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Abstract The increasing dependence of our modern society on software systems
has driven the development of software products to be more competitive and time-
consuming. At the same time, large-scale software development is still considered a
complex, effort-consuming, and expensive activity, given the influence of the transi-
tions in software development, which are the adoption of software product lines, soft-
ware development globalization, and the adoption of software ecosystems. Hence, the
consequences of software failures become costly and even dangerous. In this chapter,
we thus review probabilistic software reliability models with different groups. Since
nonhomogeneous Poisson process (NHPP) based software reliability models have
been successful tools in practical software reliability engineering, this chapter mainly
focuses on the review of NHPP based software reliability models that address
various concerns in software development practices, such as testing efficiency, testing
coverage, multiple fault types, time-delay fault removal, and environmental factors.

Keywords Nonhomogenous Poisson process - Software reliability growth model -
State of the art review

1 Introduction

In today’s technological world, almost everyone is directly or indirectly in contact
with computer software. Computers have been rapidly expanding to a wide array of
complex machinery and equipment applied in our everyday safety, security, infras-
tructure, transportation system, and financial management. Since software product
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is extensively involved in various industries and service-based applications, the
increasing dependence of our modern society on software-driven systems has led
the development of software product to be very competitive and time-consuming
(Febrero et al. 2016). Unlike hardware systems, software cannot break down or wear
out during its life cycle but can fail or malfunction under certain configurations
within specific conditions (Hartz et al. 1997). Hence, the development, measure-
ment, and qualifying of software are challenging yet critical in such a fast-growing
technological society.

In 1980, Lehman (1980) summarized the Laws of Program Evolution. The first law,
Continuing Change, expressed the universally observed fact that large programs are
never completed. They just continue to evolve until the more cost-effective updated
version replaces the systems. The second law, Increasing Complexity, could also
be viewed as an instance of the second law of thermodynamics. As an evolving
program is continually changed, its complexity, reflecting deteriorating structure,
increases as well, unless the mission is done, or maintenance is needed. The third
law, The Fundamental Law of Program Evolution, is subject to dynamics that make
the programming process, measures system attributes and collaborative projects,
and self-regulating with statistically proven trends and invariances. The fourth law,
Conservation of Organizational Stability (Invariant Work Rate), and the fifth law,
Conservation of familiarity, both lead to the third law. The fourth law more focuses on
the steadiness of multiloop self-stabilizing systems. A well-established organization
is good at avoiding dramatic change and particularly discontinuities in the increasing
growth of an organization. Especially in the past two decades, the complexity of the
task that the software system performs has grown dramatically, faster than hardware
due to the fast-paced high technology development (Catelani et al. 2011).

A modern software product is prone to include a large number of modules, system
components, and Lines of Code (LOC) (Catelani et al. 2011; Han et al. 2012; Chang
etal. 2014; Chatterjee et al. 1997; Chatterjee and Singh 2014). The size of a software
product is no longer measured in terms of thousands of LOC, but millions of LOC.
The latest investigation states that more than 10 Microsoft commercial software
products could have more than 600 million LOC (Dang et al. 2011). In view of such
a great amount of LOC, the complexity of software product, domain knowledge of
programmer/tester, testing methodologies, testing coverage, and testing environment
should be all carefully taken into account in software development.

Since the inception of electronic computing in the late 1940s, the development
race of the computer industry has led to an unprecedented process (Patterson and
Hennessy 2013). Powerful, inexpensive computer workstations replaced the drafting
boards of circuits and computer designers. Moreover, an increasing number of design
steps were automated. Computer and communication industries have grown into
the largest, amongst the new rising industries in the twentieth century (Moravec
1998). Hardware advances have allowed software programmers to create wonderful
coding and develop new features and functionality (Moravec 1998). However, there
exists uneven progress between software and hardware in the computer revolution
in the past few decades. Based on the latest technology review, hardware is leaving
software behind. As a matter of fact, software is relied on a less firm foundation,
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at the same time, carries a larger burden than hardware in operation. Given the
current technology in manufacturing and electrical engineering, software has more
potentials to allow designers to contemplate more ambitious systems in consideration
of a broader multidisciplinary scope (Lyu 1996, 2007).

The nonperformance and failures of a software system are inconvenient, some-
times can lead to severe consequences, especially in the application of aerospace
engineering and national defense systems. In March 2015 (COMPUTERWORLD
2020), a software glitch carried in the software package of Lockheed Martin F-
35 Joint Strike Fighter aircraft had made the aircraft could not correctly detect the
target. The sensor on the plane cannot distinguish the difference between singular
and multiple threats. Additionally, different F-35 aircraft provide different detection
information even they are aiming at the same threat, which depends on the angles
they are aiming at and what their sensors have received. The delivery date had to be
postponed as well because of this issue.

Software failures can also cause serious consequences in an automobile. Toyota
had to recall almost 2 million Prius hybrid vehicles, in order to fix a software
glitch along with its engine control units (ECUs) in February 2014 (COMPUT-
ERWORLD 2020). A malfunction within the car’s hybrid drive system caused by
a software glitch could, in certain circumstances, cut the system’s power and cause
the car to an unscheduled halt. A software glitch affecting the ECUs controlling
the motor/generator and the hybrid system could put extra thermal stress on certain
transistors under certain conditions. The same software issue recurred in July 2015,
which has resulted in the recall of 625,000 Prius cars globally. Software failures
have affected the healthcare system as well. Emergency services were unavailable
for around six hours across seven U.S. states in April 2014 (COMPUTERWORLD
2020). The incident had a major impact on 81 call centers, meaning about 6,000
people who made 911 calls that were not able to connect in these seven states. There
is a study announced by the Federal Communications Commission found that the
cause of service unavailable was an entirely preventable software error.

The nonperformance and failures of software are expensive. A study carried by
the National Institute of Standards & Technology in 2002 found that inadequate
infrastructures for fixing software bugs cost the U.S economy $59.5 billion every
year. What about the global cost of fixing software bugs every year? This study also
estimated that more than a third of software bugs could be eliminated by improving
software testing scheduling and methodology (Tassey 2002).

Hence, developing reliable software is a major challenge to the software industry,
information technology (IT) industry, and other related industries, which leads to the
fact that Software Reliability Engineering is popular in both academia and industry.
We thus discuss the recent trends in software development and the importance of
developing software reliability models in Sect. 2. Indeed, the deterministic and prob-
abilistic software reliability models are reviewed in Sect. 3. Since nonhomogeneous
Poisson process (NHPP) based software reliability models have been successful tools
in practical software reliability engineering, Sect. 4 thus focuses on the review of
NHPP based software reliability models that address various concerns in the software
development practices. Section 5 concludes this chapter.
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2 Software Reliability Engineering

2.1 Trends in Software Development

Large-scale software development is a very complex, effort-consuming, and expen-
sive activity. Even though many innovations and improvements have been proposed
on software architecting systems and development approaches, large-scale software
development is still largely unpredictable and error-prone (Bosch and Bosch-Sijtsema
2010).

Bosch and Bosch-Sijtsema (2010) discussed three trends in software develop-
ment in 2010, which will further accelerate the complexity of large-scale software
development. The first trend is the increasing adoption of software product lines.
A software product line consists of a software platform shared by a group of prod-
ucts. Each software product can select and configure components in the platform
and extend the platform with desirable functionality. At the same time, the plat-
form consists of many components with the associated team. Each team takes charge
of one product or several products. Software development is taken place within
many teams in the organization. During the development cycle, the interactions
and communications among teams are much than traditional software development
teams. Some research identified the adoption of software product lines allows 50—
75% of development expenses reduction and decreases the defect density if the adop-
tion is successful (Hallsteinsen et al. 2008; Clements and Northrop 2002). However,
the adoption of software product lines also brings a new level of dependency on
organizations in software development. The second trend is software development
globalization. Companies often have multiple software development sites globally
or partnered with other remote companies especially located in India and China.
There are many advantages in terms of software development, e.g., cycle time reduc-
tion, travel cost reduction, fewer communication issues about user experiences, and
faster response to customers (Cascio and Shurygailo 2003). Nevertheless, software
development globalization also brings challenges given the culture difference, time
zone, software engineering maturity in every country, and technical skills between
different countries. The third trend is the adoption of software ecosystems. A software
ecosystem is defined as a set of businesses functioning as a unit and interacting with a
shared market for software and services. There are relationships amongst those units,
which are supported by a technological platform, operating through the exchange
of information, resources, and artifacts (Messerschmitt and Szyperski 2005; Jansen
et al. 2007). Software ecosystem also takes external developers, domain experts, and
users. Hence, community-centric collaboration and coordination are very impor-
tant, which are similar to the adoption of software product lines (the first trend in
software development). Thus, the dependencies between components will increase
and the complexity of software development will increase accordingly (Bosch and
Bosch-Sijtsema 2010).
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2.2 Importance of Software Reliability Model

Given the complexity of large-scale software development, how we can assure
software quality is one of the challenging problems in the industry. One of the
fundamental quality characteristics is reliability. It is generally accepted that reli-
ability is the key factor in software quality since it quantifies failures and misbe-
haviors of the product. As recognized in both industry and academia, reliability is
an essential measurement metric for developing a robust and high-quality software
product (Febrero et al. 2016; Lyu 1996, 2007). According to the definition given by
ANSI/IEEE, software reliability is defined as the probability that a software system
can perform its designed function without failure during a specified time on a given
set of inputs under defined environments (Lyu 1996).

On the other hand, the increasing complexity and shortened iteration cycle of soft-
ware products bring in a decrease in average market life expectancy (Tassey 2002).
Thus, since the 2000s, there is a great attention shift from hardware development and
testing to improve software quality and reliability with the purpose of winning more
market share. Moreover, high reliability is desirable if a software company plans
to reduce the total cost of software products from an economic point of view. It is
undoubtedly that lower reliability software product not only results in the negative
impact regarding customer satisfaction but also brings in the additional cost occurred
during the operation phase because fixing a software fault in the operation phase costs
more resources compared with in-house testing. Since the fixing cost for a software
fault in the operation phase is much higher than the in-house testing phase, most orga-
nizations try to minimize these expenditures occurred in the operation phase. That
is why many high technology organizations need to release multiple versions for a
software product instead of fixing software faults in the operation phase, to improve
product reliability and introduce new features to improve the user experience.

It is necessary to develop a practical and applicable model that can capture the
software failure growth trend, predict the number of failures and software reliability
given a specific period of operating time, propose the optimal release time of new
products, and schedule the delivery time for the next release based on the predeter-
mined level of reliability. Thus, software reliability models are applied to evaluate
software reliability and capture the failure growth trend in the past few decades.
There are several ways to measure software reliability. A practical and common one
is model software reliability by utilizing the past failure behaviors obtained from the
testing phase.

3 Software Reliability Models

Software failure data, collected mostly in the testing phase, are applied to study
the behavior of software systems, such as software reliability given a specific time
interval, failure growth rate, the number of remaining faults in the system, and the
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optimal release time. Hence, a great number of studies have been focused on the
development of software reliability models in the past four decades with various
assumptions, such as testing methodology, testing coverage, fault removal efficiency,
fault dependency, and time-delay debugging.

The classification of software reliability models was presented by different
researchers (Bastani and Ramamoorthy 1986; Goel 1985; Musa et al. 1990; Mellor
1987). One of the widely utilized classification methodologies categorizes software
reliability models into two types: the deterministic models and the probabilistic
models (Pham 2000). The deterministic models are used to study: (1) the element
of a program by counting the number of distinct operators, operands, errors, and
instruction; (2) the control flow of a program by counting the branches; (3) the data
flow of a program (data sharing and passing). There are two well-known models:
Halstead’s software metric (Halstead 1977) and McCabe’s cyclomatic complexity
metric (McCabe 1976). These models provided an innovative and pioneering quan-
titative approach to analyze and measure the performance of software systems at
that time; however, a random event is not involved, hence, these models are not suit-
able to apply in modern software. The probabilistic models take into account failure
detection and failure removal as probabilistic events during software development.
The classification of the probabilistic software reliability models is given by Pham
(2000, 2007), Xie (1991): (1) error seeding; (2) failure rate; (3) curve fitting; (4)
reliability growth; (5) Markov structure; (6) time series; (7) NHPP.

In Sect. 3.1, we review the research articles regarding the probabilistic software
reliability models with groups stated as follows: error seeding, failure rate, curving
fitting, reliability growth, Markov structure, and time series. Since NHPP based
software reliability models have been successful tools in practical software reliability
engineering, this chapter mainly focuses on the review of NHPP based software
reliability models. Therefore, Sect. 3.2 introduces the general theory of NHPP and
Sect. 4 reviews a great number of NHPP software reliability models with different
considerations, such as testing effort, testing coverage, fault removal efficiency, fault
dependency, time-delay fault removal, environmental factor on affecting software
reliability, and multiple-release software.

3.1 Probabilistic Software Reliability Models

In the error seeding based software reliability model, the number of errors in a
program is estimated by applying the multi-stage sampling technique (Mills 1972;
Cai 1998; Tohma et al. 1991). Errors are categorized as indigenous errors and induced
(seeded) errors. The number of indigenous errors, which is unknown, is estimated
from the number of induced errors and the ratio of these two types of errors obtained
from software debugging data. We list three models in the group of errors seeding
based software reliability models.

Mills (1972) proposed an error seeding method to estimate the number of errors
in a program by introducing seeded errors into the program. If the probability of
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detecting both indigenous errors and induced errors are equal, then the probability
of k induced errors in r removed errors follows a hypergeometric distribution, given

(Y

Pk;N,nj,r)=—-"——" k=1,2,...,r

where N is the total number of indigenous errors, n; is the total number of induced
errors, r is the total number of errors removed during debugging, & is the total number
of induced errors in r removed errors, and » — k is the total number of indigenous
errors in r removed errors. Given the parameters n;,r, and k are known, the maximum
likelihood estimation (MLE) of N can be shown as (Huang 1984) N = [No] + 1,
in which Ny = n{(r —k)/k — 1. Note that Ny and Ny + 1 are both MLEs of N
if Ny is an integer. Tohma et al. (1991) introduced a reliability model based on the
hypergeometric distribution to estimate the number of errors in the program. Later,
Cai (1998) modified Mills’ model by dividing software into two parts, Part 0 and
Part 1.

In the failure rate class, these studies (Jelinski and Moranda 1972; Schick and
Wolverton 1978; Moranda 1981) focused on how failure rates change at the failure
time during the failure intervals. The number of faults in the program is a discrete
function, thus, the failure rate of a program is a discrete function as well. The Jelinski-
Moranda model (Jelinski and Moranda 1972) is one of the earliest software reliability
models, which states the program failure rate at the i failure interval is given by
AMt;) =0[N—-(@G—1)],i=1, 2,..., N, in which & is a proportional constant
representing the contribution of one fault makes to the overall program, and N is the
number of initial faults in the program. The Schick-Wolverton model (Schick and
Wolverton 1978) modified the Jelinski-Moranda model by assuming the failure rate
at the i'M time interval increases with time ¢; since the last debugging. Later, Moranda
(1981) proposed a reliability model considering the program failure rate function as
initially a constant D and decreases geometrically at failure times.

In the curve fitting class (Belady and Lehman 1976; Miller and Sofer 1985),
the models use statistical regression analysis to illustrate the relationship amongst
software complexity, the number of faults, and failure rate in the software. Linear
regression analysis, nonlinear regression analysis, or time series approach is applied
between the dependent and independent variables. Estimation of errors, complexity,
and failure rate are investigated in the modeling. Belady and Lehman (1976) intro-
duced a model by applying time series approach to estimate software complexity.
Miller and Sofer (1985) also proposed a model to estimate software failure rate by
assuming the failure rate is a monotonically non-increasing function.

In the reliability growth class (Coutinho 1973; Wall and Ferguson 1977), the
improvement of program reliability is measured and predicted via the testing phase
by reliability growth models. The failure rate is a function of time or the number of
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testing cases in this group of models. Coutinho (1973) pointed out that the failure rate
is a function of the cumulative number of failures and testing time. Wall and Ferguson
(1977) proposed a model that is similar to Weibull model to predict software failure
rate during testing.

In the group of Markov structure models (Goel and Okumoto 1979a; Littlewood
1979; Yamada et al. 1998; Goseva-Popstojanova and Trivedi 1999; Dai et al. 2005),
the assumption is that the failure of the modules is independent of each other. Goel and
Okumoto (1979a) proposed a linear Markov model with imperfect debugging. Mean-
while, they gave the transition probability of the model. Littlewoods (1979) developed
a reliability model incorporating the transitions between modules while operating.
Two types of failures are considered: failure from each module, modeled as a Poisson
failure process, and failure from the interface between modules. Yamada et al. (1998)
performed a software safety model to illustrate software’s time-dependent behavior
using the Markov process. Goseva-Popstojanova and Trivedi (1999) proposed a soft-
ware reliability modeling framework that can consider the phenomena of failure
correlation and further studied its effects on the software reliability measures based
on the Markov renewal process. Dai et al. (2005) proposed a software reliability
model based on a Markov renewal process for the modeling of the dependence among
successive software runs, in which four types of failures are allowed in the general
formulation. Meanwhile, the cases of restarting with repair and without repair are
considered.

In the time series model group (Chatterjee et al. 1997; Singpurwalla and Soyer
1985; Ho and Xie 1998; Xie and Ho 1999), autoregressive integrated moving average
method is applied to study software reliability. Singpurwalla and Soyer (1985) intro-
duced several ramifications into a random coefficient autoregressive process of order
1 to describe software reliability. Besides, several research papers (Chatterjee et al.
1997; Ho and Xie 1998; Xie and Ho 1999) also used time series approach to address
software reliability prediction in the testing phase and operation phase.

3.2 General Theory of NHPP

Let N(¢) be the cumulative number of software failures by time ¢. The counting
process { N(t), t > 0} is said to be a NHPP with the intensity function A(¢), t > 0.
The probability of exactly n failures occurring during the time interval (0, ) for the
NHPP is given by

e "Dforn=0,1, 2, ...

P{N(t):n}:[mli—t')]n

where m(t) = E[N(t)] = ff)k(s)ds. m(t) is the expected number of failures up to
time ¢, which is also known as the mean value function (MVF).
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Note that the forms of the MVF vary with different assumptions. In NHPP, the
stationary assumption is relaxed compared with the Poisson process. In other words,
N(t) is Poisson-distributed with a time-dependent failure intensity function A(f),
while the Poisson process holds the stationary assumption, m () = At.

A general NHPP model includes the following assumptions: (1) the failure
process has an independent increment; (2) the failure rate of the process is
given by P{N(t + At) = N@) =1} = A(t)At + o(At); (3) during a small
interval Atf, the probability of more than one failure is negligible, that is
P{N(t + At) — N(t) = 2} = o(At),in which o(Ar) represents a quantity that tends
to be zero for a small Az. The instantaneous failure intensity function A(#) is defined
as

M0 = 1im R(t) — R(At +1) _ f(@)
At—0 AtR(1) R(1)

where R(t) = P[N(t) = 0] = e "),

The MVF is expressed as m(t) = f gk(s)ds. One of the main objectives of NHPP
software reliability model is to derive appropriate m (¢). The failure intensity function
is equivalent to the derivative of MVFE, which is A(¢) = m’(¢). Different assumption
on the fault detection and fault removal process lead to different failure intensity
function A(¢). Reliability and other related measurements can be obtained by solving
the differential equation m’(¢). The least-square estimate or MLE are commonly
applied to estimate unknown parameters.

Software reliability R(t) is defined as the probability that a software failure does
not occur in (0, 1), that is

R(t) = P[N(t) =0] = ¢ "®

In general, during time interval (¢, t 4 x), software reliability can be described
as

R(x|t) = P[N(t +x) — N(t) = 0] = ¢~ "H0=m®]

4 NHPP Software Reliability Models

NHPP has been successfully applied to model software reliability since Goel and
Okumoto (1979b) firstly proposed their innovative model in 1979. Based on the
development of Goel-Okumoto model, many NHPP software reliability models
have been proposed in the past four decades to address different scenarios in soft-
ware fault detection and fault correction processes, such as testing coverage, fault
removal efficiency, fault dependency, time-delay fault removal, environmental factor
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on affecting software reliability, and multiple-release software. The failure processes
are described by NHPP property with the MVF at time ¢, m(¢), and the failure inten-
sity of the software program, A(¢), which is also the derivative of MVF. Most existing
NHPP software reliability models are developed based on the model below

dm(1)
dt

=h(O[N({) —m(1)] (D

where m (t) denotes the expected number of software failures by time #, N () denotes
the total number of fault content by time ¢, and /(¢) denotes the time-dependent fault
detection rate per unit of time. The underlying assumption of Eq. (1) is the failure
intensity is proportional to the residual fault content in the software. Depending on
the model considerations, N(¢) and A(t) can be modeled as a constant or a time-
dependent function. Given many NHPP software reliability models are developed
based on Eq. (1), we thus review these models depending on the focused scenarios
in software development process. In the following sections, we rewrite the reviewed
models based on the format of Eq. (1), and the coefficients of the reviewed models
are nonnegative unless specified. The basic assumptions for the reviewed models
are as follows unless specified: (1) software fault detection follows the NHPP; (2)
the number of failures detected at any time # is proportional to the remaining faults in
the software program; (3) when a failure is detected, the error that caused the failure
is immediately removed; (4) all faults in a program are mutually independent from
the perspective of failure detection.

4.1 NHPP Exponential Models

The Goel-Okumoto model (Goel and Okumoto 1979b) assumed that the isolated
faults are removed prior to future test occasions and no new errors are introduced.
The Goel-Okumoto model thus has 4(t) = b and N(¢) = a in Eq. (1) to obtain the
MVFEF. Musa (1975) proposed a similar model to the Goel-Okumoto model by consid-
ering the relationship between execution time and calendar time, which assumed that
h(t) = c¢/nT and N(¢) = a in Eq. (1) to obtain the MVF, in which a is the number
of failures in the program, c is the testing compression factor, T is the meaning time
to failure at the beginning of the test, and n is the total number of possible failure
during the maintained life of the program.

Ohba (1984) proposed the hyper-exponential growth model in consideration of
different clusters of modules in a program. Each module contains a different initial
number of errors and different failure rates, which are all assumed as constants
in the software reliability model. It is well-known that the sum of an exponential
distribution is a hyper-exponential distribution. Thus, the system software reliability
model is more like the summation of each module’s reliability model. Similar to
the model proposed by Ohba (1984), Yamada and Osaki (1985) also proposed a
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software reliability model that considered software can be divided into K modules.
The probability of faults for each module will be taken into consideration. The fault
detection rate is the same within modules; however, it is various between modules.
The total number of errors in the software is assumed as a constant and there are no
new errors will be introduced during the fault detection process.

4.2 NHPP S-Shaped Models

Inthe NHPP S-shaped models, software reliability growth curve behaves as S-shaped.
The curve crosses the exponential curve from below and the crossing occurs only once
(Pham 2007). Time-dependent fault detection rate is applied in modeling software
reliability growth trends. The concept of the S-shaped model is proposed to describe
the changes of fault detection rate. Fault detection rate can be changed because
of the difficulty level to detect different types of faults or the working experience
that involves a learning process of software testers. Ohba et al. (1982) discussed a
general NHPP model with S-shaped MVF in which A(¢) in Eq. (1) is treated as a
time-dependent function. Ohba and Yamada (1984) proposed the NHPP model with
the S-shaped MVF and considered the cumulative number of detected faults often
seems to perform S-shaped. They stated that some of the faults are not detectable
before some other faults are removed. The model proposed by Ohba and Yamada
(1984) is called the inflection S-shaped model, which assumes 4 (¢) = b/(1+ Be™)
and N(t) = a in Eq. (1), in which b and § represent failure detection rate and
inflection factor, respectively.

Around the same time, Yamada et al. (1983, 1984, 1986) proposed several soft-
ware reliability models considering the software fault detection process as a learning
process. Specifically, when software testers get more familiar with the testing envi-
ronment, specifications, and requirements, the fault detection rate will be higher.
For example, Yamada et al. (1984) proposed a model, called the delayed S-shaped
model, which assumed that h(t) = b?t/(bt + 1) and N(t) = a in Eq. (1), in which
b is the error detection rate per error in the steady-state. Nakagawa (1994) devel-
oped the connective NHPP model with S-curve forms. A group of modules called,
main route modules, are tested first, followed by other modules. Even the failure
intensity in the main route modules and other modules are similar, the failure growth
curve performs as S-curve since the detection starts at different time points. After-
ward, S-shaped reliability models are further developed in many studies (Chatterjee
et al. 1997; Chatterjee and Singh 2014; Pham 1993; Pham and Zhang 1997; Pham
et al. 1999). For example, Pham et al. (1999) developed the PNZ model in consid-
eration of both the imperfect debugging and the learning effects, which assumed
h(t) = b/(1 + Be™®) and N(t) = a(l + at) in Eq. (1), in which faults can
be introducted during the debugging process at a constant rate of «, a is the total
number of initial faults, and b and § have the same meanings as the model proposed
by Ohba and Yamada (1984). Chatterjee and Singh (2014) incorporated a logistic-
exponential testing coverage function in developing software reliability model, which
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assumed that h(t) = ¢/(1)/(1 — c(t)) — d(1), c(t) = (e — 1)"/[1 + (" — 1)k],
d(t) = B/(1+ Bt),and N(¢) = a in Eq. (1), in which k is the positive shape param-
eter, b is a positive scale parameter, d(¢) is the fault introduction rate, modeled as a
decreasing function of time.

4.3 NHPP Imperfect Debugging Models

NHPP perfect debugging models often assume when a failure occurs, the fault that
caused the failure can be immediately removed, and no new faults are introduced
(Goel and Okumoto 1979a; Ohba and Yamada 1984; Yamada et al. 1983; Hossain and
Dahiya 1993), which means N (f) = a. Many models described in NHPP exponential
models and S-shaped models are also NHPP perfect debugging models, in which
N (¢) is modeled as a constant.

The concept of imperfect debugging is based on the assumptions (Pham 2000,
2007): (1) when the detected errors are removed, it is possible to introduce new errors;
(2) the probability of finding an error in a program is proportional to the number of
remaining errors in the program. Many reliability models are proposed based on
NHPP imperfect debugging concept (Pham 2007, 1993; Yamada et al. 1984, 1991,
1992; Pham and Zhang 1997; Pham et al. 1999; Pham and Pham 2000; Inoue and
Yamada 2004; Jones 1996; Kapur et al. 2007, 2011; Teng and Pham 2006; Tokuno
and Yamada 2000; Fang and Yeh 2016; Xie and Yang 2003; Pham and Normann
1997). In the 1990s, Yamada et al. (1992) proposed two imperfect debugging models
considering two types of fault content functions N (¢), which are N(¢) = ae?’ and
N(t) = a(l + yt), respectively, in which « is the number of initial fault content in
the program prior to software testing, § and y are the increasing rates of the number
of the introduced faults to the program.

Software reliability models can belong to multiple categories, such as perfect
debugging, imperfect debugging, S-shaped, exponential, testing effort, testing
coverage, fault dependency, environmental factors, and software multiple-release.
As an example, we review models that belong to both the categories of NHPP imper-
fect debugging and S-shaped models. S-shaped models were initially proposed to
focus on the change of fault detection rate considering the difficulty level of detecting
different types of software faults and the efficiency of detecting faults based on soft-
ware testers’ learning process, we therefore name the models that belong to both
the categories of NHPP imperfect debugging and S-shaped models as NHPP imper-
fect debugging fault detection (IDFD) model. Besides the general assumptions of
NHPP software reliability models, the generalized NHPP IDFD models also include
the following assumptions: (1) the error detection rate differs among faults; (2) new
faults are introduced during debugging.

Pham and Normann (1997) provided a generalized solution of Eq. (1). Specific
MVF can be obtained by substituting different fault detection functions. The PNZ
model (Pham et al. 1999) described in Sect. 4.2 also belongs to the category of
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the NHPP IDFD model. Moreover, Pham and Zhang (1997) proposed a model with
N(@t) =c+a(l —e ) and h(t) = b/(1 + Be~") in Eq. (1). Pham (2000, 2007)
proposed a model by considering the fault introduction rate is an exponential func-
tion of the testing time, and the error detection rate follows a learning process, which
assumed that N (t) = aef’ and b(t) = b/(1 + ce™®") in Eq. (1). Later, Kapur et al.
(2011) proposed two general frameworks for developing NHPP software reliability
model in the presence of imperfect debugging and error generation. The first frame-
work was formulated based on the assumption that there is no differentiation between
failure observation and fault removal process. 4 (#) and N(¢) in Eq. (1) are modeled
ash(t) = pF'(t)/(1— F(t)) and N(t) = A+ am(t), respectively, in which p is the
probability of perfect debugging, F'(¢) is the failure time distribution, A is the initial
number of faults, and « is a constant fault introduction rate. The second framework is
thus extended based on the assumption that there is a differentiation between failure
observation and fault removal process.

4.4 NHPP Software Reliability Models on Software Testing

The common way to improve software reliability is to focus on in-house testing.
Myers et al. (2011) defined software testing as a process of executing a program
with the intent of finding errors. There are two fundamental rules in software testing.
Firstly, it is intended to detect as many faults as possible during the in-house testing
phase and remove the detected faults from the software system. Secondly, software
failure data will be collected to predict system reliability, estimate the remaining
faults, and schedule the product delivery date.

Owing to the fact that software debugging, testing, and verification are accounted
for 50-70% of a software product’s development cost. Indeed, software testing is
always defined as a difficult and expensive section in software development (Ohmann
and Liblit 2017; Hailpern and Santhanam 2002). Software debugging cost even goes
higher if debugging is carried out in the operation phase. In practice, it is unlikely
to release bug-free software products owning to its natural characteristics. Post-
deployment failures are inevitable in complex software.

It is generally accepted that the longer time spent on software testing, the fewer
faults that software will carry and the more reliable the software will be. However, this
isnota practical approach. Exhaustive testing to execute all possible inputs unlikely to
happen since too many possible combinations result in little improvement in system
reliability (Weyuker 2004; Kaner et al. 2000). Moreover, full execution tracing is
usually impractical for complex software programs due to the limitation of cost and
resources (Ohmann and Liblit 2017). Furthermore, after software reaches a certain
level of refinement, any further effort on removing faults will cause an exponentially
increase in the total development cost but not much increase in reliability assessment
(Pham and Zhang 1999a, b). Thus, how to test software efficiently and meet the pre-
determined reliability is a challenging task for both researchers and practitioners.
In this section, we review NHPP software reliability models considering different
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scenarios in software testing, including testing coverage, testing efficiency, testing
effort, time-delay fault removal, and multiple fault types.

Testing Coverage Models—Software systems have been widely applied in
numerous safety-critical domains; however, large-scale software development is still
considered a complicated and expensive activity. Since the testing phase plays an
essential role in software development, a great number of software reliability models
focus on the specific scenarios in the software development process, such as testing
coverage, testing efficiency, testing resource allocation, and so on. Testing coverage
is a measure that enables software developers to evaluate the quality of the tested
software and determine how much additional effort is needed to improve the quality
and reliability (Pham 2007). At the same time, the information on testing coverage
can provide customers with a quantitative confidence criterion for software prod-
ucts. Pham and Zhang (2003) thus introduced a generalized model incorporating
the measurement of testing coverage into software reliability assessment, in which
h(t) = c¢'(t)/(1 — ¢(¢)) in Eq. (1). This model indicates that the failure intensity
depends on both the rate, the coverage rate ¢’(t), and the percentage of the code that
has not yet been covered by testing by time ¢, expressed as /-c(t). Note that different
functions of N(¢) and c(¢) can be plugged into Eq. (1) to obtain the MVF, given
the formula of %(¢). One of the examples for the expressions of c(f) and N (¢) is
c(t) =1— (14 bt)e ™ and N(t) = a(l + at). The model developed in Chatterjee
and Singh (2014), reviewed in Sect. 4.2, is based on the model developed in Pham
and Zhang (2003) by considering the fault introduction rate into 4 (t), expressed as
h(t) =c'(®)/(1 — c(t)) — d(t), in which d(¢) is the fault introduction rate.

Inoue and Yamada (2004) proposed an alternative evaluation metric for the testing
coverage in their study and further proposed a software reliability model by formu-
lating the relationship between the alternative testing coverage evaluation function
and the number of detected faults. The testing coverage measures are classified into
several types, such as statement coverage, branch coverage, and path coverage. The
measure of testing coverage is defined as the proportion of the number of statements
that have been executed in the total number of statements. The software reliability
proposed by Inoue and Yamada (2004) assumed that 4(¢) = sc(¢) and N(¢) = a in
Eq.(1),inwhichc(t) = dC(t)/dt, C(t) = a(1—e P!y /(14ze Pat), z = (1—r)/r,
r = bini [bsia, @ 1S the target value of testing coverage to be attained, b;,; is the initial
testing skill factor of the test case designers, and by, is the steady-state testing
skill factor. Later, Li et al. (2008) incorporated logistic testing coverage function
to develop a software reliability model. The time-varying test coverage function
is expressed as C(¢t) = Cpa/(1 + Ae™*), in which C,,,, is the ultimate testing
coverage that can be achieved by testing, a is the parameter of testing coverage
increasing rate, and A is a constant. The proposed reliability model assumed that
N(@#)=Nand h(t) = C'(t)/(1 — C(¢)) in Eq. (1).

Testing Efficiency Models—Section 4.3 reviewed software reliability
models that addressed new faults are introduced into debugging based on the concept
of imperfect debugging. Moreover, imperfect debugging can also be understood as
the detected faults are removed at a certain rate instead of 100%. Jones (1996) stated
that the faults removal efficiency (FRE) is an important factor in software quality and
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process management, which can provide software developers with the estimation of
testing effectiveness and the prediction of additional effort. Note that FRE usually
ranges from 15 to 50% for unit test, 25-40% for integration test, and 25-55% for
system test (Pham 2007). Most software reliability models (Pham 2007) assumed
that the detected faults are removed 100%. However, fault removal is not always
100% in practice. Some represented models are reviewed below. Zhang et al. (2003)
proposed a generalized software reliability model based on imperfect debugging
considering new faults can be introduced while debugging and the detected faults
may not be removed completely. They defined the FRE in the study, which presented
a new idea for later research. The FRE is defined as the percentage of bugs elimi-
nated by reviews, inspections, and tests. Incorporating FRE into software reliability
analysis will not only improve the prediction accuracy of software metrics but also
define a tangible and quantifiable factor. The model proposed in Zhang et al. (2003)
is expressed as dm(t)/dt = b(t)[a(t) — pm(¢)] and da(t)/dt = B(t)dm(t)/dt, in
which p is the FRE, which means p percentage of detected faults can be completely
eliminated during the debugging. Note that Zhang et al. (2003) provides a general
solution for their proposed model and a specific solution with b(t) = ¢/(1 + ae™")
and B(¢) = B.

Kapur et al. (2007) proposed a software reliability model that incorporates testing
efficiency regarding testing efforts in the testing phase and usage function in the
testing phase. They (Kapur et al. 2007) assumed that: (1) when a software failure
occurs, an instantaneous repair effort starts with the fault content is reduced by one
with probability p and remains unchanged with probability 1 — p; (2) the number
of failures during the operation phase is dependent upon the usage function. Thus,
their proposed model considers h(t) = [pb/(1 + Be *")]|dW (t)/dt and N (1) =
a + am(t) in Eq. (1), in which W (¢) represents the cumulative testing effort in the
time interval (0, #]. Base on the model proposed in Zhang et al. (2003), Li and Pham
(2017) further proposed a software reliability model by incorporating FRE with
dm(t)/dt = h(t)[N(t) — pm(®)], h(t) = ' @®)/(1 —c(t)),and N(t) = a +am(t),
in which g is proportionality constant and p is the FRE (same meaning as defined in
Zhang et al. (2003)). Later, Zhu and Pham (2016) proposed a new way to formulate
a software reliability model that addresses non-removed errors due to the experience
of software testers, expressed as dm(t)/dt = b(t)m(¢)[1 —m(t)/L] — c(t)m(t), in
which b(¢) is the fault detection rate per unit of time, L is the maximum number
of faults existed in the program, and c¢(¢) is the non-removed error rate per unit of
time. Zhu and Pham (2016) provided a general solution for the proposed model and
a specific model with b(t) = b/(1 + Be~""), and c(t) = c.

Testing Effort Models—Yamada et al. (1991) proposed a software reliability
model by using exponential and Rayleigh curves to describe the behavior of the
amount of test effort spent on software testing. The proposed model (Yamada et al.
1991) is expressed as dm(t) /dt = rw(t)[a —m(t)], 0 < r < 1,and w(t) = afe P!
orw(r) = afte /2, in which w(t) is the test effort function representing the current
test resource expenditures at testing time ¢, o and § are the coefficients associated
with exponential and Rayleigh function. Huang and Kuo (2002) investigated a soft-
ware reliability model based on the NHPP by incorporating a logistic testing effort
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function. They used the same base model (Yamada et al. 1991) and further proposed
anew logistic testing effort function w(t) = NAote’“’/[l + Ae"’”]z, in which N is
the total testing effort eventually consumed, « is the consumption rate of testing effort
expenditures in the logistic testing effort function, and A is a constant parameter.

Huang and Lyu (2005) studied the impact of the testing effort and testing effi-
ciency on modeling software reliability and the cost for optimal release time. The
model proposed in Huang and Lyu (2005) used the same basic model (Yamada
et al. 1991) and further considered a generalized logistic testing effort function
w(t) = N/[((k+1)/B)/(1 + Ae=1)]"¥, in which N is the total amount of
testing effort eventually consumed, k is the structuring index whose value is larger
for better-structured software development efforts, A is the constant parameter in the
logistic testing effort function, 8 is a normalized constant, and « is the consump-
tion rate of testing effort expenditures in the logistic testing effort function. Huang
(2005) further proposed a software reliability model incorporating the testing effort
function in Huang and Lyu (2005) and the concept of change-point. Later, Lin and
Huang (2008) incorporated the concept of multiple change-points into Weibull-type
testing effort functions to propose a new software reliability model. Peng et al.
(2014) proposed software reliability models in terms of fault detection process and
fault correction process by incorporating testing effort function and imperfect debug-
ging. Peng et al. (2014) assumed that i(t) = b(t)w(t) for fault detection process,
in which b() is the fault detection rate per unit of testing effort at time ¢ and w(¢)
is the current testing effort expenditure at time ¢, and provided a general solution.
Peng et al. (2014) also proposed the MVF for fault correction process with debug-
ging delay m(t) = ff)kd(y)F(w(t) — W(y))dy, in which F(W(t) — W(y)) is the
probability that the fault detected at time y is corrected before time ¢, and A;(?) is
the fault intensity function of the fault detection process.

Time-delay Fault Removal Models—Time-delay fault removal models are
also discussed in many studies. Xie and Zhao (1992) generalized Schneidewind’s
model by assuming a continuous time-dependent delay function which quanti-
fies the expected delay in correcting the detected faults. Delay is treated as an
increasing function of time ¢. The faults are easy to be corrected in the early
stage of testing and become difficult to detect as time goes by. The MVE, m,(?),
proposed in the fault detection process, is similar with Goel-Okumoto model, which
ismg(t) = (a/B)(1 — e #"). The MVF, m_(t), proposed in the fault correct process
is formulated as m.(t) = my(t — At), t > A,.

Hwang and Pham (2009) developed a generalized NHPP software reliability
model by considering quasi-renewal time-delay fault removal. They assumed that:
(1) time-delay is defined as the interval between fault detection and fault removal; (2)
time-delay is considered as a time-dependent function, described by a quasi-renewal
process with parameter o and the first interarrival time s;. This model provides a
more relaxed assumption in software testing and debugging, which is very close to
the practical testing and debugging process. Note that the testing resource allocation
during the testing phase, which is usually depicted by the testing effort function, is
affected not only by the fault detection rate but also the time to correct a detected
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fault. Moreover, Peng et al. (2014) not only incorporated the testing effort func-
tion and fault introduction into the fault detection process but also considered the
debugging delay in the fault correction process.

Multiple Fault Types Models—Many studies stated that there exists more than
one type of software fault in the program (Grottke et al. 2010; Laprie et al. 1990;
Avizienis 1985; Grottke and Trivedi 2005, 2007; Shetti 2003; Alonso et al. 2013;
Yazdanbakhsh et al. 2016; Deswarte et al. 1998; Laprie 1995). Different fault classes
are categorized by practitioners and researchers to describe the characteristics of
software faults that cause failures during the testing and operation phase (Grottke
et al. 2010; Laprie et al. 1990; Yazdanbakhsh et al. 2016; Deswarte et al. 1998;
Laprie 1995). The limits and challenges in the dependability of computer systems
in terms of the fault class, such as physical faults, design faults, and interaction
faults, are discussed in Yazdanbakhsh et al. (2016), Deswarte et al. (1998) as well.
Ohba (1984) discussed two types of software faults, mutually independent faults,
and mutually dependent faults. Tokuno and Yamada (2000) proposed an imperfect
debugging software reliability model with two types of software failures involved.
The first type is caused by the fault latent in the system, which is described by a
geometrically decreasing function; the second type fault is randomly regenerated in
the testing phase, which has a constant hazard rate. Lyu (1996) divided software
failures into four groups according to the severity including catastrophic failure (a
failure that may cause death or mission loss), critical failure (a failure that may cause
severe injury or major system damage), marginal failure (a failure that may cause
minor injury or degradation in mission performance), and minor failure (a failure
that does not cause injury or system damage but may result in system failure and
unscheduled maintenance).

Kapur and Younes (1995) considered the leading error and dependent error in
model development. The expressions of N(¢) and A(¢) in Eq. (1) for the MVF,
m(t), for the leading error is written as N(¢) = q; and h(t) = b. The expressions
of N(¢) and h(?) in Eq. (1) for the MVE, m;(¢), for the dependent error is written as
N(t) =gy and h(t) = cm(t — T)/q, in which c is the dependent error removal rate,
T is the time-delay between the removal of the leading errors and the removal of the
dependent errors, and m (¢t — T') /q represents the ratio of the leading error removed
to the initial error content at time 7. Note that the cumulative number of software
failures detected and removed by time ¢ will be the summation of m(¢) and m(z).

Pham (1996), Pham and Deng (2003) also studied multiple failure types with
different detection rates. Three different types of errors are defined in Pham (1996),
Pham and Deng (2003) including critical errors, which are very difficult to detect and
remove; major errors, which are difficult to detect and remove; minor errors, which
are easy to detect and remove. The N (¢) and /(¢) in Eq. (1) defined in Pham (1996) are
N(t) =n;(t), h(t) = b;, and Eq. (1) is reformulated as dn; (t) /dt = B;dm;(t)/dt,in
which i represents different types of errors defined and S; represents the type i error
introduction rate that satisfies 0 < B; < 1. Later, Pham and Deng (2003) further
considered the expression of &(¢) can be modeled as a non-decreasing S-shaped
model, in which i(¢) = b; /(1 + 6;¢~""). Huang and Lin (2006) incorporated fault
dependence and delay debugging in the software reliability growth model. Huang
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and Lin (2006) considered all detected faults can be categorized as either leading
faults or dependent faults. For the leading faults, the expressions of N (¢) and A (?) in
Eq. (1) are N(t) = a; and h(t) = r, in which a is the total number of leading faults.
For the dependent faults, the expressions of N(¢) and h(¢) in Eq. (1) are N(t) = a,
and h(t) = Om(t — ¢(t))/a, in which m(¢) is the expected number of leading
errors, 0 is the fault detection rate of dependent faults, a is the total number of initial
faults, and ¢(¢) is the delay-effect factor.

Grottke et al. (2010) studied the proportion of the various fault types including
Bohrbugs, non-aging-related Mandel bugs, aging-related bugs, and unknown bugs
and their evolvement with time based on the fault discovered in the onboard soft-
ware for 18 JPL/NASA space missions. However, they did not provide a quanti-
tative way to estimate the number of faults. Zhu and Pham (2017a) proposed a
new NHPP software reliability model by considering software fault dependency and
imperfect fault removal. Two types of software faults are defined, Type I (inde-
pendent) fault and Type II (dependent) fault, based on the consideration of fault
dependency. The assumptions in Zhu and Pham (2017a) are: (1) Type I fault is
detected and removed in Phase 1. Type II fault is detected and removed in Phase
II. The un-removed Type I faults from Phase I are still not able to detect in Phase
IT; (2) in both phases, there exists a certain portion of software faults that the soft-
ware development team is not able to remove. In Phase I, the MVF of Type I fault
is expressed as dm(t)/dt = bi(t)[a;(t) —m ()] — c;(t)m(¢), t < tp, in which
ai(t) is total software content, by (¢) is Type I fault detection rate, c;(¢) is the non-
removable fault rate in Phase 1. In Phase II, the MVF of Type II fault is expressed
as dm(t)/dt = (b2(t)/ax(t))ma(t)[ax(t) — ma(1)] — c2(t)ma (1), t > to, in which
ay(t) is total software content in Phase II, b,(¢) is Type II fault detection rate, and
c>(t) is the non-removable fault rate in Phase II.

4.5 NHPP Multiple-Release Software Reliability Models

As software development moves further away from the rigid and monolithic model,
the importance of software multiple-release is brought to the vanguard. It is unlikely
to deliver all features that customers wanted in the single release because of the
limited budget, unavailable resources, estimated risk, and constrained working sched-
ules. Staying competitive in the market and keeping profitable for a software product
is difficult with having only a single release especially when rival releases a new
release carrying more attractive features and satisfying more customer requirements
(Saliu and Ruhe 2005). As a result of multiple releases planning, software orga-
nization will have more competitive and overwhelming advantages to balance the
competing stakeholder’s demands and benefits according to the available resource
(Ruhe and Momoh 2005; Svahnberg et al. 2010). On the other hand, a large soft-
ware system continually desires to align with the changing customer requirements
for the sake of market share. In order to obtain feedback from users, figure out
what customers really look for, and assign a lower software development cost, a
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certain portion of increments on the requirements for a multiple-release product is
essential for the growth of an organization (Maurice et al. 2006; Greer and Ruhe
2004; Missbauer 2002). Thus, software organization needs to modify parts of the
existing modules to extend the current functionality, usability, and understandability
by adding new features and correcting the problems from the previous releases (Al-
Emran and Pfahl 2007; Gorschek and Davis 2008). Additionally, agile software
development is getting more attention in recent years. Agile is an iterative and team-
based approach, which emphasizes the rapid delivery of an application in complete
functional components (Lotz 2018). The wide adoption of agile methodology also
promotes software multiple-release.

Furthermore, most software products are not introduced into the market with full
capacities at their initial release. New features will be added and existing features will
be enhanced after launched software for a while. Hence, software multiple-release
is critical to keeping a software product stays competitive in the market. Modeling
and predicting software failure behaviors for single-release software systems have
been extensively studied in the past few decades. However, only a few researchers
studied multiple-release software reliability and introduced prediction models to
explain software fault detection process and fault removal process for multiple-
release software.

Garmabaki et al. (2011) incorporated different severities level used to describe the
difficulty of correcting faults in the upgrade process to develop a multi up-gradation
software reliability model. Faults are classified into two categories, simple fault, and
hard fault. The fault removal for the development of the new release depends on
the fault from the previous releases and the fault generated in that release. Hu et al.
(2011) considered the effect of multiple releases regarding the fault detection process
in software development. They assumed that there is no gap between the release of
the previous version and the development of the next version. In this work, in order
to study the effects of multiple releases on the fault dynamics during the whole
software development, they considered a scenario where a software development
team develops, tests, and releases software version by version. The field test of each
version continues after its release so that faults can continue to be detected and
corrected until the next version is ready to be tested. In case a fault is detected in the
field test of any version, it will be reported and corrected in both the current version
and its subsequent version.

Kapur et al. (2012) introduced the combined effect of schedule pressure and
resource limitations by the use of the Cobb—Douglas production function in software
reliability modeling. The Cobb—Douglas function illustrates the total production
output can be obtained by the amount of labor input, capital input, and total factor
productivity. An optimal release planning problem is formulated in this study for
software with multiple releases with the solution obtained by applying the genetic
algorithm method. Yang et al. (2016) incorporated fault detection and fault correction
process in multiple-release software reliability modeling. They considered there is a
time-delay in fault repair after detecting faults. The time-delay function is explained
by an exponential function or a gamma function. They also assumed the faults in a
new version including both the undetected faults from the last version and the newly
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introduced faults during the development process of the new version. Pachauri et al.
(2015) proposed a software reliability growth model by considering fault reduction
factor (FRF) and extended this idea to multiple-release software systems. FRF is
defined as the ratio of the total number of reduced faults to the total number of
failures. FRF is not a constant, which can be affected by other factors, such as
resources allocation.

The multiple-release software reliability models reviewed above mainly focused
on obtaining optimal release time by optimizing the software cost model without
considering the dependent relationship of software faults generated from different
releases. Therefore, Zhu and Pham (2017b) focused on the development of a multiple-
release software reliability model considering the remaining software faults from the
previous releases and the newly introduced faults resulting from the newly introduced
features in the development of the next release. Additionally, the dependent fault
detection process is taken into account in this research. In particular, the detection
of a new software fault for developing the next release depends on the detection
of the remaining faults from the previous releases and the detection of the newly
introduced faults. They further discussed the behaviors of the proposed software
reliability model through mathematical proofs.

4.6 NHPP Environmental Factor Based Software Reliability
Models

Software development process has gone through a great change during the past one
and half decades. The rise of the Internet had led to rapid growth in the demand for
international information display and email systems on the World Wide Web. Soft-
ware programmers are required to handle various illustrations, maps, photographs,
and other images, plus simple animations at a rate we have never seen before. The
high technology has an ever-increasing impact on daily life, which drives the software
release cycle to become shorter than before, for instance, many companies have short-
ened their software release cycle from traditional 18 months to 3 months, in order
to respond to the fast-changing and competitive market (HP Applications Hand-
book 2012; Khomh et al. 2012). Moreover, as high technology gets more involved
in our everyday life, there are a wide variety of computational devices like mobile
phones, tablet PCs, laptops, desktops, and notebooks (Gallud et al. 2012), which
also brings more challenges to software developers, such as application mainte-
nance, device consistency, and dynamic version settings (Eisenstein et al. 2001).
Customers also have more requirements on the specific design and functionality of
the software product. A user-friendly interface, involved in the interaction amongst
users, designers, hardware systems, and software systems, has been emphasized to a
great extent nowadays. Furthermore, for practitioners and researchers, programming
skills, programming language, domain knowledge, and even the programmer orga-
nization and team size are different compared with a decade ago. Finally, software
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development is distributed across multiple locations as the development of global-
ization (Ramasubbu and Balan 2007). However, such cross-site work patterns may
take a much longer time and require much more effort, even though the work size
and complexity are similar (Herbsleb et al. 2000, 2001; Herbsleb and Mockus 2003).

Given the current trends of the software development process, which are the
adoption of software product lines, software development globalization, and the
establishment of software ecosystems, the complicated and human-centered soft-
ware development process needs to be addressed more appropriately. Meanwhile,
environmental factors play significant impacts on affecting software reliability during
the software development process (Zhang and Pham 2000; Zhang et al. 2001; Zhu
et al. 2015; Zhu and Pham 2017c; Misra et al. 2009; Chow and Cao 2008; Clarke
and O’Connor 2012; Sawyer and Guinan 1998; Roberts et al. 1998). Indeed, how
to define and incorporate single/multiple environmental factors that present a signif-
icant impact on reliability into the software reliability model is critical to address
modern software development in practice.

Environmental Factors in Software Development—Although no general defi-
nition has been given to defining what are the environmental factors affecting software
reliability during the software development process, there have been many related
works that defined different types of factors in software development from various
perspectives.

Zhang and Pham (2000) defined 32 environmental factors and characterized
the impacts of these environmental factors affecting software reliability during the
software development process for single-release software. These 32 environmental
factors are defined from the four phases of software development, general informa-
tion, and the interaction with hardware systems. Software development is divided
into four phases in this study: analysis phase, design phase, coding phase, and testing
phase. The authors conducted a survey investigation and obtained empirically quan-
titative and qualitative data from managers, software engineers, designers, program-
mers, and testers, who participated in software development practices. This study
also identified the important environmental factors in software development and
analyzed the correlations between these environmental factors. Later, Zhang et al.
(2001) provided an exploratory analysis to further analyze the detailed relationships
of these environmental factors. Zhu et al. (2015) revisited these 32 environmental
factors defined in Zhang and Pham (2000) and analyzed their impacts on software
reliability during software development based on a current survey distributed to soft-
ware development practitioners. As the application of agile development and the
increasing popularity of multiple-release software products in many organizations,
Zhu and Pham (2017c) further conducted another study to investigate the impact
level of these 32 environmental factors on affecting software reliability in the devel-
opment of multiple-release software to provide a sound and concise guidance to
software practitioners and researchers.

Sawyer and Guinan (1998) presented the effects on software development perfor-
mance that depend on the production method of software development and the social
process of how people work together in the software development environment.
Roberts et al. (1998) proposed five factors that are essential to implement a system
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development methodology, including organizational system development method-
ology transition, functional management involvement/support, use of models, and
external support. Chow and Cao (2008) collected the survey data from 109 agile
projects from a diverse group of organizations with different sizes, industries, and
geographic locations to provide empirical information for the statistical analysis.
Based on the multiple regression analysis, the critical success factors are identified
as a correct delivery strategy, a proper practice of agile software engineering tech-
niques, and a high-caliber team. Three other factors that could be critical to certain
success dimensions are identified as a good agile project management process, an
agile-friendly team environment, and strong customer involvement.

Misra et al. (2009) conducted a large-scale survey-based study to identify the
success factors from the perspective of agile software development practitioners
who have successfully adopted agile software development in their projects. This
study identified nine out of the fourteen hypothesized factors that have statistically
significant relationships with “success”. The important success factors are customer
satisfaction, customer collaboration, customer commitment, decision time, corporate
culture, control, personal characteristics, societal culture, and training and learning.
Clarke and O’Connor (2012) researched the situational factors affecting the software
development process. Rigorous data coding techniques from Grounded Theory have
been applied in this study. They concluded that the resulting reference framework
of situational factors consists of eight classifications and 44 factors that inform the
software process. On the other hand, this framework also provides useful information
for practitioners who are challenged with defining and maintaining the software
development process.

Environmental Factor based Software Reliability Models—Only a few studies
incorporated environmental factors, the random effect of the testing/operating envi-
ronments, or other factors, such as FRF that could be influenced by many environ-
mental factors, to develop software reliability models.

Teng and Pham (2006) presented a new methodology for predicting software
reliability in the field environment. A generalized random field environment (RFE)
software reliability model which can cover both the testing phase and operating phase
is proposed in this study by assuming all the random effect in the field environments
can be captured by a unit-free environmental factor. Two specific RFE software reli-
ability models are developed by the use of the generalized RFE software reliability
model, called the y-RFE model and the B-RFE model, to describe different random
effects in the operation phase. Hsu et al. (2011) integrated the FRF into software
reliability models. The FRF is proposed by Musa (1975), which is generally defined
as the ratio of net fault reduction to failure experience (Musa 1980; Musa et al. 1987),
which could be influenced by many environmental factors, such as fault dependency,
human learning process, imperfect debugging, and delay debugging. The authors
firstly studied the trend of the FRF and considered it as a time-variable function,
and then incorporated the FRF in software reliability growth modeling to improve
the accuracy of failure prediction. Pachauri et al. (2015) also considered the impact
of FRF in developing a software reliability growth model. Pham (2014) incorpo-
rated the uncertainty of the operating environments into a software Vtub-shaped
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fault detection rate model. In particular, the fault detection rate in this study is repre-
sented by a Vtub-shape function, and the uncertainty of the operating environments
is represented by a random variable, modeled as a gamma distribution.

With the recent investigations of the significance of environmental factors in soft-
ware development, Zhu and Pham (2018) incorporated one of the top 10 significant
environmental factors from Zhu et al. (2015), Zhu and Pham (2017c¢), Percentage of
Reused Modules (PoRM), to be a random variable which has a random effect on fault
detection rate. This study introduced the Martingale framework, specifically, Brow-
nian motion and white noise process into the stochastic fault detection process, which
is used to model the impact resulting from the randomness of PORM. They further
proposed a single-environmental-factor software reliability model considering the
gamma-distributed PORM and the randomness associated with PORM. Later, consid-
ering the significance of the impacts from multiple environmental factors (Zhu et al.
2015; Zhu and Pham 2017c), Zhu and Pham (2020) proposed a generalized software
reliability model with multiple environmental factors and the associated random-
ness under the Martingale framework. The randomness is reflected in the process of
detecting software faults. Indeed, this is a stochastic fault detection process. Software
practitioners and researchers are able to obtain a specific multiple-environmental-
factors software reliability model according to the individual application envi-
ronments from the proposed generalized multiple-environmental-factors software
reliability model.

5 Conclusion

Given our modern societies are increasingly dependent on software systems, such
as transportation networks, smart grids, and healthcare systems, software systems
malfunction can result in cascading failures. Meanwhile, large-scale software devel-
opment is still a complex, effort-consuming, and expensive activity. The conse-
quences of software failures thus become costly and even dangerous. In this chapter,
we review probabilistic software reliability models with different groups. Consid-
ering the wide adoption of NHPP based software reliability models in practical
software reliability engineering, this chapter mainly focuses on the review of NHPP
based software reliability models that address various concerns in software devel-
opment practices, such as testing efficiency, testing coverage, multiple fault types,
time-delay fault removal, and environmental factors.
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