
Multi-criteria Decision Making
in Optimal Software Testing-Allocation
Problem

Shinji Inoue, Yuka Minamino, and Shigeru Yamada

Abstract We discussed estimating optimal testing-resource allocation for the mod-
ule testing in software testing phase by applying the notion of the multi-attribute
utility theory. Concretely, considering the utilities of software development man-
ager for the reliability, testing-resource and testing-cost, we define testing-resource
allocation problems for estimating optimal testing-resource allocation maximizing
the utility of the software development manager under the certain testing-strategy.
Finally, we show examples of the applications of our approaches by using actual
data, and give some consideration on our results and the importance of developing
testing management strategy in the software module testing.

1 Introduction

It is well-known that software testing located in the software development process
is resource-consuming process. The testing-resource means CPU time, man-month,
the number of test cases, and so forth. Generally, software testing consists of the
module, integration and system testing. Especially in the module testing, a lot of
testing-resource is needed to enhance software reliability of each software module
because the software modules are tested independently. Therefore, it is important
for software development managers to allocate the testing-resource in the module
testing efficiently. The optimal testing-resource allocation problem (Yamada and
Ohtera 1990; Nishiwaki et al. 1995; Yamada et al. 1995; Ichimori et al. 2002) is
known as one of the interesting problems for software development management.

S. Inoue (B)
Kansai University, 2-1-1, Ryozenji-cho, Takatsuki-shi, Osaka 569-1095, Japan
e-mail: ino@kansai-u.ac.jp

Y. Minamino · S. Yamada
Tottori University, 4-101, Minami, Koyama-cho, Tottori-shi, Tottori 680-8552, Japan
e-mail: minamino@tottori-u.ac.jp

S. Yamada
e-mail: yamada@tottori-u.ac.jp

© Springer Nature Switzerland AG 2022
A. G. Aggarwal et al. (eds.), Optimization Models in Software Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-030-78919-0_4

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78919-0_4&domain=pdf
mailto:ino@kansai-u.ac.jp
mailto:minamino@tottori-u.ac.jp
mailto:yamada@tottori-u.ac.jp
https://doi.org/10.1007/978-3-030-78919-0_4

74 S. Inoue et al.

The optimal testing-resource allocation problems discuss how to allocate the testing-
resource for each module testing to conduct debugging activities more efficiently.
As for most of existing discussions on optimal testing-resource allocation problem,
the optimal testing-resource allocation is decided by minimizing the total number
of remaining faults in the all software modules under certain constraint of the total
testing-resource for conducting the whole module testing.

However, from the point of view of actual software development management,
it must be better to consider several evaluation criteria, not only the constraint of
the total testing-resource, for deciding the testing-resource allocation in the module
testing. As one of the approaches, we discuss optimal testing-resource allocation
problems based on the multi-attribute utility theory. The multi-attribute utility the-
ory has been often applied in discussion of software development management.
Especially, Kapur et al. (2012) applied the multi-attribute utility theory for devel-
oping an optimal software release problem and discussed the estimation procedure
for estimating optimal software release time maximizing the utility of the software
development manager. We discuss an application of multi-attribute utility theory to
the testing-resource allocation problem, which is one of the interesting issues on
software development management. Compared with the existing discussion on the
optimal testing-resource allocation approach (Nishiwaki et al. 1995; Yamada et al.
1995; Ichimori et al. 2002), our approach gives the another aspects in the software
develop management by proposing another optimal problem for testing-resource
allocation, such as multi-attribute maximization problem on estimating the optimal
testing-resource allocation in the module testing. Further, we show examples of the
applications of our approaches by using actual data, in which the multi-attribute
utility is formulated from the aspects of the reliability, testing-resource, and testing-
cost. And we give some considerations on our results and the importance to develop
testing management strategy in the module testing.

2 Section Heading

We introduce an existing approach for optimal testing-resource allocation problem
(Nishiwaki et al. 1995; Yamada et al. 1995; Ichimori et al. 2002). In this approach,
the software reliability growth process for each module is described by using the
testing-effort dependent software reliability growth model (Yamada 2014; Yamada
and Ohtera 1990). Let us denote the mean value function of the nonhomogeneous
Poisson process (Pham 2000) or the expected number of faults detected up to testing
time t by Z(t). The testing-effort dependent software reliability growth model is
given as

Z(t) = a(1 − exp[−r · T E(t)]), (1)

which is themeanvalue function of the non-homogeneousPoisson process. InEq. (1),
T E(t) is the total testing-effort expended up to time t , a is the initial faults content,

Multi-criteria Decision Making in Optimal Software Testing-Allocation Problem 75

and r is the software fault detection rate per expended testing-effort. Regarding the
function T E(t) in Eq. (1), we have

T E(t) =
∫ t

0
te(t)dt, (2)

where te(t) is the testing-effort expenditure expended at testing-time t . And the
expected number of remaining faults, n(t), is given as

n(t) = a − Z(t) = a · exp[−r · T E(t)]. (3)

The optimal testing-recourse allocation problem is discussed within the following
situation: (1) a software system consists of M independent software modules, (2) the
number of remaining faults in each module can be estimated by the testing-effort
dependent software reliability growthmodel, (3) the software developmentmanagers
have to allocate the testing-resource expenditures to each software module testing
efficiently, so that the total number of remaining faults in the software system may
be minimized.

Let di denote the amount of testing-resource expenditure spent for testing software
module, i (i = 1, 2, · · · , M). From Eq. (3), the expected number of remaining faults
in the software module i , which is denoted by ni is given as

ni = ai · exp[−ridi], (4)

where ai is the initial fault content for the softwaremodule i and ri represents the fault
detection rate per expended testing-resource for the software module i (0 < ri < 1).
Then, the total expected number of remaining faults in the software system is

N =
M∑
i=1

ni . (5)

Then, the software testing-resource allocation problem is formulated as

min:
M∑
i=1

δi ai · exp[−ridi]

subject to
M∑
i=1

di ≤ WP , di ≥ 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (6)

where WP is the planned total amount of the testing-resource and δi is the weight
representing the importance or complexity of the software module i . We should
note that the optimal testing-resource allocation problem in Eq. (6) is defined as
the minimization problem on the number of remaining faults in the whole software
modules under the constraint of the planned total amount of the testing-resource. For

76 S. Inoue et al.

solving the Eq. (6), the Lagrange multipliers method is generally applied. Then, we
have

L =
M∑
i=1

δi ai · exp[−ridi] + λ

(
M∑
i=1

di − WP

)
, (7)

whereλ is theLagrangemultiplier. The necessary and sufficient conditions for obtain-
ing the optimal solutions are

∂L

∂di
= −δi airi · exp[−ridi] + λ = 0

∂L

∂λ
=

M∑
i=1

di − WP ≥ 0

λ

(
M∑
i=1

di − WP

)
= 0, λ ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (8)

Further, we assume A1 ≥ A2 ≥ · · · ≥ Ak−1 ≥ λ ≥ Ak ≥ Ak+1 ≥ · · · ≥ AM , where
Ai = δi airi (i = 1, , 2, · · · , M). Then, the optimal testing-resource allocation, d∗

i ,
is derived as

d∗
i = − 1

ri
(ln Ai − ln λ) (i = 1, 2, . . . , k − 1),

d∗
i = 0 (i = k, k + 1, . . . , M)

⎫⎬
⎭ , (9)

where ln λ is given as

ln λ =
∑M

i=1
1
ri
ln Ai − WP∑M
i=1

1
ri

. (10)

Consequently, the optimal testing-resource allocation is obtained as

d∗
i = max

{
0,− 1

ri
(ln Ai − ln λ)

}
(i = 1, 2, . . . , M). (11)

3 Proposed Approach

We propose another approaches for estimating optimal testing-resource allocation
with multi-attribute utility of software development manager. Now, we consider the
following situation:

(1) A software system consists of M independent software modules.

Multi-criteria Decision Making in Optimal Software Testing-Allocation Problem 77

(2) The number of remaining faults for each software module are estimated by the
testing-effort dependent software reliability growth model.

(3) The software development managers allocate the testing-resource to testing for
each software module for maximizing their utility, which consists of several
attributes being related to the software development management.

We now consider that the following attributes: the testing-resource and the soft-
ware reliability attributes, respectively. Regarding the testing-resource attribute, we
formulate

min : E =
∑M

i=1 di
WP

= W

WP
, (12)

since the softwaremanagers prefer to spend the testing-resource less than the planned
total amount of testing-resource. In Eq. (12), W is the testing-resource expenditure
spent up to the end of the module testing. Further, we give the software reliability
attribute as

max : R = 1 −
∑M

i=1 ai · exp[−ridi]∑M
i=1 ai

= 1 − N∑M
i=1 ai

. (13)

Here we develop the utility function for each attribute based on the following cer-
tain situation on the software development management strategy: (1) for the testing-
resource attribute, at least 60% of the planned total amount of testing-resources
must be consumed, (2) for the software reliability attribute, at least 80% of software
faults should be removed, (3) the software development managers take the risk neu-
tral position for each attribute. Then, we set the lowest and highest consumptions
for the testing-resource attribute are EL = 0.6 and EH = 1.0, respectively. And the
lowest and highest requirements for the software reliability attribute are RL = 0.8
and RH = 1.0, respectively. Then, we obtain the following utility functions for each
attribute based on the notion of the risk neutral position:

u(E) = 2.5E − 1.5
u(R) = 5R − 4

}
. (14)

From Eq. (14), we define the following optimal testing-resource allocation prob-
lem with the additive multi-attribute utility function under the testing management
strategy:

max : u(E, R) = δR · u(R) − δE · u(E)

= δR · (5R − 4) − δE · (2.5E − 1.5)
subject to δR + δE = 1, di ≥ 0

⎫⎬
⎭ , (15)

where δR and δE are the weight parameters for the attributes R and E , respec-
tively. Consequently, we obtain the optimal testing-resource allocation, d∗

i (i =

78 S. Inoue et al.

1, 2, . . . , M), by maximizing the multi-attribute utility function in Eq. (15). From
Eq. (15), the optimal testing-resource allocation, d∗

i , is obtained by

d∗
i = − 1

ri
ln

2.5δE
∑M

i=1 ai
5δRairiWP

(i = 1, 2, · · · , k − 1)

d∗
i = 0 (i = k, k + 1, . . . , M)

⎫⎬
⎭ , (16)

Then, we have

d∗
i = max

{
0,− 1

ri
ln

2.5δE
∑M

i=1 ai
5δRairiWP

}
(i = 1, 2, · · · , M). (17)

In Eq. (17), we should note that

B1 ≥ B2 ≥ · · · ≥ Bk−1 ≥ 2.5δE
∑M

i=1 ai
5δRWP

≥ Bk ≥ Bk+1 ≥ · · · ≥ BM , (18)

where Bi = airi (i = 1, 2, . . . , M).
Furthermore, we add the cost attribute for treating more practical situation. For

formulating the cost attribute, we set the following cost parameters:

c1: the debugging cost per fault discovered in the module testing,
c2: the debugging cost per fault undiscovered during the module testing (c1 < c2)
c3: the cost per unit of the testing-resource for the module testing.

Then, the cost function is given as

V = c1

M∑
i=1

ai (1 − exp[−ridi]) + c2

M∑
i=1

ai exp[−ridi] + c3

M∑
i=1

di , (19)

by following the notion of the testing-effort dependent software reliability growth
model. From Eq. (19), the cost attribute is given as

min: C = V

CP
, (20)

where CP represents the planned budget for software testing. And we add the fol-
lowing test management strategy: (4) for the cost attribute, at least 50% of the budget
must be consumed in themodule testing. The lowest and highest consumptions for the
cost attribute are CL = 0.5 and CH = 1.0. Further, we assume the following utility
function on the cost attribute: u(C) = 2C − 1, which is just one of the examples.

When we consider the three attributes, such as the testing-resource, software
reliability, and cost attributes, the optimal testing-resource allocation problem with
the three attributes is defined as

Multi-criteria Decision Making in Optimal Software Testing-Allocation Problem 79

max : u(E, R,C) = δR · u(R) − δE · u(E) − δC · u(C)

= δR · (5R − 4) − δE · (2.5E − 1.5) − δC · (2C − 1)
subject to δR + δE + δC = 1, di ≥ 0

⎫⎬
⎭ , (21)

where δC is the weight parameter for the cost attribute. From Eq. (21), the optimal
testing-resource allocation, d∗

i , is obtained by

d∗
i = − 1

ri
ln

2.5δE
WP

+ 2δCc3
CP

airi
{

5δR∑M
i=1 ai

+ 2(c2−c1)δC
CP

} (i = 1, 2, . . . , k − 1)

d∗
i = 0 (i = k, k + 1, . . . , M)

⎫⎪⎪⎬
⎪⎪⎭

. (22)

Then, we have

d∗
i = max

⎧⎪⎨
⎪⎩0,− 1

ri
ln

2.5δE
WP

+ 2δCc3
CP

airi
{

5δR∑M
i=1 ai

+ 2(c2−c1)δC
CP

}
⎫⎪⎬
⎪⎭ (i = 1, 2, . . . , M). (23)

In Eq. (23), we should note

C1 ≥ C2 ≥ · · · ≥ Ck−1 ≥
2.5δE
WP

+ 2δCc3
CP

5δR∑M
i=1 ai

+ 2(c2−c1)δC
CP

≥ Ck ≥ Ck+1 ≥ · · · ≥ CM . (24)

4 Numerical Examples

Weshownumerical examples for our proposed approach by using actual dataYamada
and Ohtera (1990). The data consists of 10 modules and 251 faults still remain
through the module testing. Table1 shows the estimated values of ai and ri , which
have been estimated by following the testing-effort dependent software reliability
growth model. “M” means module, then “M1” means the module 1. We set the cost
parameters as c1 = 1, c2 = 2, and c3 = 5. And we also set the planned total amount
of testing-resource and the budget for the module testing as WP = 1.0 × 106 and
CP = 1.0 × 106, respectively.

Tables2 and 3 show the estimated optimal testing-resource allocation for each
module, total amount of optimal testing-resource, and utility along with the several
weight patterns for the 2 and 3 attributes, respectively. In Table2, the optimal total
amount of testing-resource increases as the δR is increasing and the δE is decreasing.
Andwe can say that the utility is ordered as P1 > P5 > P2 > P4 > P3, i.e., the utility
is getting higher as the difference between δR and δE is increased. In Table3, the
optimal total amount of testing-resource is increased as δR is increasing and the δR
and δE are decreasing. The order on the utility is P6 > P1 > P5 > P2 > P3 > P4.
From Table3, we can see the differences among the weights must influence the

80 S. Inoue et al.

Table 1 Estimated expected number of remaining faults (2 attributes)

M ai ri zi
P1 P2 P3 P4 P5

1 63 5.332 ×
10−5

21.183 5.4920 2.3573 1.0087 0.2615

2 13 2.523 ×
10−4

4.4768 1.1607 0.4974 0.2132 0.0552

3 6 5.262 ×
10−4

2.1465 0.5565 0.2385 0.1022 0.0265

4 51 5.169 ×
10−5

21.851 5.6652 2.4279 1.4050 0.2698

5 15 1.707 ×
10−4

6.6169 1.7155 0.7352 0.3151 0.0817

6 39 5.723 ×
10−5

19.736 5.1168 2.1929 0.9398 0.2437

7 21 9.938 ×
10−5

11.365 2.9466 1.2628 0.5412 0.1403

8 9 1.743 ×
10−4

6.4802 1.6801 0.7200 0.3086 0.0800

9 23 5.057 ×
10−5

22.335 5.7906 2.4817 1.0636 0.2757

10 11 8.782 ×
10−5

11.000 3.3345 1.4291 0.6125 0.1588

N∗ 127.19 33.458 14.339 6.1454 1.5933

Table 2 Estimated optimal testing-resource allocation (2 attributes)

Weight d∗
i

δR δE M1 M2 M3 M4 M5 M6

P1 0.1 0.9 20441 4225.3 1953.5 16397 4794.5 11901

P2 0.3 0.7 45759 9575.8 4518.9 42513 12703 35489

P3 0.5 0.5 61649 12934 6129.1 58905 17666 50294

P4 0.7 0.3 77540 16292 7739.3 75297 22630 65099

P5 0.9 0.1 102858 21643 10305 101412 30538 88687

Weight d∗
i Utility

δR δE M7 M8 M9 M10 W ∗

P1 0.1 0.9 6177.7 1884.5 579.84 0 68355 1.0428

P2 0.3 0.7 19761 9629.4 27274 13591 220814 0.7636

P3 0.5 0.5 28287 14491 44029 23239 317624 0.7015

P4 0.7 0.3 36813 19352 60784 32888 414434 0.7585

P5 0.9 0.1 50396 27097 87478 48259 568673 0.8793

Multi-criteria Decision Making in Optimal Software Testing-Allocation Problem 81

Table 3 Estimated optimal testing-resource allocation (3 attributes)

Weight d∗
i

δR δE δC M1 M2 M3 M4 M5 M6

P1 0.8 0.1 0.1 70464 14797 7022.3 67998 20420 58507

P2 0.6 0.2 0.2 52070 10910 5158.4 49023 14674 41369

P3 0.5 0.25 0.25 44466 9302.5 4387.9 41179 12299 34284

P4 0.4 0.3 0.3 36862 7695.5 3617.4 33335 9923.7 27200

P5 0.2 0.4 0.4 18469 3808.5 1753.6 14363 4178.5 10064

P6 0.1 0.45 0.45 3264.8 595.32 212.98 0 0 0

Weight d∗
i Utility

δR δE δC M7 M8 M9 M10 W ∗

P1 0.8 0.1 0.1 33017 17187 53323 28591 371326 0.4430

P2 0.6 0.2 0.2 23147 11560 33928 17423 259262 0.1661

P3 0.5 0.25 0.25 19068 9233.9 25911 12806 212936 0.1024

P4 0.4 0.3 0.3 14988 6907.7 17893 8189.5 166612 0.0966

P5 0.2 0.4 0.4 5119.6 1281.2 0 0 59036.4 0.3537

P6 0.1 0.45 0.45 0 0 0 0 4073.06 0.7266

Table 4 Estimated expected number of remaining faults (3 attributes)

zi
M P1 P2 P3 P4 P5 P6

1 1.4711 3.9227 5.8840 8.8258 23.532 52.535

2 0.3109 0.8290 1.2435 1.8652 4.9732 11.817

3 0.1491 0.3975 0.5962 0.8943 2.3846 5.3639

4 1.5174 4.0464 6.0695 9.1041 24.275 51

5 0.4595 1.2253 1.8794 2.7568 7.3506 15

6 1.3706 3.6547 5.4820 8.2228 21.925 39

7 0.7893 2.1046 3.1569 4.7353 12.626 21

8 0.4500 1.2000 1.8000 2.6999 7.1988 9

9 1.5511 4.1361 6.2040 9.3058 23 23

10 0.8931 2.3817 3.5724 5.3586 11 11

N∗ 8.9620 23.898 35.846 53.768 138.26 238.49

utility. That is, we can say the testing strategy for the module testing influences on
the value of the utility. Further, Tables1 and 4 show the estimated expected number of
remaining faults based on the estimated optimal testing allocation for each module
for the cases of 2 and 3 attributes, respectively. Focusing on the column of P5 in
Table1, the number of remaining faults can be reduced to 1.5933 from 251 faults
due to the testing-strategy, in which the software development manager set the higher

82 S. Inoue et al.

weight for the software reliability attributes. We can obtain the same investigation
in Table4.

5 Concluding Remarks

We discussed approaches for estimating optimal testing-resource allocation based on
themulti-attribute utility theory in themodule testing of software system. Concretely,
applying the software reliability estimated the testing-effort dependent software reli-
ability growth model, testing-resource, and testing-cost attributes for developing the
additive linear form multi-attribute function, we formulated a testing-resource allo-
cation problem, which enables us to estimate the optimal testing-resource allocation
maximizing the utility of the software developmentmanager under the certain testing-
strategy. Further, we showed examples of application of our approaches by using
actual data. Then, we discussed the behavior of the utility, optimal testing-resource
allocation, and the number of remaining faults, which depend on the weight param-
eters, such as δR , δE and δC . From the examples of application of our approaches,
we investigated that the developing the certain strategy for conducting the differen-
tiated injections to the software reliability, testing-resource, and testing-cost leads
to obtaining the higher utility of software developing manager. However, we need
to conduct more investigations for our approaches and to figure out the relationship
between the testing-strategy and utility by using other actual data and module testing
situation.

References

Ichimori T, Tanaka M, Yamada S (2002) An optimal effort allocation problem for both module and
integration testing in software development. J Jpn Ind Manag Assoc 53:201–207

Kapur PK, Singh VB, Singh O, Singh JNP (2012) Software release time based on different multi-
attribute utility functions. Int J Reliab, Qual Saf Eng 20:1350012

NishiwakiM,Yamada S, Ichimori T (1995) Testing-resource allocation policies based on an optimal
software release problem. J Jpn Ind Manag Assoc 46:182–186

Pham H (2000) Software reliability. Springer, Singapore
Yamada S (2014) Software reliability modeling—fundamentals and applications. Springer Japan,
Tokyo/Heidelberg

Yamada S, Ohtera H (1990) Software reliability—theory and practical application, in Japanese.
Soft Research Center, Tokyo

Yamada S, Ichimori T, Nishiwaki M (1995) Optimal allocation policies for testing-resource based
on a software reliability growth model. Int J Math Comput Model 22:295–301

	 Multi-criteria Decision Making in Optimal Software Testing-Allocation Problem
	1 Introduction
	2 Section Heading
	3 Proposed Approach
	4 Numerical Examples
	5 Concluding Remarks
	References

