
Software Reliability Growth Models
Incorporating Software
Project/Application’s Characteristics
as a Power Function with Change Point

Shinji Inoue, Abhishek Tandon, and Prarna Mehta

Abstract Software Reliability is a high-handed aspect to ascertain the quality of
the system, which leads to development of tools that incorporates real time set-up.
One of the real time concepts is change point, which highlights on the fact that a
characteristic of the model changes during the testing time duration and it is signifi-
cant to incorporate its effect in the model developed to ameliorate the reliability of
the system. Moreover, faults are assumed to be independent and are incurred at any
arbitrary time but, in practical world, faults may occur due to many factors like the
testing environment, resource allocation, code complexity, testing team skill-set etc.
This rate tends to change with time and assuming it to be constant may not reflect
upon an actual output. Another conundrum that is taken care of is the release time of
the software project/application. The weightage that is implied by this optimization
planning is due to the fact that over testing may incur high cost to the firm whereas
under testing may lead to release of a project/application with high fixing cost faults
affecting the manufacturer by an elevated post-release cost. In this chapter, a frame-
work is proposed that extends error-removal phenomenon model by encapsulating
the software project/application characteristics as a parameter. A realistic software
development situation is also taken in account by considering the parameter not only
as a constant but a time dependent function. The suggested SRGMs are also moni-
tored under a change point scenario, which gives real-time edge to the problem, and
are then utilized to develop release time policy balancing reliability and expected cost
incurred by a project/an application. The models are validated using Tandem dataset
and performance measures are compared quantitatively with the standard models.

S. Inoue
Faculty of Informatics, Kansal University, 2-1-1 Ryozenji-cho, Takatsuki-shi, Osaka 569-1095,
Japan

A. Tandon
Department of Management Studies, Shaheed Sukhdev College of Business Studies, University of
Delhi, Delhi, India
e-mail: abhishektandon@sscbsdu.ac.in

P. Mehta (B)
Department of Operational Research, University of Delhi, Delhi, India

© Springer Nature Switzerland AG 2022
A. G. Aggarwal et al. (eds.), Optimization Models in Software Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-030-78919-0_2

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78919-0_2&domain=pdf
mailto:abhishektandon@sscbsdu.ac.in
https://doi.org/10.1007/978-3-030-78919-0_2

32 S. Inoue et al.

On comparison of the results, the proposed model outperforms other extant models
with and without change point.

Keywords Software reliability · Software reliability growth model · Change
point · Power function · Release policy · Software testing phase

1 Introduction

The ambitious invention of a high performing and a high-defined quality software
system has given software engineers the liability to envisage a more complex system.
Software brings forth automation to a wide range of domain like medicine, banking
system, business houses, academics, security etc. thus, becoming an indispensable
element of any commercial or non-commercial field. With the increase in its appli-
cation, there is a need of improvising software at a higher speed to balance with
the requirements of the consumers, to keep up with the competitors in the market
and most significantly to maintain quality. Thus, reliability models are entailed to
assess and forecast the reliability of the software embedded in the system quanti-
tatively, elevating system’s reliability (Huang et al. 1999) and are also known as
Software Reliability growth models (SRGM). A SRGM that helps in rendering a
balanced amalgamation in terms of expense, reliability, productivity and perfor-
mance can be considered to be generic in nature and applicable to sundry software
project/application.

Many versions and forms of SRGM has been developed considering different
assumptions and objective of the underlying study, under perfect or imperfect debug-
ging conditions (Okumoto andGoel 1979).However, in the realworld, there aremany
other factors that influence the quality of the software with time for example testing
environment, complexity of the code, running environment, line of codes, testability
etc. Lai et al. (2011) stated past SRGMs fail to incorporate these factors into past
simulation. Thus, fault-detecting rate is influenced by external factors and it would
be favorable to take them into account in order to increase the performance rate of
a SRGM developed using past failure rate. In this study, these external factors are
included in the model developed and coined as software application/project charac-
teristic parameter. The given parameter is not only a function of software character-
istics but can also be a time dependent power function. The parameter measuring
the influence of the software project/application’s characteristic may not necessarily
be constant over the testing time period and is subject to change due to alteration in
testing plan at some time-point. This instance of time is termed as change-point. In
this chapter, SRGMs are formulated under the postulation of change point to create
a real-time problem.

The main concern of the management is scheduling the testing phase and release
of the project but are unaware of the latent faults remaining in the system even
after the completion of testing phase (Kapur et al. 2008a). However faults in a soft-
ware project/application are extensively eliminated during the testing phase of the

Software Reliability Growth Models Incorporating Software Project/Application’s … 33

system but excessive testing is uneconomical and impractical, thereby making the
optimal release planning as a powerful decision-making aspect in a business plan
(Lai et al. 2011). SRGM provides enumeration of faults that might be informative to
the management to curtail development cost or to anticipate the appropriate release
time of a software project/application (Huang 2005a). To précis, software release
planning is a vital managerial optimization problem that involves determination of
the optimal release time of the software such that the cost is minimized subject to a
reliability constraint. Kapur et al. (2009a) have discussed the significance of release
planning that if a product is subject early to or late release, then it may lead to either
high operational cost or high testing cost which is a loss for the business. In this study,
the expected number of faults obtained through SRGMs with and without change
point scenarios are employed to develop optimal release plans for the respective
models.

The objective of this study is condensed in three-fold. Firstly, a model is simulated
taking into account of change point concept and software project/application as a
power function. Secondly, models are assessed for its performance and efficiency
based on a real software fault dataset and comparison is made with some extant
models from the past literature. Thirdly, an optimization scheme is planned for the
release of the product using the models developed. The scheme specifies an optimal
combination of cost and reliability for a given software project/application, thereby
focusing on a rational release policy for the same.

This chapter is divided into sections, namely, in Sect. 2 a brief summary of the past
literature has been captured, followingwhich in Sect. 3 the suggestedmodel has been
explained, in Sect. 4 the proposed model is justified with a numerical illustration,
a release plan has been discussed in Sect. 5 using the developed models and lastly,
Sect. 6 concludes the given study.

2 Literature Survey

In this section, an abridgment of the related literature is furnished for each research
topic alluded in this study.

2.1 Software Reliability Growth Models

A SRGM follows NHPP distribution that gives an estimated count of faults for both
calendar as well as running timeline. In the past literature, a vast number of SRGMs
are available differentiating from each other by marginal changes in assumptions set
describing or tackling a testing related problem (Lai and Garg 2012). Yamada et al.
(1983) proposed an S-shaped model due the non-uniformity in reliability growth
that was also a succession to Okumoto and Goel (1979) model. Kareer et al. (1990)
proposed a modified S-shapedmodel that was based on the severity level of the faults

34 S. Inoue et al.

manifesting a real time situation. Jeske and Zhang (2005) gave a realistic approach by
bridging a gap between theoretical and practical application of SRGM. Many earlier
SRGMs do not fit all failure datasets perfectly as stated byChiu et al. (2008) however,
incorporating learning effect into the model would enhance the results. Effects of
testing skills, strategy and environment on discrete SRGMs were well captured by
Kapur et al. (2008b). Kapur et al. (2009b) have presented a unified approach to
evaluate a wide range of SRGMs on the basis of hazard rate. A SRGM framework
demonstrated by Inoue and Yamada (2011) reflected the effect of rate of change in
the testing setting. Softwares are developed in an ideal environment nonetheless, it is
not the same while in the operating stage (Pham 2016). While Zhu and Pham (2018)
considered single environment factor and later on taking in account the effect of
multiple environmental factors on modeling and estimation (Zhu and Pham 2020).

2.2 Change Point

Zhao (1993) was motivated to apply change point concept in the field of software and
hardware reliability by including it SRGM. Huang (2005b) integrated logistic testing
effort and change point into the reliability modeling suggesting that the project head
to invest in tools and manpower that would aid in improving the reliability of the
software product. Singh et al. (2010) introduced S-shaped SRGMwith change point
thatmonitors the reliability ofOSS.Adiscrete SRGMwasmodeled byGoswami et al.
(2007) for different levels of bugs severity under change point. Kapur et al. (2009a)
have discussed a general framework with respect to altering rate of fault detection
with and without change point. In the study by Chatterjee et al. (2012), SRGM with
fluctuating introduction and detection rates have been examined under change point
scenario. Inoue et al. (2013) scrutinized the altering effect of testing environment on
change point based SRGM. Parr-curve was deployed by Ke et al. (2014) to analyze
reliability model with multiple change point. Nagaraju and Fiondella (2017) have
exemplified the significance of change point modeling by assessing different SRGM
with and without change point. Change point SRGMs depicts mathematically a real
life situation, however, Inoue andYamada (2018) utilizedMarkov process to enhance
the depiction. Chatterjee and Shukla (2017) used am improvised approach to regulate
the reliability assessment under change point effect.

2.3 Release Policy

SRGMs are implemented to enumerate uncertainty attached to a software
system, thus aiding a software developer to achieve a highly reliable software
project/application. But with increasing complexity in the software, it is hard for
the software engineers to deliver fault free. At the same time, these probabilistic
tools are utilized to estimate the optimal release time. The concept of optimal release

Software Reliability Growth Models Incorporating Software Project/Application’s … 35

policy was firstly implemented by Okumoto and Goel (1979). Following which,
many researchers started implementing the optimal release time concept along with
software reliability assessment as well as balancing cost parameters (Kapur and
Garg 1989). Shrivastava et al. (2020) proposed an optimization model to establish
the optimal release time as well as the testing stop time. Li et al. (2010) study not
only deals with multiple change point and release policies but, they have also made
an effort to do a sensitive analysis of the results. The failure data being uncertain and
vague, pushed the researchers to indulge in fuzzy sets.Under the fuzzy environment, a
release plan for the softwarewas givenbyPachauri et al. (2013). For a discreteSRGM,
a release policy was proposed by Aggarwal et al. (2015). Release time decision-
making can be sometime tricky when the past records are inconsistent, conversely
(Chatterjee and Shukla 2017) suggested a fuzzy based release schedule. Shrivastava
and Sachdeva (2019) proposed a generalized release policy under different testing
environment.

3 Methodology

In this study, a SRGM has been enhanced by considering a parameter as a power
function of time integrating with a change point scenario.

3.1 Notations

Symbols Description

X Preliminary faults existing in the software project/application in the time period (0, t]

X(t) For a given time period, say (0, t], expected number of observed faults

p Failure rate for a software project/application

q Residual fault detection rate

r1 Software project/application’s characteristics measuring factor before change point

r2 Software project/application’s characteristics measuring factor after change point

k A constant

t Time period

τ Change point

36 S. Inoue et al.

3.2 Assumptions

Comprehending from the past literature (Huang et al. 1999; Huang 2005a; Yamada
et al. 1983; Kareer et al. 1990), in this study, SRGMs are developed, based on Non-
Homogenous Poisson Process (NHPP) where, X(t) is the mean value function or
the expected number of faults in the time interval (0, t]. The proposed models are
developed under the following assumptions,

• Due to the presence of the dormant faults, the software project/application is
subject to fail during the operational phase.

• A fault detected in the software project/application is removed instantaneously.
• On removal of certain faults, it is assumed that some latent dependent faults are

also eliminated in the process.
• The software project/application’s operational phase is considered to be as one of

the phases of the lifecycle.
• The failure or fault detection phenomenon incurred by the consumer or the testing

team is considered to be equivalent.
• Software project/application characteristics’ effect on the model is measured by

a parameter, which might change with time.

3.3 Model Development

Kapur andGarg (1992) proposed amodel that was based on the assumption that faults
detected can lead to observing residual faults in the systemwithout causing the system
to fail. This model has been extended by considering a parameter that characterizes
software project/application as a parameter namely, r1. Hence, the differential equa-
tion under the given assumptions for an expected number of faults in the system is
given,

dX(t)

dt
= r(t)[(p + X(t)

X
q)(X − X(t))] (1)

where, r(t) can be a constant or a time-dependent function that defines the software
project/application characteristics. Zhu and Pham (2020) developed a generic model
including environmental factor and on the similar lines (Inoue et al. 2013) amplified
fault detection rate with the help of environment factor in their cost model. Different
set up for the model in Eq. (1) has been considered in the study.

Model 1a:When r(t) is considered to be a constant without change point (BCP)

Let us consider,

r(t) = r1 (2)

Software Reliability Growth Models Incorporating Software Project/Application’s … 37

where, r1 is a constant value of the above defined parameter and r1 > 0. Substituting
(2) in (1), the differential equation for the expected number of faults in the system is
given by,

dX(t)

dt
= r1[(p + X(t)

X
q)(X − X(t))] (3)

The constant r1 implies that each fault is uniformly affected or influenced by
software project/application characteristics parameter. Solving (3), we obtain the
expected number of faults in the testing time interval (0, t], given the initial condition,
X(0) = 0, as,

X(t) = X[1 − e−(p+q)r1t]
[1 + q

p e
−(p+q)r1t] (4)

Model 1b: When r(t) is considered to be a constant with change point (ACP)

During the testing phase, a software project/application runs in a given environment
but it is not necessarily true that parameters remain uniform throughout. The instance
at which a change is observed in the pattern of the failure distribution is termed as
change point. In software reliability engineering, a change point occurs due to change
in testing pattern observed the testing team’s, change in resource allocation, improved
learning skills of the systemanalyst, or programmed testing codes (Kapur et al. 2008a;
Zhu and Pham 2020; Ke et al. 2014). In this study, software project/application
characteristics are not considered to be homogenous during the testing phase, hence
developing SRGM with a change point. Let the parameter be defined as,

r(t) =
{
r1, t < τ

r2, t ≥ τ

Considering the underlying assumptions and assuming that r(t) does not remain
homogeneous during the testing phase, the mean value function is given as,

X(t) =

⎧⎪⎪⎨
⎪⎪⎩

X [1−exp(−(p+q)r1)][
1+ q

p exp(−(p+q)r1)
] t < τ

X

[
1−

(
1+ q

p

)(
1+ q

p

)
exp(−r1τ)

]
[exp(−(p+q)r1τ)+(−(p+q)r2(t−τ))][

1+ q
p exp(−r1τ)

][
1+ q

p exp(−r2t)
] t ≥ τ

(5)

Model 2a: When r(t) is considered as a power function BCP

Next, let us consider as a power function of testing time which is given as,

r(t) = r1t
k (6)

38 S. Inoue et al.

The form in (6) renders the suggested models generic and adaptable in nature
(Kapur et al. 2008a). Substituting (6) in (1), the differential equation is given as,

dX(t)

dt
= r1t

k[p + q
X(t)

X
][(X − X(t))] (7)

where, k ≥ 0 and the first component represents the varying relation between r1 and
t with varying value of k. If k = 0, the model reduces to Eq. (3). Taking the initial
condition as X(0) = 0, we get,

X(t) = X
[1 − exp(−r1(p + q) tk+1

k+1)]
[1 + q

p exp
(
−r1(p + q) tk+1

k+1

)
]

(8)

Model 2b: When r(t) is considered as a power function ACP

The Eq. (3) has been extended by incorporating change point and power function
of r.

X(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X

[
1−exp

(
− (p+q)r1

k+1 tk+1
)]

[
1+ q

p exp
(
− (p+q)r1

k+1 tk+1
)] t < τ

X

[
1−

(
1+ q

p

)(
1+ q

p

)
exp(− r1

k+1 τ k+1)
][
exp

(
− (p+q)r1

k+1 τ k+1
)
+

(
− (p+q)r2

k+1 (t−τ)k+1
)]

[
1+ q

p exp(− r1
k+1 τ k+1)

][
1+ q

p exp(− r2
k+1 t

k+1)
] t ≥ τ

(9)

For simplification, in this study, only one change point has been considered in
both the models given by (5) and (9), however in the practical world, change points
are observed more than once in a testing phase.

4 Model Validation

In this section, the SRGMs given by (3), (5), (8) and (9) have been validated on
the basis of fault dataset given by Wood (1996). A change point has been observed
at the 8th week of testing in the dataset and change point models given by (5) and
(9) are evaluated accordingly. The parameters are estimated for each model and the
performances of the respective models are recorded for comparisons.

4.1 Dataset

The proposed models have been validated using Tandem dataset (Wood 1996) that
contains number of faults detected over a testing period of 20 weeks and cumulative

Software Reliability Growth Models Incorporating Software Project/Application’s … 39

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
U

M
BE

R
 O

F
FA

U
LT

S
D

E
T

EC
TE

D

TESTING WEEKS

Fig. 1 A plot for Tandem Dataset

sum of number of faults being 100. This dataset has been widely implemented in the
past literature for example, Park and Baik (2015), Sharma (2010), Roy et al. (2014).
From the data set, a change in the number of faults detected was observed at 8th week
of testing. Figure 1 depicts a graph plotting tandem data set where x-axis denote the
testing weeks whereas y-axis denote cumulative number of faults detected.

4.2 Parameter Estimation

The non-linear regression option in Statistical Package for social Science (SPSS)
aids in obtaining least square estimates of the parameters for a given SRGM. The
parameters are valued for a given testing time in weeks denoted by t and parameters
X, p, q, k, r, r1, and r2 delineated in Sect. 3 are estimated for respective SRGM. Table
1 represents the parameter estimation for without and with change point models.

In Table 1, “–” indicates null value of the parameter because they have no role play
in the respectivemodel. 35.1%and93.7%software project/application characteristics
are explained by the parameter r in model 1a and 2a respectively. However, without

Table 1 Parameter estimations for models before and after change point scenario

Models X p q r1 r2 k

Model 1a 110.829 0.222 0.268 0.351 – –

Model 1b 116.48 0.48 0.455 0.238 0.091 –

Model 2a 114.104 0.0046 0.431 0.937 – 0.377

Model 2b 112.375 0.113 0.464 0.552 0.432 0.394

40 S. Inoue et al.

Table 2 Model comparisons
with respect to performance
measures

Models R2 MSE

Model 1a 0.989 8.971

Model 1b 0.993 5.442

Model 2a 0.991 7.183

Model 2b 0.997 2.076

change point, model 1b explains 23.8% andwith change point 0.91%,whereasmodel
2b shows the best result, combining the effect of r1 and r2, 98.4% characteristics are
explained.

A SRGM is said to perform well when it predicts the behavior of the system
accurately by using previous fault data (Roy et al. 2014). The simulations developed
were assessed with the help of performance measures, co-efficient of determination
(R2) and mean square of errors (MSE).

Looking at the R2 and MSE values of the proposed models in Table 2, model 2b
shows the best fit for the given dataset i.e. 99.7% of the variation in data is captured
by the proposed model and has the lowest MSE value (2.076).

4.3 Goodness of Fit Curves

See Figs. 2 and 3.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
U

M
U

L
AT

IV
E

 F
A

U
LT

S

TEST WEEK

FAULTS MODEL 1a MODEL 1b

Fig. 2 Actual versus predicted values for proposed models where r is considered constant BCP
and ACP

Software Reliability Growth Models Incorporating Software Project/Application’s … 41

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
U

M
U

LA
T

IV
E

FA
U

LT
S

TEST WEEK
FAULTS MODEL 2a MODEL 2b

Fig. 3 Actual versus predicted values for proposed models where r is power function of time BCP
and ACP

4.4 Comparison with the Previous Models

In order to validate the robustness of the proposed model, comparisons are drawn
with some conventional models, namely Goel Okumoto model (Okumoto and Goel
1979), S-shaped Yamada model (Yamada et al. 1983), Kapur Garg error removal
phenomenon model (Kapur and Garg 1992) respectively using the Tandem dataset.
For mathematical simplifications, the proposed model 1a has been compared with
the traditional models.

Table 3 depicts the comparison values for the different SRGMs with respect to
change point. Nonetheless, the MSE value is lowest for the proposed model without
as well as with change point than that of GO model and S-Shaped Yamada model
which implies that the proposed model has the least fitting error and hence exhibit
the best performance. Since the proposed model is an extension of Kapur and Garg
error phenomenonmodel, the comparisonmeasure is vital for this case. For the given
dataset, KGModel has MSE value 18.572 and 10.937 without and with change point
respectively, while those values for model 1a are nearly half of it i.e. the suggested

Table 3 Models’ performance comparison with respect to coefficient of determination

R2 MSE

BCP ACP BCP ACP

Model 1a 0.989 0.993 8.971 5.442

GO model 0.965 0.988 28.503 9.392

Yamada model 0.969 0.991 25.266 7.57

KG model 0.977 0.987 18.572 10.937

42 S. Inoue et al.

model has the capability to reduce the fitting error to half of that of the KGmodel. All
in all, the extended model is a better version of KG model. Looking at the R2 values,
the proposed model has the highest (0.989 and 0.993) without and with change point
cases in comparison to other models. Figures 4 and 5 reflects that the suggested
model is the closest fit of the data set without and with change point respectively.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
U

M
U

LA
T

IV
E

FA
U

LT
S

TEST WEEKS

FAULTS GO MODEL YAMADA MODEL KG MODEL PROPOSED MODEL

Fig. 4 A fitted curve for observed and estimated faults BCP given by proposed models and
compared with some existing model

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
U

M
U

L
AT

IV
E

 F
A

U
LT

S

TEST WEEKS

FAULTS GO MODEL YAMADA MODEL KG MODEL PROPOSED MODEL

Fig. 5 A fitted curve for observed and estimated faults ACP given by proposed models and
compared with some existing model

Software Reliability Growth Models Incorporating Software Project/Application’s … 43

The result of the data analysis suggests that the extended version of the KG
model is an effective model that enriches the data set in terms of predicting accu-
racy and beautifully incorporates the effect of change point under perfect debugging
conditions.

5 Release Policy

With the completion of software testing phase, the software project/application is
prepared for its release into the market rising to problem of optimal release policy.
Protraction of testing phase implies detection of multiple faults, thus increasing the
development cost, increase in the quality and delay in the release of the software
project/application. The lag in release of the software may make the market restive,
at the same time cause a loss to the business. On the other hand, if the testing phase
is cut short, one can infer detection of a smaller number of faults implying decrease
in development cost, poor quality and rapid release of the software. The accelerated
release of the software may lead to loss of customers’ trust towards the firm that
might incur post-release high cost. In this study, one of the objectives is to minimize
software outlay with respect to a desired level of reliability, thereby obtaining the
optimal software release time. The outlay parameters used to illustrate release policy
is given as follows,

O1: Outlay of fault detection BCP in the testing environment (O1 > 0)
O′

2: Outlay of fault detection ACP in the testing environment O′
2 > 0)

O2: Outlay of fault detection in the operational environment (O2 > O′
2)

O3: Outlay of testing at arbitrary time point
T: stopping or release time of software project/application.
The expected outlay functionwithout change point comprises of expense acquired

by the software firm in order to detect fault BCP, during the operating phase and lastly,
an overall expense per unit timebefore the software project/application’s release time,
which is given by,

O(T) = O1∗X(T) + O2∗(X − X(T)) + O3∗T (10)

The expected outlay function with change point is composed of expense acquired
by the software firm in order to detect faults BCP, ACP, during the operating phase
and lastly, an overall expense per unit time before the software project/application’s
release time, which is given as,

O(T) = O1∗X1(τ) + O′
2∗(X2(T) − X1(τ)) + O2∗(X − X2(T)) + O3∗T (11)

where, X1(t) and X2(t) are mean value fault detection function without and
with change point (τ) respectively. Henceforth, an optimization policy can be
mathematically formulated as following,

44 S. Inoue et al.

Minimise O(T)

subject to Re(T) ≥ R∗ (12)

where, Re(T) is the reliability function and R* is the desiderated level of reliability at
the release time of software project/application’s (0 < R* < 1). The software project
developer establishes the desiderated reliability for the project in accordance to the
market requirement.

5.1 Numerical Illustration

The formulated optimization problem is solved usingMATLABwhere outlay param-
eters are assumed on the basis of past literature (Aggarwal et al. 2015; Shrivastava
and Sachdeva 2019). In order to implement the optimization problem given by (12),
we have considered tandem dataset, computed parameters of the Eqs. (4), (5), (8)
and (9) with the help of SPSS and given by the Table 1. The outlay parameters are
assumed to be as following,

O1 = 40,O′
2 = 50,O2 = 100,O3 = 20

With the help of MATLAB and Eq. (12), the expected release time and reliability
is computed for the four models and given by the Table 4.

The optimal release time for model 1a is 28.02 weeks with reliability 0.9823
and expected cost is 5111.01, and with change point (model 1b), the release time is
30.28weeks at 0.9638 reliability and total expected cost being 9116.40. Formodel 2a,
the optimal release time is 30.53, reliability attained is 0.9758 with the expected cost
being 5340.80, however with change point, the release time decreases to 28.33 weeks
and reliability reached is 0.9532 with the cost of 8901.80.

Table 4 Expected release
time and reliability of a
software project/application

Models T O(T) Re(T)

Model 1a 28.02 5111.01 0.9823

Model 1b 30.28 9116.4 0.9638

Model 2a 30.53 5340.8 0.9758

Model 2b 28.33 8901.8 0.9532

Software Reliability Growth Models Incorporating Software Project/Application’s … 45

5.2 Sensitivity Analysis

The expenses involved in testing phase may vary due to various external factors like
skills of developers, testing efforts, resource etc. Hence, one might be interested to
know which cost parameter plays an important role to improvise the reliability for
a given software project/application. Sensitivity analysis is a tool that aids in the
decision making of optimal input parameters in order to obtain improvised output
(Li et al. 2010). The uncertainty in failure data fails to comprehend the exact value
of the outlay parameters. This methodology permits the management to evaluate
the change in parameters over reliability, to assess testing strategy, to condense cost
values, to attain optimal resource apportionments (Castillo et al. 2008).

For the given study, software reliability growth models given by Eqs. (4), (5), (8)
and (9) have been considered, whose parameters are computed using Tandem failure
data sets and with the help of SPSS. Considering a desired reliability level to be
fixed at 0.95, the outlay parameters (O1,O′

2,O2,O3) are altered by −10 and 10%,
while monitoring its effect on the reliability, total expected cost as well as release
time (given by Table 5). The sensitivity of outlay parameters is analyzed by using
formula given by Li and Pham (2017). The relative changes observed with respect
to varying outlay parameters is given by Table 6.

For different values of O1,O′
2,O2,O3, the altered release time, cost as well as

reliability level are generated. Altering values of outlay parameters gives a guidance
to the management to strike a balance between the cost and reliability and obtain the
optimal release time. The sensitivity analysis of the stated release policy resulted in
a very close release time, but in real time situation, the policy implemented by the
management depends on the cost under consideration, SRGM adopted to describe
the fault process, aim of the release plan and lastly constraints to be taken care of.

FromFig. 6a, it can be clearly observed that a 10% increase in costO1, release time
decreases by 1.46%, overall cost increases by 8.52% and amarginal decrease of 0.1%
has been noted. However, when cost O2 is increased by 10%, release time increases
by 3.26%, that has 0.3% and 0.2% effect on total cost and reliability respectively.
On the other hand, with a 10% increase in O3, the release time declines by 2%,
increasing cost by 1% and reliability also declines by a mall fraction. The respective
trend was observed exactly opposite when the costs O1, O2, O3 were decreased by
10% for model 1(a) as depicted by Fig. 6b.

Form Fig. 6c, with an increase of 10% in cost O1, release time, expected cost
and reliability increases by 2.34%, 2.79% and 0.2% respectively. However, with an
increase of 10% in cost O′

2, release time and reliability declines by 2.29 and 0.2%,
while the cost shoots up by 6.15%. On the other hand, with an increase of 10% in
cost O2, release time is majorly affected by 3.74%, but a marginal change of 0.4%
and 0.3% on cost and reliability is observed. Lastly, with an increase of 10% in O3,
a decline of 2.7% and 0.2% is observed in release time and reliability along with
increase in cost by 0.6%. The respective trends were seen exactly opposite when cost
O1, O′

2, O2, O3 were decreased by 10% for model 1(b) as depicted by Fig. 6d except
when cost O1 decreased by 10%, the expected cost increased by 2.8%.

46 S. Inoue et al.

Ta
bl
e
5

Se
ns
iti
vi
ty

an
al
ys
is
fo
r
SR

G
M

w
ith

re
sp
ec
tt
o
ou

tla
y
pa
ra
m
et
er
s

M
od
el
1a

M
od
el
1b

M
od
el
2a

M
od
el
2b

T
O
(T
)

R
e(
T
)

T
O
(T
)

R
e(
T
)

T
O
(T
)

R
e(
T
)

T
O
(T
)

R
e(
T
)

O
1

36
28
.4
0

46
75
.2
7

0.
98
34

29
.0
9

93
72
.5
8

0.
95
93

31
.0
3

48
95
.1
0

0.
97
72

31
.1
3

86
56
.8
9

0.
95

40
28
.0
2

51
11
.0
1

0.
98
23

30
.2
8

91
16
.4
0

0.
96
38

30
.5
3

53
40
.8
0

0.
97
58

28
.3
3

89
01
.8
0

0.
95
32

44
27
.6
1

55
46
.2
2

0.
98
11

30
.9
9

93
71
.0
7

0.
96
61

30
.0
0

57
85
.7
7

0.
97
42

31
.1
3

91
60
.1
9

0.
95

O
′ 2

45
–

–
–

30
.8
8

85
54
.4
5

0.
96
58

–
–

–
32
.1
9

84
41
.0
6

0.
95
36

50
–

–
–

30
.2
8

91
16
.4
0

0.
96
38

–
–

–
28
.3
3

89
01
.8
0

0.
95
32

55
–

–
–

29
.5
8

96
76
.9
8

0.
96
13

–
–

–
31
.1
3

95
09
.6
1

0.
95

O
2

90
26
.9
4

50
89
.5
7

0.
97
88

28
.7
8

90
71
.1
2

0.
95
8

29
.1
4

53
10
.7
1

0.
97
13

31
.1
3

89
19
.6
4

0.
95

10
0

28
.0
2

51
11
.0
1

0.
98
23

30
.2
8

91
16
.4
0

0.
96
38

30
.5
3

53
40
.8
0

0.
97
58

28
.3
3

89
01
.8
0

0.
95
32

11
0

28
.9
3

51
29
.1
0

0.
98
49

31
.4
1

91
56
.3
1

0.
96
74

31
.7
2

53
66
.5
2

0.
97
9

33
.2
4

90
28
.0
7

0.
95
68

O
3

18
28
.6
4

50
54
.3
6

0.
98
41

30
.9
4

90
55
.1
5

0.
96
6

31
.3
4

52
78
.9
2

0.
97
8

32
.3
1

89
12
.4
7

0.
95
4

20
28
.0
2

51
11
.0
1

0.
98
23

30
.2
8

91
16
.4
0

0.
96
38

30
.5
3

53
40
.8
0

0.
97
58

28
.3
3

89
01
.8
0

0.
95
32

22
27
.4
5

51
66
.4
7

0.
98
05

29
.6
5

91
76
.2
9

0.
96
15

29
.8
0

54
01
.1
0

0.
97
35

31
.1
3

90
38
.0
8

0.
95

Software Reliability Growth Models Incorporating Software Project/Application’s … 47

Table 6 Relative change observed for respective model with respect to outlay parameters

O1 O′2 O2 O3

−10% 10% −10% 10% −10% 10% −10% 10%

Model
1a

T 0.0137 −0.0146 0.0000 0.0000 −0.0387 0.0326 0.0223 −0.0202

O(T) −0.0853 0.0852 0.0000 0.0000 −0.0042 0.0035 −0.0111 0.0109

Re(T) 0.0011 −0.0012 0.0000 0.0000 −0.0036 0.0026 0.0018 −0.0018

Model
1b

T −0.0392 0.0234 0.0199 −0.0229 −0.0496 0.0374 0.0220 −0.0207

O(T) 0.0281 0.0279 −0.0616 0.0615 −0.0050 0.0044 −0.0067 0.0066

Re(T) −0.0047 0.0024 0.0021 −0.0026 −0.0060 0.0037 0.0023 −0.0024

Model
2a

T 0.0163 −0.0173 0.0000 0.0000 −0.0456 0.0390 0.0266 −0.0239

O(T) −0.0835 0.0833 0.0000 0.0000 −0.0056 0.0048 −0.0116 0.0113

Re(T) 0.0014 −0.0016 0.0000 0.0000 −0.0046 0.0033 0.0023 −0.0024

Model
2b

T 0.0988 0.0988 0.1363 0.0988 0.0988 0.1732 0.1405 0.0988

O(T) −0.0275 0.0290 −0.0518 0.0683 0.0020 0.0142 0.0012 0.0153

Re(T) −0.0034 −0.0034 0.0004 −0.0034 −0.0034 0.0038 0.0008 −0.0034

From Fig. 6e, when O1 increases by 10%, release time decreases by 1.7%, total
cost does up by 8.3% and reliability decreases by 0.2%. While O2 increases by 10%,
release time, cost and relatability also increases by 3.9%, 0.4%and 0.3% respectively.
Lastly, with a 10% increase in O3, release time and reliability decreases by 2.3 and
0.2%, on the contrary, the expected cost increases by 1.1%. When the costs O1, O2,
O3 decreases by 10%, an exactly opposite trend is observed which is depicted by
Fig. 6f for model 2a.

From Fig. 6g, when cost O1, O′
2, O2, O3 increases by 10%, release time increase

significantly by 9.8%, 9.8%, 17.3%, 9.8% respectively, while the expected cost also
rises by 2.9%, 6.8%, 1.4% and 1.5%, but reliability declines by 0.3% for cost O1, O′

2,
and O3, on the other hand increases by 0.3% for O2. From Fig. 6h, it is observed that
when cost cost O1, O′

2, O2, O3 decreases by 10%, release time increases by 9.8%,
13.6%, 9.8% and 14.1% respectively, the total cost declines fpr O1 and O′

2 by 2.7%
and 0.5%, however increases in the case of O2 and O3 by 0.2% and 0.1%. Moreover,
reliability decreases by 0.3% when O1 and O2 decreases by 10% but increases by
0.04% and 0.08%, when cost O′

2 and O3 decrease by 10%.

6 Conclusion

In this chapter, a software reliability growth model has been comprehended with
respect to software project/application’s characteristics under a perfect debugging
environment. The stated characteristic has been considered as a constant as well as
a power function of time along with assessing the model without and with change
point. The parameters are estimated with the help of SPSS and comparison has been

48 S. Inoue et al.

 (c) (d)

 (e) (f)

 (g) (h)

-0.0300

-0.0200

-0.0100

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

O1 O'2 O2 O3

Model 1b (10%)

Time

Cost

Reliability

-0.0700

-0.0600

-0.0500

-0.0400

-0.0300

-0.0200

-0.0100

0.0000

0.0100

0.0200

0.0300

0.0400

O1 O'2 O2 O3

Model 1b (-10%)

Time

Cost

Reliability

-0.0400

-0.0200

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

O1 O2 O3

Model 2a (10%)

Time

Cost

Reliability

-0.1000

-0.0800

-0.0600

-0.0400

-0.0200

0.0000

0.0200

0.0400

O1 O2 O3

Model 2a (-10%)

Time

Cost

Reliability

-0.0200

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

0.1800

0.2000

O1 O'2 O2 O3

Model 2b (10%)

Time

Cost

Reliability

-0.1000

-0.0500

0.0000

0.0500

0.1000

0.1500

0.2000

O1 O'2 O2 O3

Model 2b (-10%)

Time

Cost

Reliability

(a) (b)

-0.0400

-0.0200

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

O1 O2 O3

Model 1a (10%)

Time

Cost

Reliability

-0.1000

-0.0800

-0.0600

-0.0400

-0.0200

0.0000

0.0200

0.0400

O1 O2 O3

Model 1a (-10%)

Time

Cost

Reliability

Software Reliability Growth Models Incorporating Software Project/Application’s … 49

�Fig. 6 Relative change in release time, cost and reliability with respect to a Model 1a when there
is 10% increase in costs O1, O2 and O3 bModel 1a when there is 10% decrease in costs O1, O2 and
O3 c Model 1b when there is 10% increase in costs O1, O′

2, O2 and O3 d Model 1b when there is
10% decrease in costs O1, O′

2, O2 and O3 e Model 2a when there is 10% increase in costs O1, O2
and O3 f Model 2a when there is 10% decrease in costs O1, O2 and O3 g Model 2b when there is
10% increase in costs O1, O′

2 O2 and O3 h Model 2b when there is 10% decrease in costs O1, O′
2

O2 and O3

made with extant models from literature. An optimization formulation has also been
proposed for all the four models with respect to desiderated reliability and with
the aim of minimizing total expected outlay. Lastly, a sensitivity analysis has been
provided to validate the optimal result obtained.

Looking at the results, one can state that model with change point in both cases
when the software project characteristic is constant or a power function is an efficient
tool in terms of providing a realistic outlook and in comparison to other previous
models.

7 Future Scope

The limitation identified for the proposed model is that it has been validated on a
small dataset and the under an ideal testing environment. In order to generalize the
results, using large datasets would authenticate the efficiency of the proposed model.
Further research work can be implemented by considering various attributes like
testing effort, imperfect debugging, resource allocation etc.

References

Aggarwal AG, Nijhawan N, Kapur P (2015) A discrete SRGM for multi-release software system
with imperfect debugging and related optimal release policy. In: 2015 international conference
on futuristic trends on computational analysis and knowledge management (ABLAZE). IEEE,
pp 186–192

Castillo E, Mínguez R, Castillo C (2008) Sensitivity analysis in optimization and reliability
problems. Reliab Eng Syst Saf 93(12):1788–1800

Chatterjee S, Shukla A (2017) An ideal software release policy for an improved software reliability
growth model incorporating imperfect debugging with fault removal efficiency and change point.
Asia-Pac J Oper Res 34(03):1740017

Chatterjee S, Nigam S, Singh JB, Upadhyaya LN (2012) Effect of change point and imperfect
debugging in software reliability and its optimal release policy. Math Comput Model Dyn Syst
18(5):539–551

Chiu K-C, Huang Y-S, Lee T-Z (2008) A study of software reliability growth from the perspective
of learning effects. Reliab Eng Syst Saf 93(10):1410–1421

Goswami D, Khatri SK, Kapur R (2007) Discrete software reliability growth modeling for errors
of different severity incorporating change-point concept. Int J Autom Comput 4(4):396–405

50 S. Inoue et al.

Huang C-Y (2005a) Cost-reliability-optimal release policy for software reliability models incorpo-
rating improvements in testing efficiency. J Syst Softw 77(2):139–155

Huang C-Y (2005b) Performance analysis of software reliability growth models with testing-effort
and change-point. J Syst Softw 76(2):181–194

Huang C-Y, Luo S-Y, Lyu MR (1999) Optimal software release policy based on cost and reliability
with testing efficiency. In: Proceedings of the twenty-third annual international computer software
and applications conference (Cat. No. 99CB37032). IEEE, pp 468–473

Inoue S, Yamada S (2011) Software reliability growthmodeling frameworks with change of testing-
environment. Int J Reliab Qual Saf Eng 18(04):365–376

Inoue S, Yamada S (2018) Markovian software reliability modeling with change-point. Int J Reliab
Qual Saf Eng 25(02):1850009

Inoue S, Hayashida S, Yamada S (2013) Extended hazard rate models for software reliability
assessment with effect at change-point. Int J Reliab Qual Saf Eng 20(02):1350009

Jeske DR, Zhang X (2005) Some successful approaches to software reliability modeling in industry.
J Syst Softw 74(1):85–99

Kapur P, Garg R (1989) Cost-reliability optimum release policies for a software system under
penalty cost. Int J Syst Sci 20(12):2547–2562

Kapur P, Garg R (1992) A software reliability growth model for an error-removal phenomenon.
Softw Eng J 7(4):291–294

Kapur PK, Singh VB, Anand S, Yadavalli VSS (2008a) Software reliability growth model with
change-point and effort control using a power function of the testing time. Int J Prod Res
46(3):771–787

Kapur P, Jha P, Singh V (2008b) On the development of discrete software reliability growth models.
In: Handbook of performability engineering. Springer, pp 1239–1255

Kapur P, Aggarwal AG, Anand S (2009) A new insight into software reliability growth modeling.
Int J Perform Eng 5(3):267–274

Kapur PK,GargRB,AggarwalAG, TandonA (2009a)General framework for change point problem
in software reliability and related release time problem. Int J ReliabQual Saf Eng 16(06): 567–579

Kareer N, Kapur P, Grover P (1990) An S-shaped software reliability growth model with two types
of errors. Microelectron Reliab 30(6):1085–1090

Ke S-Z, Huang C-Y, Peng K-L (2014) Software reliability analysis considering the variation of
testing-effort and change-point. In: Proceedings of the international workshop on innovative
software development methodologies and practices, pp 30–39

LaiR,GargM(2012)Adetailed study ofNHPP software reliabilitymodels. J Softw7(6):1296–1306
Lai R, Garg M, Kapur PK, Liu S (2011) A study of when to release a software product from the
perspective of software reliability models. JSW 6(4):651–661

Li Q, Pham H (2017) NHPP software reliability model considering the uncertainty of operating
environments with imperfect debugging and testing coverage. Appl Math Model 51:68–85

Li X, Xie M, Ng SH (2010) Sensitivity analysis of release time of software reliability models
incorporating testing effort with multiple change-points. Appl Math Model 34(11): 3560–3570

Nagaraju V, Fiondella L (2017) A single changepoint software reliability growthmodel with hetero-
geneous fault detection processes. In: 2017 Annual reliability and maintainability symposium
(RAMS). IEEE, pp 1–6

Okumoto K, Goel AL (1979) Optimum release time for software systems based on reliability and
cost criteria. J Syst Softw 1:315–318

Pachauri B, Kumar A, Dhar J (2013) Modeling optimal release policy under fuzzy paradigm in
imperfect debugging environment. Inf Softw Technol 55(11):1974–1980

Park J, Baik J (2015) Improving software reliability prediction throughmulti-criteria based dynamic
model selection and combination. J Syst Softw 101:236–244

PhamH (2016) A generalized fault-detection software reliabilitymodel subject to random operating
environments. Vietnam J Comput Sci 3(3):145–150

Roy P, Mahapatra G, Dey K (2014) An NHPP software reliability growth model with imperfect
debugging and error generation. Int J Reliab Qual Saf Eng 21(02):1450008

Software Reliability Growth Models Incorporating Software Project/Application’s … 51

Sharma K et al (2010) Selection of optimal software reliability growth models using a distance
based approach. IEEE Trans Reliab 59(2):266–276

Shrivastava AK, Sachdeva N (2019) Generalized software release and testing stop time policy. Int
J Qual Reliab Manag 37(6/7):1087–1111

ShrivastavaAK,KumarV,Kapur PK, SinghO (2020) Software release and testing stop time decision
with change point. Int J Syst Assur Eng Manag 11(2):196–207

Singh V, Kapur P, Kumar R (2010) Developing S-shaped reliability growth model for open source
software by considering change point. In: Proceedings of the IASTED international conference,
vol 677, no 103, p 256

Wood A (1996) Predicting software reliability. Computer 29(11):69–77
Yamada S, Ohba M, Osaki S (1983) S-shaped reliability growth modeling for software error
detection. IEEE Trans Reliab 32(5):475–484

Zhao M (1993) Change-point problems in software and hardware reliability. Commun Stat Theory
Methods 22(3):757–768

ZhuM, PhamH (2018) A software reliability model incorporating martingale process with gamma-
distributed environmental factors. Ann Oper Res 1–22

Zhu M, Pham H (2020) A generalized multiple environmental factors software reliability model
with stochastic fault detection process. Ann Oper Res 1–22

	 Software Reliability Growth Models Incorporating Software Project/Application’s Characteristics as a Power Function with Change Point
	1 Introduction
	2 Literature Survey
	2.1 Software Reliability Growth Models
	2.2 Change Point
	2.3 Release Policy

	3 Methodology
	3.1 Notations
	3.2 Assumptions
	3.3 Model Development

	4 Model Validation
	4.1 Dataset
	4.2 Parameter Estimation
	4.3 Goodness of Fit Curves
	4.4 Comparison with the Previous Models

	5 Release Policy
	5.1 Numerical Illustration
	5.2 Sensitivity Analysis

	6 Conclusion
	7 Future Scope
	References

