape (the GT engine for GrapePress) used InstaREPL, a REPL that would
instantly evaluate code fragments entered in the LightTable IDE [27].

Despite these similarities, there are significant difference between our ear-
lier work and the work described in this paper: In contrast to programming
with Grape within the LightTable IDE, GrapePress incorporates mechanisms for
querying and visualizing graphs. GrapePress is geared to be used as a notebook
by writers rather than to be used by software engineers. It supports markdown
word processing and multimedia content. It is lightweight in the sense that it
requires only a Web browser on the client side. This facilitates sharing and
collaboration on documents that include graph computations by graph transfor-
mations. The goal to easily share and reproduce experiments related to research
papers is related to work by Van Grorp et al., who propose the use of vir-
tual machines (VMs) in a Web-based archive called SHARE [25]. However, in

4 http://gorilla-repl.org.

http://gorilla-repl.org
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contrast to CNs that truly blend documentation and computation into a form on
an executable paper, the SHARE VMs have primarily been used as appendices
to classical research papers.

3 GrapePress

3.1 Overview

GrapePress is a Web browser based CN tool using the Grape GT engine [27] and
the notebook-style Gorilla REPL for Clojure.5 Notebook pages in GrapePress
(Gorilla) are called worksheets. Worksheets consist of static and dynamic seg-
ments. Static segments are authored in an extended Markdown markup language
which can include text, images, video and other media. Writing a worksheet with
only static segments is analogous to using other digital notebook tools. Dynamic
segments contain executable code and possibly a rendering of the result of exe-
cuting that code. Grape is well suited to be integrated into a CN paradigm,
since it uses a hybrid GT definition language, i.e., rules are defined textually
but visualized graphically [27]. Moreover, since Grape defines an internal DSL
in Clojure, GrapePress authors can utilize the full capabilities of Clojure and
Gorilla, including libraries of computational and visualization functions, beyond
graphs and graph transformations. Code (re)execution is on demand by the user
who can select which segments to (re)execute. The renderings of the results
of code executions (e.g., graphs, charts, rule visualizations) are persisted when
worksheets are saved, i.e., they are available upon re-opening the worksheet with-
out the need to rerun the code execution. Worksheets can also be published in
view-only mode to prevent unwanted changes.

The GrapePress language tutorial6 itself has been written with GrapePress
and can serve as a first example worksheet. Figure 1 shows the start of this
42 page long worksheet. Dynamic segments are framed by a grey border, with
the computational code shown with grey background and the rendering of its
computational result shown with a white background.

3.2 Foundations

Graph Model. We use directed, attributed, node- and edge-labeled (danel)
graphs. Formally, a (danel) graph is a tuple G : (N,E, s, t, l, a) where

– N and E are sets of nodes and edges, respectively;
– s, t : E → N are total functions mapping each edge to its respective source

and target node, respectively;
– l : N ∪E → STRING is a partial labeling function mapping nodes and edges

to string labels;
– a : N × STRING → V AL is a partial attribution function mapping nodes

and strings (attribute names) to values V AL.

5 http://gorilla-repl.org.
6 https://github.com/jenshweber/grape.

http://gorilla-repl.org
https://github.com/jenshweber/grape
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Fig. 1. A sample GrapePress worksheet

To facilitate rapid exploration and experimentation, GrapePress follows a
schema-less approach, i.e., graphs are by default untyped and there is no need
to declare a graph schema. GrapePress does, however, allow the user to define
graph constraints, which can be used to ensure schema conformance as needed.
The tool provides a range of built-in constraint types, e.g., for typing the source
and target nodes of edges, limiting the edge cardinality, and enforcing attribute
key constraints. Moreover, Grape provides a flexible mechanisms for users to add
more complex constraints by defining graph tests to check for violations.

Graph Transformations. A graph transformation rule p : (L,R) is a pair of
graphs, commonly referred to as the left-hand side L and the right-hand side R
with a defined union L ∪ R.

A graph transformation is an application of a graph transformation rule to a
given graph G (pre-graph) to derive a graph G′ (post-graph). Formally, a graph

transformation is denoted by G
p(o)
=⇒ G′, where o is a graph homomorphism

o : L ∪ R → G ∪ G′ called occurrence, such that [4]

– o(L) ⊆ G and o(R) ⊆ G′, i.e., the left-hand side is fully contained in the
pre-graph and the right-hand side is fully contained in the post-graph, and

– o(L\R) = G\G′ and o(R\L) = G′\G, i.e., only those graph elements are
deleted that are matched to elements in L that do not also appear R, and
only those elements are created that are matched to elements in R that do
not also appear in L.
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The above definition of a graph transformation disallows the deletion of nodes
unless all edges they are connected to are also explicitly deleted in the GT rule.
In the algebraic theory of graph transformations, this semantics is implemented
by the so-called double-pushout approach [20]. An alternative approach would
be to implicitly delete any edges that are connected to deleted nodes, even
if these edges are not matched to elements in the rule’s left-hand side. That
semantics is implemented by the so-called single-pushout approach to algebraic
graph transformations [20]. Following the single-pushout approach, the above
definition would be altered to replace the condition o(L\R) = G\G′ with the
condition o(L\R) = G\(G′ ∪ DE), where DE are the implicitly deleted edges
DE = {e|s(e) ∈ L\R ∨ t(e) ∈ L\R}. GrapePress lets the user choose between
the desired semantics on a rule-by-rule basis.

The above definition of graph transformations does not require that each
element in a rule’s left- or right-hand sides matches a unique element in the
pre- or post-graph. For example, two nodes in L may be matched to the same
node in G. While this homomorphic matching semantics may be desired for
some applications, it may make more sense to require unique matches (i.e., an
isomorphic matching semantics) for other applications of GTs. GrapePress lets
the user choose between the desired semantics on a rule-by-rule basis.

(Negative) Application Conditions. The application of GTs can be fur-
ther restricted by adding application conditions (ACs) to a rule definition. ACs
need to hold when a rule is applied [8]. GrapePress provides two kinds of ACs:
Firstly, the tool supports attribute conditions, which are Boolean conditions on
the values of attributes of graph elements matched to a rule’s left-hand side. Sec-
ondly, GrapePress supports path expressions, which are queries on the sub-graph
connecting two nodes on a rule’s left-hand side [1]. GrapePress also supports Neg-
ative Application Conditions (NACs), which are conditions that would prohibit
the application of a graph transformation rule [11].

Operationalization of Graph Transformations. The operationalization of
applying a graph transformation rule p : (L,R) with a set of application condi-
tions AC(p) and a set of negative application conditions NAC(p) to a pre-graph
G with a set of graph constraints C is performed in the following steps:

1. CHOOSE a (possibly injective) occurrence o for L in G
2. CHECK that all application conditions in AC(p) hold for o and that none

of the negative application conditions in NAC(p) hold for o
3. DELETE o(L\R) from G; also delete dangling edges if single-pushout seman-

tics was chosen, otherwise abort if dangling edges exist.
4. ADD o(R\L) to the graph resulting from step 3 and GLUE the added

elements to the context graph o(R ∪ L), yielding the post-graph G′;
5. VERIFY that all graph constraints C hold on G′; abort if this is not the

case.
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Extension: Optional Elements. GrapePress offers extensions to the defini-
tion of graph transformation rules that have been introduced for convenience
based on practical experiences with using the language in real-world applica-
tions. GrapePress transformation rules can have optional graph elements. The
semantics of applying rules with optional elements is derived from the above
definition:

Rules with optional elements can be defined as a pair of regular GT rules
(p : (L,R), p : (L,R)) where L ⊂ L and R ⊆ R. The application of such a rule to
a graph G is defined by first attempting to find an occurrence for all the graph

elements (including the optional ones) G
p(o)
=⇒ G′ and, if that fails, attempting to

find an occurrence for the graph elements that are not optional, i.e., G
p(o)
=⇒ G′.

Extension: Merged Elements. Another extension that allows for a more
concise notation in some applications is that of merged grape elements. Merged
elements can be used in situations where the writer wants to create graph ele-
ments only if they do not already exist (in context of a rule application). That
behaviour can, of course, be achieved by using negative application conditions
(at the cost of a less concise rule definition language). However, there is a notable
difference in the semantics of executing a rule with merged elements when com-
pared to a NAC-controlled rule that creates elements: the application of the
merge rule succeeds even of the elements to be merged (created) already exist.
Formally, a graph transformation rule with merged elements can be defined as a
triple p̂ : (L,R,M) with M ⊆ R and M ∩L = ∅ representing the elements to be
merged. We can derive two regular graph transformation rules from p̂, namely

–
+
p : (L,R) with a negative application condition “the chosen occurrence o(L)
cannot be extended to o(L ∪ M)” , and

–
0
p : (L ∪ M,R)

The semantics of applying p̂ to a graph G is then defined as first attempting
to apply the derived regular transformation rule

0
p to G and, if unsuccessful,

attempting to apply
+
p.

Control Structures. Real world applications of graph transformations often
require some form of control structure to govern the execution of transformation
rules [6]. Since GrapePress is an internal DSL in Clojure, programmers can use
regular Clojure control structures, e.g., loops, conditionals, etc. GT rules can be
parameterized with input and output parameters. However, one disadvantage
of using the regular Clojure control structures is that they do not guarantee
atomicity of composite graph operations, e.g., operations that consist of multiple
graph transformations. GrapePress therefore provides the concept of transactions
and a set of dedicated control structures that can be used to define operations
that should be executed “all or nothing”. In fact, since GrapePress uses a graph
database (Neo4J), its transactions provide not only atomicity but all of the usual
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ACID properties [3]. GrapePress control structures implement a backtracking-
based search mechanism when executing complex transactions.

3.3 Interacting with GrapePress

As previously mentioned, GrapePress uses a notebook-style interaction model.
Users can simply add pages (called worksheet) and start to write. While all user
input is textual, text can be used to define non-textual content, for example by
using plugins like Mermaid7 to author diagrams. All worksheets created for a
given project share a graph as a common data structure. GrapePress provides
commands to render the graph’s state (or a part of it). Worksheets can import
other worksheets. This allows writers to utilize definitions they have made else-
where. Indeed, worksheets are saved as valid Clojure files, which means that
worksheets can also be imported by regular Clojure programs. In that case,
the dynamic code segments (e.g., any defined graph transformation rules) are
available to the Clojure program, while the static segments of these worksheets
would simply be ignored. GrapePress has been used in multiple applications
with industrial relevance within and outside our lab. An example application
available on Github is the development of an approach to detect temporal con-
flicts between a set of medication prescriptions by means of temporal constraint
network graphs.[7] The project including its GrapePress worksheet has been
published at https://github.com/simbioses/chaos.

4 Conclusions

The value proposition of computational notebooks (CN) is that they provide
a lightweight means to document experiments and make them repeatable and
executable at the same time. Graphs and computations by GTs are widely appli-
cable to many industrial problems. However, current GT tools and environments
often require a steep learning curve, do not readily integrate with notebooks, and
generally do not provide a lightweight experience akin to that offered by browser-
based applications. GrapePress has been designed to close this gap. Users only
require a Web browser to use the GrapePress notebook. While there is currently
no publicly available server that hosts GrapePress notebooks, such servers can
easily be set up using the instructions posted at the GrapePress github site.
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